
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Computational Methods for Parameter Estimation in Nonlinear Models

Permalink
https://escholarship.org/uc/item/8sn7c1h2

Author
Toth, Bryan Andrew

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8sn7c1h2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Computational Methods for Parameter Estimation in Nonlinear
Models

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Physics with a Specialization in Computational Physics

by

Bryan Andrew Toth

Committee in charge:

Professor Henry D. I. Abarbanel, Chair
Professor Philip Gill
Professor Julius Kuti
Professor Gabriel Silva
Professor Frank Wuerthwein

2011

Copyright

Bryan Andrew Toth, 2011

All rights reserved.

The dissertation of Bryan Andrew Toth is approved, and

it is acceptable in quality and form for publication on

microfilm and electronically:

Chair

University of California, San Diego

2011

iii

DEDICATION

To my grandparents, August and Virginia Toth and Willem and

Jane Keur, who helped put me on a lifelong path of learning.

iv

EPIGRAPH

An Expert:

One who knows more and more

about less and less, until

eventually he knows

everything about

nothing.

—Source Unknown

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . x

Acknowledgements . xi

Vita and Publications . xii

Abstract of the Dissertation . xiii

Chapter 1 Introduction . 1
1.1 Dynamical Systems . 1

1.1.1 Linear and Nonlinear Dynamics 2
1.1.2 Chaos . 4
1.1.3 Synchronization 6

1.2 Parameter Estimation . 8
1.2.1 Kalman Filters 8
1.2.2 Variational Methods 9
1.2.3 Parameter Estimation in Nonlinear Systems . . . 9

1.3 Dissertation Preview . 10

Chapter 2 Dynamical State and Parameter Estimation 11
2.1 Introduction . 11
2.2 DSPE Overview . 11
2.3 Formulation . 12

2.3.1 Least Squares Minimization 12
2.3.2 Failure of Least Squares Minimization 13
2.3.3 Addition of Coupling Term 15

2.4 Implementation . 16
2.5 Example DSPE Problem 19

2.5.1 Lorenz Equations 19
2.5.2 Discretized Equations 19
2.5.3 Cost Function . 20

2.6 Example Results . 21

vi

Chapter 3 Path Integral Formulation . 24
3.1 Stochastic Differential Equations 24
3.2 Approximating the Action 25

3.2.1 Assumptions . 25
3.2.2 Derivation . 26
3.2.3 Approximation 27

3.3 Minimizing the Action 28

Chapter 4 Neuroscience Models . 30
4.1 Single Neuron Gating Models 30

4.1.1 Hodgkin-Huxley 31
4.1.2 Morris-Lecar . 36

4.2 Parameter Estimation Example 38
4.2.1 Morris-Lecar . 39
4.2.2 Morris-Lecar Results 41

4.3 Discussion . 41

Chapter 5 Python Scripting . 45
5.1 Overview . 46
5.2 Python Scripts . 47

5.2.1 Discretize.py . 47
5.2.2 Makecode.py . 48
5.2.3 Additional scripts 52
5.2.4 Output Files . 53

5.3 MinAzero . 54
5.3.1 Python Scripts 55
5.3.2 Output Files . 56

5.4 Discussion . 57

Chapter 6 Applications of Scripting . 62
6.1 Hodgkin-Huxley Model 62

6.1.1 Hodgkin Huxley Results 63
6.1.2 Hodgkin-Huxley Discussion 64

6.2 LP Neuron Model . 65
6.2.1 LP Neuron Model 67
6.2.2 LP Neuron Goals 71
6.2.3 LP Neuron Results 74
6.2.4 LP Neuron Remarks 79
6.2.5 LP Neuron Conclusions 81

6.3 Three Neuron Network 81
6.3.1 Network Model 82
6.3.2 Network Goals . 83
6.3.3 Network Results 83

vii

6.3.4 Network Conclusions 84

Chapter 7 Advanced Parameter Estimation 88
7.1 Large Problem Size . 88

7.1.1 Example . 89
7.1.2 Discussion . 89

7.2 Starting Guess . 91

Chapter 8 Conclusion . 92

Appendix A IP control User Manual . 93
A.1 Introduction . 93

A.1.1 Problem Statement 93
A.2 Installations . 94

A.2.1 Python . 94
A.2.2 IPOPT . 95
A.2.3 Scripts . 98
A.2.4 Modifying makemake.py 99

A.3 Usage . 100
A.3.1 Equations.txt . 100
A.3.2 Specs.txt . 101
A.3.3 Myfunctions.cpp 103
A.3.4 Makecode.py . 103
A.3.5 Running the Program 105
A.3.6 Advanced Usage 105

A.4 Output . 106
A.5 Troubleshooting . 106

Appendix B IP control code . 108
B.1 Discretize.py . 108
B.2 Makecode.py . 123
B.3 Makecpp.py . 153
B.4 Makehpp.py . 155
B.5 Makemake.py . 159

Bibliography . 163

viii

LIST OF FIGURES

Figure 1.1: Pendulum motion . 3
Figure 1.2: Lorenz 1963 model phase space trajectory 4
Figure 1.3: Lorenz 1963 integration, different initial conditions 6
Figure 1.4: Lorenz 1963 integration, different integration time steps 7

Figure 2.1: Least squared cost function of Colpitts oscillator 14
Figure 2.2: Cost function of Colpitts oscillator with coupling 17
Figure 2.3: Lorenz 3-D dynamical variable results 22
Figure 2.4: Lorenz dynamical variable results 23

Figure 4.1: RC circuit . 31
Figure 4.2: Hodgkin-Huxley RC circuit . 32
Figure 4.3: Gating particle voltage dependence 35
Figure 4.4: Hodgkin-Huxley step current solution 37
Figure 4.5: Morris-Lecar step current solution 39
Figure 4.6: Morris-Lecar Results I . 43
Figure 4.7: Morris-Lecar Results II . 44

Figure 5.1: HH equations.txt file . 59
Figure 5.2: HH specs.txt file . 60
Figure 5.3: Sample evalg . 61

Figure 6.1: Hodgkin-Huxley DSPE voltage 65
Figure 6.2: Hodgkin-Huxley DSPE gating variables 66
Figure 6.3: California Spiny Lobster . 67
Figure 6.4: California Spiny Lobster Biological Systems 68
Figure 6.5: Stomatogastric Ganglion . 69
Figure 6.6: Pyloric Central Pattern Generator 70
Figure 6.7: LP neuron voltage trace . 71
Figure 6.8: LP neuron voltage - varying current 72
Figure 6.9: LP neuron - parameters . 73
Figure 6.10: LP neuron - parameters . 73
Figure 6.11: LP neuron - activation and inactivation functions 74
Figure 6.12: LP neuron - model . 75
Figure 6.13: LP neuron - DSPE results . 76
Figure 6.14: LP neuron - DSPE R-Value . 77
Figure 6.15: Three Neuron Network . 82

Figure 7.1: Integration of Lorenz 1996 model - variable 1 89
Figure 7.2: Integration of Lorenz 1996 model - variable 2 90

ix

LIST OF TABLES

Table 2.1: Lorenz Estimated Parameters 22

Table 4.1: Morris-Lecar Estimated Parameters 42

Table 5.1: Hodgkin-Huxley generated code lengths 51
Table 5.2: Code lengths for various problems 51

Table 6.1: HH Model: Data Parameters and Estimated Parameters. 64
Table 6.2: LP Neuron Model: DSPE Estimated Parameters 78
Table 6.3: LP Neuron Model: DSPE Estimated Parameters 85
Table 6.4: LP Neuron Model: MinAzero Estimated Parameters 86
Table 6.5: Three Neuron Network Model: Estimated Parameters 86
Table 6.6: Three Neuron Network Model: Estimated Parameters 87

x

ACKNOWLEDGEMENTS

First off, I would like to thank my thesis advisor, Henry Abarbanel, for

encouraging me to pursue interesting ideas, and guiding me in new directions

when I got stuck. I thank Henry for making me feel useful as the only person in

the lab capable of installing optimization software on all twelve (and counting) of

his computers.

I thank my classmates Jason Leonard, Will Whartenby, and Yaniv Rosen

for helping me study for the Departmental Exam and ensuring that I made the

cut. I only wish that I had not forgetten all that valuable physics the day after

the exam was over!

I thank my labmates Dan Creveling, Mark Kostuk, Will Whartenby, Reza

Farsian, Jack Quinn, and Chris Knowlton for having enough projects going on that

Henry forgot about me and let me do my own thing. A special shout out to Dan

for introducing me to Python and to Will and Mark for smoothing some of my

rough edges in C++ programming.

To all my friends in San Diego and elsewhere, I thank you for making the

last five years fly by. I stayed sane with a mixture of beach volleyball, softball,

ultimate frisbee, and beer. Cheers!

I thank my family for all their love and support throughout my academic

career, never questioning my desire to return to graduate school after nine years

of real paychecks. To Amy and Ali, I thank you for the yearly respite of a few

days in Vermont to help me realize how little I miss cold weather. To my mother,

I promise that I will teach you some physics! To my father, thanks for being such

a great role model for me during all phases on my life.

And I thank the city of San Diego for bringing my lovely Brittany into my

life. To Brittany: thank you for your patience and support throughout the last

twelve months of ‘almost’ being done!

xi

VITA

1997 B. S. E. in Engineering Physics summa cum laude, University
of Michigan, Ann Arbor

2000 M. S. in Mechanical Engineering, Naval Postgraduate School,
Monterey

2002 M. S. in Applied Physics, Johns Hopkins University, Balti-
more

2006-2010 Graduate Teaching Assistant, University of California, San
Diego

2011 Ph. D. in Physics, University of California, San Diego

PUBLICATIONS

Abarbanel, H. D. I., P. Bryant, P. E. Gill, M. Kostuk, J. Rofeh, Z. Singer, B. Toth,
and E. Wong, “Dynamical Parameter and State Estimation in Neuron Models”,
The Dynamic Brain: An Exploration of Neuronal Variability and Its Functional
Significance, eds. D. Glanzman and Mingzhou Ding, Oxford University Press,
2011.

Toth, B. A., “Python Scripting for Dynamical Parameter Estimation in IPOPT”,
SIAG/OPT Views-and-News 21 :1, 1-8, 2010.

xii

ABSTRACT OF THE DISSERTATION

Computational Methods for Parameter Estimation in Nonlinear
Models

by

Bryan Andrew Toth

Doctor of Philosophy in Physics with a Specialization in Computational Physics

University of California, San Diego, 2011

Professor Henry D. I. Abarbanel, Chair

This dissertation expands on existing work to develop a dynamical state and

parameter estimation methodology in non-linear systems. The field of parameter

and state estimation, also known as inverse problem theory, is a mature discipline

concerned with determining unmeasured states and parameters in experimental

systems. This is important since measurement of some of the parameters and states

may not be possible, yet knowledge of these unmeasured quantities is necessary for

predictions of the future state of the system. This field has importance across a

broad range of scientific disciplines, including geosciences, biosciences, nanoscience,

and many others.

The work presented here describes a state and parameter estimation method

xiii

that relies on the idea of synchronization of nonlinear systems to control the con-

ditional Lyapunov exponents of the model system. This method is generalized

to address any dynamic system that can be described by a set of ordinary first-

order differential equations. The Python programming language is used to develop

scripts that take a simple text-file representation of the model vector field and out-

put correctly formatted files for use with readily available optimization software.

With the use of these Python scripts, examples of the dynamic state and

parameter estimation method are shown for a range of neurobiological models,

ranging from simple to highly complicated, using simulated data. In this way, the

strengths and weaknesses of this methodology are explored, in order to expand the

applicability to complex experimental systems.

xiv

Chapter 1

Introduction

Nonlinear parameter estimation research is highly fragmented, probably

since the discipline is not typically considered its own scientific “field”, but instead

a collection of tools that are customized to work within separate scientific fields.

Part of this is because the general discipline of linear parameter estimation is

mature: a few well-defined techniques can more than adequately solve a large

number of parameter estimation problems. But this is also because finding general

parameter estimation methods that handle the challenges inherent in non-linear

dynamical systems is very difficult, especially when dealing with systems that are

chaotic. In this thesis, I will describe a general method to tackle the problem

of non-linear parameter estimation in dynamical systems that can be described

by first-order ordinary differential equations. First, I will define what parameter

estimation is and what specific difficulties are involved with non-linear dynamical

systems.

1.1 Dynamical Systems

Dynamics is the study of physical systems that change in time, and is the

foundation for a wide range of disciplines. The simplest example of dynamics is

the kinetic equations of motion that relate position, velocity, and acceleration of

an object to an applied force, based on Newton’s first Law, F=ma. Dynamical

systems generally come in two flavors: a set of differential equations that describe

1

2

the time evolution of a group of related variables through continuous time, or an

iterative map that gives a mathematical rule to step a system from one discrete

time step to the next.

A model describing a dynamical system can be developed in many different

ways. Equations can be derived from physical first principles, such as Newton’s

laws of motion, Maxwell’s equations, or a host of others. Measurements of (pre-

sumably) relevant dynamic variables and static parameters can be made to “fit”

an experimental system to a model. In whichever way a model is constructed,

its usefulness is generally predicated on how well it predicts the future state of a

physical system.

1.1.1 Linear and Nonlinear Dynamics

A system of differential equations that constitutes a model of an n-dimensional

physical system can be written in the form,

dy1(t)

dt
= F1(y1(t), . . . , yn(t),p)

...
dyn(t)

dt
= Fn(y1(t), . . . , yn(t),p)

where the functions Fi(y(t),p) define a system of governing equations for the model

in the state variables, y(t), with unknown parameters, p. The state (y1, y2, . . . , yn)

is called the phase space, and a time evolving path from some initial state

(y1(0), . . . , yn(0)) is the phase space trajectory. In general, the Fi(y(t),p) can be

complicated functions of y(t), depending on the system being modeled. A system

is considered linear if the functional form of Fi(y(t),p) depends only on the first

power of the yi(t)s. A simple example of a linear system is radioactive decay:

dy

dt
= F (y(t))

= −ky(t).

Here y(t) is the number of radioactive atoms in a material sample at time t. This

one dimensional system is linear, since the variable y(t) is raised to the power one

in the function F(y(t)).

3

In contrast, in a nonlinear system, the functional form of at least one of the

Fi’s includes a product, power, or function of the yi, as in the equations describing

the motion of a pendulum in a gravitational field across an angle θ (Figure 1.1).

This motion can be described by:

Figure 1.1: Motion of a rigid massless pendulum subject to gravity

d2θ

dt2
= −sin(θ)

and transformed into our standard form by letting y1 = θ and y2 = dθ
dt

:

dy1

dt
= y2

dy2

dt
= −sin(y1).

This system is nonlinear, since y1 appears within the sine function in the second

equation. This nonlinearity makes this system very difficult to solve analytically;

the solution involves elliptic functions. This textbook example is instead typically

4

solved using the small angle approximation, sin(y1) ≈ y1, which makes the system

linear.

In fact, the vast majority of nonlinear dynamical systems cannot be solved

analytically, and require linear approximations or numerical solutions. This makes

techniques that deal with nonlinear systems very important, since the vast majority

of physical systems include some non-linearity. Examples of nonlinear systems

include nonlinear electronics, chemical kinetics, lasers, neural networks, economics,

ecosystems, and turbulence, to name just a few.

1.1.2 Chaos

-30 -20 -10 0 10 20 30 -40
-20

 0
 20

 40

 0

 20

 40

 60

 80

 100

Z

X
Y

Z

Figure 1.2: Phase space trajectory of the 1963 Lorenz model. Note the charac-

teristic butterfly shape - this is common across a range of parameter values.

The term “chaos” refers to a special class of nonlinear dynamical systems,

which are characterized by large changes in the phase space trajectory for small

changes in the initial conditions. These changes can be characterized by the Lya-

punov exponents associated with the system, which give the average exponential

5

rate of divergence of initial conditions that are infinitesimally close to each other.

If one or more of the Lyapunov exponents are positive, then phase space trajec-

tories from two different initial conditions will diverge, regardless of how close the

initial conditions were. The textbook example of a chaotic system is the Lorenz

oscillator, first described by Lorenz in 1963[30]:

dx

dt
= σ(y − x)

dy

dt
= rx− y − xz

dz

dt
= xy − bz.

Here, σ, r, and b > 0 are parameters. For certain values of the parameters, this

system has one positive Lyapunov exponent, and displays chaotic behavior. Figure

1.2 shows a typical phase space trajectory for the Lorenz equations with σ=16, r

= 45.92, and b = 4.

This system cannot be solved analytically, and must be solved numerically.

Unfortunately, numerical solutions to nonlinear chaotic systems will always diverge

from other solutions, with changes to initial conditions, integration algorithm and

time step. As a result, long-term prediction is generally impossible for chaotic

systems, past some time scale related to the largest Lyapunov exponent of the

system. An illustration of this difficulty is presented in Figures 1.3 and 1.4.

In Figure 1.3, the same numerical integration algorithm and integration

time step is used to integrate the Lorenz equations with identical parameters

and slightly different initial conditions, (x, y, z) = (10,−5, 12) and (x, y, z) =

(10.01,−5, 12). The two traces track almost identically until Time=5.5, at which

point they diverge.

In Figure 1.4, the same numerical integration algorithm with identical pa-

rameters and initial conditions, but integrated with different time steps shows the

same divergent behavior, albeit at a slightly later time. Here, divergence occurs at

Time=12, beyond which the state variables diverge as before.

6

-40
-20

 0
 20
 40

 0 2 4 6 8 10

X

Time

-40
-20

 0
 20
 40

 0 2 4 6 8 10

Y

Time

 0
 20
 40
 60
 80

 0 2 4 6 8 10

Z

Time

1 2

Figure 1.3: Time evolution of the 1963 Lorenz model, integrated with slightly

different initial conditions. Trace 1 has initial x, y, z = 10,−5, 12 and Trace 2 has

initial x, y, z = 10.01,−5, 12.

1.1.3 Synchronization

The tendency of chaotic systems to diverge makes them difficult to work

with for numerical simulations, particularly in the realm of parameter estima-

tion. To combat this problem, the concept of synchronization in chaotic systems

is introduced. Pecora and Carroll [40] argue that chaotic systems can be synchro-

nized when the signs on the Lyapunov exponents of the subsystems are negative.

Synchronization is defined as each system converging to the same phase space tra-

jectory and remaining in synchrony. This is accomplished with the addition of

an additional term to the dynamics, which effectively couples one signal into the

7

-40
-20

 0
 20
 40

 6 8 10 12 14 16 18 20

X

Time

-40
-20

 0
 20
 40

 6 8 10 12 14 16 18 20

Y

Time

 0
 20
 40
 60
 80

 6 8 10 12 14 16 18 20

Z

Time

1 2 3 4

Figure 1.4: Time evolution of the 1963 Lorenz model, integrated at different

time steps. From 1 to 4, time steps are 1.0−5, 1.0−4, 1.0−3, 1.0−2. Note that in all

cases, all three state variables begin to diverge slightly before time = 12.

other. For the Lorenz oscillator, two identical systems are:

dx

dt
= σ(y − x)

dy

dt
= rx− y − xz

dz

dt
= xy − bz.

and

di

dt
= σ(j − i)

dj

dt
= ri− j − ik

dk

dt
= ij − bk.

8

If the first equation set is changed to add a coupling term:

dx

dt
= σ(y − x) +K(i− x)

dy

dt
= rx− y − xz

dz

dt
= xy − bz.

these two systems will synchronize for sufficiently large K.

1.2 Parameter Estimation

In a dynamical system, if all parameters and all state variables at an initial

time are known, a prediction can be made as to the future state of the system.

This is called the forward problem. Unfortunately, for most experimental systems

of interest, only a subset of state variables and parameters can be measured simul-

taneously, if at all, making prediction of the future state of the system difficult or

impossible.

The field of parameter and state estimation, also known as inverse problem

theory, is a mature discipline [6, 7, 8, 29, 47, 48, 50, 51] concerned with determining

unmeasured states and parameters in an experimental system. This is important

since measurement of some of the parameters and states may not be possible, yet

knowledge of these unmeasured quantities is necessary for predictions of the future

state of the system. This field has importance across a broad range of scientific

disciplines, including geosciences, biosciences, nanoscience, and many others.

A subset of the general parameter and state estimation problem is that of

data assimilation, where the analysis and forecasts are probability distributions.

In this field, two techniques are widely used: Kalman filtering and variational

methods (4D-Var).

1.2.1 Kalman Filters

Kalman filters use a Bayesian model to produce a weighted average of pre-

dicted and measured values of state variables in a dynamical model, based on mea-

surements of a subset of the state variables. The basic filter has an assumption

9

of linearity in the system under consideration; another form of the filter, called

the extended Kalman filter can be used with nonlinear systems, but since this

essentially linearizes the non-linear functions, this does not work well for highly

nonlinear and chaotic systems.[15, 16]

1.2.2 Variational Methods

Four dimensional variational data assimilation (4D-Var) [28, 11] is used with

increasing frequency in meteorology, combining a short-term numerical forecast

with observations. This method adjusts the initial value of the dynamical model

instead of changing the state directly. Strong constraint 4D-Var takes available

observations during a time window, and seeks a trajectory that best fits those

observations. The dynamical parameter estimation technique that we develop

here is a special case of strong constraint 4D-Var.

1.2.3 Parameter Estimation in Nonlinear Systems

Both of the above mentioned methods have become widely used in a wide

range of disciplines, including meteorology, chemical engineering, and many others.

Unfortunately, both methods, in their basic state, rely on linearization of large

matrices in the solution algorithm. As a result, these methods perform quite well

for linear systems or weakly non-linear systems that can be linearized, but typically

perform poorly for systems with strong non-linearities.

Many approaches have been taken to combat this problem, but one direction

appears quite promising: the idea of estimating parameters in a nonlinear model

by synchronization of experimental observations with a model of the system. This

approach has been extensively investigated [33, 39, 40, 41], but specific methods

typically still suffer from numerical difficulties during the optimization process.

These difficulties stem from using a least-squares metric to measure the difference

between measured data and its model equivalent, which has a very complex surface

in phase space due to the possibility of chaos [53].

10

1.3 Dissertation Preview

In this dissertation, I use the idea of synchronization of nonlinear systems

as a method of parameter estimation in increasingly complicated neurobiological

models. I expand on the methods developed in references [13, 4, 3, 2] and explain

some of the benefits and limitations of this parameter estimation methodology with

the use of a software package that I developed that streamlines the parameter

estimation process. Finally, I explore some of the challenges present in larger

dynamical systems, and how to handle them.

Chapter 2

Dynamical State and Parameter

Estimation

2.1 Introduction

Dynamical state and parameter estimation (DSPE) [13, 2] is an optimiza-

tion technique that uses principles from observer theory [37] and synchronization

[40] of non-linear systems to determine parameters and unmeasured state vari-

ables in an experimental system. DSPE allows a dynamical look into properties of

a nonlinear system using only observations of a subset of the dynamical variables,

coupled with a mathematical model of the system.

This chapter will discuss the formulation of the dynamical parameter esti-

mation technique, describe an example of the implementation, and give results for

this example system.

2.2 DSPE Overview

DSPE is implemented by coupling the output of experimental observations

of a system with a model of the system, so that the experimental data and its

corresponding model variable synchronize. This is a ‘balanced’ synchronization

between the experimental data and the model, in the sense that the data is trans-

11

12

mitted to the model accurately and efficiently, yet the coupling is not so strong

that the model becomes overwhelmed by the data. This model-data aggregate is

posed as a minimization problem and numerically solved using high performance

optimization software, such as SNOPT[22] and IPOPT[54]. Twin experiments,

where the “data” has been created using a computational model, have proven the

technique for spiking neuron models (e.g. Hodgkin-Huxley), as well as nonlinear

circuits, and simple geophysical fluid flow models. DSPE has subsequently been

used to examine experimental data from nonlinear oscillator circuits [4, 43].

2.3 Formulation

The state of an experimental system is described by N independent dy-

namical variables, x(t) = [x1(t), x2(t), . . . , xN(t)], q fixed parameters, and perhaps

external forcing or inputs to the system. To determine the full state of the system,

the x(t) at some discrete time point are all required, but typically only one or a

few components can be measured. If L state variables can be observed, then the

dynamical variables can be written, x(t) = [x1(t), x2(t), . . . , xL(t),x⊥(t)], where

x⊥(t) are the unmeasured state variables. The first-order differential equations

describing this experimental system are:

dx1(t)

dt
= G1(x1(t), x2(t), . . . , xL(t),x⊥(t),q)

dx2(t)

dt
= G2(x1(t), x2(t), . . . , xL(t),x⊥(t),q)

...
dxL(t)

dt
= GL(x1(t), x2(t), . . . , xL(t),x⊥(t),q)

dx⊥(t)

dt
= G⊥(x1(t), x2(t), . . . , xL(t),x⊥(t),q)

2.3.1 Least Squares Minimization

To determine the unmeasured state variables, x⊥(t), and fixed parameters,

q, a typical solution is a least-squares minimization of the error between the mea-

sured data, xi(t) and a model yi(t) (1 < i < L); the model state variables y(t) and

13

parameters p are defined by:

dy1(t)

dt
= F1(y1(t), y2(t), . . . , yL(t),y⊥(t),p)

dy2(t)

dt
= F2(y1(t), y2(t), . . . , yL(t),y⊥(t),p)

...
dyL(t)

dt
= FL(y1(t), y2(t), . . . , xL(t),y⊥(t),p)

dy⊥(t)

dt
= F⊥(y1(t), y2(t), . . . , yL(t),y⊥(t),p)

This notation assumes that the model and experimental system are governed by

different sets of differential equations, F and G, with different state variables and

parameters to describe each system. In the limit where the model describes the

experimental system with infinite accuracy, F = G.

Least-squares minimization of the error between the measured data, x, and

the model, y, minimizes the cost function:

C(y, u,p) =
1

2T

∫ T

0

L∑
i=1

{(
xi(t)− yi(t)

)2
}
dt

by evaluating the minima of ∂C(y, u,p)/∂p.

∂C(y, u,p)

∂p
=

1

T

∫ T

0

dt
L∑
i=1

{
∂yi(t)

∂p
(xi(t)− yi(t))

}
dt

2.3.2 Failure of Least Squares Minimization

Least-squares minimization works well for linear models, but does not per-

form well for non-linear vector fields. This is because the least-squares cost function

has multiple local minima, due to the structure of the Jacobian of the vector field.

This is shown in Figure 2.1, which plots the least-squares cost function

for a 3-dimensional chaotic oscillator, the Colpitts oscillator, as a function of one

(of three) parameter in the model. These data were generated as part of a twin

experiment (i.e., computational simulation), so the value of the parameter, η, is

known to be 6.2723. As seen in this figure, the cost function does not show a

14

minimum at the known value of η, and has a significant number of local minima.

This is just a cross section of the cost function, since the minimization would be

performed across all three parameters and two unmeasured states of the model, but

it is illustrative of the difficulty pursuant with least-squares methods on nonlinear

models.

Figure 2.1: The least-squares cost function for the Colpitts oscillator as a func-

tion of one of the model parameters. The four curves depict different number of

discrete time points, from 500 to 5000. The cost function does not show a minimum

at the known value for the model parameter.

This difficulty is expressed mathematically by the structure of the cost func-

tion. Specifically, the terms in the minima for ∂C(y, u,p)/∂p, ∂yi(t)
∂p

, are solutions

to:

d

dt

(
∂y(t)

∂p

)
=
∂F(y,p)

∂y

(
∂y(t)

∂p

)
+
∂F(y,p)

∂p
(2.1)

Here, F(y,p) is the N-dimensional vector field of the model,

F(y,p) = (F1, F2, . . . , FL,F⊥),

15

and ∂F(y,p)
∂y

is the NxN Jacobian of the vector field. In a nonlinear system, this

Jacobian, iterated along the orbit y(t), may possess positive global Lyapunov expo-

nents (i.e., the hallmark of chaotic behavior). When positive Lyapunov exponents

are present, solutions to equation (2.1) diverge, resulting in the behavior depicted

in Figure (2.1).

2.3.3 Addition of Coupling Term

To combat the failure of least squares minimization, dynamical state and

parameter estimation couples experimental data to the model system, y(t) with

parameters p, as if for an optimal-tracking problem. This coupling drives the

model system to synchronize with the data, and reduces the conditional Lyapunov

exponents to non-positive values. This transforms the vector field of the model to:

dy1(t)

dt
= F1(y1(t), y2(t), . . . , yL(t),y⊥(t),p) + u1(t)(x1(t)− y1(t))

dy2(t)

dt
= F2(y1(t), y2(t), . . . , yL(t),y⊥(t),p) + u2(t)(x2(t)− y2(t))

...
dyL(t)

dt
= FL(y1(t), y2(t), . . . , yL(t),y⊥(t),p) + uL(t)(xL(t)− yL(t))

dy⊥(t)

dt
= F⊥(y1(t), y2(t), . . . , yL(t),y⊥(t),p)

Again, least-squares optimization could be used on the error between the

model and the measured data over the course of the time series, but the addition

of the coupling terms, u(t), complicates matters. This coupling must be chosen

large enough to cause synchronization of the data to the model (and eliminate the

positive Lyapunov exponents), but must not overwhelm the underlying dynam-

ics of the system. Addition of the coupling term into the cost function for the

optimization ensures that the coupling does not become too large, while appropri-

ate bounds for the range of the coupling ensure that it becomes large enough for

synchronization. Therefore, the optimization to be performed is (DSPE):

Minimize:

16

C(y, u,p) =
1

2T

∫ T

0

L∑
i=1

{(
xi(t)− yi(t)

)2

+ ui(t)
2

}
dt

Subject to:

dy1(t)

dt
= F1(y1(t), y2(t), . . . , yL(t),y⊥(t),p) + u1(t)(x1(t)− y1(t))

dy2(t)

dt
= F2(y1(t), y2(t), . . . , yL(t),y⊥(t),p) + u2(t)(x2(t)− y2(t))

...
dyL(t)

dt
= FL(y1(t), y2(t), . . . , yL(t),y⊥(t),p) + uL(t)(xL(t)− yL(t))

dy⊥(t)

dt
= F⊥(y1(t), y2(t), . . . , yL(t),y⊥(t),p)

and also subject to suitable bounds for the state variables and parameters. Suit-

able bounds for the state variables and parameters are typically chosen based on

physical arguments for the given dynamical system.

As shown in Figure 2.2, addition of a coupling term within the model dy-

namics to synchronize the model to the dynamics results in a cost function cross

section that is smooth, with no local minima, and a clear minimum at the correct

value of the parameter η. Addition of a coupling term has eliminated the positive

conditional Lyapunov exponent in the system, thus regularizing the synchroniza-

tion manifold of the system.

2.4 Implementation

Since the experimental data is discrete, the cost function integral becomes a

summation, and the constraint equations are transformed to a discrete integration

map using a numerical integration algorithm, (e.g., Simpson’s Rule), with each

time step having its own constraint equation for each state variable. The unknown

variables for the optimization are each of the state variables and the couplings at

each time step and each of the parameters.

The first step is to transform the differential equations into a discrete time

map over the interval of interest [0, T]. The choice of numerical integration tech-

nique for the differential equations is not unique; Simpson’s Rule, with functional

17

Figure 2.2: The cost function for the Colpitts oscillator as a function of the same

parameter as shown previously, but with data coupled to the model equations.

