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Abstract

Monitoring Forest Policy from Space

by

Daniel Sussman Hammer

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Maximilian Au↵hammer, Chair

Satellite imagery is an increasingly valuable data source in agricultural and resource
economics. It o↵ers credible, consistent, and globally comparable information on landscape-
scale changes to the environment; and the supply of the information is accelerating with
innovations in satellite technology. This dissertation presents the critical value of satellite
imagery for environmental policy evaluation, focusing specifically on deforestation. Tropical
deforestation may account for as much as one tenth of net global greenhouse gas emissions
each year.[111, 62] Any viable e↵ort to mitigate the impact of climate change must address
deforestation. The e↵ective design of forest policy is dependent on reliable impact analysis.
Satellites o↵er a method of direct observation of forest cover loss, rather than incomplete
or biased estimates. The dissertation first presents an algorithm to convert raw satellite
imagery into a new and novel data source on tropical deforestation. Next, the data are
used to explain the counter-intuitive outcomes from a 2012 conservation policy in Indonesia,
relying on the spatial detail a↵orded by the new data. Finally, a set of empirical results
describe the relationship of deforestation to interest rates, commodity prices, and other
economic variables, using the temporal detail a↵orded by the new data. Together, these
case studies demonstrate the e↵ective use of a new data source in direct and credible policy
analysis for natural resource economics.
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Chapter 1

Introduction

Satellite imagery is increasingly common in economic research. It is used to measure crop
yield, economic development, and deforestation, among many other applications. Data that
is derived from satellite imagery is credible, consistent, and globally comparable. The cost
of imagery is falling dramatically, alongside the accelerated pace of innovation in satellite
technology. The spatial and temporal resolution of commercial satellite imagery is improv-
ing exponentially.[17] Researchers are able to monitor changes on the Earths surface at
30-centimeter resolution, with new imagery collected at least once each month. Medium
resolution imagery at 1-10 meter resolution is now available for every point on Earth at least
once each day.1[6]

The pace of supply shows no signs of slowing. Figure 1.1 charts the growth in the num-
ber of active, non-military, Earth-observing satellites in orbit between January 1993 through
September 2017.2 Of the estimated 1,738 active satellites, 605 are used for applications
in Earth Science and Earth Observation — as classified by the Union of Concerned Sci-
entists.[32] The exponential growth since 2014 is attributed to the proliferation of small
satellites (”smallsats” or ”cubesats”) from privately held companies like Planet Labs. A
single launch may place over 80 satellites in orbit for a single company.

In parallel, the computational power and machine learning techniques to process satellite
imagery into economically relevant information have become broadly accessible. For exam-
ple, with training data that is freely available, it is now possible to extract, measure, and
analyze building footprints from satellite imagery. Researchers are able to rely on direct
observation of new home construction, rather than imperfect proxies from surveys or sam-
pling. The fidelity and accessibility of direct economic measures has immediate benefits for

1Spatial resolution is measured by the size of a square section on the Earths surface. Thus, 30-centimeter
resolution indicates that each pixel in an image represents a 30cm ⇥ 30cm square on Earth. High-resolution
indicates a spatial resolution higher than 1m, while medium resolution is between 1-meter to 10-meter
resolution.

2The United Nations maintains a Register of Objects Launched into Outer Space, which represents an
estimated 92% of the total objects in orbit. The data for Figure 1.1 have been cleaned and collated by the
Union of Concerned Scientists.
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Figure 1.1: Number of non-military, Earth imaging satellites in orbit through September
2017.

economic research.
Direct observation of landscape-level change is especially promising for empirical ques-

tions in natural resource economics. Consider, for example, the foundational 1976 paper The
Optimal Development of Resource Pools by Martin Weitzman.[117] Weitzman characterizes
the optimal policy for extracting natural resources from distinct “pools” under conditions
of variable costs — across space and through time. For decades, many of the model’s
implications remained untested and, frankly, untestable. Satellite imagery o↵ers detailed,
comprehensive, and time-consistent information on the extraction of resources that can be
seen from space — gold mines, forests, agricultural areas, among others. Indeed, Chapter
3 relies heavily on Weitzman (1976) to frame the empirical study of deforestation. Figure
1.2 illustrates the spatial and temporal detail a↵orded by satellite imagery. The figure de-
picts NASA imagery of crop rotation for three years in California.3 The imagery to directly
observe and quantify crop rotation is freely accessible for the entire planet. The value of
this information has not been fully realized by economic researchers; but satellite-derived
information is becoming more commonplace in economic literature, slowly but surely.

Despite the broad value of satellite imagery, there are clear limitations of its use. Satellite
imagery is not appropriate to measure gender roles or educational outcomes. It is appropriate
only for measuring landscape-level changes that occur over the course of a week or a month
— the frequency of image collection. Deforestation is particularly well-suited to be measured
from satellite imagery. It is clearly identifiable from satellite imagery, collected over time.
Furthermore, research into forest policy is critical for pressing environmental issues. Tropical
deforestation may account for as much as one tenth of net global greenhouse gas emissions
each year.[111, 62] Any viable e↵ort to mitigate the impact of climate change must address
tropical deforestation; and designing policies to reduce the rate of deforestation require

3Specifically, the imagery is from is a joint program of NASA and the United States Geological Survey,
Landsat, providing 30-meter resolution imagery every eight days. Landsat data are free and open for public
use.
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Figure 1.2: Three years of Landsat images of fields in the Central Valley, California, with
each row depicting all scenes a given year.

careful study grounded in real data. The study of deforestation from satellite imagery is
both opportunistic and critically important.

The three subsequent chapters address the economic drivers of deforestation using satel-
lite imagery. First, an algorithm to measure deforestation from freely available satellite
imagery is described and evaluated. The resultant data set, called FORMA for Forest Moni-
toring for Action, reports forest clearing activity at 500-meter resolution with 16-day updates
for the entire humid tropical biome. The FORMA data is utilized the final two chapters,
which use the unique features of the data set for policy and economic analysis. The un-
precedented spatial and temporal resolution of FORMA a↵ord the opportunity to link the
spatiotemporal growth of deforestation to policy levers. It is notable that FORMA was the
foundational data set for Global Forest Watch, an online platform to monitor deforestation
from satellite imagery. Global Forest Watch has become the most popular environmental
data platform ever released, indicating the operational value of the data in addition to the
research value.

The next chapter (Chapter 3) describes the unintended consequences of forest policy
in Indonesia. In an e↵ort to reduce deforestation, the government of Indonesia enacted a
moratorium on logging and agricultural concessions in May 2011.[9] Previous research has
shown that this policy did not reduce the deforestation rate as intended; and, in fact, defor-
estation increased after the moratorium was enacted.[78] This empirical study demonstrates
that the moratorium may have caused an increase in deforestation. The spatial distribution
of deforestation was significantly impacted by the conservation policy, displacing clearing ac-
tivity from one margin of production to another, latent margin of production. The net e↵ect
was an increase in the aggregate rate of clearing. The empirical result can be rationalized
with basic production theory, examining the intensive and extensive margins of production.
The detailed spatial information, derived from satellite imagery, allows for the separation
of deforestation that occurs on the periphery of existing deforestation clusters (defined as
intensive deforestation) or that seeds a new cluster (defined as extensive deforestation).

Finally, Chapter 4 utilizes the temporal resolution to examine the economic drivers of de-
forestation, including interest rates and commodity prices. An adequate study of the impact
of interest rates on deforestation requires a measure of deforestation that is updated fre-
quently – to match the time-scale of economic decision-making. Research into the dynamics
of deforestation is possible with at least monthly updates. At best, deforestation data was
updated annually, whereas decisions to invest in forest clearing activity were based on weekly
or even daily information. The chapter further examines the dynamics of deforestation by
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employing methods in spatial econometrics to account for spatiotemporal autocorrelation.
While the focus of this dissertation is deforestation, the source data and methods are

valuable to any study that relies on landscape-scale change. The new data, empirical meth-
ods, and computational capacity have, together, expanded the scope of questions that can
be answered in empirical economics – and especially in agricultural and natural resource
economics.
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Chapter 2

Alerts of forest disturbance from

MODIS imagery

2.1 Introduction

Deforestation and forest degradation contribute 12 percent of global anthropogenic green-
house gas emissions each year.[60, 109] In addition, habitat loss and fragmentation of forest
landscapes threaten ecosystem resilience and biodiversity.[45, 79] Environmental externali-
ties do not necessarily enter the economic calculus for private decision makers.[90] E↵orts
to align private and social incentives depend crucially on measuring and evaluating the im-
pacts of activities a↵ecting forests. Thus, reliable, timely, and transparent information on
forest disturbance is urgently needed, especially in the humid tropics, which accounts for the
majority of global deforestation.[44]

Existing methodologies: Data

Current techniques to monitor forest disturbance must balance spatial and temporal
resolution. Sampling techniques using high-resolution imagery have been shown to reliably
detect small-scale disturbance. But infrequent updates, relatively high data and processing
costs, and limited spatial coverage all constrain these techniques.[49, 8]

Moderate- and coarse-resolution imagery from Landsat and MODIS, respectively, is ac-
quired at higher frequency and for broader geographic areas. Such data sets sacrifice spatial
detail in favor of more timely information on forest cover disturbance.[38, 58, 99, 103, 102,
92, 3, 94]

A version of this chapter first appeared in the International Journal of Applied Earth Observation and

Geoinformation (2014) Vol. 33, with David Wheeler and Robin Kraft.
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Despite the high frequency of coarse-resolution imagery products, monitoring is still often
constrained by persistent cloud cover in the humid tropics. The DETER monitoring system
[99], for example, only reports data in the legal Amazon in Brazil, where cloud cover is
less problematic than in other tropical regions.[95, 52] Other systems [92] use resampled or
aggregated data products to reduce the impact of cloud cover.

Existing methodologies: Algorithms

There are two broad approaches to change detection: cross-sectional di↵erencing and time
series analysis. Cross-sectional di↵erencing is well-suited to relatively high resolution imagery
that is acquired infrequently. However, persistent cloud cover often precludes the ability to
identify transient change.[33] In Indonesia, for example, the conversion from primary forest
to secondary forest or oil palm plantations can be completed between compositing periods,
or even within the interval required to create cloud-free image composite.[15]

Time series analysis examines the spectral history of each pixel, with di↵erent techniques
depending on the temporal resolution of the imagery. Other algorithms from search for
specific temporal signatures of forest disturbance in Landsat pixel histories, using one ob-
servation out of a potential 22 observations each year.[74, 63, 15] Imaging twice a day by
MODIS sensors aboard NASA’s Terra and Aqua satellites yield far more potentially usable
observations, reducing the impact of a cloudy scene on the overall time series. Choosing
imagery with higher temporal resolution for sub-annual forest assessment requires discern-
ing true change from a noisier time series with strong seasonal components, even in the
tropics.[114]

The dense MODIS time series has inspired a varied set of techniques for identifying lan-
duse/landcover (LULC) change more broadly. Mildrexler et al. (2009) detect disturbances
in North America by generating and analyzing annual composites of maximum land surface
temperature (LST) in conjunction with composited and 16-day enhanced vegetation index
(EVI) values.[80] Campos and DiBella (2012) also identify several types of LULC around
the world, but analyze full MODIS NDVI time series using wavelet transforms.[21] In the
Dry Chaco ecoregion of South America, Clark et al. (2010) used TIMESAT to analyze
multispectral MODIS time series and generate annual land use change statistics.[29] Fi-
nally, Kleynhans et al. (2010) show that time series analysis of NDVI using an extended
Kalman filter and 3x3 pixel neighborhoods is more e↵ective at change detection than image
di↵erencing.[75]

Proposed enhancements

This paper proposes a methodology for an alerting system for forest disturbance using
imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) and statistical
techniques borrowed from time series econometrics. The methodology has been implemented
as an open source, automated forest monitoring system that covers the humid tropics. By
leveraging the high-frequency MODIS imagery, the system produces forest disturbance alerts
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at 16-day, 500 meter resolution. It is intended to complement high-resolution forest change
data sets that are updated less frequency but capture more variation in small-scale forest
disturbance.

The algorithm relies on break detection algorithms to examine the spectral time series
for each pixel, searching for structural changes in temporal patterns that are historically
associated with forest disturbance. The structural changes are independent of both sea-
sonal and random variation, helping to reduce the impact of clouds within the dense time
series. In addition, the analysis incorporates rainfall in order to broadly control for transient
climatic conditions during the sample period. A semi-supervised learning algorithm then
characterizes each pixel’s time series and compares it to historical forest cover loss data for
2000-2005, as identified in previous studies.[58] The classification rule derived from this pro-
cess is used to classify each pixel for each 16-day interval after December 2005, the end of
the training interval. Each pixel is assigned a normalized index representing the probability
of disturbance.

The paper is organized as follows: Sections 2.1 and 2.1 present an overview of existing
monitoring systems and algorithms to measure and quantify forest disturbance. Section
2.1 positions the proposed algorithm within previous research. Section 2.2 describes the
raw imagery and other data used to develop the final data product. Section 2.3 provides a
detailed, step-by-step explanation of the algorithm. Section 2.4 reports the correspondence
of the proposed method with other remotely sensed forest disturbance data in Pará, Brazil.
Section 2.5 describes the computational tradeo↵s within the final feature selection, and
Section 2.6 concludes.

2.2 Data

Time series data

The proposed algorithm uses the following time series data sets: (1) Normalized Di↵er-
ence Vegetation Index (NDVI) from the MODIS Terra 500 meter vegetation indices product
(MOD13A1); (2) rainfall from the Precipitation Reconstruction over Land (PREC/L) data
set; and (3) active fire detections identified by the Fire Information for Resource Management
System (FIRMS).

