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Abstract 

Efficient Numerical Implementation and Vadose Zone Application of the Method of 
Anchored Distributions 

by 

Matthew William Over 

Doctor of Philosophy in Civil & Environmental Engineering 

University of California, Berkeley 

Professor Yoram Rubin, Chair 

 

The method of anchored distributions (MAD) is a Bayesian model inversion technique with 

a high level of flexibility.  MAD can jointly invert multiple types of parameter fields 

conditional on multiple types and scales of measurement data.  Moreover, MAD permits 

simultaneous analysis of macroscopic characteristics of spatial heterogeneity, e.g. 

correlation scale, and point characteristics within the parameter field.  This dissertation 

focuses on MAD.   

MAD is formulated with a completely generalized, assumption-free likelihood function – a 

feature that sets it decidedly apart from other inversion and estimation procedures.  

However, this advantage comes with a considerable increase in computational cost relative 

to more assumption-laden model inversion techniques.  Thus, a section of the following 

work derives a theoretical approximation to reduce the computational cost of inversion 

with MAD that has minimal impacts on the accuracy of the results.  The approximation 

utilizes clustering algorithms to combine simulations on a basis of parameter similarities 

and ultimately limits the computational expense of evaluating the likelihood function, 

which has significant impact on overall computational cost.  The approach is validated in a 

characterization of a synthetic transmissivity field using concentration data obtained under 

natural gradient conditions. 

MAD is formulated generically and hence is widely applicable to a variety of scientific 

practice areas.  However, previously there has been no software platform for implementing 

MAD available to the scientific community.  Thus, a section of the following work is 

dedicated to the design and development of the MAD software, which generically evaluates 

Bayes’ rule for different modeling tools, different physical processes, different random 

physical parameters, and with different statistical tools.  The section, focuses on the 

creation of a graphical user interface (GUI) that helps users define the necessary aspects of 

the MAD analysis, but is sequenced in a manner that all dependencies are exploited to 

reduce the possibility of user error in the set up.  The flexibility and ease of using the GUI is 

validated with successful application in a variety of synthetic case studies. 
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With the existence of a free and publicly available software, the number of studies that 

could employ MAD has grown substantially.  However, MAD, thus far, has never been 

applied without geostatistics or outside of saturated groundwater studies.  Thus, a section 

of the following work is dedicated to the derivation of MAD with statistical, rather than 

geostatistical structural models, and application of the framework to a vadose zone soil 

column characterization.  The MAD software is used for the first time on field data (not 

synthetic) and reasonable conditional results of the Mualem – van Genuchten parameters.  

The important outcome of the experiment is the first ever validation of a likelihood 

function in vadose zone parameter inversion. 

In total, this dissertation has focused on generic and rapid numerical implementation of 

MAD.  The case studies in saturated and vadose zone flow and transport are used to 

provide experimental confidence that the generalization and computational gains are 

successful.   
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1. Introduction 

 

 

This dissertation focuses on the improvement, generalization, and extension of the method 
of anchored distributions (MAD) [Rubin et al., 2010; Murakami, et al., 2011; Chen et al., 
2012; Yang et al., 2012; Over et al., 2013].  The improvement to MAD is an approximation 
technique utilizing clustering for faster implementation.  The generalization is the design 
and development of an open-source graphical user interface (GUI) for generic MAD 
implementation.  The extension is the first application of MAD to a vadose zone experiment.  
In the remainder of the introduction, fundamental background material and important 
literature are presented to supplement understanding of the subsequent research findings. 

As this dissertation is highly focused on MAD, it is essential at the outset to present and 
define this Bayesian framework for inversion and uncertainty quantification of 
heterogeneous parameter fields.  But first, it will be useful to review a few other relevant 
techniques for optimization, calibration, and parameter field estimation that preceded the 
development of MAD.  In this regard, it will be possible to highlight the differences of MAD 
from these other theories as well as possible advantages of MAD.  Specific limitations of the 
MAD approach are discussed as they are encountered in the subsequent chapters, but the 
primary drawback is the very large computational cost of MAD. 

 

1.1 Maximum Likelihood, Maximum a Posteriori, 

Generalized Likelihood Uncertainty Analysis, Shuffled 

Complex Evolution, and the Pilot Point Method 

 

In this section, some of the historically important techniques related to MAD are reviewed.  
The goal of all of these techniques is the estimation of numerical model parameters that 
most reliably simulate the measured data for a site.   

Amongst the first applications of stochastic methods in hydrogeological characterization 
problems was the work of Kitanidis & Vomvoris [1983].  Their insightful work introduced 
maximum likelihood (ML) estimation of hydrogeological field structural parameters, such 
as the integral scale of the transmissivity field, constrained by measurements of the 
permeability or pressure head.  ML was computationally improved by Kitanidis & Lane 
[1984] using the Gauss-Newton method and extended to transient flow problems by 
Carrera & Neuman [1986].  ML has been in myriad hydrological and hydrogeological 
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applications since this introductory work [c.f. Hollenbeck & Jensen, 1998; Pardo-Iguzquiza, 
1998; Neuman, 2003; Ye et al., 2004]. 

The basic formulation of ML is to define the likelihood function, a joint probability 
distribution function (PDF)  of the measurement data conditional on the model parameters 
𝑓(𝒛|𝝆), where 𝒛 is a vector of measurements and 𝝆  is a vector of generic parameters, and 
determine the estimate of 𝝆 – denoted by 𝝆∗ - that maximizes the likelihood function.  

ML is an important pre-cursor to MAD because it sets the stage for utilizing measurements 
of indirect state variables (i.e. pressure head), which are often cheaper to attain in the 
subsurface, to condition the intrinsic variables (i.e. hydraulic conductivity), which are often 
much more expensive or difficult to attain in the subsurface.  Moreover, ML yields unbiased 
and minimum variance estimates of the parameters.      

However, ML has two distinct disadvantages.  The first is that the form of the joint PDF of 
the state variable measurements must be known [Kitanidis & Vomvoris, 1983].  The 
common workaround to this requirement is to make an assumption of a multivariate 
Gaussian (MG) distribution, but without replicate experiments to measure the same state 
variables under the same conditions, little can be known about this distributional form and 
the working assumption of MG is not possible to validate [Ginn & Cushman, 1990; 
Hollenbeck & Jensen, 1998].  The second is that because the estimation approach is a 
maximization problem, without restriction, the parameters can take on non-physical values 
[Sorooshian et al., 1983]. 

Another technique common in stochastic inverse approaches is maximum a posteriori 
(MAP) estimation.  MAP provides a straightforward, Bayesian way of incorporating prior 
information into the parameter estimation procedure [Carrera & Neuman, 1986; Bates & 
Townley 1988; McLaughlin & Townley, 1996].  The approach presented above is now 
modified slightly to maximize 

𝑓(𝝆|𝒛) = 𝑐𝑓(𝒛|𝝆)𝑓(𝝆),        (1.1) 

where 𝑓(𝝆|𝒛) is the posterior joint PDF of the parameters conditional on the measurement 
data, 𝑓(𝝆) is the prior joint PDF of the parameters, and 𝑐 is a normalization constant.   

One advantage of including a prior in the maximization (right hand side of Equation 1.1) is 
the ability to confine the parameter within physically reasonable boundaries [Martin & 
Stedinger, 2000], which is an enhancement relative to ML.  A key disadvantage of MAP is 
the introduction of bias in the parameter estimates [Kitanidis, 1996], which is a worsening 
relative to ML.   

An extension of ML and MAP is generalized likelihood uncertainty estimation (GLUE) 
[Beven & Binley, 1992; Beven & Freer, 2001].  GLUE utilizes a likelihood measure to quantify 
parametric uncertainty, which is a user defined function that increases as the agreement 
between model simulations and observations improves.  In GLUE, model parameter vectors 
that have a likelihood measure above a certain threshold (user specified) are classified as 
“behavioral” and those that do not are classified as “non-behavioral”.  The behavioral 
ensemble is then weighted by the likelihood measure and used to attain a cumulative 
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distribution of model simulations from which quantiles or other statistical measures can be 
calculated.  GLUE has been the topic of recent reviews as well as hydrological and 
hydrogeological applications [Mertens et al., 2004; Li et al., 2010; Rogiers et al., 2012]. 

A major advantage of GLUE is the method addresses the problem of equifinality, in which 
multiple model parameter vectors result in best, but identical model performance as 
quantified by the likelihood measure.  ML and MAP on the other hand cannot address 
equifinality, as there is no way to “break a tie” between the best performing parameter 
vectors in maximization approaches.  However, GLUE is typically much more 
computationally demanding than ML or MAP [Mertens et al., 2004]. 

There are three significant shortcomings of GLUE.  First, the user-specified threshold is a 
rejection-acceptance criterion, which has clear implications for the bias of the resulting 
behavioral simulation ensemble [Li et al., 2010].  Relaxing the criterion increases the 
behavioral simulation ensemble size and includes simulations that do not agree as 
stringently with the observations, which typically widens the confidence intervals (CIs) in 
the cumulative distribution, and vice versa.  Thus CIs reported with GLUE are irreversibly a 
function of the threshold and there is no good rule-of-thumb for setting the threshold value 
[Mertens et al., 2004; Rogiers et al., 2012].  Second, as argued analogously by Rubin et al. 
[2010] about the pilot point method (summarized shortly hereafter), the exclusion of 
simulations from the cumulative distribution in the behavioral ensemble of GLUE on the 
basis of the threshold results in an under-sampling of the parameter space and the 
subjectivity of the likelihood measure [Beven & Freer, 2001] injects bias into the resulting 
quantiles.  Third, there is no way in GLUE to establish that the parameter space has been 
adequately sampled, i.e. that the results are convergent [Mertens et al., 2004; Li et al., 2010].   

At this point, the section shifts focus from stochastic approaches and the remaining two 
approaches presented can be described as optimization or fitting approaches.   

In a pure sense of optimization, an important method to summarize is shuffled complex 
evolution (SCE).  SCE is an extension of local optimization approaches to ensuring that 
maximization of the objective function does in fact attain a global maximum instead of 
incorrectly identifying local maximums [Duan et al., 1992].    Users define an objective 
function and use SCE to determine the model parameter vector which maximizes this 
function.  SCE has been extended and applied heavily in recent years: Yapo et al. [1998] 
extended SCE to multi-objective solutions of the Pareto surface; Vrugt et al. [2003] 
improved the robustness of SCE in multi-objective problems with the inclusion of a 
Metropolis-Hastings step to prevent the algorithm from collapsing into small regions of the 
parameter space; Mertens et al. [2004] showed in application that a 2-D Pareto surface can 
balance goodness of model fit with prior information attained about vadose zone van 
Genuchten parameters at a site; Vrugt et al., [2008] developed a framework for 
simultaneous execution of the multiple Markov Chain Monte Carlo (MCMC) schemes that 
share information to actively adapt the chain evolution to further enhance efficiency of SCE. 

The main advantages of SCE are the efficiency with which the optimization is executed 
relative to other parameter space search algorithms [Duan et al., 1992].  There are however 
a few weakness of SCE and the extensions of it.  First, SCE itself does not address the 
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problem of equifinality as it is still a single optimization problem, so it does not extend 
beyond GLUE; however, the recent work of Vrugt et al. [2008a] introduced an MCMC 
sampling step in SCE which yields a posterior PDF and circumvents this issue, because a 
single estimate is no longer the goal of the analysis.  Second, the optimal parameter set 
determined by SCE is always dependent on the objective function selected or is a 
compromise between various solutions of the separate objective functions that define the 
Pareto surface [Boyle et al., 2000] – there is always a component of SCE that requires users 
to exercise judgment or expertise to define these functions.  Finally, the significant 
improvement of the speed of implementation not withstanding [Vrugt et al., 2009], there 
are still large concerns about the convergence diagnostics not identifying the failures they 
are intended and designed to identify [Cowles & Carlin, 2012], which are embedded in the 
MCMC SCE approaches for chain termination.   

The introduction of multiple objective functions extends the single function maximization 
approach of ML and MAP and traditional SCE, but also extends the computational cost of 
multi-objective SCE relative to these methods [Vrugt et al., 2003].  The inclusion of 
convergence criteria in SCE methods, if they can be validated, would represent an 
improvement over GLUE.   

The final technique worth mentioning in this brief overview is the pilot-point method 
(PPM) [Certes & de Marsily, 1991; Doherty, 2003; Kowalsky et al., 2004; Alcolea et al., 2006].  
PPM is based on the maximization of an objective function, which means there is some 
overlap with the ML and MAP principles, but there are two key differences.  First, PPM 
provides a method of localizing information in the parameter field; second, PPM is not a 
statistical procedure, the objective function is not a PDF.  While ML and MAP are usually 
applied in hydrogeological studies for the estimation of statistical moments of the physical 
parameter field, e.g. mean and covariance of transmissivity, PPM is geared towards the 
localized estimation of the physical parameters, e.g. transmissivity at specific coordinates.   

The ability of PPM to characterize physical parameters locally is a significant conceptual 
advance from the ML and MAP approaches, but there are drawbacks to the PPM approach.  
First, there are problems of regularization and instability that can plague PPM analysis 
when the number of pilot-points grows large [Alcolea et al., 2006].  Second, there is 
significant concern that the implementation under-samples the probability space, by virtue 
of setting a threshold for the objective function and introduces bias in the results (similar 
to GLUE) [Mertens et al., 2004; Rubin et al., 2010].  Third, pilot points can introduce artifacts 
in the characterization, because of over-fitting [Cooley, 2000].   

In closing, this section has presented five methods for parameter estimation: ML, MAP, 
GLUE, SCE, and PPM.  As these methods are subsequently contrasted with MAD, the most 
significant aspect of ML, MAP, and SCE will be that these approaches derive one best 
estimate of the parameters.  The key aspect of GLUE is that convergence is not definable.  
The important characteristics of PPM are that it is neither a Bayesian nor statistical 
approach.  Finally, with all five methodologies, there exists a user-definition of a likelihood 
function, objective function, or likelihood measure.  In the next section, MAD will be 
presented theoretically and then contrasted with these five methodologies. 
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1.2 MAD Theory 

 

MAD is a Bayesian technique for characterizing spatially-distributed physical parameter 
fields conditional upon state variable measurements, which can be of different type and 
scale.  The remainder of this section is devoted to three topics that introduce the elements 
of MAD and summarizes the work of Rubin et al. [2010].  It is appropriate to begin with the 
tools for characterizing heterogeneous parameter fields, which includes the structural 
model and the anchored distribution parameters.  Next, the categorization scheme for the 
measurements is presented along with the framework for conditioning.  Finally, MAD is 
briefly contrasted with the five methodologies presented in Section 1.1. 

The MAD approach synthesizes global characterization and localized characterization of 
the physical parameter fields.  Global (or regional) characterization is done by the 
structural model, which is a tool that mathematically represents spatial heterogeneity in 
the domain.  Local characterization is done by anchored distribution parameters, hereafter 
called “anchors” for short, which are further developed later in the section.  For sake of 
simplicity, the remainder of this section is devoted to the introduction of MAD for a single 
spatially heterogeneous physical parameter field 𝒀, but in general MAD can extended for 
joint characterization of multiple physical parameter fields 𝒀1, 𝒀2, and so on. 

The field 𝒀 must therefore be defined by parameters from both the structural model and 
the anchors in order to support the global and local characterization objectives.  The 
parameters of the structural model are denoted 𝜽 and the anchors are denoted 𝝑.   

The structural model 𝑆(𝒀;  𝜽) is utilized to generate random realizations of the physical 
parameter field �̃�, where the accent indicates a realization.  In hydrogeological 
applications, the structural model is often defined as a geostatistical model and the vector 𝜽 
can include parameters such as the integral scale or nugget [Murakami, et al., 2010; Chen et 
al., 2012; Over et al., 2013].  In other application areas, where geostatistics may not be 
appropriate, a classical statistical approach may be adopted.  In these cases, the structural 
model may be defined as a statistical model, e.g. Gaussian, and the vector 𝜽 can include 
parameters such as the covariance matrix components.  The important role of the 
structural model is to generate random realizations of the physical parameter field.   

The anchors are statistical devices that define a PDF of the physical parameter at localities 
in the domain.  These devices are non-physical – meaning they do not have to be located 
where measurements were taken.  Anchors are intended to capture non-local information 
available from the state variable measurements and convert it into direct, point 
information of the physical parameters.  Proper usage of anchors is extensively detailed in 
the work of Rubin et al. [2010] and placement of anchors is optimized in the work of Yang 
et al. [2012]. 

Finally, before describing the measurement classification system, it is important to note 
that the synthesis of global and local characterization, via the parameter vector [𝜽, 𝝑]𝑇 , is 
only possible when the structural model can incorporate point information.  For instance, 
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geostatistical approaches can easily accommodate point information, but classical 
statistical models, e.g. a Poisson or a Gaussian model, cannot accommodate spatial 
information of any type.  Therefore, MAD can be formulated with or without anchors, but 
always with some structural model, but this will be carefully explained when MAD is 
compared with ML and MAP at the end of this section. 

Measurements are categorized as Type-A or Type-B data in MAD, on the basis of the 
measurement type and the support volume of the measuring device.  Type-A data 𝒛𝑎 is a 
direct measurement of the physical parameter field.  Type-A data can also measure another 
variable that relates to the physical parameter field on the same support volume as the 
measurement device, i.e. a permeability measurement can be related to the hydraulic 
conductivity on the same volume.  Type-B data 𝒛𝑏 are functions of the physical parameter 
field on a volume larger than the support volume of the measurement device, i.e. a pressure 
head measurement at a piezometer can only be related to the hydraulic conductivity using 
the entire field, initial conditions, and boundary conditions via the flow equation.  Type-A 
data is often called ‘direct’ data and has the same requirement as anchors of a spatially 
compatible structural model.  Type-B data is often called ‘indirect’ data. 

With the characterization parameters and data types defined, the Bayesian framework can 
now be specified.  The objective of MAD is to characterize spatially-distributed physical 
parameter fields conditional on the various measurement data, which can be accomplished 
using the proportionality 

𝑓(𝜽, 𝝑|𝒛𝑎, 𝒛𝑏) ∝ 𝑓(𝒛𝑏|𝜽, 𝝑, 𝒛𝑎)𝑓(𝜽, 𝝑|𝒛𝑎)       (1.2) 

where 𝑓(𝜽, 𝝑|𝒛𝑎, 𝒛𝑏) is the posterior joint PDF of the structural parameters and anchors 
conditional on Type-A and Type-B data, 𝑓(𝒛𝑏|𝜽, 𝝑, 𝒛𝑎) is the likelihood function joint PDF – 
the probability of observing the Type-B data given the structural parameters, anchors, and 
Type-A data, and 𝑓(𝜽, 𝝑|𝒛𝑎) is the prior joint PDF of the structural parameters and anchors 
conditional on the Type-A data only.  Note that referring to 𝑓(𝜽, 𝝑|𝒛𝑎) as prior is 
appropriate even though it is itself a conditional PDF, because it is antecedent to the 
inclusion of Type-B data.   

Before describing the implementation of Equation 1.2, it is worthwhile to briefly highlight 
the important aspects of MAD that set it apart from the five methodologies described in 
Section 1.1.  First, MAD is clearly different than ML, MAP, and SCE, because there is no 
maximization step.  The goal of MAD is to obtain a posterior joint PDF of the structural 
parameters and anchors, not a single best estimate.  Thus MAD provides a more complete 
depiction of uncertainty in the parameters than an estimate can.  Second, MAD does not 
require user definition of the objective function, likelihood function, or the likelihood 
measure, which sets it apart from GLUE and PPM as well as ML, MAP, and SCE.  Unlike all 
the other approaches, MAD requires no assumptions about the likelihood function by 
introducing inferential, hierarchical methods, but unfortunately this comes at cost [Rubin et 
al., 2010].  MAD can be used to completely eliminate the possibility of user bias in the 
likelihood function or be used to validate assumptions made about the likelihood function.  
For these two reasons, there is a clear theoretical motivation for the use of MAD for 
parameter field characterization.    
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The importance of a research dissertation that improves the numerical efficiency of MAD, 
generalizes the numerical implementation of MAD, and extends MAD into a new field of 
application is justified by the important advancements offered by MAD relative to other 
statistical parameter estimation or optimization approaches, 

 

1.3 MAD Implementation 

 

In this section, two important elements of MAD are developed.  First, a generic overview of five 

variations of Equation 1.2 that are viable formulations of MAD are presented.  Second, the 

numerical implementation of the most comprehensive formulation of MAD is outlined.   

 

1.3.1 Alternative Formulations of MAD 

 

As briefly mentioned in Section 1.2, MAD can be derived with or without random structural 
parameters, in the absence of Type-A data, and even without anchors (an argument 
justified in Chapter 4).  The use of indirect data is essential to any formulation of MAD. 

Equation 1.2 can be considered the most comprehensive formulation of MAD and yields the 
joint posterior PDF of the random structural parameters and anchors conditional on both 
Type-A and Type-B data.  An example of an appropriate usage of Equation 1.2 would be the 
global 𝜽 and local characterization 𝝑 of a heterogeneous hydraulic conductivity field 
conditioned on permeability measurements 𝒛𝑎 and pressure head measurements 𝒛𝑏.  
Equation 1.2 is not compatible with classical statistical structural models, because they are 
not compatible with the spatial dependence of Type-A measurements or anchors. 

The next obvious variant is the Bayesian proportionality in the absence of direct 
measurements of the Type-A variables 

𝑓(𝜽, 𝝑|𝒛𝑏) ∝ 𝑓(𝒛𝑏|𝜽, 𝝑)𝑓(𝜽, 𝝑)            (1.3) 

An example of an appropriate usage of Equation 1.3 would be a repetition of the previous 
hydraulic conductivity field characterization (described above) without having the 
permeability measurements available.  Like Equation 1.2, the usage of anchors in Equation 
1.3 requires a geostatistical structural model. 

The next variants are the exclusion of random structural parameters or anchors 

      𝑓(𝜽|𝒛𝑏) ∝ 𝑓(𝒛𝑏|𝜽)𝑓(𝜽)        (1.4) 

or 
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           𝑓(𝝑|𝒛𝑏) ∝ 𝑓(𝒛𝑏|𝝑)𝑓(𝝑)        (1.5) 

which eliminates the global or local characterization from the framework respectively.  An 
important note is that in Equation 1.5, even though the structural parameters are not 
treated as random variables, it is essential to still have a deterministic, geostatistical 
structural model to infer the likelihood function 𝑓(𝒛𝑏|𝝑); otherwise the form of the 
likelihood function must be assumed or user-defined, which is not customary to MAD 
[Rubin et al., 2010].  Equation 1.4 is appropriate for use with either geostatistical or 
statistical structural models.   

Finally, the last two variants incorporate the Type-A data back into Equations 1.4 and 1.5 

𝑓(𝜽|𝒛𝑎, 𝒛𝑏) ∝ 𝑓(𝒛𝑏|𝜽, 𝒛𝑎)𝑓(𝜽|𝒛𝑎)       (1.6) 

and 

𝑓(𝝑|𝒛𝑎, 𝒛𝑏) ∝ 𝑓(𝒛𝑏|𝝑, 𝒛𝑎)𝑓(𝝑|𝒛𝑎).       (1.7) 

Again, like Equation 1.5, Equation 1.7 also requires a definition of a deterministic, 
geostatistical structural model for likelihood function inference.  However, unlike Equation 
1.4, Equation 1.6 is not appropriate with classical statistical structural models because they 
are incompatible with the spatial dependence of Type-A data. 

In closing, the purpose of explicitly writing out the Equations 1.3-7 is to highlight the 
possible formulations of the MAD Bayesian framework.  Generic software for MAD, by 
necessity, must support all the formulations presented in this section and this topic is 
reiterated in Chapter 3.  A case study utilizing each of these equations is developed in the 
subsequent three chapters. 

 

1.3.2 Numerical Implementation of MAD 

 

In practice, Equation 1.2 is worked from right to left.  Equations 1.3-7 can be evaluated in 
an analogous manner to that described in this section.   As a precursor to evaluating 
Equation 1.2, it is first necessary to define the available Type-A data 𝒛𝑎 and Type-B data 𝒛𝑏, 
the structural model and its parameters 𝜽, and the anchors 𝝑.   Figure 1.1 presents a flow 
chart intended to accompany the discussion.   

The first step of implementation is the definition of the Type-A conditional joint prior PDF 
𝑓(𝜽, 𝝑|𝒛𝑎) of the structural parameters and anchors.  This distribution can be determined 
using the Bayesian proportionality  

 𝑓(𝜽, 𝝑|𝒛𝑎) ∝ 𝑓(𝝑|𝜽, 𝒛𝑎)𝑓(𝒛𝑎|𝜽)𝑓(𝜽).      (1.8) 

The right side of Equation 1.8 is the triple product of: the conditional joint PDF of anchors 
given structural parameters and Type-A data 𝑓(𝝑|𝜽, 𝒛𝑎), the joint conditional PDF of the 
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Type-A data given the structural parameters 𝑓(𝒛𝑎|𝜽), and the joint prior PDF of the 
structural parameters 𝑓(𝜽).   

 

Figure 1.1: Flowchart and example of the numerical evaluation of Equation 1.2.  Originally published in Over et al. [2013]. 
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The joint prior PDF 𝑓(𝜽, 𝝑|𝒛𝑎) can be derived a number of ways, but good statistical 
practice recommends application of a least subjective principle, to avoid the introduction of 
bias.  The principle of maximum entropy [Woodbury & Ulrych, 1993, 1998] or minimum 
relative entropy [Woodbury & Ulrych, 1993, 1998; Hou & Rubin, 2005] are two common and 
well-documented approaches in hydrogeology that can be utilized for definition of 𝑓(𝜽).  
Additionally, more simplistic approaches, such as non-informative, improper, or a Jeffrey’s 
prior could be invoked for 𝑓(𝜽) [Wasserman, 2010].  Analytical expressions of  𝑓(𝝑|𝜽, 𝒛𝑎) 
and 𝑓(𝒛𝑎|𝜽) can be determined via Gaussian conditioning [Rubin et al., 2010; Murakami et 
al.,  2011; Chen et al., 2012], but of course other approaches may be adopted.  

The second step of the MAD implementation is to draw 𝑅 times from 𝑓(𝜽, 𝝑|𝒛𝑎).  This 
sampling can be done in a variety of ways, which are discussed in greater detail in Section 
2.1.2.  These draws are stored in the matrix 𝑫, where each row 𝑫𝑖 = [𝜽𝑖 , 𝝑𝑖], 𝑖 = 1, … , 𝑅 is a 
possible structural parameter and anchor configuration – hereafter referred to as 
‘samples’.  The matrix 𝑫 is of dimension 𝑅 × 𝑃, where 𝑃 is the total number of anchors plus 
random structural parameters.   

The third step of the MAD implementation is to utilize the structural model and a random 
field generator to generate 𝑁 equiprobable conditional realizations – hereafter just 
‘realizations’ - of the parameter field (or transformation thereof) 

�̃�(1)(𝜽𝑖 , 𝝑𝑖), … , �̃�
(𝑁)(𝜽𝑖 , 𝝑𝑖) for each of the 𝑅 samples.  The result is 𝑅 ensembles of size 𝑁 

and a total number of realizations of 𝑁𝑅.  Note that the realizations are conditional on the 
values of 𝜽, 𝝑, and 𝒛𝑎, but the dependence on 𝒛𝑎 is not explicitly defined, because it is the 
same for all 𝑅 ensembles, whereas the (𝜽𝑖 , 𝝑𝑖) are different for each ensemble. 

