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ABSTRACT OF THE DISSERTATION

Flexible and Efficient Resource Management in a Virtual Cluser
Environment

by

Marvin McNett Il
Doctor of Philosophy in Computer Science
University of California, San Diego, 2008

Professor Geoffrey M. Voelker, Chair

Virtual machine (VM) use in a cluster environment imposesiynzhallenges
upon a cluster administrator. As the number of VMs acrosgeagiows, manually
tracking transient site state information such as resoavaéability and VM locations
and status while enforcing policies for running large nurslbef VMs across a clus-
ter becomes increasingly difficult. In this dissertatiorotds on VM use in clusters
and consider the management and efficiency problems tres mrithis unique envi-
ronment. | present Usher, a virtual machine managemengraydesigned to impose
few constraints upon the computing environment under itsagament. Usher enables
administrators to choose how their virtual machine envirent will be configured and
the policies under which it will be managed. Usher clusteniadistrators can push
basic virtual cluster management tasks such as VM start tapdosit to the users (vir-
tual cluster creators) themselves, reducing administsatokload and allowing users
to create virtual clusters on demand. The modular desigrnsbEUallows for alternate
implementations for authentication, authorization,asfructure handling, logging, and
virtual machine scheduling. The design philosophy of Ustiéo provide an interface
whereby users and administrators can request virtual medperations while delegat-
ing administrative tasks and policy enforcement for thespiests to modular plugins.

| present an Usher scheduling plugin designed to map virhadhines onto physical

Xii



machines such that an arbitrarily defined utility is optiedz | discuss possible clus-
ter scheduling goals and present a representative clustedsling problem called Fair
Maximum Utilization (FMU). Exploration of scheduling hestics of varying levels of

sophistication applied to FMU suggest that those which nieteer VM resource de-

mand predictions and only slight schedule adjustments wetkin general.
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Chapter 1

Introduction

The proliferation of clusters of powerful, multi-processand multi-core
servers has many cluster administrators looking for newswwayarness the full poten-
tial of their computing environments. These administmatften look to virtualization
as a means to increase their cluster utilization in a flexit@ner. Though promises of
increased hardware utilization and flexibility in resoupcevisioning frequently moti-
vate virtual machine (VM) use in clusters of commodity cottigps, many administrators
influenced by these promises are not prepared for the diffioibeploying and manag-
ing such a complex computing environment. As the number o6\éktoss a site grows,
manually tracking transient site state information sucheasurce availability and VM
locations and status while enforcing policies for runniaige numbers of VMs across a
cluster becomes increasingly onerous. Consequentlyetdtister administrator, hyper-
visor features and performance have become less impdntamtite ability to effectively
manage large numbers of virtual machines across a siteidert, | designed and im-
plemented Usher, a virtual cluster management system vghiloktantially reduces the
administrative burden of managing virtual machines aceopfysical cluster. In this
dissertation | present Usher, an extensible framework fanaging clusters of virtual
machines, and demonstrate its ability to significantly cedmanagement and efficiency

problems inherent in virtual cluster environments.



1.1 Motivation

Cluster administrators often turn to VMs as a remedy fodrigourse grained
resource sharing models and low resource utilization. Vhsige a convenient mech-
anism for partitioning computing resources among usersatyany granularity. Once
partitioned, VM priority and placement is dictated by therawistrator, providing the
flexibility to support a wide range of cluster operationahlgo In addition, the abil-
ity to multiplex several VMs on each physical machine ensitdg@ping otherwise idle
resources, greatly increasing overall utilization.

Indeed, my own experience led me to seek better solutionsaiong cluster
computers among members of the Systems and Networking €yghbup at UCSD;
a model of distributing computing resources to users at thawdarity of physical ma-
chines led to very poor resource utilization and starvedsus®ue to the nature of
research in the SysNet group, many required clusters of imeglo carry out their re-
search. A physical machine checkout system providing rermatsole and power cycle
abilities for each machine quickly exhausted all computaspurces. At the same time,
cluster-wide resource utilization was less than five pdrcen

With approximately 50 active users, over 200 physical maehwere insuf-
ficient for the SysNet group. As surprising as this may seamptoblem is a result of
researchers’ reluctancy to return machines which they sp&et significant time setting
up. Cluster setup and experimentation can be quite timeucoing). Researchers want
to ensure they are completely finished with their work befeteasing machines back
to the groupt Returning machines sometimes took yeatinfortunately, acquiring ad-
ditional hardware did not alleviate the starvation prohl&ew machines were typically
claimed before arriving.

Though just an example, other highly experienced personsduastry and
academia have confirmed [Eus07, HamO07, Kis07, O’'HO8] they thave very similar

LA system | designed to pull disk images from checked out nmeesh{in about five minutes) when researchers
would not be using them and put the images back (again in diveuhinutes) when ready to resume their experiments
went unused.

20ften, only because the student graduated.



problems to those faced by the SysNet group. Whether byn&s®a or groups in a
larger company, these resource sharing issues arise velnetesters are shared between
self-interested parties. All of these individuals haveresged interest in virtualization
as a possible solution to their resource allocation problem

As for SysNet, most users in need of a cluster (or even a singtdine) do not
actually need physical machines, but rather the abstraofiphysical machines, which
virtual machines provide. Therefore, SysNet chose to uss ¥\lleviate their resource
sharing woes. In making that decision, however, | learnatittanually managing more
than a few dozen VMs across a cluster is extremely time comguand arduous to
track. Furthermore, proper monitoring of resource avditgbs difficult, making VM
placement hit-or-miss (e.g., placing two CPU hungry VMslomgame node while other
nodes remain nearly idle is likely to eventually happen)dtly, such an environment
requires a VM management system. Similar to traditionataiyeg systems, this system
must support a wide range of management policies and opeahtjoals in an efficient

manner. | implemented Usher to meet these requirements.

1.2 Contributions

In this dissertation | focus on VM use in clusters and presatations to
management and efficiency problems that arise in this uregueonment. To address
manageability, | designed and implemented Usher, a vidiugter management system
designed to substantially reduce the administrative buofienanaging cluster resources
while simultaneously improving the ability of users to reqtj control, and customize
their resources and computing environment. Based upom&s&drom users and ad-
ministrators from another Usher installation, | refactblésher to be easily extensible.
This refactoring greatly improved the flexibility of Usher &dapt to different com-
puting environments. The current version of Usher imposasdonstraints upon the
computing environment under its management. No two sites fdentical hardware

and software configurations, user and application requargsy or service infrastruc-



tures. To facilitate its use in a wide range of environmedther combines a core set
of interfaces that implement basic mechanisms, clientagorg these mechanisms, and
a framework for expressing and customizing administrgimécies through extensible
modules, or plugins.

Efficiency encompasses both virtual cluster setup time gretation. For
setup time, | consider the time devoted to virtual clusteation and destruction. Usher
provides a single control point from which administratoas enanage their entire vir-
tual cluster environment while pushing many of the mundasks involved with virtual
cluster administration out to the users (cluster creatbesnselves. In this way, a min-
imal amount of setup time is required by Usher administeatdisher makes pushing
setup responsibility out to users possible through an sitenplugin system. The plu-
gin system enables administrators to enforce arbitraryag@ment policies or support
arbitrary operational goals. This design places the resipdity of enforcing these poli-
cies on Usher itself. The administrator is not required farape all user requests. These
features (i.e., central control point and setup delegatiotito increase administrator ef-
ficiency in managing virtual cluster installations.

From my experience, deploying Usher transformed clusteragament from
taking well over two hours to create a cluster of 20 VMs, catgwith DNS entries
and user LDAP authentication, to around two minutes for ateluof approximately 100
VMs.? Usher enabled users to experiment with much larger persusters. Many
users created long running virtual clusters of over 100 sfd&he largest physical
cluster by a SysNet user was 50 nodes for only a few 8&ysveral months saw over
500 virtual machines created by SysNet users on a 25 node Usiséer.

To address operational efficiency, | implemented an Ushezdiding plugin.
This plugin seeks to provide a mechanism for enforcing therafpnal goals under

which administrators wants their sites to run. Enforcingsth operational goals is ac-

3 Actually, this is the time required for all the VMs to be up amdning. Administrator time is only a few seconds
since creating such a cluster in Usher can be handled withgéestommand.

“Many of these would have been larger had more physical mestieen dedicated to the Usher installation.

SThat involved several days of asking other SysNet usersaordiv” their checked out physical machines for a
few days to meet a paper deadline.



complished by scheduling VMs across a site so as to maximiagainistrator defined
utility of the mapping of VMs to physical machines. Utilitg expressed as a mathe-
matical function over the set of feasible assignments of /jshysical machines. This
design enhances flexibility as well. Administrators canpgupnearly arbitrary oper-
ational goals by expressing those goals as utility funstiddsher’s scheduling plugin
then works to maintain those goals as the system runs viatanong and transparently
migrating VMs when goals are not being met. This design paitieejob of maintaining
a site’s operational goals onto Usher. Administrators arterequired to continuously
monitor their site’s status to keep it in line with these @tenal goals, greatly decreas-
ing the time they spend maintaining their sites while insieg their ability to enforce
a wide range of operational goals.

To demonstrate the effectiveness of the Usher schedulingimp! | present
several possible cluster scheduling goals and define asamaive cluster scheduling
problem called Fair Maximum Utilization (FMU). The goal oMU is to fairly maxi-
mize overall cluster resource usage in a best-effort fasfhie., no guarantees, or service
level agreements (SLAS)). In FMU, fairness is measured @suim over all resources
of Jain’s Fairness Index of resource allocations to VMs wantnore of that particular
resource. In other words, FMU tries to give all VMs as much odsource as it desires.
When that is not possible, it fairly divides the resource agihose VMs wanting more
of that resource. This is an appropriate scheduling goabf@aNet, where users are
allowed to create clusters of any size and use them as desired

FMU is an instance of a multiple objective combinatorialioptation prob-
lem. | prove that FMU is in the class of NP-hard problems. Assult, deterministic,
polynomial-time algorithms for solving this problem are known to exist. Therefore,
solution strategies which approximate optimal solutiamsraquired.

| designed heuristics of varying levels of sophisticationdptimizing arbitrar-
ily defined utility functions over the set of all feasible @gsnents of VMs to physical
machines. | then experimentally evaluated these helgiaitith FMU scheduling to es-

tablish each heuristic’s suitability to scheduling in eowiments with a range of VM



dynamism levels. My results indicate that schedulers winelke better VM resource

demand predictions and only slight schedule adjustments well in general.

1.3 Dissertation Organization

The remainder of this dissertation is organized as folldsapter 2 describes
the Usher system, details its design and implementaticsh déstusses its use in two
different cluster environments. Chapter 3 presents thaalimachine scheduling prob-
lem, defines our canonical FMU scheduling problem, proved&JBMnclusion in the
set of NP-hard problems, and presents heuristics for fingaugl solutions to the FMU
scheduling problem. Chapter 4 presents experimentaltsefeulmy heuristics applied
to a range of virtual cluster environment workload chanasties. Chapter 5 discusses
future directions and Chapter 6 concludes. There are alse #ppendices. Appendix A
presents an overview of the Usher source code, Appendix8dlscore Usher events,
and Appendix C discusses writing Usher extensions (cligritgyins, and hypervisor

wrappers).



Chapter 2

Usher: An Extensible Framework for

Managing Clusters of Virtual Machines

Here, we present the Usher virtual machine managementsysisher pro-
vides an extensible framework and client API enabling plagind custom applications
to control virtual clusters. In addition to managing VMs@ss a site, Usher enables us
to experiment with complex virtual machine managementjesdi In Chapter 3, we use
Usher to study VM scheduling heuristics for efficient regeuntilization.

In this chapter, we provide an overview of the Usher systerhitacture and
implementation. We then present specific examples of Udigins and applications.
The chapter ends with a discussion of two Usher installatiith very different man-

agement goals.

2.1 Introduction

Usher is a virtual cluster management system designed stamtially reduce
the administrative burden of managing cluster resourcekewimultaneously improv-
ing the ability of users to request, control, and custonteértresources and computing
environment. System administrators of cluster computimgrenments face a num-

ber of imposing challenges. Different users within a clussn have a wide range of



computing demands, spanning general best-effort congpugeds, batch scheduling
systems, and complete control of dedicated resources. eTlessurce demands vary
substantially over time in response to changes in worklosel base, and failures. Fur-
thermore, users often need to customize their operatirtgrsyand application environ-
ments, substantially increasing configuration and maartea tasks. Finally, clusters
rarely operate in isolated administrative environmentsl, must be integrated into ex-
isting authentication, storage, network, and host ad@medsmame service infrastructure.

Usher balances these imposing requirements using a cotabnird abstrac-
tion and architecture. Usher provides a simple abstraaifam logical cluster of vir-
tual machines, or virtual cluster. Usher users can createnamber of virtual clusters
(VCs) of arbitrary size, while Usher multiplexes individwatual machines (VMs) on
available physical machine hardware. By decoupling ldgicachine resources from
physical machines, users can create and use machines iagctwrdheir needs rather
than according to assigned physical resources.

Architecturally, Usher is designed to impose few constgirpon the com-
puting environment under its management. No two sites hdmetical hardware and
software configurations, user and application requiremjestt service infrastructures.
To facilitate its use in a wide range of environments, Uslmenlgines a core set of in-
terfaces that implement basic mechanisms, clients forgusiase mechanisms, and a
framework for expressing and customizing administratigkges in extensible mod-
ules, or plugins.

The Usher core implements basic virtual cluster and macimapagement
mechanisms, such as creating, destroying, and migrating.\¥sher clients use this
core to manipulate virtual clusters. These clients servatasfaces to the system for
users as well as for use by higher-level cluster software.ekample, an Usher client
called ush provides an interactive command shell for users to intenattt the sys-
tem. We have also implemented an adapter for a high-leveldéio® management sys-
tem [ABD*07], which operates as an Usher client, that creates andomiates virtual

clusters on its own behalf.



Usher supports customizable modules for two importantgeep. First, these
modules enable Usher to interact with broader site infuasiire, such as authentication,
storage, and host address and naming services. Usher iepiehefault behavior for
common situations; e.g., newly created VMs in Usher can wstea DHCP service to
obtain addresses and domain names. Additionally, sitesustiomize Usher to imple-
ment more specialized policies; at UCSD, an Usher VM idgntibdule allocates IP
address ranges to VMs within the same virtual cluster.

Second, pluggable modules enable system administratoexpess site-
specific policies for the placement, scheduling, and use MgV As a result, Usher
allows administrators to decide how to configure their \&tmachine environments
and determine the appropriate management policies. Ramics, to support a general-
purpose computing environment, administrators can instehvailable Usher schedul-
ing and placement plugin that performs round-robin plaggnoé VMs across phys-
ical machines and simple rebalancing in response to thdiaaddir removal of vir-
tual and physical machines. With this plugin, users can dyoally add or re-
move VMs from VCs at any time without having to specify seevlevel agreements
(SLAs) [AFF01, RRX"06, WSVYO07], write configuration files [Beg06], or obtain
leases on resources [CIB3, GIYCO06]. With live migration of VMs, Usher can dy-
namically and transparently adjust the mapping of virtaglhiysical machines to adapt
to changes in load among active VMs or the working set of aciivs, exploit affini-
ties among VMs (e.g., to enhance physical page sharing Rjalor add and remove
hardware with little or no interruption.

Usher enables other powerful policies to be expressed, asigfower man-
agement (reduce the number of active physical machinegigosttual clusters), dis-
tribution (constrain virtual machines within a virtual ster to run on separate nodes),
and resource guarantees. Another installation of Usheritseluster to support scien-
tific batch jobs running within virtual clusters, guarargeesources to those jobs when
they run, and implements a load-balancing policy that nie&g&Ms in response to load
spikes [CGK 06].
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Usher is a fully functional system. It has been installed witiple cluster
computing environments including UCSD, University of Hawand the Russian Re-
search Center in Kurchatov, Russia. At UCSD, Usher has lmeproduction use since
January 2007. It has managed up to 400 virtual machines tumaViclusters across 62

physical machines.

2.2 Related Work

Since the emergence of widespread cluster computing overecade
ago [ACPtNT95, Mer], many cluster configuration and managigtnsystems have been
developed to achieve a range of goals. These goals naturflilgnce individual ap-
proaches to cluster management. Early configuration anégesmnent systems, such as
Galaxy [VDO0Q], focus on expressive and scalable mechaniesndefining clusters for
specific types of service, and physically partition clusiedes among those types.

More recent systems target specific domains, such as Intsgngces, com-
putational grids, and experimental testbeds, that havwet storkload or resource al-
location requirements. These systems support servicéexipaess explicit resource
requirements, typically in some form of service level agreat (SLA). Services pro-
vide their requirements as input to the system, and the rsyatldcates its resources
among services while satisfying the constraints of the Séquirements.

For example, Océano provides a computing utility for e-omrce [AFF 01].
Services formally state their workload performance resjaignts (e.g., response time),
and Océano dynamically allocates physical servers inorespto changing workload
conditions to satisfy such requirements. Cluster-on-Dei(&€OD) performs resource
allocation for computing utilities and computational gservices [CIG03]. COD im-
plements a virtual cluster abstraction, where a virtuadteluis a disjoint set of physical
servers specifically configured to the requirements of aquéatr service, such as a local
site component of a larger wide-area computational gridviSes specify and request

resources to a site manager and COD leases those resouthemtoFinally, Emulab
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provides a shared network testbed in which users specifgrarpnts [WLS 02]. An
experiment specifies network topologies and charactesists well as node software
configurations, and Emulab dedicates, isolates, and caoaidastbed resources for the
duration of the experiment.

Rocks and Rolls provide scalable and customizable contigaréor compu-
tational grids [BKSP04, SCBO04]. Though these systems hasectthe pain of deploy-
ing and managing clusters, the decision to use such a sysia@scat the cost of much
flexibility. While many groups purchase cluster hardwanetésks amenable to tradi-
tional static installation and configuration of a site’s ganing infrastructure (e.g., batch
processing) or horizontal scale out of services, othergiregnore flexible computing
models.

The recent rise in virtual machine monitor (VMM) populartigs naturally
led to systems for configuring and managing virtual machif@s computational grid
systems, for example, Shirako extends Cluster-on-Demwinttbrporating virtual ma-
chines to further improve system resource multiplexingevbatisfying explicit service
requirements [GIYCO06], and VIOLIN supports both intra- anter-domain migration
to satisfy specified resource utilization limits [RRB6]. Sandpiper develops policies
for detecting and reacting to hotspots in virtual clustestsgns while satisfying appli-
cation SLAs [WSVYO07], including determining when and whewenigrate virtual ma-
chines, although again under the constraints of meetingttihmgent SLA requirements
of a data center.

On the other hand, Usher provides a framework that allowesyadministra-
tors to express site-specific policies depending upon tiesds and goals. By default,
the Usher core provides, in essence, a general-purpogesfims computing environ-
ment. It imposes no restrictions on the number and kind tdi&iiclusters and machines,
and performs simple load balancing across physical mashiée believe this usage
model is important because it is widely applicable and ratiar use. Requiring users
to explicitly specify their resource requirements for theeeds, for example, can be

awkward and challenging since users often do not know whéor ¢trow long they will
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need resources. Further, allocating and reserving resswan limit resource utiliza-

tion; guaranteed resources that go idle cannot be usedfer ptirposes. However, sites
can specify more elaborate policies in Usher for contrgltime placement, scheduling,
and migration of VMs if desired. Such policies can range frioatch schedulers to

allocation of dedicated physical resources.

In terms of configuration, Usher shares many of the motiwnatitbat inspired
the Manage Large Networks (MLN) tool [Beg06]. The goal of MidNo enable admin-
istrators and users to take advantage of virtualizatiomerdasing administrator burden.
Administrators can use MLN to configure and manage virtuathirees and clusters
(distributed projecty and it supports multiple virtualization platforms (XendaUser-
Mode Linux). MLN, however, requires administrators to eegs a number of static
configuration decisions through configuration files (e.gygical host binding, number
of virtual hosts), and supports only coarse granularityasigit reallocation (manually
by the administrator). Usher configuration is interactiad dynamic, enables users to
create and manage their virtual clusters without admatist intervention, and enables
a site to globally manage all VMs according to cluster-widéqes.

XenEnterprise [xen] from XenSource and VirtualCenter [vahwirom
VMware are commercial products for managing virtual maekion cluster hardware
from the respective companies. XenEnterprise providesjahical administration con-
sole, Virtual Data Center, for creating, managing, and teoimg Xen virtual machines.
VirtualCenter monitors and manages VMware virtual machioe a cluster as a data
center, supporting VM restart when nodes fail and dynanad lealancing through live
VM migration. Both list interfaces for external controlflaugh it is not clear whether
administrators can implement plugins for enforcing pqlioyegrating the systems into
existing infrastructure, or controlling VMs in responseatbitrary events in the system.

VirtualCenter does provide a mechanism to call arbitranpssin response
to a limited set of events. However, these run as separategses from VirtualCenter
itself, so they have no access to its internal state. Also\Wévk's Infrastructure Man-

agement SDK provides functionality similar to that prowddgy the Usher client API.
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However, this SDK does not provide the tight integrationhwitMWare’s centralized
management system that plugins do for the Usher system.

In addition, these commercial offerings are all tied to ngang a single VM
product, whereas Usher is designed to interface with anyalization platform that
exports a standard administrative interface. Furthermbey are closed source, propri-
etary, and infinitely more expensive than the free, openceousher system.

Enomaly [eno], formerly known as Enomalism, was developgzirallel with
Usher. Originally, Enomalism was a free, open source systesigned to manage vir-
tual machines using Red Hat's libvirt toolkit [lib]. It hagse evolved into a platform
for elastic cloud computing. Enomaly aims to provide a systehich would enable
businesses to offer their own elastic cloud services sirtolghat of the Amazon Elastic
Compute Cloud (EC2) [ec2]. Enomaly is still free and openrseu Their revenue is
generated by paid support and custom extensions to thelupto

Recently, a number of both free and commercial VM managemerttucts
have been introduced.

Eucalyptus [euc] is an open source system for implementimgdccomput-
ing on private clusters. This is similar in spirit to EnomaBucalyptus aims at being
compatible with Amazon’s EC2 interface.

Kodiak [kod] from Bluebear is a commercial (although freel apen source)
hypervisor agnostic VM management system with supportrearty” hypervisors out
of the box. Bluebear claims that Kodiak is “the industry'dyoapplication that's both
hypervisor-agnostic and cross-platform”. However, K&dialy supports a single hy-
pervisor at the time of this writing. In addition, Bluebedaims that “Kodiak is also
extensible through a soon to be published open frameworlipatently, the folks at
Bluebear believe in the Usher approach to VM managementndwgiect to acknowl-
edge Usher’s predating of their system.

ConVirt [conb], originally called “XenMan”, is another hgpvisor agnostic
VM management system released under the GNU Public LicebenVirt provides a

convenient graphical management console for managing \@ksa multiple PMs. At
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the time of this writing, it appears that Convirt does notsup plugins or provide a
client API to integrate with third-party applications.

Tashi [tas] is a cluster management project proposed byReteearch. Their
goal is to develop a layer of utility software to convert ¢irs into cloud computers
enabling remote users to operate on large, locally storealskds. Tashi will manage
both virtual and physical machines to operate on massieenat-scale datasets without
the overhead of moving the data between sites.

Sun Microsystems very recently announced availability ¥vamanagement
system named xVM Ops Center [xvm]. This system was designathhage their Xen
based hypervisor called xXVM Server across x64 and SPARE@m®\sstThe feature set of
xVM Ops Center is similar to that of VMware’s VirtualCenter.

Finally, Microsoft entered the VM management space witlr tBgstem Cen-
ter Virtual Machine Manager [sys]. This system enables gonéition and manage-
ment of virtualized infrastructures running on their Hydehypervisor or VMware
ESX Server. Again, the feature set of this commercial afifgis very similar to that of

VMware’s VirtualCenter.

2.3 System Architecture

This section describes the architecture of Usher. It begitis a brief sum-
mary of the goals guiding the Usher system design, followed high-level overview
of the core Usher system. It then describes the purpose agratam of each of the
various core system components, and how they interact &ith ether to accomplish
their tasks. It ends with a discussion of how the Usher systetommodates software

and hardware failures.

2.3.1 Design Goals

As mentioned, no two sites have identical hardware and so&wonfigura-

tions, user and application requirements, or service strfuatures. As a result, Usher
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was designed as a flexible platform for constructing virtaathine management instal-
lations customized to the needs of a particular site.

To accomplish this goal, there were two design objectivedgher. First,
Usher maintains a clean separation between policy and miecha The Usher core
provides a minimal set of mechanisms essential for virtuatimme management. For
instance, the Usher core has mechanisms for starting, timgyrand stopping virtual
machines, as well as, maintaining and querying the glob& sif the system.

Second, Usher is designed for extensibility. The Usher poogides three
ways to extend functionality, as illustrated in Figure Zirst, Usher provides an inter-
face to integrate with different virtual machine manag&sli1s). For instance, while
Usher provides a reference implementation for use with thie XMM, it is straightfor-
ward to implement this adapter for other VMMs. Second, dgweds can use a Plugin
API to enhance Usher functionality. For example, plugins peovide database func-
tionality for persistently storing system state using alfiéeked database, or provide
authentication backed by local Unix passwords. Pluginsalao extend the opera-
tions API exposed to connected clients for cases where tleeAd8l does not provide
functionality desired or required. Third, Usher provide€leent API for integrating
with user interfaces and third-party tools, such as the Usbmmand-line shell (Sec-

tion 2.5.1) and the Plush execution management systemd¢8exb.2).
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2.3.2 System Overview

A running Usher system consists of three main componental feode man-
agers (LNMs), a centralized controller, and clients. Fegir2 depicts the core compo-
nents of an Usher installation.

One LNM runs on each physical node and interacts directli thie VMM
to perform management operations such as creating, dgletid migrating VMs on
behalf of the controller. Since Usher was designed to be VMKbatic, one key role of
the LNM is to wrap the administrative API of the underlying WM so that VMs of that
type can be managed by Usher. The local node managers alsotegekource usage
data from the VMMs and monitor local events. LNMs report tgse usage updates
and events back to the controller for use by plugins andtdien

The controller is the central component of the Usher systiémeceives au-
thenticated requests from clients and issues authorizesn@mds to the LNMs. It also
communicates with the LNMs to collect usage data and managghvmachines run-
ning on each physical node. The controller provides evetification to connected
clients and plugins registered to receive notification fpadicular event (e.g., a VM has
started, been destroyed, or changed state). Plugin mochmgserform a wide range of
tasks, such as maintaining persistent system-wide stimernation, performing DDNS
updates, or doing external environment preparation arahale.

The Usher client library provides an API for applicationgtanmunicate with
the Usher controller. Essentially, clients submit regsiesthe controller when they need
to manipulate their VMs or request additional VMs. The coltér can grant or deny
these requests as its operational policy dictates. Oneoparpf clients is to serve as
the user interface to the system, and users use clients tagedheir VMs and monitor
system state. More generally, arbitrary applications canthe client library to register
callbacks for events of interest in the Usher system.

Typically, a few services also support a running Usher sgst®epending
upon the functionality desired and the infrastructure mtes by a particular site, these

services might include a combination of the following: aadetse server for maintaining
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state information or logging, a NAS server to serve VM filéeyss, an authentication
server to provide authentication for Usher and VMs createtdgher, a DHCP server
to manage IP addresses, and a DNS server for name resolditadhlsher created
VMs. Note that an administrator may configure Usher to usesahpf support services

desired, not necessarily restricted to the preceding list.

2.3.3 Local Node Managers

The local node managers (LNMs) operate closest to the haedwa shown
in Figure 2.2, LNMs run as servers on each physical node irUteer system. The
LNMs have three major duties: i) to provide a remote API to ¢batroller for man-
aging local VMs, ii) to collect and periodically upload ldcasource usage data to the
controller, and iii) to report local events to the controlle

Each LNM presents a remote API to the controller for manifidaVMs on
its node. Upon invoking an API method, the LNM translates dperation into the
equivalent operation of the VM management API exposed by & running on the
node (i.e., the LNM is essentially an adapter for the VM mamagnt API exposed by
the underlying VMM). Note that all LNM API methods are asyrmmous so that the
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controller does not block waiting for the VMM operation toneplete. We emphasize
that this architecture abstracts VMM-specific implemeaotet — the controller is obliv-

ious to the specific VMMs running on the physical nodes as sthe LNM provides

the remote API implementation. As a result, although ourlemgntation currently

uses the Xen VMM, Usher can target other virtualizationfplats. Further, Usher is
capable of managing VMs running any operating system suggpory the VMMs under

its management.