The 500 meter NDVI layer in the MOD13A1 16-day composite [86] is a measure of
pixel-level vegetation intensity used to flag extra-seasonal and persistent loss of vegetation.
NDVI is particularly well-suited for use with forest disturbance alerts because it becomes
saturated for dense vegetation such as tropical forest canopy.[48] Thus, deviations from a
heavily forested norm are particularly striking.

The PREC/L precipitation data set [25] is used to control for broad climatological trends
that may impact NDVI values across a wide geographic area [42, 100], independent of actual
forest disturbance. For example, temporary fluctuations in NDVI during a period of abnor-
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mally low rainfall, such as during the El Niño Southern Oscillation, should not systematically
lead to a forest disturbance alert. Rather, the algorithm calculates a time trend of NDVI
conditional on precipitation. By including precipitation data, we account for the impact of
precipitation on vegetation, which is well-documented in previous studies.[98, 50, 116, 14,
80, 42]

Finally, the Fire Information for Resource Management System (FIRMS) is based on 1km
data from the MODIS MOD14/MYD14 Fire and Thermal Anomalies Product from Terra
and Aqua.[36, 68] The use of fire for forest conversion varies with land management practices
across the tropics and over time, but can be a reliable indicator of forest disturbance.[82,
110, 91]

Static data

Each MODIS pixel is also characterized using data sets that are static over time or rarely
updated. These data sets are used to define the study area and group pixels to improve
classification and ease computation. The Forest Cover Loss Hotspots (FCLH) data set [59]
defines the study area and serves to train the classifier described in Section 2.3. This 500
meter data set is derived from MODIS imagery and only considers pixels with 25 percent
or greater tree canopy cover, as defined in the Vegetation Continuous Fields (VCF) data
set.[56] Moreover, it is the only publicly available pantropical forest cover loss data set at
native MODIS resolution, ensuring a spatially consistent comparator. The study area in
Hansen et al. (2008) is further restricted to the humid tropical biome, as defined in the
World Wildlife Fund (WWF) ecoregions data set.[88, 59] The ecoregions data set is also
used to group pixels that fall into the same ecoregion and may be considered broadly similar
in terms of biology and climate. This allows for local tuning of the classifier (see Section 2.3),
while also facilitating parallelization of data processing. Finally, the Global Administrative
Areas (GADM) data set [61] is used to define coastlines, which in turn are used to control
for the decreased reliability and quality of coastal pixels, as defined in MODIS quality flags.

2.3 Methods

The classification process analyzes the temporal characteristics of each pixel during the
training period. A separate classification rule is generated for each terrestrial ecoregion in
order to account for local vegetation, land use, or forest clearing patterns. The algorithm is
then applied across the forested humid tropics.

Data cleaning

The algorithm is constructed to utilize as much separable variation in the NDVI as possi-
ble. An earlier version of the algorithm incorporated quality flags, but this eliminated most
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useful variation. Within the algorithm, heavy reliance on the quality flags precluded the
ability to separate pixels subject to forest disturbance from those that were not. Rather,
temporal smoothing using moving averages and ordinary least square (OLS) regression anal-
ysis of trends in the time series [93, 113] are used to limit the e↵ect of contaminated observa-
tions. In addition, we incorporate (Section 2.3) a parameter instability test that is robust to
seasonal cloud cover and random measurement error. [55] The test statistics are included as
features that define the classification rule. The impact of clouds in a region that is prone to
persistent cloud cover is therefore a muted output map, rather than a prevalence of falsely
alerted pixels.

Other smoothing techniques and trend- and break- detection algorithms were examined
[113, 77, 16, 30], and components of these algorithms were implemented and tested. But their
computational requirements were deemed too costly to be applied tropics-wide. Implemen-
tation of such algorithms will undoubtedly be possible in the near future as computing costs
continue to drop. These more sophisticated methods to improve data quality or mitigate the
e↵ect of low-quality input data may improve the quality of the output.

Time series feature extraction

Four features of the NDVI series are extracted for use in subsequent classification:

1. Long-term trend: The linear trend over the full NDVI time series, conditional on
precipitation and monthly indicator variables to account for seasonality in the NDVI.
A decreasing trend is correlated with a decrease in vegetation over time, which may
indicate forest disturbance (Figure 2.1a).

2. Ratio of long-term linear trend to standard error: The linear trend divided by the stan-
dard error, or the Student t-statistic, of the linear NDVI trend indicates its statistical
significance.

3. Minimum short-term trend: The NDVI series is split into moving blocks of 1.5 years.
The linear trend is calculated for each block, and the most negative trend is retained.

4. Parameter instability test statistic: The test statistic described in Hansen et al. (2002)
tracks error away from modeled time series stability.[55] The test statistic is extracted
to indicate an abrupt shift away from paradigmatic behavior. Normal behavior can
include seasonal variation induced by, for example, persistent cloud cover or abnormally
low precipitation (Figure 2.1b).

For each pixel series, these characteristics are collected alongside the characteristics of
thermal anomalies from the FIRMS data set. A running count of all thermal anomalies is
extracted as a time-dependent feature. The anomalies are further categorized based on the
measurement confidence (greater than or equal to 50 percent) and brightness (greater than
or equal to 330 Kelvin), as specified in Morton et al. (2008).[82]
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(b) Parameter instability test

Figure 2.1: Illustration of an abrupt shift in the 16-day NDVI time series (in blue). Sample
NDVI series taken from the R package BFAST.

Finally, information about the features described in Section 2.3 for each pixel’s immediate
neighbors is included in the algorithm to limit the e↵ect of extreme values caused by random
measurement error. Figure 2.2a maps the t-statistic of the NDVI long-term trend for an
area of southeast Pará, corresponding to the signal-to-noise ratio of the trend, along with
boundaries of PRODES deforestation.[20] It is notable that the t-statistic alone captures a
significant proportion of variation in the PRODES data set. However, the spatially smoothed
t-statistic illustrated in Figure 2.2b is a better predictor of PRODES deforestation, which
demonstrates why we use neighborhood values as an input for the overall predictions (Section
2.3).

Classification rule

The interpretation of the array of features described in the previous section is based
on a comparison of the features to historical forest cover loss data.[59] More precisely, a
classification rule is developed for each ecoregion in the sample area, according to a modified
logistic classifier.

Let Aj be the set of all pixels within a terrestrial ecoregion indexed by j. The classification
rule for Aj is determined by the feature vectors vi for all pixels i 2 Aj. Each vi has
length 20, corresponding to 20 features derived from the NDVI and fires time series analysis
(Section2.3). Paying due deference to uncertainty in empirical estimates, we calculate the
probability of forest disturbance from the feature vector, where each feature is extracted
during the training period (February 2000 through December 2005). Let zi = 1 be the event
that pixel i 2 Aj was subject to forest disturbance during the training period, and zi = 0
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(a) Without neighborhood features (b) With neighborhood features

Figure 2.2: Overlaying NDVI trend t-statistic and PRODES deforestation data (black poly-
gons) without and with spatial smoothing at 1km resolution. A large negative t-statistic
appears in brown. This 100km⇥100km area is in Pará, Brazil (Figure 2.4a).

otherwise. We model the probability based on the logistic function:

P(zi = 1|vi; �j) =
e�jvi

e�jvi + 1
, (2.1)

where �j is the weighting or parameter vector for ecoregion j. We use the 500 meter FCLH
data as the comparison data set, such that zi = 1 if and only if the pixel i was classified as
a forest cover loss hotspot between 2000 and 2005.

We estimate the parameter vector �j using maximum likelihood, employing a variant
of the Newton-Raphson method to optimize the likelihood function.[28] We selected the
Newton-Raphson method because it could be implemented in a distributed computing envi-
ronment. The parameter vector estimate �̂j is calculated through an iterative process defined
by

�(k+1)
j = �(k)

j + (V0
WV)�1

V
0(z� p), (2.2)

where �(k) indicates the value of the parameter vector at the kth iteration; the matrix V is
composed of the stacked feature vectors vi for all i 2 Aj; the vector z is the binary vector
where zi is defined as above; the vector p is the probability of forest disturbance based on
the value of the parameter vector at the kth iteration, or pi = P(zi = 1|vi; �

(k)
j ); and the

matrix W is a diagonal matrix with Wii = pi(1� pi) and zeros everywhere else.
The features in vi are highly collinear. Persistent fires in forests, for example, are directly

related to abrupt declines in vegetation. As a result, the matrix V
0
WV may be singular
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Figure 2.3: Algorithm processing chain

at machine precision at some iteration, which will break the estimation process because the
matrix cannot be inverted. In order to force inversion, a very small ridge cIn with c  10�8

is added element-wise to W when the determinant becomes dangerously close to zero, much
like a ridge regression.[24] The e↵ect on �(k+1)

j is then estimated in order to correct for the
bias induced by this numerical adjustment.

The exact procedure is detailed in the source code, but amounts to the addition of the
ridge and then a correction from the fallout. The final estimate, after convergence, �̂j is used
to classify each pixel in the corresponding ecoregion for a given interval.

Algorithm processing chain

The algorithm and accompanying data pipeline (Figure 2.3) run within a map-reduce
framework to dramatically reduce computation time. The algorithm has been implemented
in Clojure and Java to run on a Hadoop distributed computing cluster. All source code is
fully documented and available in an online source code repository.[65]

Step 1: Build time series for all forested pixels

A time series of 16-day NDVI composites, monthly precipitation, and daily fires is created
for each 500 meter MODIS pixel. Monthly precipitation data is resampled to match the 16-
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day temporal resolution of the NDVI data. Daily fires are aggregated into counts for each
16-day period. The three datasets are then joined spatially into the native 500 meter MODIS
grid. Non-forest pixels are removed using the VCF data set with a threshold of 25 percent
tree canopy cover, following the methodology of Hansen et al. (2008) in the generation of
the 500 meter FCLH data set.[59]

Step 2: Extract time series trends

The basis observation is each telescoping interval from February 18, 2000 to each 16-day
period after 2005 for each 500 meter pixel. At this stage, the time series characteristics
described in Section 2.3 are extracted and associated with each basis observation. More
precisely, the feature vector that represents each basis observation is extended to include the
four NDVI time series characteristics, as well as four fire characteristics based on (1) total
fire count; (2) fire count with brightness greater than or equal to 330 Kelvin; (3) fire count
with confidence greater than or equal to 50 percent; (4) and fires meeting the brightness and
confidence thresholds.

Step 3: Collect neighborhood characteristics

The feature vector for each basis observation is further extended to include characteristics
from adjacent pixels within the specified time period. This step extends the feature vector
for each basis observation the following characteristics, based on at most 8 adjacent forested
pixels: (1) number of detected fires; (2) average short-term drop statistic based on the NDVI;
(3) most negative short-term drop statistic based on the NDVI; (4) average long-term trend
in the NDVI; (5) most negative long-term trend in the NDVI; (6) average t-statistic in the
long-term trend of the NDVI; (7) most negative t-statistic in the long-term trend of the
NDVI; (8) average break statistic calculated from the NDVI; (9) maximum break statistic
calculated from the NDVI; (10) number of fires with brightness greater than 330 Kelvin; (11)
number of fires with confidence greater than 50 percent; and (12) number of fires matching
both brightness and confidence thresholds.

Step 4: Train classifier

The time series characteristics for each pixel described in steps 2 and 3 are interpreted
for the period 2000-5 in terms of forest disturbance given in the 500 meter FCLH data set.
A logistic regression is used to model the probability of forest disturbance by weighting each
time series characteristic based on all forested pixels in a given ecoregion (Section 2.3).

Step 5: Apply classification rule

For each interval from 2000 through each 16-day period after the training period, the
classification rule from step 4 is applied to each pixel. This process interprets each pixel’s
time series characteristics over the given interval in terms of the spatiotemporal signature of
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historical forest disturbance in the pixel’s ecoregion. The result is a probability series that
represents the strength of the forest disturbance signal.

Step 6: Post-processing

The raw probability series for each pixel is smoothed using a 3-period moving average in
order to limit false positives. This inevitably delays detection and increases false negatives,
but allowing for evidence to accumulate improves the reliability of the system as an alarm.
The smoothed probabilities are interpreted as the level of confidence that forest disturbance
occurred in a given pixel.

2.4 Results

The geographic scope and high temporal frequency of the full data output is unique and
there is currently no pantropical dataset with which to directly compare the output data.
Furthermore, terms like forest clearing, loss, degradation and disturbance, used throughout
the literature, are applied inconsistently, making direct comparisons di�cult. Thus, we
reiterate here that the output dataset is designed to generate alerts of forest disturbance, or
forest cover change, not to estimate change area or classify the type of change. In this paper,
we use data from Brazil as a comparator data set to evaluate spatial and spatiotemporal
accuracy.

Spatial fit in Brazil

In Pará, Brazil, the Projeto de Monitoramento do Desmatamento na Amazônia Legal
por Satélite (PRODES) system generates the deforestation data set of record for the legal
Amazon. Developed by the Instituto Nacional de Pesquisas Espaciais (INPE), PRODES
deforestation data sets are derived each year from manually and automatically classified
Landsat and CBERS imagery.[20] Polygons representing clear cutting from 2000 to 2010
were downloaded from the PRODES website [66], merged to generate deforestation masks,
converted back into 60 meter resolution pixels, and aggregated to the 500 meter MODIS
grid for use as the reference data set. The proposed algorithm and FCLH agreement with
PRODES were assessed for the entire state of Pará, as shown in Figure 2.4a. Disturbance
alerts for the entire period are shown in Figure 2.4b.

The Kappa statistic between FCLH and output alerts at the 50 percent threshold over
the training period is 61.9 percent. Yet both perform similarly against PRODES, as shown in
Table 2.1, which reports the producer, user, and overall accuracy of the FCLH and the output
data sets against the PRODES reference data for 2000-2006 and 2007-2010 (accounting for
PRODES years starting in August). The accuracy rates for the output data are reported for
three di↵erent probability thresholds. The FCLH data set has already imposed an implicit
confidence threshold, and the data set is binary.[59]
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(a) Study areas (b) Intensity map of alerts, 2000-2010.

