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QUANTUM NOISE THEORY FOR THE RESISTIVELY SHUNTED JOSEPHSON JUNCTION

Roger H. Koch, D. J. Van Harlingen, and John Clarke
Department of Physics, University of California, and.
- Materials and Molecular Research Division, Lawrence
Berkeley Laboratory, Berkeley, California 94720
Abstract
" We show that the low frequency spectral ‘density of the vo]tagé noise in
a current-biased Josephson junction with critical current IO, shunt resistance R,

2,.where V is the

and small capacitance is eI§R3/ﬁV in the 1imit eV >>_kBT(I/IO)
‘voltage and I is the current. The hoise arises from zero-point current fluctua-
‘tions in the shunt resistor. The rounding of th%tunvent—vb1tage charactéristic
caused by the quantum fluctuations and the effects of non-zero junction capacitance

¢

are calculated. .

In-thiS'Letter we repoft:calcu]ations-of the voltage noise in a current-
biased résistiveiy shunted].dosephson2 junction (RSJ) when quantum corrections
to the noise are taken into account. We show that the limiting noise in a
: shécified region of'the current-?o]tage‘(I-V)'characteristié.is»set by .zero-point
fluctuations in the shunt resistdrS. We predict that measurements of the noise
~in a junction with appropriate parameters should allow-a direct observation of
zero-point -fluctuations, Furthermore,rthe'ca]cu]ated.noise.should.enable one .

to estimate ‘the 1imiting sensitivity of SQUIDs and Josephson video detectors

- .and mixers of high frequency electromagnetic radiation.

Likharev. and Semenov” (LS) and Vystavkin gEAgl.s have calculated the
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voltage spectral density of a current-biased RSJ with zero capacitance when

the current noise of the shunt is in the classical 1imit hmJ<<kBT, where

wy = 2eV/h is the Josephson frequency at the average voltage V. We extend
these calcu]ations_to.the quantum 1imit th>>kBT where zero-point energy
fluctuations in the shunt become significant. The calculation by Stephen6

of ‘fluctuations in the pair current of a junction biased near a self-resonant
step can predict the linewidth of the Josephson radiation'emittéd.by a voltage -

biased tunnel junétion-in the quantum 11mit6’7.

This calculation does not
apply to the case of present interest because the apparent pair shot noise
- predicted arises from phdton nﬁmber fluctuations in .a lossy resonant cavity
coupled to the junction and is not intrinsic to the RSJ.

We consider a Josephson tunnel junction with critical current IO and
capacitance C shunted with resistance R. We assume that V always lies below
20/e, where A is the energy gap, so that the Riedel singu]arity8 is unimportant.
Furthermore, we take the temperature T to be well below theitransition temperature,
where'the guasiparticle tunneling current is small compared with the current in
the shunt resistance, so that we can neglect noise from the quasiparticle tunﬁe]ing

current Z The only significant noise source is the current noise, I,(t), in

N
the resistor, which has a spectral density, including zero-point f1uctuations,9

AI(m) = {hw/mR) coth (h@/ZkBT)' (1)

at'angular-frequency w. We compute the spectral density of the voltage noise,
Av(w), for a current-biased RSJ at an angular frequency w.
It is convenient to introduce the dimensionless units and parameters

i=1/10, v=V/IOR=wJ/(2wIOR/®O), T = 2nkBT/IO<1>O, 8 = w/(ZnIOR/ch), S.(8) =

i

HI

bI(w)(ZﬂR/IO®O), S (8) = Av(w)(ZW/IOQOR), B. ZWIORZC/QO, and « = eIOR/kBT.v

v c
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The phase difference 8(t) across the junction evolves with dimensionless time

"QK®O/2ﬂIOR) according to” the Langevin equation
B, &+ 8 +sing =i+ . (2)

10

We first consider the 11m1t‘ BC<<1.1n which the term BCS may be neglected

in Eq.(2). In the limit in which ngisejroﬁnding‘effects are neg]igibTe;.the
- I-V charaéteristic ‘is].v.=_(i2,-'1)‘l/2 and Eq. (2) may be‘solved analytically

'using\the LS method4_ One calculates the Fourier components of the voltage
fluctuations: taking into account the mixing down of high frequency noise at

harmonics of the Josephson frequency and finds the spéctra] density4

-s;(e) =’2 "IZUZ S;(8-kv), | . - (3)

k==

Here, k is.an integer, and

{(k-mi-v)]k‘” L (e -0 )
8 - (k-T)v - 8 - (k+)v o

Eva]uating--theizk in the limit 8/v+0, that is, when the measurement frequency

is much lower than the Josephson frequency, we find

5,000 = 15(0) v E e 08§ e () (8)