The fourth step of the MAD implementation is to utilize the forward model to simulate the 
Type-B response in space and time – hereafter simply a ‘simulation’ - on each of the 
realizations for all the samples.  Obviously, the numerical forward model must simulate 
physics that are comparable to the conditions under which the Type-B measurements were 
attained. 

The fifth step of the MAD implementation is to extract the output that corresponds with the 
𝑀 Type-B measurement locations and times to be conditioned upon from the temporal and 
spatial Type-B simulations.  Store the extracted simulation data in the matrix 𝒁𝑏(𝜽𝑖, 𝝑𝑖), 
where the 𝑘𝑡ℎ row corresponds with the simulated Type-B response on the 𝑘𝑡ℎ realization 

�̃�(𝑘)(𝜽𝑖 , 𝝑𝑖) of the parameter field and the 𝑗𝑡ℎ column corresponds with the 𝑗𝑡ℎ  component 
of 𝒛𝑏.  Store the simulation ensemble matrix 𝒁𝑏(𝜽𝑖, 𝝑𝑖) for each of the 𝑅 samples.  This step 
requires running the forward model with each of the 𝑁𝑅 realizations and results in 𝑅 
simulation ensemble matrices of size 𝑁 ×𝑀, where 𝑀 is the length of 𝒛𝑏. 

The sixth step of the MAD implementation is to non-parametrically or parametrically 
estimate the likelihood function using the simulation ensemble matrices for each of the 
samples.  In a non-parametric approach, the simulation ensemble matrices are used to fit 

the 𝑀-dimensional likelihood function 𝑓𝑁(𝒛𝑏|𝜽𝑖 , 𝝑𝑖, 𝒛𝑎), 𝑖 = 1,… , 𝑅.  In a parametric 
approach, the simulation ensemble is used to estimate the statistical parameters of an 𝑀-
dimensional parametric PDF.  For instance, the Gaussian distribution is a possible 
parametric distribution to employ, in which case the simulation ensemble matrices would 
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be used to estimate the mean vector and covariance matrix.  After employing either 
approach, simply evaluate the likelihood function for the measurements of the Type-B data 
obtained from the experimental site. 

The last step (not shown in Figure 1.1) is to take the product of the prior joint PDF and the 
likelihood function values for each of the 𝑅 samples to obtain the posterior joint PDF values 
𝑓(𝜽𝑖 , 𝝑𝑖|𝒛𝑎, 𝒛𝑏), 𝑖 = 1,… , 𝑅.  From these samples, the complete posterior joint PDF 

𝑓𝑅(𝜽, 𝝑|𝒛𝑎, 𝒛𝑏) can be regressed using non-parametric methods.   

Summarizing, the general formula for a MAD implementation can be condensed to a 
likelihood function calculation Monte Carlo (MC) procedure nested within an outer MC 
procedure for regressing the posterior joint PDF [Maxwell et al., 1999]. 

Before closing this section, it is worthwhile to mention two aspects of implementing MAD 
that are essential to consider in any application.  First, the likelihood function calculation 
must converge; otherwise, the values obtained are not reliable.  This calculation is 
dimensionally dependent - 𝑁 should grow as 𝑀 grows.  Second, the posterior joint PDF 
regression must also converge; otherwise the probability values regressed are not reliable.  
This calculation is also dimensionally dependent – 𝑅 should grow as 𝑃 grows.  Since the 
largest component of computational cost component of implementing MAD is the 𝑁𝑅 
forward simulations, 𝑁 and 𝑅 are both significant to the overall cost.  

The following three chapters expand upon the material presented in Sections 1.1-1.3.  The 
second chapter motivates and derives an approximation method – called bundling - for the 
inference of the likelihood function, which reduces the computational cost of the numerical 
implementation of MAD.  The third chapter introduces the MAD software GUI; summarizes 
how the software supports generalized application of the theory; presents the modular 
architecture of the software; and a series of brief case studies.  The fourth chapter presents 
the first application of MAD to vadose zone parameter characterization.  Each chapter 
features at least one unique case study: some investigations are synthetic (Chapters 2 & 3) 
and one utilizes field data from an experimental site (Chapter 4). 
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2. Bundling 

 

 

The computational cost of model inversion is often very high, and this cost is a key factor 
preventing such analysis from becoming the practicing standard, or even becoming more 
common [Carrera et al., 2005; Alcolea et al., 2006; Marzouk et al., 2007; Castagna & Bellin, 
2009; Rubin et al., 2010].  The majority of prohibitive computational costs in MAD are 
affiliated with the large number of forward model (FM) simulations required for likelihood 
function inference or the number of adjoint model simulations needed to evaluate the 
sensitivity of the measurements to the model parameters [Cirpka & Kitanidis, 2000b].  For 
example, large FM simulation expense can result from the need to numerically solve the 
governing equations of saturated or unsaturated flow and reactive transport in three-
dimensions, under transient conditions, and in finely-discretized domains.  This chapter 
presents an approximation technique for non-parametric likelihood function inference that 
can reduce this FM cost without introducing significant error into the results. 

There is a body of literature with a focus on reducing the computational cost of model 
inversion, most of which can be roughly categorized as either model reduction or 
intelligent sampling.  Briefly, model reduction is the replacement of a more expensive 
numerical FM with a cheaper analog; this category includes techniques like the response 
surface method (RSM) [Downing et al., 1985], high dimensional model representation 
(HDMR) [Rabitz et al., 1998], the stochastic response surface method (SRSM) [Isukapalli et 
al., 1998], and the deterministic response surface (DSR) [Loll & Moldrup, 1998], or the 
temporal reduction of transient models to steady state via temporal moments (TM) [Harvey 
& Gorelick, 1995; Cirpka & Kitanidis, 2000b; Leube et al., 2012].  The approach presented 
below is not a model reduction technique, but could be utilized in a complimentary 
manner, which is detailed after the method is presented.  Briefly, intelligent sampling 
optimizes – relative to random sampling - the search of the model parameter space during 
the calibration or inversion process; this category includes techniques like the Fourier 
amplitude sensitivity test (FAST) [Cukier et al., 1978] and Latin Hypercube sampling (LHS) 
[McKay et al., 1979].  The approach presented in this chapter is also not an intelligent 
sampling approach, which will also be justified in greater detail after the method is 
presented. 

The technique is a modification of the likelihood function inference procedure in MAD.  The 
approximation strategy developed here infers the likelihood of sets of model parameter 
vectors reproducing the field measurements, which is a departure from the “traditional” 
inversion approach described in Section 1.3.2 where each model parameter vector is 
analyzed independently.  In this chapter, the necessary modifications to the Bayesian 
proportionality are shown explicitly when employing a likelihood function that is 
“bundled” or shared by multiple parameter configurations. 
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Note that this strategy is not developed to complement ML, MAP, GLUE, PPM, or SCE 
discussed in Section 1.1.  Common to several of the approaches is the use of an assumed 
analytical expression for the likelihood (ML or MAP), objective function (PPM), or 
likelihood measure (GLUE), in which a single simulation run for a given parametrization 
can be used to evaluate the likelihood expression.  This is fundamentally different than the 
approach implemented in MAD, where the likelihood function is instead inferred, requiring 
multiple simulation runs for a given model parametrization to first define the likelihood 
function before it can be evaluated.  Moreover, because MAD is not an optimization 
approach, so this approximation is not developed for SCE or its variants. 

The primary motivation for developing this new approximation is simple computational 
economy: a practical and cheap implementation strategy can first “scan” all possible model 
parameter configurations on a coarse basis (on the level of sets or volumes) to identify 
regions that reproduce field measurements with high likelihood, and then one could re-
analyze on a fine basis (point by point) only previously-identified “hot” regions.  The 
bundling approach represents this scanning strategy, and does not prohibit the secondary 
analysis.   

Another attractive feature of the bundling strategy is that it can be combined with other 
techniques to reduce the cost of likelihood function inference, which suffers from the well-
known curse of dimensionality.  For example, the dimensionality of the likelihood function 
can be reduced by replacing inversion data with lower-dimensionality representations of 
the same data – the first few TM of a concentration breakthrough curve (BTC) at an 
observation well could be used, for instance, instead of the lengthy concentration time 
series at the same location [Harvey & Gorelick, 1995; Cirpka & Kitanidis, 2000a].  Besides 
the improved likelihood function dimensionality, the use of TM is further supported and 
encouraged by the recent work of Leube et al., [2012] who showed explicitly the high 
information content contained in TM of drawdown curves.  In this chapter – which 
considers 3-D flow and transport, and extends the work of Murakami et al., [2010] and 
Chen et al., [2012] – two dimension reduction techniques are employed: TM and vertical 
flux-averaging of concentration BTC data. 

In the following sections, an overview of the necessary modifications to the MAD approach 
is first presented and then a detailed implementation procedure for the bundling 
approximation of the likelihood function, where a more detailed comparison of the 
bundling method with other model inversion efficiency strategies can be found.  After the 
methodology, a synthetic, numerical case study is introduced with details of the physical 
process being modeled, pertinent site conditions, the parameters being analyzed, and the 
data used for inversion.  Next, the results of the bundling approximation strategy are 
presented from the case study, compared side-by-side to the results from MAD without 
modification.  This case study is used to evaluate the quality of the approximation, and 
whether computational savings were attained.  The chapter closes with a discussion and 
summary.   
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2.1 Methodology  

 

This section presents the bundling approximation for inferring the likelihood function in 
model inversion.  The objective is to develop a method that is equally accurate as, but 
computationally cheaper than, the traditional MAD approach. In the following sections, the 
alterations to the MAD equations are presented, and the implementation required for this 
approximation technique.  Next, an extended derivation shows the order of the 
approximation.  After the alterations and the order of the error are introduced, the 
approach is compared with other methods for reducing computational cost of model 
inversion.  Finally, qualitative expressions for the approximate computational cost of each 
approach are given. 

 

2.1.1 Bundling 

 

Recalling Section 1.2, here a technique called “bundling” is presented for approximating the 
likelihood function by altering Equation 1.2.  This modification is both numerical and 
conceptual relative to Equation 1.2, and is based on substituting a likelihood function 
inferred non-parametrically using a training data matrix of Type-B data generated for a set 
of samples rather than from a single sample.  First, possible benefits and consequences of 
bundling are presented; followed by the method itself, the derivation of the approximation 
error, and an example illustrating many of these concepts; this section closes with a brief 
discussion comparing the implementations of bundling, MAD, and other computationally 
efficient approaches to model inversion 

 

2.1.1.1 Motivation and Equations 

 

The potential advantage of bundling is to significantly reduce the total number of FM 
simulations needed for likelihood function inference, which can be the most prohibitive 
and dominant computational aspect of MAD.  The danger – as with all approximation 
techniques – is the possibility of introducing significant error.  With these considerations in 
mind, the research question is therefore how bundling can reduce computational costs 
without degrading the quality of the model inversion.  The following study suggests that 
inferring the likelihood function over sets of samples – chosen by some similarity criterion 
– can yield cheaper computation with manageable amounts of error relative to methods 
that evaluate just one sample at a time. 

With that conceptual motivation in place, the preliminaries and notation of bundling can be 
established. Define 𝐾 bundles from amongst the 𝑅 samples – 𝛀𝑗 , 𝑗 = 1, . . , 𝐾 and 1 < 𝐾 < 𝑅 
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– each of which is a set, whose elements are the samples contained in each row of 𝑫, by 
first defining a medoid vector for each bundle – [𝜽, 𝝑]𝑗

∗, 𝑗 = 1,… , 𝐾, which are samples that 

are identifiable features of 𝑫 in the parameter domain [Kaufmann & Rousseeuw, 1990] – 
and then grouping the remaining samples to their nearest medoid in Euclidean distance, 𝑟𝑖𝑗.  

The subscript 𝑖 indicates an arbitrary sample, and the subscript 𝑗 an arbitrary medoid.  
Define 𝑛𝑗  as the number of samples in the 𝑗𝑡ℎ bundle, including the medoid.  Additionally, 

∑ 𝑛𝑗 = 𝑅
𝐾
𝑗=1 , because samples can only belong to one bundle.  Euclidean distance is used as 

the measure of similarity, because it requires the samples, which are vectors, to be alike in 
both direction and magnitude [van der Laan & Pollard, 2003].   

Bundling the likelihood function is based on an “or” statement as follows, presented 
without loss of generality, for the 𝑗𝑡ℎ bundle with 𝑛𝑗 = 2, 𝛀𝑗 = {𝝓1, 𝝓2}, where for brevity 

the shorthand 𝝓𝑖 = [𝜽𝑖 , 𝝑𝑖], 𝑖 = 1,2 is introduced:  

𝑓(𝒛𝑏|𝛀𝑗 , 𝒛𝑎) = 𝑓(𝒛𝑏|(𝝓1 ∪ 𝝓2) ∩ 𝒛𝑎) 

  𝑓(𝒛𝑏|𝛀𝑗, 𝒛𝑎) = 𝑓(𝒛𝑏|𝝓1 ∩ 𝒛𝑎) + 𝑓(𝒛𝑏|𝝓2 ∩ 𝒛𝑎) − 𝑓(𝒛𝑏|𝝓1 ∩ 𝝓2 ∩ 𝒛𝑎).     (2.1) 

If the parameter samples are approximately equal, 𝝓1 ≅ 𝝓2, then 

𝑓(𝒛𝑏|𝛀𝑗 , 𝒛𝑎) ≅ 𝑓(𝒛𝑏|𝝓𝑖 ∩ 𝒛𝑎) + 𝑓(𝒛𝑏|𝝓𝑖 ∩ 𝒛𝑎) − 𝑓(𝒛𝑏|𝝓𝑖 ∩ 𝝓𝑖 ∩ 𝒛𝑎) 

      𝑓(𝒛𝑏|𝛀𝑗, 𝒛𝑎) ≅ 𝑓(𝒛𝑏|𝝓𝑖 ∩ 𝒛𝑎) = 𝑓(𝒛𝑏|𝝓𝑖 , 𝒛𝑎), for 𝑖 = 1,2.      (2.2) 

Generalizing Equation 2.2 for bundles of any size results in an approximation of the 
likelihood function that is conditional on a bundle of - not individual - samples: 

𝑓(𝒛𝑏|𝜽𝑖 , 𝝑𝑖, 𝒛𝒂) ≅ 𝑓(𝒛𝑏|𝛀𝑗 , 𝒛𝑎), for ∀ [𝜽𝑖 , 𝝑𝑖] ∈ 𝛀𝑗  & 𝑗 = 1,… , 𝐾   

where 𝛀𝑗 = {[𝜽𝑖, 𝝑𝑖]: 𝑟𝑖𝑗 < 𝑟𝑖𝑘} for 𝑖 = 1, … , 𝑅 & 𝑗 = 1, … , 𝐾  

                     and 𝑟𝑖𝑗 = ‖[𝜽𝑖 , 𝝑𝑖] − [𝜽, 𝝑]𝒋
∗‖ .             (2.3) 

By Equation 2.3, the jth bundle is defined as the set of all samples closer to the jth medoid 
than all other 𝑘 ≠ 𝑗 medoids.  Equation 2.3 holds when [𝜽𝑚, 𝝑𝑚] ≅ [𝜽𝑛, 𝝑𝑛], for all 𝑚 ≠ 𝑛, 
for all samples in a bundle, for all bundles.  This final condition is the motivation for using 
Euclidean distance as the metric for defining bundles.  Bundling could easily accommodate 
any other distance metric by modifying Equation 2.3.  When using the Euclidean distance 
metric, care should be taken to work with structural parameters and anchors that are 
scaled similarly; otherwise variation in a  dominant dimension (i.e. spanning orders of 
magnitude) of the parameter domain could mask and exclude variations in other 
parameter dimensions (i.e. within an order of magnitude) when bundles are defined.  

Numerical estimation of MAD, after inserting Equation 2.3 into Equation 1.2, is then this: 

𝑓(𝜽𝑖 , 𝝑𝑖|𝒛𝑎, 𝒛𝑏) ≅
(�̂�𝐵𝑗(𝒛𝑏|𝛀𝑗 , 𝒛𝑎)+𝒪(𝛿𝑗))𝑓(𝜽𝑖 , 𝝑𝑖|𝒛𝑎)

𝑓(𝒛𝑏|𝒛𝑎)
∝ (𝑓𝐵𝑗(𝒛𝑏|𝛀𝑗, 𝒛𝑎) + 𝒪(𝛿𝑗)) 𝑓(𝜽𝑖 , 𝝑𝑖|𝒛𝑎), 



16 
 

    for ∀ [𝜽𝑖, 𝝑𝑖] ∈ 𝛀𝑗  & 𝑗 = 1,… , 𝐾,         (2.4) 

where 𝛿𝑗  is the largest extent of the bundle, defined as the maximum Euclidean distance 

across the 𝑗𝑡ℎ bundle, and 𝑁+ is the number of simulations per sample when bundling is 
employed.  In Equation 2.4, the likelihood function is still 𝑀-dimensional as in Equation 1.2; 
however, it is now fitted using 𝐵𝑗 = 𝑛𝑗𝑁

+ simulations of the Type-B data in the training 

data matrix, rather than 𝑁 simulations.  After a discussion comparing Equations 1.2 & 2.4, 
the order of the error given in Equation 2.4 is derived for the following conditions: FMs that 
are approximately linear and using a likelihood function joint PDF that is numerically 
inferred using non-parametric Gaussian kernel density estimation methods with a fixed 
bandwidth [Scott & Sain, 2004]. 

An important similarity in the implementations of Equations 1.2 and 2.4 is that the 
posterior and prior joint PDFs are still sampled and evaluated 𝑅 times – in fact, the 
majority of the implementation procedures are identical, and the outline given in Section 
1.3.2 and Figure 1.1 can quite easily be extended to numerically evaluating Equation 2.4.  
However, there are two critical differences in implementation between Equations 1.2 and 
2.4, which are summarized below and illustrated in Figure 2.1.   Figure 2.1 is adapted from 
Figure 1.1 and shows the additional steps required when applying bundling to a MAD 
analysis.  The red or blue horizontal arrows respectively indicate the output of MAD or 
bundling at each step.   

The first important difference is that the likelihood function is estimated only 𝐾 times in 
Equation 2.4, rather than 𝑅 times in Equation 1.2.  It is a reasonable expectation that 
inferring the likelihood function, whether for a single sample or a single bundle, should 
require roughly the same number of FM simulations to establish convergence, because the 
dimensionality of the likelihood function in Equation 1.2 is not changed in Equation 2.4.  
Therefore, because qualitatively  

net simulation cost = (simulation cost per calculation) ∗ (# of calulcations ),  

bundling should be less expensive than MAD simply because there are fewer calculations to 
perform – a primary motivation for developing the approximation in the first place. 
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Figure 2.1: Flow chart detailing the similarities and differences between the numerical implementations of MAD and bundling.  Originally 
published in Over et al. [2013]. 

The other major change in the numerical evaluations of Equations 1.2 and 2.4 is their 
approach to compiling the training data matrices for likelihood function inference, which 
cannot be observed from the equations directly.  When bundling is applied, the 𝐵𝑗 Type-B 

simulations in the training data matrix are uniformly contributed from each of the 
𝑛𝑗  samples contained in the bundle.  Thus, define 𝒁𝑏(𝛀𝑗), a matrix of dimension 𝐵𝑗 ×𝑀, 

with a dependence not on only one sample, as was the case in Equation 1.2 where  



18 
 

𝒁𝑏(𝜽𝑖, 𝝑𝑖), but instead on a bundle of samples.  𝒁𝑏(𝛀𝑗) is the Type-B simulation output 

using 𝑁+ realizations of the target variable field from each of the samples in the bundle, 
[𝜽𝑖 , 𝝑𝑖] ∈ 𝛀𝑗 .  Put differently, matrix 𝒁𝑏(𝛀𝑗) is the aggregation of 𝑛𝑗   𝒁𝑏(𝜽𝑖, 𝝑𝑖) matrices, of 

size 𝑁+ ×𝑀, one for each sample in the bundle.  In this study, constant 𝑁+ is used, such 
that the size of the training data matrix 𝐵𝑗 ×𝑀 varies linearly with 𝑛𝑗 , because this permits 

direct comparison of 𝑁+ with 𝑁.  Further computational efficiency may be possible by 
letting 𝑁+ vary as a function of 𝑛𝑗 , but this topic is not further explored in this chapter. 

Finally, note that no specific algorithm was declared for defining medoids in Equation 2.3 – 
medoids can be defined by a user or with a variety of clustering algorithms, c.f. van der 
Laan & Pollard [2003] – nor has a rule or approach yet been specified for establishing how 
many bundles to use, i.e. the value of 𝐾.  In Section 2.3.2, a rule for defining the number of 
bundles is established.  In the next subsection, the error term in Equation 2.4 is derived, 
which is also revisited in Section 2.3.2 with supporting numerical evidence from a case 
study.   

 

2.1.1.2 Order of the Error 

 

The non-parametrical form of likelihood for M-dimensional 𝒛𝑏 conditional on the 𝑖𝑡ℎ 
sample - using a Gaussian kernel with fixed bandwidth, ℎ, and a training data matrix 𝒁𝑏(𝜽𝑖) 
of dimension 𝑁 ×𝑀 - is 

   𝑓𝑁( 𝒛𝑏|𝜽𝑖) =
1

𝑁ℎ𝑀
∑

1

(2𝜋)𝑀 2⁄ 𝑒𝑥𝑝 [−
[𝒛𝑏−𝒁𝑏(𝜽𝑖)𝑗]

T
∗[𝒛𝑏−𝒁𝑏(𝜽𝑖)𝑗]

2ℎ2
]𝑁

𝑗=1 ,       (2.5) 

where  𝒁𝑏(𝜽𝑖)𝑗 is the 𝑗𝑡ℎ row of the training data matrix, [ ]T is the transpose of a vector, 

and standard matrix multiplication rules apply.  Note, the derivation in this section is 
shown for structural parameters only, because it shortens the somewhat lengthy notation, 
but generally the equations could be expanded to include dependence on anchors as well.  
All other assumptions are discussed as they are utilized, with a specific attention to 
assumptions that could be generalized to any application of bundling. 

The non-parametrically estimated likelihood for M-dimensional 𝒛𝑏 conditional on the 𝑘𝑡ℎ 
bundle, without loss of generality for 𝑛𝑘 = 2 and 𝛀𝑘 = {𝜽1, 𝜽2} is 

𝑓𝑁( 𝒛𝑏| 𝛀𝑘) =
1

𝑁ℎ𝑀
∑∑

1

(2𝜋)𝑀 2⁄
𝑒𝑥𝑝 [−

[𝒛𝑏 − 𝒁𝑏(𝜽𝑖)𝑗]
T
∗ [𝒛𝑏 − 𝒁𝑏(𝜽𝑖)𝑗]

2ℎ2
]

𝑁 2⁄

𝑗=1

𝑛𝑘

𝑖=1

 

=
1

2
{𝑓𝑁/2( 𝒛𝑏|𝜽1) + 𝑓𝑁/2( 𝒛𝑏|𝜽2)}           (2.6) 

Equation 2.6 also uses a Gaussian kernel with the same fixed bandwidth as Equation 2.5 
and a training data matrix 𝒁𝑏(𝛀𝑘) which is an aggregation of 𝒁𝑏(𝜽1) and 𝒁𝑏(𝜽2, ) each of 
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dimension 𝑁 2⁄ ×𝑀, a size conveniently selected to allow comparison of the likelihood 
function with or without the bundling approximation.  Further, in Equation 2.6, see that the 
bundled approximation of the likelihood is equivalent to the arithmetic average of the 
likelihood of each sample in the bundle.  𝑁 is taken to be even for simplicity, such that the 
indexing on the interior summation is valid. 

Assuming the simulated Type-B data is multiply differentiable with respect to the 
parameters, the following Taylor Series approximation is valid, for the 𝑗𝑡ℎ simulation, 

𝒁𝑏(𝜽1)𝑗 ≅ 𝒁𝑏(𝜽2)𝑗 + ∑
𝜕𝒁𝑏(𝜽2)𝑗

𝜕𝜃𝑃
(𝜃1,𝑝 − 𝜃2,𝑝)

𝑃
𝑝=1 ,          (2.7) 

where 𝜃1,𝑝 − 𝜃2,𝑝 is the difference in the 𝑝𝑡ℎ components of 𝜽1 and 𝜽2, the dimension of the 

parameter vector is 𝑃, the partial differentiation is carried out for each of the 𝑀-
dimensions of 𝒁𝑏(𝜽2)𝑗 such that the summation term is also a vector, and second order or  

higher terms are neglected.   

Expanding Equation 2.6 using Equation 2.7 and defining  𝜃1,𝑝 − 𝜃2,𝑝 = 𝛿𝜃𝑝, 

𝑓𝑁( 𝒛𝑏| 𝛀𝑘) ≅
1

𝑁ℎ𝑀
{∑

1

(2𝜋)𝑀 2⁄ 𝑒𝑥𝑝 [−
[𝒛𝑏−𝒁𝑏(𝜽1)𝑗]

T
∗[𝒛𝑏−𝒁𝑏(𝜽1)𝑗]

2ℎ2
]𝑁 2⁄

𝑗=1 +     

∑
1

(2𝜋)𝑀 2⁄ 𝑒𝑥𝑝 [−
[𝒛𝑏−𝒁𝑏(𝜽1)𝑗+∑

𝜕𝒁𝑏(𝜽2)𝑗

𝜕𝜃𝑃
𝛿𝜃𝑝

𝑃
𝑝=1 ]

T

∗[𝒛𝑏−𝒁𝑏(𝜽1)𝑗+∑
𝜕𝒁𝑏(𝜽2)𝑗

𝜕𝜃𝑃
𝛿𝜃𝑝

𝑃
𝑝=1 ]

2ℎ2
]𝑁 2⁄

𝑗=1 }.     (2.8) 

Focusing on the argument of the exponential function that utilized the Taylor Series of 
Equation 2.7, find that 

[𝒛𝑏 − 𝒁𝑏(𝜽1)𝑗 +∑
𝜕𝒁𝑏(𝜽2)𝑗

𝜕𝜃𝑃
𝛿𝜃𝑝

𝑃

𝑝=1

]

T

∗ [𝒛𝑏 − 𝒁𝑏(𝜽1)𝑗 +∑
𝜕𝒁𝑏(𝜽2)𝑗

𝜕𝜃𝑃
𝛿𝜃𝑝

𝑃

𝑝=1

] 

≅ [𝒛𝑏 − 𝒁𝑏(𝜽1)𝑗]
T
∗ [𝒛𝑏 − 𝒁𝑏(𝜽1)𝑗] + 2 [∑

𝜕𝒁𝑏(𝜽2)𝑗

𝜕𝜃𝑃
𝛿𝜃𝑝

𝑃
𝑝=1 ]

T

∗ [𝒛𝑏 − 𝒁𝑏(𝜽1)𝑗]      (2.9) 

where the  𝒪(𝛿𝜃𝑝
2) term has been neglected, because such terms were left out of the 

expansion in Equation 2.7.  Substitution of Equation 2.9 into Equation 2.8 and expanding 
the exponential function yields  

𝑓𝑁( 𝒛𝑏| 𝛀𝑘) ≅
1

𝑁ℎ𝑀
{∑

1

(2𝜋)𝑀 2⁄
𝑒𝑥𝑝 [−

[𝒛𝑏−𝒁𝑏(𝜽1)𝑗]
T
∗[𝒛𝑏−𝒁𝑏(𝜽1)𝑗]

2ℎ2
]𝑁 2⁄

𝑗=1 +  

          ∑
1

(2𝜋)𝑀 2⁄
[1 −

[∑
𝜕𝒁𝑏(𝜽2)𝑗

𝜕𝜃𝑃
𝛿𝜃𝑝

𝑃
𝑝=1 ]

T

∗[𝒛𝑏−𝒁𝑏(𝜽1)𝑗]

ℎ2
]

⏟                      
𝐴

𝑒𝑥𝑝 [−
[𝒛𝑏−𝒁𝑏(𝜽1)𝑗]

T
∗[𝒛𝑏−𝒁𝑏(𝜽1)𝑗]

2ℎ2
]𝑁 2⁄

𝑗=1

}
 
 

 
 

.  (2.10) 
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Note the additional factor (term ‘A’) on the second summation, relative to the first 
summation, this is the error introduced by bundling.  In general as 𝑛𝑘 increases there will 
be more summations and a greater percentage of them will have affiliated error factors 
because of bundling.  Taking the maximum value of the partial derivatives for all 𝑗 to be 
small compared to the differences in 𝜽1 and 𝜽2 [Chapter 11, Rubin, 2003], find an upper 
bound on the order of the error and restate Equation 2.10 as 

𝑓𝑁( 𝒛𝑏| 𝛀𝑘) ≅
1

2
{𝑓𝑁/2( 𝒛𝑏|𝜽1) + [1 − 𝒪(𝑚𝑎𝑥{𝛿𝜃𝑝})]𝑓𝑁/2( 𝒛𝑏|𝜽1)}.  (2.11) 

Finally, introducing 𝑚𝑎𝑥{𝛿𝜃𝑝} = 𝛿𝑘, the largest difference across the bundle (called ‘bundle 

diameter’ hereafter), and generalizing to any 𝑛𝑘 and any parameter vector in 𝛀𝑘, gives 

𝑓𝑁( 𝒛𝑏| 𝛀𝑘) ≅
1

𝑛𝑘
{𝑓𝑁 𝑛𝑘⁄ ( 𝒛𝑏|𝜽𝑖) + ∑ [1 − 𝒪(𝛿𝑘)]𝑓𝑁 𝑛𝑘⁄ ( 𝒛𝑏|𝜽𝑖)

𝑛𝑘−1

} ≅ 

[1 − 𝒪(𝛿𝑘)]𝑓𝑁( 𝒛𝑏|𝜽𝑖), ∀𝜽𝑖 ∈ 𝛀𝑘.    (2.12) 

Thus, the order of the error term in Equation 2.4 is determined as a measure of the bundle 
diameter using Taylor series expansions. The next section offers a graphical discussion of 
the bundling approximation. 