Now, the structure of the cost function is smooth, and a clear minimum is evident

at the correct value of the parameter.

midpoints estimated by Hermitian cubic interpolation, is chosen here. This choice

gives accuracy of order δt4; methods with similar accuracy will suffice just as well,

but lower order methods must be used carefully to ensure that the data sampling

rate, (1
τ
), is both accurate enough and fast enough to capture the underlying dy-

namics of the system. These integrated equations become the equality constraints

in our optimization:

Simpson’s Integration:

yi(n+ 1) = yi(n) +
τ

6
[Fi(n) + 4Fi(n2) + Fi(n+ 1)] (2.2)

Polynomial Interpolation:

18

yi(n2) =
1

2
[yi(n) + yi(n+ 1)] +

τ

8
[Fi(n)− Fi(n+ 1)]. (2.3)

where the n2 index refers to the time midpoint between time n and time n+1,

and the functions, Fi, include the data coupling term described above. For com-

pleteness, a polynomial interpolation is used for midpoints of the control terms as

well:

Control Polynomial Interpolation:

ui(n2) =
1

2
[ui(n) + ui(n+ 1)] +

τ

8
[Fi(n)− Fi(n+ 1)].

For a system with 2*T+1 discrete time points, N dynamical variables, L

of which are measured (with control terms), and p parameters, this integration

scheme gives:

• N*T Simpson’s constraints

• (N+L)*T Interpolation constraints

• N*(T+1) + N*T Dynamical variables

• L*(T+1) + L*T Control variables

• p Parameter variables.

This defines an optimization space of (N+L)*(2*T+1)+p variables and (2*N+L)*T

constraints. In discretized form, the cost function takes the form of a sum, so the

optimization problem is:

Minimize:

C(y, u,p) =
1

2T

T∑
t=0

L∑
i=0

{(
xi(t)− yi(t)

)2

+ ui(t)
2

}
(2.4)

subject to the (2*N+L)*T constraints above, with appropriate upper and lower

bounds for the (N+L)*(2*T+1)+p unknown variables.

19

A variety of optimization software and algorithms are available to solve this

problem. SNOPT[22] and IPOPT[54] were chosen since they are widely available

and are designed for non-linear problems with sparse Jacobian structure. IPOPT

can be parallelized with the linear solver Pardiso [44, 45], and can thus solve large

problems in a reasonable time. Depending on the problem and the data set, a few

thousand data points may be necessary to explore the state space of the model

and allow DSPE to produce accurate solutions.

2.5 Example DSPE Problem

2.5.1 Lorenz Equations

As an example of the implementation of the DSPE method, the Lorenz

system is chosen. Recall:

dx

dt
= σ(y − x)

dy

dt
= rx− y − xz

dz

dt
= xy − bz.

Where σ, r, and b > 0 are parameters. For certain values of the parameters,

this system has one positive Lyapunov exponent, and displays chaotic behavior,

as shown in Figure 1.2.

Pecora and Carroll, in reference[40], show that synchronization of this sys-

tem will occur when sufficient coupling is applied to the x or y variable, but not

the z variable.

2.5.2 Discretized Equations

Measuring the x-variable and coupling this back to the model using DSPE,

mapping (x,y,z) to (y1, y2, y3), this vector field is directly implemented into equa-

tions (2.2) and (2.3) to give the optimization constraints. For instance, the y1

variable constraints are:

20

Simpson’s Integration:

y1(n+ 1) = y1(n)+

τ

6

{
σ(y2(n)− y1(n)) + u(n)

(
x1(n)− y1(n)

)
+

4
(
σ(y2(n2)− y1(n2)) + u(n2)

(
x1(n2)− y1(n2)

))
+

σ(y2(n+ 1)− y1(n+ 1) + u(n+ 1)
(
x1(n+ 1)− y1(n+ 1)

)}

and

Polynomial Interpolation:

y1(n2) =
1

2
[y1(n) + y1(n+ 1)]+

τ

8

{
σ(y2(n)− y1(n)) + u(n)

(
x1(n)− y1(n)

)
−

σ(y2(n+ 1)− y1(n+ 1)) + u(n+ 1)
(
x1(n+ 1)− y1(n+ 1)

)}

with similar constraints for the other two variables, with no coupling terms.

2.5.3 Cost Function

In discretized form, the cost function takes the form of a sum, so the opti-

mization problem is:

Minimize:

C(y, u,p) =
1

2T

T∑
t=0

{(
x1(t)− y1(t)

)2

+ u(t)2

}
This cost function is subject to the constraints above, which occur at every time

point. With T time points, there are then 6T constraints. The optimization is

also constrained by appropriate upper and lower bounds for the 8T+7 unknown

variables.

21

2.6 Example Results

The purpose of DSPE is to find parameters and states from experimental

systems. In order to test any method for this, a twin experiment is first performed;

instead of experimental data, twin data is numerically generated for a known set of

parameters and initial conditions. Because the “unknown” parameters are actually

known in this scenario, the twin experiment gives a clear indication of the viability

of the method for a given system. For the Lorenz system, a twin experiment with

5000 data points was run. The x1-variable “data” was coupled into the experi-

mental system, and the three unknown parameters, as well as the two unmeasured

state variables were calculated exactly, as shown in Table 1 and Figures 1 and 2.

An important check is to ensure that the coupling u(t) terms become small

as a result of the optimization. Since the synchronization term, u(t)(x1(t)−y1(t)),

is not part of the real dynamical system, this term should be minimized in the

dynamics. This is confirmed with the introduction of the ‘R-value’, which measures

the relative contributions of the equation dynamics, F1(y1(t),y⊥(t),p), and the

synchronization term, u(t)(x1(t)−y1(t)). Formally, the R-value measure is defined

as the ratio:

R− value =
[F1(y1(t),y⊥(t),p)]2

[F1(y1(t),y⊥(t),p)]2 + [u(t)(x1(t)− y1(t))]2

An R-value is calculated for each equation with a synchronization term. An R-value

of one at every time point indicates that the optimization found a solution with

minimal coupling, while an R-value which varies significantly from one indicates

that a suitable optimization fit was not made between the data in the model, which

may be an indication that the model incorrectly describes the experimental data.

For the Lorenz twin experiment, only one R-value is necessary as only one state

variable is coupled; in this instance it was calculated to be 1.00 at all time points

as expected.

22

Table 2.1: Lorenz Model: Data Parameters and Estimated Parameters.

Parameter Data Result

σ 10 10.0

r 2.67 2.67

b 28 28.0

Figure 2.3: 3-D view of dynamical variable results for the Lorenz system dy-

namical parameter estimation problem.

23

Figure 2.4: Dynamical variable results for the Lorenz system dynamical param-

eter estimation problem.

Chapter 3

Path Integral Formulation

The Dynamical State and Parameter Estimation technique performs ad-

mirably for nonlinear models in twin experiments, but has a significant weakness

when applied to real experimental systems. Real experimental systems involve

multiple sources of stochastic effects (i.e, noise), which cannot be easily modeled

in the deterministic construction of DSPE. This noise can take many forms,

• Systematic: Instrument errors

• Random: Environmental variations

• Model: Incorrectly modeled physics,

but generally must be accounted for in any theoretical model of the system.

The optimization software that implements DSPE in general requires dif-

ferentiable functions; most noise sources cannot be described by functions at all,

much less differentiable functions. In order to include the effects of noise in an ex-

periment and in a model, a different method must be used, starting with stochastic

differential equations.

3.1 Stochastic Differential Equations

Stochastic differential equations include terms that model stochastic (i.e.,

random) processes, thus giving a stochastic (non-deterministic) solution. The sim-

24

25

plest stochastic process can be described by a string of random numbers, with no

number reliant on the values of any other. A stochastic process does not have a

deterministic time evolution, but instead is described by a probability distribution

of possible states. Stochastic differential equations are described by a Langevin

equation, which in turn can be used to derive a Fokker-Planck equation, which is

typically described by[25]:

∂

∂t
P (y, t) = − ∂

∂y
A(y)P +

1

2

∂2

∂y2
B(y)P

where A(y) and B(y) are real differentiable functions with the restriction that

B(y) > 0, and P(y,t) is the probability distribution function of the state of a given

system. As show in reference[55], the Fokker-Planck equation can be replaced by

a path integral formulation of the form:

P (y(tm)) =

∫ m−1∏
n=0

dDy(n)exp[−A0(Y)] (3.1)

where A0(Y) is called the action of a system, and is a function of the path of the

dynamical system, Y = {y(m),y(m− 1), . . .y(0)}. Here, the path is identical to

a phase space trajectory of the system. The most probable path, corresponding

to the deterministic solution to the model equations, maximizes P (y(tm)), thus

minimizing the action. Expectation values of quantities related to the path of the

vector field can be calculated from this probability distribution; to do this, the

action must be derived with respect to model system dynamics and experimental

measurements.

3.2 Approximating the Action

3.2.1 Assumptions

In order to derive the action, the following assumptions are made:

• Markovian dynamics. The state y(tn+1) = y(n + 1) depends only on the

state of the system at previous time tn.

• All noise terms, both in measurement and model, are Gaussian.

26

• The noise in each measurement is independent of each other measurement in

time.

3.2.2 Derivation

As discussed in reference [52], the derivation of the action begins with the

definition of conditional probability. The conditional probability for a system to be

in state y, conditioned on measurements X, is denoted by P (y|X), and is formally

equal to the probability that a system is simultaneously in the states y and X

divided by the probability that the system is in the state X.

P (y|X) =
P (y,X)

P (X)

Bringing formal time dependence into the picture, at a given time m:

P (y(m)|X(m)) =
P (y(m),X(m))

P (X(m))
(3.2)

Because this is a Markov process, the probability of being in a state at a given

time is only dependent on the state at the previous time:

P (X(m)) = P (x(m),X(m− 1))

As a result, when the numerator and denominator of equation (3.2) are divided by

P (X(m− 1), P (y(m)|X(m)) can be simplified to:

P (y(m)|X(m)) = exp[CMI(y(m),x(m)|X(m− 1))]P (y(m)|X(m− 1)) (3.3)

where the conditional mutual information between the model state and observa-

tions at time m, conditioned on previous observations, X(m− 1), is given by [18]:

CMI(y(m),x(m)|X(m− 1)) = log

{
P (y(m),x(m)|X(m− 1))

P (x(m)|X(m− 1))P (y(m)|X(m− 1))

}
Now, for t2 between t1 and t3, for Markov processes the Chapman Kolmogorov

relation gives[25]:

P1|1(y3(t3)|y1(t1)) =

∫
P1|1(y3(t3)|y2(t2))P1|1(y2(t2)|y1(t1))dy2

27

which for our D-dimensional model phase space becomes:

P (y(m)|X(m− 1)) =

∫
dDy(m− 1)P (y(m)|y(m− 1))P (y(m− 1)|X(m− 1))

Substitution of this relation back into (3.3), and continuing the dynamics

back to time t0 now gives for P (y|X) [1]:

P (y(m)|X(m)) =

∫
dY exp

{ m∑
n=0

CMI(y(n),x(n)|X(n− 1))

+
m−1∑
n=0

log[P (y(n+ 1)|y(n)] + log[P (y(0))]

}
, (3.4)

which is in the form (3.1) for the action, A0, defined by:

A0(Y,X) = −
{ m∑
n=0

CMI(y(n),x(n)|X(n− 1))

+
m−1∑
n=0

log[P (y(n+ 1)|y(n)] + log[P (y(0))]

}
. (3.5)

3.2.3 Approximation

The two terms for the action, (3.5), are easily separated as a term related

to noise in the measurements, X, and a term related to model noise, Y. These

terms are treated separately, in order to simplify the sum.

Measurement

As previously discussed, the noise in each measurement is assumed to be

independent of the noise at every other measurement. As a consequence, the prob-

ability distributions in the conditional mutual information, CMI(y(n),x(n)|X(n−
1)) are not conditional on the previous state of the system, so the CMI is equal to:

CMI(y(n),x(n)|X(n− 1)) = log

[
P (y(n),x(n))

P (y(n))P (y(n))

]
= log

[
P (x(n)|y(n)))

P (x(n))

]
.

If the measurement noise is additive and Gaussian, then

m∑
n=0

CMI(y(n),x(n)|X(n− 1)) = −1

2

m∑
n=0

L∑
l=1

Rmeas,l(yl(n)− xl(n))2, (3.6)

28

where Rmeas,l is related to the inverse of the Gaussian noise standard deviation,

and is generally different for each measured state variable. With the addition of the

Rmeas factor, this term is equivalent to the least squared error term encountered

in Chapter 2, prior to addition of a coupling term.

Model

The model error term,

m−1∑
n=0

log[P (y(n+ 1)|y(n)] + log[P (y(0))]

includes a term related to the initial state of the system, as well as conditional

probabilities of the state of the system based on each previous state. In a tem-

porally discretized system, this is equivalent to the discussion of errors related to

the discretization scheme, as well as any environmental fluctuations, and can be

expressed by:

m−1∑
n=0

log[P (y(n+ 1)|y(n))] = −1

2

m−1∑
n=0

D∑
a=1

Rmodel,a(ya(n+ 1)− fa(y(n),p))2 (3.7)

where Rmodel,a is, similar to Rmeas,l, related to the inverse of the Gaussian noise

standard deviation in the model dynamics, and fa is a shorthand designation for

the discretized integration map.

Total Action Approximation

Combining these two approximations, gives

A0(Y|X(m)) =
1

2

m∑
n=0

L∑
l=1

Rmeas,l(yl(n)− xl(n))2 (3.8)

+
1

2

m−1∑
n=0

D∑
a=1

Rmodel,a(ya(n+ 1)− fa(y(n),p))2 − log[P (x(0)].

3.3 Minimizing the Action

The goal of this technique, called the path integral formulation of parameter

estimation, is to find a conditional probability distribution for the state of a system,

29

based on measurements of a subset of the state variables. With the approximation

for A0, this conditional probability is calculated from:

P (Y|X(m)) =

∫ m−1∑
n=0

dDy(n)exp[−A0(Y|X(m))] (3.9)

Even with the approximations to simplify the action, A0, this D-dimensional inte-

gral is generally very difficult to compute. One approach is to use a Monte Carlo

method, as discussed in [42], to sample many potential paths for the state of the

system, thus estimating the distribution exp[−A0(Y|X(m))].

Another method is to use a saddle path approximation to the action, which

leads to standard perturbation theory[55]. In this method, the action is expanded

about a stationary point S, assuming fixed data:

A0(Y) = A0(S) +
1

2
(Y − S)TA

′′

0(S)(Y − S) + ...

∂A0(Y)

∂Y
|Y=S = 0. (3.10)

This stationary path approximation to the path integral gives the same nu-

merical optimization problem described in Chapter 2 for the case of deterministic

dynamics. In this case, only the first term of A0(Y) is used, and the optimization

consists of minimizing the error between model and data, subject to the determin-

istic dynamics of the system as constraints.

Alternatively, this problem can be posed as an unconstrained minimization

problem, with the form of the action, (3.8) as the cost function, so that the dynam-

ics of the system are part of the cost function as well. This variation more easily

allows for numerical errors in the model, and is especially suited for producing

good starting paths for use in Monte Carlo techniques.

Chapter 4

Neuroscience Models

Neuroscience is a broad field with many interesting experimental systems

that benefit from utilization of parameter estimation techniques. As an introduc-

tion to the types of systems involved, as well as show how powerful the methods

in Chapters 2 and 3 can be, we will first discuss the theory of gating models for

single neurons.

4.1 Single Neuron Gating Models

Many textbooks, for instance [14], [24] and [26], give a detailed examination

of experiments that have led to the current understanding of how neurons generate

and propagate information via voltage pulses. Here, we will give a brief summary.

A simple model of a neuron is as a point source, surrounded by a semi-

permeable membrane. This membrane is the boundary between the intracellular

(inner) and extracellular (outer) regions of the cell, which have different electrical

potentials. The difference in these potentials is called the membrane potential.

The membrane acts as an insulator to separate charge, i.e., a capacitance.

The cell membrane is made up of protein molecules, some of which form

ionic channels, which allow ions to move between the intracellular and extracellular

regions. This gives rise to ionic currents, characterized by some resistance. When

these currents are in dynamic equilibrium, the cell’s potential does not change -

this equilibrium voltage is called the resting potential, Vrest. A sketch of this simple

30

31

electrical circuit is shown in figure (4.1).

Figure 4.1: Simple RC circuit representation of a cell membrane. A resting

potential acts as a battery, and the resistance relates to voltage-independent ionic

channels in the membrane.

This simple RC circuit representation does not model real neurons very

well. The differential equation for an RC circuit:

C
dVm(t)

dt
+
Vm(t)− Vrest

R
= Iinj(t)

can be solved in closed form when the injected current, Iinj(t) is a constant,

I0. The solution to this differential equation is:

Vm(t) = RI0(1− e−t/RC) + Vrest

which will settle to an equilibrium voltage from any starting conditions, thus not

depicting the dynamical range of real neurons. To illustrate this range, more

complexity than the simple RC circuit model is necessary.

4.1.1 Hodgkin-Huxley

A fundamental feature of cells in the nervous system is the production of

voltage pulses, also known as action potentials or spikes. These spikes originate

at the cell body, or soma, and propagate down the dendritic tree, axon, and on to

other neurons via synapses. The propagation of these spikes is generally described

32

by partial differential equations that take into account the spatial structure of the

cell; this spatial dependence is not necessary to explain the spike characteristics

themselves.

In their seminal paper [23], Hodgkin and Huxley described dynamics that

can reproduce the observed initiation and propagation of voltage pulses in the giant

axon of the squid. They kept the general RC circuit idea, but added individual

ionic currents for sodium and potassium that are voltage dependent, as in figure

(4.2). By Kirchhoff’s Law, the total membrane current is the sum of these ionic

currents and the capacitive current, and each ionic current is described by Ohm’s

law:

Ii(t) = Gi(V (t), t)(V (t)− Ei)

where the ionic conductance is voltage and time dependent.

Figure 4.2: RC circuit representation of the Hodgkin-Huxley model

Potassium current

In their work, Hodgkin and Huxley blocked various ionic currents, and stud-

ied two major classes of currents: delayed rectifier K+ and fast Na+ conductances.

33

The delayed rectifier K+ conductance is a persistent conductance with the current

modeled as:

IK = G̃Kn
4(V − EK) (4.1)

where G̃ is the maximal conductance and EK is the potassium reversal potential

(battery). The gating variable, n, can be thought of as the probability of whether

the ion channel is open, and is a non-dimensional number between 0 and 1. Similar

numbers are used to describe the fraction of the conductance that is open in other

currents; Hodgkin and Huxley described these numbers as gating particles with

two states, open and closed, with a transition described by first order kinetics. For

example:

n
βn

αn

1− n

Fitzhugh first described the Markovian kinetic model of the Hodgkin-Huxley four-

gate, two-state (open and closed) system as a five-state system for theK+ particles:[20]

n0

4αn

βn

n1

3αn

2βn

n2

2αn

3βn

n3

αn

4βn

n4

Here, the α’s and β’s are opening and closing rates of the ion channels, and reflect

the fact that the gates are considered identical. For instance, for K+, the n4 state

is the ”open” state, and the closing rate is 4βn since the gate will close if any of

the four identical gates close. These dynamics form the basis for many theoretical

papers that explore the limitations of the Hodgkin-Huxley formulation.

Mathematically, these kinetics correspond to the differential equation,

dn

dt
= αn(Vm)(1− n)− βn(Vm)n

where Hodgkin and Huxley approximated the voltage dependencies of the rate

constants to be:

αn(Vm) =
(10− Vm)

100(e(10−Vm)/10 − 1)

βn(Vm) = 0.125e−Vm/80

34

Sodium current

Similar to the potassium current, Hodgkin and Huxley modeled a fast Na+

conductance with gating particles as open and closed states, but the dynamics of

this current necessitates two types of particles: a sodium activation particle m and

an inactivation particle h.

INa = G̃Nam
3h(V − ENa) (4.2)

Similar to the potassium current, the gating variables correspond to the kinetics:

dm

dt
= αm(Vm)(1−m)− βm(Vm)m

dh

dt
= αh(Vm)(1− h)− βh(Vm)h

with approximated rate constant voltage dependencies,

αm(Vm) =
(25− Vm)

10(e(25−Vm)/10 − 1)

βm(Vm) = 4e−Vm/18

αh(Vm) = 0.07e−Vm/20

βh(Vm) =
1

e(30−V)/10 + 1

The differential equations for the gating variables can be expressed in an alternate

form:

dx

dt
=

x∞ − x
τx

where τx is a rate constant

τx =
1

αx + βx

and x∞ is the steady state value for the gating variable,

x∞ =
αx

αx + βx

35

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-40 -20 0 20 40 60 80 100 120

ac
tiv

at
io

n/
in

ac
tiv

at
io

n

V(mV)

m
h
n

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

-40 -20 0 20 40 60 80 100 120

tim
e

co
ns

ta
nt

 (m
se

c)

V(mV)

m
h
n

Figure 4.3: Time constants and steady state activation/inactivation of the

Hodgkin-Huxley gating particles.

Figure (4.3) shows the time constants and steady state values for Hodgkin-Huxley

model gating variables as a function of the membrane voltage.

Fitzhugh’s [20] Markovian kinetic description of the sodium channel is an

eight-state scheme for the Na+ particles:

m0h1

3αm

βm

m1h1

2αm

2βm

m2h1

αm

3βm

m3h1

αh ↑↓ βh αh ↑↓ βh αh ↑↓ βh αh ↑↓ βh

m0h0

3αm

βm

m1h0

2αm

2βm

m2h0

αm

3βm

m3h0

For instance, the m3h1 state is the open state, and will change to a closed state

if any of the three activation gates or the one inactivation gates are closed, with

rates of 3βm and βh, respectively.

Complete Model

In addition to the sodium and potassium currents, the membrane includes

a leak current, with a voltage independent leak conductance Gm. If a current is

36

injected into the cell, then the complete Hodgkin-Huxley model is:

dVm
dt

=
1

Cm

[
G̃Nam

3h(ENa − Vm) + G̃Kn4(EK − Vm) + G̃m(Vrest − Vm) + Iinj

]
dn

dt
= αn(Vm)(1− n)− βn(Vm)n

dm

dt
= αm(Vm)(1−m)− βm(Vm)m

dh

dt
= αh(Vm)(1− h)− βh(Vm)h

with the α and β kinetics given previously.

In this treatment, the n, m, and h probabilities are macroscopic averages,

and the behavior of an individual ion channel is irrelevant. Treating the ion chan-

nels as a macroscopic average, as in the Hodgkin-Huxley model, is appropriate for

most physical systems, since the number of excitable channels for an axon’s spike

initiation is estimated to be large (tens of thousands).

Given initial conditions for V, n, m, and h, the Hodgkin-Huxley equations

give a fully deterministic and continuous model to describe the dynamics of neural

membranes. Using the giant squid axon model parameters for the maximum con-

ductances and reversal potentials, this model has a single fixed point and does not

exhibit spiking in the absence of an applied current (Iinj = 0). Above a threshold

current, the membrane exhibits periodic spiking, indicative of a stable limit cycle.

A typical plot of the Hodgkin-Huxley state variables that result from a short

current pulse is shown in Figure (4.4). Note that all the gating variables return

to their steady state values, in the absence of the current stimulus. With a long

current pulse, the neuron will exhibit periodic spiking.

4.1.2 Morris-Lecar

We would like to test the dynamic parameter estimation technique on prob-

lems of the Hodgkin-Huxley type, but first we examine a simpler model that gen-

erates a similar spiking response. The Hodgkin-Huxley framework has been shown

to give remarkable similarity to experimental data[34, 9, 27], but its mathematical

complexity is computational challenging for large networks of neurons.

37

-20
 0

 20
 40
 60
 80

 100
 120

 0 5 10 15 20 25 30

vo
lta

ge
 (m

V)

Voltage

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

ac
tiv

at
io

n/
in

ac
tiv

at
io

n m
h
n

 0
 30
 60

 0 5 10 15 20 25 30cu
rre

nt
 (m

a)

time(msec)

Applied current

Figure 4.4: Hodgkin-Huxley voltage spiking and gating dynamics in response to

a step current injection.

As a result, many attempts have been made to reduce the number of differ-

ential equations. Two of the more accomplished reduced models that still exhibit

the qualitative spiking features of the Hodgkin-Huxley equations are the FitzHugh-

Naguma [19, 21, 36] and Morris-Lecar [35] models. Here, we will examine the

Morris-Lecar model.

This model was developed to describe barnacle muscle fibers subject to

constant current inputs, and consists of a set of coupled differential equations

which include two ionic currents. In contrast to the Hodgkin-Huxley model, no

sodium current is present; instead the two currents are an outward potassium

current and an inward calcium current. In this case, the calcium is assumed to be

in equilibrium, and its dynamics can be ignored. The coupled equations for the

Morris-Lecar model are:

38

Cm
dVm
dt

= −Iion(Vm, w) + I(t)

dw

dt
=

w∞(Vn)− w
τw(Vm)

Here, Vm is the membrane voltage, w is the potassium activation variable, and the

ionic current is a combination of potassium, calcium, and leak currents:

Iion = G̃Cam∞(Vm − ECa) + G̃Kw(Vm − EK) + G̃m(Vm − Vrest)

The calcium current is always at equilibrium, with

m∞(Vm) = 0.5

(
1 + tanh

Vm + 1

15

)
and the potassium dynamics is governed by time constant:

τw(Vm) =
5

coshVm/60

and steady state activation:

w∞(Vm) = 0.5

(
1 + tanh

Vm
30

)
An example of the voltage spiking seen in the Morris-Lecar model in re-

sponse to a step current is shown in Figure (4.5).

4.2 Parameter Estimation Example

We will use the Morris-Lecar model to demonstrate the dynamic state and

parameter estimation procedure for neuron models. From Chapter 2, recall that

the goal of the method is to determine unmeasured parameters and states in a

model based on the measurement of a subset of the state variables. In this case,

we will measure the membrane voltage from a Morris-Lecar neuron, and determine

the reversal potentials, maximal conductances, and coefficients within the calcium

and potassium dynamics.

39

-80
-60
-40
-20

 0
 20
 40

 0 20 40 60 80 100

vo
lta

ge
 (m

V)

Voltage

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

ac
tiv

at
io

n/
in

ac
tiv

at
io

n w

 0
 0 20 40 60 80 100cu

rre
nt

 (m
a)

time(msec)

Applied current

Figure 4.5: Morris-Lecar voltage spiking and gating dynamics in response to a

step current injection.

4.2.1 Morris-Lecar

The general optimization problem described in Chapter 2 is modified to im-

plement the Morris-Lecar model dynamics. The procedure is the same as described

in Section 2.5. The problem is coded into Fortran code that calls optimization

libraries for the software SNOPT [22],a general-purpose system for constrained

optimization. This software is suitable for general nonlinear programs, and mini-

mizes a nonlinear function subject to bounds on the variables and sparse linear or

nonlinear constraints.

SNOPT uses a sequential quadratic programming (SQP) algorithm. Search

directions are obtained from QP subproblems that minimize a quadratic model of

the Lagrangian function subject to linearized constraints, which requires knowledge

of the analytical Jacobian matrix of the constraint equations. In our problem, the

Simpson integration and Hermite Polynomial interpolation for each state variable

at each time point are separate constraints. Each state variable at each time point,

40

as well as all parameters are unknowns in the problem.

The Jacobian matrix consists of derivatives of each of the constraint equa-

tions with respect to each of the unknowns. The bulk of the Fortran optimization

code consists of setting up the objective function, constraint equations, and Jaco-

bian matrix correctly. To easily differentiate between state variables and parame-

ters, we introduce a new notation for the Morris-Lecar equations.

The dynamical variables in the model are the membrane voltage y1(t) and

the K+ activation variable y2(t). Parameters are chosen as well as an Iapp(t) and

the following ordinary differential equations are solved for the data Vm(t) = x1(t)

and w(t) = x2(t).

dx1(t)

dt
= p12

(
p9m∞(x1(t))(p5 − x1(t))+

p10x2(t)(p6 − x1(t)) + p11(p7 − x1(t)) + Iapp(t)

)
dx2(t)

dt
=
w∞(x1(t))− x2(t)

τw(x1(t))
.

where

m∞(V) =
1

2
(1 + tanh(

(V − p1)

p2

))

w∞(V) =
1

2
(1 + tanh(

(V − p3)

p4

))

τw(V) = p8/ cosh(
(V − p3)

2p4

).

The parameters in the “data” source for x1(t) were selected as p1 = −1.2 mV,

p2 = 18.0 mV, p3 = 2 mV, p4 = 30 mV, p5 = 120 mV, p6 = −84 mV, p7 =

−60 mV, p8 = 0.04, p9 = 4.4mS/cm2, p10 = 8mS/cm2, p11 = 2mS/cm2, and

p12 = 0.05cm2/µF .

41

The data x1(t) were coupled into y1(t) with the control term u(t):

dy1(t)

dt
= p12

(
p9m0(y1(t))(p5 − y1(t)) + p10y2(t)(p6 − y1(t))+

p10y2(t)(p6 − y1(t)) + p11(p7 − y1(t)) + Iapp(t) + u(t)(x1(t)− y1(t))

)
dy2(t)

dt
=
w0(y1(t))− x2(t)

τ(y1(t))
.

We first performed two current clamp “experiments” where Iapp(t) was 0

until t = 50 ms, then I1 for 50ms ≤ t ≤ 220 ms. We selected I1 = 75µA/cm2 for

one calculation. At this value of the injected current, the Morris-Lecar model has a

fixed point or a constant resting voltage. A second current clamp experiment was

performed with I1 = 115µA/cm2, at which current level the ML neuron undergoes

periodic limit cycle oscillations.

After this current clamp protocol, we investigated another applied current

Iapp(t) = 220(1 − cos(0.02t)e−0.005t) µA/cm2. The parameters in the ML model

should be independent of Iapp(t). Table 4.1 shows the results of each injected

current protocol on the determination of the parameters in the ML model.

4.2.2 Morris-Lecar Results

As seen in Table 4.1, and Figures 4.7 and 4.6, the dynamic state and pa-

rameter estimation technique accurately estimates the unmeasured parameters in

this model for a range of applied currents, as well as the unmeasured state variable,

w. Importantly, the control term, u(t), is reduced to zero, and the R-value is 1 at

every time point.

4.3 Discussion

Even though this two dimensional system does not show chaos, it is highly

non-linear with a large number of parameters compared to the Lorenz 1963 sys-

tem. The fact that the dynamical state and parameter estimation technique works

42

Table 4.1: Morris Lecar Model: “Data” Parameters and Estimated Parameters.

Iapp(t) = 220(1− cos(0.02t)e−0.005t) µA
cm2 .

Parameter Data Iapp(t) I1 = 75µA/cm2 I1 = 115µA/cm2

p1 = V1 mV -1.2 -1.20002 -1.11 -1.13

p2 = V2 mV 18.0 17.999 18.33 18.219

p3 = V3 mV 2.0 2.0008 2.80 2.64

p4 = V4 mV 30.0 30.0008 31.22 30.93

p5 = ECa mV 120.0 120.0011 120.85 120.68

p6 = EK mV -84.0 -83.9999 -84.25 -84.27

p7 = EL mV -60.0 -59.9998 -59.94 -59.93

p8 = φ (ms)−1 0.04 0.040000 0.04113 0.0407

p9 = gCa mS 4.4 4.3998 4.434 4.411

p10 = gK mS/cm2 8.0 8.0000 8.07 8.05

p11 = gL mS/cm2 2.0 1.99997 2.03 2.02

p12 = 1/CM cm2/µF 0.05 0.04999 Fixed at 0.05 Fixed at 0.05

so well is an important stepping stone toward more complicated neuron models,

such as the Hodgkin-Huxley model, as well as multiple-compartment and network

models.