- k22

. Even in the extreme quantum limit in which S{@kv,'thevsum still ‘converges, so-

that the last term is of order GZ/V, which is negligible in the T1imit 6<< v.
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Substituting Eq. (1) into Eg. (5) we find

5,(0) = arrp? (1 + (<v/2i%) coth (kv (6)

ov/3i = i/v, or, in dimensioned units,

. 2k, T I1.\2 ' .
: ~pe|_B . eV o} . eV
(0 =Ry I+ R <1 ) coth <k8;> , (7)

where rD

o

“where RD’- 3V/3l 1is the dynamic resistance. The inset of Fig. 1 shows the
temperature dependence of”év(O) for particular values of Io (assumed to be
independent of temperature) and R at fixed bias current. For comparison, the

LS result in the cTassical 1imit is also shown.

It is instructive to consider several limits of Eq. (7): (i) eV<<kBT (kv<<]):

e obtain the LS result’ s (0) = (2kgTRoZ/mR) 14s(I1 /1021 . (i1) eV>kgT (kv>>1):
' We obtain s,(0) = RZI2kgT/mR + eVI 2/aRI% . For eVeckyT(1/1,)% (vrgf>>c) this
yields the Nyquist result év(O) = ZkBTR/n , while for eV>>kBT(I/IO)2.(er2<<K),

we find the quantum 1imit

5,(0) = eV(IO/I)ZRDZ/nR - eI02R3/nV, (8)

- Thus, tOﬂobserve quantum effects .we require.n = eIOR/kBT>>1. At the particular
bias V=16R, £q. (8) reduces to AV(O)-= eIORz/n,-which is just the voltage

- spectral density of the shot noise due to a current IO flowing through a |
resistance R.. However, it should be clear from the derivation that Eq. (8)
arises not from . an intrinsic shot noise in the pairs tunneling through the
.barrier.but*rather»from the»zéro-poiht fluctuations of -the shunt resistance

which have a current spectral density hw/TR.



- To compute the noise rounding of the I-V characteristics or to include the
effects of a non-zero capacitance, we have used-numerical techniques. Although
we have computed the general case T#0, we report here results only for. the T=0
lTimit in which Eq. (1) becomes hw/7R. We used.an,LSI—]] computer to integrate
Eq. (2) using a nbise driving “term obtained by digitally filtering pseudo-random
white noise. We obtained the mean. voltage by averaging ‘the instantaneous vol-
tage over typically ]O4VJosephson'cyc1es,_and determined,the low frequency
spectral density of the voltage noise by averaging the fluctuations in the
. voltage after 1ow-pass;digita1 filtering. The accuracies of the average
voltage and the spectral density are believed tb]be +5% and 210% for 1}10, and
+10% and tZO% for i g 105 Figure 2 illustrates the noise rounding of the I-V

characteristics due to zero point f1UCtuations.for]O

.Bc = 0.1. For a given
depression of the criticalfcurrent below the noise-free value, the rounding
extends to .much Targer yalues of voltage than in the equivalent thermal noise
' casej] because the noise in the resistor at the Josephson frequency increases
with voltage. | |

Figure 3 shows the effecté of “increasing Bc' The dynamic.resistance
" increases markedly af low voltages [Fig. 3(a)] as Bc.inCreéses]z; hysteresis
occurs for 8521. Figure 3(b) shows the corresponding spectral densities of thé
- voltage noise, with the dotted line taken from Eq. (6). For v>0.5.the noise
rounding 15'sma]J;'and'the computer and analytical results-are indistinguish-
- able. The increase in-noise_withnincreasing'sc for a given vo]tage at low
voltages reflects the higher dynamjc resistance, but for a]i-BC'at very low
voltages the noise decreases with decreasing'vo]tage'because of noise rounding.
At high voltages, the noise decreases with'increasing B, at a given vo]tage

" because the noise currents -are filtered out at frequencies above ~1/RC.
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We have not included in our calculation the possibility of macroscopic
quantum tunneh’ngw’]4 (MQT), which wouid permit the junction to tunnel between
states of metastable equilibrium and hence increase»the‘noise.rounding for
for. I < Io. For an undamped junction in the 1imit C - 0, the tunneling rate

14

is expected to become infinite ", and the classical model of the junction

as a point particle moving in a potential is no Tonger valid. However, since

13, we do not

MQT is predicted to decrease rapidly as the damping increases
expect it to make a significaﬁt contribution in the highly damped limit
considéred here.