As the Usher system runs, VM and VMM resource usage fluctuatesider-
ably. The local node manager on each node monitors thesedtiats and reports them
back to the controller by request. The report includes nesousage of CPU utilization,
network receive and transmit loads (for both bits and packet second), and disk I/O
activity (for both blocks and operations per second) in larid 15-minute averages.
Typically, these statistics are not readily available frira VMM, leaving the LNM
writer charged with the job of collecting and maintain theakies.

In addition to changes in resource usage, VM state changestsoes occur
unexpectedly. VMs can crash or even unexpectedly appedsappkar from the sys-
tem. Detecting these and other related events requireitarenitoring by the local
node managers, possibly assisted by VMM support for int@awvent notification. Ad-
ministrators can set a tunable parameter for how often thi lsklans for missing VMs
or unexpected VMs. If available, the LNM will register calltks with the VMM plat-
form for other events, such as VM crashes. Otherwise, the WlMperiodically scan

to detect these events.

2.3.4 Controller

The controller is the center of the Usher system. It can ellleebootstapped
into a VM running in the system, or run on a separate servee chmtroller provides

the following:

e User authentication
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e VM operation request API
e Global state maintenance

e Event notification

User authentication: Usher uses SSL-encrypted user authentication. All useiseof
Usher system must authenticate before submitting reqoegtsee system. Adminis-
trators are free to use any of the included authenticatiodutes for use with various
authentication backends (e.g., LDAP), or implement thein.olnformation on imple-
menting and registering an authentication module with tekdd system can be found
in Appendix C.2.

An administrator can register multiple authentication med, and Usher will
query each in turn. Authentication module registrationgecsfied in the controller’'s
configuration file. This support is useful, for instance, toyide local password au-
thentication if LDAP or NIS authentication fails. Upon régeg a user’s credentials, the
controller checks them against the active authenticatiodute chain. If one succeeds
before reaching the end of the chain, the user is autheatic@itherwise, authentication

fails and the user must retry.

VM operation request APIl: A key component of the controller is the remote API for
Usher clients. This API is the gateway into the system for Vidnagement requests
(via RPC) from connected clients. Typically, the controllevokes an authorization
plugin to verify that the authenticated user can perfornojeration before proceeding.
The controller may also invoke other plugins to do preprsitessuch as checking re-
source availability and making placement decisions atgbist. Usher calls any plugin
modules registered to receive notifications for a particteguest once the controller
receives such a request.
Usher delegates authorization to plugin modules so thatirasitmators are

free to implement any policy or policies they wish and stacét awap modules as the

system runs. In addition, an administrator can configurertbeitoring infrastructure to
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automatically swap or add policies as the system runs bgsea eaurrent system load,
time of day, etc. In its simplest form, an authorization pplmodule openly allows
users to create and manipulate their VMs as they desire ar thie global state of the
system. More restrictive policies may limit the number of ¥&luser can start, prohibit
or limit migration, or restrict what information the systegaturns upon user query.

Once a request has successfully traversed the authorizatpreprocessing
steps, the controller executes it by invoking asynchromfa€s to each LNM involved.
As described above, it is up to any plugin policy modules tthauze and check re-
source availability prior to this point. Depending upon thening policy, the autho-
rization and preprocessing steps may alter a user requieselike controller executes
it. For example, the policy may be to simply “do the best we”¢arhonor a request
when it arrives. If a user requests more VMs than allowed, plolicy will simply start
as many VMs as are allowed for this user, and report back telteat what action
was taken. Finally, if insufficient resources are availablsatisfy an authorized and
preprocessed request, the controller will attempt to fulié request until resources are
exhausted.

A powerful feature of the Usher system is the ability for phggthemselves
to extend the API exposed to clients by the Controller. Fangxe, one might imagine
a plugin which allows for a connected client with sufficien/peges to restart selected
LNMs, the controller, or even the entire Usher system. Therotler exposes a method
which allows for connected clients to call methods exposga Iplugin (see Section
2.4.2).

Global state maintenance: The controller maintains a few lists which constitute the
global state of the system. These lists link objects endapsg state information for
running VMs, running VMMSs, and instantiated virtual clust€VCs). A virtual cluster

in Usher can contain an arbitrary set of VMs, and administeadire free to define VCs
in any way suitable to their computing environment.

In addition to the above lists, the controller maintaingéhother lists of VMSs:



21

lost, missing andunmanaged/Ms. The subtle distinction between lost and missing is
that lost VMs are a result of a LNM or VMM failure (the contretlis unable to make
this distinction), whereas a missing VM is a result of an yested VM disappearance
as reported by the LNM where the VM was last seen running. AsimisVM can be
the result of an unexpected VMM error (e.g., We have encoedtéhis case upon a
VMM error on migration). Unmanaged VMs are typically a resaflan administrator
manually starting a VM on a VMM being managed by Usher; Ushiaware of the VM,
but is not itself managing it. The list of unmanaged VMs aigsource usage reporting
so that Usher has a complete picture of all VMs running onoties.

Having the controller maintain system state removes thd fozét to query all
LNMs in the system for every VM management operation ane sfaéry. However, the
controller does have to synchronize with the rest of systkediscuss synchronization

further in Section 2.3.6.

Event notification: Usher often needs to alert clients and plugin modules when va

ous events in the system occur. Events typically fall inte ofithree categories:

e VM operation requests
e VM state changes

e Errors and unexpected events

Connected clients automatically receive notices of stagages of their vir-
tual machines. Clients are free to take any action desired uptification, and can
safely ignore them. Plugin modules, however, must explicggister with the con-
troller to receive event notifications. Plugins can regifte any type of event in the
system (see Appendix B for a complete list of events for wiaglugin can be regis-
tered). For example, a plugin may wish to receive notice of ®dération requests for

preprocessing, or error and VM state change events fortiagand cleanup.
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2.3.5 Clients and the Client API

Applications use the Usher client API to interact with theheiscontroller.
This API provides methods for requesting or manipulatingd/dhd performing state
gueries. We refer to any application importing this API asient.

The client API provides the mechanism for clients to seguaglthenticate
and connect to the Usher controller. Once connected, aicapiph may call any of the
methods provided by the API. All methods are asynchronoeentebased calls to the
controller (Section 2.4). As mentioned above, connectehtd also receive notifica-
tions from the controller for state changes to any of theird/Nlient applications can

register to have specific callbacks invoked for these natibos.

2.3.6 Component Interaction

Having described each of the Usher components individuaéiynow describe
how they interact in more detail. We first discuss how the imdletr and LNMs interact,
and then describe how the controller and clients interaate fhat clients never directly
communicate with LNMs; in effect, the controller “proxieall interactions between

clients and LNMs.

Controller and LNM Interaction

When an LNM starts or receives a controller recovery notia@nnects to the
controller specified in its configuration file. The controkeithenticates all connections
from LNMs, and encrypts the connection for privacy. Uponreeetion to the controller,
the LNM passes a capability to the controller for accessstNl management API.

Using the capability returned by the LNM, the controllertfirsquests infor-
mation about the hardware configuration and a list of culyenhning virtual machines
on the new node. The controller adds this information toi#s lof running VMs and
VMMs in the system. It then uses the capability to assume gemant of the VMs

running on the LNM’s node.
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The controller also returns a capability back to the LNM. TINM uses this
capability for both event notification and periodic repogtiof resource usage back to
the controller.

When the controller discovers that a new node already hasmgivMs (e.g.,
because the node’s LNM failed and restarted), it first det@mif it should assume
management of any of these newly discovered VMs. The cdatmlakes this determi-
nation based solely upon the name of the VM. If the VM name eavitls the domain
name specified in the controller’s configuration file, thesdbntroller assumes it should
manage this VM. Any VMs which it should not manage are placedhe unmanaged
list discussed above. For any VMs which the controller shanénage, the controller
creates a VM object instance and places this object on itsimgrvMs list. These in-
stances are sent to the LNMs where the VMs are running ancedablere. Whenever
an LNM sees that a cached VM object is inconsistent with thheesponding VM run-
ning there (e.g., the state of the VM changed), it alerts tmroller of this event. The
controller then updates the cached object on the LNM. Inviaig, the update serves as
an acknowledgment and the LNM knows that the controlleriveckenotice of the event.

Similarly, the controller sends VM object instances for heareated VMs
to an LNM before the VM is actually started there. Upon sustidsreturn from a
start command, the controller updates the VMs cached objatd on the LNM. Sub-
sequently, the LNM assumes the responsibility for moniig@and reporting any unex-
pected state changes back to the controller.

One scenario which must be resolved by the Controller and Liblfailed
migration. It is difficult to distinguish between a failedcavery slow VM migration. In
this case, a tunable timeout value is set. Migrations whachat complete withing that
time are expected to have failed. At this point, the corgratiotifies the LNM which
returns the VM back to its run state for monitoring purposes.

In the event that a migration assumed to have failed subsdgisicceeds,
one of two events will occur: i) the destination LNM detedte ¥M during its periodic

scan of its VMM state and reports back to the controller, Jothie source LNM reports
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the VM as missing. In the first case, the controller notifiesgburce LNM that the VM
is no longer there, and the LNM deletes its cached copy of tkle M both cases, the
controller updates its VM object to reflect the VMs new looatand sends a cached

copy of the VM to the new LNM.

Controller and Client Interaction

Clients to the Usher system communicate with the controBefore a client
can make any requests, it must authenticate with the céetrdf authentication suc-
ceeds, the controller returns a capability to the clienirigoking its remote APl meth-
ods. Clients use this API to manipulate VMs.

Similar to the local node managers, clients receive caclbgecbinstances
corresponding to their VMs from the controller upon coniwttIf desired, clients can
filter this list of VMs based upon virtual cluster groupinglitmit network traffic. The
purpose of the cached objects at the client is twofold. FHin&y provide a convenient
mechanism by which clients can receive notification of evaffecting their VMs, since
the controller sends updates to each cached VM object wieesictinal VM is modified.
Second, the cached VM objects provide state informatioméoctients when they re-
guest VM operations. With this organization, clients do Imate to query the controller
about the global state of the system before actually suinmié valid request. For ex-
ample, a client should not request migration of a non-emts#M, or try to destroy a
VM which it does not own. The client library is designed to ckéor these kinds of
conditions before submitting a request. Note that the otletris capable of handling
errant requests; this scheme simply offloads request figed the client.

The controller is the authority on the global state of thetesys When the
controller performs an action, it does so based on what thérater believes is the
current global state. The cached state at the client reflleetsontroller’s global view.
For this reason, even if the controller is in error, its statgypically used by clients for
making resource requests. The controller must be capabéeo¥ering from errors due

to inconsistencies between its own view of the global sththesystem and the actual
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global state. These inconsistencies are typically tramgeg., a late event notification
from an LNM), in which case the controller may log an error egtdrn an error message

to the client.

2.3.7 Failures

As the Usher system runs, it is possible for the controlleairor of the local
node managers to become unavailable. This situation caultidoresult of hardware
failure, operating system failure, or the server itselirigi. Usher has been designed to
handle these failures gracefully.

In the event of a controller failure, the LNMs will start atesing server for
a recovery announcement sent by the controller. When theatlen restarts, it sends
a recovery message to all previously known LNMs. When the IsNBteive this an-
nouncement, they reconnect to the controller. As mentiam&kction 2.3.6, when an
LNM connects to the controller, it passes information abtsuphysical parameters and
locally running VMs. With this information from all conneaty LNMs, the controller
recreates the global state of the system. With this desighetonly requires persistent
storage of the list of previously known LNMs rather than thére state of the system
to restore system state upon controller crash or failure.

Since the controller does not keep persistent informatimutawhich clients
were known to be connected before a failure, it cannot naliBnts when it restarts.
Instead, clients connected to a controller which fails \&ilempt to reconnect with
timeouts following an exponential backoff. Once reconedctclients flush their list
of cached VMs and receive a new list from the controller.

The controller detects local node manager failures upocodisect or TCP
timeout. When this situation occurs, the controller charte state of all VMs known
to be running on the node with the failed LNMlwst. It makes no out of band attempts
to determine if lost VMs are still running or if VMMs on whichNMs have failed are
still running. The controller simply logs an error, andeslupon the Usher administrator

or a recovery plugin to investigate the cause of the error.
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2.4 Implementation

In this section we describe the implementation of Ushetuoing the inter-
faces that each component supports and the plugins anctafomhs currently imple-
mented for use with the system.

The main Usher components are written in Python [pyt]. Inittmid Usher
makes use of the Twistéshetwork programming framework [twi]. Twisted provides
convenient mechanisms for implementing event based sgrasynchronous remote
procedure calls, and remote object synchronization. Taldleshows source code line

counts of the main Usher components, for total of 4930 lifeode.

Table 2.1 Code size of individual components.

| Component | LoC |
LNM (w/ Xen hooks)| 1409
Controller 2076
Client API 786
Utilities 659
Total 4930

2.4.1 Local Node Managers

Local Node Managers export the remote API shown in Table®tBé con-
troller. This API is made available to the controller via enate object reference passed
to the controller when an LNM connects.

This API includes methods to query for VM state informatiorda/M re-
source usage details using thet _det ai | s andget _st at us methods, respectively.
State information includes run state, memory allocatithahd MAC addresses, the
node on which VM is running, VM owner, etc. Resource usagkides 1, 5, and 15-
minute utilizations of the various hardware resources.

Ther ecei ve method creates a cached copy of a VM object on an LNM. An

LNM receives the cached copy when it connects to the coetrdllhe LNM periodically

"We are using Version 2.5.0 at the time of this writing.
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Table 2.2 Local Node Manager remote API.

Method Name Description

get _det ai | s(vm nane) get VM state information

get _st at us(vm nane) get VM resource usage statistics
recei ve(vminstance) receive new cached VM object
start (vm nane) start cached VM

op_on(operation, vm namne) operate on existing VM
m grat e(vm nane, | nm nane) | migrate VM to LNM

get _node_i nf o() get node physical characteristics
get _current _node_st at s() get node dynamic and resource usage info
get _current vmst at s() get resource usage statistics for all VMs

compares the state of the VM object with the actual statee¥itiual machine. If the
states differ, the LNM notifies the controller which updattes LNM’s cached copy of
the VM as an acknowledgment that it received the state chaotjee.

In addition, the cached copy of a VM at its LNM contains methtm manip-
ulating the VM it represents. When a VM manipulation methppased by the LNM's
APl isinvoked (one ot art ,op_on, orni gr at e), the method calls the correspond-
ing method of the cached VM object to perform the operatidms Btructure provides
a convenient way to organize VM operations. To manipulaté/a & developer simply
calls the appropriate method of the cached VM object. Naettie controller must still
update the state of its VM object as an acknowledgment tleatdimtroller knows the
operation was successful.

Most operations on an existing VM are encapsulated irogneon function,
and have similar signatures. Table 2.3 shows the list otivaberations to thep_on
method.

All VM operations invoke a corresponding operation in the Mg admin-
istration API. Though Usher currently only manages Xen VMss designed to be
VMM-agnostic. An installation must provide an implemeidatof Usher's VMM in-
terface to support new virtual machine managers.

The LNM’s remote API exposes a few methods that do not opevate

VMs. The get _node_i nf o method returns hardware characteristics of the phys-
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Table 2.3 Operations supported by thg on method.

Operation Description

pause pause VM execution, keeping memory image resident
resumne resume execution of a paused VM

shut down | nicely halta VM

r eboot shutdown and restart VM

hi ber nat e | save VM’s memory image to persistent storage
restore restore hibernated VM to run state

destr oy hard shutdown a VM

cycl e destroy and restart a VM

ical machine. The controller calls this method when an LNMeects. The
get _current _node_st at s method is similar to thget _st at us method. Ad-
ditionally, it reports the number of VMs running on the VMMdthe amount of free
memory on the node. Finally, tlgget cur r ent _vmst at s method returns resource

usage for all VMs running on the physical machine.

2.4.2 Controller

Similar to the local node manager, the controller is an ebasted server.
Upon startup, the controller listens for connections on peots, one for client con-
nections and the other for LNM connections.

The remote API exported by the controller to connectingnttieclosely re-
sembles the interface exported by LNMs to the controllebld2.4 lists the methods
exported by the controller to Usher clients. This API is madailable to clients via a
capability passed upon successful authentication witlcdinéroller.

Note that most of these methods operate on lists of VMs, rdttan single
VMs expected by the LNM APl methods. Since Usher was desigmetnage clusters,
the common case is to invoke these methods on lists of VMsrréitlan on a single VM
at a time. This convention saves significant call overheaenndealing with large lists
of VMs.

Thestart andmi gr at e methods both take a list of LNMs. Fat art,
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Table 2.4 Controller remote API for use by Usher clients.

Method Name Description

[ist(vmlist, status) list state and resource usage
information for VMs

[istInms(lnmlist, status) list LNMs and resource usage
information for VMMs

start(vmlist, Inmlist) start list of VMs on LNMs

op_on(operation, vmlist) operate on existing VMs

mgrate(vmlist, Inmlist) migrate VMs to LNMs

pl ugi n_met hod( pl ugi n, net hod, call method exposed by a

event, argumnents) registered plugin

set I nmacl (Inmlist, acl) set ACL for a list of LNMs

regi ster plugi n(plugin, event, register a plugin for an event

configuration dictionary)

unr egi st er _pl ugi n(pl ugi n, event, | unregister a plugin for an event

order)

the list specifies the LNMs on which the VMs should be starfedempty list indicates
that the VMs can be started anywhere. Recall that this paeansesimply a suggestion
to the controller. Policies installed in the controllertdie whether or not the controller
will honor the suggestion. Likewise, the LNM list passedhe i gr at e method is
simply a suggestion to the controller as to where to migtegeAMVs. The controller can
choose to ignore this suggestion or ignore the migrate st@limgether based upon the
policies installed.

The operations supported by the_on method in the controller API are the
same as those to tlogp_on method of the remote LNM API (Table 2.3).

As mentioned, plugins provide the ability to extend the agiens API ex-
posed by the controller to clients. It is often convenientgtugins to expose a few
methods. An SQL plugin may wish to provide a few database gemant operations,
for example. In addition, plugins can be pure API extensi@duates which register for
a pseudo event which never fires (e.g., an LNM restart methBtl)gin methods are
made available via the controllegd ugi n_met hod method. Clients specify the plu-

gin and method name, along with the event for which the pligynegistered (a single
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plugin can be registered for multiple events) and an argumiietionary to pass to the
plugin method. This is an extremely convenient and powddature of Usher which
allows for the system to provide customized operationsiigriastallation.

Usher also allows for access control at the LNM level. Fotanse, an admin-
istrator may wish to restrict starting and managing VMs oradipular node to only a
specified list of users. This level of control is providediingh access control lists main-
tained for each LNM. Connected clients with sufficient dagies can modify these lists
through theset _| nmacl| method.

Finally, the controller provides methods for clients toistgr and unreg-
ister plugins “on the fly”. Providing these methods enablédirzg functionality or
changing policy as the system runs. In this way, administsatan avoid down time
due to modifying or changing the active set of plugins. Thatawler provides the
regi ster plugi n andunregi st er _pl ugi n methods for this purpose. The
regi st er pl ugi n method takes the plugin name to be registered along with the
event for which it should be registered. It also takes a condiion dictionary which
contains all configuration parameters for the plugin. Theegi st er _pl ugi n takes
the name of the plugin to unregister along with the event nantkan order parameter
to uniquely identify the plugin (since a plugin can be regjist for multiple events and

even multiple times for the same event).

2.4.3 Client API

The client API closely mirrors that of the controller. An ionpant difference
between these two APIs, though, is that the client API signest contain many addi-
tional parameters to aid in working with large sets of VMse3$& additional parameters
allow users to operate on arbitrary sets of VMs and virtuasigrs in a single method
call. The API supports specifying VM sets as regular expoess explicit lists, or
ranges (when VM names contain numbers). The client API dlewvs users to spec-
ify source and destination LNMs (i.e., physical machineshg regular expressions or

explicit lists.
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Another difference between the client and controller ARIshiat the client
API expands thep_on method into methods for each type of operation. Explicitly
enumerating the operations as individual methods avoid&ismg application writers
unfamiliar with theop_on method. These methods simply wrap the call todpeon
method, which is still available for those wishing to calllitectly.

Finally, the client APl containsonnect andr econnect methods. These
methods contact and authenticate with the controller via $8ey also start the client’'s
event loop to handle cached object updates and results feymchronous remote
method calls. The econnect method is merely a convenience method to avoid hav-
ing to pass credentials to the API if a reconnect is requifeset aving been success-
fully connected. A reconnecting application can use thisho@& upon an unexpected
disconnect.

Appendix C.1 contains information on writing Usher clients

2.4.4 Plugins

Plugins are separate add-on modules which can be regigteredeive no-
tification of nearly any event in the system. Plugins live ispecial directory (aptly
named “plugins”) of the Usher source tree. Usher also lonksdonfigurable location
for third-party/user plugins. Any plugins found are autdicelly sourced and added to
a list of availableplugins.

To register a plugin, an administrator can include a sedbornt, which in-
cludes any configuration parameters for the plugin, inpghagi ns section of its own
configuration file. Any plugins listed in the controller’'srdgguration file are loaded at
startup. In addition, the controller provides an API cadlgi st er _pl ugi n which can
be called from anywhere in the Usher code (e.g., even in gilagins) or by connected
clients with sufficient privileges.

Each plugin is required to provide a method naneed r y _poi nt to be
called when an event fires for which it is registered. It isgilole to add a single plugin

to multiple event handler chains, as well as, multiple tirtees single event handler
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chain.

By default, plugins for each event are called in the order imctv they are
registered. Therefore, careful consideration must bengiverdering while registering
plugins. A plugin’s configuration object can optionally éaknorder parameter that
governs the order in which plugins are called on the evethack list. The plugin
API also provides a conversmr egi st er _pl ugi n call to change event handling at
runtime.

When an event occurs in the system, the controller calletite y _poi nt
method of each registered plugin in turn. Tém& r y_poi nt method receives the event
type, as well as the VM or list of VMs involved in the event (16¥ related events which
are the most common). VM manipulation request events tiipicevolve lists of VMSs,
whereas VM operation completion events typically invohgegle VM since operations
are carried out with an asynchronous remote method callch &M involved.

Plugins can be as simple or complex as necessary. Sincerttreltgr invokes
plugin callback chains asynchronously (in their own thjeadmplex plugins should
not interfere with the responsiveness of the Usher system ithe main controller event
loop will not block waiting for a plugin to finish its task).

Sites can install or customize plugins as desired. The Usfstem supports
taking arbitrary input and passing it to plugins on requeshés? For example, a request
to start a VM may include information about which OS to boohieh filesystem to
mount, etc. Plugin authors can use this mechanism to coetypletistomize VMs at
startup.

Appendix C.2 contains information on writing Usher plugins

Events

There are currently forty events for which plugins can basteged in the
core Usher system. These are broken down into five diffelaegories: client, cluster,

controller, LNM, and VM events. Appendix B contains a conglist of all events in

2A request event is an event generated as a result of receivitignt request to operate on a VM or set of VMs.
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the core Usher system at the time of this writing.

In addition, plugins can create additional events for whather plug-
ins may register. For example, a monitoring plugin may &ea event named
noni t or _sanpl e. A scheduling plugin may then register for this event to b&-no

fied when new data is available for re-scheduling.

Policy Enforcement

Policies in an Usher installation are implemented as pkigi\s an ex-
ample, an administrator may have strict policies regardtgytup and migration
of virtual machines. To enforce these policies, a plugin ptugins) is writ-
ten to authorize start and migrate requests. This plugis gegistered for the
start _request andmi grat e_r equest events, either manually using the con-
trollersr egi st er _pl ugi n command, or by specifying these registrations in the con-
troller’s configuration file. Once registered, subsequést ind migrate requests are
passed to the plugin (in the form of a Request object) foraightion. At this point, the
plugin can approve, approve with modification, or simplgotjthe request. Once this is
done, the request is passed on to any other plugins registarthest ar t _r equest
orm gr at e_r equest event lists with a higher order attribute.

Figure 2.3 depicts a migrate request traversing the plugiiback chain for
the migrate event. Each plugin receives the encapsulatgchtairequest object, per-
forms its operation, then passes the request object terthey _poi nt method of the
subsequent plugin in the chain. Notice that each plugings fo modify the request
object as it sees fit (as shown for Plugin 2). In this way, potilugins can enforce any
rule(s) an administrator wishes to define — including degyire request altogether by
converting it into an empty request.

Besides authorization policies, one can imagine polioe¥M operation and
placement. For example, initial VM placement, VM schedglire., dynamic migration
based on load or optimizing a utility function), or reserwas. A policy plugin for

initial placement would be registered for teéart _r equest event (probably with
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Figure 2.3 Migrate request traversing plugin chain.

a higher order attribute than the startup authorizationcpaliscussed above so that it
is called later in the plugin callback chain). Some simplégms such a plugin might
support are round-robin and least-loaded. Scheduling esetvation plugins could be
registered with a timer to be fired periodically to evaludte state of the system and
make decisions about where VMs should be migrated and whidk Might have an

expired reservation, respectively.

2.4.5 Configuration Files

Each component of the Usher system has its own configurakgorifie Usher
configuration module handles parsing of these configurdiies This module extends
ConfigObj [cona] to support additional data types and allovwfriables to be defined
which apply to all subsections of a nested level. All validfiguration parameters, their
type, and default values are specified in the code for eaclpenant and documented
in an included sample configuration file. Likewise, plugingd &lients typically include
a sample configuration files with all valid options documdritesre.

The configuration system tries to read in values from thealhg locations
(in order): a default location in the host filesystem, a di¢fagation in the user's home
directory, and finally a file indicated by an environment &hle. This search ordering
enables users to override default values easily. Valuasirekter configuration files

replace values specified in a previously read file.
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rArmcHett@sS:~ [on
Uzher Shell 0,2
Tupe '?' or 'help' for help
lUse: help <command> for comnmand specific help
ush>» connect
Pazsword:
<Command 0 result pending,..>
Command O result:

Connected

mncnett tush> list

2 WM=:

WM ztate WM

horton, mmchnett, usher ucsdsys  net run vamd? ,usher ucsdsys .net
usher ,mnchiett usher  ucsdsys ,net run vmm32 ,usher ucsdsys ,net

mncnettiushy start -n sneetch -c 10

<Command 1 result pending...>

Command 1 result:

Controller started 10 WMs in 2 secondst
1.sneetch . mncnett usher ,ucsdsys et started on vend3 ,usher ucsdsys..net
10, zneetch . nmchett ,usher ucsdsys het started on wandd,usher ucsdsys ., net
2 ,=neetch, mmcnett ,usher ,ucsdsys . net started on ven?6 ,usher ucsdsys ,net
3.zneetch, mmcnett .usher ,ucsdsys.net started on van?d usher ucsdsys ,net
4 ,sneetch,micnett  usher ucsdsys .net started on vends . usher ucsdzys . .net
9.zneetch, mmcnett .usher ,ucsdsys.net started on wanG0,usher ucsdsys ,net
6.zneetch, mmonett  usher ucsdsys . .net started on ven?l,usher ucsdsys ,net
7 .zneetch, mmcnett .usher ,ucsdsys.net started on vandb,usher ucsdsys ,net
&.zneetch, mmenett .usher ,ucsdeys .net started on van?E usher ucsdsys ,net
9,=neetch, mmcnett ,usher ,ucsdsys . net started on ven?2 ,usher ucsdsys ,net
mncnett iushy

Figure 2.4 Ush Shell
2.5 Application Examples

This section gives a sense for the broad range of appliGatidnch can take
advantage of Usher’s client API to manage virtual machirtdere, we discuss three
such applications: a shell namesh an XML-RPC server namgualusher and a simple
control script for driving VM scheduling experiments.

It is easy to imagine other potential client applicationscukrent wish list of
future clients includes: a web interface for managing VMsaiweb browser, a Firefox
[fir] extension for managing VMs, a command line suite pravigexecutables callable

from a UNIX shell (bash, tcsh, etc.), and a flashy graphical ugerface.

2.5.1 Ush Client

The Usher shelush provides an interactive command-line interface to the
API exported by the Usher controller. In this regard, the ow@nds available imsh
mirror the client API.Ush provides persistent command line history and comes with
extensive online help for each command. If provideshcan read connection details

and other startup parameters from a configurationighis currently the most mature
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and preferred interface for interacting with the Usher elystUsh is implemented in
Python and currently consists of 1180 lines of code (overef@@hich is simply online
documentation).

Since Usher is extremely extensiblesshwas written to be extensible as well.
First, ushgives users the ability to create or replace command optloosigh its con-
figuration file. This ability is convenient since plugins miag in use which extend
options for some commands. For example, a DNS plugin may itgké to specify
whether it should add round robin or reverse DNS entries ¥é¥aThis input could be
passed via extra options to the start commaihaladdition, it is sometimes convenient
to replace existing options. For example, an IP addresslingnulugin may replace the
“i p_addr s” option to start with its own option. Such command option rificdtions
can easily be made to a site with a few lines intisésite configuration file.