  

2.1.1.3 A Brief Example 

 

The simplified two-dimensional parameter domain depicted in Figure 2.2 exemplifies many 
of the variables defined in the bundling approximation presented in the previous 
subsection. 

The plot shows eight samples partitioned into two bundles (distinguished by color and 
enclosed in a dotted border), the medoids of both bundles (indicated by solid fill), and an 
example of the Euclidean distances between a sample and the two medoids (the dashed 
lines).  The borders around the bundles do not represent an enclosed volume, but are 
simply a visual tool for easily identifying the bundles in the graphic.  Figure 2.2 also 
facilitates an explanation of how to compile the training data matrices: 𝒁𝑏(𝛀1) would be 
composed of 5𝑁+ Type-B simulations on 𝑁+ realizations generated from each of the five 
samples in 𝛀1, and 𝒁𝑏(𝛀2) would be composed of 3𝑁+ Type-B simulations on 𝑁+ 
realizations generated from each of the three samples in 𝛀2. 
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Figure 2.3: Schematic diagram of bundles, medoids, and the Euclidean distance similarity metric.  Originally published in Over et al. 
[2013]. 

 

2.1.2 Contrasting Bundling with Other Computationally Efficient 

Inversion Techniques 

 

In this section, justification is presented for the claim made in the opening of the chapter 
that bundling is not a model reduction or sampling technique.  The discussion below relies 
heavily on Figure 2.3, which schematically shows how the various approaches can be used 
to infer the likelihood function in MAD.  Rao [2005] or Balukrishnan et al., [2005] present a 
much more detailed summary of many of the alternative computational approaches 
discussed in this section.  
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Figure 2.3: Schematic representation of implementations procedure between drawing samples and inference of the likelihood value of a 
sample using MAD (leftmost), bundling (left-center), DRS (right-center), and LHS (rightmost) approaches. Originally published in Over et 
al. [2013]. 

In Figure 2.3, four alternative implementations for inferring the likelihood are presented: 
the “traditional” MAD approach (repeated for reference, leftmost), bundling (left-center), 
DRS (right-center), and LHS (rightmost).  The diagram shows how three samples would be 
used to generate the training data matrices 𝒁𝑏for non-parametric inference of the 
likelihood function and how the likelihood value is assigned to the various samples.  Note 
in this figure, all three samples are assumed to belong to either the same bundle or would 
fall inside a single Latin Hypercube (LH).  The figure introduces the shorthand 𝐿(𝜽𝑖, 𝝑𝒊) =
𝑓(𝒛𝑏|𝜽𝑖 , 𝝑𝑖, 𝒛𝑎) and 𝐿(𝛀) = 𝑓(𝒛𝑏|𝛀, 𝒛𝑎) as well as the acronym “NP” for non-parametric 
probability density inference.  Circles, squares, and triangles respectively indicate samples, 
realizations, and simulations – the quantities of these symbols depicted in the figure are 
intended to be generic, i.e. 𝑁+ may or may not actually equal 𝑁 3⁄ , but for bundling to 
reduce computational cost 𝑁+ must be less than 𝑁 and is shown as such.  An abbreviated 
reminder of the implementation is provided along the left margin of the Figure (see Figures 
1.1 or 2.1 and Sections 1.3.2 or 2.1.1.1 for more detail). 



23 
 

The schematic indicates the conceptual differences between bundling and the other 
approaches.  First, bundling is the only approach that combines simulations from different 
samples in the training data matrix.  Second, compared to LHS or DRS, where a single 
representative sample’s likelihood value is assigned to the entire Latin Hypercube [McKay 
et al., 1979] or likelihood values are evaluated from the DRS linearly interpolated over the 
likelihood values of a stratified subset of samples [Loll and Moldrup, 1998], bundling 
utilizes all the samples in determining the approximate likelihood value.  Finally, with 
bundling, none of the individual likelihood values of the samples in a bundle 𝐿(𝜽𝑖, 𝝑𝒊) are 
ever directly inferred, but rather it is the likelihood of the bundle which is inferred 𝐿(𝛀), 
which is different than “traditional” MAD, LHS, and DRS, where at least one sample’s 
individual likelihood value is always directly inferred.  Notice the simulation expense 
(bottom row), which depending on the relationship between 𝑁 and 𝑁+ could be minimized 
for bundling or LHS; experimental results of these two quantities are compared in Section 
2.3.1.   

Even in the case where bundling is slightly more costly than LHS, bundling may have a 
conceptual appeal over LHS, because bundling accounts for more of the effects of 
parameter variation within a region of parameter space (the set defined by a bundle or 
enclosed in a LH) via the Type-B training data matrix used for inference.  Bundling is an 
arithmetic averaging of the contributions from the various samples within the bundle to 
the likelihood value (Equation 2.6), whereas the LHS likelihood value is “blind” to all other 
samples that are within the LH except the representative sample.   

Because bundling is a strict average of the likelihood in a bundle under the conditions of 
Section 2.1.1.2, with no weighting based on location in the parameter space, and because 
the “volume enclosed” by the set of samples contained in a bundle is at best arbitrarily 
defined (e.g. hypersphere, hyperellipsoid, etc.) any comparison to the expected value of a 
linear interpolated DRS is rather ambiguous.  Notwithstanding, it is worth defining the 
condition under which the local (over a bundle) expected value of the linearly interpolated 
DRS would be equivalent to the arithmetic average of the bundling approximation – shown 
generically for a bundle 𝛀 with medoid [𝜽, 𝝑]∗ containing 𝑛 samples and spanning a 
maximum Euclidean distance 𝛿 - 

           
1

𝑛
∑ 𝑓(𝒛𝑏|𝜽𝑖, 𝝑𝑖 , 𝒛𝑎)
𝑛
𝑖=1 =

∫ 𝑓(𝒛𝑏|𝜽, 𝝑, 𝒛𝑎)𝜕𝒱Ω𝒱Ω

∫ 𝜕𝒱Ω𝒱Ω

, where 𝒱Ω = {[𝜽, 𝝑]:
‖[𝜽,𝝑]−[𝜽,𝝑]∗‖

𝛿 2⁄
≤ 1}.  

(2.13) 

In Equation 2.13, the volume enclosed by the bundle 𝒱Ω is arbitrarily defined as a 
hypersphere of radius 𝛿 2⁄  centered at the medoid (since there is no one shape associated 
with a bundle) and there are no subscripts on the structural parameters or anchors on the 
integrand of the volume integral to remind that this argument is the linearly interpolated 
likelihood DRS.   

Where bundling may have a conceptual disadvantages relative to LHS and DRS is that the 
bundles are not required to span the entire parameter space, which means LHS or DRS will 
provide better coverage of the parameter space in some cases, and the relative complexity 



24 
 

of implementation, in which bundling is arguably the least straight-forward of all the 
approaches.   Note that even though Figure 2.3 may seem to suggest when all bundles are 
singly populated that LHS and bundling would be equivalent, but this is not the case.  
Instead, when bundles are all singly populated, bundling is equivalent to random sampling; 
see Section 1.2. 

The model reduction techniques HDMR, RSM, SRSM, and TM are not formally included in 
Figure 2.3. This is because these approaches involve replacing the FM entirely, which 
would replace the numerical tool used to generate Type-B data on the realizations, which is 
not a requirement of bundling.  Hypothetically, bundling could be applied in tandem with 
these other model reduction techniques, provided any modifications to the parameter 
space (e.g. a partition based on importance rank) are made before bundles are determined.   

With respect to the intelligent sampling techniques, it is now also clear from the figure and 
the preceding discussion that bundling focuses mostly on how to populate the training data 
matrix for likelihood function inference and this is implemented consecutively after 
samples are drawn whether by FAST, LHS, or just randomly.   

 

2.1.3 Computational Cost  

 

Here, qualitative equations for the approximate net computational cost of both the MAD 
and bundling approaches to estimating the likelihood function are defined. 

Define the cost of a single simulation as $𝑠𝑖𝑚, the cost of ensuring adequate convergence of 
the inferred likelihood PDFs using a sample size of 𝑋 as $𝑐𝑜𝑛(𝑋), and the joint cost of 
determining the number of bundles and construction of 𝛀𝑗 , 𝑗 = 1,… , 𝐾 , as $𝐾. 

Define the cost of evaluating MAD as $𝑀𝐴𝐷, the time logged numerically computing 
Equation 1.2, by  

          $𝑀𝐴𝐷 ≅ 𝑅 ∗ 𝑁 ∗ $𝑠𝑖𝑚 + $𝑐𝑜𝑛(𝑁).                    (2.14) 

Define the cost of evaluating bundling as $𝐵𝑈𝑁, the time logged numerically computing 
Equation 2.4, by  

                                                 $𝐵𝑈𝑁 ≅ 𝑅 ∗ 𝑁
+ ∗ $𝑠𝑖𝑚 + $𝑐𝑜𝑛(𝑁

+) + $𝐾.    (2.15) 

In Section 2.3.3, Equations 2.14 and 2.15 are evaluated for the case study in order to 
compare and assess computational savings (if any) from using bundling relative to MAD for 
the example inversion.  
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2.2 Case Study 

 

In this section, the analysis of a synthetic case study developed by Murakami et al. [2010] 
and extended by Chen et al. [2012] is presented.  In separate subsections, several relevant 
details are summarized: first the specifics of the numerical implementation, background 
about the motivating site, and summary of the experiment; then the Type-A and Type-B 
data used in the inversion; and finally the parameter domain, parameter sampling 
technique, and assumed prior joint PDF employed. 

 

2.2.1 Synthetic Experiment Summary 

 

The synthetic experiment utilized in this chapter is an extension of the research by 
Murakami et al.[2010] and Chen et al. [2012].  In this section, the domain and its numerical 
discretization, some characteristics of the subsurface at the site, the boundary conditions, 
and the physical experiment being modeled in the study are summarized. 
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Figure 2.4: The well field of the synthetic case study.  The extents of the numerical grid are outside the plot region.  The injection well for 
the transport experiment is highlighted in red, and the observation wells in blue.  Originally published in Over et al. [2013]. 

The domain in consideration is an analog of the Hanford 300 Area Integrated Field 
Research Challenge (IFRC) site located in Richland, Washington, USA, a highly-
instrumented site [Murakami et al., 2010; Chen et al., 2012; www.ifchanford.pnnl.gov].  
Figure 2.4 shows the well field at the site, and the local coordinate system.  The 
identification system for each well (#-##) in Figure 2.4 is used as shorthand to express 
location of the wells in the discussion that follows.  The dimension of the flow domain 
represented by the numerical grid is 122m by 122m by 10m, and is discretized into 2m by 
2m by 0.5m blocks [Chen et al., 2012].   

The lithology at the IFRC site consists of poorly-sorted, unconsolidated, and highly-
permeable sediments of the Hanford formation [Bjornstad et al., 2009].  The experiment 
focuses on the saturated portion of the Hanford formation (which is roughly 5-8 meters in 
depth) between the water table and the underlying lower-permeability Ringold formation 
[Murakami et al., 2010; Chen et al., 2012].   

The water table at the site is highly dynamic, with fluctuations averaging 0.5 meters daily 
because of the proximity of the Columbia River – which is roughly 250 meters from a 
boundary of the domain.  Therefore, transient head boundary conditions are used in the 
forward model.  The heads along the boundaries have been obtained by interpolating heads 
measured at observation wells. The bottom and top boundary planes are modeled as no-
flux boundaries – because of the sharp decrease in hydraulic conductivity across the 

http://www.ifchanford.pnnl.gov/
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Hanford-Ringold interface for the bottom, and to be similar to recharge conditions during 
an actual test at the site for the top [Chen et al., 2012]. 

The physical experiment being modeled in the unconfined aquifer and subject to the 
boundary conditions is a natural gradient, non-reactive transport test.  For the synthetic 
study, the tracer was injected into well 2-09, and subsequent transport was simulated for 
250 hours using a maximum time step of 1 hour.  Chen et al. [2012] provide additional 
information about the simulations, including the concentration boundary conditions, all the 
initial conditions, information about PFloTran [Hammond and Lichtner, 2010] - the FM - 
and so on. 

 

2.2.2 Inversion Data: Type-A and Type-B 

 

Here, a summary of the Type-A and Type-B data used by Murakami et al. [2010] the Type-B 
data used by Chen et al. [2012] and the Type-B data in the analysis is presented. 

Murakami et al. [2010] utilized 283 electromagnetic borehole flowmeter (EBF) 
measurements at the Hanford site, and seven pumping tests.  The EBF measurements were 
treated as Type-A data with uncertainty, while the pumping test measurements were 
treated as Type-B.  Specifics of the pumping tests and the measurement locations for each 
of the seven constant-rate injection tests are detailed in Murakami et al. [2010], which 
determined posterior distributions of structural parameters and anchors describing the 
hydraulic conductivity in the Hanford 300 Area conditional on EBF and pumping test data. 

Chen et al. [2012] explored the assimilation of measurements from the non-reactive tracer 
transport experiment as Type-B data.  The Type-B data inverted are the first-order TM 
normalized by the zero order TM at multiple wells in the domain.  Chen et al. [2012] 
determined the posterior joint PDF of the structural parameters and anchors describing the 
hydraulic conductivity in the Hanford 300 Area conditional on this tracer test data as well 
as the same EBF data and pumping test data used by Murakami et al.[2010].   

In this numerical study, the inverted Type-B data is similar to that of Chen et al. [2012], and 
is collected from the concentration BTCs at the five wells highlighted in blue in Figure 2.4.  
In order to work with one-dimensional Type-B data at each well, the concentration data is 
condensed in time via TM [Cirpka & Kitanidis, 2000], and along the vertical profile via flux-
averaging [Rubin, 2003] at each well.  This work differs from that of Chen et al. [2012] by 
utilizing vertical flux-averaging and different well locations. 

For the case study, a trapezoidal numerical integration scheme was employed.  The one-
dimensional Type-B data at each of the selected wells is as follows: 

        𝑧𝑏(𝒙) =
𝑚1(𝒙)

𝑚0(𝒙)
=
∫ 𝑡�̅�(𝒙,𝑡)
𝑇𝑓
0

𝑑𝑡

∫ �̅�(𝒙,𝑡)𝑑𝑡
𝑇𝑓
0

 ,     (2.16) 
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where 𝒙 = [𝑥, 𝑦] is the planar coordinate vector, 𝑚𝑖(𝒙) is the 𝑖𝑡ℎ order TM of the vertically 
flux-averaged concentration at 𝒙, 𝐶̅(𝒙, 𝑡) is the vertically flux-averaged concentration as a 
function of space and time, 𝑡 is adjusted time that is set to 0 with the first observation, and 
𝑇𝑓 is the final observation time.  Thus, the full Type-B row vector for the likelihood analysis, 

with the help of Equation 2.16 and Figure 2.4, can be written as this: 

       𝒛𝑏 = [𝑧𝑏(𝒙2−11),  𝑧𝑏(𝒙2−12),  𝑧𝑏(𝒙2−26),  𝑧𝑏(𝒙2−27),  𝑧𝑏(𝒙2−28)],  (2.17) 

where the subscripts on planar coordinate vectors are well identification numbers. 

 

2.2.3 The Parameter Domain, Parameter Sampling, and Prior 

PDF 

 

This chapter focuses on inversion of five structural parameters and 325 anchors – that is, 
𝑃 = 330.  The structural parameter vector is given by 𝜽 = {𝜇, 𝜎2, 𝜆ℎ, 𝜆𝑣, 𝜈

2}, where 𝜇 is the 
dimensionless mean, 𝜎2 is the dimensionless variance, 𝜆ℎ the horizontal integral scale in 
meters, 𝜆𝑣 the vertical integral scale in meters, and 𝜈2 the dimensionless nugget of the 3-D 
geostatistical model for the natural log hydraulic conductivity field – the target variable 
[Murakami et al., 2010; Chen et al., 2012].  The vector of anchors is the same as Chen et al. 
[2012].  A plan view of the anchor locations in the synthetic domain is shown in Figure 2.4; 
note that many of the anchors have common planar coordinates, but are at different 
depths. 
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Figure 2.5: The well field of the synthetic case study, with anchor locations depicted.  Originally published in Over et al. [2013]. 

The computational budget permitted the numerical likelihood analysis of 2,100 samples, 
limited primarily by the high cost of three-dimensional flow and transport simulation for 
multiple realizations of the hydraulic conductivity field per sample.  This means that 𝑅 =
2,100, and the dimension of 𝑫 is 2,100 × 330.  The prior joint PDF of the structural 
parameters and anchors used in the analysis – from which the 2,100 samples were drawn 
randomly with replacement – is the same as given by Chen et al. [2012], which is the 
mechanism that introduces the EBF and pumping test data of Murakami et al. [2010] into 
the analysis.  Table 2.1 summarizes some of the details of the case study that were 
presented in Section 2.2. 
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Table 2.1: Summary of case study.  Originally published in Over et al. [2013]. 

Numerical Domain 

Domain size [m] 

Grid spacing [m] 

[122, 122, 10] 

[2, 2, 0.5] 

Data domain 

# of Type-A measurements 

# of Type-B measurements, 𝑀 

283 

5 

Parameter Domain 

# of structural parameters 

# of anchors 

5 

325 

Implementation 

# of samples, 𝑅 

Dimension of 𝐷 

2,100 

2,100 × 330 

 

In the next section, the model inversion results for the case study are detailed. 

 

2.3 Results 

 

In this section, four posterior marginal PDFs of the structural parameters are presented – 
defined in Section 2.2.3, excluding the nugget – determined using either MAD or the 
bundling approaches summarized and developed in Sections 1.2 and 2.1.  With either 
bundling or MAD, the Type-B data used for conditioning is defined in Equation 2.17 for 
locations given in Figure 2.4.  The goal of these computations is to determine whether 
bundling satisfies two criteria: 1) that the posterior marginal PDFs predicted using 
Equation 2.4 converge and are comparable to those attained using Equation 1.2 (that is, 
bundling the likelihood function is stable, and does not meaningfully alter the Bayesian 
inference), and 2) that the cost of the bundling method, given by Equation 2.15, is less than 
the cost of evaluating MAD, given by Equation 2.14.  The unaltered version of MAD is used 
to establish a baseline case such that bundling can be compared to this standard.  The 
section opens with plots of the results and a metric for convergence, followed by a 
discussion the quality of predictions made by bundling relative to the baseline case, and 
closes with an assessment of the computational costs of the two methods.   
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The numerically-estimated probability densities in this section are computed with non-
parametric Gaussian kernels using fixed bandwidths [Scott & Sain, 2004]. A data set of 
840,000 simulations (400 simulations for each of the 2,100 samples) or subsets of the 
840,000 simulations was used for likelihood function inference [Chen et al., 2012].  Unless 
otherwise stated, when Equation 2.4 is evaluated, the number of bundles is fixed at 𝐾 =
250, and bundles are defined using the algorithm Partitioning Around Medoids (PAM) 
[Kaufmann & Rousseeuw, 1990].  In this case study, 𝒁𝑏(𝛀𝑗), 𝑗 = 1,… , 𝐾, has variable 

dimensionality of 𝐵𝑗 ×𝑀, which results in larger training data matrices for certain bundles; 

this was chosen so that bundling could be compared to MAD using a convergence criterion 
based strictly on the number of simulations per sample – that is,  𝑁+ vs. 𝑁.  Hereafter, for 
brevity, the constant second dimension of the training data matrices is suppressed (𝑀 = 5 
always) and the first dimension of the training data matrix is referred to as its “length”. 

 

2.3.1 Convergence 

 

In this section, convergence of the two approaches is examined.  First, the bundling and 
MAD posterior marginal PDFs are assessed with a qualitative, visual check of stability.  If 
reasonable insensitivity of the posterior marginal PDFs to further increases to the number 
of simulations per sample used for inference is observed, then the posterior marginal PDFs 
are re-analyzed with a more rigorous, quantitative criterion based on integrated absolute 
error (IAE).  The quantitative metric is then employed to validate the convergence – 
defining the number of simulations per sample needed with each method.  IAE is also used 
here to determine a truncation point that defines when to stop generating additional 
simulations per sample during likelihood analysis, and in Section 2.3.3 to evaluate the 
computational cost. 

Figure 2.6 is an example of the qualitative check for convergence using the two approaches 
– MAD results are shown on the left, and bundling on the right.  In both panes, the plot 
shows a posterior marginal PDF (dimensionless variance) determined using the complete 
data set (𝑁,𝑁+ = 400), and the posterior marginal PDFs determined using the next 24 
smaller data sets (𝑁,𝑁+ = 376,… ,399), each of which has one simulation per sample 
withdrawn randomly from the next-larger data set.    

Figure 2.6 qualitatively suggests that the posterior marginal PDFs determined using either 
MAD or bundling do converge – the family of curves is very similar.  Figure 2.6 is evidence 
that the posterior marginal PDFs are not highly sensitive to either additional or fewer 
simulations per sample in the training data matrix, so a more quantitative assessment of 
convergence is undertaken. 
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Figure 2.6: Qualitative check of bundling and MAD posterior marginal PDFs of dimensionless variance for possible convergence, 
computed by sequentially adding simulations to the training data matrices.  Originally published in Over et al. [2013]. 

The remainder of this section therefore compares this convergence of MAD and bundling, 
using metrics established based on IAE.  IAE is formally as follows: 

IAE = ∫|𝑓(𝑥) − 𝑓𝑛(𝑥)|𝑑𝑥,                      (2.18) 

which compares the true PDF 𝑓(𝑥) and the numerically-estimated PDF 𝑓𝑛(𝑥), inferred with 
a training data matrix of size 𝑛 × 1 (uni-variate case).  The numerically-estimated PDF is 
said to be a consistent estimator of the true PDF if  IAE → 0 as 𝑛 → ∞ [Izenman, 1991].   
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Figure 2.7: Comparison of convergence to the best estimate of the marginal posterior PDFs between the two likelihood function 
approximation methods.  Originally published in Over et al. [2013]. 

To validate MAD and bundling as methods that reasonably converge using this formal IAE 
definition requires knowing the true posterior marginal PDFs of the structural parameters 
in question.  However, because the true posterior marginal PDF of either method is 
unknown in this case study, the convergence of the two methods is instead validated using 
a modification of Equation 2.18.  Define the validation metric IAE400 – the IAE of the 
estimated posterior marginal PDFs using training data matrix of length 𝑛 = 𝑁 or 𝑛 = 𝑁+  
with respect to our best estimates of the posterior marginal PDFs that use 𝑁,𝑁+ = 400 – 
shown explicitly for 𝑁, as 

             IAE400(𝑛) = ∫|𝑓𝑁=400(𝑥) − 𝑓𝑁=𝑛(𝑥)|𝑑𝑥, for 1 ≤ 𝑛 < 400.               (2.19) 
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Next, the methods are tested for how many simulations per sample are required to satisfy 
IAE400 < 0.1 - an analysis referred to as the “validation approach.” The convergence of each 
estimated marginal PDF to its “true” PDF is shown in Figure 2.7 by evaluating Equation 
2.19 as a function of 𝑛 = 𝑁 or 𝑛 = 𝑁+.   

For each marginal posterior PDF, the smallest number of simulations per sample required 
to satisfy IAE400 < 0.1 was determined and is listed in Table 2.2.   

 

Table 2.2: Convergence in IAE400.  Originally published in Over et al. [2013]. 

 𝝁 𝝈𝟐 𝝀𝒉 𝝀𝒗 

MAD (𝑵) 223 150 154 114 

Bundling (𝑵+) 112 95 145 116 

 

Comparing the two methods for the limiting values of 𝑁 and 𝑁+, the maximum number of 
simulations per sample required with 𝐾 = 250 is 145 for bundling, and 223 for MAD.  As 
such, employing the validation approach results in (223 − 145) 223⁄ ∗ 100 = 35% relative 
savings in simulations using Equation 2.4 instead of Equation 1.2 for this case study.   

Before moving to a comparison of the shapes of the posterior marginal PDFs from the two 
methods, however, a convergence rule that does not necessitate knowledge of the true PDF 
(assumed or known) must be specified.  This requires a different metric from the one 
defined in Equations 2.18 and 2.19, because it is useful to be able to identify a required 
number of simulations per sample without being restricted to either working with PDFs of 
known form (Equation 2.18) or generating large data sets before checking convergence 
(Equation 2.19), the former of which would not require numerical estimation of the PDF 
and the latter of which would eliminate the possibility of reducing the simulation cost. This 
alternative metric is important, because it permits an active analysis of convergence that 
can be performed during the inversion.  This alternative metric is referred to as the 
“truncation approach.”   

To this end, the IAE expression in Equation 2.18 is modified, so that it compares the 
posterior marginal PDFs predicted using a small subset of the data, 𝑁,𝑁+ = 50, with those 
predicted using a progressively larger 𝑛 = 𝑁 or 𝑛 = 𝑁+.  Shown explicitly for 𝑁: 

      IAE50(𝑛) = ∫|𝑓𝑁=50(𝑥) − 𝑓𝑁=𝑛(𝑥)|𝑑𝑥, for 𝑛 > 50.    (2.20) 

Figure 2.8 shows IAE50 as a function of either  𝑁 or 𝑁+, evaluated for all four posterior 
marginal PDFs using both MAD and bundling. 
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Figure 2.8: Comparison of convergence using a small subset of data data (𝑁,𝑁+ = 50) to establish a baseline case for the marginal 
posterior PDFs between the two likelihood function approximation methods.  Vertical reference lines indicate the beginning of regions of 
approximately-constant IAE. Originally published in Over et al. [2013]. 