However, the Fortran coding to implement the Morris-Lecar model took two

months, due to troubleshooting the correct form of the complicated derivatives

necessary for the analytical Jacobian, and any more complicated models could

take comparable or significantly more time to debug. Since we wish to expand this

parameter estimation technique to larger network models, a new way of generating

problem files is necessary.

43

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Time (ms)

1.5

1.25

1

0.75

0.5

0.25

0

0.25

0.5

0.75

1

1.25

1.5

x 1(t
),y

1(t
)

 (m
V)

; x
2(t

),y
2(t

);
 I ap

p(t
)
µ

/c
m

2

Iapp(t)
x1(t)/40
y1(t)/40
x2(t)
y2(t)

Figure 4.6: Morris-Lecar Unobserved State Variable Estimation for applied cur-

rent pulse when of Iapp(t) = 220(1− cos(0.02t)e−0.005t) µA
cm2 .

44

0 25 50 75 100 125 150 175 200 225 250 275 300
Time (ms)

1.25

0.75

0.25

0.25

0.75

1.25

Morris Lecar SNOPT Parameter/State Estimate
V0 = 72.6 mV; u0 = 1.08; w0 = 2.09 Iin(t) = 75 µA/cm2 50ms < t < 220 ms

y1(t)/V0
y2(t)/w0
u(t)/u0
x1(t)/V0
x2(t)/w0

0 25 50 75 100 125 150 175 200 225 250 275 300
Time (ms)

1.25

0.75

0.25

0.25

0.75

1.25

Morris Lecar SNOPT Parameter/State Estimate
V0 = 67.1 mV; u0 = w0 = 2.0 Iin(t) = 115 µA/cm2 50ms < t < 220 ms

y1(t)/V0
y2(t)/w0
u(t)/u0
x1(t)/V0
x2(t)/w0

Figure 4.7: Morris-Lecar Unobserved State Variable Estimation for constant

applied current pulse of 75 and 115 µA
cm2 .

Chapter 5

Python Scripting

The basic structure of a dynamic parameter estimation problem is similar

for all vector fields - the Morris-Lecar example was one of the toy models used as

a proof of concept for the method. The main goal of this method of parameter

and state estimation is to determine unmeasured parameters and states from real,

physical systems.

Each new problem has a unique model associated with it, so a new opti-

mization instance must be constructed. For toy models such as the Lorenz 1963

model, the vector field and Jacobian matrix can be readily calculated and input by

hand, but this quickly becomes cumbersome for complex models of real systems,

such as the Morris-Lecar and Hodgkin-Huxley models. To facilitate the use of the

dynamical parameter estimation method to a new problem, I have used the Python

programming language to develop scripts that set up the problem in the correct

format for use with readily available optimization software. These scripts take

a simple text file formulation of a parameter estimation vector field and output

correctly formatted and linked C++ files for use with the widely available IPOPT

software libraries [54].

In order to implement this method, I use the Python programming lan-

guage to develop scripts that generate C++ files to set-up the problem in the

correct format. These scripts read two text files which define the vector field of

the dynamical system, as well as the feasibility space of the optimization. Using

a time-series observation of one (or more) of the state variables, the generated

45

46

C++ code determines the unmeasured parameters of the system, q, as well as the

unobserved state variables using the dynamical parameter estimation technique.

In addition, I have extended the use of these text files with Python scripting to

solve a different optimization problem, based on the path integral formulation in

Chapter 3.

5.1 Overview

Python is a multi-purpose programming language that permits both object-

oriented programming and structured programming. Python can be used as a

scripting language or a full-fledged programming language, and running an IPOPT

or SNOPT optimization can be done with appropriate use of Python modules that

interact with C++ and Fortran libraries. Python is a higher-level language than

C++ or Fortran; as a result program development is generally easier, but the execu-

tion speed is slower. For the dynamic parameter estimation optimization problems,

which currently can consist of tens of thousands of variables and constraints, with

the potential for many more, the program execution speed in C++ (native language

of IPOPT) or Fortran (native language of SNOPT) can be significantly faster than

in Python.

The Python scripts define a problem with two distinct text files. The first

text file, called ‘equations.txt’, defines the vector field of the model. The number

of equations, parameters, and controls are specified, along with the variable names,

model vector field and objective function. As an example, for the Hodgkin-Huxley

model, there are four dynamical variables which correspond with the four differ-

ential equations of the model, three parameters to be determined, and one control

variable. Once this text file is fully defined, the Python module, ‘makecode.py’

sets up the C++ files necessary to run the optimization. The ‘equations.txt’ file

for the Hodgkin-Huxley dynamic parameter estimation problem is shown in Figure

5.1.

A second text file, called ‘specs.txt’ includes problem parameters that the

compiled C++ executable program loads to run a particular instance of a problem.

47

‘specs.txt’ includes the size of the data file (number of data points), sampling

frequency of the data, names of the data files needed by the executable, as well

as the variable bounds and initial conditions (guess) for the optimization. The

‘specs.txt’ file for the Hodgkin-Huxley dynamic parameter estimation problem is

shown in Figure 5.2.

5.2 Python Scripts

5.2.1 Discretize.py

The module ‘makecode.py’ consists of several separate Python scripts, that

run sequentially. One of the strengths of the Python language relative to C++

and Fortran is the ease of string manipulations. The module that uses this string

functionality to set up the optimization problem is ‘discretize.py’. ‘discretize.py’

uses the SymPy package, a Python library for symbolic mathematics[10] for this

purpose. The state variable, parameter, and control names, as well as the vector

field and objective function for the problem are imported from ‘equations.txt’ and

converted into symbolic equations for use in SymPy. These symbolic equations are

then transformed into a discretized integration according to Simpson’s Rule with

polynomial interpolation described previously.

This discretized form of the vector field is then used to symbolically cal-

culate the Jacobian and Hessian matrices, using SymPy to take first and second

derivatives of the vector field with respect to all the state variables, parameters,

and controls. For the Simpson’s Rule discretization choice, care is taken to keep

track of whether state variable and control derivatives are taken with respect to

the variable at the current time, next time, or mid-point time, to ensure proper

placement within the Jacobian and Hessian structures. The result is symbolic ar-

rays for the vector field, Jacobian, and Hessian, that include non-zero entries only,

since these matrix elements will be entered into the optimization in a standard

sparse matrix formulation that only needs the row, column, and value information

for non-zero entries. Five separate arrays from ‘discretize.py’ are needed in the

IPOPT optimization:

48

• Objective function

• Constraints

• Gradient of the Objective Function

• Jacobian of the Constraints

• Hessian of the Objective Function and Constraints

The symbolic strings in these arrays are converted into proper C++ format (e.g., **

changed to pow function) and stored for the next part of the process, ‘makecode.py’

itself.

5.2.2 Makecode.py

A C++ IPOPT optimization program consists of a main program that initi-

ates a new problem class and calls the optimization process. The problem class is

defined in another file, with an appropriate header file. For our purposes, the main

program is standard across different vector fields; the details of the vector fields

are contained within the other files, which we call problemname nlp.cpp and sub-

sequent header file, problemname nlp.hpp. The module ‘makecode.py’ takes the

information outputted from ‘discretize.py’ and writes these C++ files for a partic-

ular problem. The executable C++ program, once compiled, loads the information

in specs.txt in order to run the program. In this way, a given vector field can be

sampled over various data sets of differing lengths, without re-compilation of the

program.

An example of one of the routines that ‘makecode.py’ generates is the ‘Eval-

g’ function, which returns the value of the constraints. These constraints have

been stored in an array in symbolic discretized form by ‘discretize.py’. The code

generation for this function consists of setting up a loop over all time points,

so that each discretized constraint is defined at each time point. Each symbolic

variable from ‘discretize.py’ is equated to the proper term of a C++ array that

contains all optimization variables. The ‘Eval-g’ function for the Hodgkin-Huxley

problem defined by the Figure 5.1 ‘equations.txt’ file is shown as Figure 5.3. This

49

function is rather straightforward; for the four dynamical variable model, 46 lines

of C++ code is generated to define these as constraints. The functions that define

the Jacobian and Hessian of the vector field are significantly more complicated,

since both functions require detailed row and column information that defines the

constraint and partial derivative that is being taken.

The file that sets one problem apart from another is the problem class

file. The problem class file consists of a constructor and nine virtual methods

to be implemented, which are all declared in the header file. The methods are

implemented by ‘makecode.py’ as follows:

• Constructor: Imports the information in specs.txt for use by the nine vir-

tual methods. This includes bounds for all state variables, parameters, and

controls, as well as an initial starting guess for each of these. Also, the ex-

perimental data time series are loaded into arrays that can be accessed by

the other processes.

• Get nlp info: Contains the number of equations, constraints, and non-zero

Jacobian and Hessian entries. These are determined in discretize.py.

• Get bounds info: Takes information provided by specs.txt to give bounds on

all variables in the problem, defining the feasibility space of the optimization.

Also sets all constraint equations as equality constraints by default, although

an option with the specs.txt construct allows for relaxation to inequality

constraints within some range.

• Get starting point: Takes information provided by specs.txt to give the

initial starting point for the optimization, within the bounds specified in

Get bounds info. The starting point for state variables can be given as a

constant for all discretized time points, or specified for each time point of

the optimization. For complicated problems, a starting point close to the

expected solution may give a better optimized solution.

• Eval f: Defines, in terms of the IPOPT optimization variables, the symbolic

variables and objective function from discretize.py. Sets up a loop to calculate

50

the objective function for the optimization by adding contributions from each

time step.

• Eval grad f: Defines, in terms of the IPOPT optimization variables, the sym-

bolic variables and gradient of the objective function from discretize.py. Sets

up a loop to calculate the gradient of the objective function for the optimiza-

tion at each time step.

• Eval g: Defines, in terms of the IPOPT optimization variables, the symbolic

variables and constraint functions from discretize.py. These symbolic con-

straint functions are just the equations given in equations.txt transformed

into the discretized integration form. Sets up a loop over all data points to

calculate the constraint functions for the optimization at each time step.

• Eval jac g: Defines, in terms of the IPOPT optimization variables, the sym-

bolic variables and Jacobian elements from discretize.py. Sets up a loop over

all data points to set up the non-zero row/column structure of the Jacobian,

and a separate loop to calculate the values of the Jacobian at each point in

the structure.

• Eval h: Defines, in terms of the IPOPT optimization variables, the symbolic

variables and Hessian elements from discretize.py. Sets up a loop over all

data points to set up the non-zero row/column structure of the Hessian, and

a separate loop to calculate the values of the Hessian at each point in the

structure. Care is taken to differentiate between Hessian elements that need

to be calculated at multiple time points (i.e., the two Hessian derivatives

are both with respect to state variables) and elements that occupy only one

matrix position (i.e, two derivatives are both with respect to parameters).

• Finalize solution: Prints to file the final optimization values for the parame-

ters, as well as state variables and controls at all time points.

The total length of generated C++ code for each function for the Hodgkin-

Huxley example is shown in Table 5.1.

51

Table 5.1: Length of generated code for various subroutines in Hodgkin-Huxley

example.

Routine Description Lines

Eval f Evaluate Objective 73

Eval grad f Evaluate Objective Gradient 75

Eval g Evaluate Constraints 46

Eval jac g Evaluate Jacobian 371

Eval h Evaluate Hessian 1178

For large problems, defined in terms of the number of dynamical variables

(or number of equations), the generated C++ code can be very large, as shown in

Table 5.2. Since debugging of such a simple model as Morris-Lecar was already

cumbersome, these larger models would be extremely difficult to code without this

software.

Table 5.2: Length of generated code for various dynamical parameter estimation

problems. The listed problems are the Colpitts oscillator, the Morris-Lecar neuron

model[35], the Lorenz 1996 atmospheric model[31, 32], the Hodgkin-Huxley neuron

model[23], the lobster lateral pyloric neuron model[38], and the barotropic vorticity

ocean circulation model[5]

Model Type Vars Cons equations.txt C++ lines

Colpitts Osc 10T+8 7T 37 lines 996

ML Neur 8T+15 5T 42 lines 1260

Lorenz Atm 18T+10 12T 39 lines 1394

HH Neur 12T+28 9T 57 lines 2171

lobster Neur 44T+86 35T 145 lines 6258

Arakawa Ocean 384T+195 192T 283 lines 218034

52

5.2.3 Additional scripts

Discretize.py and makecode.py are the workhorse scripts to produce viable

code for dynamical parameter optimization. In order to set problems up for use

with specific software (e.g., IPOPT), additional scripts are necessary to fill in

the gaps. These scripts are called from within makecode.py, therefore only one

command is necessary to set up a problem from a given equations.txt file.

Makecpp.py

Makecpp.py writes the main program that initiates a new problem class

and calls the optimization process. As noted before, this program is largely the

same across multiple problems, with the significant exception of the name of the

problem class.

Makehpp.py

Makehpp.py writes the header file for the problem class, problemname nlp.hpp.

This file defines all the methods used in problemname nlp.cpp, as well as the pa-

rameters and arrays that are introduced in the constructor of problemname nlp.cpp.

This includes the number of variables, parameters, and controls in the problem,

arrays to hold the symbolic outputs for the controls, variables, and parameters

from discretize.py, arrays to hold the time series of data for the optimization, and

arrays to hold bounds and initial conditions given in specs.txt.

Makeopt.py

Makeopt.py writes an options file problemname.opt that the main program

references prior to running an optimization. Makeopt.py sets defaults for maximum

number of iterations and linear solver choice. Once makecode.py has initialized

this options file, it can be easily edited for customization of a particular problem

or hardware configuration.

53

Makemake.py

Makemake.py writes a Makefile that compiles the C++ files and links them

to the IPOPT libraries. This is the only script that must be changed between

software and hardware configurations, based on testing with multiple Macintosh

and Linux installations on various CPU architectures, simply because the com-

pilation flags and path to the IPOPT libraries for a given installation must be

given correctly. For a given installation of IPOPT, this file must only be modified

once, and then can be used for multiple optimization instances on the same CPU.

Once makemake.py is configured correctly, the command sequence $makecode.py

followed by $make will produce a properly compiled executable from which to run

the optimization.

Correlate.py

Correlate.py calculates the R-value result from the optimization. Recall

that the R-value is a check to ensure that the coupling u(t) terms become small as

a result of the optimization. The R-value measures the relative contributions of the

equation dynamics, F1(y1(t),y⊥(t),p), and the synchronization term, u(t)(x1(t)−
y1(t)), and is defined as the ratio:

R− value =
[F1(y1(t),y⊥(t),p)]2

[F1(y1(t),y⊥(t),p)]2 + [u(t)(x1(t)− y1(t))]2

Correlate.py calculates an R-value for each equation with a synchronization term,

and outputs to the file Rvalue.dat.

5.2.4 Output Files

The output from running a dynamical control problem will generate five

data files.

• Ipopt.out gives details about the optimization iterations.

• Param.dat lists the estimated parameter values in the order given in equa-

tions.txt, one per line.

54

• Data.dat lists the estimated variables and controls at each time step. The

format of data.dat is: counter, x1, x2, ..., xn, u1, u2, ..., uk, followed by the

y1, ..., yk of the input data.

• Rvalue.dat lists the Rvalue at each time point. The Rvalue is a measure

of the relative contribution of the model dynamics and control terms in the

output, and gives a measure of the quality of the state estimation.

• Carl.input outputs the state variables and parameters in the format needed

for input into the cudaPIMC code, a Markov chain Monte Carlo path integral

code developed in accordance with the methods presented in Chapter 3, see

reference [42].

5.3 MinAzero

Chapter 3 discussed a path integral formulation of state and parameter

estimation, based on minimizing the action of a dynamical system. The goal of

this technique, called the path integral formulation of parameter estimation, is

to find a conditional probability distribution for the state of a system, based on

measurements of a subset of the state variables. With the approximation for A0,

this conditional probability can calculated from:

P (Y|X(m)) =

∫ m−1∑
n=0

dDy(n)exp[−A0(Y|X(m))] (5.1)

Recall equation (3.8) for the approximation of the action:

A0(Y|X(m)) =
1

2

m∑
n=0

L∑
l=1

Rmeas,l(yl(n)− xl(n))2 (5.2)

+
1

2

m−1∑
n=0

D∑
a=1

Rmodel,a(ya(n+ 1)− fa(y(n),p))2 − log[P (x(0)].

This conditional probability function is typically solved using Markov Chain

Monte Carlo methods, for which convergence is difficult to define. To help in con-

vergence to the correct probability distribution, the initial path (or paths) should

be taken from a distribution that is indicative of the expected distribution.[12]

55

One potential starting path for this method is the Carl.input file outputted

from implementation of the DSPE method. In addition, I developed a suite of

python scripts, based on the makecode scripts above, with the goal of generating

a “good” initial starting path for input to Markov Chain Monte Carlo software,

such as discussed in Reference [42]. Whereas the Markov Chain Monte Carlo

method attempts to solve equation (5.1), this software, called ‘Minazero.py’, sets

up an IPOPT optimization problem to minimize equation (5.2) in an unconstrained

optimization.

5.3.1 Python Scripts

The minazero scripts mirror the makecode scripts to include the following:

• Minazero.py

• Discazero.py

• MakecppAzero..py

• MakehppAzero.py

• MakeoptAzero.py

• Makemakeazero.py

The latter four scripts above are almost identical to the makecode equiva-

lents; only minAzero.py and discAzero.py are significantly changed, to adjust for

inclusion of the dynamical equations as part of the objective function and taking

into account the unconstrained structure of the optimization.

As before, the module that uses the Sympy package to set up the optimiza-

tion problem is ‘discAzero.py’. The state variable, parameter, data, and control

names (if any), as well as the vector field and least squared error term for the prob-

lem are imported from ‘equations.txt’ and converted into symbolic equations for

use in SymPy. These symbolic equations are then transformed into a discretized

integration according to Simpson’s Rule with polynomial interpolation, similar to

‘discretize.py’.

56

Where the minAzero scripts deviate from the makecode implementation

is in how these symbolic equations are handled. In makecode, these equations

are kept separate and depicted as constraint equations in the optimization; in

minAzero these equations become the second term of equation (5.2), and thus the

discretized version must be squared. This is again implemented symbolically using

SymPy, and then used to symbolically calculate the objective function gradient and

Hessian matrix, using SymPy to take first and second derivatives of the vector field

with respect to all the state variables, parameters, and controls. For the Simpson’s

Rule discretization choice, care is taken to keep track of whether state variable and

control derivatives are taken with respect to the variable at the current time, next

time, or mid-point time, to ensure proper placement within the objective function

gradient (previously the Jacobian of constraints) and Hessian structures.

Now, the result is symbolic arrays for the objective function, objective func-

tion gradient, and Hessian, that include only non-zero entries only, since these

matrix elements will be entered into the optimization in a standard sparse matrix

formulation that only needs the row, column, and value information for non-zero

entries. For this unconstrained optimization, no Jacobian is necessary. The Hes-

sian is also quite different from the makecode case; the discretized vector field is

squared and thus includes cross terms across different time points which must be

accounted for.

The symbolic arrays from ‘discAzero.py’ are loaded into ‘minAzero.py’,

which generates the C++ problem files. The executable C++ program, once com-

piled, loads the information in specs.txt in order to run the program, as before.

The main difference in this specs.txt file is the inclusion of the Rmodel,a terms from

equation (5.2) that quantify the standard deviation in the noise of each dynamical

variable.

5.3.2 Output Files

The output from running a minAzero problem will generate four data files

- all those for makecode problems, with the exception of the Rvalue.dat file. The

Rvalue.dat file is specific to dynamical state and parameter estimation, and has

57

no significance to the path integral formulation.

5.4 Discussion

Dynamical parameter estimation has applications in a wide range of fields,

and these Python scripts have made the implementation for a new model to be

straightforward. The version discussed here uses Simpson’s integration rule and the

IPOPT solver, but these can be easily substituted. For instance, the integration

rule is defined in just a few lines of the discretize.py code, and can be changed out

to another rule fairly simply. Use of another optimization solver is slightly more

complicated since program syntax varies across solvers, but the general front-end

algorithms are similar among optimization software.

More importantly, no language-specific programming knowledge is neces-

sary in order to use these scripts for dynamical parameter estimation. The scripts

are written in Python, but are run from the a terminal command line, so no

Python-specific knowledge is needed. Optimization software packages typically in-

clude interfaces to allow the use of a user’s language of choice, but these interfaces

may not be as well-supported as the base software, may be inefficient to use, and

may significantly slow down the computational time to solve a given problem. By

writing code in the native language of the optimization software, these Python

scripts require only basic command line skills to solve complicated dynamical pa-

rameter estimation problems.

Python is the natural programming language to implement this type of pro-

gram due to its string handling ability. Higher level programs such as MATLAB

and Mathematica are capable of implementing the symbolic differentiation per-

formed by SymPy, and many programming languages can be set to write text to

a file (which is what the Python scripts ultimately do), but struggle to seamlessly

import information from a text file. These Python scripts would not be necessary

if only a single optimization instance needed to be performed on a unique model

vector field. The ability to radically change the system being studied by editing

just two text files opens the door for dynamical parameter estimation to be easily

58

implemented across many fields.

59

Problem Name

HH

nY.nP,nU,nI

4,22,1,1

equations

(gNa*mm*mm*mm*hh*(ENa-VV)+gK*nn*nn*nn*nn*(EK-VV)+

gM*(Erest-VV)+Iinj)/Cm+k1*(Vdata-VV)

(1-mm)*(amV1-VV)*amC/((exp((amV1-VV)*amV3)-1.0))-mm*bmC*exp(-VV*bmV1)

(1-hh)*ahC*exp(-VV*ahV1)-hh*bhC/(exp((bhV1-VV)*bhV2)+1.0)

(1-nn)*(anV2-VV)*anC/((exp((anV2-VV)*anV3)-1.0))-nn*bnC*exp(-VV*bnV1)

Objective/Cost function

(Vdata-VV)*(Vdata-VV)+k1*k1

variable names

VV

mm

hh

nn

parameter names

Cm

gNa

ENa

gK

EK

gM

Erest

...

anV2

anV3

bnC

bnV1

control, data, stimuli names

k1

Vdata

Iinj

Figure 5.1: Sample equations.txt file for the Hodgkin-Huxley dynamical param-

eter estimation problem

60

Problem Size

200

How much data to skip

0

Time step

0.02

Data File names - input

hhv.dat

Data File name - stimuli

hhi.dat

Boundary & initial conditions

0

State Variables

-200, 200, 0 # V

0, 1, 0.5 # m

0, 1, 0.5 # h

0, 1, 0.5 # n

Controls:

0, 100, 0

-1,1,0

Parameters

0, 2, 1

100, 150, 105

100, 150, 105

20, 50, 45

-25, 0, -20

0.1, 0.5, 0.4

5.0, 15.0, 6.0

...

5.0, 15.0, 10.0

0.05, 1.0, 0.1

0.1, 0.5, 0.125

0.01, 0.02, 0.0125

Figure 5.2: Sample specs.txt file for the Hodgkin-Huxley dynamical parameter

estimation problem

61

bool HH_NLP::eval_g(Index n,const Number* x,bool new_x,Index m,Number* g)

{

assert(n == 12*Time+28);

assert(m == 9*Time);

for(Index jt=0;jt<Time;jt++) {

for(Index i=0;i<nY;i++) {

Xval[i] = x[jt + i*(Time+1)];

Xvalp1[i] = x[jt + i*(Time+1) + 1];

Xval2[i] = x[(Time+1)*(nY+2*nU) + jt + i*(Time)];

} //end for loop

for(Index i=0;i<nU;i++) {

K11val[i] = x[jt + nY*(Time+1) + 2*i*(Time+1)];

K11valp1[i] = x[jt + nY*(Time+1) + 2*i*(Time+1) + 1];

K11val2[i] = x[(Time+1)*(nY+2*nU) + (nY+2*i)*Time + jt];

dK11val[i] = x[jt + (nY+2*i+1)*(Time+1)];

dK11valp1[i] = x[jt + (nY+2*i+1)*(Time+1)+1];

dK11val2[i] = x[(Time+1)*(nY+2*nU) + (nY+2*i+1)*Time + jt];

} //end for loop

Xdval[0] = Vdata[2*jt];

Xdval2[0] = Vdata[2*jt+1];

Xdvalp1[0] = Vdata[2*jt+2];

Ival[0] = Iinj[2*jt];

Ival2[0] = Iinj[2*jt+1];

Ivalp1[0] = Iinj[2*jt+2];

for(Index i=0;i<nP;i++) Pval[i] = x[(2*Time+1)*(nY+2*nU)+i];

g[9*jt+0] = Xval[0] + 0.166666666666667*hstep*(K11val[0]* ...

...

g[9*jt+8] = 0.5*K11val[0] + 0.125*dK11val[0]*hstep + 0.5* ...

} //end for loop

return true;

}

Figure 5.3: Sample eval g C++ routine for the Hodgkin-Huxley dynamical pa-

rameter estimation problem

Chapter 6

Applications of Scripting

The ability to easily generate optimization instances of complicated vector

fields opens up a wide range of problems to study. The Hodgkin-Huxley model

example gives some valuable insights into how to use these tools, and paves the way

for the study of more complicated systems. Two of these systems are a model of

the lateral pyloric neuron in the California spiny lobster, and a simple three-neuron

network with dynamic synaptic connections.

6.1 Hodgkin-Huxley Model

As the leading example, recall the Hodgkin-Huxley model defined in Chap-

ter 4 by:

dVm
dt

=
1

Cm

[
G̃Nam

3h(ENa − Vm) + G̃Kn4(EK − Vm) + G̃m(Vrest − Vm) + Iinj

]
dn

dt
= αn(Vm)(1− n)− βn(Vm)n

dm

dt
= αm(Vm)(1−m)− βm(Vm)m

dh

dt
= αh(Vm)(1− h)− βh(Vm)h

62

63

with the α and β kinetics given by:

αn(Vm) =
(10− Vm)

100(e(10−Vm)/10 − 1)

βn(Vm) = 0.125e−Vm/80

αm(Vm) =
(25− Vm)

10(e(25−Vm)/10 − 1)

βm(Vm) = 4e−Vm/18

αh(Vm) = 0.07e−Vm/20

βh(Vm) =
1

e(30−V)/10 + 1

Figures (5.1) and (5.2) defined this problem for use with the makecode.py scripts,

with additional parameters in the α and β kinetics given by:

αn(Vm) =
anC(anV 2 − Vm)

(eanV 3(anV 2−Vm) − 1)

βn(Vm) = bnCe
−bnV 1Vm

αm(Vm) =
amC(amV 1 − Vm)

(eamV 3(amV 1−Vm) − 1)

βm(Vm) = bmCe
−bmV 1Vm

αh(Vm) = ahCe
−ahV 1Vm

βh(Vm) =
bhC

ebhV 2(bhV 1−Vm) + 1

This now becomes a dynamical parameter estimation problem with 4 dynamical

variables and 22 unknown parameters.

6.1.1 Hodgkin Huxley Results

As seen in Table 6.1, and Figures 6.1 and 6.2, the dynamic state and pa-

rameter estimation technique accurately estimates the unmeasured parameters in

this model, as well as the unmeasured gating variables, m, n and h. Importantly,

the control term, u(t), is reduced to zero, and the R-value is 1 at every time point.

64

Table 6.1: HH Model: Data Parameters and Estimated Parameters.

Param Data T=500 T=5000

Cm 1.0 1.00 1.00

gNa 120.0 120.9 119.9

ENa 115.0 115.0 115.0

gK 36.0 36.0 36.0

EK -12.0 -12.0 -12.0

gM 0.3 0.30 0.30

Erest 10.613 10.618 10.648

amV 1 25.0 25.0 25.0

amV 3 0.1 0.100 0.099

amC 0.10 0.100 0.100

bmC 4.0 4.00 4.00

Param Data T=500 T=5000

bmV 1 0.056 0.0556 0.0557

ahC 0.07 0.0693 0.0701

ahV 1 0.05 0.0498 0.050

bhC 1.0 1.00 1.00

bhV 1 30.0 29.99 30.0

bhV 2 0.1 0.100 0.100

anC 0.01 0.0099 .009997

anV 2 10.0 9.98 10.0

anV 3 0.1 0.100 0.0999

bnC 0.125 0.125 0.125

bnV 1 0.0125 0.01247 0.0125

6.1.2 Hodgkin-Huxley Discussion

This is an important result in comparison to the successful Morris-Lecar

results for a few reasons. First, the Morris-Lecar problem was solved using the

SNOPT optimization software, whereas Hodgkin-Huxley was solved using IPOPT

optimization software. These are both widely available software packages for large-

scaled nonlinear optimizations, but utilize different algorithms. The fact that

dynamical state and parameter estimation problems can be solved using either

software package gives considerable flexibility, and an easy way to check solutions.

Second, the Hodgkin-Huxley problem is more complicated than the Morris-

Lecar problem, with more state variables and more unknown parameters. As

neurobiological models become more complex, the ability of the dynamical state

and parameter estimation method to solve larger systems may become difficult.

Third, and perhaps most importantly, the Hodgkin-Huxley model is widely

used as the starting point for modeling neurons in experimental systems. Provided

that this is in fact a good physical model of whichever experimental systems is being

studied, these methods are expected to give an accurate estimation of unmeasured

parameters and states.

65

Figure 6.1: Hodgkin-Huxley dynamical parameter estimation of voltage. An

injected current patterned off the chaotic signal from a Lorenz system was used

in order to explore the dynamical range of the neuron. Note that the estimated

voltage is indistinguishable from the ‘data’ trace, as expected.

6.2 LP Neuron Model

The California Spiny Lobster (Panulirus interruptus) is a decapod crus-

tacean, shown in Figures (6.3) and (6.4), and is studied by neurobiologists be-

cause of the characteristics of two central pattern generators (CPGs) contained in

its nervous system. These CPGs, the pyloric and gastric mill CPGs are part of the

stomatogastric ganglion, Figure (6.5), and control muscles that produce chewing

and that dilate and constrict the stomach.[46]

The cellular and synaptic properties found in the stomatogastric ganglion

are similar to those found in all nervous systems. This, and the fact that the

66

Figure 6.2: Hodgkin-Huxley dynamical parameter estimation of unobserved gat-

ing variables. This twin experiment estimation remarkably gives unobserved state

variables that are indistinguishable from the actual values.

system is relatively small, make this system a well-studied neural circuit.

The pyloric central pattern generator is a small and autonomous network

of fourteen neurons in the stomatogastric ganglion. It produces a rhythmic pat-

tern controlling the pylorus, and underlies the production of most rhythmic motor

patterns. One lateral pyloric (LP) neuron is present in the circuit, and is rel-

atively easy to identify and record from. This neuron is a conditional burster,

with burst durations and frequency consistent across preparations. Figures (6.7)

and (6.8) show typical LP neuron behavior in response to injection of DC current.

