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Abstract

Background: Considerable evidence indicates that the functional connectome of the healthy 

human brain is highly stable, analogous to a fingerprint.

Objective: We investigated the stability of functional connectivity across tasks and sessions in a 

cohort of individuals with chronic stroke using a supervised machine learning approach.

Methods: Twelve individuals with chronic stroke underwent functional magnetic resonance 

imaging (fMRI) seven times over 18 weeks. The middle 6 weeks consisted of intensive aphasia 

therapy. We collected fMRI data during rest and performance of two tasks. We calculated 

functional connectivity metrics for each imaging run, then applied a support vector machine to 

classify data on the basis of participant, task, and time point (pre- or post-therapy). Permutation 

testing established statistical significance.

Results: Whole brain functional connectivity matrices could be classified at levels significantly 

greater than chance on the basis of participant (87.1% accuracy; p<0.0001), task (68.1% accuracy; 

p=0.002), and time point (72.1% accuracy; p=0.015). All significant effects were reproduced 

using only the contralesional right hemisphere; the left hemisphere revealed significant effects 

for participant and task, but not time point. Resting state data could also be used to classify 

task-based data according to subject (66.0%; p<0.0001). While the strongest post-therapy 

changes occurred among regions outside putative language networks, connections with traditional 

language-associated regions were significantly more positively-correlated with behavioral 
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outcome measures, and other regions had more negative correlations and intrahemispheric 

connections.

Conclusions: Findings suggest the profound importance of considering inter-individual 

variability when interpreting mechanisms of recovery in studies of functional connectivity in 

stroke.

Keywords

stroke; aphasia; rehabilitation; magnetic resonance imaging; functional neuroimaging; supervised 
machine learning

INTRODUCTION

The brain is a complex, dynamic organ comprising many interconnected networks that 

reconfigure over time1 and in accordance with task demands2, 3. Despite this fact, which 

underlies learning4 and development5, there are strong individual differences in functional 

connectivity sometimes described as a “functional connectome fingerprint”6. Healthy adults 

can reliably be identified across different sessions of resting state and task-based functional 

magnetic resonance imaging (fMRI) as well as across performance of distinct tasks6–10. To 

our knowledge, this trait stability has not been explored in individuals with neurological 

injury.

The correspondence of functional architecture across task and rest in the healthy brain 

suggests that neural networks are consistently engaged and interacting, even when not 

currently being called upon to perform a specific action or cognitive exercise. Resting state 

brain connectivity can be used to accurately predict activation patterns obtained during 

tasks on an individual basis7. With respect to cognitive functions following stroke, this 

suggests that findings during resting state may be informative about the configuration of 

brain networks supporting task performance, elucidating network pathology and patterns 

of plasticity associated with behavioral improvement11. Previous work suggests that gross 

topological network organization is adequately maintained in chronic stroke to permit 

identification of networks present in healthy adults12, 13. Given that clinical studies 

employing healthy controls often seek to identify differences with patient populations, 

the co-occurring and potentially confounding phenomena of individual heterogeneity (as 

demonstrated in healthy controls) – in the context of at least some network similarity 

between patients and controls – suggests that trait distinctions bear further examination in 

the stroke population.

Despite the existence of unique individual patterns, previous studies also indicate that 

functional connectivity metrics can be used to identify which tasks a healthy participant 

is performing by comparison to others performing the same set of tasks6, 10. Thus, strong 

contributions of trait notwithstanding, effects of state still measurably contribute to the 

variance of these data in a discernible manner.

Yet in studies of rehabilitation and recovery, we often seek to identify patterns across a 

group of patients – and sometimes a set of tasks – associated with participation in, or benefit 
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following, a treatment program. In view of the strong effects of trait and state reported 

in healthy individuals, it could be that we are at a relative disadvantage for detecting 

these corollaries of experience. While many robust and laudable studies have identified 

meaningful and informative changes associated with treatment and recovery, such studies 

are typically hypothesis-driven rather than data-driven and rely on narrow contrasts between 

specific conditions, instead of focusing on large-scale neurological reorganization. Thus, 

it remains an open question whether, and how, brain networks predictably change across 

participants and tasks to reflect the effects of a therapeutic experience.