Figure 2.8 shows for both methods and all four structural parameters that IAE50 initially 
increases with increasing 𝑁,𝑁+, and then levels off to a plateau of approximately-constant 
IAE50.  The increasing IAE50 with respect to 𝑁, 𝑁+– to the left of the reference lines in each 
pane – indicates a lack of convergence.  The plateau – to the right of the reference lines in 
each pane – indicates an approach to some stable limit, because the error is constant with 
respect to  𝑁, 𝑁+.  The vertical reference lines in Figure 2.8 indicate best estimates of the 
value of 𝑁,𝑁+where the plateau begins, and denote the smallest possible 𝑁,𝑁+ using 
Equation 2.20.  Experience showed that 50 additional simulations per sample ensured that 
relative plateaus were not misinterpreted as the ultimate limit of the constant behavior of 
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IAE50 – see, for example, the roughly-constant IAE50 for 120 < 𝑁,𝑁+ < 160, followed by 
increasing IAE50 for 160 < 𝑁,𝑁+ < 200 for horizontal scale.  These results of the 
truncation approach values for 𝑁 and 𝑁+, determined by identifying plateaus from Figure 
2.8 are summarized in Table 2.3.    

Table 2.3 shows again that bundling requires fewer simulations per sample than MAD to 
converge all posterior marginal PDFs – the worst-case values are 𝑁+ = 230 and 𝑁 = 270,.  
However, the truncation approach does still suggest using more simulations per sample 
than the validation approach to ensure convergence of the estimated PDFs.  Accordingly, 
the percent reduction in simulations per sample is less dramatic in Table 2.3 than in Table 
2.2, at only (270 − 230) 270 ∗ 100 = 15%⁄ .  But, this is still a significant savings for 
inversions with a large simulation cost.  The important outcome of Figure 2.8 and Table 2.3 
is that faster convergence of bundling can be confirmed using the truncation approach, at 
least crudely, without a knowledge of the “true” posterior marginal PDFs. 

Table 2.3: Convergence in IAE50. Originally published in Over et al. [2013]. 

 𝝁 𝝈𝟐 𝝀𝒉 𝝀𝒗 

MAD 270 210 210 200 

Bundling 220 220 230 230 

 

The significance of the truncation approach is that even during the inversion, convergence 
can nonetheless be evaluated in a manner that is consistent with the more rigorous – and 
expensive – validation approach.  It is of only minor importance that the savings suggested 
by the two approaches to setting 𝑁 and 𝑁+ do not perfectly agree.  Actually, the difference 
in required simulations per samples between Tables 2.2 and 2.3 suggests that requiring a 
plateau to be roughly constant for 50 additional simulations may be overly strict in the 
truncation approach, but this requirement was adopted ad hoc to be conservative.  If the 
truncation approach came to different conclusions than the validation approach about 
which method converges faster, it would cast serious doubts on the validity of using visual 
methods like Figure 2.6 and criteria like Equation 2.18 to establish convergence.   

 

2.3.2 Inferential Quality: Bundling 

 

Here, the numerical results of MAD and bundling in terms of the shape and quality of the 
posterior marginal PDF that each predicts are compared.  Figure 2.9 shows the posterior 
marginal PDFs of MAD and bundling, the prior marginal PDFs, and the true values of four 
structural parameters.  The posterior results are each determined using 𝑁,𝑁+ = 400 
simulations, to identify any artifacts in the PDFs imparted by bundling.   
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Figure 2.9: Comparison of posterior marginal PDFs calculated using MAD (Equation 2, black) and bundling (Equation 6, green).  Prior 
marginal PDFs are shown in red, and the true values of the parameters for the synthetic study in blue.  Originally published in Over et al. 
[2013]. 

Comparing the results of Equation 1.2 (black lines) with those of Equation 2.4 (green lines) 
in Figure 2.9, notice that the shapes of the PDFs are similar.  Notably, important features of 
the predictions that use the MAD equation are preserved by the bundling approximation; 
the single modality in means, the skewed single modality in variances, the tri-modality in 
horizontal scales, and the peak modality in vertical scales that were found using MAD are 
also identified using bundling (with some minor variations in the density values).  This 
supports the claim that bundling parameters together before compiling the training data 
matrices introduces only a very limited amount of error in the likelihood function (at least 
for properly-sized bundles, discussed next).   What remains to be shown, however, is 
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whether the quality of the prediction is maintained at the earliest convergence limit 
identified in Section 2.3.1 - a topic revisited at the conclusion of this section after discussing 
the importance of bundle size. 

Next, the question of why the error introduced by bundling is limited only if the number of 
bundles is properly selected is addressed. Equation 2.3 in Section 2.1.1.1 showed that, in 
general, bundling is a valid approximation only when the parameter sets included in a 
bundle are nearly identical.  In Section 2.1.1.2 the order of the bundling approximation in 
the non-parametric Gaussian kernel utilizing a Taylor series expansion of the Type-B data 
as a function of the parameters was derived.  For this case study’s numerical 
implementation, the difference between Equation 1.2 and Equation 2.4 is proportional to 
the maximum Euclidean distance within a the bundle, which provides the motivation for an 
a priori strategy to determine the number of bundles.   

Before generating simulation data, different values of 𝐾 can be evaluated for their 
maximum Euclidean distances across bundles, which in combination with the derivation in 
Section 2.1.1.2, permits a researcher to set 𝐾 based on an allowable maximum first order 
error in the likelihood function. Note that each bundle has a maximum Euclidean distance 
between its two most distant members or is zero for singly-populated bundles.    

It is recommended to set 𝐾 by examining the PDFs of the maximum Euclidean distances 
across all the bundles, because this permits a clearer understanding of how the number of 
bundles relates to the error term in Equation 2.4, and also lends itself to easy visualization.  
Then, set 𝐾 such that the median maximum Euclidean distance is very small compared to 
the largest possible maximum distance, but is non-zero for two reasons.  First, the smaller 
the maximum Euclidean distance in the bundles, the smaller the error term introduced by 
bundling into the likelihood function estimates.  See Figure 2.10 for a few posterior 
marginal PDFs using 𝐾 = 2 relative to the MAD and 𝐾 = 250 results, as well as for a 
comparison of the maximum Euclidean distance PDFs using 𝐾 = 2 and 𝐾 = 250.  Second, 
any non-zero probability of maximum Euclidean distance equal to 0 implies some 𝑛𝑗 = 1, 

and reduces Equation 2.4 to Equation 1.2 at least for some bundles.  This, of course, 
nullifies the bundling approximation and any possible computational savings to result from 
that approximation – remember from Section 2.1.1.1 that simulation cost accumulates with 
the number of likelihood-function calculations.  Finally, it is recommended to search for 
medoids and bundles increasing from 𝐾 = 2 - while 𝐾 = 2 may often be an unreasonable 
choice based on size, it will always provide the largest possible maximum Euclidean 
distance when using PAM.   
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Figure 2.10: Comparison of posterior marginal PDFs of bundling with various values of 𝐾 to the baseline MAD case and comparison of the 
densities of maximum Euclidean distance for the selected values of 𝐾 (bottom right).  Originally published in Over et al. [2013]. 

In Figure 2.10, the median maximum Euclidean distances are respectively 4% and 95% 
percent of the largest possible maximum Euclidean distance.  The shapes of the PDFs 
predicted using bundling with 𝐾 = 2 are quite different from the MAD and the bundling 
with 𝐾 = 250 results – as indicated by the strong separation of the red (𝐾 = 2) traces from 
the green (𝐾 = 250) and black (MAD) traces in the three panes corresponding to marginal 
PDFs of structural parameters..  Figure 2.10 shows that the skewness of the bundling with 
𝐾 = 2 posterior marginal PDFs is strongly altered, and that there are significantly over-
estimated or under-estimated regions in each PDF as well.  Both effects are consequences 
of the poor choice for the number of bundles to use.    
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This section closes with a comparison of the posterior marginal PDFs using the number of 
simulations per sample given by the validation approach identified in Table 2.2.   

Figure 2.11 echoes Figure 2.9: the pertinent features of the PDFs – for example, the 
skewness in the variances or vertical scales, and tri-modality in horizontal scale – can still 
be identified using significantly fewer than 𝑁,𝑁+ = 400 with either method.  However, the 
main conclusion to be made from this plot is that bundling makes roughly the same 
prediction with 35% fewer forward simulations than MAD.   

 

Figure 2.11: Comparison of bundling with 𝑁+ = 145 (green) to MAD with 𝑁 = 223 (red) defined using the IAE400 criterion of Table 1, 
relative to the baseline MAD case with 𝑁 = 400 (black).  Originally published in Over et al. [2013]. 
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An example data set and script to numerically implement bundling (using the R statistical 
computing language), can be found online at: 
http://mad.codeplex.com/wikipage?title=Bundling. 

 

2.3.3 Computational Cost 

 

After establishing a metric for convergence and comparing the quality of the posterior 
marginal PDFs, it is now possible assess the computational costs of MAD and bundling.  
Here, Equations 2.14 and 2.15 are evaluated in order to quantify the savings achieved using 
the bundling approximation instead of MAD.   

The cost of a single simulation for this case study using PFloTran is roughly 40 minutes 
with a single-core AMD “MagnyCours” 2.1 GHz processor on the Franklin supercomputer at 
the National Energy Research Scientific Computing Center.  In Section 2.3.1, the number of 
simulations required per sample to achieve convergence of bundling and MAD was found 
to be 145 and 223 respectively, leading to net simulation costs of roughly 203,000 hours 
and 312,200 hours.  Establishing 250 bundles required evaluating PAM for 𝐾 = 2,… ,250 
on the parameter sample matrix 𝑫 and computing the densities of the maximum Euclidean 
distances in the bundles, which required roughly 37 hours (one-dimensional density 
estimation has an insignificant cost for this case study – an order of seconds).  Finally, 
verification of convergence of the likelihood function – which was established using two 
IAE-based metrics (Equations 2.19 and 2.20) – and required comparison of many different 
values of 𝑁 and 𝑁+ at a cost of roughly 2 hours per metric for either method.  Table 2.4 
summarizes the various components of the cost and the total computational expenses 
using MAD and bundling, all in hours.   

Table 2.4: Computational cost .  Originally published in Over et al. [2013]. 

 Simulation 

Cost 

Bundle 

Determination 

Convergence 

Determination 

Total Cost 

MAD 312,200 - 4 312,204 

Bundling 203,000 37 4 203,041 

 

The computational cost of bundling the parameter sets is easily offset by the savings in the 
simulation expense, and offers a (312,204 − 203,041) 312,204 ∗ 100 = 35%⁄  savings over 
MAD for this case study.   

http://mad.codeplex.com/wikipage?title=Bundling
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2.4 Conclusions 

 

In this chapter, an approximation method called “bundling” was presented, which evaluates 
the likelihood of a bundle of samples reproducing the measured data.  The approximation 
strategy was compared with a baseline case of MAD, which individually analyzes the 
likelihood of each sample, for overall cost and prediction quality.  The results suggest that, 
at least for this numerical case study, bundling converges faster than MAD – over 100,000 
hours less simulation time was needed for the bundling approach.  Further, it was 
demonstrated that the predictive quality of bundling is very similar to that of MAD, even 
when using significantly fewer simulations per sample to infer the likelihood function.  The 
35% smaller overall inversion cost demonstrated with bundling relative to MAD is 
significant: this approximation could be a tool that relaxes the typically-prohibitive 
computational requirement of MAD. 

This reduction in cost is the outcome of applying a tool that organizes samples with the 
primary goal of avoiding redundant likelihood function estimation steps in the parameter 
space.  By setting the requirement that bundles must contain similar samples using 
Euclidean distance, it was shown in Equation 2.4 and Section 2.1.1.2 that the maximum first 
order error introduced by bundling is proportional to the maximum Euclidean distance 
across any of the bundles.  Based on this error, a strategy for setting the number of bundles, 
𝐾, prior to the inversion was identified, based on the density of maximum Euclidean 
distances of the bundles.   

This cost reduction was quantified and validated using two separate approaches, both of 
which indicated decisively that bundling is cheaper than MAD.  The more rigorous 
validation approach compared predicted PDFs with a PDF using a maximum state of 
information; however, this cannot be checked during inversion.  The more ad hoc 
truncation approach compared predicted PDFs with a PDF using a lower state of 
information, but can be actively checked during inversion and used to set a stopping point 
during the simulation process.   

A rather stringent convergence criteria was enforced for both measures in order to employ 
bundling in MAD without subsequent more accurate re-analysis of the samples.  However, 
for studies that use bundling as a “scanning” technique it is recommended to relax the 
convergence criteria and increase the maximum permissible error in the likelihood 
function, because both factors should further cheapen the cost of an initial “scan”.  Such 
“crude” scans should always be followed by more exact re-analysis of the high likelihood 
regions before drawing conclusions.   

In conclusion, cheaper, but still accurate, numerical implementation costs of MAD can play 
a huge role in making the theory more accessible to different scientific applications.  This 
chapter identified motivations for such a strategy, developed alterations to the 
fundamental Bayesian proportionality of MAD, derived order of error in this 
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approximation, and empirically confirmed that computational savings, with minimal 
degradation of the quality of the results, could be obtained.   

In the next chapter, the central Bayesian proportionality is approached from a different 
perspective – namely, the numerical implementation of Equation 1.2 (or its variants shown 
in Section 1.3.1) is fully generalized for implementation with any FM, any RFG, and for any 
statistically valid PDFs. 
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3. The MAD Software 
 

 

Sixteen years ago, researchers posited that the field of hydrogeology should implement 
inversion modeling as a standard practice [Poeter & Hill, 1997] similar to the push by the 
USGS in the 1970s that proliferated the use of numerical forward modeling tools, but 
several functional obstructions have prevented widespread adoption of inversion models.   
Carrera et al. [2005] suggested that the following five issues need to be addressed to 
encourage widespread use of inversion techniques: 1) incorporation of geological data 2) 
the flexibility of the code and procedure to handle any and all relevant data types 3) 
accommodation of uncertainties 4) difficulty of code operation and 5) coupling of 
techniques with a GIS (Geographic Information System) platform [Carrera et al., 2005].  
The MAD software addresses these issues. 
 
The statistical capabilities of MAD (outlined in Section 1.2) address the first three issues on 
Carrera’s list - these are issues that are fundamentally accounted for by a more robust 
inversion approach, which is now briefly justified.  First, the incorporation of geological 
data - listed separately from inclusion of other data types to highlight the importance of 
geological processes that are often unaccounted for by zonation techniques [Carrera et al., 
2005] -to this end, MAD is compatible with geostatistics and uses a variety of available 
models - which Carrera et al. [2005] suggested as an alternative to a zonation framework.  
Second, MAD is a technique capable of assimilating data of any type and on any scale of the 
inversion problem, thus making it appropriately flexible for any application.  Third, MAD is 
a Bayesian tool that can treat any parameter of interest as a random variable and hence 
account for uncertainty throughout the inversion process.  These three challenges are 
fundamentally related to the generality of the inversion technique – each of which can be 
accounted for by MAD - whereas the final two challenges are related to the software 
platform for the numerical implementation of the inversion technique.   
  
The last two items on the list of Carrera et al. [2005] are accounted for by the development 
of easy-to-use software that lowers the bar for stochastic inversion modeling and is 
complemented by GIS capabilities.  The MAD software has been developed with a GUI that 
guides users through formulating the inversion problem, manages appropriate data 
throughout the process, and visualizes spatial data in a GIS mapping environment.  The 
need for scientists to fully understand the statistics of the approach and compile large 
amounts of simulated data are traditionally requirements of an inversion model 
application, but, as a default, the MAD software GUI automates the statistics and manages 
the data; allowing users to focus on specifying a better forward model or the implications 
of the predictions of the calibrated model, instead of the minutiae of the inversion 
methodology.    

The objective of this chapter is to present the open-source MAD software architecture as an 
extensible desktop application that further reduces the limitations to the widespread use of 
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inversion modeling in scientific investigations.  The core motivations and objectives of the 
MAD software development are three-fold: 1) automated, generalized implementations of 
MAD, 2) simplified setup and configuration processes for end-users via the GUI, 3) a 
platform that is easily transferrable and adaptable to multiple fields of study.    

In the first section of this chapter, the emphasis is on how elements of the graphical user 
interface (GUI) and the computational core of the software provide functionality to 
implement MAD.  As each function or step of the implementation (in parallel with Figure 
1.1 and the discussion in Section 1.3.2) is identified, the utility to automatic 
implementation and the simplicity of user interactions will be discussed in terms of the 
three core motivations above.  Additionally in the first section, the importance of the 
sequence, because there are many dependencies, will be explained in greater detail.  Each 
form will be introduced with accompanying screenshots.  In the second section of this 
chapter, the emphasis is on how this software architecture and design are modular as well 
as generalized for connection with a variety of relevant external tools.  After the design is 
presented, it will be possible to discuss how the MAD software architecture promotes easy 
transfer between and adaptation to different scientific fields of study.  In the final section of 
this chapter, case studies demonstrating several of the variants of the Bayesian 
proportionality for MAD (introduced in Section 1.3.1) are presented. 

 

3.1 The GUI and MAD Theory 

 

This section is divided into two subsections: the first provides a coarse overview of the 
MAD software GUI and the second demonstrates and discusses in detail the generalized 
implementation of MAD theory that each of the forms in the GUI supports.  This section 
covers both modules of the MAD software GUI: pre-processing and post-processing.   

 

3.1.1 The Forms of the MAD Software GUI 

 

In the beginning of this subsection, the pre-processing module is summarized, which 
handles all the components of a MAD application up to and including the generation of 
ensembles of simulated Type-B data (Steps 1-5, Figure 1.1).  In the latter portion of the 
subsection, the post-processing module is overviewed, which handles all of the 
components of a MAD application affiliated with the likelihood function (Step 6, Figure 
1.1.), convergence, and visualization of statistical output.  The objective of this section is to 
briefly give a topical overview of the MAD software modules, before introducing any 
individual components, connectivity, or workflow in detail. 

The pre-processing module guides users through the definition or configuration of all the 
necessary requisites for ensemble simulation.  The main inputs - depending on the nature 
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of the MAD application, which the GUI can differentiate – can include definition of a spatial 
domain, 𝒛𝑎, 𝒛𝑏, 𝜽, 𝝑, 𝑆(𝒀; 𝜽), and the joint prior PDF.  The final, and perhaps most 
significant, role of the pre-processing module is to establish a connection with the forward 
model and the random field generator, which are external software components – the MAD 
software on its own does not possess the capability for simulation or field generation, but 
can control outside tools to these ends.   

Table 3.1 lists the titles of the 9 forms of the pre-processing module and a brief statement 
of their core functionality.   

Table 3.1: Pre-processing module forms and core functionalities. 

Form Title Core Function 

Project Connects MAD software with forward model 
Define Domain Area Configures spatial domain 

Define Variables Defines parameter field(s) for characterization 
Measurements Allows upload of 𝒛𝑎 and 𝒛𝑏 

Structural Model Defines 𝑆(𝒀; 𝜽) and random components of 𝜽 
Anchors Defines 𝝑 

Prior Distribution Upload of samples from the joint prior PDF 
Likelihood Setup Allows aggregation of, subset selection from 𝒛𝑏 

Simulation Executes ensemble simulation in batch 
 

The post-processing module guides users through analysis of the simulation ensemble, 
convergence analysis, and visualization.  The key elements produced by the post-
processing module include the likelihood function and the posterior joint PDF.  Another 
significant role of the post-processing module is diagnostics of the size of the simulation 
ensemble 𝑁.  Table 3.2 lists the titles of the 5 forms of the post-processing module and a 
brief statement of their core functionality.   

Table 3.2: Post-processing module forms and core functionalities. 

Form Title Core Function 

Project Connects databases containing simulations 
Data Organization Creates variations of 𝒛𝑏, visualize simulations 

Compute Likelihood Computes likelihood function 
Convergence Evaluates the likelihood value as a function of 𝑁 

Posterior Analysis and Visualization Visualizes posterior marginal PDFs 
 

In Section 3.1.2, the purpose of each pre-processing and post-processing form will be 
explained in greater detail with accompanying screenshots. 
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3.1.2 Detailed Description of Each MAD Software Form 

 

In this subsection, each of the forms listed in Tables 3.1 and 3.2 is presented in more detail. 
The objective is to identify the essential elements of MAD applications each form is 
intended to support.   

The following 9 forms from pre-processing are necessary for the MAD software to produce 
the training data matrices 𝒁𝑏 .  These forms complete steps 1-5 of Figure 1.1, which was 
described in Section 1.3.2 

   

3.1.2.1 The “Project” Form 

 

Figure 3.1 shows the Project form of the MAD software.  This form has several critical 
responsibilities, which are numbered in the graphic: 1) construction of the database in 
which the MAD software stores all relevant project information, 2) connection of the MAD 
software to the forward model executable and forward model project file, 3) determination 
of time dependency for all subsequent forms, and 4) connection of the MAD software to the 
random field generator executable. 

Figure 3.1: The project form of the MAD software pre-processing module. 

The connections to the random field generator and forward model are important early 
steps in the MAD software experience, because these constrain the possibilities of a MAD 
application.  The forward model project file establishes constraints for the spatial domain 
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(dimensionality), the possible kinds of Type-A and Type-B measurements, and units of 
measurement (when available).  The random field generator is used to establish possible 
structural model types.  More obviously, without attaching these executable files, the MAD 
software would not be able to automate the random field generation or simulation 
processes affiliated with implementation.  Finally, recall Table 3.1 and note that the core 
functionalities of the next five forms in the pre-processing module all depend on the 
information (listed above) attained from these connections in the Project form, hence the 
sequence. 

There are several particularly user-friendly elements of this form.  The GUI adapts to the 
specific forward model project as well as the random field generator and populates the 
next five forms with case-specific options only, which is not visible to the user.  Second, the 
connections to the random field generator and forward model are very easy to configure, 
because they only require identification of directory paths.  Finally, because the random 
field generator and forward model have a common connection to the MAD software, the 
user does not have to worry about how to store, format, or utilize random fields in the 
forward model because the process is fully automated by the MAD software.   

The next form is used to define the spatial domain of the MAD application. 

 

3.1.2.2 The “Define domain area” Form 

 

Figure 3.2 shows the Define domain area form of the MAD software.  The form has two 
critical responsibilities, which are numbered in the graphic: 1) establishment of the 
coordinate system for all spatial information of the MAD application and 2) definition of the 
discretization for the random field generator. 

There is a fundamental need for coordinates in MAD applications, but there is also a strong 
motivation for this form to come early in the pre-processing module sequence.  Three of 
the next four forms’ core functionalities require a coordinate system: upload of 
measurement data, definition of structural models with spatial correlation, and definition 
of anchor locations.   

There are several user-friendly features to this form.  First, there is a map tab that 
visualizes the user input spatial discretization (for reasons that are made apparent in the 
next three sections, a graphic of the map is not presented until Section 3.1.2.6) and accesses 
multiple types of base maps, which are useful for comparison to site maps or satellite 
images.  Second, the dimensionality of the configured domain is required to match the 
dimensionality of the forward model, which prevents discrepancies between user input 
and existing information in the forward model project file.  Finally, the data-entry 
experience is simple and fast.  The main drawback to this form is that it does not support 
variable density discretization or non-rectangular elements, which restricts the types of 
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forward model projects that can be connected to the MAD software.  This is not a limitation 
of the theory, but of the technical capability of the MAD software. 

Figure 3.2: The Define domain area form of the MAD software pre-processing module.  1. Tool for establishing the coordinate system.  2. 
Tool for defining the discretization. 

The next form is used to select the parameter field or fields that are characterized in the 
MAD application. 

 

3.1.2.3 The “Define variables” Form 

 

Figure 3.3 shows the Define variables form of the MAD software.  The form has two critical 
responsibilities, which are numbered in the graphic: 1) definition of the parameter field or 
fields that will be represented by some combination of a structural model, anchors, and 
direct measurements and 2) definition of the indirect measurement data types that will be 
used to condition the parameter field in the Bayesian analysis.  Additionally, this form also 
determines what inputs of the forward model project file that the MAD software will 
overwrite with random field realizations as well as the outputs from the forward model 
that the MAD software will store in databases for analysis in the post-processing module. 

This form is also placed early in the sequence, because the measurement data, structural 
model, and anchors must all be grouped by data type during the random field generation 
and simulation processes.   

The form is indirectly accountable for one half of the most user-friendly aspect of the MAD 
software: the formatting, reading, writing, and storage of the correct forward model input 
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files, which can require a tremendous effort in applications done “by hand”.  Also appealing 
is the simple interface that is populated with lists of options pertinent to the specific 
forward model connected in the Project form.     

   
Figure 3.3: The Define variables form of the MAD software pre-processing module.  1.  Tool for selecting target variables.  2.  Tool for 
selecting conditioning data. 

The next form is used to manage and upload measurement data. 

 

3.1.2.4 The “Measurements” Form 

 

Figure 3.4 shows the Measurements form of the MAD software.  The primary responsibility 
of this form is the management of all relevant information about a measurement, which 
includes measurement values, types, coordinates, and times.  Also, this form establishes the 
spatial as well as the temporal coordinates at which the MAD software copies the forward 
model output from each simulation.  As mentioned in the previous two sections, the 
measurement type and coordinates require the Define domain area and Define variables 
forms; however, the information uploaded and defined in this form is utilized in the 
Structural model and Likelihood Setup forms, thus the order of the Measurements form in 
the sequence.   

This form provides the first concrete link with the equation of MAD presented in the 
Section 1.1.2, by defining explicitly 𝒛𝑎.  As mentioned in Section 1.1.2, Type-A data is only 
compatible with certain structural models (an attribute that is established by the 
connection of a random field generator in the Project form) and the MAD software will not 
permit Type-A data upload unless this requirement is satisfied. 
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The form has two key user-friendly attributes.  First, text files containing time series of 
measurement can be directly uploaded.  Second, the form automatically visualizes the 
measurement locations in the map tab (as before, for reasons that are made apparent in the 
next two sections, a graphic of the map is not presented until Section 3.1.2.6).  

 
Figure 3.4: The Measurements form and the measurement time series editor of the MAD software pre-processing module. 

The next form is used to define the structural model and any transformations of the 
parameter fields. 

 

3.1.2.5 The “Structural model” Form 

 

Figure 3.5 shows the Structural model form of the MAD software.  There are three critical 
responsibilities of this form, which are numbered in the graphic: 1) definition of any 
transformations, 2) configuration of the structural models, and 3) identification of random 
structural parameters.  

Obviously, a single structural model cannot represent all the different possible physical 
parameter fields.  This form allows each parameter field to have a unique structural model 
definition.  This form is sequenced after the Define variables form, such that the parameter 
field or fields to be characterized are already selected before structural model 
configuration.  Additionally, this form is sequenced after the Measurements form such that 
users do not have to transform their Type-A data before upload.  

This form defines several key elements of the MAD application: the structural model 
𝑆(𝒀; 𝜽); the structural parameters that are treated as random variables; and, if required by 
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the application, the transformations of 𝒀, respectively 𝒀𝑡 .  Note that when a transformation 
is applied, the structural model should be configured to generate random realizations of 
the transformed physical parameter.  The MAD software will automatically apply the 
inverse transformation to the generated parameter fields before using them as input to the 
forward model. 

Figure 3.5: The Structural Model form and structural parameter configuration pop-out of the MAD software pre-processing module.  1.  
Tool for transformations.  2. Tool for choosing structural model.  3.  Tool for randomizing parameters of structural model. 