Figure 2.4: Spatial fit analysis covers all of Pará. Spatiotemporal analysis covers the red box
in Figure 2.4a.

For output data between 2000 and 2006 at all thresholds, user accuracy for detections is
greater than 90 percent. User accuracy increases to 97.9 percent at the 80 percent threshold,
reflecting more precise detections at the expense of producer accuracy, or detection sensitiv-
ity. The accuracy rates are not as high for the second time series (starting January 2006).
However, visual inspection of the data indicates that false positives tend to be grouped near
true positives, as will be shown in Section 2.4.

Producer accuracy is low for both FCLH and the alerts from proposed algorithm. This is
not unexpected from the proposed alerting algorithm, which has an explicitly limited scope
of detection and an aversion to false positives. As with previously published algorithms [75,
80], the low producer accuracy of the proposed algorithm is partly explained by the di↵erence
in resolutions (500 meter vs. 60 meter), timing of image acquisition, di↵ering definitions of
forest and forest disturbance, and the small size of many areas of disturbance.

Table 2.1 also reports the producer accuracy, highlighting the tradeo↵ between sensitivity
and precision. Specifically, the producer accuracy ranges from 7.65 percent to 13.53 percent
in a direct comparison to PRODES as the confidence threshold for the alerts ranges from
80 percent to 30 percent. There is a clear tradeo↵ with user accuracy, which declines from
93.38 percent to 78.72 over the same range of confidence thresholds. The implication is that
as the threshold increases, the alerting system becomes more precise but less sensitive.

The accuracy assessment is a function of the threshold choice, suggesting that relevance
or value of the system is dependent on the final use. A resource-constrained ranger may
care more about precision than sensitivity, and place more weight on the higher threshold
alerts. On the other hand, conservation groups interested in extremely early warning may
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find more value in hotspots of emerging, lower confidence alerts.
The accuracy assessment also depends on the definition of deforestation in the comparison

data set. Table 2.1 reports accuracy for a direct pixel-by-pixel comparison with PRODES,
aggregated to MODIS pixels. Any Landsat scale forest disturbance is counted as a distur-
bance event, even if only one 60 meter (0.36 ha) pixel is cleared within the 500 meter (25
ha) MODIS pixel. If, however, the comparison data set on forest disturbance is restricted to
500 meter pixels with PRODES deforestation covering more than half the area of the pixel,
then the producer accuracy at the 80 percent confidence threshold more than doubles to 16.9
percent in the 2007-2010 period. The shifting definitions of accuracy suggest that the full
range of alert probabilities should be used to support di↵erent use cases.

Table 2.1: Accuracy assessment, PRODES versus FCLH and output, 2000-2006 and 2007-
2010 in Pará, Brazil

FCLH Output (30) Output (50) Output (80)
2000 to 2006
Overall accuracy 89.59 89.55 88.89 88.09
Change producer 21.89 22.64 16.28 9.57
Change user 95.33 91.30 95.41 97.91
No change producer 99.84 99.67 99.88 99.97
No change user 89.41 89.49 88.74 87.96
2007 to 2010
Overall accuracy - 85.78 85.69 85.35
Change producer - 13.53 10.84 7.65
Change user - 78.72 87.34 93.38
No change producer - 99.32 99.71 99.90
No change user - 85.98 85.66 85.24

Spatiotemporal fit in Brazil

To evaluate temporal accuracy of the algorithm on an annual basis, a subsample of
Pará covering approximately 100,000 hectares in the southeast corner near Vila Mandi was
selected (Figure 2.4a). This area has experienced heavy deforestation, but also contains large
swaths of intact forest, including portions of an indigenous area. As reported by PRODES,
significant deforestation occurred from 2000 to 2008, but decreased markedly in 2009 and
2010.

To characterize temporal accuracy, pixels with probabilities 50 percent or greater were
converted to points representing the pixel centroid. The date attribute for each detection
point was snapped to the corresponding PRODES year. PRODES polygons were bu↵ered
by 100 meters to account in part for the di↵erent spatial resolution of the two data sets.
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Figure 2.5: Comparison of 500 meter alerts to PRODES. PRODES deforestation from 2000
to 2006 appears as black outlines, while deforestation prior to 2000 is shown as gray polygons.
False positive alerts appear as red pixels, while true positives appear in green.

Of 3,124 alerts in this area from 2007 to 2010 (Figure 2.5), 59 percent overlapped
PRODES and were detected in the same calendar year, and 16 percent of detections over-
lapped PRODES but were detected later. Eighteen percent had no overlap with the PRODES
data while percent of the alerts that overlapped with PRODES data were detected in years
prior to a PRODES detection of change. Further investigation of the 562 alerts that did not
initially show spatial overlap with PRODES revealed that 44 percent fell within 250 meters
– half a pixel – of PRODES change polygons.

A visual inspection using Google Earth of the remaining alerts that did not intersect
PRODES data showed that those alerts were typically immediately adjacent to areas of
disturbance or areas of forest degradation and roads. This suggests that the output data
would be useful as early warning of forest disturbance, prior to clear-cutting required for
inclusion in the PRODES data set.

2.5 Discussion

Producer Accuracy

Producer accuracy of the proposed alerting system is currently low in the comparison
with PRODES. The primary goal of the alerting system, however, to produce reliable alerts,
i.e., high user accuracy. The results suggest that the proposed detection algorithm yields
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the desired features of an alerting system. A future iteration of the algorithm currently
under development will move to 250 meter MODIS data – supporting detection of smaller
patches of disturbance – and improve the classification data with recently released 30 meter
resolution global tree cover loss data from Hansen et al. (2013).[57] We expect that accuracy
will improve significantly as a result.

Computation

The computational demands of a timely and geographically extensive forest disturbance
alerting system are non-trivial, and computational cost was a guiding factor in the develop-
ment of the algorithm. However, much of the computation is at the pixel level, allowing for
an “embarrassingly parallel” algorithm [76] that can be split across an arbitrarily large server
cluster. The derived features of multiple pixels are only consolidated on a single (virtual)
machine toward the end of the algorithm. The e↵ect is that within a map-reduce computa-
tional framework, the data have been reduced su�ciently during the map phase such that
only one reducer for each ecoregion is needed. This computational structure drastically re-
duces the computational cost, such that running this algorithm across the humid tropics for
a single period, let alone 13 years, is eminently feasible at low cost.

Feature selection

The final set of 20 features used for classification are limited to those that are associated
with an appreciable amount of independent explanatory power in the variation of historical
deforestation. Through a series of trials, a large list of potential time series detection algo-
rithms were distilled into the final set used in the algorithm.[113, 114] All experimentation
is available for review in the open source code repository.

2.6 Conclusion

Timely and geographically consistent information on forest disturbance is a necessary –
albeit insu�cient – condition to e↵ectively manage the use and protection of forest resources.
The proposed alerting system reports timely information on large-scale forest disturbance,
and while the classification rule is locally tuned the algorithm overall is globally consistent.

This has the advantage of generating consistent data that can be compared across trop-
ical countries or ecoregions. However, more research is needed to ensure that signals from
distinctive disturbance patterns at local scales can be detected, and to evaluate usefulness
in detecting scattered, small-scale disturbance as opposed to industrial-scale plantation agri-
culture.

While this study focused on spatial agreement with detailed PRODES data, future re-
search will examine in detail the temporal agreement of the alerts with the DETER moni-
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toring system. Systematic accuracy assessment outside Brazil will also be pursued to char-
acterize the algorithm’s strengths and weaknesses in other regions.

The proposed alerting system is intended to complement high-resolution assessments of
forest disturbance that are updated on an annual or less-frequent basis. With a relatively
simple algorithm that can be implemented in parallel on a server cluster, the results are
strikingly useful as a first-pass system for detecting forest disturbance.
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Chapter 3

The spatial mechanism for Indonesia’s

failed forest conservation policy

3.1 Introduction

The 2015 United Nations Climate Change Conference prompted a multinational commit-
ment of US$5 billion to reduce carbon emissions from deforestation.[67] The commitment
doubles down on previous e↵orts to mitigate climate change with forest conservation. Previ-
ous research has shown, however, that historical commitments have not reduced deforestation
as intended. Most notably, in 2010, Norway pledged US$1 billion in aid to Indonesia, con-
ditional on a significant reduction of its deforestation rate.[84] The Indonesian government
responded with a moratorium on new permits granted for development in primary forest.[9]
Despite the resource commitment, Indonesia “hasn’t seen actual progress in reducing de-
forestation,” according to the Norwegian Minister of the Environment in 2016.[107] Indeed,
Margano et al. (2014) show that the aggregate rate of deforestation increased after the mora-
torium was instituted; and specifically that within the first year of the moratorium, the rates
of both lowland and wetland primary forest cover loss exceeded those within the previous
decade.[78] This result is corroborated by both reports in the popular press and other sci-
entific studies.[18, 107] While these inquiries report high rates of deforestation, they do not
posit an explanation. Rather, they recommend that “questions concerning the moratorium
as a driver of increased deforestation are worthy of investigation.”[78] We o↵er an explana-
tion as to why the moratorium failed, based on shifting spatial patterns of deforestation. We
proceed to argue that the observed trends in deforestation patterns can be rationalized with
basic production theory, and that economic incentives should be a first-order consideration
when designing conservation policy.

The Indonesian moratorium was put into e↵ect in May 2011, prohibiting the award of new
licenses to clear natural forest. The moratorium was initially set to expire after two years in
May 2013, but was repeatedly extended and continues to exist in 2016.[9] The moratorium
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originally covered 90% of primary forest in Indonesia, although the spatial extent has been
revised several times.[84] Notably, licenses that were granted prior to the moratorium were
not rescinded; development of natural forest was allowed to continue within existing conces-
sions. Of the existing concessions, approximately 79% of allocated area was undeveloped in
2010, leaving a significant amount of natural forest designated for legal development.[22] In
e↵ect, the moratorium constrained development on one margin with alternatives available
and abundant. The net e↵ect of the moratorium is dependent on the rate of substitution
between the two margins. We show that the substitution toward the latent, undeveloped mar-
gin exceeded the substitution away from business as usual development. We use the island
of Borneo as a natural experiment to assess the causal impact of the moratorium. Specifi-
cally, we leverage the national boundary that bisects Borneo into Indonesia and Malaysia for
identifying variation. Indonesia was subject to the policy, whereas Malaysia was not. The
di↵erential policy on the same island constitutes a natural experiment, with deforestation
patterns in Malaysia serving as a baseline reference. The outcomes of the two groups (Indone-
sia and Malaysia) are compared across two time periods (before and after the moratorium) to
yield a di↵erence-in-di↵erences estimator of the policy impact. The estimator measures the
shift in spatial patterns of deforestation when the moratorium was enacted, conditional on
economic variables that may confound or mask the e↵ect. We employ a standard parametric
regression, followed by a semi-parametric approach as a robustness check.

3.2 Data

We utilize data on forest clearing activity from Global Forest Watch, an online platform
that tracks deforestation from satellite imagery. The Forest Monitoring for Action (FORMA)
reports forest cover loss at 500-meter resolution and at 16-day intervals.[54] These data are
openly accessible through a web service, so that the cost of fully replicating this study is
low – arguably much lower than most empirical studies. The FORMA data set was selected
from the available, remotely sensed data on deforestation because it is updated at a time
scale commensurate with economic decision making. There is a trade-o↵ between the spatial
and temporal resolution of the data: higher spatial resolution information on deforestation
is updated with lower frequency. With FORMA, we have data for each month between
January 2008 and May 2012, yielding 218 observations for each of the forested pixels in
Borneo. Forested pixels are defined by a Vegetative Continuous Field (VCF) value of 30% or
greater in 2000 – a common standard for forest cover loss data based on NASA’s Moderate
Resolution Image Spectrometer (MODIS) sensor.[40, 59] The top panel in Figure 3.2 presents
the aggregate number of pixels subject to forest clearing activity in Kalimantan, Indonesia
and Sarawak, Malaysia – the states that partition Borneo. The vertical lines indicate the
timing of the moratorium, when it was announced and when it was subsequently enacted.
Note that the rates of both Indonesian and Malaysian clearing increased after the policy
treatment; but also that the di↵erence between the two series increased.
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3.3 Estimation strategy
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Figure 3.1: Illustration of clusters

Let !it indicate the aggregate rate of clearing ac-
tivity in country i 2 {idn, mys} and time period t 2
{1, . . . , 109}. The aggregate rate can be partitioned into
two types of clearing activity, remote (rit) and periph-
eral (pit) clearing, such that !it = rit + pit. Peripheral
clearing is defined as clearing activity that occurs on
the periphery of previously existing clusters of cleared
land. Remote clearing is forest cover loss is su�ciently
far away from previously cleared land, such that it con-
stitutes new clusters of cleared land. Figure 3.1 illus-
trates the two types of clearing activity. The black pixels indicate clearing that occurred in
an previous period, considered an existing cluster of deforestation. The pixels labeled A, B,
and C are considered peripheral clearing activity, whereas pixels D and E are remote clear-
ing activity. The Let r̃it = rit/!it be the proportion of clearing activity in remote clusters
for each country and time period. The estimating equations are given by

!it = �0 + �1mt + �2ci + ⌧!(mt · ci) + ✏it (3.1)

r̃it = ↵0 + ↵1mt + ↵2ci + ⌧r(mt · ci) + ✏it (3.2)

where ci 2 {0, 1} is a binary indicator with ci = 1 when i = idn, and where mt 2 {0, 1}
is a binary indicator with mt = 1 when t is after the policy treatment. We allow for two
definitions of policy treatment because the moratorium was not immediately enacted when
it was announced. The investment decisions of land developers may be impacted by the
announcement alone, so we estimate the policy impact separately for the announcement and
enactment, or January 2011 and May 2011, respectively. Then (mt · ci) = 1 when the obser-
vation was in Indonesia, post-policy treatment. The coe�cient estimates ⌧̂! and ⌧̂r indicate
the causal e↵ect of the policy on the target variable. A consistent estimator requires that
✏it ⇠ N (0, 1), or that the unobserved variables impacting the target variables are uncor-
related with explanatory variables. One particularly concerning assumption that is implied
by this normality condition is the parallel trends assumption. In context, the assumption
for a consistent estimator is that the forest clearing response to economic conditions is the
same for both Indonesia and Malaysia. The timing and length of response to, say, an abrupt
change in global commodity prices may be di↵erent across countries. We relax the assump-
tion with nonparametric matching of local trends, both before and after the moratorium.
See the Supplementary Material, Estimation for further details.