As the current increases (Figure (6.8)), the LP neuron exhibits bursting behav-

ior, many spikes in succession with long recovery periods in between each burst.

Reference [38] presents a model for the lateral pyloric (LP) neuron of the pyloric

67

Figure 6.3: California Spiny Lobster (Panulirus interruptus).

central pattern generator, Figure (6.6).

6.2.1 LP Neuron Model

The reference [38] model is a conductance based model in the Hodgkin-

Huxley type vein, but with significantly more complexity to account for the burst-

ing behavior. The ionic currents are grouped into two compartments, denoted

by ‘soma’ and ‘axon’, in order to depict some spatial difference between where

the currents interact with the cell membrane. The ‘soma’ compartment contains

a transient calcium current and a slow calcium current (ICa), a calcium induced

potassium current (IKCa), a hyperpolarization-activated inward ‘h’ current (Ih)

and a transient potassium-delayed spike initiation ‘A’ (IA) current. The ‘axon’

compartment contains the familiar sodium (INa) and potassium (IKd) currents, as

68

Figure 6.4: A cartoon of relevant California Spiny Lobster biological systems.

well as a spike rate adaptation current (IM).

Both compartments include a leak current (Ileak) and are coupled together

with an ohmic connection (IV V). Current is injected into the ‘soma’ compartment

to coincide with the experimental setup. With these currents, the voltage dynamics

are:

dVaxon
dt

=
1

Ca

[−INa − IKd − IM − Ileak,a + IV V]

dVSoma
dt

=
1

Cs

[−ICa − IKCa − IA − Ih − Ileak,s − IV V + Iscale(IDC + Isyn)]

The bursting characteristics of this neuron are modeled using calcium chan-

nels, with three calcium-dependent currents. The calcium concentration is de-

scribed by a first order kinetic equation,

69

Figure 6.5: California Spiny Lobster stomatogastric ganglion system.

d[Ca]

dt
= −cICaICa − kCa([Ca]− [Ca]0)

and the calcium current is given by the Goldman-Hodgkin-Katz equation,

ICa = (gCaTmCaThCaT + cCaSmCaS)
[Ca] exp[VSoma

RT/F
]− [Ca]out

exp[VSoma

RT/F
]− 1.0

PCaVSoma.

All ionic currents (except as noted) are given by:

Ix = gxm
phq(V − Vx),

with the activation and inactivation variables governed by:

dm

dt
= (am(1−m)− bmm)

dh

dt
= (ah(1− h)− bhh)

70

Figure 6.6: California Spiny Lobster pyloric central pattern generator.

for INa and IKd and

dmx

dt
= (m∞x(V)−mx)kmx

dhx
dt

= (h∞x(V)− hx)khx

for ICa, IKCa, IA, Ih, and IM .

The specific kinetics for each of these currents is shown in Figure (6.11).

All told, the LP neuron model includes 16 dynamical equations and 73

parameters. A resulting numerical integration of this model, using parameter

values given in reference [38], is shown in Figure (6.12).

71

Figure 6.7: California Spiny Lobster pyloric central pattern generator LP neuron

voltage trace.

6.2.2 LP Neuron Goals

The LP neuron model presents significant challenges, compared with the

Hodgkin-Huxley model. The model is significantly more complicated in terms of

number of equations and unknown parameters, but also due to the fact that the

system is stiff, characterized by significantly different time scale dynamics for the

membrane voltages compared to the calcium concentration dynamics. Also, the 73

parameters as written are unscaled, and include typical units for the quantity of

interest (e.g., mV for all reversal potentials). As a result, the parameter set includes

values that range over eight orders of magnitude, which may cause difficulty in the

direct method linear algebra methods employed by the optimization software. In

addition, reference [38] discussed two other challenges with this model:

72

Figure 6.8: California Spiny Lobster pyloric central pattern generator LP neuron

voltage traces for various input currents.

• Sensitivity of this model system to small changes in the parameter set, with

many parameter sets potentially giving similar model results, specifically

with the parameters presented in Figure (6.10)

• Chaotic behavior connected to the calcium dynamics, as first suggested

in [17], to explain the range of behavior observed for changing input currents.

Reference [38] calculates the Lyapunov exponents in this model and confirms

the existence of at least one positive exponent, explaining the chaotic nature

of the dynamics.

With these challenges in mind, the goal of a complete parameter and state

estimation based solely on a voltage measurement is too aggressive. For instance,

coupling the soma voltage data back into the model may not be enough to re-

duce the positive conditional Lyapunov exponents to non-positive values, which

73

was 4213 per percentage change (4213/%) without coupling and
745/% with coupling (for gM in both cases); the minimal sensitivity
was 2.949?1024/% without and 1.712?1024/% with coupling (for
gCaS). Also, the sensitivity became more consistent across
depolarization and hyperpolarization levels such that sorting by
increasing parameter sensitivity at a current injection level of 0 nA
causes all other levels to be almost perfectly ordered as well (this
same order was used in both panels of Figure 8). Both changes
indicate that some of the observed large sensitivity in the
uncoupled case was indeed due to high cost functions induced
by mis-alignment of the slow dynamics of the perturbed and
unperturbed models. From an electrophysiological point of view
the results obtained with the coupling are, therefore, probably
more relevant and realistic.

Tolerance level in terms of the cost function
A different way of looking at the sensitivity to parameter changes is

to look for the maximal interval around the ‘‘right’’ parameter value
for which the cost function does not exceed a predefined threshold
value. For our analysis we selected the approximate final average
cost value of the fit to the data as a threshold, which was 70. The
results are shown in Figure 9 for three different DC current
injections,22 nA (A), 0 nA (B), and +2 nA (C). Overall, the tolerance
intervals for individual parameters vary considerably from [20.1%,
0.8%] for gM at 0 nA current injection to no detectable restriction
(tested up to 1/10 and 10 times original value) for gCaS in all
conditions. The conductances are ordered according to the width of
their tolerance interval at 0 nA current injection in ascending order
from the left to the right. As in the sensitivity analysis above, gM, gCaT,
and gVV are the most important parameters, i.e., need to be
controlled most tightly, and gCaS is the least important.
The parameter gVV of coupling between compartments describes

the interaction of currents by passive electrical conductance along
the neuropil. The observed high importance of this parameter in
the model indicates that the fact that the currents are not all co-

located in one electrical compartment - an experimental fact
indicated by the strongly attenuated spikes - is relevant for the
neuronal dynamics.
Contrary to common intuition, we find the Ca induced

potassium current, gKCa, and the A current, gA, in the range of
low sensitivity as well. We have to keep in mind that the measure
of sensitivity employed so far is determined by the choice of the
cost function. We will see below that the apparent low importance
of gKCa and gA will change if we consider the above-mentioned
more robust trends in the LP neuron dynamics.

Sensitivity in terms of general dynamical trends
As we described above, the LP neuron dynamics are variable

across different animals while preserving some general statistical
properties or more precisely, trends in such properties. In
particular, the trend of how intra-burst ISIs, inter-burst intervals,
burst duration, and, to lesser extent, burst frequency change as a
function of DC current injection seems conserved across all
analyzed LP neurons. One possibility may, therefore, be that this
trend is what needs to be tightly controlled rather than the specific
dynamics, a requirement that led to the very high sensitivities to
some parameter changes in the previous section. To follow this
idea, we systematically generated LP neuron model data for DC
current injections from 24 to 20.5 nA in steps of 0.5 nA and with
the usual, weak low-frequency noise. This data was obtained for
the original model and for models in which one parameter at a
time was changed in increasing steps (see Methods for details). For
each parameter value we performed a linear regression for the 4
characteristics as a function of the hyperpolarization level. We
continued changing a given parameter until one of the following
conditions was fulfilled: (i) The characteristic trend had changed
sign, (ii) the linear regression had an error greater than the
absolute value of the parameter, or (iii) the hard upper or lower
limit for the parameter value (10 fold change and 1/10 of the
original value, respectively) was reached.

Table 4. Parameters that were not subject to fitting during the main parameter estimation procedure.

ICaT VmCaT smCaT VhCaT ShCaT kmCaT khCaT VkhCaT skhCaT

15 mV 29.8 mV 240 mV 3.2 mV 45 Hz 20 Hz 215 mV 210 mV

ICaS VmCaS smCaS kmCaS

29.13 mV 24.431 mV 60.86 Hz

IKCa cmKCa VmKCa1 smKCa1 VmKCa2 smKCa2 chKCa1 chKCa2 kmKCa

2.5 mM 0 mV 223 mV 216 mV 25 mV 0.7 mM 0.6 mM 600 Hz

khKCa f

35 Hz 0.6 mV/mM

IA VmA smA VhA shA kmA khA1 khA2 Vkha2

212 mV 226 mV 262 mV 6 mV 140 Hz 50 Hz 3.6 Hz 240 mV

skhA2 VaA saA

212 mV 7 mV 215 mV

Ih Vmh smh Vkmh skmh kmh

270 mV 8 mV 2110 mV 221.6 mV 0.33 Hz

Vx VNa VKd VKCa VA Vh VM Vleak

50 mV 272 mV 272 mV 272 mV 220 mV 280 mV 250 mV

other RT/F gNa gKd PCa [Ca]out [Ca]0

11.49 mV 715 mS 143 mS 1.56 1/mM 15120 mM 0.02 mM

The values for the parameters that were not subject to fitting in the main procedure were taken from the literature or from separate fits to voltage clamp data taken
from the literature, see Methods.
doi:10.1371/journal.pone.0002627.t004

Dynamics of Identified Neurons

PLoS ONE | www.plosone.org 10 July 2008 | Volume 3 | Issue 7 | e2627

Figure 6.9: LP neuron parameters used in numerical integration.

steps of 20 s duration and equidistant levels from 24 nA to +1 nA
in steps of 0.5 nA, which is a realistic physiological range for the LP
cell. LP cells typically become silent at stronger hyperpolarizations
and suffer depolarization block and potentially cell damage for
stronger depolarizations. The current steps were separated by 20 s
of autonomous behavior without current injection. The 20 s time
scale of steps was chosen based on the typically observed duration
of transient behavior of LP in response to current steps which were
on the order of 10 s.
In automatic parameter estimation (fitting) procedures the

quality of any given model, i.e., a given set of parameters, is
assessed by a so-called cost function. The choice of the appropriate
cost function is one of the major factors in determining the success
of the parameter estimation. For building our conductance based
model of the LP cell we developed a cost function consisting of
three main components (see the Methods): (i) The Euclidean
distance of normalized SDF waveforms, (ii) the absolute difference
of the integrals of the SDFs, and (iii) the Euclidean distance of the
moving average of the membrane potentials. The three compo-
nents were evaluated over 40 s time steps and then combined in a
weighted sum to an overall performance measure (cost function).
The weights were chosen by manual inspection such that the
normalized SDF contributed typically approximately 90%, the
integral of the SDF about 9% and the moving average of the
membrane potential about 1% to the overall cost. These
contributions reflect our initial hypothesis of which dynamical
properties may matter most for the correct function of the LP
neuron in the circuit: The pattern of bursting, measured by the
normalized SDF, is functionally most important. Only if this is
almost equally well reproduced by two models, we consider the
overall spike rate, i.e., the spiking frequency within bursts, as a
secondary criterion - hence the 10 fold less weight for the integral
of the SDF. If this is also equally well-reproduced (another 10 fold
reduction of weight) we would choose the model whose membrane
potential waveform, reflected by the moving average of the
membrane potential, is closer to the observed data.
During the parameter estimation procedure the model is

compared to the data simultaneously in 10 sliding windows of
40 s width. The composite cost function values from all windows
are summed before examination by the optimization algorithm
thus allowing trade-offs between improvement in some of the
windows and deterioration in others. As each time window
contains exactly 20 s of data with current injection and 20 s of
data in control conditions, these trade-offs correspond to trade-offs
between different current injection levels .
Due to the fact that the model was not compared to the full data

set during each annealing step, there is no measure of absolute cost
or performance. To assess whether suggested parameter changes
improved model performance we compared a model with
modified parameters to a model with the original parameter set,
but otherwise in the exact same conditions.

In each given step, parameters were randomly chosen to be
adjusted with probability pperturb. The size of suggested parameter
changes was adjusted according to the observed sensitivity of the
model to changes in the parameters at any given time and the total
range of parameter values was hard-limited to specific intervals
(see Methods).
In the final form of the algorithm we adjusted 20 parameters

(see Table 3, which also contains the final parameter values after
optimization).
The activity of isolated LP neurons is highly irregular in a wide

range of conditions. The main difficulty in using such irregular
(potentially chaotic) activity patterns for parameter estimation is the
problem of proper alignment, which is aggravated by the nature of
spikes in neuronal data. Our smoother cost function already partially
addresses this problem. In addition we built on earlier work on
similar problems [42–44] and introduced a simulated electrical
coupling between the data and the model, see also [45]. This
coupling term enforces a certain degree of synchronization of the
slow dynamics allowing for a more objective assessment of model
performance. During the parameter estimation procedure, the
coupling strength is then systematically reduced.
The evolution of parameter values during the fitting procedure

is illustrated in Figure 4. All parameters eventually converged to
stable values helped by the continuous gradual reduction of
annealing temperature and target lateral cost, which was
governing the parameter-change step sizes (see Methods). The
simultaneous stepwise reduction of the coupling strength between
data and model has the somewhat opposite effect of encouraging
more changes in parameters because reducing the coupling
strength induces appropriate compensatory parameter adjust-
ments. It is noteworthy that the cost function increased slightly in
the later stages of the procedure seemingly indicating that the
procedure did not converge properly. This is, however, again due
to the decreasing coupling strength which induces higher cost
function values that in turn are only partially compensated by the
subsequent parameter changes. The fitting procedure was
terminated when the coupling reached small values in physiolog-
ical terms and the parameters became stable.
By visual inspection, the final model exhibits dynamics very

similar to the dynamics of LP neurons (Fig, 1A, 2A compared to 5A).
For a realistic comparison to in vitro electrophysiological recordings
we added weak low-frequency noise to the LP neuron model (see
Methods for details) in all analyses except for the calculation of
Lyapunov exponents. Visible deviations from the LP data used for
developing the model seem well within the range of the observed
variability between different LP neurons (compare to Fig. 2).

Dynamical properties of the LP model
As shown in Figure 1, the direct membrane potential, the

histogram of ISIs, the power spectrum and the SDF return map of
the model are within the range of those observed in biological LPs.

Table 3. Parameter values that were adjusted during the parameter estimation procedure and their final values.

Conductances gCaT gCaS gKCa gA gh gleak,a gleak,s

11.23 mS 6.428 mS 149.7 mS 72.08 mS 1.142 mS 0.1004 mS 0.06211 mS

Other Ca CICa kCa Vshift gw Cs Iscale

11.48 nF 505 M/As 17.3 Hz 29.343 mV 0.4017 mS 5.439 nF 1.223

M current gM VmM smM kmM VkmM skmM

26.13 mS 226.99 mV 25.957 mV 0.1387 Hz 260.58 mV 213.26 mV

doi:10.1371/journal.pone.0002627.t003

Dynamics of Identified Neurons

PLoS ONE | www.plosone.org 6 July 2008 | Volume 3 | Issue 7 | e2627

Figure 6.10: More LP neuron parameters used in numerical integration.

is necessary for synchronization of the data to the model [4]. Without this syn-

chronization, the cost function of the optimization will not be smooth, making

detection of a global minimum very difficult, if not impossible.

Instead, the goal here is to explore the strengths and weaknesses of the

dynamical state and parameter estimation method, using the full LP neuron model

as a template. This work will include a comparison of optimizations based on

coupling one state variable, two state variables, and all sixteen state variables of

data to the model, using the dynamical state and parameter estimation method,

as well as performing the minimizations using the unconstrained minAzero path

integral method. Also, I will explore reduction of the number of ‘free’ parameters

in the model to determine how much of a difference this makes.

74

dhx
dt

~ h?x Vð Þ{hxð Þkhx ð15Þ

for the other currents, denoted by x=CaT, CaS, KCa, A, h, and M.
The calcium current is formulated in the Goldman-Hodgkin-Katz
(GHK) formalism

ICa~ gCaTmCaThCaTzgCaSmCaSð Þ
Ca½ $exp Vsoma

RT=F

! "
{ Ca½ $out

exp Vsoma

RT=F

! "
{1:0

PCaVsoma:

ð16Þ

The IA current has two different components of the inactivation
variable,

IA~gAm
3
A ahA1z 1{að ÞhA2ð Þ Vsoma{VAð Þ ð17Þ

a~
1

1zexp Vsoma{VaA

saA

! " ð18Þ

The leak currents are given by

Ileak~gleak V{Vleakð Þ ð19Þ

with gleak= gleak,s, gleak,a and V=Vsoma, Vaxon for the soma and axon
leak currents respectively. The calcium concentration is described

by a first order kinetic equation,

d Ca½ $
dt

~{cICaICa{kCa Ca½ ${ Ca½ $0
$

: ð20Þ

Finally the coupling between compartments is ohmic, i.e.,

IVV~gVV Vsoma{Vaxonð Þ: ð21Þ

The activation and inactivation functions am, bm, ah, bh, and m‘,
h‘, km, kh are described in Table 5. The parameters that were
typically not subject to adjustments are summarized in Table 4.
One parameter set of adjusted parameters is shown in Table 3.
The activation and inactivation curves of currents were taken

from the literature or fitted to data from the literature, in
particular, INa and IKd from [52], IKCa, IA directly from [24], Ih is
our own fit to voltage clamp data in [24] using the same functional
form as in [24], and ICa is our fit to voltage clamp data in [23],
using the standard GHK formalism.
IM is not based on direct experimental observation and

implements a generic M type spike rate adaptation current. All
its parameters were subject to fitting.

Detailed cost function
In automated fitting (parameter estimation) algorithms the

quality of a set of parameters in describing the target data is
measured by a so-called cost function. The cost function in our

Table 5. Activation and inactivation functions for INa, IKd, ICa, IKCa, IA, Ih, and IM.

p q am bm ah bh

IN 3 1
0:32

Vaxonz52

1{exp { Vaxonz52
4

$ 0:28
Vaxonz25

exp Vaxonz25
5

$
{1

0:128exp {
Vaxonz48

18

% &
4

exp { Vaxonz25
5

$
z1

IKd 4 0
0:32

Vaxonz50

1{exp { Vaxonz50
5

$ 0:5exp { Vaxonz55
40

$

p q m‘ h‘ km kh

ICaT 1 1 1

1zexp Vsoma{VmCaT

smCaT

! " 1

1zexp Vsoma{VhCaT

shCaT

! " kmCaT khCaT

1zexp Vsoma{VkhCaT

skhCaT

! "

ICaS 1 0 1

1zexp Vsoma{VmCaS

smCaS

! " kmCaS

IKCa 1 1 Ca½ $
cmKCaz Ca½ $

|
1

1zexp Vsoma{ VmKCa1{f
:
Ca½ $ð Þ

smKCa1

! "

|
1

1zexp Vsoma{ VmKCa2{f
:
Ca½ $ð Þ

smKCa2

! "

chKCa1
chKCa2z Ca½ $

kmKCa khKCa

IA 3 1,1 1

1zexp
Vsoma{VmA

smA

% & hA1 & hA2:
1

1zexp Vsoma{VhA

shA

! " kmA hA1 : khA1 hA2 :
khA2

1zexp Vsoma{VkhA2

skhA2

! "

Ih 1 0 1

1zexp
Vsoma{Vmh

smh

% & kmh

| 1zexp
Vsoma{Vkmh

skmh

% &% &

IM 1 0 1

1zexp
Vaxon{VmM

smM

% & kmM

1zexp Vaxon{VkmM

skmM

! "

doi:10.1371/journal.pone.0002627.t005

Dynamics of Identified Neurons

PLoS ONE | www.plosone.org 21 July 2008 | Volume 3 | Issue 7 | e2627

Figure 6.11: Activation and inactivation functions for various LP neuron model

currents.

6.2.3 LP Neuron Results

These computational ‘twin’ experiments use numerically integrated data

sets. All integrations were performed using the ‘odeint’ function with Python’s

Scipy module and checked with the ‘NDSolve’ function in Wolfram Research’s

Mathematica program. This check is necessary to ensure that the integration

time step is small enough to account for the problem stiffness due to the different

dynamic time scales for the voltage and calcium dynamics.

Naive DSPE coupling

With simple models, the portion of data that is sampled for DSPE is not

very important. The data generally must be long enough to include an interesting

phase space portrait of the system, but for smaller dimension models, this is not

hard. For example, in the Hodgkin-Huxley example, a data set that include 2-3

voltage spikes completely explores the dynamic range of all state variables.

75

Figure 6.12: LP neuron voltage and calcium concentrations for typical DC

current. The voltage shows the same general characteristics as real data shown in

Figures (6.7) and (6.8).

This approach does not work for the LP neuron, due to the system stiffness.

The interesting dynamics associated with the calcium concentration generally oc-

curs when the neuron is not spiking, and vice versa. As a result, if a portion of

data that only includes spiking, but no calcium concentration transient, is used,

very little information is available to describe the full dynamics of the model, thus

producing a bad fit.

As an illustration of this difficulty, a portion of integrated data which in-

cludes five voltage spikes is used in the normal DSPE procedure. This is done with

unknown parameters from each of figures (6.9) and (6.10), and for only the soma

76

voltage coupling as well as a soma/calcium concentration combination.

As expected, the coupled variables give good matches to the data; in fig-

ure (6.13), the soma voltage and calcium concentrations both match up as a result

of the DSPE procedure. However, figure (6.14) shows that this is not a good fit, as

the R-value is not equivalently one throughout the time sequence. This is reflected

in tables (6.2) and (6.3), which show generally poor parameter fitting.

Figure 6.13: Results for DSPE of lobster LP neuron. Although both the coupled

variable, Vsoma and [Ca] produce good fits to the data, the estimated parameters

and unobserved states are not identical to the data.

minAzero Vsoma and [Ca]

As an alternative to the DSPE method, I experimented as well with the

minAzero code that I developed. For the same data set used previously, with

5 spikes and no calcium transient, this code gives generally similar results: the

77

Figure 6.14: R-value results for DSPE of lobster LP neuron. The coupling

overwhelms the model at a few points, showing that this is a bad fit.

measured variables are matched well, but the unmeasured variables and parameters

are not. This supports the reference [38] conclusion that this model system has

many parameter sets that potentially give similar model results. One way to

confirm this is to utilize a data set that explores more of the dynamic range of the

system.

DSPE: longer data set

In order to explore a larger portion of the dynamic range of the model,

data must be used that includes activation of the calcium currents. For instance,

in Figure (6.12), the range from 1800-3200 ms is a calcium transient characterized

by large changes in the calcium concentration and no voltage spiking. In this

region, the model state variables associated with the three calcium currents are

78

Table 6.2: LP Neuron Model: Data parameters and estimated parameters for

coupling Soma voltage and Soma/Calcium using dynamic state and parameter

estimation.

Param Data V V, [Ca]

gKca µS 166.4 500.0 500.0

gA µS 80.1 250.0 250.0

gh µS 12.0 0.67 0.66

gleak,a µS 0.10 0.13 0.18

CICa M/As 504 1489 225.9

kCa Hz 17.0 1.0 10.6

gV V µS 0.40 0.42 0.43

Param Data V V, [Ca]

gleak,s µS 0.069 0.10 0.10

gM µS 26.1 10.3 35.0

kM Hz 0.1387 0.10 0.10

VM mV -26.99 -52.3 -13.1

sM mV−1 -0.168 -5.0 -5.0

VkM mV -60.6 -63.5 -76.0

skM mV−1 -0.075 -5.00 -2.65

activated, and also undergo transients.

A data set including this transient is necessary in order to include the full

dynamics of the model. For the same reason, a portion of the data set that includes

voltage spiking must also be used. As a result, in order to explore the full dynamics

of the LP neuron model, a data set encompassing approximately 2000 ms of data

needs to be used.

A limitation of the DSPE method is that a good parameter fit requires

adequate sampling of the data. This means that the integration time step must

capture the fastest dynamics of the system - in this case the voltage spiking.

Experience with the Morris-Lecar and Hodgkin-Huxley models has shown that an

integration time step of .01 ms is appropriate to capture these dynamics; use of a

.01 ms time step here requires 200,000 points of data in the optimization.

Unfortunately, this is too many points for many current hardware/soft-

ware implementations to handle. In the given configuration, with T data points,

this model has 19T+33 variables and 16T constraints, with 148T non-zero Ja-

cobian entries and 58T+72 non-zero Hessian entries. All of these Jacobian and

Hessian non-zero entries must be calculated at each optimization iteration, each

constraint must be checked, and each variable updated. With 200,000 data points,

this program becomes a memory-hog and will not run without some form of high

79

performance computing parallelization.

6.2.4 LP Neuron Remarks

Revisiting the goals of this section, full matching of all states and param-

eters in the LP neuron model is an aggressive goal, and has not yet been met.

However, many valuable lessons about DSPE have been learned through the use

of this complicated model.

Variable Scaling

First, I determined the necessity of proper variable scaling within the model.

The optimization software works in part by performing linear algebra operations

on large matrices; if the problem is not well scaled, the software may make some

inappropriate approximations during these operations. For instance, the state

variables for voltage typically range in the 10s of mV range, [Ca] in 1-5 µM range,

and voltage gating variables between zero and one. These units are sufficient

without scaling, as they only range over two orders of magnitude. However, some

of the calcium current dynamical variables range over a much smaller scale, the

smallest being order 10−4 at its peak. Six orders of magnitude can easily become

a problem, as evidenced by warning and error messages from the optimization

software.

This scaling issue is combatted with explicit rescaling of the variables within

the ‘equations.txt’ file, and corresponding adjustments to the scale of related pa-

rameters. If the product of a state variable with corresponding parameters is too

small, then it probably does not contribute to the observed dynamics, and can

be deleted. In fact, I removed one of the calcium currents in the reference [38]

LP neuron model which did not noticeably contribute to either the calcium or

membrane voltage dynamics.

Exponential Scaling

Scaling issues exist even with proper variable scaling, due to the functional

make-up of the LP neuron model. The model kinetics, typical of many neurobi-

80

ological conductance models, includes many exponential and sigmoidal terms, for

example, terms of the form x/(1 ± ex). These terms pose two different issues,

depending on the sign in the denominator.

For the minus case, x/(1 − ex) is a smooth function defined for all x. At

x=0, this functional form gives 0/0, and simple calculus is need via L’Hôpital’s rule

to compute the functional value of -1. For functions of this kind that are included

in the optimization, the C++ program will have difficulty calculating the function

at x=0.

For the plus case, x/(1 + ex), the plus sign in the denominator ensures that

division by zero is not possible, so the same problem does not apply. Here, the

problem is in how SymPy performs derivatives and displays them in the C++ files.

These derivatives are performed correctly, but not simplified, so that complicated

expressions may be present in both the numerator and denominator. If the argu-

ment over the exponential, x, is a free variable (or a combination of free variables)

in the optimization, then these exponential terms can become very large relatively

quickly. Whereas the ratio of numerator to denominator may in fact be rather

small, double precision accuracy may not be sufficient to accurately reflect the

‘true’ values of these functions.

Both of these problems may cause the optimization program to give error

messages during program execution. To combat these errors, I built the ability to

include functions into the Python scripts. These functions are input directly into

equations.txt. For instance, the minus case above is the function called efunc:

efunc(a, b, c, d) ==
a(b+ d)

ec(b+d) − 1

This function is defined in a C++ file called myfunctions.cpp, along with all first

and second derivatives with respect to the variables (a,b,c,d). This allows for

coding within the C++ file to explicitly change the functional form close to any

points that would give 0/0 (i.e., b+d=0). In this case, I used a simple three term

Taylor expansion of the original function.

Any new function can be defined in this way and, if properly designated

within ‘equations.txt’, used within a DSPE optimization. The implementation

81

of this functionality is a bit messy - the Sympy module handles the function as

a string, and takes derivatives with respect to the function, but the Python code

only handles the symbolic form of the optimization problem - the numerical work is

done in the generated files, which call the functions in myfunctions.cpp. Therefore,

the Python code includes regular expressions to massage these functions into the

correct form for output to the generated files.

6.2.5 LP Neuron Conclusions

The ultimate goal of DSPE is to take measurements from an experimental

system and estimate unmeasured states and parameters. A necessary first step

in this process is to construct a model that accurately describes the physics of

the experimental system, and use this model to conduct twin experiments with

numerically generated data. In the case of the LP neuron, these twin experiments

have given some valuable insight into the strengths and weaknesses of the DSPE

method, but ultimately show that experiments with real data are not yet feasible.

A number of approaches are possible to continue this work. Since the

model appears to be overdetermined (i.e., multiple parameter sets produce similar

dynamics), the model must be examined in detail to reduce the degrees of freedom.

This is non-trivial for such a complicated model, but is necessary in order for this,

or any other method, to work.

In addition, the large amount of data needed to perform this method must

be addressed. One solution is to use an adaptive time step routine, whereby

data sampling rates can be slower during a ‘slow’ transient, such as the calcium

transient, and faster for the ‘fast’ dynamics, i.e. voltage. This allows for sampling

over the entire dynamic range of all state variables, but requires significantly fewer

data points.

6.3 Three Neuron Network

Single neuron models such as Morris-Lecar, Hodgkin-Huxley, and the LP

neuron model are interesting for determining the dynamic response and biophysical

82

properties of neurons, but more interesting questions involve multiple neurons and

how they are connected in networks. For reference, the human brain has roughly

1010 neurons which form 1015 connections - modeling this is a distant goal; instead

I will start with a simple three-neuron circuit.

6.3.1 Network Model

Figure 6.15: Schematic of three neuron network.

Each neuron is connected to each other neuron with two connections, as

shown in figure (6.15). Inhibitory synapses (i.e, these lower the membrane voltage

and thus make a neuron less likely to spike) are shown with a dot; excitatory

synapses are shown with arrow. Synapses are described by a standard model,

Isyn = gsynS(Vrev − Vpost) (6.1)

dS

dt
=

1

τ

0.5(1 + tanh((V − Vsa)/Vsb))− S
sc − 0.5(1 + tanh((V − Vsa)/Vsb))

(6.2)

83

and each individual neuron is described by standard Hodgkin-Huxley dynamics

with known parameters, so that the only unknown parameters are associated with

the synapses. All told, this model includes 18 state variables (3 membrane voltages,

3x3 gating kinetics, 6 synapses) and 36 parameters.

6.3.2 Network Goals

In a real experimental network, measurement of membrane voltages from

multiple neurons is typically not possible, but with twin experiments where all

the ‘data’ is known, it is. To try to match up with reality in some form, the

initial goal is to determine how much information about the network synapses

can be determined by only one membrane voltage measurement. But since more

than one measurement is possible in this twin experiment, all permutations of two

membrane voltage measurements will also be used in the dynamical parameter

estimation procedure.

6.3.3 Network Results

Six experiments were performed - three single voltage and three dual volt-

age, and the results are consistent, which should be expected for an almost sym-

metrical system. In all experiments, synaptic dynamics for synapses transmitting

information to a neuron with measured membrane voltages are fit exactly, along

with good parameter fits. However, all other synapses and all unmeasured mem-

brane voltages, along with associated parameters, do not have good fits.