Because a structural model can be used to represent either heterogeneous physical 
parameters fields (seen previously in Chapter 2 – e.g. geostatistical model) or block by 
block physical parameters (coming in Chapter 4 – e.g. classical statistical model); this form 
adapts to the random field generator connected to the MAD software.  The inset window in 
Figure 3.5 shows a variation of the structural parameter configuration pop-out for a 
geostatistical random generator.  Figure 3.6 shows the structural parameter configuration 
pop-out for a purely statistical random generator.  For classical statistical models, there is 
additionally a grouping tool that allows multiple physical parameters to jointly be assigned 
to a multivariate structural model. 

There are three key user-friendly features in this form.  First, the MAD software manages 
and applies all transformations and inverse transformations that must be applied before or 
after random field generation.  Second, the form will not permit configuration of any 
structural models that are not supported by the connected random field generator.  Finally, 
the definition of structural model parameters as random or deterministic is very 
straightforward.   

For reasons described in Section 1.2, this form is only accessible when a spatially 
compatible random field generator is connected to the MAD software.  Additionally, 
because anchors are PDFs of a given physical parameter, this form must follow the Define 
variables form.  This form defines the vector 𝝑 for the MAD application. 
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As mentioned in a few earlier sections, all spatial information is automatically added to the 
map.  After anchors are defined, a complete catalog of the spatial information in a MAD 
application is available.  Figure 3.8 shows the map tab of the MAD software from an 
example case study application.  The map contains the discretization along with the 
locations of anchors, Type-A and Type-B measurements – the icons for each are listed in 
the legend on the left hand side. 

The user friendly features of this form include the simple interface for defining anchor type 
and locations as well as the option to overlay a grid of anchors onto the domain. 

 

 

Figure 3.6: The structural parameter configuration pop-out of the MAD software pre-processing module for statistical structural models. 

The next form is used to define anchors. 

 

3.1.2.6 The “Anchors” Form 

 

Figure 3.7 shows the Anchors form of the MAD software.  The key responsibility of this form 
is the definition of the anchor locations and types.   
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Figure 3.7: The Anchors form of the MAD software pre-processing module. 

 
Figure 3.8: The map tab of the MAD software pre-processing module. 

The next form is for upload of samples drawn from the joint prior PDF. 
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3.1.2.7 The “Prior distribution” Form 

 

Figure 3.9 shows the Prior distribution form of the MAD software.  The key responsibility of 
this form is to manage samples from the joint prior PDF.  Note that this form is not actually 
used to define a PDF, which is simply a non-negative function that integrates to unity, 
because of the immense number of functions that can satisfy these requirements.  
Additionally, there are myriad methods, such as random, stratified, or Latin Hypercube 
sampling [McKay et al., 1979] for drawing samples from a probability distribution.  
Therefore, it is left entirely to the user to define a function for the prior joint PDF of the 
appropriate random anchors and structural parameters and select an optimal sampling 
approach external to the MAD software.   

This form requires knowledge of all the random structural parameters and anchors; 
therefore, it must follow the Structural model and Anchors forms.  Additionally, this form 
must precede any simulation or random field generation process, because as shown in 
Figure 1.1, these procedures require the samples from the prior joint PDF. 

This form is used to upload the matrix 𝑫, which is of dimension 𝑅 × 𝑃, where it is reminded 
from Section 1.1.3 that 𝑅 is the number of samples and that 𝑃 is the number of anchors plus 
the number of random components in 𝜽.  The MAD software then regresses the prior joint 
PDF non-parametrically using kernel density methods [Scott & Sain, 2004], such that an 

approximate value for 𝑓𝑅(𝜽, 𝝑|𝒛𝑎), 𝑓𝑅(𝜽, 𝝑), 𝑓𝑅(𝜽|𝒛𝑎), 𝑓𝑅(𝝑|𝒛𝑎), 𝑓𝑅(𝜽), or 𝑓𝑅(𝝑) is attained 
from 𝑫 depending on the application.  The MAD software performs this computation using 
the package np from the R statistical computing project [Hayfield & Racine, 2008], using a 
fixed bandwidth calculated from 𝑫 using the rule of thumb of Silverman [1986] and a 
second order Gaussian kernel.   
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Figure 3.9: The Prior distribution form of the MAD software pre-processing module. 

It is important to note that, if there is conditioning on Type-A data in the prior joint PDF, 
the user is expected to incorporate this externally to the MAD software.  However, the MAD 
software does differentiate between cases that utilize a combination of structural 
parameters and anchors from those where just anchors or structural parameters are 
employed.  Finally, it is also suggested to set 𝑅 artificially large, as it will improve the 
quality of the approximation for the values of the joint prior PDF.   

There are 3 user friendly features of this form.  First is the linking tool for matching 
columns of an uploaded text file of samples to the random anchors and structural 
parameters specified in the two previous MAD software forms.  Second is the histogram 
viewer of samples, shown in the inlaid pop-out in Figure 3.9.  Third is the list of the 
parameter transformations specified in the Structural model form.  The summary of 
transformations is especially important, because as mentioned in Section 3.1.2.5, the 
structural model should be configured to generate random realizations of the transformed 
physical parameter field.  This can lead to marked changes in terms of the supports of the 
random variables, for instance consider the expected value of a hydraulic conductivity field 
is thought to be between 10−3 and 103, but after a log10 transformation is applied the 
expected value should be between -3 and 3.   

The next form is used for aggregation and subset selection of the Type-B data. 
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3.1.2.8 The “Likelihood setup” Form 

 

Figure 3.10 shows the Likelihood setup form of the MAD software.  The key responsibility of 
this form is the definition of the vector 𝒛𝑏 for use in the conditioning of the random 
structural parameters and anchors.  For steady-state applications, this form manages 
selection of the measurement locations to be utilized for conditioning.  For transient 
applications, this form additionally manages the selection of any subset from or polynomial 
regression on intervals of the measurement time series.   

This form only depends on information uploaded in the Measurements form, but must 
precede any simulation process.  It is essential to fully define the Type-B vector before 
simulation, as this informs the MAD software exactly what data to extract from each run of 
the forward model.   

There are two user-friendly features to highlight in this form.  First, the form allows for 
easy management of time series data at each measurement location.  Users can select 
perhaps to include key events in the time series; to exclude events that are spurious or are 
the result of high signal noise; or with a single click choose to utilize the entire time series.   
The dynamic graph highlights the selected measurement times.  Second, the form allows for 
simple configuration of a regressed representation of the time series.  The polynomials can 
be regressed over any combination of intervals, which can overlap.  The dynamic graph 
overlays the time series with the regression fits and the coefficients are added to the 
“Aggregate Data” list for selection into the Type-B vector, which is shown in Figure 3.11.  
The purpose of such aggregation is to limit the dimensionality of the likelihood function, 
which, as discussed in Chapter 2, has computational cost implications. 

 
Figure 3.10: The Likelihood setup form of the MAD software pre-processing module. 
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Figure 3.11: Interval polynomial regression of measurement time series. 

The next form is used to execute and monitor the simulation process. 

 

3.1.2.9 The “Simulation” Form 

 

Figure 3.12 shows the Simulation form of the MAD software.  The primary responsibility of 
this form is to execute simulations.  Recalling the flowchart in Figure 1.1, this form 
internally performs steps 3-5, which are the most demanding computational and data 
management steps of implementing MAD. 

This form must come at the end of the pre-processing module, because it utilizes 
information from every preceding form to first generate random realizations of the 
physical parameter fields and second simulate the appropriate Type-B data using the 
forward model on these realizations.   

This form generates the simulation ensembles 𝒁𝑏 for a user specified amount of samples, 
shown as 1 to 100 in Figure 3.12.  Each simulation ensemble is written into its own 
database, which significantly improves the computational efficiency of the likelihood 
calculation during post-processing.  This form also identifies the calendar date of the first 
time output of the forward model, i.e. 𝑡 = 0, such that the measurement time series are 
synchronized with the simulated time series.  Finally, this form establishes 𝑁 the 
simulation ensemble size. 
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Figure 3.12: The Simulation form of the MAD software pre-processing module. 

There are several user friendly features in this form.  First, the range of samples the user 
wants to generate simulation ensembles is customizable.  Second, there is an option to 
distribute the simulation and random field generation processes over all the processors of 
a user’s computer, which improves computational speed for MAD projects.  Third, the user 
manually defines 𝑁. This value need not be static, but rather it can be increased if 
necessary following convergence analysis in the post-processing module.  There is no loss 
of data by increasing 𝑁, the databases are simply expanded and the additional simulations 
are appended.  Finally, there is an option to extract the complete time series at every 
measurement location, even if it is not required by 𝒛𝑏 for likelihood analysis, which can be 
convenient if users later decide to expand their Type-B vector, or want to perform different 
aggregation techniques that require the full time series – e.g. temporal moment calculation 
- not offered in the GUI. 

The Simulation form concludes the pre-processing module of the MAD software and the 
next form begins the post-processing module. 

 

3.1.2.10 The “Project” and “Data organization” Forms 

 

This section contains two forms, because the Project form of the post-processing module is 
almost an exact replica of the same form in the pre-processing module (refer to Figure 3.1), 
with the exception that projects can only be opened.  The main purpose of the Project form 
is to connect the MAD software with the appropriate simulation ensemble databases.   

Figure 3.13 shows the Data organization form.  This form has one key responsibility: the 
selection of all subsets of the Type-B vector for likelihood calculation.  This permits 
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comparison of many different variations of the likelihood function, which may be used to 
limit dimensionality-related computational cost, but maintain effective conditioning of the 
structural parameters and anchors.  Permitted options for variation of the Type-B vector at 
this point do not require re-execution of the simulation processes, because only the 
previously extracted data populates the list in this form. 

The key user-friendly aspect of this form is the output data viewer, which can be used to 
graphically check the simulation results.  This form calculates standard deviations and 
expected values of the simulated data when the application is steady-state and graphs 
these quantities in addition to the measured times series in transient applications.  The 
graphic representation is shown in the inlaid pop-out in Figure 3.13.  

 
Figure 3.13: The Data organization form of the MAD software pre-processing module. 

The next form is used to configure the calculation of the likelihood. 

 

3.1.2.11 The “Compute likelihood” Form 

 

Figure 3.14 shows the Compute likelihood form of the MAD software.  The key 
responsibility of this form is to compute the likelihood for the samples using the simulation 
ensembles.  Depending on the nature of the application, this function has many possible 

formulations: 𝑓𝑁(𝒛𝑏|𝜽𝑖 , 𝝑𝑖, 𝒛𝑎), 𝑓𝑁(𝒛𝑏|𝜽𝑖 , 𝝑𝑖), 𝑓𝑁(𝒛𝑏|𝜽𝑖 , 𝒛𝑎), 𝑓𝑁(𝒛𝑏|𝝑𝑖, 𝒛𝑎), 𝑓𝑁(𝒛𝑏|𝜽𝑖), 

𝑓𝑁(𝒛𝑏|𝝑𝑖) for 𝑖 ⊆ [1,… , 𝑅].  An additional important role of this form is the variation of 
number of samples (convergence of the posterior joint PDF) and number of realizations 
(convergence of the likelihood function).   
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The likelihood function calculation in the MAD software is performed non-parametrically 
using kernel density estimation methods that are similar to those described in Section 
3.1.2.7 for the prior joint PDF, with the exception that the bandwidth and regression utilize 
𝒁𝑏 not 𝑫. 

The most apparent user-friendly element of this form is the catalog of computed likelihood 
functions.  A less intuitive user-friendly feature is the management of loading the 
simulation ensembles, non-parametrically regressing and then evaluating the likelihood 
function joint PDF, and repeating this process rapidly for multiple samples.  

 

 
Figure 3.14: The Compute likelihood form of the MAD software pre-processing module. 

The next form utilizes the variations in 𝑁 to visually assess the convergence of the 
likelihood function.  
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3.1.2.12 The “Convergence” Form 

 

Figure 3.15 shows the Convergence form of the MAD software.  The key responsibility of 
this form is providing visual diagnostics for assessing the convergence of the likelihood 
function.  The form offers two different visualization approaches.  The first is a comparison 
of the likelihood function values as a function of 𝑁 for individual samples, i.e. 

𝑓𝑁(𝒛𝑏|𝜽𝑖 , 𝝑𝑖, 𝒛𝑎) vs 𝑁 where each value of 𝑖 yields a separate line.  The second is a 
comparison of two likelihood function values using two different ensemble sizes of 𝑁1 and 

𝑁2 for all samples, i.e. 𝑓𝑁1(𝒛𝑏|𝜽𝑖 , 𝝑𝑖, 𝒛𝑎) vs 𝑓𝑁2(𝒛𝑏|𝜽𝑖 , 𝝑𝑖, 𝒛𝑎) where each values of 𝑖 yields a 

single point and all 𝑖 are plotted.  These features are shown in the upper and lower panes of 
the form respectively in Figure 3.15. 

 
Figure 3.15: The Convergence form of the MAD software pre-processing module. 

This form is used to evaluate the convergence of the likelihood function, so obviously it 
must come after the Compute Likelihood form where the likelihood function is computed.  
In Figure 3.15, a reasonably converged likelihood function is displayed by both panels.  In 
cases, where the individual samples (top panel) do not exhibit relatively horizontal 
behavior as a function of large 𝑁, users should return to the pre-processing module and 
increase the size of the simulation ensemble.  Likewise, if the scatterplot does not group 

around the reference line, 𝑓𝑁1(𝒛𝑏|𝜽𝑖 , 𝝑𝑖, 𝒛𝑎) = 𝑓𝑁2(𝒛𝑏|𝜽𝑖, 𝝑𝑖, 𝒛𝑎), the user should also 
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increase the simulation ensemble size.  Finally, note that the lower pane in this form is 
intended to be a summary plot of the upper pane, which is most useful when the number of 
samples grows large.  Both forms always graph any value of the base-10 logarithm of any 
likelihood function values. 

This form is extremely important, because the posterior joint PDF cannot be reliably 
calculated without convergent likelihood function.   

The next form is used to calculate the posterior joint PDF. 

 

3.1.2.13 The “Posterior analysis and visualization” Form 

 

Figure 3.16 shows the Posterior analysis and visualization form of the MAD software.  There 
are two principle responsibilities of this form: 1) the calculation of the posterior joint PDF 
values for the samples using a given configuration of the likelihood function and 2) 
generation of graphics that show marginal distributions from the posterior joint PDF and 
the prior joint PDF. 

 
Figure 3.16: The Posterior analysis and visualization form of the MAD software pre-processing module. 
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Based on Equation 1.2, it is clear that this form must follow the Compute likelihood and the 

Prior distribution forms.  This form calculates the estimates of 𝑓𝑅(𝜽, 𝝑|𝒛𝑎, 𝒛𝑏), 𝑓𝑅(𝜽, 𝝑|𝒛𝑏), 

𝑓𝑅(𝜽|𝒛𝑎, 𝒛𝑏), 𝑓𝑅(𝝑|𝒛𝑎, 𝒛𝑏), 𝑓𝑅(𝜽|𝒛𝑏), or 𝑓𝑅(𝝑|𝒛𝑏) depending on the nature of the application.   

The marginal distributions are not determined by a numeric integration approach, such as 

      𝑓(𝑥1) = ∫ 𝑓(𝑥1, 𝑥2)𝑑𝑥2                     (3.1) 

but by following the approach of Wasserman [2010], which is a three step approach applied 
as follows: 1) randomly re-sample the parameters with replacement from their posterior 
joint PDF, 2) collect the marginal components from each of the random draws, 3) apply a 
univariate kernel density algorithm to regress the marginal distribution from the marginal 
components.   

The user-friendly feature of this form is the automatic creation of the graphics as files in the 
project directory as well as a pop-out table that shows the computed values of the posterior 
joint PDF for the samples.  This form concludes the MAD software post-processing module. 

Over the course of these 13 sections, there have been a few goals: 1) to identify the MAD 
theory connected to each form of the MAD software, 2) to explicitly state implementation 
procedures when appropriate, 3) to show the important dependencies between the various 
forms and the logic of the sequence of each module, 4) to highlight user-friendly features, 
and 5) to present the flexibility of the MAD software in terms of the possible formulations 
of MAD it supports.   

A very comprehensive user manual that categorizes the inputs required of users for each 
form is available at https://mad.codeplex.com/.  

In the next section, the perspective shifts to the adaptability of the MAD software to 
interact with other software and transfer to applications in other scientific fields. 

 

3.2 MAD Architecture for General Inversion Applications  

 

As mentioned in Section 3.1, the MAD software is composed of two modules: post-
processing and pre-processing.  In this section, the software is presented on a very coarse-
scale with a focus on how the modules interact with external programs for random field 
generation and forward modeling.   

https://mad.codeplex.com/
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Figure 3.17: Schematic of the MAD software connections to the random field generator, forward model, and project database. 

Figure 3.17 is a schematic of how the MAD software is designed to interact with other 
modeling tools - the colors of each arrow or block are indicators.  For the blocks: light 
green and light blue correspond with the MAD software and its modules; dark blue 
corresponds with external modeling tools required to implement MAD; orange 
corresponds with the project database, even though it is created by the MAD software, a 
separate database is constructed for every new application.  For the arrows: red 
corresponds with a communication pathway involving the random field generator; purple 
corresponds with a communication pathway involving the forward model; and blue 
corresponds with a communication pathway involving the project database.  Note that 
some arrows are double-sided and some are one-directional, which graphically indicates 
the possible direction(s) of information transfer on the pathway, i.e. the pre-processing 
module sends information to the forward model, but does not receive any.  Finally, note the 
numbering next to the arrows, which indicates the sequence in which each connection is 
utilized.   

The sequence is discussed here briefly.  First, fundamental instructions for random field 
generation process are defined in the pre-processing module and written into the database.  
Next, the random field generator is configured for a specific sample from the prior joint 
PDF as well as executed 𝑁 times (2a) and the realizations of the parameter field are 
temporarily committed to the database (2b).  Next, serially utilizing the 𝑁 realizations, the 
forward model is executed (3a) and the Type-B data - at the appropriate times and 
locations - is written permanently to the database (3b).  Finally, the Type-B data is sent to 
the post-processing for likelihood analysis and the value of the posterior is written to the 
database.  This process is then repeated for all the samples.  Note that the project database 
created by the MAD software is an important, central repository for storing all relevant 
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project information; the MAD modules, the random field generator, and forward model all 
communicate with it.   Before discussing the flexibility of the modular architecture and 
sequence, it should also be clearly stated that the MAD software controls the execution of 
the random field generator as well as the forward model and this requires no user 
interaction. 

The purpose of this architecture and sequence are to maximize the flexibility of the 
framework.  First, the six formulations of MAD presented in Section 1.3.1 all require a 
random field generator and a forward model to be connected with the MAD software 
modules, hence this architecture supports all the formulations.  Second, the pre-processing 
module communicates with both external tools, but the post-processing module 
communicates with neither, which means all the analytical functions in the post-processing 
module can be easily replaced or modified so long as they revised versions can 
communicate with the project database, which is written in SQLite.  Third, the 
communication between the pre-processing module, the project database, random field 
generator, and forward model are facilitated by connections called ‘drivers’ (red and purple 
arrows), which means nothing specific to any one random field generator or forward model 
is coded into the MAD software.  This allows for isolation of the core generalized Bayesian 
framework from application- or forward model-specific details.  Moreover the drivers 
promote the interchangeability of the random field generator and forward model, because 
any tool can be substituted into the sequence defined above, provided the communication 
pathway for that specific tool is used.   

The drivers are the key to transferability of the MAD software between different scientific 
fields.  Instead of users having to write code to implement MAD from start to finish, they 
simply write the code to connect appropriate random field generators or forward models 
for their application.  The drivers have simple responsibilities: reading, writing, and 
interpreting the format of input and output files as well as command line execution of the 
forward model or random field generator.  Thus, creating a driver is significantly less 
programming effort than creating the entire MAD framework for a given scientific field.   

Thus far, drivers exist for two forward models and two random field generators: PMWIN 
5.3 [Chiang & Kinzelbach, 2001]and HYDRUS 4.14 [Simunek et al., 1998] as well as GSTAT 
[Pebesma & Wesseling, 1998] and R Statistics [R Core Team, 2012] respectively.  In the next 
section and next chapter, the MAD software will be used, in conjunction with all four 
drivers, to conduct multiple case studies. 

 

3.3 Synthetic Case Studies Using the MAD Software 

 

Now, the focus shifts from macroscopic architecture of the MAD software and specific 
design elements of the GUI to the presentation of a series of applications using the MAD 
software that highlight its flexibility. 
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This section features case studies using the MAD software to implement the various 
formulations of Bayes’ rule presented in Equations 1.2, 1.3, and 1.5-7.  The MAD software is 
used in Chapter 4 to implement Equation 1.4 so it is not presented here.  Each of the 5 
studies presented utilized PMWIN 5.3 as a forward model and GSTAT as a random field 
generator.  The case study is a 1-dimensional problem used to illustrate the conditioning of 
structural model parameters and anchors in different scenarios.  It will be noted in the 
various subsections what elements of the case study are held fixed: whether structural 
parameters, anchors, or both are being characterized and also whether Type-A data is 
included with Type-B data in the conditioning.  A comprehensive overview is presented 
initially and then every subsection will identify the formulation of MAD being studied and 
discuss the pertinent results.   

 

3.3.1 Case Study Overview 

 

The objective of the experiment is the characterization of the transmissivity 𝑇 in a strip of 
confined, saturated aquifer.  Available data includes steady-state, error-free pressure head 
ℎ(𝑥𝑏) measurements, shown in Figure 3.18 (blue squares), where 𝑥𝑏 is the location of the 
Type-B measurements; error-free measurements of the 𝑇(𝑥𝑎), shown in Figure 3.18 (pink 
triangles), where 𝑥𝑎 is the location of the Type-A measurements; as well as highly reliable 
estimates of the variogram model parameters and trend of the transmissivity field 𝜽, but 
these parameters will not always be treated as deterministic in the following Sections.  Also 
shown in Figure 3.18, are the localities at which anchors 𝝑 are placed 𝑥𝜗 , but these are only 
relevant to the subsequent studies that involve anchors (black stars).  The boundary 
conditions are known with high confidence and consist of a constant pressure head 
boundary and a constant flux boundary on the respective ends of the aquifer strip.  The 
transmissivity field is also assumed stationary, ergodic, and its spatial correlation decays 
exponentially with lag distance.   

 

Figure 3.18: Discretized physical domain of the case studies including positions of anchors as well as Type-A and Type-B measurements. 

Whenever the objective is local characterization, which requires employing anchors, or the 
goal is conditioning on Type-A data, it is important that the structural model is, by 
definition, compatible with spatially dependent data.  Therefore, because one or both of 
these criteria is satisfied in all five studies, the structural model is always geostatistical for 
the remainder of the chapter.  Finally, the mathematical relationship between ℎ and 𝑇 is the 
1-dimensional, steady-state flow equation - a second order ODE, which requires the two 
boundary conditions listed above.  

Table 3.3 lists out the available data from the aquifer strip and details of the case study. 
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Table 3.3: List of case study details. 

 Type-B Measurements   

ℎ (m) 𝑥𝑏 (m)  
9.59 5 
9.40 10 
9.25 15 

 Type-A Measurements   

𝑇 (m2/hr) 𝑥𝑎 (m) 
0.0055 5 
0.1258 10 
0.0137 15 

 
Anchor Parameters (Synthetic Values)  

log10(𝑇) [dimensionless] 𝑥𝜗 (m) 
-1.963 3 
-1.316 7 
-1.575 13 
-2.699 17 

 Structural Model Parameters  for 𝐥𝐨𝐠𝟏𝟎(𝑻) (if deterministic) 

Parameter Value 
Nugget (always fixed) 0 [dimensionless] 

Sill 0.4 [dimensionless] 
Trend -2 [dimensionless] 
Range 3 [m] 

 

As a reminder, the marginal prior PDFs graphed in the following five subsections will often 
appear to be “rough” compared to their definitions (usually Gaussian or uniformly 
distributed), but this is because the MAD software reconstructs the prior PDFs from a 
limited set of samples provided by the user.   

 

3.3.2 Anchor Conditioning Using Type-B Measurements Only 

 

The goal of this case study is local characterization at the anchor locations, using just the 
available Type-B data and treating the structural model as deterministic.  Type-A data is 
excluded in this study.  Therefore, the appropriate formulation of MAD is given in Equation 
1.5, which is repeated here for ease of reading 

𝑓(𝝑|𝒛𝑏) ∝ 𝑓(𝒛𝑏|𝝑)𝑓(𝝑).                (1.5 repeated) 

In this case, 𝑃 = 4 and 𝑀 = 3.  The joint prior PDF for the anchors 𝑓(𝝑) is assumed to be 
the product of independent Gaussians distributions with the mean (trend in Table 3.3) and 
variance (sill in Table 3.3) as defined in Table 3.3.  The assumption of independent anchors 
– even within a spatially correlated field – is defensible as the least subjective choice of 
prior by minimum relative entropy (MRE) [Woodbury & Ulrych, 1993, 1998; Hou & Rubin, 
2005].  Samples were drawn from the joint prior PDF randomly.   
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Convergence of the non-parametrically calculated 3-D likelihood function 𝑓𝑁(𝒛𝑏|𝝑𝑖) 𝑖 =
1, … , 𝑅 is achieved with 150 realizations per sample.  The number of samples necessary to 

stabilize the regression of the 4-D posterior joint PDF 𝑓𝑅(𝝑|𝒛𝑏) is 300.  Plots of the 
convergence are omitted as they are unnecessarily repetitive: refer to Figure 3.15 or 
Figures 2.7 & 2.8 for convergence graphics and their accompanying discussion. The 𝑁𝑅 =
45,000 total realizations and simulations took an average of 0.86 seconds each on Intel 
Core 2 Duo CPU E8400 3 GHz Processor for a total run time of just under 11 hours. 

Figure 3.19 shows the comparisons of the posterior (blue) and prior (red) marginal PDFs 
for the four anchor locations characterized as well as the synthetic true values (black 
vertical lines) of the transmissivity field at the locations.  The upper left pane shows the 
anchor at 𝑥 = 3, upper right pane shows the anchor at 𝑥 = 7, lower left pane shows the 
anchor at 𝑥 = 13, and lower right pane shows the anchor at 𝑥 = 17.  In general the 
conditioning is very successful: the posterior marginal PDFs are generally narrower (of 
lower variance) and are more centered on the true values (less biased) than the prior 
marginal PDFS, with the exception of the anchor at 𝑥 = 17.  The results indicate a strong 
link between the transmissivity field values at the anchor locations and the head 
measurements at the Type-B locations.   

 

 

Figure 3.19: Posterior (blue) and prior (red) marginal PDFs for anchors conditional on Type-B data only.  Synthetic true values shown as 
vertical black line. 

 

3.3.3 Anchor Conditioning Using Both Type-A and Type-B Data 

 

In this section, the case study from 3.3.2 is repeated exactly, but this time the available 
direct measurements of transmissivity are included.  This changes the MAD formulation to 
that of Equation 1.7 repeated here for ease of reading: 

𝑓(𝝑|𝒛𝑏 , 𝒛𝑎) ∝ 𝑓(𝒛𝑏|𝝑, 𝒛𝑎)𝑓(𝝑|𝒛𝑎).               (1.7 repeated) 
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Moreover, the prior joint PDF of the anchors is now conditional on the Type-A data 
𝑓(𝝑|𝒛𝑎).  The prior used in Section 3.3.2 is still appropriate, but additional constraint can 
be imposed in this case.  Here conditional variance and conditional means for the anchors 
can be determined using the kriging set of equations to Gaussian condition on the Type-A 
data, the values of which are listed in Table 3.4.  Note the anchors are still assumed 
independent a priori, again because this is a least subjective prior by MRE.  Samples are 
drawn randomly from the joint prior PDF. 