3.4 Results
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The bottom panel of Figure 3.2 displays the price of palm oil, which is an economically
important commodity in Indonesia.[106] The price of the agricultural products determine the
demand, and in turn the derived demand for cleared land – a critical input to agricultural.[47]
Commodity prices across the board increased dramatically during this period.[10] Overlaid
on the palm oil price, we report the di↵erence in remote clearing as a proportion of total
clearing between Indonesia and Malaysia for each time period (r̃t,idn � r̃t,mys for each t).
By inspection, this di↵erence was lower after the moratorium than before the moratorium,
relative to commodity prices. This visualization suggests that investment in new clusters was
lower than expected in Indonesia after the moratorium. The quantified results are presented
in Table 3.1. Columns (1) and (2) report the parametric ⌧̂! estimates for the two definitions of
post-policy – when the moratorium was announced and when it was enacted. The estimates
indicate that ⌧̂! > 0, suggesting that the policy precipitated an increase in the aggregate
rate of forest clearing activity. This result corroborates previous studies. Columns (3) and
(4) report the comparable, parametric estimates for ⌧̂r for when the moratorium was enacted
and announced. Columns (5) and (6) reestimate the equation with “snapped” time series,
relaxing the assumption of strictly parallel trends near the treatment switch – which serves as
a robustness check. Indeed, the estimated treatment e↵ect is reasonably stable with ⌧̂r < 0.
The proportion of clearing activity in remote clusters significantly declined. The results are
robust to placebo simulations.[13] In sum, the moratorium increased the aggregate rate of
forest clearing activity and consolidated the spatial pattern of clearing activity.

The shift away from remote clearing was more than o↵set by the shift toward periph-
eral clearing, precipitating in a higher aggregate rate of clearing activity. The estimated
parameters translate into a significant increase in aggregate deforestation, and a significant
decrease in the proportion of clearing in peripheral clusters. In response to the moratorium,
forest clearing activity in Indonesia became less fragmented but more intense, conditional
on economic variables and relative to Malaysian forest clearing activity.

These results, when taken together, are consistent with basic production theory. A full
treatment of the economic theory that underlies agricultural production in Indonesia is be-
yond the scope of this article, and even beyond the scope of the more extensive structure
presented in the Supplementary Material, Theory. However, it is worth noting a min-
imally su�cient set of features that explain the substitution between the two margins of
deforestation. Peripheral clearing activity can be conceived as development on the intensive
margin, or intensifying clearing on existing clusters. Likewise, remote clearing activity is
development on the extensive margin, or the creation of new centers of production. The rate
of substitution between the two margins is a function of the relative cost and productivity
of the cleared land – a critical input to agricultural or timber production. By definition, the
moratorium raised the relative, expected cost of the extensive margin. Development within
existing concessions was not further restricted by the moratorium. It is natural, then, that
producers subject to the new constraint would shift away from extensive clearing at the
margin. The net increase in aggregate clearing is consistent with peripheral land as a less
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productive input than remote land. While this assertion should be examined more exten-
sively (at least to assess the magnitudes) the relation of spatial pattern to revealed prod
backed by location theory in agricultural production.[cite] The basic insight is that a plot is
seeded by the most productive land, and developed outward until the marginal cost exceeds
the marginal benefit.[cite] Together, the di↵erential in productivity and cost increases across
margins would yield a net increase in deforestation, given that firms are profit maximizing.
It is clear that limiting analysis to one island in the archipelago is not comprehensive; but
the profit maximizing, economic structure that is imparted from the theory suggests that
the results may be extensible to other areas.

3.5 Conclusion

The primary contribution of this paper is to o↵er empirical evidence that the spatial
distribution of deforestation was an important factor in the 2011 moratorium’s failure to
control deforestation. The results are rationalized by economic theory, which provides a
framework to extend the results to future policy design. The primary insight illustrated by
the empirical results is that profit-maximizing agents will substitute away from more costly
inputs to production. Policy that di↵erentially impacts the costs to inputs will induce a
shift toward the relatively cheaper inputs. The profit-maximizing substitution will temper
the intended e↵ect of conservation policy. It is important, then, to understand the margins
of production when designing policy that is intended to rearrange production. Displace-
ment of deforestation is often a primary policy concern across national borders (often called
“leakage”) but it is equally important to consider other margins across space and time.

3.6 Supplementary material

Theory

The empirical results are consistent with a basic economic model of production. Weitz-
man (1976) constructed a model of optimal extraction for a depletable resource from multiple
sites. Here, cleared land is treated as a capital input to agriculture, and is stored in the form
of primary forest. When primary forest is cleared, the land is activated for agricultural pro-
duction. Once cleared, the land cannot return to primary forest. Agricultural investment
in land can be partitioned into remote and peripheral clearing, depending on its location
relative to previously cleared land. The two margins of production have di↵erent charac-
teristics, which determine the rate of substitution between the two inputs. The aggregate
e↵ect on the input mix when the price of one input changes is a function of the marginal rate
of substitution between the inputs. Weitzman’s model explicates the conditions that yield
higher aggregate deforestation when the expected, marginal cost of one input increases.
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Figure 3.2: The impact of the moratorium on new forest concessions and commodity prices
on the spatial distribution of forest clearing activity.
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total clearing (!it) proportion in peripheral clearing (pit)

(1) (2) (3) (4) (5) (6)

(Intercept) 152.18 374.79⇤⇤⇤ 3.70⇤⇤⇤ 4.15⇤⇤⇤ 4.27⇤⇤⇤ 4.79⇤⇤⇤

(140.81) (125.37) (0.62) (0.75) (0.67) (0.84)
Indonesia 98.20⇤⇤⇤ 94.32⇤⇤⇤ 2.63⇤⇤⇤ 2.37⇤⇤⇤ 2.62⇤⇤⇤ 2.31⇤⇤⇤

(22.96) (16.79) (0.10) (0.10) (0.11) (0.11)
post-policy 16.26 75.73⇤⇤⇤ �0.37⇤⇤⇤ �0.084 �0.50⇤⇤⇤ �0.11

(26.32) (23.50) (0.12) (0.14) (0.13) (0.16)
palm oil price 57.58⇤ 3.29 4.41⇤⇤⇤ 3.98⇤⇤ 2.47 2.00

(34.13) (30.51) (1.51) (1.82) (1.62) (2.05)
(palm oil price)2 �3.09 �0.13 �2.09⇤⇤ �2.37⇤⇤ �0.62 �1.02

(1.98) (1.77) (0.88) (1.06) (0.94) (1.19)
policy impact 65.43⇤⇤⇤ 127.62⇤⇤⇤ �0.84⇤ �0.54⇤⇤⇤ �1.04⇤⇤⇤ �0.72⇤⇤⇤

(32.62) (31.48) (0.14) (0.19) (0.16) (0.21)

R2 0.290 0.462 0.834 0.769 0.808 0.708
Adj. R2 0.274 0.449 0.830 0.763 0.804 0.701
Num. obs. 218 218 218 218 218 218

***p < 0.01, **p < 0.05, *p < 0.1

Table 3.1: Empirical results.

Following Weitzman’s (2003) notation, define G(K, I) as the net current cash flow of
agriculture, where K is a vector of capital inputs and I is a vector of the associated fixed-
cost investments. The profit-maximizing developer will choose investment to maximize the
present value of G(·) over time. The detailed time-path of development is incidental in
determining the aggregate e↵ect of a change in the investment vector. For this type of
application, Weitzman suggests an “old economist’s trick” to collapse the dynamic problem
to its stationary equivalent. Consider the prototypical optimal control problem:

max

Z 1

0

e�⇢tG(K(t), I(t)) dt

subject to K̇(t) = I(t)
and K(t) � 0

where K(t) is the cumulative stock of capital inputs in time t, K̇(t) is the change in the
capital stock in time t, and I(t) is the instantaneous investment in the corresponding capital
inputs. The parameter ⇢ indicates the competitive interest rate. Define R(K̂) to be the
stationary rate of capital return. The stationary solution requires that there exists a time T
such that for any ✏i > 0 and t > T , the optimal solution maintains I(t) < ✏. The vector K̂ is
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the capital input mix that satisfies the conditions for a stationary solution. The stationary
rate of capital return is thus defined as

R(K̂) =
@G(K,0)/@K

@G(K,0)/@I
(3.3)

The fundamental theorem of capital theory sets the stationary rate of return equal to the
competitive interest rate, resulting in the the system of equations

R(K̂) = ⇢ (3.4)

Equation (3.4) suggests that the investment mix is subject to an external valve, such that
the decision to invest in each capital input will be weighed against the going interest rate.
Note that the stationary solution may never be reached, but investment decisions will push
the capital mix toward the stationary solution over time. An implication of Equation (3.4)
is that, for any two inputs i and j,

@G(K,0)/@Ki

@G(K,0)/@Ii
=

@G(K,0)/@Kj

@G(K,0)/@Ij
) @G(K,0)/@Ki

@G(K,0)/@Kj
=

@G(K,0)/@Ii
@G(K,0)/@Ij

(3.5)

The system described in Equation (3.5) demonstrates that at the stationary solution, the
bang-per-buck for each input is equal. Otherwise, the profit could be increased by investing
more in a di↵erent input mix, implying that the solution is not stationary. The implications
are not so di↵erent from the static, two-factor production model. The present value of
the marginal rate of technical substitution should equal the present value of the relative
investment costs at the optimum. Two elements of the vector K̂ are cleared land on the
periphery of existing clusters and cleared land that would constitute a new, remote cluster.
Let K̂1 be the stationary capital usage for peripheral land, and let K̂2 be the stationary
usage of remote land. These two inputs can be combined to produce a certain level of
agricultural product at a competitive market price. The associated revenue, or value to
the land developer, is the gross gain Weitzman’s G(·) function. At this point, the dynamic
problem has been su�ciently collapsed to use the standard insight from a static two-factor
production model. The derivation from the dynamic problem ensures that the subsequent
insight is robust up to the dynamic considerations faced by the land developer.

The implication in Equation (3.5) suggests that the optimal solution will remain on a
level set of G(·), even after a change in relative input prices. We refer to this level set
symbolically as Ḡ, and is depicted in Figure (3.3). The two inputs, peripheral and remote
cleared land, are highly substitutable in agricultural production, such that the level set is
almost linear. The rate of substitution, or the slope of the level set, is determined by the
marginal productivity of each land type. If peripheral land is, on average, less productive
than remote land, then the slope of Ḡ will be shallow. If peripheral land is relatively more
productive, then the slope of Ḡ will be steep. Note that the slope is not determined by the
input price; but rather just the relative productivity of the inputs. Equation (3.5) provides
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the link between input price and productivity at the optimum. Specifically, after an input
price change, the cost-minimizing input mix will remain on the level set, albeit at a di↵erent
point.

Suppose that K̂
0
1 and K̂

0
2 satisfy Equation (3.5) under an initial cost regime. If the re-

quired investment for a unit remote land increases, then the optimum input mix will move

along the isoquant to (K̂
00
1, K̂

00
2). This situation corresponds to the moratorium. The mora-

torium di↵erentially impacted the cost of investment in remote clusters by increasing the
uncertainty surrounding the maintenance of the capital input. Given that the moratorium
map is uncertain and changes every six-months, the likelihood that a concession granted after
May 2011 may be revoked is non-trivial. At best, the moratorium increases the uncertainty
of a stranded capital asset (cleared land), and at worst, the moratorium provides leverage
to local administrators to extort money from land developers. The rate of corruption sur-
rounding land tenure and development in Indonesia has skyrocketed since the moratorium,
according to various local news reports. Either way, the requisite investment for remote
clusters increased relative to peripheral clusters as a direct result of the moratorium. Figure
(3.3) indicates that the relative intensity of remote land decreases in response to the price
increase.

The e↵ect of the moratorium on the aggregate use of cleared land depends on the average
slope of the present value isoquant, which is in turn determined by the relative productivity
of the two land types. The dominant use for land cleared at large-scale in Borneo is palm
oil. The palm oil production process requires that the raw kernels be processed by a central
facility within 24 hours of harvesting. The kernels spoil quickly, and the proportion of
spoiled kernels increases in time. The time required to transport the harvested kernels to
the processing facility is substantial, given a network of poor, dirt roads. Cleared land
that is close to the processing facility therefore has a higher per-acre yield of processed oil
than cleared land that is further away. Land on the periphery of existing clusters is, by
definition, further away from the seed of the deforestation cluster than the seed itself. New
clusters in remote forest landscapes therefore have a higher productivity over the course of
the plantation development. Peripheral deforestation indicates that the plantation is further
along in its development than remote deforestation, which indicates initial clearing activity.
The argument is, in e↵ect, a geometric argument, and reflects the diminishing productivity
of a unit of land as the plantation grows.