An example is shown in table (6.5). Here, the neuron membrane voltage

is measured for neuron numbers one and three, but not neuron number two. The

parameters corresponding to the synaptic currents, equation (6.1) in the neuron

number two voltage equation are labeled by indices one and six; as seen in the table,

all parameters are fitted exactly for synaptic indices two through five, but quite

terribly for synapses one and six. These results are also true for the parameters in

equation (6.2), table (6.6), with the exception of the Vsa terms, which is surprising.

84

6.3.4 Network Conclusions

If the synaptic connections are thought of as pipes bringing information

to and taking information away from neurons, then these results make sense. By

knowing the exact voltage trace for a given neuron, the DSPE procedure can

determine the synaptic parameters necessary to produce that voltage, but cannot

determine exactly the unmeasured voltage. For synapses taking information away

from the measured neuron, there is no way to know what the exact dynamics of the

synapses are, without accurate knowledge of the membrane voltage of the neuron

that the information is flowing to.

85

Table 6.3: LP Neuron Model: Data parameters and estimated parameters for

coupling Soma voltage and Soma/Calcium using dynamic state and parameter

estimation using alternate parameter set.

Param Data 104

gNa µS 715 234

VNa mV 50 65.2

VK mV -72 -56.3

gkd µS 143 38.4

Vh mV -20 -5

Vleak mV -50 -5

RT/F mV−1 0.088 0.083

kmCaT Hz 45 43.5

khCaT Hz 20 11.4

VmCaT mV 15 24.1

VhCaT mV -40 -72.5

smCaT mV−1 -0.102 -0.106

shCaT mV−1 0.3125 0.539

[Ca]out µM 15123 20000

VkhCaT mV -15 -32.5

skhCaT mV−1 -0.1 -5.0

kmKCa Hz 600 589

khKCa Hz 35 14.1

VmKCa1 mV 0 1.4

VhKCa1 mV 16 1

smKCa1 mV−1 -0.043 0.8

shKCa1 mV−1 -0.2 -0.23

Param Data 104

f mV/µM 0.6 5.0

cmKCa µM 2.5 0.11

chKCa1 µM 0.7 1.0

chKCa2 µM 0.6 0.1

[Ca]0 µM 0.02 0.005

kmA Hz 140 50.0

khA1 Hz 50 53.5

khA2 Hz 3.6 5.4

VmA mV -12 -35.0

VhA mV -62 -38.2

Vkha2 mV -40 -77.1

VaA mV 7 1.0

smA mV−1 -0.04 -0.43

shA mV−1 0.167 1.36

skha2 mV−1 -0.083 0.62

saA mV−1 -0.067 0.07

kmh Hz 0.33 0.01

Vmh mV -70 55.0

Vkmh mV -110 -128.2

smh mV−1 0.125 2.53

skmh mV−1 -0.046 -0.223

VM mV -80 -76.7

86

Table 6.4: LP Neuron Model: Data parameters and estimated parameters for

coupling Soma voltage and Soma/Calcium using MinAzero code.

Param Data V V, [Ca]

gKca µS 166.4 500.0 500.0

gA µS 80.1 250.0 250.0

gh µS 12.0 0.94 0.85

gleak,a µS 0.10 0.10 0.10

CICa M/As 504 829 230.6

kCa Hz 17.0 1.0 11.4

gV V µS 0.40 0.412 0.413

Param Data V V, [Ca]

gleak,s µS 0.069 0.055 0.089

gM µS 26.1 10.0 10.0

kM Hz 0.1387 0.10 0.10

VM mV -26.99 -55.2 -54.8

sM mV−1 -0.168 -1.67 -1.39

VkM mV -60.6 -73.4 -73.4

skM mV−1 -0.075 -2.56 -2.56

Table 6.5: Three neuron network Model: Data parameters and estimated param-

eters for coupling neurons one and three. Information travels to the unmeasured

neuron two, corresponding to conductance and potentials one and six. Results are

similar for the other 24 parameters.

Conductances Data DSPE

gs1 0.4 2.05

gs2 0.5 0.50

gs3 1.2 1.20

gs4 0.6 0.60

gs5 1.2 1.21

gs6 0.5 1.28

Reversal Potentials Data DSPE

Vrev1 -5 -51.1

Vrev2 -5 5.04

Vrev3 -70 -70.0

Vrev4 -5 -4.97

Vrev5 -70 -70.0

Vrev6 -5 -92.1

87

Table 6.6: Three neuron network Model: Data parameters and estimated param-

eters for coupling neurons one and three. Information travels to the unmeasured

neuron two, corresponding to conductance and potentials one and six.

Conductances Data DSPE

Vsa1 3 27.4

Vsa2 3 3.0

Vsa3 -0.03 -3.2

Vsa4 3 0.60

Vsa5 0.0175 -0.378

Vsa6 3 0.024

Vsb1 5 1.16

Vsb2 5 5.0

Vsb3 8 7.75

Vsb4 5 5.0

Vsb5 8 8.40

Vsb6 5 18.18

Reversal Potentials Data DSPE

τ1 1 0.25

τ2 1 1.0

τ3 0.33 0.334

τ4 1 1.0

τ5 0.33 0.335

τ6 1 0.42

sc1 1.5 1.06

sc2 1.5 1.50

sc3 1.66 1.67

sc4 1.5 1.50

sc5 1.66 1.68

sc6 1.5 1.00

Chapter 7

Advanced Parameter Estimation

The dynamical parameter estimation technique has proven to work well

for simple non-linear systems. For systems with one or more positive Lyapunov

exponents (i.e., systems that can exhibit chaotic behavior), more advanced nu-

merical techniques are necessary to generate a good parameter estimation. In this

chapter, I will discuss some advance techniques for dynamical parameter and state

estimation that may be necessary for complicated problems. Specifically, I will

discuss:

• The difficulties with dealing with large data sets

• How to fabricate a good starting guess for the optimization

7.1 Large Problem Size

The magnitude of the largest Lyapunov exponent puts an upper limit on

the length of data that can be used. As an example, consider the Lorenz 1996

model [31, 32]:

ẋj = (xj+1 − xj−2) ∗ xj−1 − xj + F

88

89

7.1.1 Example

For a time step of 0.01 and 0.1, various data sets are generated using dif-

ferent integration time steps. For time step of 0.01, the integrations diverge at

point 2850, or 28.5 units of time. This is related to the Lyapanov exponents of

the system, as it is independent of integration time step. This is a limit of this

technique for chaotic systems: numerical integration techniques have error, and

will diverge. In this case, the longest data set that can be used is for 28.5 time

units.

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000

D
yn

am
ic

al
 v

ar
ia

bl
e

1

Time

"00001output01.dat" u 1 every ::2000::3000
"0001output01.dat" u 1 every ::2000::3000
"001output01.dat" u 1 every ::2000::3000
"01output01.dat" u 1 every ::2000::3000

Figure 7.1: Integration results of the first variable of the Lorenz 1996 model,

showing time 20 through 30. Note that regardless of the integration time step

used, the integration diverges at 28.5 time units.

7.1.2 Discussion

This data set size limitation can be overcome by relaxing the tolerance

criteria on the equality constraints of the optimization. In dynamical parameter

estimation, equality constraints are given by the Hermite-Simpson integration map

for the system: each time step is related to the previous time step by the integration

90

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000

D
yn

am
ic

al
 v

ar
ia

bl
e

2

Time

"00001output01.dat" u 2 every ::2000::3000
"0001output01.dat" u 2 every ::2000::3000
"001output01.dat" u 2 every ::2000::3000
"01output01.dat" u 2 every ::2000::3000

Figure 7.2: Integration results of the second variable of the Lorenz 1996 model,

showing time 20 through 30. Note that regardless of the integration time step

used, the integration diverges at 28.5 time units.

rule. For a strict equality constraint to be valid, the Hermite-Simpson rule must

give identical results to the integration technique used to generate the data for

a twin experiment. Since for chaotic systems, a given integration technique will

diverge for different integration time steps, requiring a specific integration rule

(Hermite-Simpson) to match whichever integration technique is used to generate

the data would be impossible. This argument is similarly valid for data generated

from a real system, where no numerical integration scheme was used! To mitigate

this, the Hermite-Simpson rule used within the optimization can be turned into

an inequality constraint:

Simpson’s Integration:

yi(n+ 1) = yi(n) +
τ

6
[Fi(n) + 4Fi(n2) + Fi(n+ 1)]± ε

Polynomial Interpolation:

91

yi(n2) =
1

2
[yi(n) + yi(n+ 1)] +

τ

8
[Fi(n)− Fi(n+ 1)]± ε.

Here, care must be taken to ensure that ε is large enough to correct for the

integration errors between integration techniques, but not so large as to overwhelm

the underlying dynamics of this system.

7.2 Starting Guess

For complicated systems, the optimization is highly dependent on the start-

ing guess. For simpler problems, such as the Hodgkin-Huxley and Colpitts exam-

ples, all state variables can be set to a constant for all time as the initial guess,

resulting in an excellent parameter estimation. This is not the case for more com-

plicated models.

For twin experiments, a common technique is start the optimization on the

correct answer for all parameters and all state variables. For SQP solvers, such

as SNOPT, this technique typically results in very fast convergence, due to the

algorithmic details of the optimizer. For interior point methods, such as IPOPT,

this does not necessarily work as well, for the same reason.

Starting on the correct answer is not possible for non-twin experiments,

however, so other techniques are necessary. Since DSPE is based on the idea of

synchronization of data to model, one method is to take the data and numerically

synchronize the data to the model in an integration with fixed coupling constant.

This integration will necessarily make some assumption about the values of the

initial conditions and parameters, but as long as these are in the feasible range

given to the optimization, the resulting time series gives a decent place to start.

Using this numerical synchronization method should not be limited to one

set of parameters and initial conditions; a range of starting guesses for the opti-

mization must be used to determine if DSPE converges to the same solution.

Chapter 8

Conclusion

Nonlinear parameter and state estimation is a challenging discipline and

developing a method that is generally applicable is probably impossible. The

dynamic state and parameter estimation method described here is a valuable tool

in this broad field, and has shown successful results in a wide range of problems

in diverse disciplines such as electrical circuits, oceanography, and neurobiology.

Current efforts involve estimation of parameters and states in networks of neurons

and experimental birdsong systems.

The development of DSPE Python scripts to simplify implementation of

dynamic state and parameter estimation has greatly enhanced the utility of this

method when presented with experimental data by allowing for easy testing of

multiple models to fit a system. The implementation of larger and more compli-

cated systems brings new challenges, as evidenced by the lobster lateral pyloric

neuron model. Expansion to experimental systems brings challenges of its own,

specifically the role of noise in both the dynamical model and the experimental

data, and other methods such as the Monte Carlo path integral method may be

needed.

The DSPE scripts, as well as the minAzero scripts, are valuable tools that

are being implemented on a wide range of problems in biology, oceanography, and

many other disciplines as the method matures. Accurate state and parameter

estimation paves the way for accurate prediction, and the methods and software

presented here make a valuable addition to the parameter estimation toolkit.

92

Appendix A

IP control User Manual

A.1 Introduction

This document describes the current version (2.1) of the IP control software

package. It explains how to use the software I have developed from January 2009 -

Present, which uses the IPOPT optimization package for optimal control tracking

and dynamic parameter estimation of dynamic systems.

A.1.1 Problem Statement

Given a set of first-order differential equations in the state vector x(t):

dx1(t)

dt
= G1(x1(t), x⊥(t), q) (A.1)

dx⊥(t)

dt
= G⊥(x1(t), x⊥(t), q). (A.2)

Determine unobserved states x⊥(t) and parameters q of this system using

a time-series observation of one (or more) x1(t) of the state variables.

This software transforms a text file representation of the dynamical system

into an IPOPT C++ code that minimizes a user-provided cost function, subject to

the differential equations and user-provided bounds on the parameters and state

variables.

93

94

A.2 Installations

I will not go into detail about how to install the necessary software to make

everything work, since this is definitely platform dependent. I have successfully

installed and run on Mac OS, as well as Red Hat and Ubuntu LINUX, so I expect

the software will run on most systems. The needed software is:

• Python version 2.5 or later. This should be available in most package man-

agers, or download from source at www.python.org. For Mac OS and Linux

installations, Python is typically part of the basic installation of the operat-

ing system. Check by opening a terminal window and typing ’python’ at the

prompt.

• SymPy version 0.6.3 or later. This is a Python module that is used to per-

form symbolic differentiation, and is available at code.google.com/p/sympy/.

Download the tar.gz file for Mac OS and Linux installation, unpack and in-

stall in an easily accessible directory. In the terminal, from the unpacked

directory, type ’sudo python setup.py install’ to install the SymPy libraries

in the Python module directory. Check that the installation was successful

by opening a Python instance in the terminal window and typing ’import

sympy’.

• IPOPT version 3.5.4 or later. This is available at https://projects.coin-

or.org/Ipopt. Install the C++ version (which will require a C++ compiler

- I use g++)

A.2.1 Python

Python and SymPy installations should be straightforward - Python should

already be installed and SymPy installation is described above. Run through some

of the examples from the SymPy site to make sure the module is working correctly.

95

A.2.2 IPOPT

The IPOPT installation is a bit more complicated, but is well documented

at

http://www.coin-or.org/Ipopt/documentation/.

• Download the desired tarball from

http://www.coin-or.org/download/source/Ipopt,

it has the form Ipopt-x.y.z.tgz, where x.y.z is the version number, such as

3.9.2. There might also be daily snapshot from the stable branch. The

number of the latest official release can be found on the IPOPT Trac page.

• Issue the following commands to unpack the archive file:

$ gunzip Ipopt-x.y.z.tgz

$ tar xvf Ipopt-x.y.z.tar

Note: The $ indicates the command line prompt, do not type $, only the

text following it.

• Rename the directory you just extracted:

$ mv Ipopt-x.y.z CoinIpopt

• Change into the root directory of the IPOPT distribution

$ cd CoinIpopt

From the IPOPT documentation:

‘IPOPT uses a few external packages that are not included in the IPOPT

source code distribution, namely ASL (the AMPL Solver Library if you want to

compile the Ipopt AMPL solver executable), Blas, Lapack. It also requires at least

one linear solver for symmetric indefinite matrices.

Since this third party software released under different licenses than IPOPT,

we cannot distribute that code together with the IPOPT packages and have to ask

you to go through the hassle of obtaining it yourself (even though we tried to make

it as easy for you as we could). Keep in mind that it is still your responsibility to

96

ensure that your downloading and usage if the third party components conforms

with their licenses.

Note that you only need to obtain the ASL if you intend to use IPOPT

from AMPL. It is not required if you want to specify your optimization problem

in a programming language (C++, C, or Fortran). Also, currently, Lapack is only

required if you intend to use the quasi-Newton options implemented in IPOPT. ’

The python scripts described here do not use AMPL, and thus ASL is not

necessary. Based on the above, installation of Blas, Lapack, and one linear solver

is all that is required - the default linear solver that I recommend is either MA27

or MA57.

As noted on the main IPOPT site, make sure to read the current issues

page before installation - this is located at:

https://projects.coin-or.org/BuildTools/wiki/current-issues.

IPOPT can be easily compiled and installed with the usual configure, make,

make install commands:

• Create a directory where you want to compile IPOPT, for example

$ mkdir $IPOPTDIR/build

and go into this directory

$ cd $IPOPTDIR/build

• Run the configure script

$ $IPOPTDIR/configure

One might have to give options to the configure script, e.g., in order to choose

a non-default compiler, or to tell it where some third party code is installed,

see Appendix D.

If the last output line of the script reads “configure: Main configuration of

Ipopt successful” then everything worked fine. Otherwise, look at the screen

output, have a look at the config.log output files and/or consult Appendix

D of the documentation.

97

The default configure (without any options) is sufficient for most users that

downloaded the source code for the linear solver. If you want to see the

configure options, consult Appendix D, and also visit the generic COIN-OR

configuration instruction page at

https://projects.coin-or.org/CoinHelp/wiki/user-configure

• Build the code

$ make

• $ make test

This will test if the AMPL solver executable works (if you got the ASL code),

and if the included C++, C, and Fortran examples work.

Note: The configure script is not able to automatically determine the C++

runtime libraries for the C++ compiler. For certain compilers we enabled

default values for this, but those might not exist or be wrong for your com-

piler. In that case, the C and Fortran example in the test will most probably

fail to compile. If you don’t want to hook up the compiled IPOPT library

to some Fortran or C code that you wrote you don’t need to worry about

this. If you do want to link the IPOPT library with a C or Fortran compiler,

you need to find out the C++ runtime libraries (e.g., by running the C++

compiler in verbose mode for a simple example program) and run configure

again, and this time specify all C++ runtime libraries with the CXXLIBS

variable (see also Appendix D).

• Install IPOPT

$ make install

This installs

– the IPOPT library (libipopt.so, libipopt.a or similar) in

$IPOPTDIR/build/lib,

– text files ipopt addlibs cpp.txt and ipopt addlibs f.txt in

$IPOPTDIR/build/share/doc/coin/Ipopt

98

that contain a line each with additional linking flags that are required

for linking code with the IPOPT library, for C++ and Fortran main

programs, respectively. (This is only for convenience if you want to

find out what additional flags are required, for example, to include the

Fortran runtime libraries with a C++ compiler.)

– the necessary header files in $IPOPTDIR/build/include/coin.

You can change the default installation directory (here $IPOPTDIR) to

something else (such as /usr/local) by using the –prefix switch for config-

ure.

After successful installation, navigate to the directory:

$IPOPTDIR/build/Ipopt/examples/hs071 cpp

and type $ make. This will compile the cpp file that the python scripts below are

based of off. This Makefile will be needed in order to modify the makemake.py file

as detailed below.

A.2.3 Scripts

The control package consists of seven python files. Once all the above

software is installed, all that is needed is two additional, user-generated text files to

generate C++ code for a new dynamical parameter estimation problem. The seven

python files must be either in whichever directory that the problem will be run in,

or (preferably) stashed in the directory where python modules typically go (I am

not sure if this is standard across platforms). The trick that I have used is to put

the six python files into a directory that is part of the PATH environmental variable

and change the makecode.py script into an executable. Actual implementation of

this depends on the flavor of UNIX/LINUX that is used, as well as the shell, so I

will not provide details here.

99

A.2.4 Modifying makemake.py

The Makefile compiles C++ object files and links them with the installed

IPOPT libraries, in order to create an executable. Since the location of the IPOPT

libraries, as well as the flags used to compile them, differ between installations, this

file will be unique to a given machine. Modification of the makemake.py script to

give correct Makefiles for a given machine consists of:

• Ensure that the IPOPT installation proceeded correctly, as evidenced by zero

errors for the “make install” step.

• In the IPOPT build directory, try to compile (make) one of the examples,

for instance at /build/Ipopt/examples/hs071 cpp.

• If this compiles and runs correctly, open the Makefile in this directory.

• Make note of the entries in the following fields of this Makefile: CXX,

CXXFLAGS, CXXLINKFLAGS, INCL, LIBS.

• In makemake.py, replace the default entries for these fields with those given

in the example Makefile.

– makemake.py is formatted differently than a Makefile, since it is a

python code generation script.

– Lines that begin with the ‘#’ sign will be comments in the Makefile -

leave these alone.

– All lines must end with \n\ in order for the Makefile to be generated

correctly.

– The best way to ensure that all the compile flags are correct is to copy

and paste from the example Makefile, ensuring that the end line char-

acters are in place.

• The modification of makemake.py must only be done once for a given ma-

chine, unless IPOPT is reinstalled for whatever reason.

100

A.3 Usage

Usage of the code is deceptively simple. As currently configured, the only

python file that needs to be altered is makemake.py (discussed above). For any

new problem, all that is needed are two text files and an optional functions file:

• equations.txt specifies the name of the problem, the number of variables,

parameters, controls, stimuli, and functions, the vector field, the objective

function, and the names of the variables, parameters, controls, stimuli, and

functions. For a given problem, equations.txt sets up the vector field, Jaco-

bian, and Hessian.

• specs.txt specifies all the actual run parameters that may change for a given

problem. This includes the timestep of the data, length of data set, names

of the requisite data files, initial and boundary conditions for all variables,

parameters, and controls, and how much tolerance to put on the equality

constraints.

• myfunctions.cpp is a C++ file that defines functions used in equations.txt.

A.3.1 Equations.txt

This text file is setup as follows:

• Line 1: Problem Name.

• Line 2: nY, nP, nU, nI, nF.

– nY = Number of model dynamical variables.

– nP = Number of model unknown parameters.

– nU = Number of controls to couple data to model dynamical variables.

– nI = Number of input stimuli to the model.

– nF = number of functions used to simplify the model representation.

• Lines 3→2+nY: Vector field of the dynamical model. Each line is the right-

hand side of the equation dxi(t)
dt

= Gi(x(t), q).

101

• Line 3+nY: Objective function.

• Lines 4+nY→3+2*nY: Dynamical variable names, given in the same order

as the vector field equations.

• Lines 4+2*nY→3+2*nY+nP: Unknown parameter names.

• Lines 4+2*nY+nP→3+2*nY+nP+nU: Control names.

• Lines 4+2*nY+nP+nU→3+2*nY+nP+2*nU: Names given to coupled data

sets. Each control must include one data variable.

• Lines 4+2*nY+nP+2*nU→3+2*nY+nP+2*nU+nI: Names of input stimuli.

• Lines 4+2*nY+nP+2*nU+nI→3+2*nY+nP+2*nU+nI+nF: Names of any

functions used, followed by a comma and the number of arguments in the

function. The name of the function must be identical to the name given in

a provided myfunctions.cpp file, discussed below.

Any changes to the equations.txt file will require running makecode.py and make

in order to take effect.

A.3.2 Specs.txt

This text file is loaded by the final executable program, and is setup as

follows:

• Line 1: Problem Length T. Since the discretization method used involves

data midpoints, the total number of data points used is 2*T+1.

• Line 2: skip = How many lines to skip at the beginning of a given data file.

This allows for sampling over different parts of a given data set.

• Line 3: Time step of the data. Again, since midpoints are used in the

discretization, this is twice the time step used to generate the data.

102

• Lines 4→3+nU: Data file names for coupled data. Each coupled data variable

must have its own data file, listed in the order of the respective controls given

in equations.txt. A data file of this name must be included in the directory

of the executable and contain at least as many lines as given by 2*T+1+skip,

or the program will give a segmentation fault. Format of the data file is one

number (integer or decimal) per line.

• Lines 4+nU→3+nU+nI: Data file names for input stimuli. Same rules as for

data files for coupled data.

• Line 4+nU+nI: 0 or 1. This determines whether a data file will be used to

give an initial guess for the optimization for all state variables at all time

points. 0 means NO, 1 means YES.

– IF 0: Line 5+nU+nI: See below.

– IF 1: Line 5+nU+nI: Data file name for initial optimization. Each line

of this data file contains a value for each state variable at one time point,

with either space or tab delimiters.

• Lines 5(6)+nU+nI→4(5)+nU+nI+nY: Bounds, initial guess, and constraint

variability (optional) for each of the state variables. Each value is separated

by a comma, in the order, lower bound, upper bound, initial guess, variability.

– The bounds are valid for the dynamical variable for each time point.

– The initial guess is valid for the dynamical variable for each time point

if no initial data file is used.

– The variability, δ, converts the Hermite Simpson integration from equal-

ity constraints to inequality constraints in order to account for numerical

instabilities within the integration and within the vector field. Instead

of x(n+1) = x(n) + ∆*F(n), where F(n) is the Hermite integration rule,

the variability option gives, x(n+1) = x(n) + ∆*F(n) ± δ

• Lines 5(6)+nU+nI+nY→4(5)+nU+nI+nY+2*nU: Bounds and initial guess

for the control and derivative of the control. Each control is followed by its

103

own derivative.

• Lines 5(6)+nU+nI+nY+2*nU→4(5)+nU+nI+nY+2*nU+nP: Bounds and

initial guess for the unknown parameters.

Changes to specs.txt do not require recompilation of either makecode.py or make.

A.3.3 Myfunctions.cpp

This C++ file defines any functions used in equations.txt. The function, its

derivatives with respect to each variable, and 2nd derivatives with respect to each

combination of variables must be defined as depicted in the example provided.

The function name func must be as given in equations.txt, and the 1st and 2nd

derivatives by funcjac and funches.

A.3.4 Makecode.py

Given a properly formatted equations.txt, the script makecode.py will gen-

erate a unique set of C++ files to run an IPOPT program. If all the python scripts

are in the directory with equations.txt, run the script with the command, “python

makecode.py”. If the makecode.py script has been turned into an executable, and

all the scripts stored somewhere in the PATH environmental variable, then the

command “makecode.py” suffices. Upon this command, the following occurs:

• The code discretize.py takes the equations.txt file as input, and generates

a symbolic vector field using python’s symbolic math module, SymPy. Dis-

cretize.py then takes this vector field and discretizes the integration according

to Simpson’s rule. Finally, the derivatives and second derivatives of the vec-

tor field are taken with respect to all variables, parameters, and controls.

All non-zero entries are stored in row, column, value format (with some ad-

ditional information) in Jacobian and Hessian arrays. Five separate arrays

from discretize.py are needed in the main IPOPT program. These are the ob-

jective function, the constraints, the gradient of the objective, the Jacobian

of the constraints, and the Hessian of the objective and constraints.

104

• The C++ code that IPOPT runs is generated as follows:

– Makecpp.py generates a “problemname main.cpp” file that defines a

new problem and includes all the appropriate IPOPT calls.

– Makehpp.py generates a “problemname nlp.hpp” file that serves as the

header file for the problem class.

– Makecode.py generates a “problemname nlp.cpp” file that defines the

problem class. This problem class sets up the problem (problem size,

bounds, initial conditions) and defines the cost function, constraints,

Jacobian, Hessian, and output files.

– Makemake.py generates a Makefile that links these files together with

the IPOPT libraries - this is the one file that will have to change de-

pending on the platform.

– Makeopt.py generates a “problemname.opt” option file for the problem.

– Correlate.py is used to generate one of the output files, Rvalue.dat.

• All five of these files are generated by makecode.py - the other python scripts

are invoked from within this module. These scripts open new files, based on

the problem name given in equations.txt, and write appropriate character

strings to these files to turn them into C++ files. The main algorithmic parts

are in the makecode.py module - mostly due to modifying the discretized

equations into loops over all time points, with variables, parameters, and

controls at each time step pointing to the correct spot in the optimization

variable arrays for the constraints, Jacobian elements, and Hessian elements.

• The makecode.py script will generate the needed C++ files in a matter of

seconds for small (3 state variables) problems, but can take considerably

longer for higher dimensionality due to the increased number of derivatives

that need to be done. This will generate the needed C++ files which are

linked and compiled by a Makefile. Provided that the Makefile is made

appropriately (as stated previously, this is platform dependent, and should

105

be checked relative to the make check of IPOPT), all that is needed is a make

(compile), and then run of the problem.

A.3.5 Running the Program

After the makecode.py and make steps, an executable program will be cre-

ated, “problemname cpp”. Ensure that specs.txt is constructed correctly and all

data files specified are in the working directory. The “problemname.opt” option file

can be amended to to give specific IPOPT run options (e.g., termination criteria,

linear solver choice). Then run the executable program.

A.3.6 Advanced Usage

Supported problem types include multiple controls, injected stimuli (e.g.,

current), and setting initial conditions for all state variables at all discretized times

points. These are shown in the given examples, but briefly:

• Multiple controls are set in the equations.txt file with the nU variable and

addition of the controls to the actual equations. In the specs.txt file where

the range and initial value are set, each control is followed by its associated

differential.

• Injected stimuli are used by including the stimuli in equations.txt, and in-

cluding the name of the injected stimuli data file in specs.txt. This data file

is of the same format as the data file for the measured data file - one value

per line, and should be the same number of lines for a given problem.

• Initial conditions (really an initial guess) are set in the specs.txt file. A binary

toggle determines whether a data file will be used to set an initial guess

for all state variables. When set to zero, the initial guess for all variables,

controls, and parameters is set as a constant for all time steps according to

the third column of the appropriate row in the specs.txt file (see examples).

If the toggle is set to 1, the subsequent uncommented line of specs.txt must

contain the name of the data file with the initial guess. The hh example in

106

the example directories includes this data file (initial.dat), for instance. The

initial.dat file contains a column for each state variable per row, with the

same number of rows as the measured data file.

A.4 Output

The output from running a dynamical control problem will generate five

data files.

• Ipopt.out gives details about the optimization iterations.

• Param.dat lists the parameter values in the order given in equations.txt,

one per line.

• Data.dat lists the variables and controls at each time step. The format of

data.dat is: counter, x1, x2, ..., xn, u1, u2, ..., uk, followed by the y1, ..., yk

of the input data.

• Rvalue.dat lists the Rvalue at each time point. The Rvalue is a measure

of the relative contribution of the model dynamics and control terms in the

output, and gives a measure of the quality of the state estimation.

• Carl.input outputs the state variables and parameters in the format needed

for input into the cudaPIMC code.

A.5 Troubleshooting

I have tested these scripts over a wide range of problems, so I believe that

the algorithms are correct. However, there are a few common errors that may crop

up.

• Variable and parameter naming is very important. At few common problems

can crop up. Never use a variable name that includes the name of another

variable. For instance p1 and p11 would be bad, since p11 includes p1. In

107

this case, p01 and p11 would be adequate. Along this vein, all variable names

should be at least 2 characters long, just in case.

• Another naming problem is associated with an internal Python/sympy func-

tion called sympify. This function is used to transform python arrays into

C++ code, but it can be somewhat finicky with certain variable names. As

an example, the name ”gamma” in equations.txt for a parameter name will

results in an error message upon running makecode.py which includes some-

thing like: TypeError: bad operand type for unary -: ’FunctionClass’. I do

not have a complete list of problematic names, but be aware of this potential

error.

• Another common mistake is to neglect to include the proper data files in

the working directory. These files must have names exactly as given in the

specs.txt file, or else execution of the program will result in a bus error or

segmentation fault. If these files have the correct name, but improper format

(e.g., not long enough), these types of memory errors may occur as well.

• One further error occurs if equations.txt and specs.txt are not saved as pure

text files. An additional (invisible) character string may appear, uncom-

mented, in the files, thus disrupting the read statements that occur in python

and C++. As a quick check, open these files in a gui text editor, and then

save them as plain text to avoid this problem. This should not be a problem

with the typical UNIX/LINUX command line text editors.

Appendix B

IP control code

B.1 Discretize.py

###

#

20 October 2009

Bryan A. Toth

University of California, San Diego

btoth@physics.ucsd.edu

#

This script performs symbolic Hermite-Simpson

integration on a vector field given in the text file

equations.txt, takes the Jacobian and Hessian of the

vector field, and stores the results in arrays that

are used by other python scripts in this directory.

#

This script has been developed as part of a suite of

python scripts to define a dynamic parameter estimation

problem using the optimization software IPOPT, but is

generally applicable to any application needing

discretized derivatives of a vector field.