 

Table 3.4: Conditional variances and means for prior PDF of anchors conditional on Type-A data. 

Type-A Conditional Mean and Variance of Anchor Locations 𝐥𝐨𝐠𝟏𝟎(𝑻) 

Anchor Location Mean Variance 
𝑥 = 3 -2.13 0.295 
𝑥 = 7 -1.81 0.264 
𝑥 = 13 -1.63 0.264 
𝑥 = 17 -1.93 0.295 

   

The dimensionality of the problem is identical to preceding Section: 𝑃 = 4 and 𝑀 = 3.  
Thus, similar requirements are expected for 𝑅 and 𝑁, which were also kept the same as the 
preceding Section respectively at 300 and 150.  The overall computational cost for the 
𝑁𝑅 = 45,000 simulations was again just under 11 hours on an Intel Core 2 Duo CPU E8400 
3 GHz Processor. 

Convergence was verified for the regressed 4-D 𝑓𝑅(𝝑|𝒛𝑏 , 𝒛𝑎) and for the non-parametrically 

calculated 3-D 𝑓𝑁(𝒛𝑏|𝝑𝑖, 𝒛𝑎) 𝑖 = 1,… , 𝑅 and again plots are omitted as they are redundant.   

Figure 3.20 shows the posterior (blue) and prior (red) marginal PDFs for the four anchor 
locations along with the true synthetic values (black vertical line).  The upper left pane 
shows the anchor at 𝑥 = 3, upper right pane shows the anchor at 𝑥 = 7, lower left pane 
shows the anchor at 𝑥 = 13, and lower right pane shows the anchor at 𝑥 = 17.   

 

 
Figure 3.20: Posterior (blue), prior (red) marginal PDFs for anchors conditional on Type-A and Type-B data. Synthetic true values shown 
as vertical black line. 
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Given the added Type-A data constraint in the joint prior PDF compared to preceding 
Section, the expectation is that the posterior PDF results should be even more compelling 
and indeed the conditioning is more successful than in Section 3.3.2.  All four anchor 
posterior marginal PDFs have less variance and reduced mean squared error (MSE) than 
their respective prior marginal PDFs.   

In comparing the results of this section and the preceding section, note that at 𝑥 = 17 the 
best results are attained by conditioning on both direct and indirect data sources.  This is 
strong empirical evidence for the MAD framework’s ability to work with and the 
importance of multiple data types: in Section 3.3.2, the Type-B only conditioning of this 
anchor failed to resolve this log10(𝑇) value, in Section 3.3.3, Type-A only conditioning - the 
prior 𝑓(𝝑|𝒛𝑎) in this formulation – also was not effective at resolving this true value, only 
the combination of Type-A and Type-B data was successful.   

There are subtle changes in the prior with and without Type-A data conditioning, but 
unfortunately these are very difficult to see in the graphics; comparing the trend and sill 
values from Tables 3.3 and 3.4 shows that the variance is reduced in all marginal prior 
PDFs by Type-A data conditioning and that the means are no longer identical for all the 
anchors when Type-A data is conditioned upon.   

 

3.3.4 Conditioning of Structural Parameters on Type-A and      

Type-B Data 

 

In this section, the objective switches from local characterization to determination of the 
uncertainty in the structural parameters.  The nugget as mentioned in Table 3.3 is always 
fixed at zero and the covariance model is known to be exponentially decaying with respect 
to distance, so only the trend, sill, and range are treated as random variables in this 
example.  The appropriate formulation of MAD for this example is Equation 1.6, repeated 
here for ease of reading 

     𝑓(𝜽|𝒛𝑏 , 𝒛𝑎) ∝ 𝑓(𝒛𝑏|𝜽, 𝒛𝑎)𝑓(𝜽|𝒛𝑎).                (1.6 repeated) 

The joint prior PDF of the structural parameters conditional on Type-A data 𝑓(𝜽|𝒛𝑎) is 
constructed as follows.  The trend, range, and variance are assumed independent of one 
another; again the absence of a correlation structure is least biased by MRE.  It is assumed 
that the marginal prior PDFs are uninformative (uniform on a physically plausible 
support).  For the trend, the distribution 𝑈[−5,1] is assumed, which is approximately 

centered on the sample mean of the Type-A measurements 𝑧𝑎̅̅ ̅ =
1

𝑛𝑎
∑ 𝑧𝑎𝑗
𝑛𝑎
𝑗=1 = −1.67, 

where 𝑛𝑎 is the number of Type-A measurements, and extends roughly ±4 sample 

standard deviations 𝑠𝑧𝑎 = [
1

(𝑛𝑎−1)
∑ (𝑧𝑎𝑗 − 𝑧𝑎̅̅ ̅)

2
𝑛𝑎
𝑗=1 ]

1

2

= 0.70.  For the sill, the distribution 

𝑈[0.1,2] is assumed.  The sill must be non-negative and this distribution accounts for nearly 
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a tripling of the sample standard deviation 𝑠𝑧𝑎 .  For the range, no reliable estimate of the 

variogram is possible with just 3 measurements of the Type-A data, especially because only 
two unique lags exist (5 and 10 meters), so the range is assumed 𝑈[1,20], which spans from 
the grid discretization at a minimum to the entire domain length at a maximum.  In this 
manner, the Type-A data was used to conditionally define the prior joint PDF of the 
structural parameters.  Samples are drawn randomly from the joint prior PDF. 

In this study, 𝑃 = 3 and 𝑀 = 3.  However, even though relative to Sections 3.3.2 and 3.3.3 
the parameter dimensionality has been reduced from 4 to 3, the scope of this problem is 
much more ambitious, because the structural model is now varying for every sample.  This 
provides an excellent empirical example for examining convergence on a case by case basis 
and not blindly following rules based on dimensionality. Overall convergence of the 

regression of the 3-D posterior joint PDF 𝑓𝑅(𝜽|𝒛𝑏 , 𝒛𝑎) required a higher number of samples 
than before, 𝑅 = 400, but the non-parametric calculation of the 3-D likelihood function 

𝑓𝑁(𝒛𝑏|𝜽𝑖 , 𝒛𝑎) 𝑖 = 1,… , 𝑅 was comparable to the other variations already investigated and 
𝑁 = 150 still.  The total cost of the 𝑁𝑅 = 60,000 simulations was just over 14 hours on an 
Intel Core 2 Duo CPU E8400 3 GHz Processor. 

Figure 3.21 shows the posterior (blue) and prior (red) marginal PDFs for the three 
structural parameters inverted along with the true synthetic values (black vertical line).  
The upper pane shows the trend (labeled ‘mean’ by the software), the middle pane shows 
the sill (labeled ‘partial sill’ by the software), and the lower pane shows the range 

 

Figure 3.21: Posterior (blue) and prior (red) marginal PDFs for the trend, sill, and range conditional on Type-A and Type-B data.  
Synthetic true values shown as vertical black line. 
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The conditioning is only marginally successful.  The conditioning of the trend actually 
favors a more porous formation with higher average transmissivity than the synthetic true 
value, but the less porous formations (e.g. −6 ≤ log10(𝑇) ≤ −3) are correctly reduced in 
probability from the prior values.  The posterior marginal PDF of the trend has reduced 
variance, but increased bias relative to the prior.  The posterior marginal PDF of the sill is 
very accurately conditioned.  The posterior and prior marginal PDFs for the range are 
nearly identical, which suggests the Type-B data cannot improve the identifiability of this 
structural parameter.  In fact, after conditioning, the longer ranges are slightly more 
favored and the probability of the synthetic true value is reduced.   

This example shows that determining the structural model parameters can be a much more 
challenging task than local characterization (previous two examples) – even with both 
direct and indirect measurements available.   

 

3.3.5 Global and Local Characterization Using Type-B Data Only 

 

In this section, for the first time the characterization objective is to quantify uncertainty in 
the structural model parameters and the anchors.  The appropriate formulation of MAD for 
this application is Equation 1.3, repeated here for ease of reading, 

𝑓(𝜽, 𝝑|𝒛𝑏) ∝ 𝑓(𝒛𝑏|𝜽, 𝝑)𝑓(𝜽, 𝝑).                (1.6 repeated) 

A new challenge of defining a joint prior PDF for both the anchors and structural model 
parameters 𝑓(𝜽, 𝝑)must be overcome.  Here, an extension of Bayes’ raule is incredibly 
helpful and lends itself to a simple two-stage sampling approach.  The joint prior PDF of the 
structural model parameters and anchors can be expanded as 𝑓(𝜽, 𝝑) = 𝑓(𝝑|𝜽)𝑓(𝜽), 
where 𝑓(𝜽) is the joint PDF of the structural parameters only and 𝑓(𝝑|𝜽) is the joint PDF of 
the anchors conditional on the structural parameters.  The two-stage sampling immediately 
becomes clear from the expansion, in which drawing 𝑅 samples of the vector [𝜽, 𝝑] is 
performed, by first drawing from𝑓(𝜽) to obtain 𝜽𝑖 , 𝑖 = 1,…𝐹 and then second drawing 𝐺 
times from each 𝑓(𝝑|𝜽𝑖), 𝑖 = 1,… , 𝐹 where 𝐹𝐺 = 𝑅 [Murakami et al., 2011; Chen et al., 
2012].   

Now, 𝑓(𝜽) can be defined using ‘soft’ information from other experimental sites with 
similar geology, by soil texture class minima and maxima, or very broadly as any plausible 
geostatistical model parametrization.  In this example, the case study of Section 3.3.4 is 
treated as a “comparable” field site and the same uninformative, uniform independent 
distributions are selected for the three structural model parameters: 𝑈[−5,1] for the trend, 
𝑈[0.1,2] for the sill, and 𝑈[1,20] for the range.  After sampling these uniform distributions, 
in the second stage, independent Gaussians defined by the sampled trend values as the 
mean and the sample sill values as the variance defined 𝑓(𝝑|𝜽).  In this case study, 10 
configurations of anchors per structural model sample were selected; in cases where the 
field is of larger dimensions and/or the spatial arrangement of anchors are not as close in 
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proximity to each other this number may need to be increased.  Therefore, 𝐺 = 10 and 𝐹 
was set by inspecting the 7-D posterior joint PDF of the anchors and structural parameters 

conditional on the Type-B data 𝑓𝑅(𝜽, 𝝑|𝒛𝑏) for convergence of the regression and in total 
𝑅 = 5,000.  The assumptions of independence respectively between the structural model 
parameters (stage 1) and amongst the anchors (stage 2) are again least subjective by MRE.  
In both stages, samples were drawn randomly from the respective PDFs.   

In this example 𝑀 = 3 again and convergence of the non-parametric likelihood function 

𝑓𝑁(𝒛𝑏|𝜽𝑖 , 𝝑𝑖) 𝑖 = 1,… , 𝑅 required 𝑁 = 150.  The total cost of the 𝑁𝑅 = 750,000 simulations 
was just over a week on an Intel Core 2 Duo CPU E8400 3 GHz Processor. 

The results are shown in Figures 3.22 & 3.23.  Figure 3.22 shows the posterior (blue) and 
prior (red) marginal PDFs for the three structural parameters inverted along with the true 
synthetic values (black vertical line).  The upper pane shows the trend (labeled ‘mean’ by 
the software), the middle pane shows the sill (labeled ‘partial sill’ by the software), and the 
lower pane shows the range.  Figure 3.23 shows the posterior and prior marginal PDFs for 
the four anchor locations along with the true synthetic values, following the same color 
scheme.  The upper left pane shows the anchor at 𝑥 = 3, upper right pane shows the anchor 
at 𝑥 = 7, lower left pane shows the anchor at 𝑥 = 13, and lower right pane shows the 
anchor at 𝑥 = 17.   

 

Figure 3.22: Posterior (blue) and prior (red) marginal PDFs for the trend (labeled ‘mean’), sill (labeled ‘partial_sill’), and range 
conditional on Type-B data, when jointly inverted with anchors.  Synthetic true values shown as vertical black line. 

Comparison between Figures 3.21 & 3.22 offers an interesting perspective on the interplay 
between anchors and structural parameters.  Respectively, Type-A data is removed and 
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anchors are added in this section, but notice the major improvement in the posterior 
marginal PDF for the trend and the similarity in the range and sill PDFs compared to the 
last section.  Anchors as their name suggests are capable of “anchoring” the transmissivity 
field in this case and improve the structural model parameter inference.  The trend and sill 
are conditioned quite well, but again there is some difficulty in identifying the true range 
value, in fact after conditioning longer ranges are again given higher probability. 

In general, the conditioning is quite effective.  At all four anchor locations variance is 
reduced and in three out of four locations the bias is also reduced.  Similar to Section 3.3.2 
where only Type-B data is conditioned upon, the anchor at 𝑥 = 17 is the only location at 
which the prior marginal PDF has less bias than the posterior marginal PDF.  Note that 
relative to the previous two examples utilizing anchors in Sections 3.3.2 and 3.3.3 how 
much more diffuse the marginal prior PDFs are, which is a direct outcome of the two stage 
sampling process with the random structural model parameters.   

 

  

  
Figure 3.23: Posterior (blue) and prior (red) marginal PDFs for anchors conditional on Type-B data, when jointly inverted with structural 
model parameters.  Synthetic true values shown as vertical black line. 

 

3.3.6 Global and Local Characterization Using Type-A and Type-B 

Data 

 

In this section, the case study from Section 3.3.5 is repeated, but the available Type-A data 
is incorporated.  This changes the formulation of MAD to that of Equation 1.2, repeated 
here for ease of reading 

𝑓(𝜽, 𝝑|𝒛𝑏 , 𝒛𝑎) ∝ 𝑓(𝒛𝑏|𝜽, 𝝑, 𝒛𝑎)𝑓(𝜽, 𝝑|𝒛𝑎).              (1.2 repeated) 

Note that the joint prior PDF is now conditional on Type-A data 𝑓(𝜽, 𝝑|𝒛𝑎), which means 
that additional constraints can be imposed.  Like Section 3.3.5 the prior can be expanded 
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using Bayes rule 𝑓(𝜽, 𝝑|𝒛𝑎) ∝ 𝑓(𝝑|𝜽, 𝒛𝑎)𝑓(𝜽|𝒛𝑎), which is well-suited to the previously 
described two-stage sampling approach.  The joint PDF of the structural parameters 
conditional on the Type-A data 𝑓(𝜽|𝒛𝑎) is adopted from Section 3.3.4: respectively, 𝑈[−5,1] 
for the trend, 𝑈[0.1,2] for the sill, and 𝑈[1,20] for the range.  The joint PDF of the anchors 
conditional on the structural parameters and Type-A data 𝑓(𝝑|𝜽, 𝒛𝑎) utilizes Gaussian 
conditioning via the kriging system of equations similar to Section 3.3.3.  Similar to the 
preceding section, 10 anchor configurations per structural model parameter set were 
employed, so 𝐹 = 10.  𝐺 again was set by examining convergence of the regression of the  

7-D 𝑓𝑅(𝜽, 𝝑|𝒛𝑏 , 𝒛𝑎) and required 𝑅 = 5,000.  Samples from 𝑓(𝜽|𝒛𝑎) and 𝑓(𝝑|𝜽, 𝒛𝑎) were 
drawn randomly. 

In this example 𝑀 = 3 again, convergence of the non-parametric likelihood function 

𝑓𝑁(𝒛𝑏|𝜽𝑖 , 𝝑𝑖, 𝒛𝑎) 𝑖 = 1,… , 𝑅 required 𝑁 = 150.  The total cost of the 750,000 simulations 
was just over a week on an Intel Core 2 Duo CPU E8400 3 GHz Processor. 

The results are shown in Figures 3.24 & 3.25.  Figure 3.24 shows the posterior (blue) and 
prior (red) marginal PDFs for the three structural parameters inverted along with the true 
synthetic values (black vertical line).  The upper pane shows the trend (labeled ‘mean’ by 
the software), the middle pane shows the sill (labeled ‘partial sill’ by the software), and the 
lower pane shows the range.  Figure 3.25 shows the posterior and prior marginal PDFs for 
the four anchor locations along with the true synthetic values, following the same color 
scheme.  The upper left pane shows the anchor at 𝑥 = 3, upper right pane shows the anchor 
at 𝑥 = 7, lower left pane shows the anchor at 𝑥 = 13, and lower right pane shows the 
anchor at 𝑥 = 17.   
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Figure 3.24: Posterior (blue) and prior (red)  marginal PDFs for the trend (labeled ‘mean’), sill (labeled ‘partial_sill’), and range 
conditional on Type-A and Type-B data, when jointly inverted with anchors.  Synthetic true values shown as vertical black line. 

The conditioning is most successful for the sill.  The variance is reduced in the posterior for 
both the trend and range, but the bias is increased in the posterior.  After conditioning, on 
the average the medium is likely to be more transmissive (larger trend values) and also 
more homogeneous (longer range values) than the synthetic medium.  A few possible 
reasons the conditioning of the range is so poor are: 1) the longest lag distance between a 
pair of measurements (either Type-A or anchors) is 3 m owing to the screening effect 
[Rubin, 2003], which means there are no large lag distances in the raw variogram and 2) 
the field is only mildly heterogeneous (the variance of the anchors and Type-A 
measurements is 0.35), which suggests the field could be correlated over large scales; 
hence the inability of the Type-A data and anchors to effectively condition the range 
parameter. 

  

  
Figure 3.25: Posterior (blue) and prior (red) marginal PDFs for anchors conditional on Type-A and Type-B data, when jointly inverted 
with structural model parameters.  Synthetic true values shown as vertical black line. 

Again, the anchors are for the most part accurately conditioned. The same as in Section 
3.3.5 the variance is smaller in the posterior marginal PDFs at all four anchor locations 
However, the bias is increased at 𝑥 = 13 and 𝑥 = 17 in the posteriors.  Note that the prior 
marginal PDFs for the anchors are significantly narrower than their counterparts in Section 
3.3.5, which is directly attributable to the Type-A conditioning in the prior joint PDF.   

 

3.4 Conclusion 

 

In Section 3.1, the GUI for the MAD software was introduced.  For each form, the supported 
elements of MAD were identified, such that connections between the theory and 
implementation were clearly identified.  User-friendly features were also highlighted, 
because a primary objective of the software is reducing the complexity of model-inversion 
for end-users.  Finally, the sequence and dependence of the forms was explained, which 
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enables the software to independently manage the inversion process.  The overall purpose 
of the section was to show the theoretical and convenient motivation behind the MAD 
software design.  

In Section 3.2, the broader modular architecture of the MAD software is presented.  Of note 
was the interchangeability – via the ‘drivers’ - of the external components – the random 
field generator and the forward model - with the modules of the MAD software.  The 
Bayesian inversion functionality of the MAD software is isolated and protected in the 
modules of the software and is generically developed to support applications in multiple 
scientific fields. In the next chapter, a case study is conducted utilizing HYDRUS 4.14 and R 
Statistics that validates the driver design and that the MAD software is adaptable to various 
scientific disciplines.  Finally, the sequence of the automated data generation process and 
the necessary information exchange between the MAD modules, forward model, and 
random field generator was outlined. 

In Section 3.3, the six subsections presented variations of a case study and were designed 
to show that the MAD software flexibly supports Equations 1.2-1.7.  A simple experiment 
was selected to allow the focus of the analyses to be the usage of various data types, 
anchors, and structural parameters.  All of the studies employed MRE concepts to define 
least subjective priors.  In general, the anchors were almost always conditioned 
successfully; even in cases without the direct measurements of transmissivity at nearby 
locations.  The structural model parameters were harder to identify, but with the exception 
of the range (challenges discussed in Section 3.3.6) the conditioning is fairly successful. 

The free open-source software; a manual, which explains how to use each form presented 
in Section 3.1; and a tutorial, which utilizes the same forward model scenario as the 
examples in Section 3.3, are all available for download from https://mad.codeplex.com.  A 
more detailed summary of the technical construction of the MAD software can be found in 
[Osorio et al., 2013].   

 

 

 

 

 

 

 
 

  
 

 

https://mad.codeplex.com/
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4. Vadose Zone MAD Theory & Application 
 

 

In this chapter, a variant of the MAD formulation given in Section 1.2 and the MAD software 
presented in Chapter 3 are used in a vadose zone hydraulic parameter inversion.   

Reliable estimation of unsaturated soil hydraulic properties is essential for accurate, 
physics-based modeling of vadose zone water dynamics as well as many related processes.  
It is well known that these properties, which are the soil water retention curve and the 
unsaturated hydraulic conductivity function, are highly non-linear. In addition, the spatial 
distribution of these soil hydraulic properties may show significant multi-scale 
heterogeneity [e.g., Schaap et al., 2001; Vogel & Roth, 2003] which makes their appropriate 
and accurate determination for field-scale applications time consuming and expensive. It 
has also been shown that unsaturated hydraulic properties measured in the lab are not 
necessarily transferable to the field scale [e.g., Dane & Hruska, 1983; Hopmans & Simunek, 
1999; Ritter et al., 2003; Wöhling et al., 2008]. Even if the soil textural class is known, they 
may vary within a considerable range [e.g., Carsel & Parrish, 1988]. Hence, a site-specific 
determination using appropriate field measurements may be the method of choice in order 
to obtain a useful structural representation.   

As such, there is a body of literature dedicated to the estimation of soil hydraulic 
properties, which spans from traditional field and laboratory measurements all the way to 
advanced optimization approaches and stochastic methods [c.f. Hopmans & Simunek, 1999; 
Vrugt et al., 2008; Cook & Cresswell, 2008].   These methods incorporate various data types 
such as soil moisture, pressure head, and geophysical measurements collected in the 
vadose zone and under natural or forced boundary conditions [e.g., Kowalsky et al., 2005; 
Looms et al., 2008].  Moreover, these current stochastic and optimization approaches tend 
to provide very reasonable estimates of soil hydraulic properties and their uncertainty.    

Because this chapter has a heavy comparison with an optimization approach [Wollschläger 
et al., 2009] it is worth expanding a bit the discussion from Section 1.1 about the historical 
progression of optimization.  Over roughly the past decade, SCE-UA has successively been 
extended.  First, it was combined with a Metropolis algorithm and used in a Markov Chain 
Monte Carlo (MCMC) framework in an approach called shuffled complex evolution 
Metropolis algorithm (SCEM-UA) [Vrugt et al., 2003].  Subsequently, a genetic algorithm 
was added for competitive evolution of the Markov chains in an approach called differential 
evolution adaptive Metropolis (DREAM) [Vrugt et al., 2008a, 2009].  The DREAM approach 
is a synthesis of the stochastic and optimization approaches and has been applied 
successfully in many different scenarios [c.f. Vrugt et al., 2008a, 2008b, 2009].  The DREAM-
ZS [Schoups & Vrugt, 2010] algorithm is an even more computationally efficient version of 
DREAM owing to a clever recycling of candidate points.  As stated before, MAD is not an 
optimization technique and this chapter will further elucidate this point. 
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An alternative methodology to optimization that has also shown considerable maturation 
in the past few decades is a stochastic approach, most applications of which are Bayesian. 
The work of Scholer et al. [2011] contains an excellent overview of the stochastic 
approaches, so we only briefly present some historical milestones with which we will 
contrast our following work.  Here, some additional historical milestones in this research 
field that are presented - that were not included in Section 1.1 - with which the following 
work is contrasted.   

Amongst the first stochastic analysis in the unsaturated zone was the application of 
maximum likelihood estimation (MLE) by Jury & Sposito [1985], in which the function to 
optimize is a probability density function.  MLE requires knowledge of the probability 
distribution of the measurement data used for parameter conditioning [Kitanidis & 
Vomvoris, 1983], which is commonly assumed to be a multivariate Gaussian distribution 
(MG), but not validated.  A critical problems with the maximization process is that the 
parameters are not required to maintain physical values [Sorooshian et al., 1983].   

Another stochastic approach is GLUE [Beven & Binley, 1992; Beven & Freer, 2001; Beven & 
Binley, 2013].  Binley & Beven [2003] applied GLUE for the characterization of vadose zone 
flow using geophysical measurements for conditioning of the vadose zone model 
parameters, which is a similar application to this chapter.  However, as mentioned in 
Section 1.1, there are significant challenges associated with GLUE in terms of adequate 
sampling of the parameter space and in adding bias to the results.   

The incorporation of a prior can restrict the parameter space to physically valid or 
reasonable values only.  In a more formal Bayesian framework, Hou & Rubin [2005] 
incorporated least subjective priors and provided analytical solutions for the posterior 
distribution of Mualem-van Genuchten model parameters.  More recently, the efforts of 
Scholer et al. [2011, 2012] and Scharnagl et al. [2011] have worked to quantify the 
importance of prior information and correlation between model parameters.    These 
efforts shifted focus to treating the vadose zone hydraulic parameters as random variables.  
However, these methods unfortunately still require an assumption about the form of the 
likelihood function and none of them can be used to directly infer the probability 
distribution of the residuals. 

Commonly, the user-defined likelihood functions or objective functions are assumed to be a 
MG of the residual difference between model prediction and the observation data.  Often 
the MG is defined by assuming that the residuals are homoscedastic and uncorrelated 
between all times and locations, which is difficult to justify [Ginn & Cushman, 1990; 
Hollenbeck & Jensen, 1998; Vrugt et al., 2008a; Schoups & Vrugt, 2010; Wöhling & Vrugt, 
2011].  An improvement intended to relax these assumptions was the introduction of an 
autoregressive likelihood function that can accommodate correlation, heteroscedascity, 
and asymmetry in the distribution of residuals [Schoups & Vrugt, 2010; Wöhling & Vrugt, 
2011].    

However, even with more flexible autoregressive form of the likelihood function, there is 
an underlying issue with all of the aforementioned techniques: all of them require the 
assumption of the form of the likelihood function and none of them have a mechanism by 
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which this assumption can be tested. This means that the appropriateness of any form of 
the likelihood function can never truly be validated.  Bayesian approaches are frequently 
criticized for subjectivity and assumptions in the prior distribution of model parameters 
leading to bias in the results, but this very same subjectivity and assumptions are ignored 
in the likelihood and objective functions.   

MAD addresses this shortcoming by modifying an approach originally employed for aquifer 
characterization and developing a framework for validating the appropriateness of the 
likelihood function. 

In the remainder of this chapter, the modifications to the theory in Section 1.2 for inverting 
soil properties as random variables are presented as well as an application to a real soil 
column study.  The necessary nested simulation procedure and statistical apparatus to 
implement the data-driven likelihood function are outlined in Section 4.1.  The Bayesian 
framework that analyzes the output of the nested simulation procedure is outlined in 
Section 4.2.  In Section 4.3, the results of the analysis on a natural boundary condition, 
multi-layered soil profile along with comparison to a previous optimization performed by 
Wollschläger et al. [2009] and a discussion of the findings are presented. 

 

4.1 Physical Parameters of Interest and Statistical 
Representation of Conceptual Soil Model 

 

Here, the governing equations and the conceptual model used to simulate the soil water 
dynamics at the field site are defined in Section 4.1.1.  Once the hydraulic parameters of 
interest from the governing equations are defined, Section 4.1.2 presents a method of 
statistical representation of these physical parameters within the material layers that poses 
them as distributions of random variables.   

 

4.1.1 Soil Column Representation, Hydraulic Model and 
Parameterization 

 

In the next three short subsections, the conceptual model of the soil column as delineated 
by soil horizons, the mathematical model of the one dimensional unsaturated flow physics, 
and the hydraulic parameters from specific layers that are of interest are presented. 
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4.1.1.1 Soil Column Conceptual Model 

 

In this section, the pertinent elements of the Gernzhof experimental site (49°25’ N, 8°37’ E), 
which is located a few kilometers west of the city of Heidelberg, SW-Germany, the 
conceptual representation of the soil column, and details of the implementation of this 
column in HYDRUS-1D (version 4.14) [Simunek et al. 2008] are summarized.  A much more 
comprehensive description of the experimental site, the measurement devices and their 
calibration, and boundary conditions during the monitoring are available in Wollschläger et 
al. [2009] - a more brief, but independent summary is provided here for ease of reading.   