In addition to changing command optionshwas written to allow new com-
mands to be easily added. Adding the new command to the dastoof commands
along with a method to invoke is all that is required. If dedira list of command
options may also be specified.

Adding commands is sometimes used for command aliasing. h-Met
ods exposed by plugins registered with the controller canchbed via the
“pl ugi n_met hod” command inush Using thepl ugi n_met hod command is rather
cumbersome in practice, so adding additional commandshéor plugin commands is
often desirable.

We now describe a samplesh session from the UCSD Usher installation,
along with a step-by-step description of actions taken bytire components to perform
each request. In this example, user “mmcnett’ requests ks, Figure 2.4 contains a
snapshot ofishupon completion of the start command.

First a user connects to the Usher controller by running tteafiect” com-
mand. In connecting, the controller receives the userdesrgals and checks them

against the LDAP database. Once authentication succéedspntroller returns a capa-

3AtUCSD, we added an-* r r ” option to theushstart command to indicate that round robin DNS entries shoul
be added for these new VMs.
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bility for its remote API and all of user mmcnett's VMs. Thensewhat unusual output
“<Command O result pending...>"reflects the fact that all client calls to the
controller are asynchronous. When “connect” retuassyesponds with theConmand

0 result:” message followed by the actual resuidhnect ed”.

Upon connectingishsaves the capability and cached VM instances sent by
the controller. Once connected, the user runs the “list”mamd to view his currently
running VMs. Since the client already has cached instanteser mmcnett's VMs,
the list command does not invoke any remote procedures. éqaestly,ushresponds
immediately indicating that user mmcnett already has twos\fivhning.

The user then requests the start of ten VMs in the “sneetalstet. In this
case, the n argument specifies the name of a cluster, and thergument specifies
how many VMs to start in this cluster. When the controllereiees this request, it
first calls on the authorization and IP management modulasttworize the request and
reserve IP addresses for the VMs to be started. Next, theatlentcalls the initial
placement plugin to map where the authorized VMs should é&est. The controller
calls thest art method of the remote LNM API at each new VM’s LNM. The LNMs
call the corresponding method of the VMM administration A®start each VM. Upon
successful return of all of these remote method calls, theralber responds to the
client (ush that the ten VMs were started in two seconds and providesrrdtion
about where each VM was started. After completing their Iseguence, user mmcnett

can ssh into any of his new VMs by name.

2.5.2 Plusher

Plush [ATSVO06] is an extensible execution management syBielarge-scale
distributed systems, amqpdusheris an XML-RPC server that integrates Plush with Usher.
Plush users describe batch experiments or computationdomain-specific language.
Plush uses this input to map resource requirements to @lyssources, bind a set of
matching physical resources to the experiment, set up tbeugion environment, and

finally execute, monitor and control the experiment.
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Since Usher is essentially a service provider for the virtmachine “re-
source”, it was natural to integrate it with Plush. This graion would allow users
to request virtual machines (instead of physical machifegguinning their experiments
using a familiar interface.

Developingplushef was straightforward. Plush already exports a simple con-
trol interface through XML-RPC to integrate with resourgepders. Plush requires
providers to implement a small number of up-calls and doalisc Up-calls allow re-
source providers to notify Plush of asynchronous eventsekample, using down-calls
Plush requests resources asynchronously so that it dobaveto wait for resource al-
location to complete before continuing. When the providashies allocating resources,
it notifies Plush using an up-call.

To integrate Plush and Usher jusher it was only necessary to implement
stubs for this XML-RPC interface in Usher. The XML-RPC stwdes the Client API
to talk to the Usher controller. The XML-RPC stub acts as aypffor authentication
— it relays the authentication information (provided bynss® Plush) to the controller
before proceeding. When the requested virtual machines hagn createdhlusher
returns a list of IP addresses to Plush. If the request failsturns an appropriate error

messagde.

2.5.3 Control Scripts

As an example of a very simple client, we wrote VM control ptgias an
Usher client to automate runs of the scheduling experinwr@hapter 4. These scripts
proved invaluable to running scheduling experiments whiehoften long in duration.

The control scripts use the client API to initialize eachement. Initializing
each experiment involves starting VMs with the proper reses, initial placement, and
load. Experiments run for each scheduler of interest ovange of parameters (e.g.,
number of VMs and physical machines, loads, etc.). Upon detop of all experi-

ments, the control scripts save the experimental resuttkan up by shutting down

4Theplusherapplication was written by Diwaker Gupta. Thanks to Diwalkerbeing the first person (other than
myself) to attempt to write an Usher application.
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all running VMs.

Though this is a fairly straightforward client, the ability script VM man-
agement operations is extremely powerful. Scripting is gomeomponent of large
infrastructure management today. As a result, admin@satan conveniently control

Usher managed VMs with familiar tools.

2.6 Plugin Examples

| now describe a few existing Usher plugins to demonstrageatthaptability
of the Usher system to support a wide range of computing emmients. The plugins
presented here will be limited to those written by the aufbouse by the SysNet group
at UCSD. Nonetheless, these show the extensibility of Ushleich can be leveraged
by any administrator to incorporate Usher into her instalia

The SysNet installation uses the following plugins: an SQtabase plugin
for IP address management supporting access control ondhaddress ranges and
multiple VLANS (ui pngr ); an LDAP plugin for user authentication for both Usher
and VMs created by Usheul dap); a DNS plugin for modifying DNS entries for
VMs managed by Usheu¢ins); a monitoring plugin to track VM resource utilization
(unon); and a scheduling plugin to determine where VMs should usthed). We
will defer detailed discussion of the scheduling plugin tea@ter 3.

All plugins for the UCSD installation are written in Pythofable 2.5 contains

line counts for these plugins.

Table 2.5 Code size of UCSD plugins.

| Plugin | LoC |
IP Manager| 250
LDAP 869
DNS 140
Monitor 85
Scheduler | 1,786
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2.6.1 |IP Address Management

The IP address management plugin uses a PostgreSQL [pabpdatto man-
age and provide access control on named IP address rangesefll feature of Post-
greSQL is its support for an IPv4 data type via the IndexaPie Irange [ipv] extension.
This extension is very convenient for defining address rarfgebitrary or CIDR), test-
ing inclusion of addresses in ranges, etc.

When an IP address on a particular range is requested, the ginds the
next available address on that range and returns it alortg etiter network specific
parameters for that address (e.g., netmask, vlan, etch dafldress is not available, or
the range does not exist, the request fails.

The SysNet installation does not use DHCP to assign IP askesds VMs
for two reasons. First, the SysNet group manages severabgibspanning multiple
VLANS. Since setting up interfaces on different VLANSs is déad by scripts on each
physical machine, a VLAN number must be passed to the LNM vdtarting a VM.
Passing of VLAN numbers cannot be done with DHCP.

The second reason for not using DHCP is that it is imposs@#&ssign own-
ership of arbitrary IP address ranges to specified usersn\taeting a VM, an address
range can be specified by nafmBermissions on the specified range are checked so that

only authorized users can assign addresses from that range.

Events and Operation

The IP manager plugin registers for the following events:r | _start,
start request, start, start failure, regi ster, unregister, and
st at e_change.

Uponreceiving &t r | st art event, this plugin cleans up the list of reserved
IP addresses and sets the state of all used IP addressektwmwni. It also removes

addresses which have been in the “lost”, “missing”, or “umkn” staté for longer

SSome are externally routable, others routable only withi@SD.
SOtherwise, addresses are taken from a default range with agess.
"The “lost” and “missing” states correspond to VM states dbsd in Section 2.4.2.
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than a tunable expiration duration. Since the controllesrigs the global state of the
system at startup, it regenerates the correct list of useditfPesses at startup (see the
discussion of the egi st er event below). In this way, we avoid inconsistencies and
lost IP addresses.

Thest art _request event will cause the IP manager plugin to reserve IP
addresses for the set of VMs being started. Reserving asllyes necessary since a
start may fail for some subset of the VMs. In this case, thgiplueclaims any unused
reserved address upon receivingtaar t _f ai | ur e event.

In the event of a successful start, the firing of gteart event will cause
the plugin to move the IP address for the VM (only one VM pear t event) for the
reserved to the used table.

The IP manager plugin sets the state of the IP address tofttiet ¥M (e.g.,
run) upon receipt of @aegi st er event object. Setting the address state is necessary
since, as mentioned, tlet r | _st art event sets the state of all used IP addresses to
“unknown”. Therefore, each VM found during the state regatien period of controller
restart will have its IP address state in the database uppfat@dded if not there). The
unr egi st er event causes the plugin to reclaim the IP address used byihe V

Finally, the IP manager plugin updates the state of an IPesddo be that of
the VM using that address upon receipt adtaat e_change event. This can happen

when a VM goes missing, is lost, or crasfes.

2.6.2 LDAP

The LDAP plugin serves two purposes. First, it provides rodgfor manag-
ing and authenticating Usher users. Second, it providesdheenience of creating a
branch in the LDAP database for each cluster an Usher ussesteThis branch enables
each VM the user creates to authenticate its users throeghDAP database.

This functionality provides a convenient authenticatiervge to virtual clus-

ter creators. First, it allows Usher users to use their Usteatentials as their VM login

8A crash actually causes the IP address to be reclaimed $iadéM will need to be restarted and can get a new
address at that time.
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credentials since they are automatically added as a usecchn @uster created. Since
each cluster uses a different branch in the LDAP databaseswaliasing in LDAP to
provide Usher users a single set of credentials. In additieplugin adds each Usher
user to the “admin” group of each cluster the user creates. filédystems can then
be configured to grant special privileges to this group (egdo privileges). This ap-
proach is convenient when using a read-only NFS root filesysthere no default root
password is set.

Second, and more importantly, this arrangement addressesduster authen-
tication problem for Usher users in the SysNet group. Autication for clusters is
challenging enough for experienced administrators. Dxieg this problem to users is
not only time consuming for them, but could lead to insecukésY

Creating a separate branch for each cluster allows Ushes tsereate ac-
counts and groups for their clusters without burdening thledd administrator with this
task. This capability is especially conducive to collalieeawork, a common case in a
research lab setting. An administrator could easily bewkemed with management
requests in a setting where users are free to create theiclosters, yet are unable to
fully manage them. This approach pushes many mundane adratiie tasks out to the
users who have the incentive to create accounts on their VMs.

Allowing Usher users to modify the LDAP database requiregfcé config-
uration of the LDAP server, however. An LDAP server configiomra file that allows
Usher users to only manage branches which they own is indlwita the Usher source
code. In addition, the Usher plugin for the LDAP server inldsa scripts for installa-
tion on a user’s VM filesystems to modify cluster LDAP entrfes., to add, modify, or

delete users and groups).

Events and Operation

The LDAP plugin registers for the following eventst ust er r egi st er,
cl i ent _aut henti cat e, andl nmaut henti cat e. The LDAP plugin creates a

new branch for a cluster in its LDAP database upon receiviogwast er _r egi st er
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event object. As mentioned, this branch authenticates e new cluster. The clus-
ter creator also has permissions to manage users and grotips new LDAP branch.
The Usher credential checker module generaleisent _aut henti cat e
andl nmaut hent i cat e events when a client or LNM attempt to authenticate. The
LDAP module then returns whether or not the credentialsquhssthe event object are

valid.

2.6.3 DNS

By default, Usher names VMs using the following naming sceem

<request ed VM nane>. <creator’s usernane>. <Usher

system domai n nane>

where the Usher system domain name is specified in a configuriie read by the
controller at startup. The DNS plugin adds both A and PTRneéor each VM into a
DNS server specified in the plugin’s configuration file. Op&tly, a round robin DNS
entry can be added for each VM if the keyword parameter “redsin the start request
object passed to the plugin.

This plugin registers for the egi st er andunr egi st er events. The
regi st er event prompts the DNS plugin to add records (A, PTR, andiamdaobin)

to its DNS server, whereas thar egi st er event prompts removal of the entries.

2.6.4 Monitor

The monitoring plugin is responsible for consolidatingowse usage data
for all VMs and PMs into a format convenient for consumptignabugins and clients.
This information is maintained by each LNM and up-to-dafelimation is returned to
the monitoring plugin upon request. Other plugin moduley mse this data, for ex-
ample, to restrict user resource requests based on thentsygtem load or to make
VM scheduling decisions to determine where VMs should rutier®s uses may in-

clude triggering arbitrary action when loads reach a thokesbr simply reporting the
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information back to interested users.

The Monitor plugin registers for a “periodic” event. The tatier fires this
event at a specified interval. Unlike other events, periesients are not appended to
event callback lists. Rather, they register with Twistedohtperiodically calls them
from its main event loop threat.

In addition, the monitor plugin provides a new event, apthmed “moni-
tor_sample”. This new event enables plugins register to be adtfihen the monitoring
plugin has collected and consolidated a new data sample.

Each time the monitor plugin is fired, it collects informatiabout resource us-
age of each VM and PM as reported by their LNMs. CurrentlyLtN& is responsible
for providing instantaneous load data, as well as, dataageerover 1, 5, and 15 minute
intervals for VM CPU cycle consumption, network transmitlaaceive bandwidth, net-

work transmit and receive packet counts, and disk read aitd request counts.

2.6.5 Start Request Scenario

As a concrete example of plugin operation, we outline theisege of events
for a scenario of starting a set of VMs.

When a request to start a list of VMs arrives, the controlidische modules
registered for the “start request” event. The IP addressutead in the callback list for
this event. This module receives the request object andvesst addresses for each of
the new VMs.

The controller generates a separate VM start command fdr €&t in the
start list. Prior to invoking the start command, the corgrolriggers a “register VM”
event for each VM. The IP management and DNS plugin moduéesegiistered for this
event. The IP management module adds changes the statedthiess from “reserved”
to “init” to reflect the fact that this is now a VM included indttontroller’'s view of the
global state. The DNS plugin simply sends a DDNS update tofaddd PTR records

for this VM in our DNS server.

9Similarly, one-off “timer” events are registered with Tiad and called by its event loop as well.
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Finally, upon return from each start command, a “start” ¢\feas. The IP
manager plugin is registered to receive this event. Thigiplahecks the result of the
command, then either marks the corresponding IP addressias by changing its state
from “reserved” to “init” (upon success) or releases it (ndailure). Eventually, the IP
module changes the state of the address to match that of thesifig it when it receives

a “state changed” event for this VM (from “init” to “run” if Agoes well).

2.7 Usher Installations

This section presents details of two early deployments dieds a produc-
tion environment. The first deployment is for the UCSD CSEt&ys and Networking
research group, and the second deployment is at the RussssaRRh Center, Kurcha-
tov Institute (RRC-KI). The two sites have very differenage models and computing
environments. In describing these deployments, our gaal ibustrate the flexibility
of Usher to meet different virtual machine management reguents and to concretely
demonstrate how sites can extend Usher to achieve compleagement goals.

Usher does not force one to setup or manage their infragteiets done by
either of these two installations. These installations aiestrate the flexibility Usher

offers in setting up a virtual cluster computing environmen

2.7.1 UCSD SysNet

The UCSD CSE Systems and Networking (SysNet) research drasijpeen
using Usher experimentally since June 2006 and for prooiictince January 2007.
The group consists of nine faculty, 60 graduate studentsadrandful of research staff
and undergraduate student researchers. The group hasg &ioois on experimental
networking and distributed systems research, and mostgisojequire large numbers
of machines in their research. As a result, the demand fohimes far exceeds the
supply of physical machines, and juggling physical machilt@cations never satisfies

all parties. However, for most of their lifetimes, virtuabehines can satisfy the needs
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of nearly all projects: resource utilization is bursty witkry low averages (1 percent
or less), an ideal situation for multiplexing; virtualizat overhead is an acceptable
trade-off to the benefits Usher provides; and users have lesenpontrol over their
clusters of virtual machines, and can fully customize theachine environments. Usher
can also isolate machines, or even remove them from vigatadn use, for particular
circumstances (e.g., obtaining final experimental re$oita paper deadline) and simply
place them back under Usher management when the deadlisespas

At the time of this writing, the SysNet group has staged up2ghBysical
machines from their hardware cluster into Usher. On thosehinas, Usher has multi-
plexed over 400 virtual machines in dozens of virtual clisstdhe SysNet Usher con-
troller runs on a Dell PowerEdge 1750 with a 2.8 GHz proceasdr2 GB of physical
memory. This system easily handles their workload. AltHologd is mostly dictated by
plugin complexity, using the plugins discussed in Secti@h) the Usher controller con-
sumes less than 2 percent CPU on average (managing overrd@d wmachines) with
a memory footprint of approximately 20MB. The Usher implertadion is sufficiently
reliable that SysNet is now migrating the remainder of tlsier base from dedicated
physical machines to virtual clusters, and Usher will soanage all physical nodes
(>200) in the SysNet cluster.

Usage

The straightforward ability to both easily create arbjgraumbers of virtual
machines as well as destroy them has proved to be very usefliithe SysNet group
has used this capability in a variety of ways. As expectdd,ahility has greatly eased
demand for physical machines within the research groupje€mosimply create VMs
as necessary. Usher has also been used to create clustetgadfmachines for students
in distributed systems and networking courses; each studestudent group can create
a cluster on demand to experiment with distributed protouplementation, etc.

Often, projects require a machine or set of machines visdtae world on

which services are run. This situation is easily handledh Wisher. The SysNet group
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uses the IP manager plugin (see Section 2.6.1) to proviederealty routable addresses
to such projects. These projects then specify at VM stardupse an address on the
range containing their externally routable addresses.

The group also previously reserved a set of physical masliongeneral login
access (as opposed to reserved use by a specific reseamtt)pngdjith Usher, a virtual
cluster of convenience VMs now serves this purpose, andaswaith round-robin DNS
provides a logical machine name for reference while distitily users among the VMs
upon login. Even mundane tasks, such as experimenting wittvare installations
or configurations, can benefit as well because the cost ofimgea new machine is
negligible. Rather than having to undo mistakes, a user icaply destroy a VM with
an aborted configuration and start from scratch with a new one

The SysNet group currently uses a simple policy module inedst deter-
mine the scheduling and placement of VMs. This module relgsn monitoring data
collected by a monitoring plugin to make its decisions. ksibeuristics to place new
VMs on lightly loaded physical machines, and to migrate VMsew a particular VM
imposes sustained high load on a physical machine. Usersasenably self-policing;
they could always create large numbers of VMs to fully consw@ystem resources, for
example, but in practice do not. Eventually, as the utiicrabf physical machines in-
creases to the point where VMs substantially interfere wabh other, the group will
interpret it as a signal that it is time to purchase additibladware for the cluster.

This policy works well for the group, but of course is not nesarily suitable

for all situations, such as the RRC-KI deployment describesection 2.7.2.

Usher Filesystems at UCSD

The UCSD SysNet group’s installation of Usher uses reag-ditS root
filesystems for both VMs and VMMs with a separate writable ES/er for persistent
VM filesystem customizations. There are a few reasons fergiiup. First, live migra-
tion of virtual machines requires a filesystem accessiblehbyWM at both the source

and destination VMM. Since migration is a requirement of8lysNet installation, Sys-
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Net VMs must have their root filesystems provided via netwalttlached storage.

In addition, serving the root filesystem read-only has rplétbenefits. First, it
is straightforward to keep filesystems across all runnings\dyhchronized and updated
using read-only NFS root filesystems. Furthermore, an éxpezd administrator can
manage this filesystem to ensure that it is secure (e.g.ulddéf@wall rules, minimal
services started by default, latest security patchey, etc.

Since all VMs mount this filesystem, it is important that it & responsive
as possible. Ensuring that the NFS server serving this fitegy is read-only helps
improve performance. Furthermore, an administrator carigure a read-only NFS
server to cache the entire filesystem in main memory. As dtregads go to disk
infrequently.

One issue with using a read-only root filesystem is that sdegedind directo-
ries on the filesystem must be writable at system startup.dlVe shis problem using a
ramdisk for any files and directories which must be writaBatly in the boot process,
these files and directories are copied into the ramdisk, m@mted using the- bi nd
flag to make them writable.

Since the SysNet installation serves its root filesysterasl-omly, another
NFS server provides persistent writable storage. The Ughefilesystems are con-
figured to initialize their NFS mounted filesystems at booteti The VMs create the

following directories on the group’s read-write NFS server

¢ /net/global: This directory is where users install or store anything theywld
like to have globally accessible by all of their clusters. eTbontents of

/ net / gl obal isthe same for all VMs a user creates.

e /net/cluster: This directory is where users can store files they want atiedsy
the current cluster only. The contentd afet / cl ust er is the same for all VMs

in the same cluster.

e /net/local: This directory is unique to the current VM only. The conteots

I net /1 ocal is different for every VM a user creates. Users can use thecdi
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tory to set up services and configuration files specific ta@adr VMs.

Finally, all SysNet users are given a home directory. Autontdakes care
of mounting these directories upon login. Alternativelyshér users can choose an
alternate URI (stored in LDAP) for their home directory.

In each off net/ gl obal ,/ net/cl uster,and/ net/| ocal , there ex-
ists a System V init style directory structure in thiec directory. Startup scripts in the
VM filesystems have been modified to run scripts in the dimyctor the appropriate
runlevel from these three locations after the regular syst@rtup scripts run. With this
configuration, even though users cannot write to the roayfiitem to change startup
scripts, they can have services started for their VMs at Vidtbo

Finally, as mentioned above, the VMM filesystems are alseeskread-only
NFS root. This has the same advantages as those listed abithregne additional
advantage. It eliminates a common excuse for not placingketeout machines into
the Usher system during periods when groups are not usimg.tfibe excuse referred
to is that users do not want to loose the extensive modificatibey have made to the
filesystem on the local disk. Since our VMMs do not run fromalodisk (the disk is
never even mounted), these users can get their machinesrbduk exact state they

were in before being put into the Usher system.

2.7.2 RRC-KI

Usher has also been deployed at the Russian Research Gantdratov In-
stitute (RRC-KI). The RRC-KI deployment demonstrates thgifflility of Usher to in-
tegrate with different computing environments, and to epplifferent resource utiliza-
tion policies. Whereas the UCSD SysNet Usher deploymegétad a general-purpose
computing environment, the RRC-KI Usher deployment targebatch job execution
system that provides guaranteed resources to jobs.

RRC-KI contributes part of its compute infrastructure te ttarge Hadron
Collider (LHC) Grid effort [Icg]. Scientists submit jobs tbe system, which are sched-

uled via a batch job scheduler. Jobs are assigned to physalines, and one machine
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only runs a single job at any time.

Measurements spanning over a year indicated that the owitedation of
machines in this system is fairly low [CGK6]. While there were some long, compute
intensive jobs, there was a large fraction of short, I/O eliiyobs. Motivated by these
measurements, the goal was to build a flexible job execusistes that would improve
the aggregate resource utilization of the cluster.

A straightforward approach is to multiplex several jobs airgle machine,
and power down the unused machines. However, conventioneggs-based multiplex-
ing on commodity operating systems is infeasible for a waré reasons, some social
and some technical: scientists want at least the appeanfabsolute resource guaran-
tees for their jobs; jobs often span multiple processes;hvimakes resource accounting
and allocation challenging; and the number of physical nmeshneeded depends on the
workload and cannot be assignegriori.

Virtual machines are a natural solution to this problem.c8ieach job gets
its own isolated execution environment, resource accogriitecomes easier for multi-
process jobs. VMs also provide much stronger isolationaputaes than conventional
processes. Each job can be given guaranteed resourceateseswvhile still main-
taining the abstraction of a physical machine. A tracearigimulation showed that a
VM-based infrastructure would enable significant savir@S K" 06].

One of the biggest challenges to this approach is managenkenta VM-
based infrastructure to scale, the RRC-KI team need an aéahsystem for deploying
and managing virtual machines, a system that can schedukeiiwksh intelligent man-
ner, and migrate and place VMs to optimize utilization withsacrificing performance.
A prototype system is currently being used at RRC-KI with &fshs the core manage-
ment framework.

Central to this infrastructure is thlicy Daemomnesponsible for job schedul-
ing and dynamically managing virtual machines (creatioigration, destruction) as a
function of the current workload. The Policy Daemon usesUisber client API to

monitor VM status and control VM resource utilization fronsiagle control point us-
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ing secure connections to the physical hosts. The currstiiedd comprises of a small
number of nodes hosting production Grid jobs in the Usheetiaenvironment with

plans to expand the system to manage a few hundred nodes [Kur]

2.8 Conclusions

Usher is an extensible, event-driven management systectuiters of virtual
machines. The Usher core implements basic virtual machideclhuster management
mechanisms, such as creating, destroying, and migrating.\Wher clients are appli-
cations that serve as user interfaces to the system, subbk agdractive command-line
shellUsh as well as applications that use Usher as a foundation &atiaig and ma-
nipulating virtual machines for their own purposes. Ushgports customizable plugin
modules for flexibly integrating Usher into other admirasire services at a site, and for
installing policies for the use, placement, and schedwingrtual machines according
to the site-specific requirements. Usher has been in primoiugse both at UCSD and at
the Russian Research Center in Kurchatov, Russia, andli@ddback from both users

and administrators indicates that Usher is successfullieaimg its goals.

2.8.1 Usher Availability

Usher is free software distributed under the new BSD licerSaurce code,

documentation, and tutorials are available at:
http://usher.ucsd. edu

Source code, configuration files, and initialization s&rjor the UCSD plugins are also

available for download at the site above.
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Chapter 3

Virtual Machine Scheduling in a

Virtual Cluster Environment

In this chapter we introduce the virtual machine schedytirablem. We de-
fine our problem, then discuss work closely related to VM ddiiag. We propose
reasonable cluster scheduling goals and present our cah@hister scheduling prob-
lem called Fair Maximum Utilization (FMU). After proving #tthat FMU is in the class
of NP-hard problems, we finish with detailed discussion g&sa& heuristic approaches
for FMU scheduling. Our solvers generalize to solving aryestuling problem that fits

into the framework we define.

3.1 Introduction

Having solved the problem of managing large numbers of &irtnachines
across a site (Chapter 2), we now look to the problem of mapgitual machines onto
available computing resources for optimum utility. Figd depicts this problem.
Given a set of VMs, each with its own resource demands, olni@nois to place these
VMs onto a (possibly heterogeneous) set of physical mashsneh that an arbitrarily
defined utility is optimized. In this chapter, we refer to gotimal assignment of VMs

to physical machines as a “solution”. We refer to an arbjtessignment of VMs to

52
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Figure 3.1 Scheduling virtual machines (VMs) onto a set gigodtal machines (PMs).

physical machines as either an “assignment” or a “schedule”

VM scheduling can be partitioned into two categories: cacttral and best-
effort. A contractual scheduler seeks to place VMs onto Pdvissgo provide guaranteed
guantities of resources. This type of scheduling is reguiseproviders offering service-
level agreements (SLA) to their clients (e.g., datacehtdrsthis setting, a scheduler
can either find schedules which satisfy all contracts, or imatases where all contracts
cannot be satisfied, utility functions are often employeddtermine which contracts to
honor to maximize profit. Another possibility in contradtsaheduling is for service
providers to create SLAs after they have determined how\meliresources among
VMs so as to maximize profit.In this case, users do not specify exact resource needs,
but rather how valuable a unit of resource is to them. In eithse, contractual schedul-
ing uses utility functions to determine what quantitiesanfy, of a particular resource
VMs will receive.

On the other hand, best-effort scheduling seeks to place &is PMs so as
to maximize arbitrarily defined utility without providinguigrantees about how much of
a particular resource a VM will receive, or exclude VMs froomning. This type of
scheduling uses utility functions to determine where VMsuwt run rather than what

guantities of resources they will receive. In best-effehexluling, weights and admis-

1This is essentially a multi-dimensional multiple-knags@dDMK) problem.
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sion control can be employed to provide pseudo guarantees edsource allocations if
desired. This flexibility may make best-effort schedulingrensuitable for general pur-
pose cluster computing where multiple operational goatgrexist. In this dissertation
we focus on best-effort VM scheduling which is ideal for sthresearch clusters.

Another consideration in the VM scheduling problem is how Vé&&ource
demands are made known. Establishing the resource dembadé\b involves either
reporting or monitoring. Reporting originates within thé/\Mvhereas monitoring is
external. Both approaches have advantages. With reppkixg know their applica-
tions and can send notices to indicate whether they areviegesufficient resources.
This reporting is typically handled by the application(skeif, or by a separate moni-
toring application running within the VM. With reporting mwedictions need be made
about how VMs will behave in the future. When a VM’s resoureendnds change, it
will notify the system. This type of “grey box” auditing leadtself to scheduling for
enforcement of SLAs.