The characteristics of the two land types support this argument. Note that the tangency
of the isocost line would imply that the cost of investment tends to be higher K̂2 than for K̂1.
It is more di�cult to prepare cleared land for agriculture at higher elevations and at higher
slope, all else equal. We use the elevation data from the SRTM digital elevation model
to examine the characteristics of the two land types. For both Indonesia and Malaysia,
the slope and elevation are significantly higher for remote deforestation than for peripheral
deforestation (with p-values less than 0.001). This result is consistent with the slope of the
isoquant in Figure (3.3).

Note that, assuming the shallow isoquant in Figure (3.3), an increase in the cost of



29

K̂2

K̂1

K̂
0
2

K̂
0
1

K̂
00
2

K̂
00
1

Ḡ
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Figure 3.3: Illustration of an isoquant where the inputs exhibit a high degree of substitution
in production and a low marginal rate of technical substitution.

investment in K̂2 will yield an increase in the aggregate level of cleared land at the optimum,
i.e.,

K̂
0
1 + K̂

0
2 < K̂

00
1 + K̂

00
2 (3.6)

The decrease in K̂2 is more than o↵set by the increase in K̂1 as land developers shift agricul-
ture to the periphery of existing clusters, despite the lower marginal production. After the
dynamic investment decisions are collapsed to their stationary equivalents, there is nothing
particularly deep about this structure. The empirics indicate that, indeed, more land was
cleared in the aggregate after the moratorium, even with a decrease in remote clusters.

Estimation

The estimation strategy is based on the di↵erence-in-di↵erence (DiD) approach, a quasi-
experimental method to measure the impact of an abrupt policy change. DiD estimation
is common in economics because of its simplicity, but it comes with limitations.[13] An
especially concerning limitation in this context is the assumption of parallel paths. The
assumption insists that, conditional on the covariates, the potential path in the treatment
group is the same as that for the control group. Here, the parallel path assumption requires
that (among other things) the patterns in deforestation in the treatment and control groups
respond in lock step to exogenous cofactors. It is more likely, however, that producers in
Malaysia may respond di↵erently than producers in Indonesia to interest rates, commodity
prices, or other economic factors that drive the demand for inputs to agricultural produc-
tion. We relax the parallel path assumption by employing methods in dynamic time warping
(DTW), which are often used in speech processing and gesture recognition.

The basic empirical model is specified in Equations (3.1) and (3.2). The target variables,
!it and r̃it, are directly observed from the raw data. There is no processing or smoothing
of the measures prior to estimation. The parallel paths assumption applies to these two
variables. Consider, however, the top panel of Figure 3.2. The short-term variation in the
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Figure 3.4: The results of DTW matching.

aggregate rates of deforestation tend to move together across the two countries. A small
bump in deforestation in Indonesia is often accompanied by a small bump in deforestation
in Malaysia, albeit shifted or elongated through time (the x-axis). The “small bumps” are
clearly induced by an external, possibly unobserved factor. If the external force influences
the target variables (a) around the same time as the policy change, and (b) di↵erentially in
the control and treatment groups, then the parallel path assumption may be violated. For
example, if the response to an external force is more delayed in Indonesia than in Malaysia,
then the e↵ect may be falsely ascribed to the policy – just by virtue of the di↵erential
response time.

A possible remedy is to preprocess the target variables to remove transient di↵erences
in the series that are not caused by the policy. We are interested in “snapping” the time
series for the treatment group to the time series of the control group, based on short-term
variation. The objective is to remove any variation induced by heterogenous responses to
exogenous factors that may bias the DiD estimator. To this end, we employ DTW methods.
DTW e↵ectively warps the time series, searching for the arrangement of the treatment series
that minimizes the di↵erence between the treatment and control series, based on short-
term variation. The minimization problem is restricted to short-term variation by enforcing
a moving window of a given length, although there are many ways to perform dynamic
warping. We rely on the dtw package in R.[] All supporting code is posted online, with
assumptions documented. The results of the warping are presented in Figure 3.4.

The first di↵erence – between treatment and control – is determined by the match shown
in Figure 3.4. The matched series becomes the basis for the second di↵erence – before
and after treatment. In some sense, then, the target variables for the treatment group
(Indonesia) is preprocessed before the models in Equations (3.1) and (3.2) are estimated.
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Note that DTW will not solve the problem of non-parallel paths that are persistent over
time. Rather, it only addresses the edge e↵ects – the potential time shifting close to the
time of policy implementation. The DTW procedure should be viewed as a robustness check,
alongside the placebo tests also used to check the stability of the results.
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Chapter 4

Economic dynamics and forest

clearing: A spatial econometric

analysis

4.1 Introduction

Forest clearing is an enormous contributor to global warming, accounting for some 15%
of annual greenhouse gas emissions.[31] Most forest clearing occurs in developing countries
that have limited resources and regulatory capacity. Since these countries understandably
focus their energy and resources on poverty alleviation, their support for forest conservation
will be weak as long as forested land has a higher market value in other uses. Under
these conditions, many actors will continue clearing their forested land unless they are given
conservation payments that match or exceed the opportunity cost of the land. This economic
insight has led to the establishment of REDD+ (Reducing Emissions from Deforestation and
Forest Degradation in Developing Countries), an international mechanism for compensating
proprietors for forest conservation.

While the conceptual foundations of REDD+ are straightforward, its actual success will
depend on program designs tailored to the economic dynamics of forest clearing in tropical
forest countries. Stern et al. (2006) and Enkvist et al. (2009) have asserted that carbon
emissions abatement from forest conservation is generally lower-cost than abating emissions
from fossil fuels.[41, 105] For example, the UNFCCC’s estimate of CO2 emissions from forest
clearing (5.8 Gt) implies an aver-age abatement cost of only $2.10/tonne.1 While such general

A version of this chapter first appeared in the Ecological Economics (2013) Vol. 85, with David Wheeler,
Robin Kraft, Susmita Dasgupta, and Brian Blankespoor.

1This estimate is based on the opportunity cost of forested land.
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estimates inform the policy dialog, they cannot guide specific conservation programs because
the economic returns to forest clearing vary widely over space and time. For many agents,
land clearing for production is a lumpy investment driven by expectations about future prices
and demand conditions. These expectations and investor interest in land clearing will change
with market conditions, creating problems for REDD+ incentive programs based on fixed
payments, or traditional forest conservation programs that focus on protection of designated
areas.

Extensive theoretical work has considered the role of economic dynamics in forest clearing.
However, relevant empirical research has been severely hindered by the lack of spatially-
disaggregated time series data. Until recently, the translation of satellite images into credible
estimates of forest clearing has been so cumbersome that updates have taken years for
many countries. As a result, empirical research has focused on multi-year clearing and
its relationship to demographic and geographic factors. The forced exclusion of fluctuating
economic conditions from most studies has left researchers and policymakers uncertain about
the timing, magnitude and spatial incidence of their e↵ects. At the same time, long lags in
forest monitoring have left conservation managers blind to new threats in many areas, and
program evaluators unable to provide timely assessments of conservation measures.

Faced with these limitations, donors and governments have traditionally focused on
legally-protected areas. Mounting empirical evidence suggests that some forms of protec-
tion have significantly reduced forest clearing, but it has remained di�cult to defend fixed
conservation frontiers with limited monitoring information.[87] In addition, the advent of
massive REDD+ payment programs will force donors to account for billions in expenditure
for targeted reductions of carbon emissions from forest clearing. Such programs are not
likely to survive taxpayer scrutiny unless they incorporate much more accurate and timely
information.2

Fortunately, the state of the art in forest monitoring is now advancing rapidly. Work by
Hansen et al. (2008), Souza (2006), Townshend et al. (2008), Hammer et al. (2009), Asner
(2009), Jarvis (2009) and others is creating new, high-resolution forest information systems
based on NASA’s MODIS (Moderate Resolution Imaging Spectrometer) and Landsat pro-
grams, as well as airborne light detection and ranging (LiDAR).[59, 101, 108, 54, 8] Drawing
on advances for the MODIS system, Hammer et al. (2009) have recently published FORMA
(Forest Monitoring for Action), a monthly database for forest clearing in Indonesia at 1 km
resolution since 2005.

Equipped with the vast new information resource available from FORMA, this paper
focuses on Indonesia for an in-depth econometric study of economic dynamics and forest
clearing at a high level of spatial and temporal disaggregation. Economic dynamics are
clearly important for the Indonesian case, which is heavily driven by forest clearing for
palm-oil and wood-processing exports to fast-changing Asian markets.

The remainder of the paper is organized as follows. Section 4.2 reviews the extensive

2In addition, land which is most appropriate for REDD+ programs may not be in currently-protected
areas.
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prior research on the economics of forest clearing. In Section 4.3 we discuss past limitations
imposed by data scarcity, and the implications of recent technical advances for expanded
research in this domain. Section 4.4 introduces the FORMA database, a critical contributor
to the expanded prospectus, and uses FORMA data to investigate patterns of national and
local forest clearing in Indonesia since 2005. In Section 4.5, we develop a model of forest
clearing based on expected profitability calculations by potential investors in commercial
production on currently-forested land. Section 4.6 describes the available data and Section
4.7 specifies a model for econometric panel estimation. We present and discuss our econo-
metric results in Section 4.8, while Section 4.9 summarizes and concludes the paper. Section
4.10 provides additional details on the econometric strategy, beyond the scope of the core
chapter.

4.2 Prior research

Previous empirical research has assessed the relative importance of numerous factors that
may influence the conversion value of forested land. These include local population scale and
density, distance from markets, the quality of transport infrastructure, agricultural input
prices, physical factors such as topography, precipitation and soil quality, and zoning into
categories that include protected areas. The results are generally consistent with a model
in which the conversion of forested land varies with potential profitability.3 Among studies
that control for protection zoning, Nelson and Chomitz (2009) provide the most rigorous and
comprehensive assessment.[87] Their finding for the tropical forest biome — that protected
areas have less land clearing, ceteris paribus — supports the specific results of Gaveau et al.
(2009) for Sumatra, Indonesia.[46]

The existing research provides many useful insights about long-run drivers of forest clear-
ing. Nelson and Chomitz (2009) and Rudel et al. (2009) have studied land-use change across
countries over multi-year intervals.[87, 96] Within counties, numerous econometric studies
have estimated the impact of deforestation drivers across local areas during multi-year in-
tervals. Some studies have used aggregate data for states, provinces or sub-provinces (e.g.,
studies for Brazilian municipios by Pfa↵ (1997) and Igliori (2006), and Mexican states by
Barbier and Burgess (1996)).[89, 64, 11] Many studies have also used GIS-based techniques
to obtain multi-year estimates at a higher level of spatial disaggregation (e.g., Cropper et
al. (1999, 2001) for Thailand; Agarwal et al. (2005) for Madagascar; Deininger and Minten
(2002); Chowdhury (2006) and Vance and Geoghegan (2002) for Mexico; Kaimowitz et al.
(2002) for Bolivia; and De Pinto and Nelson (2009) for Panama).[34, 35, 2, 39, 27, 112, 69,
37] In rarer cases, studies have used annual national or regional aggregate time series over
extended periods (e.g. Zikri (2009) for Indonesia; Ewers et al. (2008) for Brazil). These

3For detailed summaries, see particularly Chomitz (2006); also Igliori (2006) and Wunder and Verbist
(2003).[26, 64, 118]
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studies are hindered by limited degrees of freedom, since they must control for many factors
and available observations are annual at best.[119, 43]

While econometric work on long-run forest clearing drivers is well-advanced, data prob-
lems have limited treatments of short-run economic dynamics to theoretical work and sim-
ulation modeling. Arcanda et al. (2008) and others have studied the theoretical relation-
ships between economic drivers and forest clearing.[7] Notable simulation exercises include
Cattaneo (2001) for Brazil and San et al. (2000) for Indonesia.[23, 97] The latter study in-
vestigates economic drivers of forest clearing in Sumatra using a multisectoral, multiregional
computable general equilibrium model. Since short-period data were not available to the
authors, they use changes in deforestation-related sectors (e.g. plantation agriculture and
wood products) as proxies. While the results are interesting and suggestive, they depend
entirely on the researchers’ specification of CGE parameters, and are unable to provide any
estimates for areas smaller than provinces.

While more temporally- and spatially-disaggregated studies have been awaiting the ad-
vent of better data, econometric theorists have been laying the groundwork for e�cient
estimation of more highly- disaggregated models. Notable contributions to the literature
on computable approaches to spatial econometric analysis have been made by Agarwal et
al. (2002), Anselin (2001, 2002), Barrios et al. (2012), Kapoor et al. (2007), Kelejian and
Prucha (1998, 2010), and Kelejian et al. (2004).[1, 4, 5, 12, 70, 71, 72, 73]

4.3 Expanding the scope of work

Past contributions

Many estimates of forest clearing are based on remotely-sensed data that have been
available in various forms for decades. Perhaps the most impressive contribution has been
made by Brazil’s PRODES (2009), which has provided yearly maps of Amazonian forest
clearing since 1988. Since 2004, these have been augmented by twice-monthly estimates
from Brazil’s DETER system.4 Another noteworthy Brazilian contribution is Imazon’s Forest
Transparency Initiative, which has utilized MODIS data to produce and rapidly disseminate
information about forest clearing in Mato Grosso State (Souza et al., 2009).[102]

Several global-scale studies of forest clearing have been reported in scientific journals. Al-
though they have laid the groundwork for global monitoring, these studies have not replicated
the Brazilian contribution by providing updated, online reporting. Nor are they accessible
to non-specialists who do not have a deep understanding of Geographic Information Systems
(GIS) and remote sensing techniques. As Grainger (2008) has noted, tracking the long-term
trend in tropical forest clearing has been problematic.[51] Hansen et al. (2008) identify global
forest clearing in humid tropical forests using MODIS and Landsat images for the period

4Detailed descriptions of PRODES and DETER are available from Brazil’s National Institute for Space
Research (INPE).
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2000-2005.[59] Mulligan (2008) uses remotely sensed data for assessment of land-use changes
in and around protected areas from 2000 to 2005.[83] Carroll et al. (2006) identify changes
in vegetation cover from 2001 to 2005.[56]

Several institutions provide detailed information on forest clearing with varying quality,
but they have not attempted continuous global monitoring at high resolution. The FAO pro-
vides a detailed Global Forest Resources Assessment at the country level, updated at 5-year
intervals. The World Resources Institute (WRI) has published detailed maps of forest clear-
ing hotspots in Latin America, Asia and Africa for the period 20002006. The website main-
tained by Global Forest Watch has provided global information, but with non-standardized
spatial and temporal coverage of di↵erent datasets by country, infrequent updates, and a map
interface that does not permit integrated global views. In summary, outside of Brazil, policy
researchers have not been able to access panel databases su�cient for in-depth investigations
of country-specific dynamics.