In this work, we explored the stability of functional connectivity across tasks and sessions 

in individuals with post-stroke language impairments (aphasia) participating in an intensive 

therapy program. We further investigated whether common patterns could reliably separate 

pre- and post-therapy connectivity measures.

We hypothesized that, following stroke, the brain’s functional connectivity would (i) 

maintain the strong individual differences reported in healthy adults (i.e., unique traits), 

evinced in stability over time and identifiable patterns across tasks and rest. We further 

hypothesized that (ii) across individuals, functional connectivity matrices would manifest 

similar (predictable) task-dependent network properties (i.e., commonalities of state), and 

that (iii) these functional correlations would show systematic patterns reliably distinguishing 

pre-therapy from post-therapy networks (i.e., effects of experience).

We used machine learning to test these three hypotheses. In particular, we aimed to 

classify the functional connectivity matrices by participant, task, and time (pre- vs. post-

therapy) in 12 individuals with left hemisphere ischemic stroke and aphasia. Our primary 

objectives were to determine whether we could identify inter-individual, task-dependent, 

and/or therapy- (or at least time-) induced differences.

METHODS

Participants

Twelve right-handed native English speakers with chronic aphasia following single left 

hemisphere ischemic stroke, confirmed by neurological examination and MRI, participated 

in the study (mean age= 51.33 ± 12.11; 3 female). All participants sustained a single stroke 

7 to 124 months prior to enrollment (mean= 40.33 ± 42.55). Additional individual data are 

reported in Table 1, and lesion overlap can be seen in Supplemental Figure 1. Participants 

were selected from a superset of nineteen individuals who completed an 18-week study 

that included 6 weeks of intensive imitation-based therapy. Inclusion criteria for the present 

analysis are fully outlined in Supplemental Material; in brief, participants were required 

to have data acquired using the same MRI scanner and to have ≥7 imaging runs with 

≥4 minutes of usable data per scan (i.e., without motion artifact) to permit confident 

use of the machine learning classifier (support vector machine). Behavioral and imaging 

results of the treatment study have been reported previously13–17. The study was approved 

by the institutional ethics committees (Institutional Review Boards) at The University of 

Chicago and the University of California, Irvine, where the research was conducted. Written 

informed consent was obtained according to the Declaration of Helsinki.
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Treatment

Treatment consisted of a computer-based imitation therapy performed during three 30-

minute sessions six days per week over the course of six weeks (108 sessions). Participants 

repeated words and phrases consecutively spoken by six different speakers (massed 

practice). Level was determined by a speech-language pathologist on the basis of individual 

ability. Progress was evaluated weekly, with level advanced when appropriate. Higher levels 

included longer words, more complex phonology, more varied word classes, and longer 

word sequences. For additional details see Lee et al., 201018.

Image Acquisition

Seven structural and functional MR images were acquired at intervals of 3 weeks over 

an 18-week period. The first 6 weeks of this period (during which there were 3 imaging 

sessions) represent a pre-therapy baseline during which no intervention was provided. 

Speech-language therapy was provided for the next 6 weeks (during which there was 1 mid-

therapy imaging session). Three post-therapy scans were collected – immediately following 

therapy, and then 3 and 6 weeks later – comprising 7 total sessions. See Supplemental Figure 

2 for timeline.

Functional data were acquired during three separate “runs”, including the resting state (5 

minutes; 200 volumes) and during two active tasks, speech observation (6:30 minutes; 260 

volumes) and speech imitation (12:30 minutes; 500 volumes). During rest, participants 

were instructed to look at a fixation cross; these scans were consistently acquired 

immediately following anatomical scans and prior to any active task. The speech observation 

and speech imitation tasks used the same video stimuli of a woman articulating four 

syllables: /pa/, /fa/, /ta/, and /θa/ (voiceless “tha”). During observation, participants were 

instructed to passively watch and listen to the stimuli, whereas during imitation they were 

instructed to repeat the syllable following each presentation. Each non-rest run contained 

120 event-related jittered stimuli (equal numbers of each stimulus), with interstimulus 

interval ranging from 1.5 to 15 seconds for observation and from 3 to 18 for imitation.