On the other hand, monitoring is completely black box. Adstnators do not
need to know anything about the operating systems or apipinsarunning on the VMs
in their cluster, and users do not need to implement their @porting mechanisms.
Since VMs do not report when their resource demands changa@ianing requires that
predictions be made about how a VM will behave in the future.

In this dissertation, virtual machines are treated as WHiacles; we know noth-
ing about the applications running on our VMs and make no@rimssumptions about
what resources a VM might desire. Hence, we use monitorirtgtermine our VMs’
resource demands as they run. Our schedulers base prediabout a VM’s resource
desires in the near future upon how it has behaved in the rgast. Further, since
VM resource desires can vary with time, a solution at one mmnsenot necessarily a
solution at another, making our problem one of “scheduliragher than “placement”.
As a result of varying resource desires, our schedulers owmsinuously monitor and
estimate VM resource demands to find new solutions as theraysins.

Another consideration is whether a distributed or certealiapproach to VM
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scheduling should be adopted. Though distributed appesaplovide scalability (as-

suming information dissemination overhead can be coetlpkhnd reliability (no single

point of failure), we only consider centralized approach®éth a centralized sched-
uler all VM resource demands are collected by a single sdbe¢af course, a failover

controller could be used for redundancy) and all migratienisions are made there.
This greatly simplifies our problem by eliminating the needdomplex dissemination

and agreement protocols required by distributed scheglajiproaches. In addition, en-
forcing complex global operational goals can be difficulaidistributed approach. Our
experience is that a centralized server can scale to laugtecs. Managing over 400
virtual machines induced less than three percent sustéaddn our single processor
2.8GHz Xeon controller node.

The schedulers we explore periodically monitor resour@gesnd evaluate
whether assignments exist which improve upon the utilityhef current assignment.
This is the steady state operation of our schedulers. Whémjaoving assignment is
found, the utility improvement is measured against the obshigrating VMs to the
new assignment. If migration cost is acceptable, the sdbedhitiates the migrations
required to transition the current VM mapping to the new scie

As mentioned, moving from one assignment or solution tolardtas a cost.
Migration of VMs is expensive in terms of both network bandikiand CPU usage.
So, any approach to solving the VM scheduling problem shaotdunt for assignment
transition cost, as well as assignment utility. We discusthads for reducing migra-
tions below, though this is an area warranting further study

Given the scheduling problem as formulated above, we imgfged an Usher
scheduling plugin which utilizes data collected by the nhamng plugin (see Section
2.6.4) to make its scheduling decisions. The schedulingipltegisters for the “mon-
itor_sample” event provided by the monitoring plugin to be akkréren updated re-
source usage data is available. Scheduling frequency igtegral multiple of the mon-
itoring frequency. Once a new monitor sample is availalble,9cheduling plugin em-

ploys a specified heuristic for finding a utility improvingsegnment. We present the
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scheduling heuristics we evaluated below. First, howeverelaborate on the meaning
of utility and discuss some reasonable operational goala fartual cluster environ-
ment.

For our VM scheduling problem, we represent utility as a reathtical func-
tion to be optimized. Utility functions are designed to reflaow well an assignment
meets a specified set of operational goals for a computingamient. The domain of
a utility function is the set of afieasibleassignments of VMs to PMs, where feasible so-
lutions are those which satisfy all problem constraintshsas physical memory limits
or explicitly stated rules (e.g., VM1 and VM2 cannot be onghme node). Fortunately,
feasibility often helps in our approach by pruning the soluspace to make searching
for good solutions faster. We discuss feasible solutionsutoproblem in more detail
below.

Clearly, utility functions vary from site to site. Unfortately, deciding upon
goals for a computing environment, let alone a defining atyftilinction designed to
achieve those objectives, can be onerous. Operationas goaloften more educated
intuition than absolute and very often conflict with othezad, or notions, about how a
site should operate. These facts make constructing atihiction based on those goals
as much art as science. In Section 3.3 we present a few posgbtational goals to
give a sense for the myriad of scheduling policies (and hatitferent utility functions)
under which sites may wish to operate. Section 3.5 discussestruction of a utility
function for our FMU problem.

Before moving on, we must point out that the opposite oftytib cost. We
refer to our problem as trying to maximize utility or mininsizost. Where utility func-
tions are bounded between zero and one, cost can simply bedef one minus utility.
Another definition when utility functions are not boundedyniie to define cost as one
divided by utility. In any case, when we talk of utility, ouoagl is to maximize our utility

function. When we talk of cost, our goal is to minimize ourtdosiction.
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3.2 Related Work

We now present work closely related to our virtual machirteeslaling prob-
lem. This problem has many similarities to process and thmggration for load balanc-
ing in physical clusters. Process and thread migrationiishetopic with a long history.
Here, we only cover highly relevant work in process and tthsededuling. Another area
similar to VM scheduling is application scheduling. In a@pgtion scheduling large, dis-
tributed applications consisting of several processeméins) compete for resourcesin a
cluster. Schedulers must determine where processes irpioadion are able to receive
the resources they desire. This is a special class of precessluling worth discussing
separately. Finally, we discuss more recent work on activhkeheduling and how our
approach differs.

Before proceeding, we must point out that, although manyagghes to
scheduling of applications in the Grid [FK98] and Planefl@ER* 03] exist [CZBLOO,
TCO00, VD02, VD03, CDK 04, OCP 06], these are not appropriate for our VM schedul-
ing problem. In many ways, schedulers for the Grid and Plabetre more difficult to
design and implement. First, these schedulers must haedteirce discovery in an
environment where availability is highly dynamic. In ouoplem available resources
are known by a centralized scheduler (although resourakahildy can change, mech-
anisms are in place to keep the scheduler updated as to whgtabal availability of
resources is at any one time). In addition, schedulers ®rGhd and Planetlab are
not centralized and do not make decisions for all entitiehesystem. Rather, they
attempt to find the best places for a single application to and have only the interest
of a single user in mind. Though there is much we can learn ti@se schedulers, the
key differences between our cluster environment and theegrgphically distributed
computing platforms preclude us from directly applyingitiseheduling approaches to

our problem.
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3.2.1 Process Scheduling

Leland et al. [LO86] perform simulations of heuristics faitial placement
and migration of processes in a homogeneous cluster emv@on They studied the
benefit of initial placement onto processors with the fewesident processes, in ad-
dition to migration to processors with the fewest residentpsses. Their simulations
were driven using data from a five month trace of 9.5 millioogesses. They found that
simple heuristics for initial placement and migration cagngicantly improve response
ratios of processes that demand large amounts of CPU tirhewutihegatively impacting
other processes. Though initial placement heuristicsudted work in this dissertation,
their initial placement heuristic places newly arrivingpesses on the least loaded pro-
cessor. Itis unlikely that such a simple initial placemesistic would work in virtual
clusters since users tend to start VMs in groups, then ruilesijobs on each. Because
of this this usage model, we expect round robin placementhvvenly spreads newly
arriving VMs across the cluster would be better. Many of thigegiments we have run
indicate that round robin placement is indeed better, btiéu exploration is necessary
to definitively make this claim. Their migration heuristase distributed and receiver
initiated. No migrations occur until a processor becomés, idt which time it sends
a broadcast to all other processors indicating that it vaitlegot bids to run processes.
Upon receipt of all bids, the idle processor notifies the wmmhich migrates a process
to the idle processor. This strategy is clearly not suitéi&M scheduling as it simply
looks to keep all processors busy without sufficient regar@itness or other possible
cluster operational goals.

Harchol-Balter and Downey [HBD95] compare two cluster gssmigration
strategies using trace driven simulation. The first strategkes migration decisions
based upon process age. The second migrates new processdsipan whether their
name is on a list of processes known to be long lived. Both aggires resulted in
considerable reduction in process slowdown in their sitaia. Their first approach
migrates only older processes which can likely benefit frolgration. The migration

decision is a function of memory size and number of proceast®e source and desti-
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nation hosts. Such a heuristic would not be suitable for VResitlling which depends
upon what resources VMs are consuming at the source andhalisiti rather than the
number of VMs at each node. In addition, migrations are oolysadered when new
processes enter the system. This approach is clearly icisuffifor VM scheduling
since a VMs resource usage often changes considerablygdtsilifetime. As opposed
to a single process with a single purpose, VMs consist ofraépeocesses, each with
its own purpose resulting in a much more dynamic entity th&P& bound process.
Regarding their second approach, although we could maiatést of VMs known to
be heavy resource users, we have no notion of VM lifetime dutiteon, because a VM
runs several processes rather than a single process oletiise, it is more difficult to
maintain a list which classifies VM behavior.

Nuttall and Sloman [NS97] examine workload charactesst determine
when dynamic process migration is beneficial. They sepgretasider both CPU and
I/0 bound workloads. They contend that dynamic migratiamisuseful under realistic
workloads and that papers showing benefits use an unreaigionential distribution
for process lifetimes. Interestingly, their simulatiom®wed their dynamic migration
heuristics do improve response time by about ten percenaddiition, they acknowl-
edge in a postscript that their synthetic workloads weratenitionally more bursty than
trace data collected in the Harchol-Balter and Downey stiithgy admit this probably
decreased the effectiveness of their dynamic migratiomistezs. Nuttall and Sloman
use load vectors which indicate the level of resource usag€PU and local and re-
mote I/O to trigger migrations. When a host’s load vectoreexts a threshold value,
migration of a process who's load vector exceeds a threshadnsidered. A central-
ized algorithm is used to determine to which host a processldibe migrated. Nuttall
and Sloman’s process schedulers do not appear to consalezdburce usage vectors
componentwise. Rather, they lump all resources into a singttor which makes se-
lection of process and destination “hit-or-miss”. Alsovath most process scheduling
heuristics, fairness does not seem to be a concern or gdadioscheduler.

MOSIX [BS99] is a system for cluster computing which preergdy and
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transparently migrates processes between networked tatides for load balancing.
MOSIX has no central control and each node operates as anamtus system. Load
balancing algorithms continuously attempt to balance mathigrating processes from
higher to less loaded nodes. Migration decisions are basguraress profiling and
resource availability provided by their information disgeation algorithm. Online al-
gorithms determine the best location for processes basedsource availability and
process behavior. Migration decisions in MOSIX are basehupultiple criteria. How-
ever, their criteria are somewhat different than virtuaktérs due to the differences in
platform. For example, system-call rates and IPC voluméofaato their migration
decisions. Ultimately, the MOSIX scheduler is concernethwv@PU load and available
memory. Their decentralized approach requires informatissemination algorithms
to keep nodes informed about resource availability, andegaodust cooperate to make
any migration decisions. Though nodes in the MOSIX systemkwimsely together, it
is not clear how well their distributed scheduler applie¥kd scheduling. Despite this,
the goals of the MOSIX scheduler are, perhaps, the mostaimikpirit to those of our
VM scheduler.

Ultimately, there is no fundamental difference betweencpss and VM
scheduling. In fact, many hypervisors simply run VMs as psses in a privileged
or host operating system (e.g., [kvm] and [vmwb]). Nonetks] many process migra-
tion schemes focus on CPU, typically with the goal of minimgmakespan of jobs or
load balancing CPU across a cluster.

Another important distinction between process and VM sahied is that lo-
cal resource sharing models are tunable in a virtualizestetuHypervisor schedulers
are more sophisticated than operating system processdehrgdallowing for more
flexibility in how VMs are scheduled to run locally and whasoerces they are allowed
to access. Because of this, VM schedulers must understanietinavior of a node’s
underlying hypervisor scheduler to predict how VMs will lagh on that node. This
understanding is critical in making scheduling decisions.

Many process scheduling heuristics assume that procesdemsume as
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much CPU as they are given. This assumption is not alwaysaindes certainly not
the case with VMs. This assumption greatly simplifies thebfmm by removing the
need to monitor process behavior in order to determine whiiobhesses should be mi-
grated from overloaded nodes. Such a simplifying assummamnot be made in VM
scheduling.

Clearly, VMs bring a new usage model to a cluster environnaglt hyper-
visors provide additional knobs for local resource pragng and functionality for
monitoring resource consumption. As a result, there is assty to provide schedul-
ing mechanisms which consider complex local resourcesg@alicies and can utilize

additional resource usage information to make better sdimgfdecisions.

3.2.2 Application Scheduling

Application scheduling is a class of process scheduling hiclvlarge dis-
tributed applications compete for cluster resources. cBily, these applications run as
services, so there is no notion of completion time. Appiaaschedulers usually seek
to provide resource guarantees (SLAS) to applications akaew This is typical in a
datacenter.

Kelly [Kel03, Kel04] considered the problem of computingiamal resource
allocations to agents given agent utility functions forgbaesources. Kelly related
this problem to that of allocating resources in a utilityalaenter. This problem is
related to our problem of deciding where VMs should run toroe utility based
upon VM resource desires. However, Kelly’s model lumps kister resources into a
single pool on which agents bid for discrete sets of resa@,rcalled “bundles”. We,
on the other hand, do not partition our computing resount@sdiscrete sets (e.g., two
CPUs, three disks, etc.), but rather share those resouetesdn all VMs competing
for them on each node. Kelly’s model applies to multi-tieeggblications which scale
horizontally. This model allows Kelly to formulate the atltion problem as a multi-
dimensional multiple choice knapsack (MDMCK) problem fdmiah efficient dynamic

programming solutions exist. Because FMU does not exclulis Yfom running, it
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cannot be framed as a knapsack problem. Also, we do not tealystem as one large
pool, so each node in our system would have to be a separde Bamally, Kelly’'s
approach requires partitioning resources into bundleg;we do not do in FMU. For
these reasons, Kelly’s dynamic programming approach dammapplied to our VM
scheduling problem.

Other application placement heuristics have been prop@sgd [CDK"04,
KKP*06]). The problem with applying these methods to VM schedyls that most
prior approaches attempt to place applications on nodesevtheir resource demands
will be met, based upon prior knowledge of application resedlemands (stated explic-
itly or through SLAS) or assumptions as to what those demaiiltibe. This approach
is in line with “contractual scheduling” defined in the chepintroduction and reduces
the problem to one of packing, where a satisfying assignisante which places appli-
cations on nodes which can deliver the resources they dé3iten, utility functions are
used to distinguish good from bad satisfying assignmertdbciBs must be established
to handle cases where satisfying assignments cannot bd.foun

On the other hand, we focus on a best-effort approach whiels dot nec-
essarily provide virtual machines with specified amountsegsburces or prevent VMs
from running when sufficient resources are not available. tnget is that of a general
purpose cluster environment where resources are sharéuitimey ways in accordance
with policies imposed by the site administrator. Though sehreduler can be setup to
provide pseudo resource guarantees, we are not restrecgdth settings. In this way,
we wish to support a virtual cluster environment similar firis to a multi-user oper-
ating system. There, users’ resource allocations are geudny the resource sharing
policies of the underlying operating system; processegajly share resources fairly,

but can be “niced” and limited in their resource consumptisimgul i nmi t .

3.2.3 Virtual Machine Scheduling

Recently, researchers have begun to consider VM schedulBandpiper

[WSVYQ7] develops policies for detecting and reacting taspots in virtual cluster
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systems while satisfying application SLAs. Sandpiper heitees when and where to
migrate virtual machines under the constraints of meeftgstringent SLA require-
ments of a data center. Migrations are triggered when resaisage of a node exceeds
a threshold value. Since Sandpiper is scheduling for SL¥sr problem reduces to one
of packing. Their scheduler then looks to find new mappinggwkatisfy all SLAs
while alleviating all hot spots. In cases of high loads, $aper is unable to find solu-
tions and gives up. This behavior is different from our befédrt approach which looks
to find the best place for VMs to run based upon their resouesees.

Virtuallron provides LiveCapacity [liv] for scheduling VMacross pools of
physical machines. LiveCapacity migrates VMs only if ptacthe VM on the destina-
tion does not exceed a specified utilization threshold. tioisclear whether only CPU
is considered in this decision. LiveCapacity balancingn/ ae-evaluated every few
minutes, so highly dynamic environments may not benefit fasing this scheduler.

VMware offers their Distributed Resource Scheduler (DR8hWa] as an
add-on to their VM management suite. DRS continuously noositVM loads and
determines if any user-specified allocation rules have bédated. If a violation is
found, resources are allocated to the VM by either migraiting another server with
more resources, or migrating other VMs away from the node biclwthe VM in vio-
lation is running. DRS appears to be another example of apgepproach where VM
assignments which meet all VM resource requirements arghsolt is not clear what
heuristics VMware uses to find satisfying assignments.

The LBVM (load balancing of virtual machines) system [Ibeg&s to migrate
VMs to load balance workloads across a cluster. Each catedidamigration is listed
in a configuration file and, at regular intervals, algorithimseach VM are executed.
These algorithms may choose to migrate their VM based otrarpipredicates (e.g.,
node five minute CPU load is greater than 70 percent).

It is not clear what the criteria for selecting a destinatiaadle is for LBVM.
Also, there is no mention of coordination between algorghmavoid unintended con-

sequences such as hot spots arising due to all VMs in a rougchtimg to the same
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physical node. The flexibility of separate algorithms focle® M may make such coor-
dination difficult. Further information is needed beforalgidnal comparison between
LBVM and our method can be made.

DRS and LBVM both provide flexible VM scheduling where per VMoa
cation rules can be specified. However, because they conéls individually, it is
unlikely that they could easily support scheduling pokdier global characteristics such
as fairness to all hungry VMs. Also, both schedulers seenetddsigned for environ-
ments with excess capacity (this is also true for LiveCagacihat is, migrations are
initiated when a node which can meet all of a VMs resource aeisiaias been found.
Again, this situation is not best-effort scheduling wheids/can tolerate varying levels

of service.

3.3 Operational Goals

Determining where VMs should be placed in a cluster depepds the op-
erational goals of the site. Once these goals are definditly tunctions for achieving
them can be specified. Though it is easy to imagine any nunfogperational goals,

we give just a few examples of reasonable objectives.

Power Management: One popular area of interest today is power management. High
costs of energy necessitate practical solutions to minigignergy use. This is a rea-
sonable goal in nearly any setting. Approaches to achieiiisggoal range from very
simple to extremely complex. For example, a simple poligyaithieving this goal may
be migrating VMs off sets of PMs when overall utilization arpicular computing re-
sources are below threshold values [Kt08]. More complicated policies may strive
to place VMs on machines on which they have been determinedntanore energy
efficient [NSO7].

Another reasonable power management goal proposed fonuke UCSD
SysNet group is to balance power consumption across ratiks gbal emerged from a

desire to prevent racks from tripping breakers in a machooerlacking proper power
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provisioning.

Simple VM Placement: A reasonable policy in VM placement may be to try to evenly
spread VMs across physical machines when workloads are rkmowe similar with
the goal of load balancing across physical machines. Amottay be to simply put
constraints upon how many VMs can run on a physical machitietive goal of better

accommodating workload spikes.

Network Traffic:  Since VMs on the same node communicate without using the-phys
ical network interface, a practical policy may be to placavig communicating VMs
on the same physical machine when possible. Another may sienfay place them in

the same rack so that their network traffic is restricted tmgls switch.

Service Level Agreements: Where contracts are involved, administrators need the
ability to guarantee levels of performance to their clientfiese service level agree-
ments (SLAs) define constraints under which a site may opeg&tict SLAs in which
guarantees are absolute essentially reduce VM scheduliagrtulti-dimensional mul-
tiple knapsack problem. While complicating the problenft S&As which guarantee
resources with some probability can result in much highswuece utilization than strict

SLAs. Our approaches (discussed below) may also be gooddeiding soft SLAS.

Resource Utilization: Using the UCSD SysNet group as an example, allocating com-
puting resources to users at the granularity of physicalhmas often results in poor
resource utilization. Thus, a reasonable goal for a VM saliiegl policy may be to max-
imize overall resource utilization, where multiple reszes are considered important.
Unfortunately, a policy of maximizing overall resourceliaition which does
not consider fairness can result in starved and frustrasedsu So, a goal to maxi-
mize overall resource utilization while being fair to thadering the resources is more
tenable. This is the exact goal of the SysNet installatiore réfer to this as the Fair

Maximum Utilization (FMU) problem and present it in detailthe following section.
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As a final note, notice that many operational goals are dgtgahstraints
(e.g., hard SLAs) whereas others are rather fuzzy (e.g., Fafid lend themselves to
being expressed as utility functions. Though constraimigivdo not greatly restrict the
feasible solution space can be enforced in our solution odetlogy, satisfying complex
constraints which greatly limit the ratio of feasible to pissible assignments (feasi-
ble or infeasible) can be problematic. When assignmentligiis checks cannot be

performed quickly, the solution methodology presentee heeaks down.

3.4 Fair Maximum Utilization

As introduced above, the goal of the Fair Maximum Utilizat{&MU) prob-
lem is to maximize overall resource utilization across a gihile maximizing fairness
to VMs contending for those resources. We now clarify thentefoverall resource

utilization” and “fairness”.

Overall resource utilization: Overall resource utilization implies that utilizations of
a specified set of resources (e.g., CPU, network, disk I/Onaong) all factor into the
total utilization calculation. As a simple example, comrsid site consisting of two PMs
offering ten units of CPU and ten units of network transmitdaidth each (here, CPU
and network transmit are the only resources being considemgortant). Now, imagine

scheduling the four VMs in Table 3.1.

Table 3.1 Sample VM resource demands.

VM Name | CPU Units | Network TX Units
VM1 12 10
VM2 11 15
VM3 5 1
VM4 6 2

Figure 3.2 depicts VM resource allocations for four possddsignments. In

Figure 3.2 a, VM1, VM2, and VM3 are assigned to run on PM1 andNis/assigned to
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Figure 3.2 Virtual machine resource allocations for thri#fegknt assignments.

run on PM2. The length of each shaded rectangle represengsrtbunt of the resource
received by that VM. Notice that, in this schedule, PM2 isimeihg fully utilized.

In this section we assume that resources are fairly shacadlyyfan a work
conserving manner. For example, network transmit on PM1ligare 3.2 a is being
shared by VM1, VM2, and VM3. VM3 only desires one unit and iteab get it since
there are only two other VMs contending for that resource. \dvid VM2 are then able
to receive their fair share dfd/3 units, plus an additional/6 units each (total of 4.5
units) since VM3 is not using all of its fair share.

The schedule in Figure 3.2 b fully utilizes available CPUt bat network
transmit bandwidth. So, this schedule does not maximizeativesource utilization.

Clearly, any schedule which separates VM1 and VM2 maximixesall uti-
lization as shown in Figure 3.2 ¢ and d. Notice that, concgrnitilization, VM3 and
VM4 can be placed anywhere while separating VM1 and VM2 sihisealready results
in 100 percent overall resource utilization. However, plgadhem both on the same

node as in Figure 3.2 c clearly hurts fairness, discussed nex

Fairness: Fairness implies that no VM is able to consume substantrallye of a
particular resource than another VM desiring more of theduece than it is receiving.

We define the following terms:
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hungry VM: A VM desiring more of a particular resource than it is cur-
rently receiving?

satisfied VM: A VM receiving as much of a particular resource as it de-
sires.

pseudo-hungry VM: A satisfied VM receiving more of a particular re-
source than the average amount being received bytingry VMs
for that resource.

Briefly, pseudo-hungry VMs arise from imbalance in the schedFor exam-
ple, imagine a system of two physical machines offering 1BUQ@nits each and three
VMs desiring 75 CPU units each. If we place two VMs on the fifgk &hd the third on
the second PM, the two VMs on the first PM are hungry VMs and theovi the second
PM is a pseudo-hungry VM. In this case, the average beingvestéy hungry VMs is
50 units. Since the VM on the second PM is receiving 75 CPUsyaitd is therefore
satisfied), it is classified as pseudo-hungry since it isivewe more than the average
amount being received by the hungry VMs for CPU. Note thas#tef pseudo-hungry
VMs is a subset of the set of satisfied VMs.

Notice that each resource, under consideration has a sethafngry VMs
associated with it:

H,=H, UH,,U---UH,

whereM is the number of physical machines.

Letting V' be the set of all VMs, the set afatisfiedVMs for resourcer, is
simply S, =V '\ H,.

Using the above definitions, fairness implies thahgryVMs of a particular
resource should all be receiving approximately the sameuaif that resource, with
no satisfiedvMs receiving more, across all physical machines. Letfinge the set of

pseudo-hungry/Ms for resource-, define the set chugmented hungryMs as:
}AIT =H,.Up,

Then, the goal of fairness is to ensure that all VMd4nare receiving approximately

the same amount of resource We refer to this as being “fair to hungry VMs” rather

2These are referred to as “hogs” in the scheduler code.
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than “fair to augmented hungry VMs” since fairness to psevhlis is meaningless. The
mere existence giseudo-hungryMs implies that thehungryVMs are being treated
unfairly.

Revisiting the above example, Figure 3.2 a is not fair sincatesfied VM,
VM4, is receiving more CPU (6 units) than the average aliocatf those desiring more
(10/3 units). In other words, not all VMs itHopy = {VM1, VM2, VM3,V M4}
(VM4 € pcpy) are receiving the same amount of CPU.

Figure 3.2 b is a fair schedule since all VMs desiring more GRd transmit
bandwidth are all receiving the same amount of those ressurthat is, all VMs in
Heopy = {VM1,V M2,V M4} are all receiving the same amount of CPU (five units)
while all VMs in Hyx = {V M1,V M2} are all receiving the same amount of network
transmit bandwidth (five units). This schedule, howevegsinot maximize overall
resource utilization as do those of Figure 3.2 ¢ and d.

As mentioned above, the schedule in Figure 3.2 c¢ is unfagesifiv2 is re-
ceiving more CPU than VM1, VM2, and VM3 (ten units v40/3 units) which all
desire more CPU. Also, this schedule allocates ten unitetiork transmit to VM2
while only seven units are given to VM1, which desires more.

Though not completely fair, the schedule of Figure 3.2 d besits our criteria
of maximizing overall utilization while being fair thungryVMs. Notice that VM3
and VM4 both receive as much network transmit bandwidth asret since they do
not exceed their local fair share of that resource. The neimginetwork transmit is
consumed by VM1 and VM2 on their respective PM since the Isclaédulers are work-
conserving and their demand exceeds the amount of that resource dedibahlly.

The schedule in Figure 3.2 d is only slightly unfair to VM2, il only re-
ceives eight units of network transmit bandwidth versug ninits for VM1. This, how-
ever, is the most fair schedule possible. One remedy fostight imbalance might be
to periodically swap VM3 and VM4. However, VM migration is tnioee, and an ad-

ministrator should consider how much unfairness she isngilio tolerate before taking

3Work-conserving scheduling ensures that resources domiolgywhile there is demand.
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such actions.

3.4.1 NP-hard Proof for Fair Maximum Utilization

As evidence that the Fair Maximum Utilization (FMU) problésmot trivial,
| prove that it is in the class of NP-hard problems.
Formally, the FMU problerhis:

Given:

e an ordered set ok resources,

e a multiset of M physical machines with some capacity of each re-
source to fairly share,

P:{ﬁlvﬁ%"'vﬁM“?iGRR,iZI,...,M}

where each component gf is the amount of that resource shared at
machinei,

e a multiset of V virtual machines with some desire for each resource,
V = {’(71,172,...,17N|’UZ‘ ERR,’i = 1,,N}
where each component &f is the amount of that resource desired by
VM i

find an assignment of VMs to PMs which maximizes overall reseutilization

1 R W M
U= EZ(C—;)Z%’ (3.1)
i=1 Jj=1
where,
w; = weight of resource, Zil w; =1,

¢; = total capacity of resource
u;; = amount of resourceconsumed at nodg

while maximizing fairness to hungry VMs

H;
| R () ay)’
j=1
(Hizaij)
j=1

where,

4Actually, the FMU problem is more general, where a physicathine can offer multiple instances of a particular
resource and a VM can desire multiple instances of a resourmmetheless, for proving FMU is NP-hard, the
definition here is sufficient and far more tidy notationally.

5That is, the underlying scheduler will fairly share the w@se in a work-conserving manner.
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w; = weight of resource, > w; = 1,
H; =number of augmented hungry VMs for resouice
a;; =amount of resourceallocated to augmented hungry VM

Equation 3.2 is known as Jain’s Fairness Index [JCH8Hlotice thatU € [0, 1] and
F e[0,1].

Theorem 3.4.1.FMU is NP-hard.

Proof. The3—PARTITION problem has been shown to be NP-complete in [GJ79].
So, to prove Theorem 3.4.1, we show tBatPARTITION <, FMU.

Let S be a multiset ofV = 3M integers such that the sum of the integers in
S equalsMB andB/4 < i < B/2 Vi € S. The3—PARTITION problem asks
whetherS can be partitioned intd/ subsets such that the sum of the integers in each
subset equals.