Recent advances

Recently, a group a�liated with the Center for Global Development, the World Resources
Institute and the University of Maryland has laid the groundwork for a global database that
will permit much more rigorous empirical work on the economic dynamics of forest clearing.
Called FORMA (Forest Monitoring for Action), the system utilizes data recorded daily
by the Moderate Resolution Imaging Spectrometer (MODIS), which operates on NASA’s
Terra and Aqua (EOS PM) satellite platforms. Although its signal-processing algorithms
are relatively complex, FORMA is based on a common-sense observation; tropical forest
clearing involves the burning of biomass and a pronounced temporary or long-term change
in vegetation color, as the original forest is cleared and replaced by pastures, croplands or
plantations. Accordingly, FORMA constructs indicators from MODIS-derived data on the
incidence of fires and changes in vegetation color as identified by the Normalized Di↵erence
Vegetation Index (NDVI). It then calibrates to local forest clearing by fitting a statistical
model that relates the MODIS-based indicator values to the best available information on
actual clearing in each area.

FORMA incorporates biological, economic and social diversity by dividing the monitored
territory into blocks and separately fitting the model to data for the parcels in each block.
The dependent variable for each pixel is coded 1 if it has actually experienced forest clearing
within the relevant time period, and 0 otherwise. The MODIS-based indicator values are
the independent variables. For all tropical countries except Brazil, the best identification of
recent forest clearing has been published in Proceedings of the National Academy of Sciences
by Hansen et al. (2008), who provide estimates for 500m parcels in the humid tropics.[59]
FORMA is calibrated using the map of forest cover loss hotspots (henceforth referred to as
the FCLH dataset) published by Hansen et al. for the period 2000-2005.

Using the FCLH pan-tropical dataset for 2000-2005, FORMA fits the calibration model
to observations on forest clearing for 1 km2 cells in each country and ecoregion. As Hammer
et al. (2009) document, the model’s predicted spatial probability distribution provides a



37

very close match to the spatial incidence of FCLH forest clearing.[53] FORMA then applies
the fitted model to monthly MODIS indicator data for the period after December 2005. The
output for each month is a predicted forest clearing probability for each 1 km2 parcel outside
of previously-deforested areas, as identified in the FCLH map.

FORMA selects parcels whose probabilities exceed 50%.5 It calculates the total number
of selected parcels within a geographic area to produce an index of forest clearing activity
in that area. Even small geographic areas can include thousands of 1 km cells, so error-
averaging ensures robust index values.6 FORMA’s outputs consistently aggregate to forest
clearing indicators for subnational, national and regional entities.

While FORMA represents a significant advance in monitoring forest clearing dynamics,
its limitations must also be understood. FORMA’s identification of parcels where signifi-
cant forest clearing has occurred does not imply that these parcels have been completely
deforested. As we have noted above, FORMA’s probability estimates are generated by a
model fitted to data from Hansen et al. (2008), who assign values of 1 to pixels where forest
clearing at agro-industrial scale (FCAS) is estimated to have occurred during 2000-2005,
and 0 otherwise. By implication, each pixel with FCAS has experienced significant, but not
necessarily total, clearing. Of necessity, FORMA’s estimates reflect the same logic. After
aggregation to the kabupaten level and time-di↵erencing, each FORMA observation in our
Indonesian panel database should be interpreted as the monthly change in 1 km parcels that
have experienced FCAS with a probability greater than 0.50.

This new dataset permits panel estimation of spatially-disaggregated forest clearing mod-
els that incorporate short- and medium-term economic dynamics, as well as previously-
studied demographic and geographic determinants of forest clearing. It also permits explicit
consideration of di↵erences in clearing dynamics across land-use categories, including pro-
tected areas and areas zoned for commercial exploitation. The results can provide important
new insights into the behavior of forest clearing agents who constantly adjust expectations
as market conditions change.

Such econometric analysis can provide two major benefits for conservation policymakers
and project planners. First, its incorporation of important economic variables will provide

5FORMA explicitly relates forest clearing to changes in vegetation color, the incidence of fires and
variations in rainfall. Changes in its predicted forest-clearing probabilities are therefore best interpreted as
changes in the strength of the composite signal provided by these variables. Translation of the continuous
signal to an optimal single indicator of significant forest-clearing requires a judgment about the relative
importance of two types of error: False positives, which incorrectly identify clearing in areas where it has not
occurred; and false negatives, which fail to identify clearing in areas where it has occurred. In recent research,
Hammer et al. (2012) have used high-resolution information from PRODES, Brazil’s annual deforestation
report, to investigate changes in the incidence of false positives and negatives as FORMA’s identification
threshold for forest clearing is increased or decreased from the current threshold probability of 0.50. The
results indicate a relatively low incidence of false positives at 0.50, which decrease at a modest rate as
the threshold probability is increased. At the same time, increasing the threshold probability toward 1.00
increases the incidence of false negatives at a rapid rate. On balance, the evidence to date does not provide
compelling support for alteration of the 0.50 threshold probability.

6For example, a square area 50 km on a side contains 2500 1 km cells.
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measures of their relative significance as drivers of forest clearing. By providing a better
understanding of economic incentives in this context, the results can inform the design and
implementation of incentive payment systems for REDD+ programs and similar arrange-
ments. Second, the estimation of dynamic econometric models will provide a quantitative
foundation for tracking area-specific risks of forest clearing as economic and other conditions
change.

4.4 Trends in Indonesian forest clearing (2005-2010)

The advent of monthly forest clearing data permits a much more timely, detailed view
of forest clearing than has previously been possible. In this section, we use the FORMA
Indonesia database to develop a detailed view of forest clearing patterns since 2005.

National trends

Figure (4.1) displays FORMA-estimated indices for monthly forest clearing in Indonesia
from December 2005 to December 2010. The graph indexes monthly changes on the left axis
and annualized changes on the right axis. The monthly series displays marked seasonality;
annualizing the data with a 12-month moving sum removes the seasonal component, revealing
a broadly-declining trend during the past five years.7

Regional trends

Changes in the index of national forest clearing summarize complex patterns of change
within Indonesia. In Figure (4.2), we investigate relative changes at the kabupaten level by
dividing the total of monthly index values in 2010 by the total in 2006. We color the map
dark for ratios greater than one (larger index values in 2010 than in 2006); lighter for ratios
equal to one (no change); and lightest for ratios less than one (smaller index values in 2010).

Clear interregional patterns are evident in Figure (4.2): Forest clearing activity has in-
creased in northern Sumatra and decreased in the southern and central parts of the island.
Kalimantan exhibits increased activity in the west and north, and either constant or de-
creased activity in the south-central and eastern areas. Increased activity also appears in
central Sulawesi, and parts of western and southern Irian Jaya.

Figure (4.2) displays patterns of change without providing any information about the
scale of activity. Figure (4.3) provides an alternative view by identifying Indonesian kabu-
patens whose index values are top-ranked among 1372 secondary administrative units in
Southeast Asia. On this map we color units dark if they are in the top 20, lighter if they
are in the next 30, and lightest otherwise. In 2006, Indonesia’s highest regional index values

7The moving sum is equivalent to a 12-month moving monthly average, multiplied by 12. For each
month, we compute the moving series using that month and the previous 11 months.
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Figure 4.1: Large-scale forest clearing in Indonesia (2005-2010)

Figure 4.2: Change in forest clearing index value: 2006 vs. 2010

were concentrated in east-central Sumatra, southern Sumatra and south-central and extreme
northwest-central Kalimantan.

Substantial changes are evident by 2008, with a reduction of top-ranked areas in southern
Sumatra, some new areas in northern Sumatra, and a shift westward in southern Kalimantan.
These pat- terns become more pronounced in 2010, with continued shrinking of the clusters
in south Sumatra and southern Kalimantan, and in- creased cluster size in the northern
frontier area of Kalimantan.

While parts of the pattern have significantly changed since 2006, some parts have also
remained stable, with large top-ranking clusters persisting in east-central and southern Suma-
tra.
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Figure 4.3: Sumatra and Kalimantan: forest clearing rank of kabupatens. Among 1372
secondary administrative units in Southeast Asia.

Provincial trends

Figure (4.4) illustrates trends in annualized forest clearing indices for the five Indonesian
provinces with the largest index values in January, 2007. In the first year, the series are
dominated by the clearing indices of Riau (east-central Sumatra) and Central Kalimantan.
The more recent period has witnessed strong convergence, with steep declines in both Riau
and Central Kalimantan, along with increases in West Kalimantan and North Sumatra and
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Figure 4.4: Annualized forest clearing index values: top five Indonesian Provinces in January
2007.

Figure 4.5: Annualized forest clearing index values: top five kabupatens in Riau.

a more modest decline (in ab- solute terms) in South Sumatra.
These changes are reflected in the overall patterns displayed in Figure (4.2). Riau has

experienced the greatest decline, although it retains the highest index value in Indonesia.
Within Riau, Figure (4.5) shows that convergence of kabupatens has also occurred. In
January 2007, Pelalawan dominated the other top-ranking units in Riau. All five units have
experienced a decline since then, but it has been most pronounced in Pelalawan. Slower
declines in three of the other units (Rokan Hilir, Rokan Hulu and Siak) have brought them
to approximate parity with Pelalawan.



42

4.5 Model specification

To explore the determinants of the patterns revealed by Figures (4.1 - 4.5), we mobilize
a FORMA panel dataset for Indonesia that includes monthly observations on forest clearing
from January 2006 to December 2010 for over 950,000 1-km parcels.8 This dataset permits
construction of a large panel database at the kabupaten level.

We posit an intertemporal model in which the representative proprietor or occupant of a
forested area considers the relative profitability of maintaining or clearing the area. In each
period, the agent compares the present-value profitability of sustainably-harvested forest
products with the clear-cut value of forest products, plus the cleared land’s present-value
profitability in its best use (e.g., plantation (palm oil, wood products), pasture, smallholder
agriculture, and settlement). Forest clearing dynamics are likely to be quite di↵erent in cases
where commercial exploitation rights are well- or poorly-defined.

The decision to hold or clear a parcel depends on many factors, including expected rev-
enues, input costs and the exchange rate. Expected revenues are a function of expected
international prices and demand, particularly for wood products and palm oil in the Indone-
sian case. These factors and the exchange rate are constant across areas but vary over time,
while other factors vary over both areas and time.

The relative significance of forest clearing determinants may well depend on the nature
of particular forested areas, because they may be occupied by di↵erent types of agents with
di↵erent incentives. A recently-produced GIS database enables us to separate Indonesia’s
forested land into areas zoned for activity in five categories: protected natural forest, palm
oil plantations, timber plantations, logging concessions and unzoned areas.

In our specification, the relative profitability of forest clearing for agriculture or settle-
ment, for the representative proprietor or occupant in area i, time t, is given by:

⇡e
it = ⇡e

it(p
e
t , q

e
t , nit, tit, cit, i

e
t , x

e
t , g

e
t , r

e
t , u

e
t , h

e
t , y

e
t , w

e
t , si) (4.1)

8Indonesia’s natural forest area in 2000 was 951,160 km2.[31]
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⇡e
it expected relative profitability of forest clearing

pet vector of expected prices for relevant products
qet vector of expected demands for relevant products
nit rupiah-denominated input cost per unit of output
tit transport cost per unit of output
cit communications cost per unit of output
iet expected interest rate
xe
t expected exchange rate (rupiah/dollar)

get quality of governance from investors’ perspective
ret regulatory quality
ue
t o�cially-designated use (among the five categories specified above)

he
t population density

yet unskilled wage rate
we

t precipitation (forest-burning is more di�cult when rainfall is heavier)
si slope of the terrain

In this specification, the expected profitability of forest clearing relative to forest conser-
vation increases with expected revenues for outputs produced on cleared land, which in turn
depends on the expected prices and levels of demand for those outputs. Expectations adjust
to changes in prices and quantities with product-specific lags. The expected profitability of
clearing declines with increases in the unit costs of low-skill labor, capital, transport and
communications. Forest-sector outputs are traded internationally; dollar-denominated input
costs decrease (and profitability increases) when the exchange rate increases. Governance
has two anticipated e↵ects in this context. Local government e�ciency and integrity should
increase the expected profitability of forest-sector production, which will in turn promote
forest clearing. On the other hand, greater regulatory e↵ectiveness may discourage forest
clearing in protected areas, if local governments are actually concerned about clearing.

We posit e↵ects for local structural factors as well. Higher population density should
increase the demand for cleared land. Production will be more costly on more steeply-sloped
land, and clearing will be more costly in areas (and months) with heavier precipitation.