In conclusion, we note that the quantum effects calculated here should
be observable provided one can obtain the limit « >> 1. Writing
K = (e/kBT)(Bcéoj]/ch)%, where j] is the critical current density and c is
the capacitance per unit area of the tunnel junction, we see that the Timit
requires a high current density and/or a low temperature. At 1K, with
j]=’104Acm'?, BC = 1 and c = 0.04 pFum_Z, we find k = 10, a value at which
quantym correptions are-considéfab]e‘(see:inset’of Fig. 1). Our fesu]ts for
BC<<1 should also be applicable to point contact junctions and micro-bridges
to the extent that these deviées can be represénted_by the RSJ model. |

We are grateful to R.F. Voss and to AfO; Caldeira and A;J. Legéett for
preprints of their work, and to C.D; Tesche for many interesting discussiohs;
R.H.  Koch and D.J. Van Harlingen thank the National Science Foundation for

pre- and post-doctoral fe]]owships; This work was supported by the U.S.

Department ‘of Energy under contract No. W-7405-Eng-48.



11.
12,

13.
14.

References

W.C. Stewart, Appl. Phys. Lett. 12, 277 (1968); D.E. McCumber, J.

Appl. Phys. 39, 3113 (1968).

3.D. Josephson, Phys. Lett. 1, 251 (1962).

J.C. Gallop and B.W. Petley [J. Phys. E. 9, 417 (1976)] have discussed
this possibility. _

K. K‘ Likharev and-V.K. Semenov, J.E.T.P. Lett. 15, 442‘(]972)

A.N. Vystavkin, V.N. Gubankov, L.S. Kuzmin, K.K. Likharev, V.V. M1gu11n,
and V.K. Semenov, Phys. Rev. Appl. 9, 79 (1974).

M.J. Stephen, Phys. Rev. 182, 531 (1969).

. “A.J. Dahm, A. Denenstein, D.N. Langenberg, W.H. Parker, D. Rogovin, and
D.J. Scalapino, Phys. Rev. Lett. 22, 1416 (1969).
E. Riedel, Z. Naturf. 19A, 1634 (1964).

H.B. Callen and T.A. Welton, Phys. Rev. 83, 34 (1951).

. As B, - 0, the roll-off frequency of the noise, ~1/RC; increases, and the
"’mean-square.current noise available to the junction, oc(1/RC)2',-eventua11y
‘becomes so large that the noise-rounded critical current is reduced to.

" zero. “In the analytical discussion we choose 0 < BC << 1, white for the

. computer resu1ts-we,choose-8C = 0.1.

V. Ambegaokar and B.I. Halperin, Phys. Rev. Lett. 22, 1364 (1969).

-J. Kurkijdrvi and V. Ambegaokar, -Phys. Lett. 31A, 314 (1970); R.F. Voss

(preprint).
A.0. Caldeira and A.J. Leggett (preprint).
J. Kurkijdrvi (to be .published in the ‘Proceedings of the Second International

Conferenee on SQUIDs, Berlin, May 6-9, 1980).



Figure Captions

Fig. 1 Low frequency spectral density 4V(0) of the voltage noise vs.
current for 5 values of k = eIOR/kBT~w1th BC<<1. Inset shows

AV(O) vs. T for IO

TmA, I = 1.41mA, and R = 0.86Q (chbsen to-

give V = IOR ahd K 10-at 1K). Dashed 1ine shows the LS classical
“result. |
Fig. 2 - I-v characteristi;s-at T =0 with Bc =~ 0.1 for 4 values of «kI' = 2weR/®0,
" showing rounding due to zero-point f]ucfuations. Dashed 1line shows
noise rounding in the thermal noise Timit for a similar depression
~in critical current. as for the case «I' = 0.05.
Fig. 3 (a) I-V characteristics at T = 0 for «T = 2veR/®O = 0.0194
(R=409) with Btﬂ= 0.1, = 0.5, 1. (b) Spectrai'density of the
© voltage noise for the curves in (a); dotted Tline is taken frdm

Eq. (6). The dashed portions:are of lower accuracy.
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