MRI data were acquired on a Siemens 3T Trio scanner (Siemens Medical Solutions USA 

Inc, Malvern, PA) at the Center for Advanced Magnetic Resonance Imaging (CAMRI) of 

Northwestern University in Chicago. Anatomical images used a T1-MPRAGE sequence 

with the following parameters: sagittal acquisition, TR=2300 ms, TE=3.36 ms, FA=9°, 

voxel size=1 mm isotropic. Functional acquisition for all tasks used an echo-planar imaging 

(EPI) sequence with the following parameters: axial acquisition, TR=1500 ms, TE=20 ms, 

FA=71°, FOV=220x220 mm, 29 axial slices with 4 mm thickness (1 mm gap), inplane voxel 

size=3.75 x 3.75 mm.

Image Analysis

Supplemental Figure 3 depicts steps of the analysis pipeline.

Preprocessing—The Analysis of Functional Neuroimages (AFNI19) and Functional 

Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL20) software 

packages were used for image analysis. Preprocessing of all functional data included slice 
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time correction, despiking, and motion correction by registering each run to the volume with 

the smallest absolute deviation from its median. A Gaussian smoothing kernel of 4 mm full 

width at half maximum was applied to the functional data to increase signal-to-noise ratio, 

and voxel time courses were converted to percent signal change.

Anatomical T1 images, and lesion masks drawn on these, were aligned to the base volume 

used for motion correction for each functional run. These aligned structural images were 

used to extract mean functional time series for white matter, cerebrospinal fluid, and the 

lesion. To remove artifact from the signal, these time series data were included as nuisance 

regressors in a general linear model along with 6 motion regressors from the registration. 

Volumes with ≥3 mm or 3° of displacement and the first four volumes of each run were 

censored (removed from statistical analysis) to reduce noise and minimize artifacts. We 

used AFNI’s 3dTproject to apply a general linear model (removing the noise components 

as well as stimuli-related signal in the case of the observation and imitation runs). For each 

functional run, we aligned the structural imaging data to a template in standard space and 

then used the inverse transformation to align a standard anatomical atlas to the functional 

data. This permitted identification of anatomical regions in native space (i.e., the space in 

which the fMRI data were acquired). Details of this alignment can be found in Supplemental 

Materials.

Functional Connectivity—Using the aligned anatomical atlas, we extracted the average 

time series from each of 34 cortical and 7 subcortical regions per hemisphere (82 total 

regions; group parcellation based on FreeSurfer Desikan-Killiany Atlas21) for each of the 

165 imaging runs included in the analysis (i.e., for each of the 3 conditions under which 

data were acquired at every time point for each of the 12 subjects). We excluded voxels 

containing only CSF from within individual lesion masks to limit artificial reduction of 

signal within a region while still capturing potential hemodynamic activity in damaged brain 

tissue and controlling for partial volume effects. Given the coarse parcellation used (68 total 

cortical regions), we found no region that was completely excluded from the analysis for any 

participant. Each of the 165 time series was separately mean-centered; these data were then 

used to construct 165 unique correlation matrices. Each correlation matrix, interpreted as a 

connectivity graph, was reshaped as a vector of 3321 weights for unique undirected edges 

connecting the 82 nodes (duplicates and self-loops removed).

To reduce inter-individual heterogeneity within our sample, we performed multiple linear 

regression using four independent variables that could impact functional connectivity 

measures (age, months post onset, lesion size, and aphasia severity as indicated by the 

Aphasia Quotient of the Western Aphasia Battery-Revised22; see values in Table 1). Details 

are included in Supplemental Materials. Residuals from this regression (i.e., data “cleaned” 

of the effects of these variables) were used as inputs for machine learning classification 

following scaling to unit variance.

We repeated this process using only the right (uninjured) or the left (injured) hemisphere. 

Each hemisphere included all 41 regions in each hemisphere (cortical and subcortical) 

connected by 820 unique undirected edges.