4.6 Data

We have drawn the data for our estimation exercise from a variety of sources. All forest
clearing information for the period December 2005 - December 2010 comes from FORMA,
which, as we have previously noted, provides indicators of large-scale forest clearing at 1 km
resolution for all forested areas in Indonesia. To index determinants of expected revenue,
we use international market prices and world demand for hardwood sawlogs (our proxy for
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tropical wood products) and palm oil. We draw the price series from IMF data9 and adjust
to constant-dollar prices using the US GDP deflator.10 Data on world palm oil production
have been provided by the US Department of Agriculture,11 while world production statistics
for sawlogs have been obtained from the FAO.12

Among local input price variables, the only available time series is a proxy for commu-
nications cost. Our index is an estimate of mobile phone coverage that we construct from
high-resolution data provided by GSM World, Inc.13 In addition, we include three cross-
sectional proxies: (1) An index of the economic opportunity cost of forested land developed
by Resources for the Future and Climate Advisors; (2) Estimated travel time to the nearest
city of 50,000 or more people in the year 2000, from Nelson (2008). The travel time data
are available at a high level of spatial resolution. For this exercise, we estimate kabupaten
means, as well as standard deviations to control for within-kabupaten variation. (3) The
average poverty rate in 2000, a proxy for the prevalence of low-skill, low-cost labor, obtained
from the World Bank.

Our interest rate series is the one-month rate on notes issued by Bank Indonesia,14 ad-
justed for inflation using annual estimates from the World Bank.15 We have drawn exchange
rate data from OANDA’s historical database.16 Our land-use data are from a high-resolution
digital map of Indonesia. All indices of governance quality have been drawn from the KPPOD
survey database for Indonesia. Our precipitation data come from the PREC/L (PRECip-
itation REConstruction over Land) database as described by Chen et al. (2002).[25] The
terrain slope data are kabupaten averages from Verdin et al. (2007).[115] Since the underly-
ing slope data are at higher resolution, we also calculate standard deviations to control for
within-kabupaten variations.

4.7 Econometric specification

The model developed in Section 4.5 relates the expected profitability of forest clearing
to the determinants incorporated in Equation (4.1). We translate this general function to
an estimating equation in two steps. First, we assume that forest clearing varies directly
with its expected probability. Second, we replace the general determinants in Equation (4.1)

9The relevant IMF data series are prices for Hard Logs, Best Quality Malaysian Meranti, import price
Japan, US$ per cubic meter; and Palm Oil, Malaysia Palm Oil Futures (first contract forward) 45% FFA,
US$ per metric tonne. Source: IMF Primary Commodity Prices.

10Source: Bureau of Economic Analysis, Table 1.1.9. Implicit Price Deflator for Gross Domestic Product.
11US Department of Agriculture, Foreign Agricultural Service.
12Source: FAO, World production of sawlogs and veneer logs.
13Mobile phone coverage is reported at frequent intervals; we interpolate to produce a full monthly dataset.
14Source: Division of Economic & Monetary Data & Information Processing, Bank Indonesia, Table 1.25,

Sertifikat Bank Indonesia, 1 Bulan.
15Source: World Development Indicators.
16Source: OANDA, Historical Exchange Rates.
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with the specific variables that are relevant and available for this exercise. We specify the
estimating Equation (4.2) as follows:

log(Clear)it = �0 + �1 log(PalmPrice)i,t�i + �2 log(LogPrice)i,t�j

+ �3 log(PalmQuant)i,t�k + �4 log(LogQuant)i,t�1 + �5 log(OppCost)i
+ �6 log(PovRate)i + �7 log(MobileCov)i + �8 log(MeanTravT)i

+ �9 log(sdTravT)i + �10IntRatet�m + �11 log(XRate)t�n

+ �12 log(InvGovQual)i + �13 log(RegQual)i + �14LogPcti

+ �15TimbPcti + �16PalmPcti + �17ProtPcti

+ �18 log(PopDens)it + �19 log(Precip)i,t�w + �20 log(MeanSlope)i
+ �21 log(sdSlope)i + �22 log(Forest2000) + ✏it (4.2)

Data specifications are summarized in Table 4.1. The model includes six short-term
market variables: prices and quantities for palm oil and sawlogs, the interest rate and the
exchange rate. We expect the standard investment calculus to produce a negative e↵ect for
the real interest rate. Palm oil and sawlogs are traded internationally; their expected prof-
itability and associated forest clearing should be positively associated with the rupiah/dollar
exchange rate, because increases in that rate will lower the dollar cost of local inputs while
leaving the dollar-denominated prices of exports unchanged. The expected prices and global
demands for palm oil and sawlogs are positively associated with expected profitability, ce-
teris paribus, so they should be positively associated with forest clearing as well. We have
no basis for a priori specification of appropriate lags for expectations-formation; they are
quite likely to di↵er by variable. During the estimation process, we retain the single lagged
value of each variable that provides the best fit. We would expect the palm oil price variable
to have the shortest lag because our measure is the futures price.

While all six market variables, rainfall and mobile phone coverage are observed in time
series, we have only single cross-sectional observations for the four other proxies for local
input prices. We expect the agricultural opportunity cost of forested land and the poverty
rate to be positively associated with forest clearing: the former because it provides a measure
of conversion profitability, and the latter because it proxies the local availability of low-cost,
low-skill labor for forest clearing. We acknowledge some ambiguity in the latter expectation,
since some kinds of agricultural production on cleared land will re- quire labor of the same
type. We expect mobile phone coverage to be positively associated with forest clearing,
because greater coverage lowers investor costs. Unit transport cost should be negatively
associated with clearing, since palm oil and sawlogs are bulk commodities.17 In the same
vein, we would expect travel time to the nearest port to be negatively associated with forest

17A possible caveat is introduced by the impact of transport cost on local forest regulation, which is less
e↵ective in remote areas. If this factor dominates in Indonesia, the composite sign on transport cost could
actually be positive.
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Table 4.1: Definitions of estimation variables

Variable Definition

Clear FORMA forest clearing index
PalmPrice Constant-dollar palm oil futures price
LogPrice Constant-dollar sawlog price
PalmQuant World palm oil production
LogQuant World sawlog production
OppCost Agricultural opportunity cost
PovRate Poverty rate
MobileCov Coverage by mobile phone networks
MeanTravT Mean travel time to the nearest city of 50,000+
sdTravT St. dev. travel time to the nearest city of 50,000+
IntRate Real interest rate
XRate Rupiah/dollar exchange rate
InvGovQual KPPOD index of governance quality for investors
RegQual KPPOD index of regulatory quality
LogPct % of area zoned for logging concessions as of 2005
TimbPct % of area zoned for timber plantation concessions as of 2005
PalmPct % of area zoned for palm oil plantation concessions as of 2005
ProtPct % of area zoned for protection of natural forest
PopDens Population density
Precip Precipitation
MeanSlope Mean slope
sdSlope St. dev. slope
Forest2000 Uncleared natural forest area in 2000

clearing. Although our indicator is the best available, it measures travel time to the nearest
city of significant size, rather than time to the nearest port. In light of this di↵erence, we
remain agnostic about the potential size and significance of the measured e↵ect.

Equation 4.2 includes a measure of governance quality for investors. Our database in-
cludes three relevant variables from the KPPOD survey: Quality of Assistance with Land
Access; Capacity and Integrity of the Government; and Security and Conflict Resolution. A
higher score on each variable should indicate a better environment for investment in forest-
sector production. We would therefore expect a positive association between each variable
and forest clearing. The other governance measure in Equation 4.2, Regulatory Quality, may
be negatively associated with forest clearing in local protected areas. This will occur if local
governments treat forest protection as a regulatory issue on par with other forms of local
regulation.

We incorporate five types of land use, measured as percents of total area in each kabu-
paten. We include four types in the regression, excluding areas that are not explicitly zoned
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for protection or commercial exploitation.18 A priori, we would expect areas zoned for
commercial production to have more forest clearing than protected areas.19

Our model includes population density, which is related to local settlement and demand
for forest-sector products. We would expect this variable to be positively associated with
forest clearing. Finally, our specification includes two local physical factors: monthly precip-
itation and terrain slope. Forest clearing is more costly when precipitation hinders burning,
so we would expect a strong negative association between the two variables. We expect
a very short lag, if any, in the impact of precipitation on forest clearing. Suitability for
plantation production declines with terrain slope, so we would expect a negative association
with this variable as well. Our kabupaten-level measure of average terrain slope is calculated
from highly-disaggregated spatial data, and kabupatens with the same average slope may
have very di↵erent patterns of variation around the average. We capture this variation with
the standard deviation, which we expect to moderate the measured e↵ect of slope. If the
marginal e↵ect of mean slope is negative, as we expect, then we would expect the marginal
e↵ect of the standard deviation to be positive. In a similar vein, we have included the
standard deviation of travel time along with our measure of kabupaten mean access time.

4.8 Results

In this section, we present our estimation results for Indonesian islands that are significant
forest clearing sites. We exclude Java and Bali because they are heavily populated and largely
cleared, and the islands of Nusa Tenggara that are not in the tropical forest zone.

Core model estimates: major geographic divisions

Table 4.2 reports results for a core model that includes the variables in Equation 4.2
that can be used for panel estimation by fixed e↵ects. The first two columns of Table 4.2
present fixed and random e↵ects estimates for all kabupatens in the tropical forest areas of
Indonesia. Random e↵ects estimation is preferable because it is more e�cient, but its use
depends on failure of the appropriate Hausman test to reject the null hypothesis of equal
parameters in random and fixed e↵ects estimation. Failure occurs in this case (�2 = 2.74,
p = 0.9494), so we adopt the random e↵ects estimator. We retain this estimator for the
remainder of the work reported in the paper.

As the strong Hausman results indicate, columns (1) and (2) have e↵ectively-identical
parameter estimates. In both equations, all estimated parameters have the expected signs
and high levels of significance. Rainfall a↵ects forest clearing with a short lag (one month

18We exclude one land use type to prevent perfect collinearity with the regression constant.
19Indonesian areas identified as “protected” may vary substantially in the actual degree of protection,

lending some uncertainty to the assessed e↵ectiveness of protection. We have no information on the relative
allocation of monitoring and enforcement resources to di↵erent protected areas.
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provides the best fit). Our results indicate that both expected prices and demands have
strong e↵ects on forest clearing, with substantially higher elasticities for the quantity e↵ects.
Our final estimates use the lags that provide the best fit to the data. As expected, we find
no lag for the palm oil futures price, since it already incorporates expectations. Our best
result for the sawlog price suggests that a lag of about nine months characterizes the process
of price expectation revision and translation of revised expectations into forest clearing. The
results for palm oil and sawlog demands suggest lags of 15 and 12 months, respectively,
before market changes induce changes in forest clearing. Changes in the real interest rate
take significantly longer to induce changes in forest clearing: 23 months in our best estimate.
The response to changes in the real exchange rate is faster. We find approximately equal
e↵ects for lags of 9, 10 and 11 months, so we use the three-month average. We lag mobile
phone coverage by one year to guard against simultaneity (a contemporaneous e↵ect could
easily reflect two-way causation). As Table 4.2 shows, the lagged variable is highly significant.

Columns (3)-(7) report random e↵ects estimates for five islands and island groups: Suma-
tra, Kalimantan, Sulawesi, Maluku and Irian Jaya. Sample sizes vary from 3969 observations
for Sumatra to 294 for Maluku. In light of this variation, it would not be surprising to see
substantial variation in estimation results. However, the quality of the results is quite similar.
The estimated impact of rainfall has the expected sign in all cases and statistical significance
in three cases. Product price elasticities have the expected signs in eight of ten cases and are
statistically significant in six cases. Quantity e↵ects have the expected signs in all cases, and
statistical significance in seven of ten cases. The real interest rate has the expected sign in
all five cases, although it has statistical significance in only two (Kalimantan and Sulawesi).
The exchange rate is statistically significant in three of five cases and has the expected sign
in all cases.

Estimation of the fully specified model

Consistent, e�cient panel estimation techniques permit inclusion of cross-sectional vari-
ables that may influence average levels of deforestation in Indonesian kabupatens. We have
included several of these variables in the full specification in Equation 4.2. Table 4.3 reports
results obtained from the random e↵ects estimator programmed in Stata (column (1)), as
well as three alternative estimators programmed in R (columns (2)-(4)). We include the
latter because appropriate adjustments for spatial dependence were not available in Stata.
Column (2) reports estimation results equivalent to those in (1), obtained using the method
of Swamy and Arora (1972) for a fully-balanced panel.[104]20 Column (3) reports estimates
from the method of Kapoor et al. (2007), which adjusts for spatial autocorrelation across
kabupatens.[70] Column (4) reports estimates from the method of Millo and Piras (2009),

20Implementation in R requires a fully-balanced panel, which we produce by spatial interpolation of
available monthly rainfall observations to replace missing observations in some kabupatens. The result is
an enlarged panel (193 kabupatens) relative to the dataset used for our Stata estimate in column (1) (142
kabupatens).
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which adjust for both spatial autocorrelation and spatial lags across kabupatens.[70, 81] We
provide a brief introduction to the three estimators in the supplement Section 4.10.
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Inspection of Table 4.3 reveals remarkable similarity in the results obtained by all of our
estimators: Signs and general significance levels are identical for 81 estimates and di↵erent for
only three. We assign particular importance to column (4), which reports high significance for
both spatial autocorrelation (⇢) and spatial lags (�), and adjusts for both error components.
All variables in the KPPOD governance survey are insignificant in every case, so we have
excluded them from the table.

In Table 4.3, our results for core-model time series variables are very similar to those re-
ported in Table 4.2. Signs and elevated significance levels match throughout, as do estimated
parameter sizes (except for the rainfall results in the R-based estimates). Table 4.3 includes
the cross-section variables in Equation (4.2): uncleared forest in 2000; terrain slope (mean
and SD); land opportunity cost, population density; the poverty rate; and access time to
the nearest city (mean and SD). We also include information on zoning status: the percent
of area in each kabupaten zoned for forest protection, as well as commercial zoning in three
categories: palm oil plantations, timber plantations and logging concessions. Among the
cross-sectional variables, only three are highly significant and have the expected signs in all
four estimates: uncleared forest in 2000; mean slope (modified by its standard deviation21);
and percent area designated for palm oil plantations. Zoning for logging concessions is also
consistently signed, with a high significance level in two of four cases. The large, positive,
significant results for palm oil plantations and the insignificance of protected-area status are
notable in all four estimates.