The reduction to an instance of FMU is as follows. For eaehS, add a VM
to VV with scalar desire equal to Next, add)M VMs to V' with scalar desird// B + 2
(i.e., we addM hungry VMs). LetP be the multiset of\/ scalars with valué/B + 1.
Note that, in this case, we have an instance of FMU Witk 1 (it is not important what

the resource actually is, just that there is a single one).

Claim: 4 an assignment of VMs to PMs whefle = 1andF" = 1 <= S can be

partitioned intoM subsets with sun®.

(=) Assumed an assignment of VMs to PMs with = 1 and /" = 1. Since the capac-
ity of each physical machine i¥/ B + 1, the only possible way to gét = 1 is to place a
hungry VM on each physical machine. Since we only hai&ungry VMs, we clearly
must have exactly one hungry VM per physical machine.

Now, since we have exactly one hungry VM per physical machimg” = 1,
it must be the case that the sum of resource consumed by tHeummmy VMs placed on

each physical machine must be equal. In particular the sugsofirce consumed by the

SWe originally found that the coefficient of variation workeetll as a fairness measure. However, the coefficient

of variation is not guaranteed to be in [0,1]. The astuteeeathy have noticed thdt = W.
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non-hungry VMs placed on each of thé physical machines must equal Therefore,

S can be partitioned intd/ subsets with sunf.

(<) AssumeS can be partitioned intd/ subsets with suni. Then, placing the VMs
in each of thel/ subsets on a different physical machine along with exacté/laungry
VM will clearly give us an assignment withi = 1 andF" = 1.

The above reduction is obviously polynomial time,33ePARTITION <,
FMU. . FMU is NP-hard. O

Notice that the FMU problem as defined above is for the casaevbach
physical and virtual machine has a single availability ardigk for each resource, re-
spectively. The more general case is each physical mackemng multiple instances
of a particular resource (e.g., multiple CPUs) and each VMrigamultiple desires for
a particular resource (e.g., multiple virtual CPUSs). Itasgto see that the above proof
applies to the more general problem since the above reduatgm polynomial time

reduces}—PARTITION to an instance of this more general form.

3.5 Problem Classification

In its purest form, FMU is an instance of a multiple objectoambinatorial
optimization (MOCO) problemCombinatorial optimizatiors the search for an “opti-
mal arrangement” of a set of discrete objects [Law01]. In FNté¢ objects are VMs
and the arrangements are placements of VMs onto physicdlinesc So, we seek to
find optimal assignments of VMs to PMs. Optimal refers to miizing (or maximiz-
ing) a function, typically referred to as tlwest functionwhose domain is the set of all
feasible assignments of VMs to PMs. In standeothbinatorial optimizationthis is a
scalar valued function. Recall, however, that FMU possesse objectives: maximize
Equation 3.1 while simultaneously maximizing Equation 32nce, we have a MOCO

problem. Formally, a MOCO problem is:
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Given a discrete vector valued cost function:
C(s):seS—RY (3.3)
where
S is afinite discrete set of feasible solutions
N eZ*

find an arrangement;x € S, which minimizes cost:

C(s*) <C(s)vs e S

Possible strategies

In MOCO, the objectives are often in conflict. Therefore, anest give suffi-
cient consideration to defining the total ordet™ For example, defining the FMU cost

function as
Cu(s)
CF(S)

one possibility for the total order is lexicographical aidg where

(3.4)

1-U(s)
1—F(s)

C(Sl) S C(Sg) |f CU(Sl) < CU(SQ) Vv (CU(Sl) = CU(SQ) A CF(Sl) S CF(SQ))

Defining the total this way treats utilization as the primaoysideration, with fairness
only being considered once utilization has been maximiZdds is often far from the
best strategy. It is easy to imagine scenarios where a vigihyt slecrease in utilization
between one assignment and another dramatically incrésisgsss.

Fuzzy logic [ZKY96] is another option for treating multiptjectives. In
this approach, objects have a degree of membership in arsttnay be a member
of multiple sets. This degree of membership is defined by neegtiip functions with a
range in0, 1]. In FMU, the object are values of utilization and fairnesamassignment.

In fuzzy logic, linguistic values are used to define the setenein assign-

ments may fall for each of the objective functions. For exiymgh could be used to
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characterize the values of utilization and fairness forssigmment. Then, satisfaction
of a schedule is determined by its degree of membership isdteof high utilization

and high fairness. Rules can then be defined to characteaZgdodness” of solutions.
Since we do not employ fuzzy logic in our solution approable,interested reader can

refer to [ZKY96] for additional information.

A simplification

Rather than defining a total order or resorting to fuzzy $eét#,) can be sim-
plified into a scalar valued function. Experience has shdve simplification works
well in practice.

Certainly, there are several possibilities for convertitguation 3.3 into a
scalar valued function. One logical choice may be to take/thaorm of the solution
vector of Equation 3.3:

C(s) = ||, T € RY (3.5)

1/p
|2, = (Z |9:¢|”>

The most common norm , often simply denot&{] is the L?-norm:

where,

7| = VP + s+ Joal?

What is interesting about the’-norm for FMU is that, at its extremes,

7 =) |ail
7

and

| %] 00 = mlax\xi|

larger components of the vector are treated with increasimghasis. In other words,
asp — oo, we move from focusing on each objective with equal weightiotusing
exclusively on the objective with highest cost. So, whehadtion is low (i.e., its cost

is high) in FMU, its effect on the cost function will be moreadnatic than if utilization
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and fairness were treated equally. What is a reasonable f@lpy in FMU? We discuss
experiments for various values in Chapter 4.
Another possibility for transforming Equation 3.3 into @k valued function

is to simply compute a weighted sum of each component. For Rkiglyields,
C(s) = Cy(s) + wCpg(s) (3.6)

wherew € [0,1]. This works well, but in practice, a better scalar valued émsction
is:
C(s) =Cy(s)+w(U(s))Cr(s) (3.7)

That is, make the fairness weight a function of utilizatiorhe intuition here is that,
when utilization is low, fairness is not very important srwngry VMs should already
be placed where they are getting as much as the system cahlpgsge them. If this
were not the case, utilization could be increased by movurggty VMs to PMs where
they will get more of their coveted resource. For FMU, we fduhe following cost
function:

C(s) = Cu(s) + (1 = Cu(s))*Cr(s) (3.8)

works well in practice. We use this cost function in the expents in Chapter 4.
As a final note, none of the above modifications to the costtionchange

the fact that FMU is still NP-hard singé(s) = 0 <= U(s) = F'(s) = lin all cases.

3.6 Hungry Detection

The distinction betweehungryand satisfiedVMs is important to the FMU
problem. Certainly, Equation 3.2 cannot be evaluated witkaowing which VMs are
in H, for each resource,. If we had a mechanism by which a VM could notify us when
it is not getting the resources it desires, we could easdgsify those as hungry and all
others satisfied. Unfortunately, the black box nature ofszineduling system precludes

the use of such mechanisms. So, the job of distinguishingd®t hungry and satisfied
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VMs fall to our system. Making this distinction in a runningssem requires careful
consideration.

The first step in hungry detection is understanding how nessuare shared
on a physical machine. Thus, the sharing policy of the ugdeyl VMM must be
properly understood. The Usher scheduling plugin allowssfcification of arbitrary
resource sharing models for the resources of interest. Qust simply subclass the
Shar i ngModel class of the scheduler code.

The CPU sharing model we use is based on the Xen [BI3f Credit sched-
uler. This scheduler fairly shares physical processorgdxt virtual machines in a
work-conserving manner. The scheduler provides transpamoss CPU migration and
can be tuned per-VM with weight and cap specifications. Inveark, we assume that
all VMs are weighted equally, though this restriction is netessary for our solution
methodology.

Keep in mind that, a virtual CPU(VCPU) can only consume up to what is
provided by a single processor in a multiprocessor PM. Sa,single threaded (i.e.,
single VCPU VM) VM is the only VM running on a two processor Pi¥iwould only
consume cycles offered by a single CPU rather than both. ©attler hand, a VM with
two VCPUs could potentially consume all available cyclesrfrboth physical CPUs.
As you can imagine, figuring out how many cycles each VCPUnedkive for arbitrary
numbers of VMs with arbitrary numbers of VCPUs on machines weveral physical
CPUs can be difficult. Figuring out which of these VCPUs is dnynadds another
challenge.

Though an example using the Xen Credit scheduler model wioalldverly
complicated, a very simplified example will help to clarifgpua understanding of the
underlying scheduler helps us to determine which VMs aregghuand which are sat-
isfied. Imagine a fair CPU scheduler on a single CPU physi@adiime hosting only
single VCPU VMs. LetN be the number of VMs an@ be the number of CPU cycles

per second being offered by the physical machine. In this,dé® following simple

A virtual CPU is the CPU abstraction presented to the VM byhipervisor. VMs can have any number of
virtual CPUs up to the limit of the VMM.
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heuristic works to determine which VMs are CPU hungry:

If the CPU load on the physical machinei)s then

1. find the maximum CPU allocated to a VM4 x
2. add all VMs with CPU allocation equith; 4 to H

H is the set of hungry VMs.

This, of course, is a very simplified example. Also, sinceXlea scheduler
is not exact, some error must be tolerated. For example, wenaead to change the
condition on machine load t0.95¢) and put all VMs with CPU allocation equal to
0.95V Myax in H. Due to these inaccuracies, any black box strategy for osizg

VMs as hungry or satisfied will not be perfect.

3.7 Heuristic Approaches to FMU

Loosely speaking, if you could count the number of computiligters in ex-
istence today, you would likely have a good guess at the nuwibdifferent cluster
operational goals as well. Many of those goals lend thersselw the use of virtual
machines. For this reason, any approach to solving theaVictuster scheduling prob-
lem must be sufficiently general to be applicable to a widgeaof virtual cluster usage
scenarios.

As with FMU, many combinatorial optimization problems aré-Nard. Those
which are not often lend themselves to much simpler solugohniques. Occasionally,
even NP-hard scheduling problems can be tackled when knogedyg algorithms or
polynomial time approximation schemes (PTAS) exist. Ofrseyone must be willing
to sacrifice optimal solutions for near optimal solutionsewhusing these, but this is
often acceptable in scheduling. Indeed, near optimal isoisitare acceptable for FMU
since finding good schedules is only part of our probfednfortunately, no good PTAS
has been discovered for the general FMU problem. Howevaplgied versions of the

problem do present themselves to efficient solvers.

8As discussed below, we still have the problem of getting éortéw configuration.
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3.7.1 A Simple Single Resource Approach

Restricting FMU to a single resource greatly simplifies oumobgpem and
known greedy heuristics and PTAS for similar problems caet@loyed to assist in
finding good schedules. As an example, the reader may be wogddout the FMU’s
relationship to bin packing or the knapsack problem. Thothgine is some similarity
between FMU and these problems, they are not the same. Th&RaNork section
(Section 2.2) elaborates on the key differences betweese thwblems. Nonetheless,
reducing FMU to a single resource allows us to use eitherdyreeethods or PTAS for

bin packing to help find good assignments. The heuristictigris as follows:

1. bin pack all satisfied VMs (e.g., using first fit decreasiD@T] or a
known PTAS if tighter bounds are desired)

2. round-robin place all hungry VMs where they will receitie highest
CPU allocation

We call this the Divide and Bin Pack (DBP) algorithm. Notetthi@s heuristic still
requires hungry detection.

Using a scheduling simulator written to facilitate quiclkaration of different
scheduling heuristics, we tested DBP with 25 physical npde6 VMs, and 45 CPU
hungry VMs. Load for the remaining VMs was taken from a Padisdribution with
shape parameter of one. We found that DBP routinely founddidies with 99 percent
CPU utilization with the coefficient of variation of CPU atlation to hungry VMs less
than 0.1. In other words, DBP met the goals of FMU quite weflc@Qurse, this approach
is only valid for settings involving a single instance of agle resource at each PM and
VMs with only a single virtual instance of that resource. d1si clearly not in line with
hardware and computing environments of today.

For this reason, we look to more powerful solution methodms for FMU.

A popular approach for many combinatorial optimizationlpems is to use what are
known asmetaheuristics The term “metaheuristic” refers to a heuristic which gside
a lower-level heuristic in a search for an optimal solutioratgiven utility function.

We look at one such heuristic in Section 3.8 called Simul&tedealing. We will also



79

explore simpler greedy approaches to FMU which arrive atswvedules much quicker
than SA, but are less likely to find very good schedules. Histvever, we introduce
a very simple scheduling heuristic which will give us a bamelith which we can
compare our more sophisticated schedulers. We call thisdtieu'Balanced CPU”
(BCPU).

3.7.2 Balanced CPU Scheduler

As a baseline, the Balanced CPU (BCPU) scheduler is a veplsischeduler
with which we compare results of our more complex schedwmsussed below. The
purpose of this comparison is to determine how much bettaev¢ose) our schedulers
perform than an extremely simple solver. The BCPU solvempgintries to balance
CPU load across all PMs by minimizing the maximum load of &lygical nodes in
the system. It only considers the CPU resource and knowsngpébout hungry and
satisfied VMs (unlike the more sophisticated DBP schedulentraned above). All
decisions are based on the current VM CPU usage, not what Khenight actually
want. Note, this is identical to the minimum makespan pnob(evhere time is now
load), which itself is NP-hard [GJ79]. We, however, applyn@kn4/3 approximation
algorithm [Gra69] for minimum makespan to our problem. Tieeristic for BCPU is

as follows:

1. sort VMs in decreasing order of their CPU allocations

2. assign VM to PMs in sorted order, scheduling the VM on thetRad
has the lowest CPU consumed so far

Note that one issue with the above BCPU scheduler is thattigrcount can
needlessly increase when two VMs with the same desire swsiigrts in the ordered
list due to scheduling imperfections. For example, two VMW 00MHz desire may
get 99MHz and 101MHz respectively in one sample, then 100Mhkd 98MHz the
next. This will cause the BCPU scheduler to assign them to arPddifferent order,
likely resulting in needless migrations of these VMs. Tewalhte this, we propose a

second BCPU scheduler we call BCPU2. This uses the simpteapproximation for
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minimum makespan presented in [Gra69]. Applying this to Fijélds the following
algorithm:

1. sort VMs in order of their fully qualified domain name

2. assign VM to PMs in sorted order, scheduling the VM on thetRad
has the lowest CPU consumed so far

Note that [Gra69] orders jobs arbitrarily which, in essengevhat sorting by
VM fully qualified domain name does. Since this will alwayst3éMs in the same order
(excluding VM arrival and departure), the needless swageisbove is eliminated. We
present results for both schedulers alongside those famoue elaborate schedulers in
the following chapter.

We make one small modification to the above algorithms byducing a
migration resistance in step 2 to avoid excessive migratidghthe CPU consumption
after placement on the PM with the lowest utilization in seig within five percent of
the CPU consumption of the VM’s current PM (were the VM platiezte), we leave the
VM assigned to its current PM. This greatly reduces migregiswhich do not strongly
affect the characteristics of the final schedule.

As a final comment, we could certainly conceive of other guesiweaks
to our simple schedulers. However, tweaking simple sctegduquickly complicates
them. Since our intent is to show that our schedulers arertian extremely simple
schedulers, we do not consider additional modificationatdB&PU schedulers. Note,
we do not claim that a simple scheduler which performs as agbr better than our

more sophisticated schedulers does not exist.

3.8 Simulated Annealing

Simulated annealing (SA) [KGV83] is a well known metahetigitor solving
combinatorial optimization problems. SA can be viewed asmgrovement over the
simple hill climbing/descending algorithm to allow for neonvex solution landscapes

to be searched for globally optimal solutions. The insprator this method comes
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Figure 3.3 Annealing of a solid to reduce its internal energy

from annealing in solids whereby a solid is heated to a teatpss at which the chemical
bonds between its atoms begin to break, allowing atoms terfreely. The solid is then
slowly cooled to allow atomic bonds to reform. Figure 3.3idegthe process of heating
and slowly cooling of a solid. The new state of the solid preahbly has a much lower
internal energy than its previous state. The slow coolikgisin allowing atoms to find
these lower energy configurations.

Similarly, SA seeks optimal solutions by allowing candalablutions with
higher energy to be accepted with probability based uporlifference in energy be-
tween the current and candidate solution and current strooléemperature. At high
temperatures, nearly all candidate solutions are accepi®the simulation runs, tem-
perature is gradually decreased, causing solutions withenienergy (i.e., less desir-
able) to be accepted with less probability. So, as temperatecreases, SA behaves
more and more like simple hill climbing/descending (hilsdending in this case).

In the remainder of this section, we use the terms “energy’“anst” inter-
changeably since utility functions in optimization prableare often referred to as “cost
functions”.

The accepting of higher energy solutions is what enablescS&limb away
from local minima and more thoroughly explore the entirauioh space. Hill climb-
ing/descending alone does not posses this property. FRjdreontains an example
solution space searched by SA. Here, cost is plotted agthiesttates in the feasible
solution space.

Starting at the €ur r ent ” state, a simple hill descending algorithm would
terminate at staté; as its solution. SA's ability to climb out of “bad” local mimia

allows it to move out of thes; trough and over into thé, trough, resulting in a better
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Figure 3.4 Sample solution landscape.

solution at states,. Given sufficient running time, a properly constructed SAveo
would eventually find the global minima &. The ability to escape troughs in the

solution landscape is a key feature of metaheuristics.
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3.8.1 The SA Algorithm

We apply the SA algorithm as originally proposed in [KGV88RMU. Pseu-
docode for the [KGV83] variant of SA is as follows:

SA(s_cur, alpha, mod, temp, time_mazx, cost_thr)
time =0
cost_cur = cost(s)
cost_best = cost_cur
s_best = s_cur
whi | e time < time_max
s_new = neighbor(s)
cost_new = cost(s_new)
i f cost_new < cost_cur
s_cur = s_new
cost_cur = cost_new
i T cost_new < cost_best
cost_best = cost_new
s_best = s_new
i T cost_new < cost_thr
return s_new
el se if random() < exp((cost_cur — cost_new)/temp)
s_cur = s_new
cost_cur = cost_new
i f not time%mod
temp = alpha x temp
time = time + 1
return s_best

where,

alpha - temperature reduction factor

cost() - function returning cost of a given state

cost_best - lowest cost (energy) encountered so far
cost_cur - current state cost

cost_new - new state cost

cost_thr - threshold value for early termination

exp() - exponential function

mod - number of annealing steps at each temperature
neighbor() - function returning a neighbor of a given state
random() - function returning a random number /ity 1]
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s_best - best state visited so far

scur - current state

s_new - New state to examine

temp - simulation temperature

time_max - maximum time to run simulation

This variant uses th®letropolis procedurfMRR*53] to simulate annealing

at a given temperature. Here, at each temperature, a sériesistates are considered.
The neighbor function is used to probabilistically choose a new staténerieighbor-
hood of the current state. Briefly, this function typicallgrforms a small perturbation
to the current state (e.g., randomly migrate a VM) to yielew finearby” state for con-
sideration. For each new state, if the cost is less than threrdistate, the new state be-
comes the current state. If the cost is greater than therdwgtate, it can still become the
current state if the conditiorandom() < exp((cost_cur — cost_new)/temp), Known
as theMetropolis criterig is met. This is what allows SA to climb out of troughs to
explore larger regions of the solution space. The heurnispeatedly runs the Metropo-
lis procedure at each temperature food steps, decreasing temperature by a factor of

alpha after eachmod steps, until the total time reach&sne_mazx.

3.8.2 Setting SA Parameters

Notice that there are several parameters which must befiguefr the SA al-
gorithm: s_cur, alpha, mod, temp, time_mazx, cost_thr. As with most metaheuristics,
SA must be properly tuned to the problem at hand. Here, the pgrameters must be
tuned for the giverrost andneighbor functions, and, to some extent, the acceptance
criteria (Metropolis criteria in this case).

Worth mentioning is theost_thr parameter, sometimes referred to as the
“stopping criteria”. Setting this is at the discretion oétbxperimenter. If an accept-
able value of the cost function in known, settingst_thr can often save substantial
simulation time when an acceptable assignment is closestoutrent assignment.

Indeed, there is a wealth of information on tuning SA, as ag|lloptimizations

to the original algorithm. However, it is not the intent ofgichapter to study properties
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and convergence aspects of SA (or any other metaheurippdipd to FMU, but rather
show that metaheuristics are a reasonable approach teefficfinding good mappings
of VMs to PMs for FMU scheduling. Improving the efficiency oASn addition to, the
behavior of other metaheuristics applied to FMU is beyomrdsttope of this dissertation.
Below, we present only a high-level discussion on settingap&ters and
defining the neighbor function of SA. The interested reaseeferred to [SY99] for in
depth coverage of the theory for properly setting theseaegund defining this method.

Neighbor function: Theneighbor function for SA must be given careful considera-
tion. An important property of this function is that it haveetability to reach any state
in the feasible solution space from any other state in a fimitaber of steps. For exam-
ple, aneighbor function for FMU which swaps VMs between two PMs does not pess
this property since all PMs would always host the same nurab&Ms. In addition,
efficient searching requires that the number of steps betapg two states in the valid
solution space be sufficiently small.

Another important property of thecighbor function is that it not be biased
toward very good moves. The reason for this is that very goodesin a states neigh-
borhood can move the current solution into a deep local nanifhis may prevent
SA from escaping to find other, potentially better solutiodge slightly relax this re-
quirement for FMU, as will be explained in Section 3.8.4 vehere define our neighbor

function.

Cooling schedule: The alpha, mod, temp, and time_max parameters define the
“cooling schedule” for SA. It is common to determine values fhese parameters
through trial and error, although methods have been prabfisesetting and dynam-
ically tuning these as a simulation runs [SY99].

As with annealing of solids, the cooling schedule is impatrt@ finding a
global minimum. If cooling is too fast, crystal lattices dotiorm in the solid and inter-
nal energy is not minimized. Similarly, a fast SA cooling edhle (smallnod and/or

smallalpha) will quickly fall into a local minima and be unable to esceagdece the prob-
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ability of accepting higher cost moves approaches zeronagdeture approaches zero.
Very slow cooling schedules require very long running tirfeend good local minima,
or result intime_max being reached before the simulation ends, stopping befgoed
local minima is found. We use parameter sweeps in our scimgpsimulator to discover

reasonable constant values for these.

Efficiency: Two major contributors to the computational cost of SA aeedalculation
of the cost and neighbor functions. These should be faigxpensive since both will
be computed at each step. The cost function should be suntriiydocal changes need

to be recomputed. Though our cost function is somewhat ftéf/property does hold.

3.8.3 SA Parameters for FMU

As shown in Section 3.8, there are few tuning knobs for SA Wwhiffect new
schedule quality. We used our VM scheduling simulator tdqver parameter sweeps
of alpha, temp (initial temperature)time_mazx, andmod to determine good values for
these parameters for FMU. Though we did not find excellenttesedues for these in our
simulations, we did discover acceptable ranges for eacdnpeter. We summarize these
ranges in Table 3.2. Therd/ and N are the number of VMs and PMs, respectively.
As should be expected, good ranges fone_mazx, andmod were dependent upon

simulation size.

Table 3.2 Acceptable simulated annealing parameters fday.FM

Parameter Range
alpha [0.7,0.9]
temp [7.5,12.5]
time_max (228 MN]
mod [tzmzej\rfmzz ) 2tzm]c;[_ma:v]

Unless otherwise specified, we chaeggha = 0.8, temp = 10, time_max =
MY andmod = 24mema for the experiments in this dissertation.

One pitfall to avoid with SA is the desire to reach a solutioicily by spec-
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ifying low values foralpha, temp, or mod. This results in quick descent into a local
minima which may be of poor quality (E.¢; in Figure 3.4). In addition, a low value
for time_max does not allow the algorithm sufficient time to “feel arourtdé solu-

tion space in search of good assignments. The temptati@t these values low stems
from the desire to reduce migration costs. We discuss taetff and methods for

controlling high migration counts in more detail below.

3.8.4 Reducing SA Migrations

Finding good mappings of VMs to PMs in virtual machine schiedus only
part of the problem. Once a better assignment of VMs to PMsusd, the problem
of migrating the VMs to their new locations remains. VM migpa comes at a cost
of both network bandwidth and CPU. It is, therefore, prudenninimize the number
of migrations necessary to move to a better schedule. Hawkwgting the number
of moves (migrations) actually works against the spirit 8f 8 which many configu-
rations are examined and often accepted in an effort to findzagoptimum or good
local minima.

Fortunately for us, finding the globally optimal assignmismiot always nec-
essary or even desirable. Looking back at Figure 3.4, if waggime that distance along
thez-axis is proportional to the number of migrations necestanyove between states,
the migration overhead of moving from “current” to the glépaptimal solution atS;
may be far too expensive. There, thiemapping may be more appealing due to its prox-
imity to “current” and the fact that it is only slightly morestly than the assignment at
Ss.

So, what we are really striving for in FMU is a solver which sgbod sched-
ules near our current schedule. For SA, we simply want torenthat it is given suf-
ficient opportunity to climb out of nearby “shallow” local mima to look for nearby
“deep” local minima. If SA falls into a deep nearby local nmva, we have probably
found an acceptable new schedule.

Theneighbor function can play a pivotal role in quickly finding nearby gee
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local minima. As mentioned above, theighbor function can be biased toward making
good moves. Although this is not good for SA in general, incades with our goal of
finding good nearby solutions, as opposed to searching tiire solution space for a
global minima. This bias can be tuned as the simulation roaddow for more aggres-
sive searches (i.e., less bias towards good moves) whek ist@clocal minima with
unacceptably high cost.

Our neighbor function takes a parameter which specifies hHten @ good
move should be made. If a good move should be made, our neifjintciion finds the
set of most hungry VMs consisting of the hungry VM for eachotese receiving the
least of that resource and randomly migrates them. Othenwigr neighbor function
simply migrates a randomly chosen VM to a randomly chosen Rkasibility check
is performed for each suggested migration.

Notice that randomly migrating the most hungry VMs does rextassarily
result in good moves. Nonetheless, the possibility of goayen is certainly higher
than that of a purely random move.

Another possibility for reducing migration count is to ridie cost of migration
back into our cost function to penalize solutions requitamge numbers of migrations.
Unfortunately, this approach has two problems. First, agldnigration cost back into
the cost function changes our solution landscape as welstara good assignment. It
is not clear how this change affects convergence aspectd.ob&h a change would
certainly make it much harder for SA to move away from poorlauninima, limiting
the advantage of this approach.

A second problem with charging our cost function with migratcost is that
it requires maintaining how many migrations are requirede¢bfrom one schedule to
another. For example, imagine that SA moved a VM multipleesnin its effort to
find a better schedule. It would be likely that we could simpigve that VM from its
initial position to its final position, skipping all the immediate migrations performed
by SA during its solution search. In addition, it is not alwags trivial as removing

intermediate migrations from the path. As discussed nexiblpm constraints may
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preclude migrating VMs directly to their destination. Hayito keep track of how many
migrations are necessary between two assignments addeadtcomputation cost to
our cost function evaluation (which is already slightly erpive).

What is more, its not clear how the cost of migration shoulc¢bharged to
our cost function. Should it be a constant charge or depend lipk speeds between
nodes, CPU speeds, or something else? For these reasons neeuwse this approach

to limiting SA migration counts.

3.8.5 Migration Paths

Another issue we must consider is moving from an old to a ndvecule.
Moving between schedules cannot always be done in arbitralgr. Migrations must
not violate constraints such as physical memory limits souece allocation guarantees.
As a simple example, imagine that all PMs in Figure 3.2 b haveunits of memory
and each VM there consumes five units of memory. Then, it wooldbe possible
to swap VM2 and VM3 to arrive at the more fair schedule in F&gg8r2 d since this
would involve first migrating VM2 to PM2, which would tempailg require 15 units
of memory. In this case, hibernating VM2 and restoring it dd2Rafter VM3 has been
migrated to PM1 is one option for getting around this limdat If there were a third
PM in the system, another option would be for VM2 to be migitdteere, then to PM2
after VM3 has been migrated to PML1.

Fortunately, oumeighbor function does not move to assignments which vi-
olate problem constraints since those assignments do twig® the set of feasible
solutions. However, the shortest path (i.e., the one raguthe fewest migrations) to
a new assignment is not always the same as the order of noigsatiken by the SA
heuristic. As an optimization, we first check to see if a senmidering which migrates
VMs directly to their new destination does not violate angtgem constraints. If a vio-
lation is found, the path as taken by SA is used. For simpglioptimizing this to check
for additional shortened paths was not done. In practicdpwed constraint violations

in our optimized path were rare.



90

3.8.6 Allocation Prediction

Notice that SA requires cost, and hence Equations 3.1 antb®2 calculated
for each new schedule under consideration. This, in tuyires that we know how
resources will be shared on a PM given a list of local VMs arairtresource desires.
Thus, the sharing policy of the underlying VMM must be prdpenodeled.