Duncan et al. Page 5

Neurorehabil Neural Repair. Author manuscript; available in PMC 2021 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Machine Learning Classification—Support vector machines (SVMs) are algorithms 

used in machine learning. SVMs implement supervised learning, in that training is 

accomplished by “teaching” the machine with sample data and their correct classifications. 

To prevent overfitting, training is first performed on a subset of the overall data set 

and subsequently tested on a different subset (cross-validation). SVMs perform well in 

high-dimensional classification problems, such as the large number of features (edges) 

vs. samples (scans) in our data set23. We performed 3 separate analyses to determine 

whether using only the “cleaned” whole brain functional connectivity vectors would permit 

accurate identification of imaging runs based on (i) trait (the participant who was scanned); 

(ii) state (the task being performed); and (iii) experience (i.e., time point; whether the 

scan was acquired before or after therapy). For the analysis of experience (pre- vs. post-

therapy), we excluded the fourth scan, which occurred in the middle of therapy, leaving 143 

imaging runs. We trained an SVM using the python scikit-learn package24 (linear kernel; 

regularization=0.01) on 90% of the data (148 [trait, state] or 128 runs [experience]) and 

tested the accuracy of its predictive labeling of the remaining 10%25 (17 [trait,state] or 15 

runs [experience]). This process was cross-validated 10,000 times with randomized splits 

of the data, stratified to preserve proportional representation by class to avoid biasing the 

classifier or completely omitting a class for which there were fewer runs than the size of the 

testing set (e.g., all the data for a single subject).

Separate analyses were performed using only the functional connectivity vectors derived 

from the right or left hemisphere as inputs to train and test the SVM classifier.

Statistical Analysis

As described, the current study was designed to compare systematic variations in functional 

connectivity on the basis of participant (trait), task (state), and therapeutic intervention 

(experience) for a sample of individuals with post-stroke aphasia. We report the mean 

score for the 10,000 random splits of the data set for each classification performed (whole 

brain, right hemisphere, left hemisphere). To test the statistical significance of our cross-

validation, we also performed 10,000 repetitions of our classification analysis with random 

permutations of the labels for the data set. We compared the mean performance of our 

classifier to the probability distribution of the permutation testing by dividing (number of 

times the permutation score met/exceeded the mean classifier score + 1) by (total number 

of permutations + 1) to establish statistical significance26. We used an alpha criterion of p < 

0.05 to determine statistical significance.

Follow-Up Analyses

A follow-up analysis on trait stability is described in Supplemental Materials. This analysis 

tested whether participants could be reliably identified during observation/imitation tasks 

based solely on resting state data. We also examined experience-dependent plasticity by 

identifying characteristics of edges that (i) best discriminated between pre- and post-therapy 

functional connectivity and (ii) changed significantly with outcomes on two language tasks 

(behavioral variables reported in Table 1).
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Data Availability

Data supporting the findings of this study are available from the corresponding author upon 

reasonable request. Per the terms under which the data were acquired, access will require 

research collaboration and ethics approval.

RESULTS

Whole Brain

The support vector machine (SVM) classified whole brain functional connectivity vectors 

with accuracy significantly above chance to identify subject (87.1%; p<0.0001), task 

performed (68.1%; p=0.002), and time point (pre- vs. post-therapy; 72.1%; p=0.015). Figure 

1 shows results of these analyses compared to permutation testing. Figure 2 shows confusion 

(error) matrices for these results.

Right Hemisphere

The SVM classified right (uninjured) hemisphere functional connectivity vectors with 

accuracy significantly above chance to identify subject (79.9%; p<0.0001), task performed 

(64.8%; p<0.001), and time point (pre- vs. post-therapy; 66.7%; p=0.020). Permutation 

testing results are shown in Figure 3 and confusion matrices are shown in Supplemental 

Figure 4.

Left Hemisphere

The SVM classified left (injured) hemisphere functional connectivity vectors with accuracy 

significantly above chance to identify subject (82.9%; p<0.0001) and task performed 

(61.8%; p=0.006). Classification on the basis of experience (pre- vs. post-therapy) did not 

reach statistical significance (64.9%; p=0.155). Permutation testing results are shown in 

Figure 4 and confusion matrices are shown in Supplemental Figure 5.