For the comparable variables, our results di↵er somewhat from those obtained by a recent
cross-section estimation exercise for Indonesia. Using pixel-level forest clearing estimates
at 500m resolution from Hansen et al. (2008), Busch et al. (2012) find appropriately-
signed, significant impacts on deforestation for a measure of land opportunity cost based on
estimated net present potential gross agricultural revenue (Naidoo and Iwamura, 2007), as
well as variables related to land use, topography and transport costs.[58, 19, 85] We obtain
similar results for one topographical variable (slope) and one land-use variable (logging
concession percent). However, as we have noted above, we do not find significance for our
measures of direct land opportunity cost, protection, and transport cost.

There are several plausible reasons for the di↵erences in results. First, the two studies
cover di↵erent time periods and time increments: the entire period from 2000 to 2005 for
Busch et al. (2012), versus monthly data from December, 2005 to August, 2011 in our own
case.[19] Second, the Busch study is purely cross-sectional, while ours is a panel estimation
exercise that incorporates time-varying national-level variables, time-varying local variables
(rainfall and cell phone coverage), and time-invariant local variables. Direct comparison is
possible only for the time-invariant local variables. Third, the Busch exercise is at the pixel
level, while ours aggregates to kabupaten averages. Their pixel-level database provides huge
nominal degrees of freedom (N = 166, 297), which should permit estimation of underlying
parameter values with considerably higher precision than our panel exercise at the kabu-

21The result for the standard deviation (SD) indicates that slope e↵ects are more pronounced in areas
with relatively small variations in slope.
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paten level. However, a major caveat is introduced by their failure to correct for spatial
autocorrelation, which is likely to be very high at the pixel level of spatial disaggregation.22

Absent the needed correction, we cannot draw strong inferences from the estimated param-
eters, signs and significance levels in their exercise. Fourth, our introduction of variables
measured at the kabupaten level (e.g., the local poverty index) forces us to use area averages
for the geographic variables in Table 4.2 that are observed at much higher resolution. This
spatial averaging seems likely to attenuate the significance of geographic variables that are
used at much higher resolution in the pixel-level study of Busch et al. (2012).[19] Fifth, our
two significant time-varying local variablesrainfall and cell phone coverageare not incorpo-
rated in the Busch study. Either could be correlated with variables included in that study,
and significant correlation seems particularly likely for the relationship between cell phone
coverage in our case and proximity to transport infrastructure in the Busch study. If so, then
our results for cross-sectional factors may be closer to the Busch results than they appear to
be. Sixth, we use a more recently-derived land opportunity cost index, measured at a higher
level of spatial resolution that incorporates more determinants than the Naidoo-Iwamura
measure employed by Busch.

For all these reasons, we remain uncertain about the actual degree of di↵erence between
our cross-section results and those of the Busch study. In this context, it is worth noting that
incorporation of the needed spatial autocorrelation adjustment in such pixel-level exercises
can easily overwhelm existing estimation packages. It may therefore be some time before
more definitive results become available from pixel-level research.

4.9 Conclusion

In this paper, we have employed a large panel database to investigate the determinants
of forest clearing in Indonesian kabupatens since 2005. Using monthly forest clearing data
from FORMA (Forest Monitoring for Action), the paper provides the first Indonesian impact
assessment for short-run economic variables, as well as impact estimators for indicators
of area zoning, forest protection, the opportunity cost of forested land, the availability of
communications infrastructure, and the quality of local governance. In addition, we test the
e↵ects of variables that have been included in more traditional analyses of forest clearing:
rainfall, terrain characteristics, the poverty rate, population density and transport cost.

Our results strikingly demonstrate the importance of economic factors in the dynamics of
forest clearing. In our full estimation model, significant roles are played by short-run changes
in several economic variables, as well as communications infrastructure, zoning for palm oil
plantations, and three physical factorsuncleared forest in 2000, rainfall and terrain slope. In
counterpoint, many cross-section variables prove to be insignificant: local governance quality,
a direct estimate of land opportunity cost, travel time, population density, the poverty rate,

22Indeed, it remains high even at the much greater aggregation level we use for our sub-provincial panel
exercise.
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protected-area status, and zoning for timber plantations. In the case of access time (our
proxy for transport cost), we recognize that the insignificance of the measured e↵ect could
be attributable to collinearity with our proxy for communications cost, and/or the o↵setting
impacts of transport cost on the direct profitability of forest clearing (negative) and the
e↵ectiveness of local forest regulation (positive).

We believe that the most distinctive feature of our approach is its inclusion of short-
run economic variables, which was simply not possible before the advent of FORMA. As
we have noted in the paper, economic theory has long posited critical roles for expected
forest product prices, quantity demands, interest rates and exchange rates in the investor
calculations that lead to large-scale clearing for commercial production. The econometric
analysis reported in this paper introduces all of these variables and explores the time lags
that characterize their impact on forest clearing. We find highly-variable lags: less than a
year for product prices; around one year for product demands and the exchange rate; and
closer to two years for the real interest rate. All variables are highly significant in our panel
analysis, and their fluctuations, along with variations in rainfall, explain a major portion of
the changes in Indonesian forest clearing that are strikingly visible in Figure (4.1).

From a policy perspective, our results highlight the importance of incorporating economic
dynamics into arrangements that o↵er financial compensation for forest conservation. Our
findings are strongly consistent with a model of forest clearing as an investment that is
highly sensitive to expectations about future forest product prices and demands, as well
as changes in the cost of capital (indexed by the real interest rate), the relative cost of
local inputs (indexed by the exchange rate), and the cost of land clearing (indexed by local
precipitation). By implication, the opportunity cost of forested land fluctuates widely as
changes occur in international markets, local weather conditions, and decisions by Indonesia’s
financial authorities about the exchange and interest rates.

Among the land-use variables available for our analysis, we view the protected area in-
dicator with particular caution. In practice, protected areas are strongly di↵erentiated by
sponsor identity (local government, national government, local or national NGO), local com-
munity engagement, enforcement priority, administrative arrangements and other factors. It
would certainly be misleading to claim that the insignificant result for our general protec-
tion variable implies that none of the variants identified above can have a significant e↵ect.
To cite one recent counterexample, Nelson and Chomitz (2011) find significant e↵ects for
multiple use and indigenous areas in a global study that controls for a set of cross-sectional
variables similar to those employed in this study and Busch et al. (2012).[87, 19] With the
advent of FORMA and other high-resolution panel datasets, future research will be able to
explore the relationship between protected-area characteristics and forest clearing in much
more detail.

Our results may also provide new insights for compensation-based approaches, since they
suggest that the perceived opportunity cost of forested land varies widely over time, and in
response to numerous dynamic factors.23 By implication, compensation schemes for forest

23Here it is important to distinguish our use of the general term opportunity cost from the single measure of
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conservation may have to incorporate arrangements for adjusting compensation as economic
conditions change. One possible approach, for example, could employ a weighted index of the
economic factors that a↵ect clearing decisions.24 We propose another approach in Hammer
et al. (2011): A “cash-on-delivery” system that ties annual payments to changes in national
forest conservation performance over time. Our proposed system focuses solely on incentive
payments to national governments, leaving them free to make flexible arrangements with
local forest proprietors.[54]

In summary, our empirical results and other recent research suggest that forest protec-
tion programs will be more likely to succeed if they recognize the importance of several
local, national and international factors. Locally, appropriate compensation for forest con-
servation will need to recognize the e↵ects of topography, variable rainfall and infrastructure
improvements on the potential profit- ability of converting forested land to other uses. At the
national level, e↵ective compensation will need to recognize the importance of key macro-
policy variables (e.g., interest and exchange rates set by national authorities) in investor
calculations. And international market variables will undoubtedly be important as well, as
changes in expected prices and demands for forest products a↵ect the expected profitability
of forest clearing.

4.10 Supplement: estimation of spatial models

Columns (2)(4) of Table 4.3 report results from a succession of panel estimators im-
plemented in R. Estimation requires a complete, balanced panel, so we have used spatial
interpolation to replace some missing monthly rainfall observations in our kabupaten-level
dataset. The estimation panel includes five years of monthly data (Jan. 2006 - Dec. 2010)
for 193 kabupatens, yielding 11,580 observations. We construct a weighting matrix from
the GIS shapefile for the 193 kabupatens, defining neighbors to be kabupatens with borders
that are within 0.5 arc degrees (roughly 50 km) of each other. The weighting matrix W is
row-standardized, so that each row sums to one.

Our objective is to e�ciently and consistently estimate the following model:

y = ↵ +X� + u (4.3)

where y is a panel of logs of forest clearing activity (by kabupaten and month), X is a panel
of explanatory variables and u is an error term. OLS estimates of model parameters are

agricultural opportunity cost used for the econometric analysis. The latter provides one temporal snapshot
of the value of forested land in alternative uses. The former includes all the intertemporal factors (e.g.
expected prices and demands, the exchange rate, the interest rate, rainfall, and cell phone coverage) that
have time-variable e↵ects on the profitability of clearing, and therefore on the opportunity cost of keeping
forested land uncleared.

24We are indebted to an anonymous referee for this suggestion.
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not e�cient or consistent if u is subject to serial or spatial autocorrelation. Standard panel
estimation employs the model:

y = ↵ +X� + µ+ E (4.4)

where the error component µ is specific to panel groups and E is assumed to be uncorrelated
with µ and the regressors in X. Estimation of Equation (4.4 via GLS will produce e�cient
results for non-autocorrelated data. We report estimates obtained by the method of Swamy
and Arora (1972) in column (2) of Table 4.2.[104]

For forest clearing analysis, standard GLS estimation may be insu�cient because of
spatial dependence. As Figures (4.2) and (4.3) indicate, forest clearing clusters frequently
cross kabupaten boundaries. Kapoor et al. (2007) propose the following model for the case
where error terms are correlated across spatial units, where the error term u in Equation
(4.3) follows a first-order spatial autoreggresive process:

u = ⇢ (IT ⌦W)u+ E (4.5)

and observations are stacked by time period rather than panel group.[70] This model can
be interpreted as a time series of kabupaten cross sections, and ⇢ is the coe�cient of spatial
spillover of the errors. To allow for temporal autocorrelation, E is specified as:

E = (eT ⌦ IN)µ+ ⌫ (4.6)

where µ is a vector of kabupaten-specific error components, eT is an appropriately-dimensioned
unit vector, and ⌫ contains idiosyncratic error components that vary over time and space.
We report the results of estimation by this model in column (3) of Table 4.2.

Dynamic economic factors propel growing forest clearing clusters across kabupaten bound-
aries. It is therefore likely that our panel data are also characterized by spatial lags, in which
clearing in one kabupaten is related to clearing in neighboring kabupatens. Following Millo
and Piras (2009), we specify and estimate a model with general spatial autocorrelation:

y = �Wy+X� + u = ⇢Wu+ ⌘ (4.7)

where ⌘ ⇠ N(0,⌦), ⌦ 6= �2
I.[81] This specification incorporates both a pure spatial error

model when � = 0 and a pure spatial lag model when ⇢ = 0. We report our results in column
(4) of Table 4.2.
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Table 4.3: Introduction of cross-sectional variables. Variables logs except interest rate, area
%s. Lags (months) in brackets. Dependent variable: log(Clear)

Regression variables (1) (2) (3) (4)
Rainfall [-1] 0.366 0.004 0.003 0.002

(9.08) (6.842) (5.242) (4.993)
Palm oil futures price 0.904 0.784 0.782 0.356

(10.67) (11.347) (8.520) (7.669)
Sawlog price [-9] 1.342 1.354 1.343 0.593

(3.15) (3.984) (2.981) (2.595)
Global palm oil production [-15] 5.811 4.636 4.458 2.000

(6.53) (6.398) (4.636) (4.109)
Real interest rate [-23] 0.054 0.048 0.046 0.020

(7.75) (8.407) (6.088) (5.201)
Exchange rate [-9,10,11] 2.544 2.675 2.605 1.190

(3.99) (5.225) (3.836) (3.458)
Mobile phone coverage [-12] 0.073 0.062 0.083 0.045

(4.37) (4.174) (5.092) (3.772)
Mean slope 2.783 2.459 2.513 1.674

(5.98) (6.497) (6.340) (5.124)
St. dev. slope 1.535 0.965 1.090 0.929

(3.46) (2.879) (3.251) (3.028)
Land opportunity cost 0.133 0.061 0.058 0.097

(0.65) (0.417) (0.376) (0.786)
Protected area % 0.117 0.398 0.390 0.147

(0.10) (0.380) (0.378) (0.153)
Timber plantation area % 0.696 0.033 0.253 2.266

(0.36) (0.018) (0.139) (1.275)
Logging concession area % 4.292 1.920 1.288 3.156

(2.71) (1.402) (0.951) (2.483)
Palm oil plantation % 16.361 16.438 15.056 13.787

(4.95) (5.234) (4.734) (4.871)
Population density 0.128 0.067 0.158 0.071

(0.46) (0.299) (0.706) (0.342)
Poverty rate (2000) 1.761 1.183 1.137 0.302

(0.80) (0.652) (0.591) (0.199)
Access time to nearest city (50,000+) 1.543 0.008 0.102 0.046

(2.46) (0.020) (0.235) (0.118)
St. dev. access time 1.081 0.016 0.086 0.195

(1.83) (0.038) (0.209) (0.512)
Constant 417.412 337.874 331.540 152.641

(8.61) (8.882) (6.590) (5.944)
⇢ .257 .411

(9.41)
� .538

(20.933)
Adj. R2 .556 .130 .827 .405
Kabupatens 142 193 193 193
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