Figure 4.1 shows the soil profile as characterized during installation of the TDR probes 
along with the layering as defined in the HYDRUS-1D implementation of the Richards 
equation presented in section 4.1.1.2.  Also shown in Figure 4.1 are the depths of the 4 
installed TDR probes, respectively at 13, 63, 92, and 116 cm below the surface.   

 

Figure 4.1: Soil profile at the Grenzhof test site and conceptual representation of the layering as applied in the HYDRUS-1D simulations.  
Black squares indicate TDR installation locations.  Layer 5 is not shown to scale. [Wollschläger et al., 2009; reproduced with permission 
of the authors.]  

Figure 4.1 shows the model layer boundaries respectively at depths of 28, 82, 110, and 154 
cm, which were determined by transitions observed in the soil texture.  The texture of the 
uppermost four layers of the soil profile is classified as sandy loam according to the USDA-
Soil Taxonomy [Soil Survey Division Staff, 1993].   

The implementation of this conceptual model in HYDRUS-1D is identical to previous work 
[Wollschläger et al., 2009], with the one exception that we lengthened the spin up time 
from 45 to 397 days to further decrease sensitivity of our numerical simulations to 
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uncertainty in the initial conditions (interpolated profile using the 4 available probes).  
This was done by running the model with the whole cycle of observed surface atmospheric 
boundary conditions once in advance before the “true” simulation period started.  

The water table is artificially set at a depth of 4 m below surface.  The Penman-Monteith 
model evapotranspiration flux is scaled a factor of 0.61 as determined by Wollschläger et al. 
[2009]. The root uptake is modeled following the work of Feddes et al. [1978] and Taylor & 
Ashcroft [1972] for grass, with a maximum rooting depth of 0.14 cm.   

In the subsequent analysis, the boundary conditions, initial condition, evapotranspiration, 
and root uptake are models are deterministic for the following reasons: the boundary 
conditions are well known [Wollschläger et al., 2009]; the model is insensitive to the initial 
condition because of increased spin-up; the evapotranspiration and root uptake models are 
used with the optimal parameter values determined by Wollschläger et al. [2009] because 
our objective is to obtain the hydraulic parameters only.  The last decision is prompted by 
computational parsimony and obtaining a characterization of the uncertainty that is 
directly comparable to previous work using the numerical model and available data. 

Many of the modeling choices are directly adopted from the work of Wollschläger et al. 
[2009], because the goal of this study is not to improve on the conceptual model or the 
physics being modeled, but to develop a comparison analysis and present a more validated 
statistical framework than earlier works.  As such, it is recognized that this forward model 
has several potential sources of error including, but not limited to: preferential flow, 
shrinking, swelling, intra-layer heterogeneity, or hysteresis [Wollschläger et al., 2009], but 
these are issues that are outside the scope of this chapter. 

 

4.1.1.2 One Dimensional Unsaturated Water Dynamics 

 

This chapter focuses on the flow of water through a variably saturated soil column - the 
appropriate equation for describing this physical scenario is the Richards equation in one 
dimension: 

𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
[𝐾 (

𝜕ℎ

𝜕𝑧
− 1)] − 𝑅                     (4.1) 

where 𝜃 is the volumetric water content [−], ℎ is the matric potential [m], 𝑡 is time [d], 𝑧 is 
depth [m], 𝐾is the hydraulic conductivity function [md−1], and 𝑅 is a sink term 
[m3m−3d−1].  The Richards equation has three unknowns ℎ, 𝜃, and 𝐾; to close the system of 
equations, the Mualem-van Genuchten model [Mualem, 1976; van Genuchten, 1980] is 
introduced 

         𝜃(ℎ) = {
𝜃𝑟 +

𝜃𝑠−𝜃𝑟

[1+|𝛼ℎ|𝑛]
1−
1
𝑛

ℎ < 0

𝜃𝑠 ℎ ≥ 0
                    (4.2) 
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          𝐾 = 𝐾(Θ) = 𝐾𝑠Θ
1

2 [1 − (1 − Θ𝑛 [𝑛−1]⁄ )
1−1 𝑛⁄

]
2

           (4.3) 

with 

  Θ =
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
                      (4.4) 

where 𝜃𝑟 is the residual water content [−], 𝜃𝑠 is the saturated water content [−], 𝛼 [1 𝑐𝑚⁄ ] 
and 𝑛 [−] are shape parameters, 𝐾𝑠 is the saturated hydraulic conductivity [cm hr⁄ ], and Θ 
is the effective saturation [−]. 

 

4.1.1.3 Characterization Target Parameters 

 

In this section, the physical parameters from Equations 4.1 to 4.4 of interest in the 
characterization of the conceptual model are selected.  

In the subsequent application of Bayes’ rule, the statistical distributions are quantified for 
four physical parameters affiliated with Equations 4.1 to 4.4: 𝒚 = [𝐾𝑠, 𝜃𝑟 , 𝑛, 𝛼]

𝑇.  Moreover, 
these physical parameters are characterized in each of the upper four layers of the soil 
column, such that the composite target parameter vector (denoted by the subscript ‘c’) can 
be defined as  

𝒚𝑐 = [𝒚
(1), 𝒚(2), 𝒚(3), 𝒚(4)]

𝑇
= [𝐾𝑠

(1), 𝜃𝑟
(1), 𝑛(1), 𝛼(1), … , 𝐾𝑠

(4), 𝜃𝑟
(4), 𝑛(4), 𝛼(4)]

𝑇

            (4.5) 

where the superscripts are references to the layer numbers given in Figure 4.1.  Note, in 
this study, the hydraulic properties of the lowest layer are not estimated and are held fixed.  
The values of the fifth layer parameters are given in Table 4.1, which are defined as the 
expected values for sand from the database of Carsel & Parrish [1988]. 

Table 4.1: Summary of layer 5 hydraulic parameters for sand as taken from Carsel & Parrish [1988] 

Hydraulic Parameter Value in layer 5 

𝐾𝑠 [cm hr⁄ ] 29.7 
𝛼 [1 cm⁄ ] 0.145 
𝑛 [−] 2.68 
𝜃𝑟 [−] 
𝜃𝑠 [−] 

0.045 
0.043 

 

Hereafter, the variables given in the vector in Equation 4.5 are always referred to as the 
‘hydraulic parameters’ to distinguish them from the ‘structural parameters’ affiliated with 
the implementation of MAD.    

 



85 
 

4.1.2 Structural Model 

 

In this section, a representation of the hydraulic parameters as random variables belonging 
to a parametric PDF is defined.  This statistical representation is a structural model 
(agreeing with the language of previous MAD applications, even though it is not 
geostatistical in nature).  The parameters of this structural model - the mean vector and 
covariance matrix of an MG structural model - are the structural parameters.  Later, in 
Section 4.2, the structural model will be updated from initial (prior) estimates of their 
probabilities, to data-conditional (posterior) estimates of their probabilities via Bayes’ rule 
and demonstrate the important and necessary role of a structural model in this 
implementation.  But first, an argument for the appropriateness of representing the 
hydraulic parameters as distributed random variables is given. 

The spatial distribution of hydraulic properties in natural field soils may be highly 
heterogeneous [Carsel & Parrish, 1988; Yeh et al., 1986; Schaap et al., 2002]. Even in the 
advantageous case where the soil textural class is known, the soil hydraulic parameters 
may still cover a considerable range [Carsel & Parrish, 1988]. Therefore, a reasonable 
approach to account for this uncertainty in the parameter estimation should be to apply a 
structural model that represents the respective randomness within the textural class.  
Justification for an MG structural model is based on the statistical analysis of soil catalog 
samples.  

The work of Carsel & Parrish [1988] determined an important set of empirically 
determined Johnson family transformations [Johnson & Kotz, 1970] (grouped by soil 
texture class and on data collected at hundreds of experimental sites as well as several soil 
catalogs published by U.S. states) that transform the statistical distributions of hydraulic 
parameters listed in Equation 4.5 into MG distributions.   

Provided the structural model represents the distribution of the hydraulic parameters (or 
their transforms), there is little justification required for the form of the structural model.  
For instance, it makes no sense to try to represent a uniformly distributed parameter with 
any distribution other than a uniform distribution.  Therefore, the choice of a structural 
model that best represents the transformed hydraulic parameters is an MG distribution. 
However, the transformations that yield such distributions do require some justification.   

To broadly accept the transformations derived from samples collected around the world of 
the same soil texture may at first seem too variable or too generic for any one site.  
Naturally, the expectation is there is no such thing as a transformation to normality that 
works universally for all experimental sites.  In cases where samples of the hydraulic 
parameters are obtained at a site, then a ‘custom’ structural model that most suitably 
represents the variability at the site could be empirically derived – with or without 
transformations, which could also be empirically determined for the site.  However, when 
only the soil texture is known at a site, it would be extremely subjective to assume a 
transformation (or structural model) based on anything except textural classes.   
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The transformations empirically derived by Carsel & Parrish [1988] are specific for each 
USSI soil category.  For the sandy loam texture at the Grenzhof site, the Johnson family 
transformations for 𝐾𝑠, 𝜃𝑟 , 𝑛, & 𝛼 are listed in Table 4.2.   

Table 4.2: Johnson family transformations for sandy loam soil texture [Carsel & Parrish, 1988] 

Hydraulic Parameter Johnson Family Transformation 

𝐾𝑠 [cm hr⁄ ] 𝑦𝑡 = ln (
𝑦

30 − 𝑦
) 

𝛼 [1 cm⁄ ] 𝑦𝑡 = ln (
𝑦

0.25 − 𝑦
) 

𝑛 [−] 𝑦𝑡 = ln(𝑦) 
𝜃𝑟 [−] 𝑦𝑡 = ln (

𝑦

0.11 − 𝑦
) 

To remind that the structural model is actually being specified for transformations of the 
hydraulic parameters of interest the superscript 𝑦𝑡 is introduced to indicate the transform 
of a generic hydraulic parameter 𝑦. To keep notation brief, different symbols for the 
transformations, which are unique for each of the hydraulic parameters in consideration, 
are not introduced (the use of the same superscript is a slight abuse of notation), but this 
does not limit the subsequent derivations.   

Next, the MG structural model is defined for the sandy loam hydraulic parameters at the 
Grenzhof field site as  

𝑆(𝒚𝑡; 𝜷) = 𝑁(𝒚𝒕; 𝝁, 𝚺),                      (4.6) 

which is parameterized by structural parameters 𝜷 - a vector composed of the elements of 
the mean vector 𝝁 and the unique elements of the covariance matrix 𝚺.  The mean vector 
contains four elements, the respective means of the transformed hydraulic parameters.  
The symmetric covariance matrix is 4 × 4 and contains the variances of the transformed 
hydraulic parameters on the diagonal and the covariance of pairs of the transformed 
hydraulic parameters on the off-diagonal.   

The most important role of the structural model is to generate random realizations of the 
hydraulic parameters.  In this case, this requires random realizations of the hydraulic 
parameters for each of the soil layers, which can subsequently be combined into a 
composite soil column realization.  Therefore, the discussion of structural models is 
extended to incorporate multiple layers. 

For this initial study, as a working assumption the layers are taken to be statistically 
independent - similar to the work of Mertens et al. [2004] - such that the composite 
structural model for the entire target hydraulic parameter vector of Equation 4.5 can be 
extended from Equation 4.6 as: 

𝑆(𝒚𝑐
𝒕 ; 𝜷𝑐) = 𝑁(𝝁𝑐, 𝚺𝑐),                            (4.7) 

where 𝝁𝑐 = [𝝁
(1), 𝝁(2), 𝝁(3), 𝝁(4)]

𝑇
is the composite mean vector of length 16, 𝒚𝑐 =

[𝒚(1), 𝒚(2), 𝒚(3), 𝒚(4)]
𝑇

is the composite hydraulic parameter vector of length 16 – in both 
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cases superscript is an index over layer number, 𝚺𝑐 is the composite covariance matrix of 
dimension 16 × 16 and is comprised of four replicates of the 4 × 4 𝚺 matrices along the 
diagonal with zeros elsewhere, and 𝜷𝑐 is formally a vector containing all the components 
of 𝝁𝑐 and 𝚺𝑐. 

Random sampling from the MG model specified in Equation 4.7, after a value for 𝝁𝑐 and 𝚺𝑐 
are supplied (a topic expanded upon in the next section), is used to generate realizations of 
the 16-dimensional vector of the transformed hydraulic parameters �̃�𝑐

𝒕(𝝁𝑐, 𝚺𝑐), where the 

accent ̃  denotes a random realization and the dependency on the values of 𝝁𝑐 and 𝚺𝑐 are 
explicitly expressed.  After applying the appropriate inverse Johnson transformations – 
given in Table 4.3 - for each hydraulic parameter, this comprises a random realization of 
the hydraulic parameters for the composite of the soil column �̃�𝑐(𝝁𝑐, 𝚺𝑐).  

Table 4.3: Inverse Johnson family transformations for sandy loam texture class [Carsel & Parrish, 1988]. 

Transformed Hydraulic Parameter Inverse Johnson family Transformation 

𝐾𝑠
𝑡 

𝑦 =
30 exp(𝑦𝑡)

1 + exp(𝑦𝑡)
 

𝛼𝑡 
𝑦 =

0.25 exp(𝑦𝑡)

1 + exp(𝑦𝑡)
 

𝑛𝑡 𝑦 = exp(𝑦𝑡) 
𝜃𝑟
𝑡 

𝑦 =
0.11 exp(𝑦𝑡)

1 + exp(𝑦𝑡)
 

 

4.2 Conditioning Data and Bayesian Framework 

 

Before presenting the details of the available measurement data and the Bayesian 
characterization, it is worthwhile to briefly discuss the conceptual motivation for the 
structural modeling approach without geostatistics. 

In the previous section, the hydraulic parameters of the various soil layers were posed as 
distributed random variables.  Importantly, the exact distribution of these random 
variables was not fully specified yet; initially, only the MG form is chosen, but with 
unknown mean vector and covariance matrix (the structural parameters).  It was hinted 
that the objective was to randomize these structural parameters.  Now it is explained why.   

The purpose of this randomization of the mean vector and the covariance matrix is 
significant: philosophically, what this states is that some understanding of the 
distributional form of the target hydraulic parameters 𝒚𝑐 is claimed, i.e. what “family” of 
parametric distributions can represent their distribution in the soil (MG), but that location 
of their mode (𝝁𝑐) and their deviation (𝚺𝑐) are unknown.  Via the Bayesian framework, a 
prior distribution of physically-plausible values for the mode and the deviation (based on 
soils of similar texture) are specified and then these physically-plausible values  are 
conditioned on their likelihood of reproducing the in situ measurements.  The output of this 
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Bayesian implementation is a site-specific distribution of structural model modes and 
deviations, thereby reducing the physically-plausible “family” from the broader range 
affiliated with the entire soil textural class to the range suitable just for the Grenzhof field 
site.  Note that the objective is not to obtain an optimal value of 𝝁𝑐 and 𝚺𝑐 , but rather the 
conditional PDF.   

The uncertainty in 𝝁𝑐 and 𝚺𝑐 can be propagated into 𝒚𝑐 and functions of 𝒚𝑐.  Results of 
characterization of the uncertainty in the hydraulic parameters, water retention curve, and 
hydraulic conductivity function are presented in Section 4.3.  The remainder of this section 
introduces the complete Bayesian framework and derivations of specific PDFs necessary to 
condition the physically-plausible values on the available measurement data at the field 
site.  First, the measured data is introduced. 

   

4.2.1 Available Data 

 

As mentioned in Section 4.1.1.1, within the soil column at the experimental site there are 4 
TDR probes that collect water content measurements at different depths: 13, 63, 92, and 
116 cm.  A full description of the calibration and use of these probes at the site is available 
in the work of Wollschläger et al. [2009].  Conservatively, the measurement error of these 
devices is taken as 0.015 absolute water content [Roth et al., 1990]. 

 

Figure 4.2: Daily averaged water content measurements at 13, 63, 92, and 116 cm depth.  Data from Wollschläger et al. [2009]. 

Available to the analysis is nearly one year (352 days from Feb. 15, 2006 until Feb. 1, 2007) 
of daily-averaged volumetric water content measurements 𝜃.  Figure 4.2 shows the time 
series of the measured values of 𝜃 at the four depths mentioned above, which are also 
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indicated as black squares in Figure 4.1. There is one TDR probe placed in each model 
layer. 

At the Grenzhof site, the most dynamic fluctuations in water content occur in the 
uppermost layer (the black trace in Figure 4.2) as the soil responds to atmospheric forcing 
and evapotranspiration.  The responses to infiltration and evapotranspiration at the 
surface are attenuated with depth in the soil column.  Listed in Table 4.4 are the ranges of 
observed water content in each of the 4 layers, which also decrease with depth. 

Table 4.4: Minimum, maximum, and range of observed water content by layer. 

Layer 𝒎𝒊𝒏{𝜽} [−] 𝒎𝒂𝒙{𝜽} [−] 𝒓𝒂𝒏𝒈𝒆{𝜽} [−] 

1 0.080 0.260 0.18 
2 0.113 0.215 0.102 
3 0.195 0.274 0.079 
4 0.265 0.303 0.038 

 

 

4.2.2 Stochastic Implementation 

 

In this section, the implementation of Bayes’ rule for conditioning 𝝁𝑐 and 𝚺𝑐 is explicitly 
shown.  A statistical property of MG distributions is that the parameters 𝝁𝑐 and 𝚺𝑐 are 
statistically independent variables [Lukacs, 1942].  Combining these principles gives 

    𝑓(𝝁𝑐, 𝚺𝑐|𝒛) ∝ 𝑓(𝒛|𝚺𝑐, 𝝁𝑐)𝑓(𝚺𝑐, 𝝁𝑐) = 𝑓(𝒛|𝚺𝑐, 𝝁𝑐)𝑓(𝚺𝑐) 𝑓(𝝁𝑐)       (4.8) 

where 𝒛 is the vector of daily-averaged water content measurements in all the layers;  
𝑓(𝝁𝑐, 𝚺𝑐|𝒛) is the joint posterior PDFs of the structural model modes and variances given 
the measurement data; 𝑓(𝒛|𝝁𝑐, 𝚺𝑐) is the joint likelihoods of observing the measurement 
data given the structural model modes and the variances; and 𝑓(𝝁𝑐) and 𝑓(𝚺𝑐)  are 
respectively the joint prior PDFs of the structural model modes and variances.   

To determine the joint posterior PDF in Equation 4.8, suitable joint prior PDFs must be 
selected, based on similar sites and available prior information, and the joint likelihood 
function must be evaluated.  Here, the implementation steps required to work from the 
joint prior PDF to the joint posterior PDF when employing a statistical structural model as 
defined in the previous section are expanded. 

This requires a nested simulation approach [Maxwell et al., 1999] and it is detailed in the 
next several paragraphs.  Figure 4.3 is a flow chart that augments the discussion. 
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Figure 4.3: A flowchart visualization of the nested simulation procedure implemented for the case study.  

 

Samples of 𝝁𝑐𝑖 and 𝚺𝑐𝑖𝑖 = 1,… ,𝑁 are obtained from the joint prior PDFs 𝑓(𝝁𝑐) and 𝑓(𝚺𝑐) 

by sampling from the supports over which 𝑓(𝝁𝑐) > 0 and 𝑓(𝚺𝑐) > 0.  Sampling can be done 
in a variety of ways: for instance, randomly, in a stratified manner, or with Latin 
hypercubes, all of which can be compatible with the joint likelihood calculation that follows 
[Isukapalli et al., 1998, Over et al., 2013].  Each of these 𝑁 samples of 𝝁𝑐,  𝚺𝑐 then defines a 
structural model 𝑆(𝒚𝑐

𝒕 ; 𝝁𝑐𝑖 , 𝚺𝑐𝑖) for 𝑖 = 1, … , 𝑁, which are each used to generate their own 

ensemble of 𝑀 random composite soil columns following the procedure of Section 4.1..2: 
�̃�𝑐𝑗(𝝁𝑐𝑖, 𝚺𝑐𝑖) for 𝑖 = 1,… ,𝑁 and 𝑗 = 1,… ,𝑀.  This results in a total of 𝑁𝑀 random 

realizations of the composite soil column.   
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Numerical simulation of water content on these ensembles of composite soil columns 
yields ensembles of measurement data �̃�𝑗(𝝁𝑐𝑖, 𝚺𝑐𝑖) for 𝑖 = 1,… ,𝑁 and 𝑗 = 1,… ,𝑀, where 

the notation ̃  is carried to remind that these are simulated on a random realization of the 
composite soil column and explicitly show the dependence on 𝝁𝑐𝑖 and 𝚺𝑐𝑖 .  

Each ensemble of 𝑀 simulations is used to non-parametrically fit or estimate the necessary 
statistical parameters after validating a parametric form of the joint likelihood function 
𝑓(𝒛|𝝁𝑐𝑖, 𝚺𝑐𝑖).  Note here, the fundamental difference of this approach to assuming a joint 

likelihood function, because the distributional form can either be validated or directly 
inferred.  Once the joint likelihood function is inferred from the simulation data, it is then 
evaluated for the measurement data 𝒛.  𝑀 must be sufficiently large to obtain converged 
estimates of either the likelihood function itself or, more cheaply, the statistical parameters 
that define the validated joint likelihood function.  Importantly, simplifications can still be 
made to this procedure; however, the primary motivation for any simplification would now 
be computational parsimony rather than because of the need to close the Bayesian 
expression in Equation 4.8.   

Repeating over all 𝑁 samples and multiplying the joint prior PDFs and likelihood function 
yields the values proportional to 𝑓(𝝁𝑐𝑖, 𝚺𝑐𝑖|𝒛) for 𝑖 = 1, … , 𝑁.  As 𝑁 becomes large relative 

to the dimension of {𝝁𝑐𝑖, 𝚺𝑐𝑖}, this permits stable regression of the posterior PDF through 

the points {𝝁𝑐𝑖, 𝚺𝑐𝑖} using the weights 𝑓(𝝁𝑐𝑖, 𝚺𝑐𝑖|𝒛).   

The process described here is analogous to the implementation used in previous 
applications of MAD [Rubin et al., 2010; Murakami et al., 2011; Chen et al., 2012; Over et al., 
2013] discussed in Section 1.2, but without geostatistical structural models.  So even 
though anchors are not applied in this study - because without a geostatistical structural 
model, point spatial data is incompatible with a statistical structural models – this should 
still be considered an application of MAD.   

Macroscopically, the two loops in Figure 4.3 are both essential and are coupled in a MAD 
analysis.  The outer loop randomizes the possible structural model parameters {𝝁𝑐, 𝚺𝑐}, 
which is a step common to most model inversion approaches, but normally would 
randomize the forward model parameters 𝒚𝑐 directly.  The inner loop is used to repeat a 
random experiment that yields random simulations of 𝒛 conditional on a specific value of 
{𝝁𝑐, 𝚺𝑐} (given by the outer loop), which allows the probability distribution of 𝑓(𝒛|𝚺𝑐, 𝝁𝑐) to 
be fit directly.  This inner loop is not a step in other model inversion approaches.   

The inner loop cannot yield random simulations of 𝒛 without a structural model, because 
the outer loop would provide a value of the forward model parameters 𝒚𝑐 and each 
simulation of the physics would yield identical 𝒛 on the soil column identified by the outer 
loop. Thus in a traditional approach there is no way to randomize 𝒛, which means there is 
no way to fit 𝑓(𝒛|𝚺𝑐, 𝝁𝑐) directly – the form must be assumed and there is no way to 
validate it.  Hence, it is not merely the hierarchy that enables a data-driven validation 
and/or direct fitting of the likelihood function, but also the statistical representation of the 
forward model parameters – the structural model.   
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4.2.2.1 The Priors 

 

Even though the complete structural parameter vector 𝜷𝑐 properly contains all the 
elements of 𝝁𝑐 and 𝚺𝑐; because of their statistical independence [Lukacs, 1942], the prior is 
split into the two separate components in Equation 4.8.  The random components 𝝁𝑐 - the 
modes of each of the transformed hydraulic parameters in each layer – and the diagonal 
terms of 𝚺𝑐 - the spreading of each of the transformed hydraulic parameters in each layer – 
respectively require the specification of joint prior PDFs 𝑓(𝝁𝑐)  and 𝑓(𝚺𝑐).   

Here, 𝑓(𝝁𝑐) is specified and justified.  By the principle of minimum relative entropy (MRE) 
[Woodbury & Ulrych, 1993, 1998; Hou & Rubin, 2005], when the first two statistical 
moments of a group of variables are available (without upper and lower bounds) then the 
least subjective choice of a prior distribution is MG.  Several assumptions are stated and the 
parameterization of 𝑓(𝝁𝑐) is introduced for the study.  

Conservatively, the prior is defined such that 𝝁𝑐 for the soil column can be selected from 
anywhere in the support of all the reported samples of the transformed hydraulic 
parameters in the same soil textural class – sandy loam.  Moreover, it is assumed that the 
statistical distribution of the soil catalog samples of sandy loam soil is also appropriate for 
𝝁𝑐, i.e. that the structural model modes should be weighted with high probability for modal 
values where there is a high probability in the sandy loam soil catalog samples and low 
probability elsewhere.  For the soil catalog samples of sandy loam soils, there are empirical 
estimates of the first two statistical moments from Carsel & Parrish [1988].  Thus the prior 
for the modes 𝝁𝑐 can be least subjectively chosen to be MG; combining this conclusion from 
MRE principles with the assumption about the mode of the samples, define: 

         𝑓(𝝁𝑐) = 𝑁(𝒎,𝐄),         (4.9) 

with mean vector 𝒎 of length 16 and covariance matrix 𝐄 of size 16 × 16.   

Definition of the mean vector 𝒎 (Table 4.5) and diagonal covariance 𝐄 (Table 4.6) – the 
tables only show the values from one layer, but all the layers are defined identically - 
completes the specification of 𝑓(𝝁𝑐).  The 〈∙〉 notation indicates the expected value 
(equivalent to the mode for MG distributions) of the argument.  Note, that 𝒎 is the mean of 
the structural model means 𝝁𝑐 and 𝐄 is the covariance matrix of the structural model 
means 𝝁𝑐.  This repetition could beget the awkward expression “the mean of the means”, 
which is why 𝝁𝑐 is referred to as the mode (equivalent to the mean for MG distributions) 
wherever the two may be confused. 

Table 4.5: Segment of mean vector 𝒎  for one layer of the soil column based on estimated means of the transformed hydraulic 
parameters soil catalog samples collected by Carsel & Parrish [1988]. 

 〈𝐾𝑠
𝑡〉 〈𝛼𝑡〉 〈𝑛𝑡〉 〈𝜃𝑟

𝑡〉 

𝒎 -1.76 -0.937 .634 0.384 
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Table 4.6: Block of the covariance matrix 𝐄 for one layer of the soil column based on estimated variances of the transformed hydraulic 
parameters soil catalog samples collected by Carsel & Parrish [1988]. 