In our experiments, resources are assumed to be fairly dhara work-
conserving fashion. The Xen Credit scheduler is assumduddetault parameters for
CPU, and networking resources are assumed to be fairly¢bateveen all VMs. Nei-
ther of these assumptions are required. If properly modéies possible to support
more sophisticated sharing policies such as relative vigighd maximum threshold
values for CPU, or network traffic shaping.

For a fair-share, work-conserving scheduler, a simplerdtyn determines
the resource “hungry levelhl, for a set of VMs running on a given PM. Any VMs
desiring more of the resource thahare givenhl units and placed in the set of hungry
VMs for that resource for that PM. All others VMs are givenitigesire of the resource
and placed in the set of satisfied VMs for that resource. Tingiylevel determination

algorithm is as follows:

get _hungry_ evel ( capacity, desires, max_alloc)
I f max_alloc < 0
max_alloc = capacity
sort(desires)
hl = minimum(capacity /length(desires), max,lloc)
# get smallest desire
desire = desires.pop()
whi | e desire and desire < hl
capacity— = desire
hl = minimum(capacity /length(desires), mazx,lloc)
desire = desires.pop()
return hl

where,

capacity - total amount of resource available on PM
desires - list of all VM desires for the resource
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length() - function returning the length of the desires list

maz_alloc - maximum number of units of resource which can be consumed
by a virtual resource

minimum() - function returning the minimum of two values
pop() - member function returning the list head
sort() - sorting function which sorts desires in ascending order

The max_alloc variable merits some explanation. This is the maximum
amount of a resource which can be consumed by a VM virtualureso For exam-
ple, with multiple CPUs, a virtual CPU cannot consume moentthe capacity of a
single CPU. Imagine a four processor PM with capacity of lilstaach. A single vir-
tual CPU would not be able to consume more than 10 CPU unigs, #nough the CPU
capacity of the PM is 40 units.

Each time a VM is moved from one PM to another, the hungry |ekEl
hungry andsatis fied sets, and allocations for each resource for the new schetide
be determined using the above algorithm. Once these arelisbtd, the cost for the
new schedule can be computed and tested to see if the newuselsbduld become the
current schedule. This somewhat expensive cost functilmulesion is acceptable for

our problem. We discuss this in more detail below.

3.8.7 Resource Dependencies

One difficulty in determining resource allocation is depamdes between re-
sources. For example, in Xen, network traffic to and from asg@ induces a sig-
nificant CPU load in both that domafnas well as, Domain & So, when a VM is
migrated to a location where it can receive more network hadhith, its CPU desire
will increase accordingly. Likewise, if a VM with heavy netvk traffic is migrated to
a location where it will receive less CPU than it needs to ma@mnits bandwidth, its

network load will also decrease.

9In Xen, a VM instance is referred to as a “domain”.
Domain 0 is a privileged VM in Xen through which all other VMadatheir virtual devices are managed. We
assume that handling of network traffic has not been delddatanother domain.
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Understanding this dependency and representing it matiwaiahas proven
challengingt! This is an area warranting further study. Note, howevet,dhasolution
strategy applies equally well once this relationship isyfuinderstood since the cost

function of our SA solver can still be evaluated.

3.9 A Greedy Approach

Recall that one problem encountered in our application ot&BAMU is the
large number of moves (i.e., migrations) incurred by theeating process. We men-
tioned that methods for reducing high migration countsroft®rk against the spirit
of SA by precluding the solver from fully exploring its salut space. Nonetheless,
experiments using SA with a reasonable threshaldi_thr, and aneighbor function
biased toward good moves often yielded very good schedatdsMU with far fewer
migrations.

The Greedy Best Move (GBM) solver evolved from our experitaarsing
the adapted SA solver above. It was discovered that turrprtheiperiodicity of biased
moves often resulted in good solutions with very few mignasi. Taking this to extreme,
we conceived of the GBM solver which always tries to make ‘sfmaoves. The result
is a solver which often finds good nearby schedules, but ¢arinob out of bad local

minima.

3.9.1 The GBM Heuristic

Under GBM, the best moves for each VM are determined and keatlist
sorted by cost improvement. Cost for GBM uses the same costifun as that for SA.
For each VM, this list contains the best destination PM fat ¥V at its head. Each list
is constructed by evaluating the value of the cost functigh the corresponding VM
at every other PM, while keeping all other assignmentscstaiio illustrate, a system

with ten VMs and five PMs would create ten lists (one for each)\ékMour tuples each.

HThis is at least for Xen, where strange interactions betw&eb usage and networking performance has been
observed.
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Each tuple would consist of two components: i) the destimal#M and ii) the change
in cost, AC, if the VM were migrated to that PM. These lists are sorted i®y/AC

component of each tuple. Using these move lists, the GBMisigwis as follows:

1. for each VM, create a smaller, candidate move list fronmits/e list
consisting of moves within a prescribed fraction of its baste.

2. for each VM, randomly choose a move from its candidate ntiste

3. insertion sort VMs in ascending order of thé€' value of their selected
move into a global moves list

4. for each VM in the global moves list, check to see if its stdd move
still reduces cost. If so, migrate VM to its destination.

Programatically, creating the moves list and steps 1-3lagoae in a single
loop to avoid storage overhead of keeping these lists fdr ¥at.

The point of steps 1 and 2 in the GBM heuristic is to avoid hg\ait VMs
choose a single PM to which to migrate. It is easy to imagitertive methods for
avoiding an overly attractive PM. Passing the h€standidates for each VM to step 4
and checking them in turn may be prudent, but comes at theof@stditional checks
for each VM. Another option might be to remove PMs from all V\we lists after they
have been selected as a destination.

In step 4, we simply walk down the global moves list, migrgtirMs if their
move still reduces cost. A previous migration can easil\alicate a VM’s selected
move. For example, a global moves list may have two hungry Wihtgating to the
same PM when it should only receive a single hungry VM. This lsappen since we
are only looking at single moves at a time, as opposed to morgmations, when
constructing the VM move lists. This approach, howeveraismore efficient than
finding the globally optimal move, assuming it will be madeding the second best
globally optimal move, assuming it will be made, and so on.

We present experimental results for the GBM heuristic infii&e4.
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3.10 A Hybrid Approach?

The main drawback of using the SA heuristic is that it incughhmigration
counts. The benefit of this approach is its ability to escagukIbcal minima to more
thoroughly search the solution space for good assignm@mtshe other hand, a short-
coming of our GBM heuristic is that it lacks the ability to ape poor local minima,
whereas its advantage is that it often finds acceptablerassigts with a much smaller
migration overhead.

As a result, another approach is to apply a hybrid heuristiMU which uses
GBM until its solutions are no longer suitable, then switch®our more aggressive SA
solver to move to a better location in the solution spaceerihding a better assignment
using SA, the hybrid solver returns to using the GBM solver.

Though this hybrid approach seems to be a reasonable bdlatween find-
ing good schedules and high migration counts, time comgg@irohibited us from ex-

ploring its behavior in this dissertation.

3.11 Conclusions

In this chapter we defined our virtual machine schedulingl@m and dis-
tinguished it from other types of process, application, &Ml scheduling problems.
We seek scheduling solutions to best-effort VM schedulihgreg VMs are not guaran-
teed quantities of resources and VMs are not excluded fromiing based upon system
loads and resource availability. We introduced our caradnd/ scheduling problem
in this framework called Fair Maximum Utilization (FMU). Rl seeks to maximize
overall cluster resource usage in a fair manner. We put fiahwaveral algorithms for
our virtual machine scheduling problem of various levelsaphistication. As opposed
to our more elaborate schedulers, our basic approaches moagempt to interpret
monitoring data to classify virtual machines as hungry disgad. In addition, these
basic approaches do not try to determine how VMs will behawva physical node after

a VM migration to or from that node.
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In the following chapter, we evaluate the scheduling héicepresented here.
One question we seek to answer is whether basic algorithen®acan be) as effective
as more sophisticated heuristics. An important goal in eatuation is to show which
of our heuristics, in general, are practical approachesfiareing operational goals of a

virtual cluster installation.



Chapter 4

Scheduling Evaluation

We now focus on evaluating our proposed scheduling appesacho deter-
mine how well our schedulers perform, we focus on: i) qualityhe scheduler’s solu-
tions (i.e., utilization and fairness), ii) scheduler #yi(i.e., how quickly does it arrive
at a better schedule), and iii) the overhead of finding andingow better schedules.

In evaluating our schedulers, it is critical to understamel éxperimental en-
vironment and how our schedulers behave in them. Havingaketems to specify in
an experiment (e.g., VM and PM counts, initial placemertighioad, load characteris-
tics, etc.), it easy to inadvertently favor one schedul@r@nother. Though we cannot
always provide “a level playing field” for each scheduler ur @xperiments, we try
to remove as many advantages as possible, or clearly state ovie scheduler has an
advantage over another in a given environment. Our abiityame an experiment in
favor of one scheduler or another makes it difficult to prevsdlid quantitative results
of one scheduler’s performance versus another. For exastaling that scheduler X
is 10 percent better than scheduler Y in regard to fairnesgesdittle weight since any
tweak to the experimental environment almost surely chatigig number (sometimes
substantially).

In addition, some experimental setups simply do not lenchd@ves to sub-
stantial improvement. For example, an experiment whichinsegp an optimal state

without significant changes in loads would not cast our sglezd in a favorable light.

96
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On the other hand, one must question the validity of an erpart which begins in the
most unfavorable configuration, since such would be uncomim@ractice. For these
reasons and those above, we often discuss the quality ofbedsler’'s assignments and
their suitability to a particular environment (e.g., “gomda dynamic environment”).
Though we also give quantitative results, the reader is@aged to consider them in

context.

4.1 Methodology

We study the behavior of our BCPU, BCPU2, SA, and GBM scheduirder

the following virtual cluster scenarios:

Hot spot incident: Here, several VMs on a small set of nodes suddenly
increase their CPU demands.

Pseudo general purpose cluster workloadHere, virtual cluster work-
loads are generated from statistical properties of obdaggaeral pur-
pose cluster workloads.

Before presenting experimental results, we first discussvadetails.

Testbed: Our testbed consists of 20 Dell PowerEdge R200 servers pedipith dual
Intel Xeon X3210 CPUs running at 2.13GHz. These are dual pareessors, so each
PM has a total of four CPU cores. Each machine has a total of diGBain memory
and dual onboard 1Gbps network interfaces. Only one of teewtwork interfaces is
used in our experiments.

We run Xen 3.1.0 with Linux 2.6.18 kernels for both Domain @ aguest
domains. Each guest domain runs with 128MB of main memory.VMs run NFS-

root (including Domain 0 VMSs), so no local hard drive is evec@ssed.

CPU load reporting: In our experiments, we report CPU as the number of cycles
per second averaged over the previous minute rather thaadaplercentage. Using

cycles rather than percentage is necessary since we maglaiopg in a heterogeneous
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environment where some machines have faster processorstiners. Though this is
not a perfect measure since cycles are not exactly equivabeoss different processor
models, it is the best measure we have for comparing a VMsallin on different

machines. Certainly, a relationship should be establishembmpare cycles between
very different architectures (e.g., between Xeons and Op8. We do not consider

migration between machines with vastly different architees here.

CPU loader application: To induce a desired CPU load in our experiments, we have
written a CPU loader application. Writing an applicatiorctmsume a specified number
of cycles per second is not a trivial task. Our CPU loaderiappbn currently loops
over generating 1000 random numbers, checking to see hoWw aystem and user time
have been consumed over the previous second usimgetheusage system call, and
sleeping every 0.05 seconds for an adjusted number of attisds to reach the target
usage. Sleep time must be adjusted to mitigate interacbetween this application,
the imperfect Xen scheduler, and VM migration — all of whicduse our application
to occasionally miss its target load. Our loader calibrétesf every two seconds to
ensure it is within five percent of its target load. If not, aplication adjusts its load,
causing the sleeping time to be increased or decreased @ssaeg. As a result of this

design, our loader may be off by as much as five percent.

Scheduling granularity: As mentioned above, our schedulers rely upon loads aver-
aged over one minute intervals. So, reported resource lisagé/M is only valid one
minute after a migration. The same holds for the source astindgion PMs involved

in the migration. Therefore, scheduling can only be doneratramum granularity of
one minute plus our data collection interval. We collect iming data at 20 second
intervals so our minimum scheduling interval is 80 secomise that the duration over
which load is averaged as well as data collection intenatanable. We have selected

these intervals as a balance between fidelity and monitsghgduling overhead.
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4.2 Hot Spot Alleviation

The purpose of the hot spot alleviation experiments is tolswe well our
schedulers react to an imbalance in resource demands acsetof PMs. This also
applies to the case where a subset of the running VMs sudderase their resource
demands. Such is a common scenario in a multi-tenant emagabwhere jobs, appli-
cations, or services are started on all of a tenants VMs samebusly. This causes a
subset of the VMs to suddenly become active and possiblynegescheduling.

To observe our scheduler’s reaction under the worst casesoewe limit
our testbed to use only a single core on each PM and increadedti on a set of VMs
residing on the same PM or PMs.

In these experiments there is no load on the VMs and no saleduining at
time zero. Attime 20, each VM begins consuming 213MHz (telc@et) of the physical
machines CPU. At 140 seconds, a number of VMs increase tiRtr @2mands. These
VMs are all packed onto the fewest number of nodes possited&sires do not change
after 140 seconds for the remainder of the 600 second expetimi\t 260 seconds, a
scheduler is turned on and runs for the remainder of the @rpat (shaded area in the
figures). During this time, VMs are periodically migrateditetter assignments found
by the scheduler. Depending upon the scheduler, there mayagrnot be multiple
migration rounds. For example, the SA scheduler is oftey gend at determining the
optimal placement in a single iteration.

The above experiments are performed in two environments fif$t consists
of a small cluster of 18 VMs running on three PMs. The secorallezger cluster of
120 VMs running on 20 PMs.

In all hot spot alleviation experiments we study VM CPU adltions, overall
system CPU utilization, and system fairness to hungry VMst @aphs show individ-
ual VM CPU allocations and overall system CPU utilizatioiglft y-axis) over time.
VM allocations are plotted with solid lines, Domain-0 loaggh dashed lines, and

overall CPU utilization with a dash-dot line. Shaded ardakegraphs indicate regions
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where the schedulers were running.

4.2.1 Small Cluster (HSA-18:3)

In our first set of experiments, 18 VMs run on three physicatimaes. The
small number of VMs and PMs involved allows for us to reasooudlour schedulers’
behaviors and resulting assignments. We refer to thesedbl®A-18:3" experiments.
Initial placement evenly spreads the VMs so that six VMs amning on each PM.

Results are presented for the following scenarios:

¢ five VMs increase their desire to 427MHz
¢ five VMs increase their desire to 747MHz

e Six VMs increase their desire to 747MHz

Although many additional scenarios were studied, theseetprovide good insight into
the behavior of our heuristics. Results of those additistizdies were consistent with

results presented here.

Five VMs to twenty percent demand (HSA-18:35-20)

The first subset of the HSA-18:3 experiments have five VMs omgles PM
increase their CPU demand to 427MHz (20 percent of a singls BAU capacity).
Figures 4.1 through 4.4 depict results of this experimenBiGPU, BCPU2, SA, and
GBM.

What is noteworthy is that this schedule does not impose ruaied CPU
demand on the system than it is capable of supporting. Tdal @emand in this case
is 4907MHz whereas the system can provide a total of 6400MEz fotal demand is
only 77 percent of total capacity). So, if properly scheduél five VMs which increase

load should receive their desired 427MHz of CPU.

"Here, this is 20 percent of a PM’s CPU capacity.
2Here, this is 35 percent of a PM’s CPU capacity.
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Figure4.1 VM CPU allocations over time for BCPU applied toAd$83:3.5-20. Here,
five VMs increase their desire from 213MHz to 427MHz at tim@®1%he scheduler is
activated at time 260. This scenario does benefit from thesierple BCPU scheduler.

From Figure 4.1, we can see that our system does benefit frometly simple
BCPU scheduler. Within one minute of our scheduler actvatall hungry VMs begin
receiving near their desired CPU. Recall that CPU allocaisoaveraged over a one-
minute interval, so we can infer that VMs are receiving thdgsired CPU from the
fact that the VM CPU allocations steadily climb for one mmdllowing the minute
after activating the scheduler. We can also infer that allsMve reached their newly
assigned PM in less than one minute from the Domain O loadsjwviall steadily after
one minute of migrating VMs (database logs confirm this). itdgthowever, that our
simple BCPU scheduler never really settles on a new assiginmeven after finding a
good assignment — and begins a new round of migration afeenonute of monitoring
VMs at their new locations. This behavior is due to BCPUs latkategorizing VMs
as hungry. Instead, BCPU assumes that VMs will only desiratwiey are currently
receiving and tries to spread them such that the minimumadtaiCPU of all PMs is

maximized. As aresult, slight variations in allocation¥tds desiring the same amount
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Figure 4.2 VM CPU allocations over time for BCPU2 applied t&A418:35-20.
Here, five VMs increase their desire from 213MHz to 427MHzraet140. The sched-
uler is activated at time 260. BCPU2 performs better than B&iAce it maintains VM
assignment order.

of CPU cause the VM assignment order to be changed at eaaliater This ordering
change results in needless migrations. As discussed ab@vajitigate this issue in
our heuristic with a migration resistance. However, thgstance does not completely
eliminate such migrations.

We must also point out that this scenario (and all other hot alteviation ex-
periments) provides an ideal initial placement for the B&febeduler, since, by getting
more CPU than all other VMs, the increased desire VMs end umh®aced first. So,
it should be no surprise that BCPU finds a near optimal salutioits first iteration.
Finding optimal solutions in its first iteration is not theseain general, since hungry
VMs often receive less of a resource than satisfied VMs in dralamced system. This
general case causes BCPU to incorrectly guess actual VM @Blded, resulting in re-
peated adjustment as it discovers that the system is imiedarThis effect is not seen

in these experiments.
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Figure 4.3 VM CPU allocations over time for SA applied to H&8:35-20. Here,

five VMs increase their desire from 213MHz to 427MHz at tim@ 1%he scheduler is
activated at time 260. SA finds an optimal schedule in a siitgfation, albeit with high

migration count.

Migration cost is evident from the decrease in VM CPU allara during the
migration process as seen in Figure 4.1. Not evident fromftgure is that individual
PM loads are often 100 percent while sending and receiving VAs a result, we see
cycles being stolen from both migrating and stationary VM&my migration periods.
This loss is compounded for migrating VMs which must pauseaftime during their
final round of memory copying in addition to possible perfamoe degradation due to
enabling of shadow paging during migration in Xen [CF5]. To control migration
impact, the number of simultaneous migrations to and fronMa &s well as network
bandwidth available for migration, are tunable. We, howedé&l not turn that knob
here. Migration cost will be discussed in more detail below.

Figure 4.2 shows results for BCPU2. Here, we see that BCPUrpes
better than BCPU since it maintains VM assignment order fit@mation to iteration.

Notice that BCPU2 actually finds an optimal assignment aitsingle iteration. In-
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Figure 4.4 VM CPU allocations over time for GBM applied to H38:35-20. Here,

five VMs increase their desire from 213MHz to 427MHz at tim& 14 he scheduler
is activated at time 260. GBM finds an optimal schedule in glsiiteration with low

migration count.

terestingly, BCPU2 does do an unnecessary (although natfbBrmigration at 540
seconds. Overall, BCPU2 performed seven total migrationgpared to BCPU’s 33.

Figure 4.3 shows that simulated annealing performs quiteumder this sce-
nario. The SA scheduler settles on an optimal assignmestt afsingle schedule itera-
tion. In this case, the scheduler assigns two of the PMs 2it8&Hz and two 427MHz
VMs and the third PM seven 213MHz VMs and one 427MHz VM. Noatso that the
system is now utilized to our target of 77 percent. In additige see that VM migration
produces loads in the Domain Os slightly greater than th&QRU2, although it does
not migrate VMs beyond the first iteration. Our SA solver parfed nine migrations in
this particular experiment.

Figure 4.4 depicts results for GBM. Notice that GBM also fdwam optimal
solution in a single scheduling iteration. Interestingys schedule places one 213MHz
and two 427MHz VMs on the first PM, seven 213MHz and one 427MiNis\on the
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Figure4.5 VM CPU allocations over time for BCPU applied toAd83:3.5-35. Here,
five VMs increase their desire from 213MHz to 747MHz at tim@1%he scheduler is
activated at time 260. Here, BCPU’s high migration overhesas CPU cycles from
VMs.

second, and five 213MHz and two 427MHz VMs on the third. Cleaptimal schedules
are not unique in this case. Finally, notice that the migratime and overhead are less
than for SA, BCPU, or BCPU2. GBM performed only four migraisoto reach an

optimal schedule.

Five VMs to thirty-five percent demand (HSA-18:3 5-35)

We now have our five VMs increase their desire to 747MHz (3s¢rarof a
single PM’s CPU capacity). Under this scenario demand (§84@7 total) slightly ex-
ceeds our system’s capacity (6400MHz total), yet there sohedule which maximizes
overall utilization that is perfectly fair to our VMs with @aneased CPU demand. Results
of this experiment are plotted in Figures 4.5 through 4.8.

Figure 4.5 contains results of the BCPU scheduler appliethitoscenario.

Again, BCPU never settles on a particular assignment. Rdtat, although overall
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Figure 4.6 VM CPU allocations over time for BCPU2 applied t8A418:35-35.
Here, five VMs increase their desire from 213MHz to 747MHzraet140. The sched-
uler is activated at time 260. BCPU2 eventually settles oarg good assignment.

CPU consumption is nearly 100 percent, our 747MHz-desires\fbteive approxi-
mately 600MHz on average due to excessive migration ovdrhéée can clearly see
that the inefficiencies of BCPU are exacerbated at higheisloa

Results for BCPU2 are shown in Figure 4.6. These resultste onpres-
sive for such a simple scheduler. Compared with BCPU, BCRid@rs much lower
migration cost and actually looks to settle on a very goodassent after three rounds
of scheduling. Overall, BCPU performed 49 migrations over éxperiment duration
whereas BCPU2 performed only 15. Clearly, the better pgctfrihe BCPU scheduler
does not compensate for the increased migration overheaur two experiments thus
far.

Applying our SA solver reveals the strength of this appro&iyure 4.7 shows
results for SA applied to HSA-18:8-35. After a single scheduling round, overall uti-
lization is maximized (100 percent) and 4 out of 5 747MHz VM geceiving approx-

imately 733MHz and the fifth approximately 665MHz. This gssnent places two
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Figure 4.7 VM CPU allocations over time for SA applied to H&8:35-35. Here,
five VMs increase their desire from 213MHz to 747MHz at tim@®1%he scheduler is
activated at time 260. SA finds an optimal schedule in onatitan in this scenario.

747MHz VMs and three 213MHz VMs on each of two PMs and one 74ZNMMNl and
seven 213MHz VMs on the third PM. The observant reader magetitat this schedule
should result in four 747MHz VMs receiving 747MHz, and on@Vi#Hz VM receiving
640MHz. Recall, however, that our loader runs at up to fivegererror. The actual
numbers are within this error bound.

Another very good schedule places three 747MHz VMs on a&iRil, two
747MHz VMs and three 213MHz VMs on another, and 10 213MHz VM4l third

PM. It is very unlikely, however, that our scheduler would/@auggested this assign
ment. The reason is that 10 VMs, each receiving 10 perceriteohvailable CPU on
a single PM, would have been categorizechasgryVMs by the scheduler’'s hungry
determination heuristics. As a result, there would be atantial fairness cost incurred
upon this schedule since 10 hungry VMs would receive nea®iBwhile two receive
near 747MHz and three receive near 640MHz.

Missing out on good schedules which perfectly pack (i.e1d0 percent ca-
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Figure 4.8 VM CPU allocations over time for GBM applied to H38:35-35. Here,

five VMs increase their desire from 213MHz to 747MHz at tim@ 1%he scheduler is
activated at time 260. GBM found good schedules which itioortd to refine, but did
not find an optimal schedule within the 600 second experiment

pacity)satisfiedVMs onto a single node is a limitation of our SA and GBM applues:
Missing some good schedules is a result of the black-boxoagprwe take to hun-
gry VM detection which will always categorize a VM or set of \éMis hungry on a
PM where a resource is fully utilized. For this, there is nodsolution. Fortunately,
schedules which perfectly paslatisfiedvMs are quite rare.

Finally, Figure 4.8 shows results of the GBM scheduler agapto the HSA-
18:35-35 scenario. In this case, GBM does not find a great schexdtde its first
scheduling iteration. It continues to make small correttiand refinements to its sched-
ule round after round, increasing overall CPU utilizatiow dairness. Within the 600
second experiment, the system does not converge upon @massitt Nonetheless,
GBM clearly outperforms the BCPU scheduler and is far bétten doing no schedul-

ing at all. Notice that the small corrections made each ral;mdot have a large impact

31t eventually will, it just did not within 600 seconds in thésperiment.
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Figure 4.9 VM CPU allocations over time for BCPU applied toAd$83:3.6-35. Here,
six VMs increase their desire from 213MHz to 747MHz at tim&®1Zhe scheduler is
activated at time 260. BCPU continues its habit of needjessgrating VMs after
initially finding a good schedule.

upon VM allocation. The ability to make small correctiondvaiut large impact upon
VM performance is a key feature that makes GBM desirabletfehtybrid approach.
Note that GBM is not deterministic since there is randonmzeainvolved in
the choice of which locally optimal PM to move a VM. Therefoire our experiments,
it was common for GBM to actually find an optimal solution witlone round under
this scenario. For this reason, we believe that a bit moré&womaking this scheduler
deterministically choose the best location based upongquewM destination choices

would help GBM to converge more quickly.

Six VMs to thirty-five percent demand (HSA-18:3.6-35)

We now look at increasing the number of VMs with increased @®@klre to

six. We only show the case of six VMs increasing their desiré47MHz since BCPU2,
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Figure 4.10 VM CPU allocations over time for BCPU2 appliedHB8A-18:36-35.
Here, six VMs increase their desire from 213MHz to 747MHzraet140. The sched-
uler is activated at time 260. This figure shows that BCPU2rselgaving trouble with
higher demand scenarios, eventually settling on an urnéaedule.

SA, and GBM all easily handle scenarios where the systemtifulp utilized.* What
is different about this setting is that there are multipléropl solutions in which our
747MHz desire VMs each receive 640MHz (i.e., 30 percengufés 4.9 through 4.12
contain results for this scenario.

We see no surprises concerning the behavior of the BCPU sidred Figure
4.9. BCPU continues its habit of needlessly migrating VMsraé good schedule has
been found. This behavior was observed in each of our expetsrwith BCPU. On
the other hand, we see that our BCPU2 scheduler begins todiffiealty with the
higher CPU demand scenario. This difficulty is a result opitsrer quality packing of
VMs onto PMs. Recall that BCPU2 uses a two-approximatiorsgdeduling heuristic.
Though BCPU2 does seem to settle into an assignment by exgrerend, it settles into

a rather unfair one.

“Note that BCPU2 only handles a single resource, however.
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Figure 4.11 VM CPU allocations over time for SA applied to H$& 3 6-35. Here,
six VMs increase their desire from 213MHz to 747MHz at tim& 14 he scheduler
is activated at time 260. Again, SA shows its strength of kjyiéinding an optimal
schedule, and its weakness of requiring many migrationsgotr the new schedule.

On the other hand, both SA and GBM quickly find optimal solagigall hun-
gry VMs receiving 640MHz of CPU). Our SA scheduler is able todfian optimal
schedule in one iteration, whereas GBM takes two. Interghti they settle on two
very different solutions. SA finds an optimal schedule in ahhiwo 747MHz VMs
and four 213MHz VMs are assigned to each PM. GBM, however,ages to find an
interesting solution in which three 747MHz and one 213MHz &/Me placed on one
PM, two 747MHz and four 213MHz VMs on another, and one 747Mhid seven 213
MHz VMs on the third. Again, the VM receiving approximatel$@Hz in the GBM

solution is within the five percent error of our CPU loaderlagation.

Small cluster hot spot alleviation conclusions

To be thorough, we ran many other combinations of HSA-18[&&rments.

The experiments presented above, however, provide gooerage of the behavior
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Figure4.12 VM CPU allocations over time for GBM applied toAt$8:3.6-35. Here,
six VMs increase their desire from 213MHz to 747MHz at tim& 14 he scheduler
is activated at time 260. GBM begins to separate itself asa ggeneral purpose
scheduler by quickly finding an optimal solution requirirgyfmigrations.

of our schedulers, so presenting additional experimeesllts would be redundant.
Nonetheless, observations from the additional experisdidthighlight a few high level
characteristics not necessarily evident from the previessilts.

First, our BCPU scheduler continuously migrates VMs, eviter dinding
good schedules. However, BCPU does often treat hungry Vily fat the cost of
stealing CPU cycles due to migration overhead.