#

##

import sympy as sym

from sympy import *

import re

Opening and reading the text file with vector field information

108

109

file = open(’equations.txt’,’r’)

temp=[] # Array to hold equations.txt information

for line in file:

if line.startswith(’#’): # Pound used as comment in text file

continue

elif line.startswith(’\\’): # In case file has UTF-8 markers

continue

else:

temp.append(line)

file.close()

h=[] # Array to hold unformatted equations.txt information

for i in range(len(temp)):

temp1=temp[i].rstrip()

h.append(temp1)

Initialize problem variables

nY=0

nP=0

nU=0

nI=0

nF=0

Problem name

Problem = h[0]

Problem variables

a=h[1].split(’,’)

nY=int(a[0])

nP=int(a[1])

nU=int(a[2])

nI=int(a[3])

if len(a) > 4:

nF=int(a[4])

Import equations as strings

Feqnstr = []

for k in range(nY):

Feqnstr.append(h[k+2])

Import objective function as string

Fobjstr = []

110

Fobjstr.append(h[nY+2])

Import variable, parameter, control, data, and stimuli names

as strings

Lvars = []

for k in range(nY):

Lvars.append(h[k+3+nY])

Lparams = []

for k in range(nP):

Lparams.append(h[k+3+nY+nY])

Lcouple = []

Ldata = []

for k in range(nU):

Lcouple.append(h[k+3+nY+nY+nP])

Lcouple.append(’d’+ h[k+3+nY+nY+nP])

Ldata.append(h[k+3+nY+nY+nP+nU])

Lstimuli = []

for k in range(nI):

Lstimuli.append(h[k+3+2*nY+nP+2*nU])

Import function names as strings

Funcstr = []

Funcarg = []

for k in range(nF):

temp = h[k+3+2*nY+nP+2*nU+nI].split(’,’)

Funcstr.append(temp[0])

Funcarg.append(int(temp[1]))

#Lvars.reverse()

#Lcouple.reverse()

Fdim = len(Feqnstr)

Pdim = len(Lparams)

Make symbols using sympy module

Sv = []

Sp = []

Sk = []

Sd = []

Si = []

for i in range(len(Lvars)):

Sv.append(sym.Symbol(Lvars[i]))

for i in range(len(Lparams)):

111

Sp.append(sym.Symbol(Lparams[i]))

for i in range(nU):

Sd.append(sym.Symbol(Ldata[i]))

Sk.append(sym.Symbol(Lcouple[2*i]))

Sk.append(sym.Symbol(Lcouple[2*i+1]))

Sk includes coupling and derivative of the coupling: k1,k1d,etc ...

for i in range(nI):

Si.append(sym.Symbol(Lstimuli[i]))

Sall = Sv + Sk + Sp

Make symbols for functions

Sf = []

for i in range(nF):

Sf.append(sym.Function(Funcstr[i]))

hstep = sym.Symbol("hstep")

Define symbolic vector field

Feqns = []

for k in range(Fdim):

sTemp1 = Feqnstr[k]

for i in range(len(Lvars)):

sTemp2 = "Sv[%d]" % i

sTemp1 = sTemp1.replace(Lvars[i],sTemp2)

for i in range(len(Lparams)):

sTemp2 = "Sp[%d]" % i

sTemp1 = sTemp1.replace(Lparams[i],sTemp2)

for i in range(len(Lcouple)):

sTemp2 = "Sk[%d]" % i

sTemp1 = sTemp1.replace(Lcouple[i],sTemp2)

for i in range(nU):

sTemp2 = "Sd[%d]" % i

sTemp1 = sTemp1.replace(Ldata[i],sTemp2)

for i in range(nI):

sTemp2 = "Si[%d]" % i

sTemp1 = sTemp1.replace(Lstimuli[i],sTemp2)

for i in range(nF):

sTemp2 = "Sf[%d]" % i

sTemp1 = sTemp1.replace(Funcstr[i],sTemp2)

sTemp2 = "Feqns.append("

sTemp2 = sTemp2 + sTemp1 + ")"

exec sTemp2

112

Define symbolic objective function

Fobj = []

sTemp1 = Fobjstr[0]

for i in range(len(Lvars)):

sTemp2 = "Sv[%d]" % i

sTemp1 = sTemp1.replace(Lvars[i],sTemp2)

for i in range(len(Lparams)):

sTemp2 = "Sp[%d]" % i

sTemp1 = sTemp1.replace(Lparams[i],sTemp2)

for i in range(len(Lcouple)):

sTemp2 = "Sk[%d]" % i

sTemp1 = sTemp1.replace(Lcouple[i],sTemp2)

for i in range(nU):

sTemp2 = "Sd[%d]" % i

sTemp1 = sTemp1.replace(Ldata[i],sTemp2)

sTemp2 = "Fobj.append("

sTemp2 = sTemp2 + sTemp1 + ")"

exec sTemp2

For a continuous version of the Jacobian and Hessian of the

vector field, the following can be printed. Otherwise, these

are not needed in the script.

#--------Jacobian---------------

#J = diff(Feqns,Sall[:]) # Jacobian

#---------Hessian---------------

#H = diff(J,Sall[:]) # Hessian

Perform Hermite-Simpson discretization and label these as

constraints in the optimization problem.

The format of these constraints is one element in AllCon for

each dynamical variable in the vector field, with each entry

containing three entries for the discretization, corresponding

to the current time-step, next time-step, and midpoint value,

as defined by the integration rule. For other integration rules,

this part must change.

AllCon = []

Simpson Constraints

for k in range(len(Sv)):

113

tCon = []

tCon.append(Sv[k] + (hstep/6.0)*Feqns[k])

tCon.append(-Sv[k] + (hstep/6.0)*Feqns[k])

tCon.append((2.0*hstep/3.0)*Feqns[k])

AllCon.append(tCon)

Hermite Constraints

for k in range(len(Sv)):

tCon = []

tCon.append(0.5*Sv[k] + (hstep/8.0)*Feqns[k])

tCon.append(0.5*Sv[k] - (hstep/8.0)*Feqns[k])

tCon.append(-Sv[k])

AllCon.append(tCon)

Hermite Control Constraint

for k in range(nU):

tCon = []

tCon.append(0.5*Sk[2*k] + (hstep/8.0)*Sk[2*k+1])

tCon.append(0.5*Sk[2*k] - (hstep/8.0)*Sk[2*k+1])

tCon.append(-Sk[2*k])

AllCon.append(tCon)

Add objective function

AllObj = []

AllObj.append(Fobj[0])

AllObj.append(0)

AllObj.append(Fobj[0])

The following dictionaries are for a subsequent substitution

in the function subvars. These are the actual variable array

names that will be used in the eventual c++ IPOPT program.

dict1 = {0:"Xval",1:"Xvalp1",2:"Xval2"}

dict2 = {0:"K11val",1:"K11valp1",2:"K11val2"}

dict3 = {0:"dK11val",1:"dK11valp1",2:""}

dict4 = {0:"Xdval",1:"Xdvalp1",2:"Xdval2"}

dict5 = {0:"Ival",1:"Ivalp1",2:"Ival2"}

The following function performs a variable substitution, and

is called later in the code.

def subvars(mystr,myi):

114

mytemp = mystr

The following two lines are very important

Sympy converts all inputs into a simplified form

for calculations. Specifically, this involves

any exponentials (a^b) put in the form a**b.

Whereas this form is acceptable for fortran outputs,

this needs to change to pow(a,b) for C++ outputs.

Sympify and ccode combine to make this transformation.

This transformation is done at this point in the code,

since sympify will not operate on an

expression that includes brackets - which are added

in this function.

mytemp = sym.sympify(mytemp)

mytemp = sym.ccode(mytemp)

for j in range(len(Sv)):

Srep = dict1[n] + "[%d]" % (len(Sv)-j-1)

Srep = dict1[n] + "[%d]" % j

Sfind = Lvars[j]

mytemp = mytemp.replace(Sfind,Srep)

for j in range(len(Sp)):

Srep = "Pval[%d]" % j

Sfind = Lparams[j]

mytemp = mytemp.replace(Sfind,Srep)

for j in range(len(Sk)):

Srep = dict2[n] + "[%d]" % (j/2)

Sfind = Lcouple[j]

mytemp = mytemp.replace(Sfind,Srep)

for j in range(len(Sk)):

if (j % 2 == 0):

Srep = dict2[n] + "[%d]" % ((len(Sk)-j-1)/2)

Srep = dict2[n] + "[%d]" % (j/2)

Sfind = Lcouple[j]

mytemp = mytemp.replace(Sfind,Srep)

elif (j % 2 == 1):

Srep = dict3[n] + "[%d]" % ((len(Sk)-j-1)/2)

Srep = dict3[n] + "[%d]" % (j/2)

Sfind = Lcouple[j]

mytemp = mytemp.replace(Sfind,Srep)

115

for j in range(len(Sd)):

Srep = dict4[n] + "[%d]" % j

Sfind = Ldata[j]

mytemp = mytemp.replace(Sfind,Srep)

for j in range(len(Si)):

Srep = dict5[n] + "[%d]" % j

Sfind = Lstimuli[j]

mytemp = mytemp.replace(Sfind,Srep)

return mytemp

END subvars

def subfunc(mystr,myi):

mytemp = mystr

Dsearch = re.findall(‘D\(’, mytemp)

for num in range(len(Dsearch)):

jacsearch = re.search(‘D\(([a-z]+)\((-?[0-9]+(\.[0-9]+)?,

|[A-Za-z0-9]+\[[0-9]+\],)+(-?[0-9]+(\.[0-9]+)?

|[A-Za-z0-9]+\[[0-9]+\])\), (-?[0-9]+(\.[0-9]+)?

|[A-Za-z0-9]+\[[0-9]+\])\)’, mytemp)

hessearch = re.search(‘D\(([a-z]+)\((-?[0-9]+(\.[0-9]+)?,

|[A-Za-z0-9]+\[[0-9]+\],)+(-?[0-9]+(\.[0-9]+)?

|[A-Za-z0-9]+\[[0-9]+\])\), (-?[0-9]+(\.[0-9]+)?

|[A-Za-z0-9]+\[[0-9]+\]), (-?[0-9]+(\.[0-9]+)?

|[A-Za-z0-9]+\[[0-9]+\])\)’, mytemp)

if jacsearch:

dervar = jacsearch.group(6)

var = re.findall(‘[A-za-z0-9]+\[[0-9]+\]|-?

[0-9]*\.?[0-9]+’, jacsearch.group(0))

for i in range(len(var)-1):

if var[i] == dervar:

jacnum = i+1

rep = jacsearch.group(1) + ‘jac(’

for i in range(len(var)-1):

temp = var[i] + ‘,’

rep += temp

rep += str(jacnum) +‘)’

mytemp = re.sub(‘D\(([a-z]+)\((-?[0-9]+(\.[0-9]+)?,

|[A-Za-z0-9]+\[[0-9]+\],)+(-?[0-9]+(\.[0-9]+)?

|[A-Za-z0-9]+\[[0-9]+\])\), (-?[0-9]+(\.[0-9]+)?

|[A-Za-z0-9]+\[[0-9]+\])\)’, rep,mytemp,1)

if hessearch:

116

dervar1 = hessearch.group(6)

dervar2 = hessearch.group(8)

hesnum1 = 0

hesnum2 = 0

var = re.findall(‘[A-za-z0-9]+\[[0-9]+\]|-?

[0-9]*\.?[0-9]+’, hessearch.group(0))

for i in range(len(var)-2):

if var[i] == dervar1:

hesnum1 = i+1

if var[i] == dervar2:

hesnum2 = i+1

rep = hessearch.group(1) + ‘hes(’

for i in range(len(var)-2):

temp = var[i] + ‘,’

rep += temp

rep += str(hesnum1) +‘,’+ str(hesnum2)+ ‘)’

mytemp = re.sub(‘D\(([a-z]+)\((-?[0-9]+(\.[0-9]+)?,

|[A-Za-z0-9]+\[[0-9]+\],)+(-?[0-9]+(\.[0-9]+)?

|[A-Za-z0-9]+\[[0-9]+\])\), (-?[0-9]+(\.[0-9]+)?

|[A-Za-z0-9]+\[[0-9]+\]), (-?[0-9]+(\.[0-9]+)?

|[A-Za-z0-9]+\[[0-9]+\])\)’, rep, mytemp, 1)

return mytemp

#end subfunc

Build constraint equation strings

strAllCon = []

for icon in range(len(AllCon)):

temp1 = []

for n in [0,1,2]:

Stemp = str(AllCon[icon][n])

Stemp = subvars(Stemp,n)

Stemp = subfunc(Stemp,n)

temp1.append(Stemp)

strAllCon.append(temp1)

Build objective function string

strObj = []

temp1 = []

for n in [0,1,2]:

Stemp = str(AllObj[n])

Stemp = subvars(Stemp,n)

Stemp = subfunc(Stemp,n)

temp1.append(Stemp)

strObj.append(temp1)

117

Build Jacobian strings

sJac = []

for icon in range(len(AllCon)):

temp1 = []

for jvar in range(len(Sall)):

temp2 = []

for n in [0,1,2]:

Stemp = str(sym.diff(AllCon[icon][n],Sall[jvar]))

Stemp = subvars(Stemp,n)

Stemp = subfunc(Stemp,n)

temp2.append(Stemp)

temp1.append(temp2)

sJac.append(temp1)

Build Objective gradient strings

sObj = []

for jvar in range(len(Sall)):

temp2 = []

for n in [0,1,2]:

Stemp = str(sym.diff(AllObj[n],Sall[jvar]))

Stemp = subvars(Stemp,n)

Stemp = subfunc(Stemp,n)

temp2.append(Stemp)

sObj.append(temp2)

Build Hessian strings

sHes = []

for icon in range(len(AllCon)):

temp1 = []

for jvar in range(len(Sall)):

temp2 = []

for kvar in range(len(Sall)):

temp3 = []

for n in [0,1,2]:

Stemp = str(sym.diff(sym.diff(AllCon[icon][n],Sall[jvar]),

Sall[kvar]))

Stemp = subvars(Stemp,n)

Stemp = subfunc(Stemp,n)

temp3.append(Stemp)

temp2.append(temp3)

temp1.append(temp2)

sHes.append(temp1)

Add Hessian for the objective function

118

temp1=[]

for jvar in range(len(Sall)):

temp2 = []

for kvar in range(len(Sall)):

temp3 = []

for n in [0,1,2]:

Stemp = str(sym.diff(sym.diff(AllObj[n],Sall[jvar]),Sall[kvar]))

Stemp = subvars(Stemp,n)

Stemp = subfunc(Stemp,n)

temp3.append(Stemp)

temp2.append(temp3)

temp1.append(temp2)

sHes.append(temp1)

Fill out Jacobian vector

Jacobian includes all constraints, but not objective

VJac will include all non-zero elements of the Jacobian

with the format: (value, row, column, time) where time

refers to whether the element is current time, next time

or midpoint time in discretized form

VJac = []

for i in range(len(AllCon)):

for j in range(len(Sall)):

if j < (len(Sv) + len(Sk)): # Same as nY + 2*nU

for n in [0,1,2]:

F = sJac[i][j][n]

if F != ’0’:

temp1 = []

temp1.append(F)

temp1.append(i)

temp1.append(j)

temp1.append(n)

VJac.append(temp1)

Distinction is made between variable/control entries and parameter

entries based on how the sJac matrix is set up: derivatives with

respect to the parameters must take into account all time

information-adding the current time, next time, and midpoint time

derivatives together into a single entry.

else:

F = sJac[i][j][0]

if F != ’0’:

119

temp2 = []

temp1 = ’’

for n in [0,1,2]:

F = sJac[i][j][n]

if n == 0:

temp1 = temp1 + F

else:

temp1 = temp1 + ’+’ + F

temp2.append(temp1)

temp2.append(i)

temp2.append(j)

VJac.append(temp2)

Fill out objective gradient

VObj = []

for j in range(len(Sall)):

if j < (len(Sv) + len(Sk)):

for n in [0,1,2]:

F = sObj[j][n]

if F != ’0’:

temp1 = []

temp1.append(F)

temp1.append(j)

temp1.append(n)

VObj.append(temp1)

else:

F = sObj[j][0]

if F != ’0’:

temp2 = []

temp1 = ’’

for n in [0,1,2]:

F = sObj[j][n]

if n == 0:

temp1 = temp1 + F

else:

temp1 = temp1 + ’+’ + F

temp2.append(temp1)

temp2.append(j)

VObj.append(temp2)

Fill out Hessian vector

This vector has the format [index, constraint, row, column, time,

value] for each entry

120

Index is a counter that refers to a specific row/column

combination,so that the same combination is not used more

than once. Constraint refers to which constraint that the

Hessian element is taking derivatives of

VHes = []

index = 0

oddball = 0

index tracks how many entries there are, oddball tracks the

parameter/parameter entries. This distinction is necessary since

each time step will have its own entries, but parameter/parameter

derivatives only have one Hessian entry.

Fill out for constraint 1 first

Note that this is a symmetrical matrix - filling out lower

diagonal-half only.

for j in range(len(Sall)):

Sall is Sv + Sk + Sp, the symbolic representations of the

variables, controls, and parameters.

for k in range(j+1):

if k < (len(Sv) + len(Sk)):

for n in [0,2]:

H = sHes[0][j][k][n]

if H != ’0’:

temp1 = []

temp1.append(index)

temp1.append(0)

temp1.append(j)

temp1.append(k)

temp1.append(n)

temp1.append(H)

temp1.append(1)

if n == 0:

temp1.append(sHes[0][j][k][1])

VHes.append(temp1)

index = index + 1

else: # These are the parameter/parameter derivatives

H = sHes[0][j][k][0]

if H != ’0’:

temp2 = []

121

temp1 = ’’

for n in [0,1,2]:

H = sHes[0][j][k][n]

if n == 0:

temp1 = temp1 + H

else:

temp1 = temp1 + ’+’ + H

temp2.append(index)

temp2.append(0)

temp2.append(j)

temp2.append(k)

temp2.append(-1)

temp2.append(temp1)

temp2.append(1)

VHes.append(temp2)

index = index + 1

oddball = oddball + 1

Fill out additional constraints, checking to see if row/column

has been indexed already. Need to make distinction for

constraint/constraint derivatives

for i in range(len(AllCon)):

for j in range(len(Sall)):

for k in range(j+1):

if k < (len(Sv) + len(Sk)):

for n in [0,2]:

H = sHes[i+1][j][k][n]

new = 0

if H != ’0’:

Check to see if row/column has been used before

for u in range(len(VHes)):

if j == VHes[u][2]:

if k == VHes[u][3]:

if n == VHes[u][4]:

oldindex = VHes[u][0]

new = 1

temp1 = []

temp1.append(oldindex)

temp1.append(i+1)

temp1.append(j)

temp1.append(k)

temp1.append(n)

122

temp1.append(H)

temp1.append(0)

if n == 0:

temp1.append(sHes[i+1][j][k][1])

if new == 1:

VHes.append(temp1) # Use old index

elif new == 0: # Assign new index to new row/column

combination

temp1 = []

temp1.append(index)

temp1.append(i+1)

temp1.append(j)

temp1.append(k)

temp1.append(n)

temp1.append(H)

temp1.append(1)

if n==0:

temp1.append(sHes[i+1][j][k][1])

VHes.append(temp1)

index = index + 1

else: # Take care of the oddballs: parameter/parameter

combinations

H = sHes[i+1][j][k][0]

new = 0

if H != ’0’:

for u in range(len(VHes)):

if j == VHes[u][2]:

if k == VHes[u][3]:

oldindex = VHes[u][0]

new = 1

temp2 = []

temp1 = ’’

for n in [0,1,2]:

H = sHes[i+1][j][k][n]

if n ==0:

temp1 = temp1 + H

else:

temp1 = temp1 + ’+’ + H

temp2.append(oldindex)

temp2.append(i+1)

temp2.append(j)

temp2.append(k)

temp2.append(-1)

123

temp2.append(temp1)

temp2.append(0)

if new == 1:

VHes.append(temp2)

elif new == 0:

temp2 = []

temp1 = ’’

for n in [0,1,2]:

H = sHes[i+1][j][k][n]

if n == 0:

temp1 = temp1 + H

else:

temp1 = temp1 + ’+’ + H

temp2.append(index)

temp2.append(i+1)

temp2.append(j)

temp2.append(k)

temp2.append(-1)

temp2.append(temp1)

temp2.append(1)

VHes.append(temp2)

index = index + 1

oddball = oddball + 1

B.2 Makecode.py

#!/usr/bin/python

###

#

20 October 2009

Bryan A. Toth

University of California, San Diego

btoth@physics.ucsd.edu

#

This script builds C++ code to run a dynamical parameter

estimation optimization problem with the optimization

software IPOPT.

#

Specifically, given a vector-field (model) of the form:

#

124

dx_1(t) = G_1(x_1(t),x_p(t),q)

#

dx_p(t) = G_p(x_1(t),x_p(t),q)

#

where x_p denotes 1 or more equations in the model,

#

this code takes the discretized vector field and objective

function (discretized in companion script discretize.py),

and builds the requisite IPOPT functions to solve the

resulting optimization problem.

#

This script has been developed as part of a suite of

python scripts to define a dynamic parameter estimation

problem using the optimization software IPOPT, but could

easily be modified for use with other optimization software.

#

##

For ease of use, all necessary C++ files are built with one

keyboard command. The following four scripts each write a

necessary C++ file. See the individual scripts for more

information.

import discretize

import correlate

import makecpp

import makehpp

import makemake

import makeopt

Discretize.py reads the file equations.txt and sets up the given

vector field in the correct format.

Import the problem name and change to upper and lower case

prob = discretize.Problem

probu = prob.upper()

probl = prob.lower()

FILE = probl + ’_nlp.cpp’

nU = discretize.nU

125

nP = discretize.nP

nY = discretize.nY

nI = discretize.nI

nF = discretize.nF

The name of the IPOPT file to be written to

f = open(FILE,’w’)

The following write commands are writing C++ code.

Front matter

f.write(‘// %s.cpp\n’ % probl)

f.write(‘// Nonlinear Ipopt program\n’)

f.write(‘\n// Author: Bryan A. Toth\n// btoth@physics.ucsd.edu\n\n’)

f.write(‘#include \"%s_nlp.hpp\"\n’ % probl)

f.write(‘#include <cmath>\n\

#include <cstdio>\n\

#include <iostream>\n\

#include <fstream>\n\

#include <string>\n\

#include <stdlib.h>\n\

#include <cstring>\n’)

f.write(‘#ifdef HAVE_CSTDIO\n\

include <cstdio>\n\

include <iostream>\n\

include <fstream>\n\

include <string>\n\

include <stdlib.h>\n\

#else\n\

ifdef HAVE_STDIO_H\n\

include <stdio.h>\n\

else\n\

error \"don\’t have header file for stdio\"\n\

endif\n\

#endif\n\n’)

f.write(‘using namespace Ipopt;\n\n’)

f.write(‘using namespace std;\n\n’)

for i in range(nF):

args = discretize.Funcarg[i]

f.write(‘double %s(’ % discretize.Sf[i])

for j in range(args-1):

126

f.write(‘double, ’)

f.write(‘double);\n’)

f.write(‘double %sjac(’ % discretize.Sf[i])

for j in range(args-1):

f.write(‘double, ’)

f.write(‘double, int);\n’)

f.write(‘double %shes(’ % discretize.Sf[i])

for j in range(args-1):

f.write(‘double, ’)

f.write(‘double, int, int);\n’)

f.write(‘// constructor\n\

%s_NLP::%s_NLP()\n\

{\n’ % (probu, probu))

Define problem parameters

f.write(‘ nU=%d;\n’ % nU)

f.write(‘ nP=%d;\n’ % nP)

f.write(‘ nY=%d;\n’ % nY)

f.write(‘ nI=%d;\n\n’ % nI)

Define variable names

f.write(‘\

K11val = new double[nU];\n\

K11val2 = new double[nU];\n\

K11valp1 = new double[nU];\n\

dK11val = new double[nU];\n\

dK11val2 = new double[nU];\n\

dK11valp1 = new double[nU];\n\

Xdval = new double[nU];\n\

Xdval2 = new double[nU];\n\

Xdvalp1 = new double[nU];\n’)

f.write(‘\

Xval = new double[nY];\n\

Xval2 = new double[nY];\n\

Xvalp1 = new double[nY];\n’)

f.write(‘\

Pval = new double[nP];\n’)

f.write(‘\

Ival = new double[nI];\n\

Ival2 = new double[nI];\n\

Ivalp1 = new double[nI];\n\

Rvalue = new double[nU];\n’)

Commands to read specs.txt file

127

f.write(‘\

string buffer;\n\

specs = new string[6+nP+nY+nI+3*nU];\n\

\n\

int count;\n\

count = 0;\n\

\n\

ifstream fin ("specs.txt");\n’)

f.write(" if (fin.is_open())\n\

{\n\

while (! fin.eof())\n\

{\n\

getline (fin,buffer);\n\

if (buffer[0] !=’#’)\n\

{\n\

specs[count] = buffer;\n\

count++;\n\

}\n\

}\n\

fin.close();\n\

}\n\

\n\

else cout << \"Unable to open file\";\n")

Write Time to file

Time is a misnomer - this is a measure of the the number

of time steps used in the problem

f.write(‘ Time = atoi(specs[0].c_str());\n’)

Write skip to file

Skip is a dummy variable to allow the use of various parts

of a given data file

f.write(‘ skip = atoi(specs[1].c_str());\n’)

Write hstep to file

Hstep is the time-step of the discretization

f.write(‘ hstep = atof(specs[2].c_str());\n\n’)

Write open data file to file

f.write(‘ string filename;\n’)

f.write(‘ int ret;\n’)

Data for each variable that is being coupled in to the vector field

for i in range(nU):

f.write(‘\

128

%s = new double[2*Time+1];\n\

%s = new double[skip];\n\n\

FILE *pFile%d;\n’ % (discretize.Ldata[i],discretize.Ldata[i]+

’dummy’,i))

f.write(‘\

filename = specs[%d];\n’ % (3+i))

f.write(‘\

pFile%d = fopen(filename.c_str(),"r");\n’ % i)

Read data from data file

temp1 = "%lf"

f.write(‘\n\

for(Index jt=0;jt<skip;jt++)\n\

{\n\

ret = fscanf (pFile%d, "%s", &%s[jt]);\n\

if (ret == EOF) break;\n\

}\n\

for(Index jt=0;jt<2*Time+1;jt++)\n\

{\n\

ret = fscanf (pFile%d, "%s", &%s[jt]);\n\

if (ret == EOF) break;\n\

}\n\

fclose (pFile%d);\n’ % (i,temp1, discretize.Ldata[i]+

’dummy’,i,

temp1,discretize.Ldata[i],i))

######### End for loop #############

Open data file for stimulus

for i in range(nI):

f.write(‘\

%s = new double[2*Time+1];\n\

%s = new double[skip];\n\n\

FILE *qFile%d;\n’ % (discretize.Lstimuli[i],

discretize.Lstimuli[i]+’dummy’,i))

f.write(‘\

filename = specs[%d];\n’ % (3+nU+i))

f.write(‘\

qFile%d = fopen(filename.c_str(),"r");\n’ % i)

Read stimuli data

temp1 = "%lf"

f.write(‘\n\

for(Index jt=0;jt<skip;jt++)\n\

{\n\

129

ret = fscanf (qFile%d, "%s", &%s[jt]);\n\

if (ret == EOF) break;\n\

}\n\

for(Index jt=0;jt<2*Time+1;jt++)\n\

{\n\

ret = fscanf (qFile%d, "%s", &%s[jt]);\n\

if (ret == EOF) break;\n\

}\n\

fclose (qFile%d);\n’ % (i,temp1,discretize.Lstimuli[i]+’dummy’,

i,temp1,discretize.Lstimuli[i],i))

######### End for loop #############

Read in the initial and boundary conditions for all variables

into arrays

f.write(‘\

int rows = nY+2*nU+nP;\n\

bounds = new double*[rows];\n\

for (Index i=0;i<rows;i++) bounds[i] = new double[4];\n\

int toggle=0;\n\

if (specs[3+nU+nI] == "1") toggle = 1;\n\

int counter;\n\

for(Index k=0;k<rows;k++)\n\

{\n\

counter=0;\n\

char* tmp = new char[specs[4+nU+nI+toggle+k].size()+1];\n\

strcpy(tmp, specs[4+nU+nI+toggle+k].c_str());\n\

char *ptr = strtok(tmp,",");\n\

while(ptr != 0) {\n\

if(counter<4) {\n\

bounds[k][counter] = atof(ptr);\n\

}\n\

ptr = strtok(0,",");\n\

counter++;\n\

}\n\

}\n\n’)

If initial conditions are in a data file, read in the data file

f.write(‘\

if (specs[3+nU+nI] == "1")\n\

{\n\

filename = specs[4+nU+nI];\n\

}\n\n’)

130

f.write(‘\

}\n\n’)

f.write(‘// destructor\n\

%s_NLP::~%s_NLP()\n\

{\n\

delete [] K11val;\n\

delete [] K11val2;\n\

delete [] K11valp1;\n\

delete [] dK11val;\n\

delete [] dK11val2;\n\

delete [] dK11valp1;\n\

delete [] Xdval;\n\

delete [] Xdval2;\n\

delete [] Xdvalp1;\n\

delete [] Xval;\n\

delete [] Xval2;\n\

delete [] Xvalp1;\n\

delete [] Pval;\n\

delete [] Ival;\n\

delete [] Ival2;\n\

delete [] Ivalp1;\n\

delete [] specs;\n’ % (probu, probu))

for i in range(nU):

f.write(‘\

delete [] %s;\n\

delete [] %s;\n’ % (discretize.Ldata[i],discretize.Ldata[i]+

’dummy’))

for i in range(nI):

f.write(‘\

delete [] %s;\n\

delete [] %s;\n’ % (discretize.Lstimuli[i],discretize.Lstimuli[i]+

’dummy’))

f.write(‘\

int rows = nY+2*nU+nP;\n\

for (Index i=0;i<rows;i++) delete [] bounds[i];\n\

delete [] bounds;\n’)

f.write(‘\n\

}\n\n’)

Start to write individual functions

GET_NLP_INFO

131

f.write(‘// returns the size of the problem\n\

bool %s_NLP::get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,\n\

Index& nnz_h_lag, IndexStyleEnum& index_style)\n\n’ % probu)

Number of variables

alpha = 2*(nY+2*nU)

beta = nY+2*nU+nP

f.write(‘{\n\

// Number of variables\n\

n = %d*Time+%d;\n’ % (alpha,beta))

Number of equality constraints

gamma = 2*nY+nU

f.write(‘\n\

// Number of equality constraints\n\

m = %d*Time;\n’ % gamma)

Number of Jacobian nonzero entries

theta = len(discretize.VJac)

f.write(‘\n\

// Number of Jacobian nonzero entries\n\

nnz_jac_g = %d*Time;\n’ % theta)

Number of Hessian non-zeros in lower left of diagonal

omega = discretize.index

zeta = discretize.oddball

Index is the total number of non-zero elements for a

given time-step, and oddball tracks which of these is a

parameter/parameter derivative and thus does not get

spread over multiple time steps.

f.write(‘\n\

// Number of Hessian nonzero entries\n\

nnz_h_lag = %d*Time+%d;\n’ % ((omega-zeta),(omega-zeta)/2+zeta))

f.write(‘\n\

// use the C style indexing (0-based)\n\

index_style = TNLP::C_STYLE;\n\n\

return true;\n\

}\n\n\n’)