𝐄 〈𝐾𝑠
𝑡〉 〈𝛼𝑡〉 〈𝑛𝑡〉 〈𝜃𝑟

𝑡〉 
〈𝐾𝑠

𝑡〉 2.56 0 0 0 
〈𝛼𝑡〉  0.313 0 0 
〈𝑛𝑡〉   1.85E-3 0 
〈𝜃𝑟
𝑡〉    9.42E-2 

 

Briefly, the reason for the choice of 𝒎 and 𝐄 is discussed.  Defining a larger support for 𝝁𝑐 
with a more diffuse 𝑓(𝝁𝑐) with diagonal covariance matrix a priori [Woodbury & Ulrych, 
1993, 1998; Hou & Rubin, 2005] is most conservative.  If a correlation structure exists 
within a layer and/or across layers between the components of 𝝁𝑐 and/or 𝝁𝑐 should have 
smaller variance, then these features may be exhibited after conditioning in the posterior 
PDFs; they do not have to be specified initially.  Hence, the final definition for 𝒎 is simply 
the sample-based expected values and for 𝐄, a diagonal matrix, containing the un-scaled 
sample-based variances from the work of Carsel & Parrish [1998] for sandy loam.   

Now, the specification of 𝑓(𝚺𝑐) is introduced.  Here, it is assumed that the empirically 
estimated values of the covariance matrix [Carsel & Parrish, 1988] provide limiting maxima 
on the variance that can be observed within a soil textural class.  By definition, the variance 
must also be non-negative, which is taken as a limiting minimum.  When only the upper and 
lower boundaries for a random variable are specified, the least subjective PDF by the 
principle of MRE is a uniform distribution.  Therefore,  

   𝑓(𝚺𝑐) = 𝑈[𝟎, 𝑬𝑑𝑖𝑎𝑔],                   (4.10) 

where 𝑬𝑑𝑖𝑎𝑔 is the vector of the entries of 𝐄 on the diagonal – repeated four times, once for 

each layer - that were given in Table 4.6. 

All samples are drawn in this study using Latin hypercube sampling [McKay et al., 1979].   

 

4.2.2.2 Likelihood Function 

 

In this section, the joint likelihood function 𝑓(𝒛|𝝁𝑐, 𝚺𝑐) that must be evaluated to obtain the 
joint posterior PDF 𝑓(𝝁𝑐, 𝚺𝑐|𝒛) is introduced. 

The vector 𝒛 contains all 352 measurement times from the 4 measurement locations 
available at the Grenzhof site (Figure 4.2), but this is a problem of extremely large 
dimensionality for non-parametric methods, requiring intractable numbers of simulations 
for stable inference.  Therefore, in this case study, a parametric form of the likelihood is 
selected and validated - based on the statistical distribution of the simulations of 𝒛 (inner 
loop of Figure 4.3.   
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Investigation of the distribution of simulations of water contents in time and space 
revealed a very good agreement with an MG structure using the Shapiro-Wilk test.  The 
average 𝑝-value of these tests was 0.07, which indicates little to no evidence against the 
hypothesis of normality [Wasserman, 2010], so the likelihood function 𝑓(𝝁𝑐, 𝚺𝑐|𝒛) is taken 
as MG.   

To evaluate the likelihood functions, the sample mean vector and sample covariance matrix 
for the data 𝒛 using the simulation ensembles generated from the samples of 𝝁𝑐 and 𝚺𝑐 
need to be calculated.  Note that this mean is neither  𝝁𝑐 or 𝒎 and this covariance matrix is 
neither 𝚺𝑐 or 𝐄, but rather the sample mean and sample covariance matrix of �̃�𝑗(𝝁𝑐𝑖, 𝚺𝑐𝑖) 

over the index 𝑗 – using the outcome of the inner loop in Figure 4.3.  It is important to note 
that these sample-based calculations are carried out separately over the index 𝑖 – once for 
each circuit of the outer loop in Figure 4.3 – and this results in a total of 𝑁 calculations of 
this vector and matrix.   

The dimension of 𝒛 helps define the number of simulations 𝑀 to generate in each ensemble, 
because estimates of this covariance matrix components are mathematically ill-posed 
[Deng & Yuan, 2009] when the simulation ensemble is smaller than or equal to the length of 
𝒛.  Combining the recent work of Vershynin [2012] – which importantly showed that 
logarithmic oversampling is not necessary for sample covariance matrix determination in 
cases where the data are independent (a condition forced by projection onto an orthogonal 
basis using singular value decomposition [Albano et al., 1988] before analysis) - with the 
fact that 𝒛 is length 1408, 𝑀 = 1450 is set as the ensemble size for the likelihood function 
analysis. 

 

4.2.2.3 Sequential Partitioning of the Structural Parameter Domain: 
Computational Parsimony 

 

In this section, a partitioning procedure for the structural parameter randomization (outer 
loop of Figure 4.3) is introduced to offset the significant computational costs of embedding 
the likelihood function validation (inner loop of Figure 4.3).   

The net computational cost of an analysis can be approximated as 𝑁𝑀 times the cost of a 
single simulation – the overall costs contributions of evaluating the PDFs, sampling, etc. are 
quite insignificant by comparison.  𝑀 was set at 1450 in the previous section, without a 
practical strategy for limiting 𝑁, the product 𝑁𝑀 could easily climb into billions or trillions.  
For reference, even if a simulation cost just one second, a billion simulations would take to 
over 317 years to compute.   

However, 𝑁 must grow exponentially with the dimensionality of {𝝁𝑐, 𝚺𝑐} to ensure 
convergence of the posterior joint PDF [Vershynin, 2012].  Therefore, a strategy common to 
MCMC algorithms is borrowed that is both computationally affordable and maintains the 
quality of the statistical results.  The strategy is to hold 𝚺𝑐 constant initially and to 
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randomize just 𝝁𝑐; then subsequently hold 𝝁𝑐 fixed and randomize 𝚺𝑐.  In MCMC 
approaches, this process would be repeated multiple times.  In the limit of a large number 
of samples, this sequential, partitioning approach has been shown to determine the 
complete joint probability distribution of the random variables [Robert & Casella, 2004] 

Initially, it is assumed that the covariance matrix is fixed using the empirically determined 
values from Carsel & Parrish [1988] given in Table 4.7.  Note, the diagonal is identical to 
Table 4.6 (the limiting maxima) and permits the most conservative search of the structural 
modal modes - the greatest number of structural models could have non-zero posterior 
probability, because the hydraulic parameters are the most spread around their respective 
structural model modes when the covariance matrix diagonal is largest. 

Table 4.7: Covariance matrix values for sandy loam texture class (after applying the transformations given in Table 4.2) MG structural 
models  

𝚺 𝐾𝑠
𝑡 𝛼𝑡 𝑛𝑡 𝜃𝑟

𝑡 

𝐾𝑠
𝑡 2.56 -0.245 5.92E-2 0.338 
𝛼𝑡  0.313 3.49E-3 -0.137 
𝑛𝑡   1.85E-3 4.78E-3 
𝜃𝑟
𝑡    9.42E-2 

 

During randomization of 𝝁𝑐, out of the 19,000 samples searched, one sample had a 
dominant posterior probability (factor of 106 greater than the rest of the samples).  
Therefore, during the subsequent randomization of 𝚺𝑐, 𝝁𝑐 was fixed at this dominant value.  
Owing to the high computational cost (discussed in Section 4.3.3) and the immediate goal 
of establishing a validated likelihood function for Bayesian inversion in vadose zone 
characterizations, it is not necessary to proceed with further iterations of partitioning of 
the random structural parameters.  It is acknowledged that this may be a limiting element 
of the analysis. 

 

4.3 Results and Discussion 

 

In this section, the results of the characterization are presented and discussed.  In the first 
subsection, the complete PDFs of the parameters are presented.  Additionally, prior and 
posterior confidence intervals (CIs) of the water content time series are presented to 
graphically demonstrate the improvement in the posterior structural models’ ability to 
reproduce the observed water dynamics.  The second subsection propagates the 
uncertainty in the posterior PDFs of the Mualem-van Genuchten parameters into 
uncertainty in the water retention and hydraulic conductivity functions.  In the final short 
subsection, there is a summary of the computational resources as well as budget.  
Throughout the sections the strengths and weaknesses of our the approach are discussed.   
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4.3.1 Posterior Updating of Prior  

 

Figure 4. 4 shows the posterior (red) and prior PDFs (black) of the Mualem-van Genuchten 
parameters under study.  These are obtained by propagating the uncertainty in the prior 
and posterior Gaussian structural models into uncertainty of the hydraulic parameters.  
Each row contains one of the four targeted parameters 𝐾𝑠, 𝛼, 𝑛 or 𝜃𝑟 and each row the four 
layers in the profile (shallowest to deepest, respectively right to left).  The expected values 
of the posterior and prior distributions are graphed as a bold circle following the respective 
color schemes.   Additionally, the plots show the optimized parameter value for the layer 
attained by Wollschläger et al. [2009] as a vertical blue line.   

Optimally, conditioning results in a posterior PDF that is narrower (less variance) that is 
also more centered on the true parameter value (less bias) than its prior PDF.  However, be 
mindful that the true parameters, in this case, are unknown, so bias is not identifiable; a 
shift of the expected value (the bold circles) towards or away from the optimized value (the 
vertical line) after conditioning cannot be interpreted as a reduction or increase in bias.  
The results in Figure 4.4 demonstrate that the water content measurement data used in the 
likelihood function can condition some, but not all, of the textural class specific (sandy-
loam) prior estimates of the structural model (random distribution of the Mualem-van 
Genuchten parameters) to site-specific (Grenzhof soil profile), posterior estimates.   The 
distributions for 𝜃𝑟 , 𝑛, & 𝛼 show significant conditioning effects compared to their 
respective priors (different modes and skewness in the posterior PDFs), whereas 𝐾𝑠 is 
hardly changed by conditioning. 

Additionally, these plots suggest that a prior based on the textural class of the soil is 
compatible [Hou & Rubin, 2005] with the underlying, true parameters for the site, because 
the posterior PDF is nonzero for all 16 variables, however subsequently it will be shown 
that this may not be the case.  The agreement between the optimization of Wollschläger et 
al. [2009] and the posterior conditioning is also quite successful, although the optimized 𝐾𝑠 
and 𝜃𝑟 in layer 1 as well as 𝑛 in layers 3 and 4 are well into the tail regions of their 
respective PDFs.  

It is important to note that the purpose of this comparison with Wollschläger et al. [2009] is 
to show the differences between the MAD approach and an optimization that utilized the 
same data.  The parameters identified by Wollschläger et al. [2009] are not considered to be 
the optimum – although they may be - as this is not a synthetic problem.  The most notable 
improvement from using MAD is the ability to specify the conditional PDFs of the hydraulic 
parameters, where Wollschläger et al. [2009] could only provide optimal values and 95% 
confidence bounds. 
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Figure 4.4: Posterior, prior, and optimized values of the Mualem-van Genuchten parameters for the Grenzhof field site [Wollschläger et 
al., 2009]. The heavy dot represents the expected value of the respectively colored PDF.  

The posterior and prior 95% CIs of the water content time series show a similar effect to 
the variance reduction in the posterior PDFs in Figure 4.4, where for the most part the 
conditioning improves the identifiability of the observed data.   

The results in this section are comparable to the recent Bayesian hydraulic parameter 
inversions of Scholer et al. [2011 & 2012].  Specifically, these studies also investigated 
layered profiles and showed very similar orders of magnitude in the overall parametric 
uncertainty as well as similar effects of conditioning, but using water contents estimated 
from ground penetrating radar measurements instead of moisture content data obtained 
from TDR.  However, the results obtained with MAD utilized a validated likelihood function 
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rather than an assumption of independent and identically distributed Gaussian residuals 
[Scholer et al., 2011 & 2012].   

Figure 4.5 shows the posterior (blue) and prior PDFs (red) CIs – overlapping portions of 
the prior and posterior CI are shaded in gray - of the water content time series relative to 
the observed data (black).  The four panels in the figure correspond with the layers of the 
soil column, from shallowest to deepest moving down the graphic.  

 

Figure 4.5: Posterior and prior 95% confidence intervals of the water content time series in the four layers (shallowest to deepest 
reading down). 

For every one of the 1,408 daily averaged measurements (352 per layer), the posterior CI is 
narrower than the prior CI, which is a beneficial result of the reduced hydraulic parameter 



99 
 

uncertainty (Figure 4.4).  The posterior CIs enclose nearly 90% of the observed water 
content measurements in the uppermost 3 layers.  However, they  still have a relatively 
high level of uncertainty (are quite wide) in terms of the water content of around ~10% , 
which hypothetically is an outcome of having only one TDR probe per layer and only one 
type of data to condition upon.  Also, in these layers, and most prominently in the 
uppermost layer, the posterior CI is least effective in capturing the water content dynamics 
when the soil column is at its driest states – approximately days 80 through 180 in layer 1 
and around day 180 in layer 2.  This behavior was also demonstrated by Wollschläger et al. 
[2009] and several reasons for the model’s inability to reproduce lengthy dry periods were 
given: most notably, the usage of a steady-state crop factor and an evaporative flux that 
was not dependent on preceding rainfall or drying events, which could also be responsible 
for the incorrect behavior in this analysis. 

Any observation where the observed water content is not enclosed by either the posterior 
or prior CIs is indicative of an undesirable model bias.  In the lowest layer, both the prior 
and posterior CI fail to capture the water content time series throughout the year, both 
underestimate the moisture.   This failure could be indicative that the likelihood function, 
because it evenly accounts for agreement of the simulations and measurements at any 
depth and time, is also susceptible to “trade-off” between fit in any one layer versus a more 
favorable fit throughout the column (as is the case with Pareto surface solutions Wöhling & 
Vrugt [2011]).  Thus the success in the upper portion of the soil column may offset the poor 
fit in the fourth layer.   

The failure in the fourth layer, where the prior CI is not a good match with the observed 
time series, is a prime example of a poorly specified prior – here, the texture class based 
assumptions do not perform well.  Determination of the prior CI is only possible after 
performing a large number of forward model simulations; while it would be correct to 
refine the prior for this layer and re-analyze the parameters, because of the high 
computational cost and because the purpose of this chapter is to demonstrate a framework 
for validating the likelihood function in vadose zone parameter inversion problems, such 
an effort is beyond the scope of this work. 

  

4.3.2 Soil Hydraulic Properties 

 

In this section, the uncertainty in the hydraulic parameters is visualized as uncertainty in 
the water retention and hydraulic conductivity functions for the 4 soil layers at the 
Grenzhof site.  Figures 4.6 and 4.7 respectively contain the water retention and hydraulic 
conductivity functions.  The posterior (red) and prior (black) 95% CIs are plotted to show 
the effect of conditioning.  Additionally, the optimized functions from the work of 
Wollschläger et al. [2009] are plotted in blue.  The gray background shows the range of 
water content measurements observed during the experiment for a given layer (listed in 
Table 4.4).   
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Figure 4.6: Water retention function posterior and prior confidence intervals as well as optimization [Wollschläger et al., 2009] for the 
four soil layers characterized.  The range of observed water content for each layer is shown in gray.   

An important note is that the prediction of the water retention and hydraulic conductivity 
functions are always limited by the range of observed water contents under natural 
conditions.  Thus, since the available conditioning data does not span the complete range of 
water content states as thoroughly as e.g. a multi-step outflow experiment conducted in the 
lab does, it should be clearly acknowledged that the optimization results and CIs for states 
outside the measured ranges are extrapolations. 
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Figure 4.7: Hydraulic conductivity function posterior and prior confidence intervals as well as optimizations [Wollschläger et al., 2009]for 
the four soil layers characterized.  The range of observed water content for each layer is shown in gray.  

In Figure 4.6, the positive effect of conditioning is again seen in the reduced variance in the 
hydraulic parameters of the posterior CIs being narrower than the prior CIs for each layer.  
The agreement with the optimized water retention functions from Wollschläger et al. 
[2009] is best in the uppermost layers, but deteriorates with greater depth.   

Again, Figures 4.6 and 4.7 are also quite comparable to another recent Bayesian inversion 
of vadose zone properties conducted by Scholer et al. [2012]. Specifically, their results 
obtained with a correlated MG prior show almost identical conditioning effects (albeit 
using water contents obtained from ground penetrating radar travel times instead of TDR 
measurements), for the water retention curve.  Yet again, it is reminded that the results 
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presented in this chapter are comparable in terms of results in other recent studies, but 
that the MAD procedure allowed validation of the likelihood function rather than simply 
assuming it. 

Returning to the failure of the water content to correspond with the observations in the 
deepest layer (Figure 4.5), the prior and posterior CIs of the water retention function in the 
deepest layer show a fairly sharp transition from wet to dry conditions (roughly 100 cm of 
matric potential separates moistures states of 𝜃 = 0.35 and 𝜃 = 0.1). The recent work of 
Wöhling & Vrugt [2011], which considered a Pareto solution to a multi-layer soil profile 
vadose zone inversion (in a sandy soil), showed that the forward model uncertainty can 
lead to CIs for matric potential that are on the order of ~50 cm.  Assuming the Grenzhof 
conceptual model can be considered analogous (albeit with a slightly less porous sandy 
loam soil and a shallower column), such model uncertainty could easily account for the 
serious bias (~15%) in the moisture content time series (given the water retention 
function CIs) in the lowest layer.  This model bias also suggests that an additional 
measurement of matric potential could help better condition the results (as suggested by 
Vereecken et al., 2008).   

Figure 4.7, also demonstrates the positive outcome of the reduced variance in the hydraulic 
parameters by the posterior CIs being narrower than the prior CIs for each layer.  The 
agreement with the optimized hydraulic conductivity functions from Wollschläger et al. 
[2009] is best in the two uppermost layers, but deteriorates with greater depth.   

In general, there are three critical observations to be drawn from Sections 4.3.1 and 4.3.2.  
First, the priors that we selected on the basis of a soil textural class and the 
transformations utilized from soil catalogs [Carsel & Parrish, 1988] are in most cases 
compatible (except the fourth layer) with the observed moisture content data for the 
Grenzhof field site.  Second, the beneficial effects of reducing the variance of the hydraulic 
parameters by conditioning is better visualized in the CIs of the water content predicted by 
the model or the hydraulic properties than in the PDFs of the hydraulic parameter directly.  
Third, the results obtained with MAD compare well with other recent work in vadose zone 
parameter estimation; but, where using MAD stands apart, is that the statistical framework 
has allowed for any assumptions about the likelihood function to either be avoided 
altogether or validated during the analysis.   

 

4.3.3 Computational Considerations 

 

In this section, the computational costs of this application are summarized.  During 
randomization of the structural model means 𝝁𝑐 19,000 samples were drawn.  During 
randomization of the structural model variances 𝚺𝑐 9,000 samples were drawn.  Fewer 
samples were drawn during the analysis of 𝚺𝑐 than 𝝁𝑐 because 𝑓(𝚺𝑐) is bounded and 𝑓(𝝁𝑐) 
is not.  The convergence in both analyses was verified using a visual jackknife technique 
[Wasserman, 2010].  However, given the single iteration of the partitioning approach for 
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the parameters, it is hypothesized that the posteriors could be further refined with 
additional simulations. 

With 𝑀 = 1450, the total number of simulations for the analysis was 40,600,000.  The 
overall computation time for the analyses was equivalent to just over one year on a 2 core 
CPU, based on a 3.0 GHz processor and an average simulation cost of 1.6 seconds.  Because 
the net simulation expense was distributed using Condor High Throughput Computing 
[Basney & Livny, 2000] over 200 CPUs, there is not one set of processor specifications that 
is exactly representative.   

The entire composite profile random generation and simulation process was performed 
using the MAD# open-source software [Osorio et al., 2013] connected with HYDRUS 1-D 
version 4.14 ) [Simunek et al. 2008] and the R statistical computing platform version 2.15.1 
[R Core Team, 2012].   

 

4.4 Summary and conclusions 

 

In this chapter, an analysis of uncertainty in vadose zone hydraulic properties using MAD 
was developed and demonstrated.  The approach is identified PDFs of the hydraulic 
parameters (Figure 4.4).  This uncertainty can be propagated into the hydraulic properties 
(Figures 4.6 & 4.7), into the forward model’s ability to fit the observations (Figure 4.5), and 
into predictions made by the forward model.   

The largest success of the analysis was that the posterior CIs of the moisture content time 
series, the water retention functions, and the hydraulic conductivity functions were all  
narrowed relative to their prior CIs.  The inversion was more successful in matching the 
measured data in the shallowest layers, but struggled to fit the lowest layer and prolonged 
dry conditions nearest to the surface.  There were possible statistical (poorly defined prior, 
no correlation between layers) and forward modeling reasons (constant crop factor and 
evaporative flux see section 4.1.1.1) for why the fit was poor in the first and fourth layer.  
Lastly, the CIs (posterior or prior) for moisture content were rather wide, but this is 
thought to be an outcome of having only a single measurement device and type per layer 
for conditioning; it is reasonable to expect that additional probes per layer or alternative 
types, e.g. matric potential measurements, albeit with their well-known difficulties in the 
dry water content range, could further reduce the parametric uncertainty 

Also of importance is that the MAD approach, which utilizes nested simulation (Figure 4.3  
allows the likelihood function to be inferred, rather than assumed initially.  The form of this 
PDF can be directly derived from the ensembles of simulation data.  If an assumption is 
made about the shape of the likelihood function, it can be validated with the MAD 
approach.  In this study, an MG form of the likelihood function was validated using the 
Shapiro-Wilk test statistic to show there was little to no evidence against the hypothesis of 
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normality.  The only reason a parametric form of the likelihood was utilized was to limit the 
overall computational cost, it was not a requirement of the framework. 

There are several areas for improvement in this work.  All of which require additional 
computational resources.  First, the incompatible prior in the fourth layer could be revised 
to better agree with the observation data.  Second, the numerical model could be less 
simplistic and additional elements – such as hysteresis or swelling - could be included that 
may better represent the in situ physics.  Third, the sequential analysis of the structural 
parameters could be iterated or, even better, could be avoided altogether in a joint analysis.  
Finally, the likelihood function could be non-parametrically inferred and no simplification 
employed to limit computational cost. 

 In conclusion, this chapter presented useful modifications to the MAD theory with 
structural models that are not geostatistical and showed that this framework allows a more 
extensive analysis of the likelihood function than any other Bayesian inversion, 
optimization, or calibration technique used previously in the vadose zone. 
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5. Conclusion 
 

 

Since its introduction at the beginning of Chapter 1, the method of anchored distributions 
has been the central theme of this dissertation.   

In Chapter 1, MAD was demonstrated to be among the most current and advanced efforts in 
the field of model inversion – a distinction justified by the comparison with the relative 
advantages of MAD compared to precursor techniques, such as ML, MAP, GLUE, SCE, SCE-
UA, DREAM, and PPM.  A common difference which separates MAD from all the other 
methodologies is a completely generalized, data-driven, assumption-free likelihood 
function.  If it is necessary to invoke assumptions about the likelihood function, for reasons 
of computational parsimony perhaps, such assumptions can be validated using MAD, which 
heretofore has never been possible with the other techniques.  MAD has this capacity 
because of the nested simulation framework and the use of structural models. 

Also in Chapter 1, the capability of MAD to characterize spatial heterogeneity at multiple 
resolution scales was introduced, which is a benefit of utilizing anchors and structural 
models in a complimentary fashion.  The technique was also shown to be very flexible in 
incorporating multiple types and scales of measurement data, which is a benefit of the data 
categorization in MAD.   After introducing the fundamental elements of MAD, the possible 
variants of the Bayesian proportionality were expanded to show the flexibility of MAD for 
applications with different characterization goals and available data.  Finally, because MAD 
was presented generically, it was emphasized that MAD is not itself a product of any one 
scientific field or model, but rather can be applied with great robustness in many areas.  
However, MAD, because of its flexibility, is not a trivial analysis in terms of computational 
cost.   

The second chapter introduced the ‘bundling’ approximation technique for MAD that was 
computationally cheaper, but still quite accurate.  Bundling is a modification of the 
likelihood function that determines the probability of observing the Type-B measurements 
given a set of anchor and structural parameter samples.  It was shown that this 
representation of the likelihood function is approximately representative of the likelihood 
function for any of the members of the set using a Boolean ‘or’ statement under the special 
condition that the anchor and structural parameter samples in the set be very similar.  This 
condition was forced by a pre-screening of the samples using clustering tools, specifically 
partitioning around medoids.  A rule was established for using clustering to set the bundle 
size, which was shown to have a direct impact on the accuracy of the approximation.    

Where bundling gains its efficiency is in the construction of the simulation ensembles, 
because the overall simulation cost is cheaper than with traditional MAD implementations. 
Bundling was applied to a synthetic case study of a natural gradient tracer test and shown 
to be approximately as accurate as the traditional MAD implementation, but 35% cheaper 
in terms of computational expense.  Bundling is suggested as an initial ‘screening’ step for 
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applications of MAD that have large parameter spaces, such that high probability regions 
can be rapidly identified – if greater resolution of these regions of the probability surface 
are required, it can be achieved with subsequent, traditional applications of MAD, that 
focus solely on these regions and not the entire parameter space.  A drawback of bundling 
is that it further complicates the implementation of a technique that already required 
significant skill in data manipulation, programming knowledge, and large amounts of data 
storage space. 

Therefore, in the third chapter, the focus shifted again towards the development of a 
generic, modularized, open-source GUI that automates and simplifies the implementation 
of MAD.  The MAD software is comprised of a pre-processing and post-processing module, 
which have the respective responsibilities of configuring a MAD project to build the 
simulation ensembles and to analyze the ensembles using the correct formulation of the 
Bayesian proportionality.  Since the first two chapters heavily focused on the 
implementation of MAD, it was appropriate to first present the GUI forms in great detail.   
For every form, the role, the connection to the theory, and the logic of the form’s location in 
the overall sequence were discussed.  After the building blocks of the MAD software GUI 
were catalogued, it was possible to show how the individual components comprise the two 
modules of the software and how the software promotes generic attachment to different 
forward modeling and random field generation tools.   

To demonstrate the generic ability of the MAD software to adapt to any of the variants of 
the MAD proportionality, a synthetic or real field case study using each of Equations 1.2-1.7 
was presented either in Chapters 3 or 4.  To demonstrate the interoperability of the MAD 
software to connect with and different forward models, analyses were conducted with both 
MODFLOW and HYDRUS 1-D.   However, even though the software had been constructed to 
support applications without geostatistics, MAD had never been applied in such a fashion, 
nor it had been applied outside of aquifer characterization under saturated conditions.   

Therefore, in the fourth chapter, the focus shifted towards developing and justifying the 
theory of MAD without the use of anchors and for characterization of a shallow soil column 
under variably saturated conditions.   Analogously to geostatistical applications, a 
structural model needed to be specified in the various layers in the profile that represented 
the targeted hydraulic parameters as random variables.  Argumentation was offered on the 
basis of soil texture class and the extensive empirical evidence of Carsel & Parrish [1988] 
that the randomness in the hydraulic parameters was of multivariate Gaussian form.  Prior 
distributions for the structural parameters – in this study, the mean vector and covariance 
matrix – were selected using similar site data from the soil catalogs and the principle of 
minimum relative entropy.   

After updating the prior PDFs using the available water-content time series, it was shown 
that the overall uncertainty in the hydraulic properties and confidence intervals of the 
forward model were effectively reduced.  An important distinction of the conditioning in 
this application is that, relative to the existing literature in vadose zone model inversion 
and calibration, it is the first example of an inversion that validates the distributional 
assumption about the likelihood function.  The inversion did have a drawback insofar as 
the lowest layer moisture content was not well fit after conditioning, but this could be an 



107 
 

artifact of the equal consideration of 1408 measurements in the likelihood function or the 
relatively sharp water retention function identified in this layer.   On the other hand, the 
conditioning in the more shallow soil layers, the compatibility of the priors that were 
selected by texture class, and the form of the structural model for vadose zone hydraulic 
parameters were all successful and novel contributions of this study.  

In closing, this dissertation has had at its core the theme of advancing the efficient 
implementation, usage, theory, and application areas of the method of the anchored 
distribution.   
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