The BCPU2 scheduler tends to split the hungry VMs into destsets. Though
its schedules often maximize CPU utilization, they oftefiesun fairness. In addition,
as total desire increases further and further beyond sysipacity, BCPU2 takes longer
to converge on an assignment. These behaviors are alssatvaifected by increased
standard deviation in VM resource desires.

Our SA and GBM schedulers often quickly converge to optindlitons.

Even a very restricted SA solver often manages to find verglgomptimal solutions
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in a single iteration. Occasionally GBM takes a few itemasido converge, and in rare
instances, slowly converges over several iterations.

Table 4.1 presents total migration counts of our sched@tersach scenario.
Notice both our BCPU schedulers tend to suffer from incréasggration counts at
higher loads. Also, GBM is typically more efficient in termsmigration costs than
SA. In cases where GBM results in higher migration counts tBA, those costs are
amortized over longer time intervals. In other words, un#&, GBM does not typically

suggest large numbers of migrations at each schedulingyaite

Table 4.1 Total migration counts for small cluster hot splewéation experiments.

Experiment Scheduler | Migration Count
BCPU 33
5 VMs t0 427MHz (HSA-18:36-20) | oo ’
GBM 4
BCPU 49
5 VMs to 747MHz (HSA-18:35-35) EEPUZ 195
GBM 10
BCPU 33
: BCPU2 16
6 VMs to 747MHz (HSA-18:36-35) | ¢ >
GBM 5

Recall our VMs each have 128MB of memory. We have seen thatdsieof
migration is CPU load in Domain 0 which acts to steal CPU awagnfhungry VMs. In
addition, VM performance is impacted during migration dushadow paging overhead
in Xen. Since increased VM memory size will increase migraturation, it will act to
increase total migration cost, an important consideratiban choosing a scheduler.

Finally, keep in mind that our BCPU and BCPU2 schedulers colysider a
single resource. Since thatis all we are considering iretb&periments, these two sim-
ple schedulers perform quite well relative to our more cooapéd SA and GBM sched-

ulers. Due to other resources dependencies upon CPU, iimentabe seen whether
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considering other resources greatly affects scheduletgual

4.2.2 Large Cluster (HSA-120:20)

We now verify that scheduler behaviors observed in our sewlle experi-
ments hold at a larger scale. These large cluster hot sptiation experiments, re-
ferred to as HSA-120:20, ran 120 VMs on 20 physical machimbs. HSA-120:20 ex-
periments were valuable because they emphasized chasacseobserved in the small
scale experiments.

Again, initial placement evenly spreads the VMs so that sxenrunning on
each PM at time zero. We limit the results presented hereit@éesscenario in which 40
VMs increase their desires to 747MHz (35 percent) at 260rsmcoOther experiments

support the behaviors reported here.

Forty VMs to thirty-five percent demand (HSA-120:20.40-35)

Figures 4.13 and 4.14 contain results for BCPU and BCPU2.icBldhat
BCPU clearly outperforms BCPU2 in this scenario in termstdization and fairness.
Recall that BCPU2’s advantage was a reduction in migratognfixing assignment or-
der. However, this advantage shrinks when more resourcamttims placed upon our
system than it is able to provide. This experiment clearghhghts this weakness of
BCPUZ2.

Once again, from Figure 4.15, SA is able to find an optimaltsmiun a single
scheduling step. However, the larger system did delay fqhthe optimal schedule by
20 seconds, as VMs do not begin migrating until time 280 sésofhis step involved
migrating 110 of our 120 VMs. These migrations took a totatvad minutes and 20
seconds. This heuristic clearly does not appear to be a gbedisler for a very dynamic
system.

Finally, GBM’s behavior of making small corrections at eaigration holds
here. This behavior can be seen in Figure 4.16 where GBM roogsi adjusting its

schedule for the remainder of the experiment. Notice thai@Bes not manage to find
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Figure 4.13 VM CPU allocations over time for BCPU applied t8A4120:2040-
35. Here, 40 VMs increase their desire from 213MHz to 747MH#me 140. The
scheduler is activated at time 260. BCPU continues its laditigrating needlessly in
this large cluster setting.

either fair or maximum utilization schedules. It does coué refining and improving
its schedule however.

Table 4.2 provides migration counts for our schedulers uride HSA-
120:2Q40-35 experiment. Clearly, BCPU and BCPU2 are extremelgegpe sched-
ulers for maintaining fairness and high utilization in largystems with high demand.
It seems unlikely such simple schedulers would be of grelaievim a general setting.
Of course, our failure to find a simple scheduler which outpers our SA and GBM
schedulers does not mean such a scheduler does not exist.

The tendency of SA to make large improvements and GBM to maials
improvements to a schedule makes them ideal partners fobadhgpproach. Such
an approach would use SA to make large schedule correctiomgt cost schedules,
then switch to GBM to keep a system running near optimal thinosmall schedule

corrections. Once GBM is no longer able to find schedulesvalthreshold cost, SA
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Figure 4.14 VM CPU allocations over time for BCPU2 appliedHBA-120:2040-
35. Here, 40 VMs increase their desire from 213MHz to 747MH#me 140. The
scheduler is activated at time 260. Again, BCPU2 sufferswdwerall resource demand
is high due to non-optimal packing.

could be used again.

4.3 General Purpose Cluster Workloads

We now experiment with our scheduling heuristics under adgmthetic, gen-
eral purpose cluster workloads. Our workload generatoaset upon statistical proper-
ties of cluster workload traces collected in [LGWO04]. Intparlar, we use their results
to generate Weibull random variates for our job duratiordseponential random vari-
ates for our job inter-arrival times. These traces wereectdld over a year from five
research clusters dedicated to parallel and distributathating research. These clus-
ters ranged in size from 32 to 72 nodes. Since such trace olavatual cluster usage
does not exist, we believe this a reasonable approximatioses behavior in some vir-

tual cluster environments. To be thorough, we run our erpenmis for various values of
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Figure 4.15 VM CPU allocations over time for SA applied to H$20:2040-35.
Here, 40 VMs increase their desire from 213MHz to 747MHzm@aetiLl40. The sched-
uler is activated at time 260. SA again finds an optimal scleeitione iteration in this
large cluster. Migration count, however, is quite excessiv

job duration and inter-arrival rate.

Unlike process scheduling where it is often assumed thabeegs will con-
sume as much CPU as it is given, we randomly select a desireddc@&te rate for each
of our jobs. Certainly, it would be difficult to collect trackata on a process’ desired
CPU rate (we know of no such attempt). So, in the absence bivarld data, we have
opted to use a Weibull distribution from which we draw a jotéésired CPU rates. For
all experiments, we set the shape parameter of our CPU deWaitall distribution at
0.53 and scale parameter at 21. The values drawn from thigbdigon are interpreted
as percent of single CPU capacity of our physical nodes. We kat a minimum of
eight percerttand a maximum of 100. These parameter values result in 4&mteot
all jobs desiring eight percent (171MHz in our setting), Edgent desiring 100 percent
(2133MHz), and an average desire of 38 percent (811MHz).

5This minimum ensures we do not have too many idle clustersiirerperiments. Perhaps we could massage
distribution parameters a bit to avoid this, but we are alyespproximating an unknown distribution.
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Figure 4.16 VM CPU allocations over time for GBM applied to At$20:2040-35.
Here, 40 VMs increase their desire from 213MHz to 747MHzaetil40. The sched-
uler is activated at time 260. GBM continues to refine its daieg but doesn’t find an
optimal schedule withing 600 seconds. The GBM heuristitessifrom not maintaining
VM moves as it generates its next schedule.

In each experiment, we use our 20 node cluster running 10avimachines
for one hour. Again, VMs are initially evenly spread with 3#Ms per node. Job
inter-arrival times are exponential variates (i.e., westder job arrival to be a Poisson
process), job durations drawn from a Weibull distributiand job desired CPU cycle
rates (discussed below) are drawn from a Weibull distrdsutiFor all experiments we
study VM CPU allocations, total VM allocation, overall sgst CPU utilization, and
system fairness to hungry VMs.

To model multiple virtual clusters running on our physichlster, we ran-
domly divide our 120 virtual machines into clusters rangingsize from one to 18
VMs. For our experiments, this resulted in 12 differentwadtclusters of size 9, 18, 17,
15,12, 1, 8, 8, 3, 8, 8, and 13 VMs. Round robin initial placatad VMs is used so

that no two VMs in a cluster are on the same node. When a joleartit is assigned to
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Table 4.2 Total migration counts for large cluster hot splevvéation experiment.

Scheduler | Migration Count
BCPU 307
BCPU2 282

SA 110

GBM 27

all VMs in a randomly selected virtual cluster. So, if ourtfivgtual cluster above were
randomly chosen to run a job, that job would run on all nine iM#hat virtual cluster.
This behavior is in accordance with that observed in our Usistallation at UCSD.
Our users typically setup a virtual cluster for a particydarpose and tend to start jobs
simultaneously on all nodes in that cluster.

In these experiments, we refer to the case where no scheduleruse as
running a “NULL” scheduler. The NULL scheduler simply retgrthe current schedule
as the next assignment. We introduce the NULL schedulerdiece this experimental
setup is extremely favorable to the case where no schedulesed — especially for
more dynamic workloads. Since all VMs in a cluster are iflitiplaced round robin
onto PMs, and jobs startup simultaneously on all nodes instel, new jobs are already
evenly spread across physical machines. In addition, jobgandomly assigned to
clusters, so we are nearly evenly spreading jobs acroseliff clusters. Finally, we are
experimenting in a homogeneous environment where all palsiachines are identical.
Since this scenario is so favorable to no scheduling, angdidar doing better than the
NULL scheduler is performing quite well.

A key motivation for running these experiments is to evauabw well our
schedulers perform at different levels of cluster activityother words, how dynamic
can the job load be before our schedulers are unable to groedefit? To this end, we
run experiments for three levels of workload dynamism: lmederate, and high. Each
dynamism level uses a different value for average job iatewal times (by changing the

rate parameter of our exponential distribution) and awefal duration (by modifying
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the job duration Weibull scale parameter). Our parameterisdth inter-arrival rate and
job duration are in accordance with [LGWO04]. Values for aditdbution parameters are
specified in the respective results section.

In each section, we present results for each schedulerss tiinfind a new
schedule in addition to time to migrate VMs to their new assignts. Recall that
our schedulers base their migration decisions on one mandeage utilizations. So,
after VMs are migrated, one minute must pass before a newdatihg can occur. All
heuristics were run on a Dell PowerEdge 1750 server with BBIAtel Xeon processor
and 2GB of memory.

Note that our BCPU scheduler’'s behavior of excessive mmratresulted
in instability in our testbed in the high dynamism generaigmse workload scenario.
Kernel and Xend errors were prevalent under this scheduldra highly dynamic ex-
periments. For this reason, we exclude results for our BCgHeduler in this section.
Needless to say, the results we were able to get did not batitowidne BCPU scheduler

in this setting, so it would not be a good choice, regardless.

4.3.1 Low Dynamism

For our low dynamism general purpose cluster workload empmits, we
draw job inter-arrival times from an exponential distriboat with expected value of
120. So, jobs arrive every 120 seconds on average. Job @hsatiere taken from a
Weibull distribution with scale parameter of 240 and shagpeameter of 0.46. This re-
sulted in jobs with average duration of 567 seconds and metiieation of 108 seconds.
This may represent a cluster with a small number of usershwigigularly submit long

running jobs or run services. We refer to these as the “GP@Nexperiments.

CPU allocations

Here we study individual VM CPU allocations, total VM CPUliztation, and
overall system CPU utilization (includes Domain-0 CPU editions) in an environment

with low workload dynamism for each scheduler. Plottingtmtal VM allocation and
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Figure 4.17 VM CPU allocations over time for NULL applied t®?GW-LD. The
workload is not highly active during the one hour run.

overall CPU allocation enables us to see the CPU cost of seasigrations.

Figure 4.17 contains plots of the above values for this soenaithout a
scheduler. We plot VM CPU allocations using solid lines @es on lefty-axis), to-
tal VM allocation — as a percent of available CPU — with a dakhiee (values on
right y-axis), and overall CPU utilization with a dash-dot linel(&s on righty-axis).

Notice that there are relatively few events in this workledth jobs starting
and stopping every few minutes. Only a few jobs last under rruteiand appear as
small bumps in the corresponding VM allocation plot. Sinaeave allocating jobs to
clusters, notice that sets of allocation lines tend to @gerlThough difficult to see, this
trend breaks occasionally where clusters overlap due twtired robin scheduling. This
overlap is one source of unfairness for the NULL schedulerd¥§cuss fairness in more
detail below.

Figure 4.18 contains VM CPU allocations for the BCPU2 scledhpplied to
GPCW-LD. BCPU2 does improve overall utilization over the INUscheduler. How-
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Figure 4.18 VM CPU allocations over time for BCPU2 applie@®CW-LD. Though
better than no scheduler, this scheduler does exhibit sxeesigrations which could
rob VMs of CPU cycles at higher loads.
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Figure 4.19 VM CPU allocations over time for SA applied to GRCD. Though
migration overhead is high, SA does an excellent job finditlgzation improving as-
signments. SA is a viable scheduler in this low dynamismrenvhent.
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Figure 4.20 VM CPU allocations over time for GBM applied to @GN-LD. GBM
perfoms admirably in this environment, clearly outperforgithe NULL scheduler and
often outperforming SA. GBM isn't able to settle on a schediliring inactive periods

as does SA.

ever, BCPU2’'s excessive migrations make VM allocationy weitdly and could rob
VMs of CPU cycles at higher loads.

Table 4.3 contains costs of scheduling for all low dynamismegal purpose
cluster workload experiments. On average, BCPU2 took735 28 = 35) seconds to
find and move to a new schedule. BCPU2 generated 36 migratioaserage at each
scheduling and a total of 1231 migrations in 34 schedulinghds over the one hour
simulation. In other words, BCPU2 continued reschedulingyvary opportunity.

Figure 4.19 reveals that our SA solver performs quite welthis low dy-
namism scenario. Though migration counts are high, SA dettle ®n very good as-
signments during inactive periods.

On average, SA was able to find new schedules in 23 seconds sttnario.
On average, SA performed 109 migrations per schedule. Teimge migration count

resulted in an average of 44 seconds to migrate VMs to theiloeations with a max-
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Table 4.3 Scheduling costs for low dynamism general purpbsser workload ex-
periments.

BCPU2 | SA | GBM
Avg schedule search time (se¢) 7 23 19
Max schedule search time (sec) 18 34 | 27
Number of reschedules 34 8 20
Avg migration time (sec) 28 44 4
Max migration time (sec) 66 59 10
Avg migration count 36 109, 4
Max migration count 78 118| 20
Total migration count 1231 | 869| 73

imum migration time of 59 seconds. In total, SA took 67 ses0@d + 44 = 67) to
find new schedules and migrate VMs to their new destinatitmshis low dynamism
environment, 67 seconds is an acceptable duration forirggrat a new schedule.

Our GBM scheduler also performs very well in this environmé&mgure 4.20
contains CPU allocation plots for GBM applied to the GPCW-kEenario. GBM
clearly outperforms the NULL scheduler and often out pen®iISA. However, GBM
isn't able to settle on a schedule during inactive perioddo@s SA. Interestingly, this is
a result of VMs oscillating between hungry and satisfied ag thigrate between nodes.

From Table 4.3 GBM finds new schedules in an average of 19 dscamd
migrates VMs in an average of four seconds. This results Bige2ond average to find
new schedules and migrate VMs. Surprisingly, GBM takeslpd¢he same amount of
time to find schedules as SA. However, its schedules resualhiaverage of just four
migrations per update. This behavior gives GBM much morétaghan SA (which

helps in the highly dynamic experiments).

Fairness

We have yet to discuss fairness in detail. Previous expeaitsneave been
rather straightforward, and fairness could be deduced €&u utilization plots. Here,
however, it is not clear how fair our schedulers are since axemo way of knowing

which VMs are hungry as the experiment runs. Each of Figur2 through 4.23
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Figure 4.21 Counts (top) and Jain’s Fairness Index (bottdr@PU hungry VMs over
time for BCPU2 applied to GPCW-LD. BCPU2 is able to reducedgmyrcounts, but has
difficulty with fairness.

contain low dynamism plots of CPU hungry VMs counts (top) dath’s Fairness Index
(bottom) as the simulation runs for BCPU2, SA, and GBM. Thaseplotted against
the same values for the NULL scheduler for comparison.

We plot CPU hungry counts to show that periods where fairisegsrfect are
often periods where there are no hungry VMs in the systemo,Adscheduler able to
reduce the number of hungry VMs is actually performing wellslatisfying more VM
demands.

Figure 4.21 reveals BCPU2's occasionally has trouble raaiitg fairness as
compared with the NULL scheduler. This should not be a ssepsince the BCPU2
heuristic does not consider fairness, but tends to do wedinathere is low activity in
the workload. Also notice that BCPU2 does succeed in deicrgése number of hungry
VMs throughout the experiment. These results, combinel thi¢ utilization results,
indicate that BCPU2 is a viable scheduler in this environimen

Figure 4.22 shows that SA does very well in this scenario. ughathere is
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Figure 4.22 Counts (top) and Jain’s Fairness Index (botad@PU hungry VMs over
time for SA applied to GPCW-LD. SA does a better job of maimtag fairness than
BCPUZ2 in this environment, often finding perfectly fair sdhkes.

N
w

= = N
o [6,) o
T T :

Hungry Counts

wu
T

0

o ‘ 1200 1800 2400 3000 3600
Time (seconds)

1.00 , -
-== NULL il

008 [ o] | ,
<>1J< I I
$0.96 \ |
Z0.04f A |
¢ 0.921 l i
= L |,\ , - |
Fooor N S
»0.88
<
7 0.86/

0.84}

0.82

0 1200 1800 2400 3000 3600
Time (seconds)

Figure 4.23 Counts (top) and Jain’s Fairness Index (bottdr@PU hungry VMs over
time for GBM applied to GPCW-LD. GBM does a good job maintagfairness in this
environment.
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one brief spike, SA quickly corrects the unfairness and miadly finds a perfectly fair
schedule. SA is certainly a viable scheduler in this low Wamald activity environment,
outperforming BCPU2 in all areas.

Finally, Figure 4.23 shows GBM'’s effectiveness in mainitagyfairness in this
environment. Note that the scale is different on this faplot, and Jain’s Fairness

Index for GBM only briefly drops to 0.84.

4.3.2 Moderate Dynamism

We now increase our workload dynamism. For our moderaterdisma gen-
eral purpose cluster workload experiments (GPCW-MD), weoge job average inter-
arrival rate at 60 seconds. For job durations, we set our Wleibale parameter to 121.7
(taken from [LGWO04]) and leave our shape parameter set &t OLAis results in jobs
with average duration of 287 seconds and median duratiob eébonds. We expect to

see our slower schedulers begin to have difficulty with thenario.

CPU allocations

Here we study our schedulers in an environment with mode&vatkload dy-
namism for each scheduler. Figure 4.24 contains plots a¥iohehl VM CPU alloca-
tions, total VM CPU utilization, and overall system CPU izéltion (includes Domain-0
CPU allocations) for this scenario without a scheduler. \'é&¢ YM CPU allocations
using solid lines (values on leftaxis), total VM allocation — as a percent of available
CPU — with a dashed line (values on rigptxis), and overall CPU utilization with a
dash-dot line (values on rightaxis). Notice that our workload is now more dynamic
than the previous experiments with many more jobs arrivimj@nding during the one
hour experiment.

Figure 4.25 contains VM CPU allocations for the BCPU2 schedapplied
to GPCW-MD. Clearly, BCPU?2 is not ideal for this more dynarsétting. Notice that
most schedules are less desirable than our round robialipiicement. Also, BCPU2

seems to begin having trouble finding decent schedules abxippately time 1500.
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Figure 4.24 VM CPU allocations over time for NULL applied tdGW-MD. The
workload varies moderately during the one hour run.
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Figure 4.25 VM CPU allocations over time for BCPU2 appliedaBCW-MD. The
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Figure 4.27 VM CPU allocations over time for GBM applied to GN-MD. GBMs
low migration count adjustments easily handle this scen&BM clearly outperforms
the NULL scheduler.
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This could be due to poor packing of the workload combinatB8PU2 does recover
from this toward experiment end, but this is obviously a pdaice under this scenario.
Table 4.4 contains costs of scheduling for all moderate ahysim general pur-
pose cluster workload experiments. On average, BCPU2 to¢k-8 32 = 35) seconds
to find and move to a new schedule. BCPU2 generated 43 migsatio average at
each scheduling and a total of 1469. These are a bit higharttfuse of the low dy-
namism experiments. These higher migration counts are urptising in this more
dynamic setting with more VM CPU demand changes. Again, BERligrates VMs
on 34 occasions over the one hour simulation, continuinatsit of rescheduling at

every opportunity.

Table 4.4 Scheduling costs for moderate dynamism generpbpe cluster workload
experiments.

BCPU2 | SA | GBM
Avg schedule search time (se¢) 3 19 14
Max schedule search time (sec) 9 26 21
Number of reschedules 34 8 24
Avg migration time (sec) 32 50 4
Max migration time (sec) 173 86 11
Avg migration count 43 106| 4
Max migration count 85 117| 20
Total migration count 1469 | 851| 88

From Figure 4.26 SA begins to reveal its limitations. Highgration counts
preclude SA from scheduling often enough to improve overNbi L scheduler. SA
was only able to reschedule eight times during the one hoperexent. On many
occasions, SA performs worse than NULL.

On average, SA was able to find new schedules in 19 secondsavétage
migration time of 50 seconds. This total of 69 seconds to fimtrove to new schedules
is nearly the same as the low dynamism experiments. Howiweris not fast enough
for this more dynamic setting.

Our GBM scheduler now begins to show its superiority for gahpurpose

workload scheduling as it performs very well in this envimeent as well. Figure 4.27
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Figure 4.28 Counts (top) and Jain’s Fairness Index (bottoh}PU hungry VMs
over time for BCPU2 applied to GPCW-MD. Though it reducesdmyrcounts, BCPU2
results in poor fairness — occasionally under 65 percent.

contains CPU allocation plots for GBM applied to the GPCW-M&enario. Again,
GBM outperforms the NULL scheduler. From Table 4.4 GBM findsvrschedules in
an average of 14 seconds and migrates VMs in an average aféoands. This results
in an 18 second average to find new schedules and migrate Viysn AGBM migrates
only four VMs on average. These small schedule adjustmems@BM much more

agility than the other schedulers, making it superior is gmvironment.

Fairness

Each of Figures 4.28 through 4.30 contains plots of countSRI) hungry
VMs (top) and Jain’s Fairness Index (bottom) as the simafatuns for BCPU2, SA,
and GBM. These are plotted against the same values for the_LNdheduler for com-
parison.

Figures 4.28 and 4.29 show that BCPU2 and SA are able to rédeceimber

of hungry VMs. However, BCPU2 often has difficulty maintaigifairness with Jain’s
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Fairness Index dropping below 0.65 for a period. SA does artgob of maintaining
fairness. However, both of these schedulers performedyioarverall CPU utilization,
making them undesirable for this scenario.

Fairness for GBM can be seen in Figure 4.30. Compared to BGIPIdZSA,
GBM does very well in terms of fairness. However, GBM doesnaeduce the hungry
counts as much as the other two schedulers. NonethelesssGBerior utilization

and fairness measures make it a better choice here.

4.3.3 High Dynamism

For our high dynamism experiments, we set our average antefal rate at
25 seconds. We refer to these as the “GPCW-HD” experimeritthié\arrival rate, we
ran experiments with job durations (in seconds) taken frove#ull distribution with
scale parameter of 60 and shape parameter of 0.46. Thesaqiara correspond to a

Weibull distribution with mean of 142 and median 27.

CPU allocations

Figure 4.31 shows individual VM CPU allocations (solid kydor this sce-
nario without a scheduler. Notice that the workload is hyghynamic and varies consid-
erably over the one hour run. Many jobs last under a minuteappear a small bumps
in the corresponding VM allocation plot.

Figure 4.32 contains VM CPU allocations for the BCPU2 scletapplied to
GPCW:-HD. Clearly, BCPU2 is not ideal for this dynamic segtikExcessive migrations
impose high CPU loads in the node Domain-0s, robbing cycl@s f\VMs. This is
evident from the often large difference between the VM tatadl overall utilization
lines in Figure 4.32. Notice that most schedules are lessaddés than our round robin
initial placement.

Table 4.5 contains costs of scheduling for all high dynamgeaneral pur-
pose cluster workload experiments. Unfortunately, timéind a new schedule was

not recorded in these experiments. However, we expect timaes to be similar to
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Figure 4.31 VM CPU allocations over time for NULL applied t®GW-HD. The
workload varies considerably during the one hour run.
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the previous two scenarios. Migration time averaged 86rmxavith a maximum time
of 258 seconds for this scenario. So, on average, BCPU2 tblglast 86 seconds to
find and move to a new schedule. On average, BCPU2 generatedyéations at each
scheduling and a total of 1410 migrations in 21 schedulesttxeone hour simulation.
These numbers shine light on BCPU’s poor performance in sbénario.
Finding optimal schedules is of questionable value if theetit takes to move from one

schedule to another is longer than the average time betwesddtoad change events.

Table 4.5 Scheduling costs for high dynamism general perphsster workload ex-
periments.

BCPU2 | SA | GBM
Avg schedule search time (se¢) NA NA NA
Max schedule search time (sgc) NA NA NA
Number of reschedules 21 12 28
Avg migration time (sec) 86 134 9
Max migration time (sec) 258 366 | 59
Avg migration count 67 113 6
Max migration count 91 119 20
Total migration count 1410 | 1358| 162

Figure 4.33 reveals that our SA solver does not fare muclebetigain, ex-
cessive migrations take away significant cycles from the \tMsnselves. This envi-
ronment is clearly too dynamic for a scheduler with such higgration counts. On
average, SA performed 113 migrations per schedule in tl@sas®. This migration
count resulted in an average of 134 seconds to migrate VMeeiortew locations with
a maximum migration time of 366 seconds! As with BCPU2, figdamd moving to
optimal schedules takes longer than the average time betweskload change events.
Also notice that SA was only able to find 12 new schedules duts tong migration
times. This lack of agility makes SA impractical for this se€o.

As we might expect, our GBM scheduler performs much betteérigdynamic
environment. Figure 4.34 contains CPU allocation plot<¥BM applied to the GPCW-

HD scenario. GBM’s tendency to make slight adjustmentseathrent schedule results

S|t is also unadvised for this time to be greater than the hjstath which the migration decisions were made.
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in better schedules with little overhead. As seen in the Tidstinutes, GBM is able to
find much better schedules when they exist. Also, it neves tagre than a few percent
from the NULL scheduler’s overall utilization levels.

Table 4.5 reveals the key reason GBM is superior to BCPU2 @dh $his
scenario. GBM'’s average migration count of 9 and averageatiamn time of 6 sec-
onds allowed it to make 28 slight adjustments totaling 16@rations over the hour
long duration. Such agility is critical to successful sahled in this highly dynamic

environment.

Fairness

Each of Figures 4.35 through 4.37 contains plots of countSRIf) hungry
VMs (top) and Jain’s Fairness Index (bottom) as the simutatuns for BCPU2, SA,
and GBM. These are plotted against the same values for the_LNdheduler for com-
parison.

Figure 4.35 reveals BCPU2's inability to effectively maiimt fairness as com-
pared with the NULL scheduler. This is not a surprise sineeBEPU2 heuristic does
not consider fairness.

Figure 4.36 shows that SA also suffers in its ability to effedy maintain
fairness. Although somewhat better since it does consalardss, SA is simply too
slow to correct bad or unfair schedules. Also notice that 8&mincreases the number
of hungry VMs. This increase is due to the high migration bead which steals CPU
cycles from VMs. Clearly, SA is inappropriate for this emnment.

Finally, Figure 4.37 shows GBM’s effectiveness in mainitagrfairness in this
dynamic environment. The fact that GBM performs at least e & NULL in this
highly dynamic environment is quite impressive. GBM’s lovignation count adjust-
ments make it agile enough to effectively schedule in emwvitents with this level of
dynamism.

In reality, as clusters are started and stopped, we expetlLNtJbe inade-

guate for any level of dynamism. Furthermore, our overlygigtic assumption that
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Figure 4.37 Counts (top) and Jain’s Fairness Index (bottdr@PU hungry VMs over
time for GBM applied to GPCW-HD. GBM does a decent job maimtag fairness in
this dynamic environment.

all VMs in a cluster have the exact same resource demand$yHalors the NULL
scheduler. In reality, we don’t expect this to hold in eveage. Therefore, a GBM like

scheduler is recommended over doing no scheduling, everore gynamic environ-
ments like this.