132

GET_BOUNDS_INFO

f.write(‘// returns the variable bounds\n\

bool %s_NLP::get_bounds_info(Index n, Number* x_l, Number* x_u,\n\

Index m, Number* g_l, Number* g_u)\n\

{\n\

// Here, the n and m we gave IPOPT in get_nlp_info are passed back

to us.\n\

// If desired, we could assert to make sure they are what we think

they are.\n’ % probu)

f.write(‘ assert(n == %d*Time+%d);\n’ % (alpha, beta))

f.write(‘ assert(m == %d*Time);\n\n’ % gamma)

This takes the bounds information read in from specs.txt, and puts

it into the correct spot in a bounds array for all time points.

f.write(‘ for(Index jt=0;jt<Time+1;jt++) {\n’)

f.write(‘ for(Index var=0;var<nY;var++) {\n’)

f.write(‘ // Bounds for x\n’)

f.write(‘ x_l[(Time+1)*var+jt]=bounds[var][0];\n’)

f.write(‘ x_u[(Time+1)*var+jt]=bounds[var][1];\n’)

f.write(‘ // Bounds for midpoints\n’)

f.write(‘ if(jt<Time) {\n\

x_l[(Time+1)*(nY+2*nU)+Time*var+jt]=bounds[var][0];\n\

x_u[(Time+1)*(nY+2*nU)+Time*var+jt]=bounds[var][1];\n\

}\n\

}\n’)

f.write(‘ for(Index con=0;con<2*nU;con++) {\n’)

f.write(‘ // Bounds for k\n’)

f.write(‘ x_l[(Time+1)*(nY+con)+jt]=bounds[nY+con][0];\n’)

f.write(‘ x_u[(Time+1)*(nY+con)+jt]=bounds[nY+con][1];\n’)

f.write(‘ // Bounds for midpoints\n’)

f.write(‘ if(jt<Time) {\n\

x_l[(Time+1)*(nY+2*nU)+Time*(nY+con)+jt]=bounds[nY+

con][0];\n\

x_u[(Time+1)*(nY+2*nU)+Time*(nY+con)+jt]=bounds[nY+con][1];\n\

}\n\

}\n\n’)

f.write(‘ } // End for loop\n\n’)

f.write(‘ for(Index par=0;par<nP;par++) {\n’)

133

f.write(‘ // Bounds for parameters\n’)

f.write(‘ x_l[2*Time*(nY+2*nU)+nY+2*nU+par]=bounds[nY+2*nU+

par][0];\n’)

f.write(‘ x_u[2*Time*(nY+2*nU)+nY+2*nU+par]=bounds[nY+2*nU+

par][1];\n\

}\n\n’)

f.write(‘ // All constraints are equality constraints, so we set \n\

// the upper and lower bound to the same value\n\

// For noisy problems, allow these to be inequality constraints\n\

// as specified in the specs.txt file\n\

for(Index jt=0; jt<Time; jt++) {\n\

for(Index nn=0; nn<nY; nn++) {\n\

g_l[%d*jt+nn] = g_l[%d*jt+nn+nY] = -bounds[nn][3];\n\

g_u[%d*jt+nn] = g_u[%d*jt+nn+nY] = bounds[nn][3];\n\

}\n\

// Add in constraints for the control midpoint\n\

for(Index nn=0; nn<nU; nn++) {\n\

g_l[%d*jt+2*nY+nn] = -bounds[nY+nn][3];\n\

g_u[%d*jt+2*nY+nn] = bounds[nY+nn][3];\n\

}\n\

}\n\

return true;\n\

}\n\n\n’ % (2*nY+nU, 2*nY+nU, 2*nY+nU, 2*nY+nU, 2*nY+nU, 2*nY+nU))

GET_STARTING_POINT

f.write(‘// returns the initial point for the problem\n\

bool %s_NLP::get_starting_point(Index n, bool init_x, Number* x,\n\

bool init_z, Number* z_L, Number* z_U,\n\

Index m, bool init_lambda,\n\

Number* lambda)\n\

{\n\

assert(init_x == true);\n\

assert(init_z == false);\n\

assert(init_lambda == false);\n\n\

for (Index i=0; i<n; i++) {\n\

x[i] = 0.0;\n\

}\n\n’ % probu)

f.write(‘\

int ROWS = 2*Time+1;\n\

int COLS = nY;\n\

134

\n\

double **init = new double* [ROWS];\n\

for(Index i=0;i<ROWS;i++) init[i] = new double[COLS];\n\

\n\

string filename;\n\

filename = specs[4+nU+nI];’)

To start from an initial guess given in a separate data file:

Read in the data file

temp1 = "%lf"

f.write(‘\

if (specs[3+nU+nI] =="1")\n\

{\n\

FILE *initFILE;\n\

int ret;\n\

initFILE = fopen(filename.c_str(),"r");\n\

\n\

for(Index jt=0;jt<2*Time+1;jt++)\n\

{\n\

ret = fscanf (initFILE,"’)

for i in range(nY):

f.write(‘%s ’ % temp1)

f.write(‘"’)

for i in range(nY):

f.write(‘,&init[jt][%d]’ % i)

f.write(‘);\n\

if (ret == EOF) break;\n\

}\n\

fclose (initFILE);\n\

}\n\n’)

Set the initial starting point into the x[] array, either from

the numbers given in specs.txt or from an initial data file

f.write(‘ for(Index jt=0;jt<Time+1;jt++) {\n’)

f.write(‘ for(Index var=0;var<nY;var++) {\n’)

f.write(‘ // Initial conditions for x\n’)

f.write(‘ if (specs[3+nU+nI] == "1")\n\

{\n\

x[(Time+1)*var+jt] = init[2*jt][var];\n\

}\n\

else\n\

{\n\

135

x[(Time+1)*var+jt] = bounds[var][2];\n\

}\n’)

f.write(‘ // Initial conditions for midpoints\n’)

f.write(‘ if(jt<Time) {\n\

if (specs[3+nU+nI] == "1")\n\

{\n\

x[(Time+1)*(nY+2*nU)+Time*var+jt] = init[2*jt+1][var];\n\

}\n\

else\n\

{\n\

x[(Time+1)*(nY+2*nU)+Time*var+jt] = bounds[var][2];\n\

}\n\

}\n\

}\n’)

f.write(‘ for(Index cup=0;cup<2*nU;cup++) {\n’)

f.write(‘ // Initial conditions for k\n’)

f.write(‘ x[(Time+1)*(cup+nY)+jt]=bounds[cup+nY][2];\n’)

f.write(‘ // Initial conditions for midpoints\n’)

f.write(‘ if(jt<Time) {\n\

x[(Time+1)*(nY+2*nU)+Time*(cup+nY)+jt]=

bounds[cup+nY][2];\n\

}\n\

}\n’)

f.write(‘ } // End for loop\n\n’)

f.write(‘ for(Index par=0;par<nP;par++) {\n’)

f.write(‘ // Initial conditions for p%d\n’ % (i+1))

f.write(‘ x[2*Time*(nY+2*nU)+nY+2*nU+par]=

bounds[nY+2*nU+par][2];\n\

}\n\n’)

f.write(‘ for(Index i=0;i<ROWS;i++) delete [] init[i];\n\

delete [] init;\n’)

f.write(‘ return true;\n\

}\n\n\n’)

EVAL_F

Subroutine to calculate the objective value

Here, and in the following subroutines, strings from the result

of symbolic discretization and differentiation in discretize.py

136

are inserted to the code.

f.write(‘// returns the value of the objective function\n\

bool %s_NLP::eval_f(Index n, const Number* x, bool new_x,

Number& obj_value)\n\

{\n’ % probu)

f.write(‘ assert(n == %d*Time+%d);\n’ % (alpha, beta))

f.write(‘ obj_value = 0;\n\n’)

f.write(‘ for(Index jt=0;jt<Time;jt++) {\n\n’)

f.write(‘ for(Index i=0;i<nY;i++) {\n’)

f.write(‘ Xval[i] = x[jt + i*(Time+1)];\n’)

f.write(‘ Xvalp1[i] = x[jt + i*(Time+1) + 1];\n’)

f.write(‘ Xval2[i] = x[(Time+1)*(nY+2*nU) + jt + i*(Time)];\n’)

f.write(‘ } //end for loop\n\n’)

f.write(‘\n’)

f.write(‘ for(Index i=0;i<nU;i++) {\n’)

f.write(‘ K11val[i]=x[jt+nY*(Time+1)+2*i*(Time+1)];\n’)

f.write(‘ K11valp1[i]=x[jt+nY*(Time+1)+2*i*(Time+1)+1];\n’)

f.write(‘ K11val2[i]=x[(Time+1)*(nY+2*nU)+(nY+2*i)*Time+jt];\n’)

f.write(‘ dK11val[i]=x[jt+(nY+2*i+1)*(Time+1)];\n’)

f.write(‘ dK11valp1[i]=x[jt+(nY+2*i+1)*(Time+1)+1];\n’)

f.write(‘ dK11val2[i]=x[(Time+1)*(nY+2*nU)+(nY+2*i+1)*Time+jt];\n’)

f.write(‘ } //end for loop\n\n’)

for i in range(nU):

f.write(‘ Xdval[%d]=%s[2*jt];\n’%(i,discretize.Ldata[i]))

f.write(‘ Xdval2[%d]=%s[2*jt+1];\n’%(i,discretize.Ldata[i]))

f.write(‘ Xdvalp1[%d]=%s[2*jt+2];\n’%(i,discretize.Ldata[i]))

for i in range(nI):

f.write(‘ Ival[%d]=%s[2*jt];\n’%(i,discretize.Lstimuli[i]))

f.write(‘ Ival2[%d]=%s[2*jt+1];\n’%(i,discretize.Lstimuli[i]))

f.write(‘ Ivalp1[%d]=%s[2*jt+2];\n’%(i,discretize.Lstimuli[i]))

f.write(‘\n’)

f.write(‘ for(Index i=0;i<nP;i++) {\n’)

f.write(‘ Pval[i] = x[(2*Time+1)*(nY+2*nU)+i];\n’)

f.write(‘ } //end for loop\n\n’)

f.write(‘\n’)

f.write(‘ obj_value += %s + %s;\n\n’ % (discretize.strObj[0][0],

discretize.strObj[0][2]))

137

f.write(‘ } //end for loop\n\n’)

Add code for last element

f.write(‘// Add last element\n’)

f.write(‘ for(Index i=0;i<nY;i++) {\n’)

f.write(‘ Xval[i] = x[Time + i*(Time+1)];\n’)

f.write(‘ Xvalp1[i] = 0;\n’)

f.write(‘ Xval2[i] = 0;\n’)

f.write(‘ } //end for loop\n\n’)

f.write(‘\n’)

f.write(‘ for(Index i=0;i<nU;i++) {\n’)

f.write(‘ K11val[i] = x[Time+nY*(Time+1)+2*i*(Time+1)];\n’)

f.write(‘ K11valp1[i] = 0;\n’)

f.write(‘ K11val2[i] = 0;\n’)

f.write(‘ dK11val[i] = x[Time + (nY+2*i+1)*(Time+1)];\n’)

f.write(‘ dK11valp1[i] = 0;\n’)

f.write(‘ dK11val2[i] = 0;\n’)

f.write(‘ } //end for loop\n\n’)

for i in range(nU):

f.write(‘ Xdval[%d]=%s[2*Time];\n’%(i,discretize.Ldata[i]))

f.write(‘ Xdval2[%d] = 0;\n’ % i)

f.write(‘ Xdvalp1[%d] = 0;\n’ % i)

for i in range(nI):

f.write(‘ Ival[%d]=%s[2*Time];\n’%(i,discretize.Lstimuli[i]))

f.write(‘ Ival2[%d] = 0;\n’ % i)

f.write(‘ Ivalp1[%d] = 0;\n’ % i)

f.write(‘\n’)

f.write(‘ for(Index i=0;i<nP;i++) {\n’)

f.write(‘ Pval[i] = x[(2*Time+1)*(nY+2*nU)+i];\n’)

f.write(‘ } //end for loop\n\n’)

f.write(‘\n’)

f.write(‘ obj_value += %s + %s;\n\n’ % (discretize.strObj[0][0],

discretize.strObj[0][2]))

Adding a line to divide the overall objective function by 2T + 1

138

This normalizes the objective function

f.write(‘ obj_value = obj_value/(2*Time+1);\n\n’)

f.write(‘ return true;\n\

}\n\n\n’)

EVAL_GRAD_F

f.write(‘// return the gradient of the objective function grad_{x}

f(x)\n\

bool %s_NLP::eval_grad_f(Index n, const Number* x, bool new_x,

Number* grad_f)\n\

{\n’ % probu)

f.write(‘ assert(n == %d*Time+%d);\n\n’ % (alpha, beta))

f.write(‘ for(Index i=0;i<n;i++) {\n’)

f.write(‘ grad_f[i] = 0;\n’)

f.write(‘ }\n\n’)

f.write(‘ for(Index jt=0;jt<Time;jt++) {\n\n’)

f.write(‘ for(Index i=0;i<nY;i++) {\n’)

f.write(‘ Xval[i] = x[jt + i*(Time+1)];\n’)

f.write(‘ Xvalp1[i] = x[jt + i*(Time+1) + 1];\n’)

f.write(‘ Xval2[i] = x[(Time+1)*(nY+2*nU)+jt+i*(Time)];\n’)

f.write(‘ } //end for loop\n\n’)

f.write(‘ for(Index i=0;i<nU;i++) {\n’)

f.write(‘ K11val[i]=x[jt+nY*(Time+1)+2*i*(Time+1)];\n’)

f.write(‘ K11valp1[i]=x[jt+nY*(Time+1)+2*i*(Time+1)+1];\n’)

f.write(‘ K11val2[i]=x[(Time+1)*(nY+2*nU)+(nY+2*i)*Time+jt];\n’)

f.write(‘ dK11val[i]=x[jt + (nY+2*i+1)*(Time+1)];\n’)

f.write(‘ dK11valp1[i]=x[jt + (nY+2*i+1)*(Time+1)+1];\n’)

f.write(‘ dK11val2[i]=x[(Time+1)*(nY+2*nU)+(nY+2*i+1)*Time+jt];\n’)

f.write(‘ } //end for loop\n\n’)

for i in range(nU):

f.write(‘ Xdval[%d]=%s[2*jt];\n’%(i,discretize.Ldata[i]))

f.write(‘ Xdval2[%d]=%s[2*jt+1];\n’%(i,discretize.Ldata[i]))

f.write(‘ Xdvalp1[%d]=%s[2*jt+2];\n’%(i,discretize.Ldata[i]))

139

for i in range(nI):

f.write(‘ Ival[%d]=%s[2*jt];\n’%(i,discretize.Lstimuli[i]))

f.write(‘ Ival2[%d]=%s[2*jt+1];\n’%(i,discretize.Lstimuli[i]))

f.write(‘ Ivalp1[%d]=%s[2*jt+2];\n’%(i,discretize.Lstimuli[i]))

f.write(‘\n’)

f.write(‘ for(Index i=0;i<nP;i++) {\n’)

f.write(‘ Pval[i] = x[(2*Time+1)*(nY+2*nU)+i];\n’)

f.write(‘ } //end for loop\n’)

f.write(‘\n’)

VObj = discretize.VObj

for i in range(len(VObj)):

if VObj[i][1] < nY+2*nU:

if VObj[i][2] == 0:

f.write(‘ grad_f[jt+%d*(Time+1)] = (%s)/(2*Time+1);\n’ %

(VObj[i][1], VObj[i][0]))

elif VObj[i][2] == 2:

f.write(‘ grad_f[(Time+1)*(2*nU+nY) + %d*Time + jt] =

(%s)/(2*Time+1);\n’ % (VObj[i][1], VObj[i][0]))

else:

f.write(‘ grad_f[(2*Time+1)*(nY+2*nU)+%d] = (%s)/(2*Time+1);

\n’ % (VObj[i][1]-nY-nU, VObj[i][0]))

f.write(‘\n’)

f.write(‘ } //end for loop\n\n’)

Add code for last gradient element

f.write(‘// Add last element\n’)

f.write(‘ for(Index i=0;i<nY;i++) {\n’)

f.write(‘ Xval[i] = x[Time + i*(Time+1)];\n’)

f.write(‘ Xvalp1[i] = 0;\n’)

f.write(‘ Xval2[i] = 0;\n’)

f.write(‘ } //end for loop\n\n’)

f.write(‘ for(Index i=0;i<nU;i++) {\n’)

f.write(‘ K11val[i] = x[Time+nY*(Time+1)+2*i*(Time+1)];\n’)

f.write(‘ K11valp1[i] = 0;\n’)

f.write(‘ K11val2[i] = 0;\n’)

f.write(‘ dK11val[i] = x[Time + (nY+2*i+1)*(Time+1)];\n’)

f.write(‘ dK11valp1[i] = 0;\n’)

140

f.write(‘ dK11val2[i] = 0;\n’)

f.write(‘ } //end for loop\n\n’)

for i in range(nU):

f.write(‘ Xdval[%d] = %s[2*Time];\n’%(i,discretize.Ldata[i]))

f.write(‘ Xdval2[%d] = 0;\n’ % i)

f.write(‘ Xdvalp1[%d] = 0;\n’ % i)

for i in range(nI):

f.write(‘ Ival[%d]=%s[2*Time];\n’%(i,discretize.Lstimuli[i]))

f.write(‘ Ival2[%d]=0;\n’ % i)

f.write(‘ Ivalp1[%d]=0;\n’ % i)

f.write(‘\n’)

f.write(‘ for(Index i=0;i<nP;i++) {\n’)

f.write(‘ Pval[i] = x[(2*Time+1)*(nY+2*nU)+i];\n’)

f.write(‘ } //end for loop\n\n’)

f.write(‘\n’)

for i in range(len(VObj)):

if VObj[i][1] < nY+2*nU:

if VObj[i][2] == 0:

f.write(‘ grad_f[Time+%d*(Time+1)] = (%s)/(2*Time+1);\n’ %

(VObj[i][1], VObj[i][0]))

f.write(‘\n’)

f.write(‘ return true;\n\

}\n\n\n’)

EVAL_G

f.write(‘// return the value of the constraints: g(x)\n\

bool %s_NLP::eval_g(Index n, const Number* x, bool new_x, Index m,

Number* g)\n\

{\n’ % probu)

f.write(‘ assert(n == %d*Time+%d);\n’ % (alpha, beta))

f.write(‘ assert(m == %d*Time);\n\n’ % gamma)

Put in constraint functions

141

f.write(‘ for(Index jt=0;jt<Time;jt++) {\n\n’)

f.write(‘ for(Index i=0;i<nY;i++) {\n’)

f.write(‘ Xval[i] = x[jt + i*(Time+1)];\n’)

f.write(‘ Xvalp1[i] = x[jt + i*(Time+1) + 1];\n’)

f.write(‘ Xval2[i]=x[(Time+1)*(nY+2*nU)+jt+i*(Time)];\n’)

f.write(‘ } //end for loop\n\n’)

f.write(‘ for(Index i=0;i<nU;i++) {\n’)

f.write(‘ K11val[i]=x[jt+nY*(Time+1)+2*i*(Time+1)];\n’)

f.write(‘ K11valp1[i]=x[jt+nY*(Time+1)+2*i*(Time+1)+1];\n’)

f.write(‘ K11val2[i]=x[(Time+1)*(nY+2*nU)+(nY+2*i)*Time+jt];\n’)

f.write(‘ dK11val[i]=x[jt+(nY+2*i+1)*(Time+1)];\n’)

f.write(‘ dK11valp1[i]=x[jt+(nY+2*i+1)*(Time+1)+1];\n’)

f.write(‘ dK11val2[i]=x[(Time+1)*(nY+2*nU)+(nY+2*i+1)*Time+jt];\n’)

f.write(‘ } //end for loop\n\n’)

for i in range(nU):

f.write(‘ Xdval[%d] = %s[2*jt];\n’ %

(i,discretize.Ldata[i]))

f.write(‘ Xdval2[%d] = %s[2*jt+1];\n’ %

(i,discretize.Ldata[i]))

f.write(‘ Xdvalp1[%d] = %s[2*jt+2];\n’ %

(i,discretize.Ldata[i]))

for i in range(nI):

f.write(‘ Ival[%d]=%s[2*jt];\n’%(i,discretize.Lstimuli[i]))

f.write(‘ Ival2[%d]=%s[2*jt+1];\n’%(i,discretize.Lstimuli[i]))

f.write(‘ Ivalp1[%d]=%s[2*jt+2];\n’%(i,discretize.Lstimuli[i]))

f.write(‘\n’)

f.write(‘ for(Index i=0;i<nP;i++) {\n’)

f.write(‘ Pval[i] = x[(2*Time+1)*(nY+2*nU)+i];\n’)

f.write(‘ } //end for loop\n’)

f.write(‘\n’)

AllCon = discretize.strAllCon

for i in range(len(AllCon)):

f.write(‘ g[%d*jt+%d] = %s + %s + %s;\n’ % (len(AllCon), i,

AllCon[i][0], AllCon[i][1], AllCon[i][2]))

f.write(‘\n’)

142

f.write(‘ } //end for loop\n\n’)

f.write(‘ return true;\n\

}\n\n\n’)

EVAL_JAC_G

f.write(‘// return the structure or values of the jacobian\n\

bool %s_NLP::eval_jac_g(Index n, const Number* x, bool new_x,\n\

Index m, Index nele_jac, Index* iRow, Index* jCol,\n\

Number* values)\n\

{\n\n\

if (values == NULL) {\n\

// return the structure of the jacobian\n\

for(Index jt=0;jt<Time;jt++) {\n’ % probu)

Jacobian index structure

for i in range(len(discretize.VJac)):

f.write(‘ iRow[%d*jt+%d] = %d+%d*jt;\n’\

% (len(discretize.VJac),i,discretize.VJac[i][1],

len(discretize.strAllCon)))

f.write(‘ jCol[%d*jt+%d] = ’ % (len(discretize.VJac),i))

if discretize.VJac[i][2] < len(discretize.Lvars)+

len(discretize.Lcouple):

if discretize.VJac[i][3] == 0:

f.write(‘(Time+1)*%d+jt;\n’ % discretize.VJac[i][2])

elif discretize.VJac[i][3] == 1:

f.write(‘(Time+1)*%d+jt+1;\n’ % discretize.VJac[i][2])

elif discretize.VJac[i][3] == 2:

f.write(‘(Time+1)*%d+Time*%d+jt;\n’\

% (len(discretize.Lvars)+len(discretize.Lcouple),

discretize.VJac[i][2]))

else:

f.write(‘Error %d\n’ % i)

else:

f.write(‘2*Time*%d+%d;\n’ % (len(discretize.Lvars)+

len(discretize.Lcouple), discretize.VJac[i][2]))

f.write(‘ } // end for loop\n\n\

143

} // end if\n\n\

else {\n\

// return the values of the jacobian\n\

for(Index jt=0;jt<Time;jt++) {\n’)

Jacobian values

f.write(‘ for(Index i=0;i<nY;i++) {\n’)

f.write(‘ Xval[i] = x[jt + i*(Time+1)];\n’)

f.write(‘ Xvalp1[i] = x[jt + i*(Time+1) + 1];\n’)

f.write(‘ Xval2[i] = x[(Time+1)*(nY+2*nU) + jt + i*(Time)];\n’)

f.write(‘ } //end for loop\n\n’)

f.write(‘ for(Index i=0;i<nU;i++) {\n’)

f.write(‘ K11val[i]=x[jt+nY*(Time+1)+2*i*(Time+1)];\n’)

f.write(‘ K11valp1[i]=x[jt+nY*(Time+1)+2*i*(Time+1)+1];\n’)

f.write(‘ K11val2[i]=x[(Time+1)*(nY+2*nU)+(nY+2*i)*Time+jt];\n’)

f.write(‘ dK11val[i]=x[jt+(nY+2*i+1)*(Time+1)];\n’)

f.write(‘ dK11valp1[i]=x[jt+(nY+2*i+1)*(Time+1)+1];\n’)

f.write(‘ dK11val2[i]=x[(Time+1)*(nY+2*nU)+(nY+2*i+1)*Time+jt];\n’)

f.write(‘ } //end for loop\n\n’)

for i in range(nU):

f.write(‘ Xdval[%d] = %s[2*jt];\n’ %

(i,discretize.Ldata[i]))

f.write(‘ Xdval2[%d] = %s[2*jt+1];\n’ %

(i,discretize.Ldata[i]))

f.write(‘ Xdvalp1[%d] = %s[2*jt+2];\n’ %

(i,discretize.Ldata[i]))

for i in range(nI):

f.write(‘ Ival[%d]=%s[2*jt];\n’%(i,discretize.Lstimuli[i]))

f.write(‘ Ival2[%d]=%s[2*jt+1];\n’%(i,discretize.Lstimuli[i]))

f.write(‘ Ivalp1[%d]=%s[2*jt+2];\n’%(i,discretize.Lstimuli[i]))

f.write(‘\n’)

f.write(‘ for(Index i=0;i<nP;i++) {\n’)

f.write(‘ Pval[i] = x[(2*Time+1)*(nY+2*nU)+i];\n’)

f.write(‘ } //end for loop\n’)

f.write(‘\n’)

VJac = discretize.VJac

144

for i in range(len(VJac)):

f.write(‘ values[%d*jt+%d] = ’ % (len(VJac),i))

f.write(‘%s;\n’ % VJac[i][0])

f.write(‘\n’)

f.write(‘ } //end for loop\n\n’)

f.write(‘ } //end else\n\n’)

f.write(‘ return true;\n\

}\n\n\n’)

EVAL_H

f.write(‘// return the structure or values of the hessian\n\

bool %s_NLP::eval_h(Index n, const Number* x, bool new_x,\n\

Number obj_factor, Index m, const Number* lambda,\n\

bool new_lambda, Index nele_hess, Index* iRow,\n\

Index* jCol, Number* values)\n\

{\n\n\

if (values == NULL) {\n\

// return the structure. This is a symmetric matrix,

fill in the lower left\n\

// triangle only.\n\n’ % probu)

Set up dictionaries to mark start point and length of each

Hessian entry dictlength will be a string of either 1, Time,

or Time +1 depending on how many entries in the Hessian

there are for an element dictstart determines where each

of the parts start based on what has come before

f.write(‘//Each non-zero element has its own explicit loop\n\

// since each element needs a different number of matrix

elements\n\n’)

dictstart = {}

dictlength = {}

VHes = discretize.VHes

145

sma, med, lar track how many 1, T, T+1 there are

sma = 0

med = 0

lar = 0

for i in range(len(VHes)):

if VHes[i][6] == 1:

VHes[i][6] denotes whether this is the first element

row = VHes[i][2]

col = VHes[i][3]

mid = VHes[i][4]

count = VHes[i][0]

start = ’%d*(Time+1)+%d*(Time)+%d’ % (lar,med,sma)

if mid == -1:

length = ’1’

sma = sma + 1

if mid == 2:

length = ’Time’

med = med + 1

if mid == 0:

length = ’Time+1’

lar = lar + 1

d1 = {count:start}

d2 = {count:length}

dictstart.update(d1)

dictlength.update(d2)

f.write(‘\n for(Index jt=0;jt<%s;jt++) {\n’ % length)

f.write(‘ iRow[%s+jt] = ’ % start)

if row < nY+2*nU:

if mid == 0:

f.write(‘(Time+1)*%d+jt;\n’ % row)

elif mid == 2:

f.write(‘(Time+1)*%d+Time*%d+jt;\n’ % (nY+2*nU,row))

else:

f.write(‘2*Time*%d+%d;\n’ % (nY+2*nU, row))

f.write(‘ jCol[%s+jt] = ’ % start)

if col < nY+2*nU:

if mid == 0:

f.write(‘(Time+1)*%d+jt;\n’ % col)

elif mid == 2:

f.write(‘(Time+1)*%d+Time*%d+jt;\n’ % (nY+2*nU,col))

else:

f.write(‘2*Time*%d+%d;\n’ % (nY+2*nU, col))

146

f.write(‘ }\n’)

f.write(‘}\n\n\

else {\n\

// return the values.