Follow-Up Analyses

Trait Stability—Classification by subject using only resting state data as the training set 

and task data as the testing set was significantly better than chance (66.0%; p<0.0001).

Experience-Dependent Plasticity—Results for analyses of experience dependent 

plasticity were grouped into (i) networks with strong roles in language processing and (ii) 

networks with more supportive roles in language processing, as described in Supplemental 

Materials, where statistical findings are also included.

(i) Within the top 5% of edges (166) distinguishing pre-therapy from post-therapy scans, 

there were significantly fewer language-predominant edges and more language non-specific 

edges than expected based on chance. In general, the language-predominant network 

represented within these top edges had more intrahemispheric connections, and these 

were strongly left-lateralized. Language non-specific regions, conversely, displayed a 

nonsignificant trend towards greater connectivity between than within hemispheres. Overall, 

connectivity became significantly more negative following therapy, apparently driven by 

decreased connectivity of right-lateralized intrahemispheric edges.
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(ii) Thirty-four whole-brain edges (~1%) were significantly correlated with change 

in language performance, as described in Supplemental Materials. Within these 34 

edges, regions were equally represented, independent of language-predominant network 

status. However, edges within the language-predominant network were significantly more 

positively correlated with outcomes, while connections between the other regions had 

more negative correlations. This suggests that increased functional connectivity of language 

regions was associated with better outcomes, while stronger functional connectivity outside 

this network was potentially maladaptive. There were significantly more intrahemispheric 

than interhemispheric connections represented in the language nonspecific networks, and 

these were equivalently distributed between the two hemispheres.

DISCUSSION

This study addresses the relative contributions of trait, state, and experience to functional 

connectivity in a group of individuals with post-stroke speech and language deficits. We find 

that trait (i.e., the stable individual nature of region-based functional connectivity) can be 

classified with a high level of accuracy, and that differences on the basis of state (i.e., the 

task in which individuals were engaged) can also be identified. This is the case regardless of 

whether the whole brain, right (uninjured) hemisphere, or left (injured) hemisphere is used 

for classification. These sources of greater variance risk at least partially eclipsing effects 

that might be present on the basis of experience (i.e., participation in the therapy program).

These analyses highlight the profound inter-individual variability in functional connectivity 

in individuals with stroke, similar to prior results in healthy subjects. By training a 

support vector machine on functional connectivity matrices from data acquired at different 

time points and during different tasks, we were consistently able to identify the scans 

of individual participants. These findings suggest that individual differences bear strong 

consideration in fMRI studies of people with stroke.

Collapsed across time points and tasks, participants could be accurately classified on an 

individual basis using not only data from the whole brain or lesioned left hemisphere, 

but also from functional connectivity matrices constructed solely from the contralesional 

hemisphere. As our analysis did not include healthy controls, the present study does not 

bear on the similarity of these “intact” hemispheres to those of healthy subjects. However, 

given the differences in activation reported previously in the right hemisphere of individuals 

with aphasia during language tasks27, and given the similarity, on an individual basis, 

between resting state and language tasks reported here, it is probable that such differences 

would also be reflected in functional connectivity during rest. For both the whole brain 

and the separate hemispheres, individual differences resulting from post-stroke plasticity 

likely yielded increased subject classification accuracy compared to healthy individuals. 

Such questions will be explored in future analyses.

Our machine learning classification method was also able to identify whether subjects 

were quietly resting or performing one of two different tasks (observation or imitation 

of speech). While accuracy of task identification was more modest than classification 

of individual participants, it suggests that there are reliable task-related differences in 
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functional connectivity even when specific task-induced hemodynamic responses are 

removed, as has been found in healthy individuals28. When the classifier was trained 

exclusively on resting state data, it still classified individual correlation matrices obtained 

during task-based fMRI with statistical significance. These findings suggest that, despite 

the existence of identifiable distinctions, functional connectivity during rest is predictive 

of functional connectivity during task, and information gleaned from resting state may be 

informative about the brain networks underlying task performance. We have previously 

found that when band-pass filtering is applied to identify the low frequency fluctuations 

typically of interest in resting state fMRI analyses, strong individual differences persist, 

while different tasks can no longer be distinguished29.

One of our a priori hypotheses was that we would be able to distinguish data acquired 

prior to therapy from data acquired following the treatment period (i.e., that there would be 

systematic reorganization across subjects induced by the completion of the intensive aphasia 

protocol). This was supported by analyses of the whole brain and the right hemisphere. 

However, we were not able to identify such differences using the left hemisphere alone. 

This is of particular interest as many models and studies of aphasia recovery focus on left 

hemispheric reorganization. Had the left hemisphere been our sole focus, we would have 

missed detectable effects of intervention that were nevertheless captured when including 

interhemispheric and right-lateralized intrahemispheric connections.

Further investigation of edges significantly correlated with performance on our two language 

tasks suggested that increased functional connectivity of language regions supported 

improvement. Outside of language-predominant regions, decreased connectivity appeared 

to be more adaptive for behavior. Despite our finding that left hemisphere connectivity 

did not identify whether scans were acquired before or after therapy, we did not find 

improvement-based lateralization differences between the hemispheres, although the non-

specific networks did have more intrahemispheric than interhemispheric edges, while 

connections among language-predominant regions were more balanced. However, we 

acknowledge that this is a rather gross approach to characterizing network connectivity 

(and not the primary motivation of this study) and call for more anatomically targeted 

analyses (e.g., focus on specific networks) as well as measures suitable to identifying more 

nuanced patterns of change (such as graph theoretical metrics) in future studies. Still, the 

main contribution of the present work is to underscore the need to conduct such analyses at 

an individual level, with consideration of the significant variability among individuals and 

the potentially idiosyncratic relationship of behavioral improvement to brain changes.

Limitations of the present study include the small sample size, as well as the heterogeneous 

nature of the sample, particularly in the range of ages, lesions, time post onset, and 

behavioral phenotype (i.e., aphasia severity), which we addressed by removing contributions 

of these variables from our data on an edgewise basis using linear regression. It is 

noteworthy, and unexpected, that the identity of the individual with the largest lesion (#15) 

was rarely accurately classified, typically being incorrectly identified by our SVM as the 

individual with the second largest lesion (#10). This individual had a similar aphasia profile 

but differed considerably in other features, including sex, age, and chronicity. Although 165 

imaging runs were included in our analysis, this scarcely approaches the “big data” scale to 
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which such machine learning algorithms are typically applied, and these data were acquired 

from only 12 individuals. Varying numbers of scans were included for each participant, 

and the imitation task, in particular, was underrepresented compared to the other tasks. 

While SVMs are not impacted by the presence of additional data points beyond the margins 

that separate classes, the number of features (edges) outweighed the number of samples 

(individual scans) by a factor of 20 for the whole brain analysis, and by a factor of 5 for 

each hemisphere. Additionally, our brain parcellation atlas was somewhat coarse, ensuring 

that no region was completely excluded in any participant due to stroke, but leading to 

large regional averages that could have obscured nuances of functional activation. While this 

should not affect our findings of overall strong inter-individual differences, it is possible 

that the classification of task, as well as time point relative to therapy, would have become 

even more accurate with a finer parcellation scheme. Further, the analysis of experience 

(particularly in the left hemisphere) may have been diminished by the limited effects of 

the therapy, as reported elsewhere17, which were statistically significant but with low effect 

size (similar to other therapies used in research and/or practice). It is also uncertain whether 

similar post-therapy changes in functional connectivity would have been identified with 

different therapy approaches, especially the relatively strong representation of occipital 

cortices given the visual orientation of the imitation therapy. Finally, the use of a matched 

control group could have helped to identify the extent to which our observations were 

specific to post-stroke participants or how they may have differed from healthy brains. While 

our findings are in line with past studies using neurologically-intact subjects, future studies 

would benefit from direct comparisons.

The present study calls into question the nature and origin (but not the validity) of functional 

connectivity changes in response to aphasia therapy (e.g., 30–32). Our analysis strongly 

suggests stability of whole brain functional connectivity on an individual basis. While this 

does not, in principal, preclude changes associated with therapy, it is perhaps surprising 

that individuals remained uniquely identifiable in comparison to others in the same cohort, 

despite observable common changes occurring on a group level. To reconcile these two sets 

of findings, we propose two distinct lines of reasoning.