This is a symmetric matrix, fill the lower left\n\

// triangle only\n\

// initialize the values array\n\

// Point to the initial starting spot for the Hessian elements\n\n\

for(Index jt=0;jt<%d*Time+%d;jt++) values[jt] = 0.;

// Initialize matrix’ % ((omega-zeta),(omega-zeta)/2+zeta))

f.write(‘\n\n // fill the objective portion\n\n’)

Objrow = 2*nY+nU

Doing the singletons first - should not be many

for i in range(len(VHes)):

if VHes[i][1] == Objrow:

mid = VHes[i][4]

count = VHes[i][0]

string = VHes[i][5]

start = dictstart[count]

if mid == -1:

f.write(‘ values[%s] += ’ % start)

f.write(‘obj_factor*(%s)/(2*Time+1);\n\n’ % string)

Now loop all other entries over Time

f.write(‘ for(Index jt=0;jt<Time;jt++) {\n\n’)

f.write(‘ for(Index i=0;i<nY;i++) {\n’)

f.write(‘ Xval[i]=x[jt + i*(Time+1)];\n’)

f.write(‘ Xvalp1[i]=x[jt + i*(Time+1) + 1];\n’)

f.write(‘ Xval2[i]=x[(Time+1)*(nY+2*nU) + jt + i*(Time)];\n’)

f.write(‘ } //end for loop\n\n’)

f.write(‘ for(Index i=0;i<nU;i++) {\n’)

f.write(‘ K11val[i]=x[jt+nY*(Time+1)+2*i*(Time+1)];\n’)

f.write(‘ K11valp1[i]=x[jt+nY*(Time+1)+2*i*(Time+1)+1];\n’)

f.write(‘ K11val2[i]=x[(Time+1)*(nY+2*nU)+(nY+2*i)*Time+jt];\n’)

f.write(‘ dK11val[i]=x[jt+(nY+2*i+1)*(Time+1)];\n’)

f.write(‘ dK11valp1[i]=x[jt + (nY+2*i+1)*(Time+1)+1];\n’)

f.write(‘ dK11val2[i]=x[(Time+1)*(nY+2*nU)+(nY+2*i+1)*Time+jt];\n’)

f.write(‘ } //end for loop\n\n’)

147

for i in range(nU):

f.write(‘ Xdval[%d] = %s[2*jt];\n’ %

(i,discretize.Ldata[i]))

f.write(‘ Xdval2[%d] = %s[2*jt+1];\n’ %

(i,discretize.Ldata[i]))

f.write(‘ Xdvalp1[%d] = %s[2*jt+2];\n’ %

(i,discretize.Ldata[i]))

for i in range(nI):

f.write(‘ Ival[%d]=%s[2*jt];\n’%(i,discretize.Lstimuli[i]))

f.write(‘ Ival2[%d]=%s[2*jt+1];\n’%(i,discretize.Lstimuli[i]))

f.write(‘ Ivalp1[%d]=%s[2*jt+2];\n’%(i,discretize.Lstimuli[i]))

f.write(‘\n’)

f.write(‘ for(Index i=0;i<nP;i++) {\n’)

f.write(‘ Pval[i] = x[(2*Time+1)*(nY+2*nU)+i];\n’)

f.write(‘ } //end for loop\n’)

f.write(‘\n’)

for i in range(len(VHes)):

if VHes[i][1] == Objrow:

mid = VHes[i][4]

count = VHes[i][0]

string = VHes[i][5]

start = dictstart[count]

if mid != -1:

f.write(‘ values[%s+jt] += ’ % start)

f.write(‘obj_factor*(%s)/(2*Time+1);\n’ % string)

f.write(‘ } //end loop over Time\n\n’)

f.write(‘ // Add elements for last time step\n\n’)

for i in range(len(VHes)):

if VHes[i][1] == Objrow:

mid = VHes[i][4]

count = VHes[i][0]

string = VHes[i][5]

start = dictstart[count]

length = dictlength[count]

if mid == 0:

f.write(‘ values[%s+%s-1] += ’ % (start, length))

f.write(‘obj_factor*(%s)/(2*Time+1);\n’ % string)

Now do the Hessian of the constraints

148

f.write(‘\n // fill the constraint portions\n\n’)

Loop over constraints

f.write(‘ for(Index jt=0;jt<Time;jt++) {\n\n’)

f.write(‘ for(Index i=0;i<nY;i++) {\n’)

f.write(‘ Xval[i]=x[jt + i*(Time+1)];\n’)

f.write(‘ Xvalp1[i]=x[jt + i*(Time+1) + 1];\n’)

f.write(‘ Xval2[i]=x[(Time+1)*(nY+2*nU) + jt + i*(Time)];\n’)

f.write(‘ } //end for loop\n\n’)

f.write(‘ for(Index i=0;i<nU;i++) {\n’)

f.write(‘ K11val[i]=x[jt+nY*(Time+1) + 2*i*(Time+1)];\n’)

f.write(‘ K11valp1[i]=x[jt+nY*(Time+1) + 2*i*(Time+1)+1];\n’)

f.write(‘ K11val2[i]=x[(Time+1)*(nY+2*nU) + (nY+2*i)*Time+jt];\n’)

f.write(‘ dK11val[i]=x[jt+(nY+2*i+1)*(Time+1)];\n’)

f.write(‘ dK11valp1[i]=x[jt+(nY+2*i+1)*(Time+1)+1];\n’)

f.write(‘ dK11val2[i]=x[(Time+1)*(nY+2*nU) (nY+2*i+1)*Time+jt];\n’)

f.write(‘ } //end for loop\n\n’)

for i in range(nU):

f.write(‘ Xdval[%d] = %s[2*jt];\n’ %

(i,discretize.Ldata[i]))

f.write(‘ Xdval2[%d] = %s[2*jt+1];\n’ %

(i,discretize.Ldata[i]))

f.write(‘ Xdvalp1[%d] = %s[2*jt+2];\n’ %

(i,discretize.Ldata[i]))

for i in range(nI):

f.write(‘ Ival[%d]=%s[2*jt];\n’%(i,discretize.Lstimuli[i]))

f.write(‘ Ival2[%d]=%s[2*jt+1];\n’%(i,discretize.Lstimuli[i]))

f.write(‘ Ivalp1[%d]=%s[2*jt+2];\n’%(i,discretize.Lstimuli[i]))

f.write(‘\n’)

f.write(‘ for(Index i=0;i<nP;i++) {\n’)

f.write(‘ Pval[i] = x[(2*Time+1)*(nY+2*nU)+i];\n’)

f.write(‘ } //end for loop\n’)

f.write(‘\n’)

Doing the singletons first - should not be many

for i in range(len(VHes)):

if VHes[i][1] != Objrow:

149

mid = VHes[i][4]

count = VHes[i][0]

string = VHes[i][5]

constraint = VHes[i][1]

start = dictstart[count]

if mid == -1:

f.write(‘ values[%s] += ’ % start)

f.write(‘lambda[%d*jt+%d]*(%s);\n\n’ %

(len(AllCon),constraint,string))

for i in range(len(VHes)):

if VHes[i][1] != Objrow:

mid = VHes[i][4]

count = VHes[i][0]

string = VHes[i][5]

start = dictstart[count]

constraint = VHes[i][1]

if mid != -1:

f.write(‘ values[%s+jt] += ’ % start)

f.write(‘lambda[%d*jt+%d]*(%s);\n’ % (len(AllCon),

constraint, string))

if mid == 0:

string = VHes[i][7]

f.write(‘ values[%s+jt+1] += ’ % start)

f.write(‘lambda[%d*jt+%d]*(%s);\n’ % (len(AllCon),

constraint, string))

f.write(‘ } // end for loop \n\n’)

f.write(‘ } // end else \n\n’)

f.write(‘ return true;\n\

}\n\n\n’)

FINALIZE_SOLUTION

f.write(‘\

void %s_NLP::finalize_solution(SolverReturn status,\n\

Index n, const Number* x, const Number* z_L, const Number* z_U,\n\

150

Index m, const Number* g, const Number* lambda,\n\

Number obj_value,\n\

const IpoptData* ip_data,\n\

IpoptCalculatedQuantities* ip_cq)\n\

{\n\

// here is where the solution is written to file\n\n’ % probu)

f.write(‘ FILE *OUTPUT1;\n’)

f.write(‘ FILE *OUTPUT2;\n’)

f.write(‘ FILE *OUTPUT3;\n’)

temp1 = "%e"

temp2 = "%d"

temp3 = "\\n"

f.write(‘\n\

OUTPUT1 = fopen ("param.dat","w");\n\

OUTPUT2 = fopen ("data.dat","w");\n\

OUTPUT3 = fopen ("Rvalue.dat","w");\n\n\

// Final parameters\n\

for (Index i=0;i<nP;i++) {\n\

fprintf (OUTPUT1, "%s%s", x[(2*Time+1)*(nY+2*nU)+i]);\n\

printf("Parameter[%s] = %s%s", i+1, x[(2*Time+1)*

(nY+2*nU)+i]);\n\

}\n\n’ % (temp1,temp3,temp2,temp1,temp3))

f.write(‘ // Solution of the primal variables, x’)

f.write(‘\n\n\

for (Index i=0;i<Time;i++) {\n\

fprintf(OUTPUT2,"%s ’ % temp2)

for i in range(nY+2*nU):

f.write(‘%s ’ % temp1)

f.write(‘%s", 2*i, ’ % temp3)

for i in range(nY):

f.write(‘x[%d*(Time+1)+i], ’ % i)

for i in range(nU):

f.write(‘x[(nY+2*%d)*(Time+1)+i], ’ % i)

for i in range(nU-1):

f.write(‘%s[2*i], ’ % discretize.Ldata[i])

f.write(‘%s[2*i]);\n’ % discretize.Ldata[nU-1])

f.write(‘\n\

151

fprintf(OUTPUT2,"%s ’ % temp2)

for i in range(nY+2*nU):

f.write(‘%s ’ % temp1)

f.write(‘%s", 2*i+1, ’ % temp3)

for i in range(nY):

f.write(‘x[(nY+2*nU)*(Time+1)+%d*Time+i], ’ % i)

for i in range(nU):

f.write(‘x[(nY+2*nU)*(Time+1)+(nY+2*%d)*Time+i], ’ % i)

for i in range(nU-1):

f.write(‘%s[2*i+1], ’ % discretize.Ldata[i])

f.write(‘%s[2*i+1]);\n’ % discretize.Ldata[nU-1])

f.write(‘ }\n’)

Last time step

f.write(‘\n\

fprintf(OUTPUT2,"%s ’ % temp2)

for i in range(nY+2*nU):

f.write(‘%s ’ % temp1)

f.write(‘%s", 2*Time, ’ % temp3)

for i in range(nY):

f.write(‘x[%d*(Time+1)+Time], ’ % i)

for i in range(nU):

f.write(‘x[(nY+2*%d)*(Time+1)+Time], ’ % i)

for i in range(nU-1):

f.write(‘%s[2*Time], ’ % discretize.Ldata[i])

f.write(‘%s[2*Time]);\n’ % discretize.Ldata[nU-1])

f.write(‘\n\n’)

f.write(‘ printf("%s%sObjective value%s");\n’%(temp3,temp3,temp3))

f.write(‘ printf("f(x*) = %s%s", obj_value);\n\n’%(temp1, temp3))

Calculation of R

f.write(‘ // Calculation of synchronization error, R’)

f.write(‘\n\n\

for (Index jt=0;jt<Time;jt++) {\n\

for(Index i=0;i<nY;i++) {\n\

Xval[i] = x[jt + i*(Time+1)];\n\

152

}\n\

\n\

for(Index i=0;i<nU;i++) {\n\

K11val[i] = x[jt + nY*(Time+1) + 2*i*(Time+1)];\n\

}\n\

\n’)

for i in range(nU):

f.write(‘ Xdval[%d] = %s[2*jt];\n’%(i,discretize.Ldata[i]))

for i in range(nI):

f.write(‘ Ival[%d] = %s[2*jt];\n’%(i,discretize.Lstimuli[i]))

f.write(‘\n’)

f.write(‘ for(Index i=0;i<nP;i++) {\n’)

f.write(‘ Pval[i] = x[(2*Time+1)*(nY+2*nU)+i];\n’)

f.write(‘ } //end for loop\n’)

f.write(‘\n’)

strEqns = correlate.strEqns

cupEqns = correlate.cupEqns

for i in range(len(strEqns)):

f.write(‘ Rvalue[%d] = pow(%s,2)/(pow(%s,2)+pow(%s,2));\n’ %

(i,strEqns[i],strEqns[i],cupEqns[i]))

f.write(‘\n’)

f.write(‘ fprintf(OUTPUT3,"%s ’ % temp2)

for i in range(nU):

f.write(‘%s ’ % temp1)

f.write(‘%s", 2*jt, ’ % temp3)

for i in range(nU-1):

f.write(‘Rvalue[%d], ’ % i)

f.write(‘Rvalue[%d]);\n’ % (nU-1))

f.write(‘ } //end jt for loop\n\n’)

f.write(‘ fclose (OUTPUT1);\n’)

f.write(‘ fclose (OUTPUT2);\n’)

f.write(‘ fclose (OUTPUT3);\n’)

f.write(‘}\n’)

153

f.close()

B.3 Makecpp.py

###

#

20 October 2009

Bryan A. Toth

University of California, San Diego

btoth@physics.ucsd.edu

#

This script writes the program file for a C++ IPOPT

program defined by the vector field in the file

equations.txt and written by the script makecode.py.

This file creates an instance of the non-linear file

defined by makehpp.py and makecode.py, and interfaces

with the IPOPT libraries necessary for solving the

optimization problem.

#

This script has been developed as part of a suite of

python scripts to define a dynamic parameter estimation

problem using the optimization software IPOPT, but is

generally applicable to any application needing

discretized derivatives of a vector field.

#

##

import discretize

prob = discretize.Problem

probu = prob.upper()

probl = prob.lower()

FILE = probl + ’_main.cpp’

new = ’\\n’

The name of the IPOPT main file

f = open(FILE,’w’)

154

f.write(‘// %s_main.cpp\n\

// Main file for use with IPOPT\n’ % (probl))

f.write(‘\

\n\

#include "IpIpoptApplication.hpp"\n\

#include "%s_nlp.hpp"\n\

\n\

// for printf\n\

#ifdef HAVE_CSTDIO\n\

include <cstdio>\n\

#else\n\

ifdef HAVE_STDIO_H\n\

include <stdio.h>\n\

else\n\

error "don\’t have header file for stdio"\n\

endif\n\

#endif\n\

\n\

using namespace Ipopt;\n\

\n\

int main(int argv, char* argc[])\n\

{\n\

\n\

// Create a new instance of your nlp\n\

// (use a SmartPtr, not raw)\n\

SmartPtr<TNLP> mynlp = new %s_NLP();\n\

\n\

// Create a new instance of IpoptApplication\n\

// (use a SmartPtr, not raw)\n\

SmartPtr<IpoptApplication> app = new IpoptApplication();\n\

\n\

// Change some options\n\

// Note: The following choices are only examples, they

might not be\n\

// suitable for your optimization problem.\n\

app->Options()->SetNumericValue("tol", 1e-12);\n\

app->Options()->SetStringValue("mu_strategy", "adaptive");\n\

app->Options()->SetStringValue("output_file", "ipopt.out");\n\

// The following overwrites the default name(ipopt.opt) of the\n\

// options file\n\

app->Options()->SetStringValue("option_file_name", "%s.opt");\n\

\n\

155

// Intialize the IpoptApplication and process the options\n\

ApplicationReturnStatus status;\n\

status = app->Initialize();\n\

if (status != Solve_Succeeded) {\n\

printf("%s%s *** Error during initialization!%s");\n\

return (int) status;\n\

}\n\

\n\

// Ask Ipopt to solve the problem\n\

status = app->OptimizeTNLP(mynlp);\n\

\n\

if (status == Solve_Succeeded) {\n\

printf("%s%s*** The problem solved!%s");\n\

}\n\

else {\n\

printf("%s%s*** The problem FAILED!%s");\n\

}\n\

\n\

// As the SmartPtrs go out of scope, the reference count\n\

// will be decremented and the objects will automatically\n\

// be deleted.\n\

\n\

return (int) status;\n\

}\n’ % (probl, probu, probl,new,new,new,new,new,new,new,new,new))

f.close()

B.4 Makehpp.py

###

#

20 October 2009

Bryan A. Toth

University of California, San Diego

btoth@physics.ucsd.edu

#

This script writes the class header file for a C++ IPOPT

program defined by the vector field in the file

equations.txt and written by the script makecode.py.

The file written by this script defines a class that is

further described in the file written by makecode.py.

#

This script has been developed as part of a suite of

156

python scripts to define a dynamic parameter estimation

problem using the optimization software IPOPT, but is

generally applicable to any application needing

discretized derivatives of a vector field.

#

##

import discretize

prob = discretize.Problem

probu = prob.upper()

probl = prob.lower()

FILE = probl + ’_nlp.hpp’

The name of the IPOPT header file

f = open(FILE,’w’)

f.write(‘// %s.hpp\n\

// Header file for %s.cpp\n\

// For use with IPOPT\n’ % (probl, probl))

f.write(‘\n\

\n\

#ifndef __%s_NLP_HPP__\n\

#define __%s_NLP_HPP__\n\

\n\

#include "IpTNLP.hpp"\n\

#include <iostream>\n\

#include <fstream>\n\

#include <string>\n\

#include <stdlib.h>\n\

#include <cstring>\n\

\n\

using namespace std;\n\

using namespace Ipopt;\n’ % (probu, probu))

f.write(‘\n\n\

class %s_NLP : public TNLP\n\

{\n\

public:\n\

/** default constructor */\n\

157

%s_NLP();\n\

\n\

/** default destructor */\n\

virtual ~%s_NLP();\n\

\n\

/**@name Overloaded from TNLP */\n\

//@{\n\

/** Method to return some info about the nlp */\n\

virtual bool get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,\n\

Index& nnz_h_lag, IndexStyleEnum& index_style);\n\

\n\

/** Method to return the bounds for my problem */\n\

virtual bool get_bounds_info(Index n, Number* x_l, Number* x_u,\n\

Index m, Number* g_l, Number* g_u);\n\

\n\

/** Method to return the starting point for the algorithm */\n\

virtual bool get_starting_point(Index n, bool init_x, Number* x,\n\

bool init_z, Number* z_L, Number* z_U,\n\

Index m, bool init_lambda,\n\

Number* lambda);\n\

\n\

/** Method to return the objective value */\n\

virtual bool eval_f(Index n, const Number* x, bool new_x,

Number& obj_value);\n\

\n\

/** Method to return the gradient of the objective */\n\

virtual bool eval_grad_f(Index n, const Number* x, bool new_x,

Number* grad_f);\n\

\n\

/** Method to return the constraint residuals */\n\

virtual bool eval_g(Index n, const Number* x, bool new_x, Index m,

Number* g);\n\

\n\

/** Method to return:\n\

* 1) The structure of the jacobian (if "values" is NULL)\n\

* 2) The values of the jacobian (if "values" is not NULL)\n\

*/\n\

virtual bool eval_jac_g(Index n, const Number* x, bool new_x,\n\

Index m, Index nele_jac, Index* iRow, Index *jCol,\n\

Number* values);\n\

\n\

/** Method to return:\n\

* 1) The structure of the hessian of the lagrangian

158

(if "values" is NULL)\n\

* 2) The values of the hessian of the lagrangian

(if "values" is not NULL)\n\

*/\n\

virtual bool eval_h(Index n, const Number* x, bool new_x,\n\

Number obj_factor, Index m, const Number* lambda,\n\

bool new_lambda, Index nele_hess, Index* iRow,\n\

Index* jCol, Number* values);\n\

\n\

//@}\n\

\n\

/** @name Solution Methods */\n\

//@{\n\

/** This method is called when the algorithm is complete so the

TNLP can store/write the solution */\n\

virtual void finalize_solution(SolverReturn status,\n\

Index n, const Number* x, const Number* z_L, const Number* z_U,\n\

Index m, const Number* g, const Number* lambda,\n\

Number obj_value,\n\

const IpoptData* ip_data,\n\

IpoptCalculatedQuantities* ip_cq);\n\

//@}\n\

\n\

private:\n\

*/\n\

//@{\n\

// %s_NLP();\n’ % (probu, probu, probu, probu))

for i in range(discretize.nU):

f.write(‘\

double* %s;\n\

double* %s;\n’%(discretize.Ldata[i], discretize.Ldata[i]+’dummy’))

for i in range(discretize.nI):

f.write(‘\

double* %s;\n\

double* %s;\n’%(discretize.Lstimuli[i], discretize.Lstimuli[i]+

’dummy’))

int %s;\n’ % (discretize.Ldata[i], discretize.Ldata[i]+

’dummy’,discretize.Ldata[i]+’skip’))

f.write(‘\

159

\n\

int nU;\n\

int nP;\n\

int nY;\n\

int nI;\n\

int skip;\n\

double* K11val;\n\

double* K11val2;\n\

double* K11valp1;\n\

double* dK11val;\n\

double* dK11val2;\n\

double* dK11valp1;\n\

double* Xdval;\n\

double* Xdval2;\n\

double* Xdvalp1;\n\

double* Xval;\n\

double* Xval2;\n\

double* Xvalp1;\n\

double* Pval;\n\

double* Ival;\n\

double* Ival2;\n\

double* Ivalp1;\n\

double* Rvalue;\n\

int Time;\n\

double hstep;\n\

string buffer;\n\

string* specs;\n\

double** bounds;\n\

%s_NLP(const %s_NLP&);\n\

%s_NLP& operator=(const %s_NLP&);\n\

//@}\n\

};\n\

\n\

\n\

#endif\n’ % (probu, probu, probu, probu))

f.close()

B.5 Makemake.py

160

import discretize

prob = discretize.Problem

probu = prob.upper()

probl = prob.lower()

nF = discretize.nF

FILE = ’Makefile’

The name of the IPOPT main file

f = open(FILE,’w’)

string = ’\\’

f.write(‘# Makefile for %s IPOPT problem\n\n\

##\n\

You can modify this example makefile to fit for your #\n\

own program. Usually, you only need to change the five #\n\

CHANGEME entries below. \n\

##\n\

\n\

CHANGEME: This should be the name of your executable\n\

EXE = %s_cpp\n\

\n\

OBJS = %s_main.o %s\n’ % (probl, probl, probl, string))

if nF == 0:

f.write(‘ %s_nlp.o\n’ % probl)

else:

f.write(‘ %s_nlp.o %s\n’ % (probl,string))

f.write(‘ myfunctions.o\n’)

f.write(‘\n\

CHANGEME: Additional libraries\n\

CHANGEME: Additional flags for compilation (e.g., include flags)\n\

ADDINCFLAGS =\n\

\n\

#SRCDIR = \n\

#VPATH = \n\

\n\

##\n\

Usually, you don\’t have to change anything below. Note#\n\

that if you change certain compiler options, you might #\n\

have to recompile Ipopt. #\n\

161

###\n\

\n\

C++ Compiler command\n\

CXX = g++\n\

\n\

C++ Compiler options\n\

CXXFLAGS = -O3 -fomit-frame-pointer -pipe -DNDEBUG -pedantic-errors

-Wimplicit -Wparentheses -Wreturn-type -Wcast-qual -Wall

-Wpointer-arith -Wwrite-strings -Wconversion -Wno-unknown-pragmas\n\

\n\

additional C++ Compiler options for linking\n\

CXXLINKFLAGS = -Wl,--rpath -Wl,/usr/local/lib\n\

\n\

Directory with header files\n\

IPOPTINCDIR = ${prefix}/include/coin\n\

\n\

Directory with libipopt.a\n\

IPOPTLIBDIR = ${exec_prefix}/lib\n\

exec_prefix = ${prefix}\n\

prefix = /usr/local\n\

\n\

Libraries necessary to link with IPOPT\n\

LIBS = -L$(IPOPTLIBDIR) -lipopt -lpthread /home/btoth/lib/

libpardiso400_GNU432_IA32.so /usr/lib/liblapack-3.so /usr/

lib/libblas-3.so -lm -ldl -L/usr/lib/gcc/i486-linux-gnu/4.4.3

-L/usr/lib/gcc/i486-linux-gnu/4.4.3/../../../../lib -L/lib/../lib

-L/usr/lib/../lib -L/usr/lib/gcc/i486-linux-

gnu/4.4.3/../../.. -L/usr/lib/i486-linux-gnu

-lpthread -lgfortranbegin -lgfortran -lm -lgomp -lgcc_s\n\

\n\

Necessary Include dirs (we use the CYGPATH_W variables to allow\n\

compilation with Windows compilers)\n\

INCL = -I‘$(CYGPATH_W) $(IPOPTINCDIR)‘ $(ADDINCFLAGS)\n\

\n\

CYGPATH_W = echo\n\

\n\

all: $(EXE)\n\

\n\

.SUFFIXES: .cpp .c .o .obj\n\

\n\

$(EXE): $(OBJS)\n\

bla=;%s\n\

for file in $(OBJS); do bla="$$bla‘$(CYGPATH_W) $$file‘";done; %s\n\

162

$(CXX) $(CXXLINKFLAGS) $(CXXFLAGS) -o $@ $$bla $(ADDLIBS) $(LIBS)\n\

\n\

clean:\n\

rm -rf $(EXE) $(OBJS)\n\

\n\

.cpp.o:\n\

$(CXX) $(CXXFLAGS) $(INCL) -c -o $@ ‘test -f \’$<\’ || echo

\’$(SRCDIR)/\’‘$<\n\

\n\

\n\

.cpp.obj:\n\

$(CXX) $(CXXFLAGS) $(INCL) -c -o $@ ‘if test -f \’$<\’;

then $(CYGPATH_W) \’$<\’; else $(CYGPATH_W)

\’$(SRCDIR)/$<\’; fi‘\n’ % (string, string))

f.close()

Bibliography

[1] H. D. I. Abarbanel. Effective actions for statistical data assimilation. Physics
Letters A, 373:4044–4048, 2009.

[2] H. D. I Abarbanel, P. Bryant, P. E. Gill, M. Kostuk, J. Rofeh, Z. Singer,
B. Toth, and E. Wong. Dynamical parameter and state estimation in neuron
models. In D. Glanzman and D. Mingzhou, editors, The Dynamic Brain: An
Exploration of Neuronal Variability and Its Functional Significance. Oxford
University Press, 2011.

[3] H. D. I Abarbanel, D. Creveling, and J. Jeanne. Estimation of parame-
ters in nonlinear systems using balanced synchronization. Physical Review
E, 53:016208, 2008.

[4] H. D. I. Abarbanel, D. R. Creveling, R. Farsian, and M. Kostuk. Dynamical
state and parameter estimation. SIAM Journal of Applied Dynamical Systems,
8:1341–1381, 2009.

[5] A. Arakawa. Computational design for long-term numerical integration of the
equations of fluid motion: Two-dimensional incompressible flow. J. of Comp.
Physics, 1:119–143, 1966.

[6] R. C. Aster, B. Borchers, and C. H. Thurber. Parameter Estimation and
Inverse Problems. Elsevier Academic Press, Burlington, MA, 1987.

[7] Y. Bard. Nonlinear parameter estimation. Academic Press, New York, 1974.

[8] J. V. Beck and K. J. Arnold. Parameter estimation in engineering and science.
Wiley, New York, 1977.

[9] J. M. Bower and D. Beeman, editors. The Book of Genesis: Exploring Realistic
Neural Models and the General Neural Simulation System. Springer Verlag,
New York, 1998.

[10] O. Certik. Sympy library for symbolic mathematics. Technical report, 2006.

163

164

[11] P. Courtier, J. N. Thépaut, and A. Hollingsworth. A strategy for operational
implementatino of 4d-var, using an incremental approach. Quarterly Journal
of the Royal Meteorological Society, 120:1367–1387, 1994.

[12] M. K. Cowles and B. P. Carlin. Markov chain monte carlo convergence
diagnostics: A comparative review. J. of the American Statistical Society,
91(434):883–904, 1996.

[13] D. Creveling, P. E. Gill, and H. D. I. Abarbanel. State and parameter esti-
mation in nonlinear systems as an optimal tracking problem. Physics Letters
A, 372:2640–2644, 2008.

[14] P. Dayan and L. F. Abbott. Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems. MIT Press, Cambridge MA, 2001.

[15] G. Evensen. Data assimilation: the ensemble Kalman filter. Springer, Berlin,
2007.

[16] G. Evensen. The ensemble kalman filter for combined state and parameter
estimation. IEEE Control Systems Magazine, 2009.

[17] M. Falcke, R. Huerta, M. I. Rabinovich, H. D. I. Abarbanel, R. C. Elson, and
A. I. Selverston. Modeling observed chaotic oscillations in bursting neurons:
the role of calcium dynamics and ip3. Biol Cyber, 82:517–527, 2000.

[18] R. M. Fano. Transmission of Information: A Statistical Theory of Commu-
nication. Wiley, New York, 1961.

[19] R FitzHugh. Impulses and physiological states in theoretical models of nerve
membrane. Biophysics J., 1:445–466, 1961.

[20] R FitzHugh. A kinetic model of the conductance changes in nerve membrane.
J. Cell. Comp. Physiol., 66:111–118, 1965.

[21] R FitzHugh. Mathematical models for excitation and propagation in nerve. In
H. P. Schwan, editor, Biological Engineering. McGraw Hill, New York, 1969.

[22] P.E. Gill, W. Murray, and M.A. Saunders. Snopt: An sqp algorithm for
large-scale constrained optimization. SIAM Review, 47(1):99–131, 2005.

[23] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol.,
10:500–544, 1952.

[24] D. Johnston and S. M. Wu. Foundations of Cellular Neurophysiology. MIT
Press, Cambridge MA, 1995.

165

[25] N. G. Van Kampen. Stochastic Processes in Physics and Chemistry, Third
Edition. North Holland, 2007.

[26] C. Koch. Biophysics of Computation: Information Processing in Single Neu-
rons. Oxford University Press, New York, 1999.

[27] C. Koch and I. Segev, editors. Methods in Neuronal Modeling. MIT Press,
Cambridge MA, 1998.

[28] F. X. Le Dimet and O. Talagrand. Variational algorithm for analysis and as-
similation of meteorological observations: Theoretical aspects. Tellus, 38A:97–
110, 1986.

[29] B. C. Levy. Principles of signal detection and parameter estimation. Springer,
New York, 2008.

[30] E. N. Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20:130–141,
1963.

[31] E. N. Lorenz. Predictability–a problem partly solved. In Proceedings of the
seminar on predictability, European center for medium range weather forecast-
ing, volume 1, pages 1–18. Reading, Berkshire, UK, 1996.

[32] E. N. Lorenz and K. A. Emanuel. Optimal sites for supplementary weather
observations: Simulation with a small model. J. Atmos. Sci., 55:399–414,
1998.

[33] A. Maybhate and R. E. Amriktar. Use of synchronization and adaptive control
in parameter estimation from a time series. Physical Review E, 59:284, 1999.

[34] T. McKenna, J. Davis, and S. F. Zornetzer, editors. Single Neuron Compu-
tation. Academic Press, Boston, 1992.

[35] C. Morris and M. Lecar. Voltage oscillations in the barnacle giant muscle’.
Biophys. J., 71:3030–3045, 1981.

[36] J. S. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission
line simulating nerve axon. Proc. IRE, 50:2061–2070, 1962.

[37] H. Nijmeijer. A dynamical control view on synchronization. Physica D,
154:219–228, 2001.

[38] T. Nowotny, R. Levi, and A. I. Selverston. Probing the dynamics of identified
neurons with a data-driven modeling approach. PLoS ONE, 3(e2627), 2008.

[39] U. Parlitz, L/ Junge, W. Lauterborn, and L. Kocarev. Experimental obser-
vation of phase synchronization. Physical Review E, 43:2115, 1996.

166

[40] L. M. Pecora and T. L. Carroll. Synchronization in chaotic systems. Physical
Review Letters, 64:821–824, 1990.

[41] A. Pikovsky, M. Rosenblum, and J. Kurths. Synchronization. A universal
concept in nonlinear sciences. Cambridge: Cambridge University Press, 2001.

[42] J. C. Quinn and H. D. I. Abarbanel. State and parameter estimation us-
ing monte carlo evaluation of path integrals. Quarterly Journal of the Royal
Meteorological Society, 136:1855–1867, 2010.

[43] J. C. Quinn, P. H. Bryant, D. R. Creveling, S. R. Klein, and H. D. I. Abar-
banel. Parameter and state estimation of experimental systems using syn-
chronization. Phys. Rev. E, 80:016201, 2009.

[44] O. Schenk, M. Bollhoefer, and R. Roemer. On large-scale diagonalization
techniques for the anderson model of localization. SIAM Review, 50:91–112,
2008.

[45] O. Schenk, A. Waechter, and M. Hagemann. Matching-based preprocessing
algorithms to the solution of saddle-point problems in large-scale nonconvex
interior-point optimization. J. of Comp. Optimization and Applications, 36(2–
3):321–341, 2007.

[46] A. Selverston, D. F. Russell, J. P. Miller, and D. G. King. The stomatogastric
nervous system: Structure and function of a small neural network. Prog
Neurobiol, 7:215–290, 1976.

[47] H. W. Sorenson. Parameter estimation: principles and problems. M. Dekker,
New York, 1980.

[48] W. J. H. Stortelder. Parameter estimation in nonlinear dynamic systems.
Centrum voor Wiskunde en Informatica, Amsterdam, 1998.

[49] S. H. Strogatz. Nonlinear Dynamics and Chaos. Westview Press, Cambridge
MA, 1994.

[50] A. Tarantola. Inverse problem theory: Methods for data fitting and model
parameter estimation. Elsevier Science Pub. Co. Inc., New York, 1987.

[51] A. Tarantola. Inverse problem theory and methods for model parameter esti-
mation. SIAM, Philadelphia, 2005.

[52] B. A. Toth, M. Kostuk, C. D. Meliza, D. Margoliash, and H. D. I. Abar-
banel. Dynamical estimation of neuron and network properties 1: Variational
methods. Biocybernetics and Biomedical Engineering, 2011.

167

[53] H. U. Voss, J. Timmer, and J. Kurths. Nonlinear system identification from
uncertain and indirect measurements. International Journal of Bifurcation
and Chaos, 14:1905–1933, 2004.

[54] A. Wächter and L. T. Biegler. On the implementation of a primal-dual inte-
rior point filter line search algorithm for large-scale nonlinear programming.
Mathematical Programming, 106(1):25–27, 2006.

[55] Jean Zinn-Justin. Quantum Field Theory and Critical Phenomena. Clarendon
Press, Oxford, 2002.