One possible explanation is that only a few regions (e.g., those of interest) change in activity 

or connectivity following therapy. In this case, to maintain overall network stability, the 

other regions would have to maintain pre-therapy connectivity to override the changes in 

interregional correlations that would necessarily occur by having a few regions significantly 

changing in activation or connectivity. This could occur if changes occurred only within 

a subnetwork that was initially minimally correlated with other regions (i.e., with strong 

segregation) and remained minimally correlated with regions outside the subnetwork 

following treatment (i.e., segregated), even in the context of some (limited) changes.

A second explanation is that brain remodeling is taking place across a far broader network 

than is typically thought, with maintenance of the relative balance among regions despite 

changes in particular regions of interest (or those that survive an arbitrarily selected 

threshold). The essential difference between these two perspectives is the degree to which 

changes in regions or subnetworks occur in relative isolation, or whether the entire network 

(i.e., the whole brain) changes in tandem with those regions or subnetworks of interest, all of 
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which reconfigure to such an extent that the original interregional correlations are generally 

preserved and remain uniquely identifiable. We believe our findings of post-therapy change 

in functional connectivity across myriad regions in both hemispheres – independent of 

their putative roles in language function – support this second proposal. Future studies in 

brain connectivity will further elucidate the complex nature of the changes that occur in 

response to treatment of stroke and its behavioral sequelae such as aphasia, and which 

support functional recovery. Such studies will include those involving external manipulation 

of the brain through noninvasive stimulation, of growing interest in treatment of chronic 

stroke (e.g., 33–40), which may impact the stability of an individual’s whole brain functional 

connectivity.

CONCLUSIONS/IMPLICATIONS

This study suggests that post-stroke functional connectivity is impacted by trait (individual 

differences), state (task differences), and experience (therapeutic intervention). That 

individual differences in functional connectivity were strongly identifiable across tasks 

and time points emphasizes the need for individualized approaches. It also suggests that 

resting state data may be practically relevant to inform study of the recovering brain 

after stroke, especially given the challenges of task performance and motion artifacts 

associated with people who have brain injuries41. The considerable influences of both 

trait and state merit consideration when seeking to identify and understand the effects of 

experience. Understanding the ways in which individual differences account for variability 

in functional connectivity will allow us to hone our techniques and better characterize 

changes associated with behavioral improvement, which will in turn enable us to promote 

adaptive forms of plasticity through behavioral therapy and other forms of intervention, 

including pharmacology and noninvasive brain stimulation. This work moves us closer to 

development of personalized approaches to optimized treatments for patients with chronic 

stroke and aphasia, consistent with the objectives of precision medicine.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Whole brain classification accuracy for participant [trait] (A), task [state] (B), and time point 

[experience] (C). Histogram shows results of permutation testing (i.e., the percent accuracy 

with which the labels were classified when randomly re-assigned to the data). Dotted black 

line indicates accuracy expected by chance (i.e., 100% ÷ 12 participants ≈ 8%; 100% ÷ tasks 

≈ 33%; 100% ÷ 2 time points = 50%). Solid black line indicates accuracy achieved by the 

machine learning classifier.
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Figure 2. 
Whole brain confusion matrices for classifications by participant [trait] (A), task [state] (B), 

and time point [experience] (C). Values along the diagonal represent correct classifications; 

off-diagonal values indicate errors in prediction, with correct label on the x-axis and 

incorrectly assigned label on the y-axis. Participant identifiers in (A) are as in Table 1. 

Tasks in (B) include imitation (imi), observation (obs), and rest. Time points in (C) refer 

to pre- and post-therapy. Figures indicate percentages; therefore, each column sums to 100 

while rows may sum to any value.
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Figure 3. 
Right hemisphere classification accuracy by subject for subject [trait] (A), task [state] (B), 

and time point [experience] (C). Legend as in Figure 1.
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Figure 4. 
Left hemisphere classification accuracy by subject for subject [trait] (A), task [state] (B), 

and time point [experience] (C). Legend as in Figure 1.
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