4.4 Conclusions

In this chapter we presented experimental results for cwedialing heuristics
under two scenarios: hot spot alleviation and general maptuster workloads. Small
scale hot spot alleviation experiments shed light on eaobdider’s behavior when con-
fronted with an imbalance in resource demands across tis¢ecluWe found that our
less sophisticated Balanced CPU (BCPU and BCPU2) schedutge able to find rea-
sonable schedules, but often continued needlessly regigdResistance thresholds

and the constant ordering modification of BCPU2 did not &evthis. Larger scale
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experiments confirmed that these behaviors hold for higheraers of VMs and PMs.

Our Simulated Annealing (SA) and Greedy Best Move (GBM) dcihers dis-
played their ability to quickly find optimal solutions in sthacale hot spot alleviation
experiments. However, SA suffered from high migration dsua move from the cur-
rent assignment to its improved assignment. GBM, on therdtard, found good as-
signments in just a few migrations although it occasioneadtyuired multiple scheduling
rounds to arrive at optimal solutions. These charactessteld for both schedulers in
the larger scale experiments.

General purpose cluster workload experiments confirmedbay of the be-
haviors witnessed in the hot spot alleviation experimeald im a dynamic environment.
These experiments also revealed weaknesses in our scisegludier certain workloads.
First, we did not even present results for BCPU since its&sige migration counts cre-
ated kernel and Xen instabilities in our testbed. SimildBIgPU2 often resulted in high
migration counts, albeit not as severe as BCPU. BCPU2 seswiitfirmed that BCPU2's
inability to recognize good assignments and not schedulem@appropriate for even
low dynamism environments. Also, BCPU2 often resulted inrp@irness between
hungry VMs since it does not consider fairness in its schaduieuristic.

Although SA worked well in our low dynamism general purposester work-
load experiments, its high migration counts made it inappabe in more dynamic set-
tings. Further work on reducing SA migration counts wouldeguired to make SA a
viable general purpose scheduling heuristic.

GBM'’s low migration count adjustments made it agile enougleffectively
schedule over the full range of dynamism levels testede#isurrce allocation prediction
based move selection made its moves more likely to be utilifgroving moves —
resulting in vastly improved utility in just a few migratisnOur experiments reveal that
GBM is clearly suitable for scheduling in a range of clust@rionments.

Though GBM found and moved to new schedules much faster thaatber
heuristics, rules of thumb for how fast a scheduler shoulwle effective are, unfortu-

nately, difficult to specify. This really depends upon whadiacteristics of the workload
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one wishes to target. For example, even in highly dynamiacenments, there exist un-
derlying stabilities which an administrator may wish tayetrover short-lived workload
events. In a general purpose setting, it is easy to imagime ssers will run long jobs
(e.g., compute jobs) or services (e.g., apache), whilergthum many very short lived
jobs (e.g., grep). It may be reasonable to schedule infretyufor these longer lived
jobs and disregard the short jobs as background noise wbhehmbt significantly affect
the long term balance of the system.

In our environment, we chose one minute as our minimum sdimedfre-
guency and based our decisions on a VMs one minute load adrathis setting, the
longer a process runs, up to one minute, the more impactlihase on new schedules.
Though not absolutely necessary, we recommend that a deindxtuable to find and
arrive at new schedules in less time than the load averagevattused to determine its

new schedules.



Chapter 5

Conclusions

Managing virtual machines in a virtual cluster environmposes difficult
challenges for site administrators. In this dissertatiopresented Usher, an extensi-
ble, event-driven management system for managing clustefistual machines which
vastly improves an administrators ability to confront theltenges presented by this
complex computing environment. Usher’s extensibility ¥gaplugin system adds the
flexibility to integrate Usher into a site’s existing inftascture and enforce a site’s ad-
ministrative policies and operational goals.

Usher improves administrator efficiency in both virtualstkr setup and main-
tenance. Usher enables clusters of arbitrary size to béecr@dth a single command,
reducing cluster setup time from hours to seconds. Usheariimpsystem relieves ad-
ministrators from the need to manually enforce their sitgministrative policies or
approve all VM operation requests. This delegation of attyhallows administrators
to push many VM administration tasks out to the users tharasePlugins also enable
administrators to charge Usher with the responsibility @imtaining their site’s oper-
ational goals. Scheduling plugins continuously monitoite'soperational status and
adjust VM assignments to PMs (via transparent live migrgtiwhen goals are not being
met.

| implemented one such scheduling plugin and designed $tesriof varying

levels of sophistication for optimizing the utility of VM agnments to PMs based upon

142
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utility functions designed for a site’s operational objees. | defined the Fair Maxi-
mum Utilization (FMU) problem as a possible operationallgoathe SysNet group
and proved its inclusion in the set of NP-hard problems. Erpental results support
that, using the Greedy Best Move (GBM) heuristic which magesd VM resource
allocation predictions and only slight schedule adjustisiddsher is able to effectively
maintain the goal of fairly maximizing resource consumptior virtual cluster work-

loads of varying levels of dynamism.

Work remains for future study. There are a number of addifiexperiments
which could be run to show my scheduler’s adaptability toemmmmplex computing en-
vironments. Time constraints did not allow for experiment®Iving scheduling across
a cluster of multi-core computers. Likewise, experiments iheterogeneous environ-
ment would most likely have revealed the inadequacy of raobah placement without
scheduling in such a cluster. My schedulers consider fagoch as resource capac-
ity (e.g., CPU speed) and multiple resource instances pee (@.g., multiple CPUSs),
yet experimental results for these environments were nogrgéed. Such results would
further illustrate the power of the schedulers presentee. he

Better scheduling heuristics should also be sought. Adterheuristics with
the properties of good resource allocation predictionssandll schedule adjustments
should be explored, in addition to improvements to GBM fts8BM'’s lack of tracking
the moves it will suggest causes it to make mistakes suchgggesting migrating two
hungry VMs to the same node. It, therefore, misses many ganesafter the first.

It may also be worthwhile to attempt to reduce the number ofessuggested
by the simulated annealing (SA) heuristic by categorizing @liminating unnecessary
moves. For example, SA may suggest swapping two VMs withyekentical resource
demands in its search for better assignments. An efficiethadefor detecting these
unnecessary moves may make SA a viable option for VM schegluli

The GBM-SA hybrid approach was not explored. In additionyenefficient
metaheuristics such as Tabu search could be evaluatede Tkesistics are likely to

reduce migration counts due to their faster convergenceramd efficient searching of
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the solution space.

Another area for further study is the relationship between-6&PU resource
consumption and induced CPU load. Due to the strong depeadahnon-CPU re-
source availability on CPU availability, the importance aainsidering non-CPU re-
sources in scheduling is not known. Once established, stihgdheuristics can use this
relationship to better predict node-local resource atiooa when VMs are migrated to
and from physical nodes. Comparing results from a multbwese scheduler with those

from a CPU-only scheduler will reveal whether scheduling@®U alone is sufficient.



Appendix A

Code Overview

Code for the Usher system is written in Python and makes heaeyof
Twisted [twi], an event-driven networking framework alsaoitten in Python. In par-
ticular, Usher uses Twisted’s Perspective Broker moduf@dwide asynchronous RPC
between clients and the controller and LNMs and the cortroBee the documentation
on the Twisted site for the fine details of using this modules shown in Figure 2.2
of Section 2.3.2, the Usher system consists of three mairpoaoents: a centralized
controller, local node managers (LNMs), and clients.

Let us go straight to the code to see where these are implechddélow is a

tree listing of the code directoryi§her /) in the top-level project directory.

|-- __init__.py

| -- api.py

| -- cal |l backs. py

| -- config.py

| -- config_skel.py

-- vm py

-- app.tac
-- client.py
-- cluster. py

C
|-- __init__.py
I
I
I
| -- config.py

145
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| -- I nm py
| -- request. py
| -- server.py
‘-- vm py

|-- __init__.py

| -- app.tac

| -- config.py

| -- server.py

| -- stats_upldr.py
|

-- vm py
-- xen_vnm py

-- sanpl e. py
-- sanpl e2

Y

|-- __init__.py
I

|

| |-- __init__.py
| “-- plugin. py
‘-- test.sh

utils

|-- __init__.py
| -- config.py

| -- credcheck. py
| -- events. py

| -- msc. py

| -- notify.py

| -- plugin. py

| -- result.py

| -- upb. py

“-- usherr. py

6 directories, 37 files

Also in the top-level directory areonfi gs/ andi nitscripts/. The
confi gs/ directory contains default configuration files for each o ttontroller,
LNMs, and client API. Each file contains a line indicating wi&Jsher will check to
find the file or an environment variable to specify where tklobhei ni t scri pt s/
directory contains simple startup scripts for both the locale managers and controller.
After editing these files for your installation, they shoblkel placed where your system

will find and run them at boot time or run manually when you wandtart the services.
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A.1 Usher Components

From the listing above, notice that each of the main compisess a direc-
tory in theusher/ directory wherein its source code resides. We now discuesetim

turn.

A.1.1 Controller (usher/ctrl/)

Beginning with the controller, we see eight files (ignorihgt.i nit __. py
files). Below, we give a brief explanation of the purpose afleand any important
details. For further information, please refer to the cadeli. Also in this section,
we introduce a few Twisted objects used by Usher without mexgitanation. For now,
please bear with us and we will give a more detailed explanatf these objects in the

following section.

app. tac: This is a Twisted application file. In a nutshell, Twisted ad®s facilities
for creating a forking, daemonized server using their “tdiispplication. This
saves us from having to write that part of the code ourseNRegular Python
code is used in thapp. t ac file which essentially contains code for starting var-
ious Twisted servers under a single controlling procesgoufneed an additional

listening server (or client connection) at process stastiould be added there.

client. py: This file provides the implementation of the TwisteReal minterface
for use by clients as well as the Client API (thb. Avat ar). This is the API

exposed to clients connecting to the controller.

cl ust er. py: This defines the Cluster object which ipla. Cacheabl e. Not much
is really done with this at this point. It is updated and madalable to plugins

for their use.

config.py: This file subclasses the Config object (found in
usher/utils/config.py). It contains aConfigQCbj specification

file which specifies what configuration parameters will beepted and default
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values for each. Each new configuration parameter shouldddedato this
specification. Configuration files are read at service gtaand values set at that
time. Theconf i g. py file contains a function nameget _cf g for retrieving a
reference to the configuration object. An optional sectiarameter can be passed

toget _cf g to only get values from a particular section of the configorafile.

| nm py: Thisisthe LNM counterparttol i ent . py. It provides the implementation
of the Twisted Real minterface for use by LNMs as well as the LNM API (the

pb. Avat ar). This is the API exposed to LNMs connecting to the controlle

request . py: This file defines theRequest object and allRequest subclasses
(St art Request. M gr at eRequest, etc). Every request to the controller
from a client generatesRequest object which is first passed to plugins regis-
tered for that request type. After traversing its pluginiobathis object is used to

initiate the request via itsxecut e method.

server. py: The core server code can be found here. Looking at the codidor
controller, we first see thesher Ct r | class. ThaJsher Ct r| class is defined
here which is basically a container class for maintainiraipgl state variables and
provides accessor methods to those needed elsewhere.itioadtie constructor

sets up the services we start in tygp. t ac file and retains references to those.

vm py: This file provides the implementation of th€M object. This is a
pb. Cacheabl e which gets passed to clients and LNMs. Clients which own
a VM always receive a cached copy of tlobject on the controller. Likewise,
LNMs get a cached copy for every VM running locally. This altj@rovides
most methods for manipulating VMs (e.gt, ar t , shut down, m gr at e, etc).

In addition, all operations on a particular VM are seriaitere.

A.1.2 Unraveling Twisted

Before moving on, a few notes on what all the Twisted lingaegove really

means, and how Twisted’s Perspective Broker works are ierord
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First, in Twisted’s Perspective Broker moduleRaal mgenerates capabil-
ities which are returned to authenticated clients. In Tedsspeak, thdreal mre-
turns an Avat ar”, which is a remote reference to an API. Real min Twisted
gets passed along with a list of Twisted credential chedlsensiething that implements
thet w st ed. cred. checkers. | Credenti al sChecker interface), to the con-
structor of thet w st ed. cred. portal . Portal class to generate olort al .

From the Twisted APl documentation [twi] fori st ed. cred. portal . Portal :

A Portal is associated with onBeal mand zero or more credentials
checkers. When a login is attempted, fert al finds the appropriate

credentials checker for the credentials given, invokeand if the creden-

tials are valid, retrieves the appropri#eat ar from theReal m

That about says it all as far a®ortal s are concerned. The
Portal is then given to the server factory for perspective broker
(tw sted. spread. pb. PBServer Factory), which is passed to the
tw sted. application.internet.SSLServer method (in app.tac)
to connect the factory to the network and start the Twistesheloop.

Getting down to the gory details, when a client connectsécctintroller (We
restrict the discussion @ i Real msince it is basically the same faNMReal n), the
request Avat ar method of theCl i Real minstance gets fired. This method returns
a reference to pb. Avat ar (a remote API reference) to the client. This method does
a few things, like add the actuélvat ar to the client’s dictionary in th&sher Ct r |
instance if it does not already exist, and callsAvat ar 's attached method.

More interesting is then nd parameter to the equest Avat ar method.
This is a remote reference back to the client which is pasgeléclient when running
login. Through this, the controller is able to call back noeth which the client exposes
to the controller (by prepending the method names wéhot e_). This is quite handy
for sending notifications back to the client. Finally, netibat ther equest Avat ar
returns a 3-tuple. The first item of the tuple is simply theifdace which théAvat ar
implements. The second is the remote reference tAtted ar . The third is a no-

argument function which the protocol should call when thentlconnection has been
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lost.

Now, the fun begins. Continuing with the client, when a dieannects (via
| ogi n), thed i Real minstance returns a reference to an instance ofdheent
(which is anAvat ar). This Avat ar is essentially a remote reference to an API
exposed by the controller to the client. With this remoterefice, the remote client
can call any methods beginning witpér specti ve " inthe d i ent class (i.e., the
pb. Avat ar class). These methods, in turn, generfdggjuest objects which are
passed to plugin chains before being carried out.

In Twisted, all remote method calls are asynchronous, imabelg return-
ing aDef err ed (i.e., aninstance of thiews st ed. i nt er net . def er. Def err ed
class). Thidef err ed is then called back with the result of the remote proceduite ca
when it becomes available. Handling this result is done wallback chain which is
created on the caller’s side using tbef er r ed’s addCal | back method. A call-
back chain can be made arbitrarily long by simply adding neord more callbacks
with this method. The first callback in the chain is passedrésalt of the RPC as
its first parameter. Subsequent callbacks are called wéhrébult of the previous as
their first parameter. Errors can be handled in a similar raaosing theDef er r ed’s
addEr r back method. The fine details of Twistddef er r ed can be found in the
main Twisted manual.

So, nearly all remote API calls are followed by the creatiba callback chain
to handle the results. Hence, all the real work is done bytfons added to the callback

chain in the APl method.

A.1.3 Local Node Manager (isher /| nnt)

Next, we give a brief explanation about the purpose of eacheof. NM files

and any important details. For further information, seecibae itself.

app. t ac: See the explanation for the controlleapp. t ac file above.

confi g. py: See the explanation for the controllec’snf i g. py file above.
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server. py: The main LNM server code can be found here. It also provide\tPl
used by the controller to request VM administrative opereti These methods

are found in the LNM class beginning witlh €not e .

vm py: The LNMVMclass is implemented here. This iph. Renpt eCache object
for theVMobijects created at the controller. This file handles settpthe cached
copy and methods for keeping it synchronized with the Y&abbject at the con-

troller.

xen_vimm py: This file provides a wrapper around the Xen virtual machineager
administrative API for use by the LNM. This wrapper is usedtbg LNM to

manage locally running virtual machines.

LNMs are simply clients of the controller which connect toifhedlent service
than Usher clients. Being a client is slightly differentrfr@ server, and the main class,
LNMin the LNM's ser ver . py file, subclassepb. Ref er enceabl e. This allows
our main class to define methods beginning witnot e_ to be made available to
anything holding a reference to th&lMinstance. Hence, when our LNM server calls the
| ogi n function, it passes a reference to itself (¢ie ent argument), to the controller.
Now, any methods beginning witlt €not e_” can be called by the controller.

The controller is not a client of the LNMs, since the PB prailas symmetric
once a connection is established — each end has a refereageABI| on the other.
So we make the LNM the client in this connection since its measier for the LNMs
to find the centralized controller than the other way arouimdaddition, we want the
LNMs to have to provide credentials to the controller betogeoming a trusted member
of the system. Users may not want their VMs running on unaniit&ted nodes.

Finally, notice that all VMM specific code has been pulledini a separate
module. The module should be namedMM t ype>_VMM py. The LNMclass of
server . py subclasses theNMVBase class of the VMM specific module. Currently,

only Xen_VMM py exists.
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A.1.4 Client API (usher/cli/)

Next, we give a brief explanation about the purpose of eathetlient files

and any important details. For further information, seecibae itself.

api . py: This is a library which clients can use to access the Ushetraiter. De-
velopers wishing to tie their application to the Usher systean use the API
presented irapi . py to do so. Clients create an instance of & by simply
importing api. From there, the instance can be grabbed ulewpi . get _api

method.

cal | backs. py: This provides a callback interface which applications caloctass
to receive event notifications. Applications must overtide methods there to

receive callbacks for the respective event.
confi g. py: See the explanation for the controllec’snf i g. py file above.

confi g_skel . py: Thisis a skeletowonf i g. py file for use by client application

writers to define configuration options for their applicago

vm py: See the explanation for the LNMam py file above.

A.1.5 Utilities (usher/util s/)

Utility modules are located in thesher / ut i | s/ directory. These include:

confi g. py: Other modules get their configuration by importing this miedand us-
ing theget _cf g function to receive &onf i gbj instance containing configu-

ration parameters. This module also adds a few parametes.typ

credcheck. py: Twisted’s checkers. | Credenti al sChecker interface is
implemented here to allow plugins registered for ¢hhe ent _aut henti cat e
and|l nmaut hent i cat e events to authenticate users. See the Appendix C.2

for additional information on writing credential checkers
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event s. py: Thisfile contains a dictionary with all valid events for whiplugins can
be registered in the Usher system. These are listed in App@&adrhis file also
defines the importariEvent Li st Di spat cher class which is the object with

which plugins are registered to be called for the respeetiant.

m sc. py: A few miscellaneous methods which do not really belong argretelse

are implemented here.
noti fy. py: This file contains logging and error notification methods.

pl ugi n. py: This file provides theJsher Pl ugi n class which all plugins subclass.
It also contains utility methods for finding available plagiat controller startup

and handling plugin specifications.

resul t. py: The very importantUsher Result class is defined here. An
Usher Resul t instance is returned by the controller for most client ARIsca
It slso contains thé&sher ResPkgr class which packages results from a list of

Def er r eds from an API call into arUsher Resul t .

upb. py: This file is necessary because of Twisted’s inadequate wtietiehecking

system.

usherr. py: All Usher exceptions are defined here.



Appendix B

Usher Events

Below is a complete list of events in the core Usher systems [I$t can be
extended by plugins.
Client Events:
e client_authenticate: A client is attempting to authenticate.
e client_connect: A client has connected.

e client_disconnect: A client has disconnected.

Cluster Events:

e cluster_register: A new cluster has been registered with the controller.

Controller Events:

e ctrl _start: The Controller has started.

list_request: A request to list VMs has been received.

periodic: A periodic timer has fired. For scheduling periodic tasks.

timer: A timer has fired. For scheduling 1-shot future tasks.

request: A request has been received (any type).

154



155

e Inm_list_request: A request to list LNMs has been received.
e api_extension: An api extension method has been called (pseudo event gothin
called)
LNM Events:
¢ Inm_authenticate: An LNM is attempting to authenticate.
e Inm_connect: A Local Node Manager has connected.

e Inm_disconnect: A Local Node Manager has disconnected.

VM Events:
e cycle: A VM has been cycled.
e cyclefailure: A VM cycle has failed.
e cyclerequest: A request to cycle a list of VMs has been received.
e migrate: A VM has been migrated.
e migrate_failure: A VM migration has failed.
e Mmigrate_request: A request to migrate a list of VMs has been received.
e pause:A VM has been paused.
e pausefailure: A VM pause has failed.
e pauserequest: A request to pause a list of VMs has been received.
e poweroff: A VM has been powered off.
e poweroff_failure: A VM poweroff has failed.
e poweroff_request: A request to poweroff a list of VMs has been received.

e reboot: A VM has been rebooted.
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reboot failure: A VM reboot has failed.

reboot_request: A request to reboot a list of VMs has been received.
register: A VM has been registered with the controller.

resume: A VM has been resumed.

resumefailure: A VM resume has failed.

resumerequest: A request to resume a list of VMs has been received.
shutdown: A VM has been shutdown.

shutdown_ failure: A VM shutdown has failed.

shutdown_request: A request to shutdown a list of VMs has been received.
unregister: A VM has unregistered with the controller.

start: A VM has been started.

start_failure: A VM start has failed.

start_request: A request to start a list of VMs has been received.

state change: The state of a VM has changed.



Appendix C

Writing Usher Extensions

In this Appendix, We present the details of writing Ushereesions. Recall
that there are three ways to extend Usher: clients, plugimsVMM APl wrappers. We

discuss each of these in turn.

C.1 Clients

Usher client applications utilize the Usher client API
(usher/cli/api.py) to interact with the Usher controller. Clients import
usher.cli. api, then create amsher. cli. api . APl instance for interaction
with the controller.

After that, it is a simple matter of having your applicatiogeuthe methods
provided by yourAPI instance. See the docstrings in theher / cl i / api . py file
for information on using these methods (signatures, pat@mndescriptions, etc).

Concerning configuration files for your clients, first decigen an appropri-
ate name for a section title for your application’s configiora file. For exampleush
uses tsh” for its configuration file section. Then, using tbenf i g_skel . py file
included with the Usher client API source code, create a gardtion file handler for
your application by specifying theecti on_ti t| e variable and your configuration
specification and saving it @onf i g. py in your application’s source directory.

See the the ConfigObj Validation section of the ConfigObj fdatocumenta-
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tion for details on writing a specification. A specificati@miot required, but is probably
a good idea. It is fairly straightforward to write one usimg tConfigObj docs and ex-
amples.

With the above, configuration files will be read from:

e /etc/usher/ <sectiontitle>. configwhere Sectiontitle”is

whatever you named your section.
e /.usher/<sectiontitle>.config

e anything pointed to by the environment variaklSECTI ONLTI TLE>_CONFI G

(where "SECTI ONLTI TLE” is whatever you named your section capitalized)

To get both your application’s and the client API's configioa sections as a dictionary
of dictionaries, just call thget _cf g method without specifying a section. Then, to get
options from a particular section, it is just a matter of xidg with that section first.
For example, to get the value of the client ARtsr | _host option, use

cfg = config.get _cfg()
ctrl _host = cfg[ cli’][ ctrl_host’]

If your section (hamedrfysect i on”) has an option namedtyopt ™

myopt = cfg[’ nysection ][’ nmyopt’]

If you only need options from a particular section, you caeac#y that section in the
get _cf g call. Then, you only need the option as an index. For exanfpleur section
(named frysect i on”) has an option namedtyopt "

cfg = config.get_cfg( nmysection’)
nyopt = cfg[’ nyopt’ ]

For additional details of writing Usher clients, pleasergb the Usher source

code.
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C.2 Plugins

The usher/ util s/ pl ugi n. py file provides theUsher Pl ugi n class
which all plugins must subclass. Check out this class to skatw does. The
most important thing to see here is that subclassésber Pl ugi n must define the
ent ry_poi nt method.

When a plugin is registered for an event, an instance dfistser Pl ugi n
subclass is placed on the callback list for that event. Wherorresponding event fires,
theent r y_poi nt method is called for each plugin on the callback list in orofgori-
ority (set by the order instance variable or order of regigin). The arguments passed
to the plugin are given in Appendix B (and also in theher/ uti | s/ events. py
file).

When the plugin completes execution,etst r y _poi nt method must return
a tuple of the same type as it received. That is, the retura typtheent r y _poi nt
method must be the same as its arguments. This is necessaeytkis is passed to
subsequent plugins on the same callback list. This is natytdlgat your plugin cannot
modify these arguments (for mutable objects), or replaemtffor immutable objects).
On the contrary, being able to modify these arguments orrestmething different (but
with the same type) is a very powerful feature of the callbestk

If your plugin will be registered for multiple events, tlent ry poi nt
method will essentially be a dispatcher to the appropri@gsomethod designed to han-
dle the event. As a simple example, let's look at &rd r y_poi nt method for the
Usher DNS plugin:

def entry_point(self, xargs):

if self.event == "register’:
vm = ar gs| 0]
sel f.zone = vmusherctrl.cfg.get(’ name_suffix’)
sel f.add_vm(vm

elif self.event == ’unregister’:
vm = ar gs] 0]
self.zone = vmusherctrl.cfg.get(’ name_suffix’)
sel f.renmove_vm(vn)

return args
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For ther egi st er andunr egi st er events, avVM object is passed as
the only item in thear gs tuple. Theent ry_poi nt method calls the appropriate
method based on the event for which its instance was regsteklso notice that this
ent ry_poi nt method simply returns ther gs tuple it received unmodified.

For a more complicatednt r y_poi nt method example, see the Usher IP
Management plugin.

Getting back to théJsher Pl ugi n class, plugin writers also to set the fol-

lowing class variables in thelsher Pl ugi n subclass:

e nane - plugin name (often justnane_.)
e aut hor - plugin author

e descri pti on - brief description of the plugin (often justdoc __ if you have

added a docstring to your module)

e ver si on - plugin version

Also, plugin writers should define their plugin’s configuoat specification
in thespeci fi cati on variable at the top of their plugin module, or in the plugin’s
__init_. py file if the plugin is a package rather than a single file. SeeCinefigObj
Validation section of the ConfigObj documentation for abaial details on writing a
specification. A specification is not required, but is prdpabgood idea. It is also
fairly straightforward how to write one using the ConfigOlojcd and examples. Also,
other plugins are a great place to look for sample specidioati

Plugins should also be shipped with a sample configuratien(dit least in
a README) which shows an example of registering the plugid amat events the
plugin was written to handle. See the README that ships withwdns plugin for an
example.

Optionally, plugins can create new events for which pluges be registered.
This is another powerful feature of plugins. To do this, dyngpeate a dictionary named

events in your plugin module or in your plugin packagdsni t __. py file with the
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name of the events as dictionary keys, and a brief desanigticeach event as values.
Then, at the appropriate point in your plugin, call the coliér'sf i r e_event method,
passing the new event name as the argument.

Two sample plugins have been included in the main distiouin the
usher/ pl ugi ns directory. The firssanpl e. py is a single file plugin which writes
a few messages to the controller’'s log file. In addition, filescreates a new event
called ‘sanpl e_event ” which it fires after sleeping for five seconds. The second
sample, sample2, is a plugin package illustrating mukifiilugin setup. This sample
also merely prints a few messages to the controller’s log file

This should be all you need to get started writing your pludfiryour plugin
needs to access or modify controller state, you will needaiilfarize yourself with
the controller code. Start by reading the Code Overviewige@bove, then digging
into the code and docstrings therein. Also, be sure to chatlay existing plugins
for additional examples. Plugins are typically short, &fdes, so going to the code is

often the best course of action when you have questions.

Credential Checkers

Writing a credential checker is surprisingly easy. Cre@dntheck-
ers are simply plugins registered for theli ent _authenticate and
| nmaut henti cate events. These receive a tuple of the form:((
username: str, password:str), valid:bool) as input. Note that
the return type of a plugin must be the same as its input tyge tfse Writing Plugins
section above for information about writing plugins).

So, credential checkers merely need to return a tuple of: tfde str,
str), bool) withthe boolean field set to True for authentication sudeéssr False

for authentication failed.
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Caveats

When a plugin is registered, it is placed on a callback listtfi@ event for
which it was registered. Each of these callback lists runs separate thread so that
slow plugins only slow down their callback chain (and not émtire controller). This
also makes it easier for an administrator to identify slavhroken plugins. This design
does come at a cost.

Plugins are called in order on any given event callback k&wever, since
each list itself is run as a separate thread, there may bepheutvent callback lists in
execution at any one time. For this reason, plugins shouldsked with caution since
they are free to perform arbitrary action, even actions twhmanipulate the internal
state of the controller. In particular, proper locking shibloe considered when writing
plugins which modify controller state.

Since most plugins do not directly modify controller states above is typi-

cally not a problem. Just be aware of it if you do write or usdéugim which does.

C.3 VMM Wrappers

Usher can be extended to support management of nearly aayoftyartual
machine. This is accomplished by wrapping the VM adminigtreAP| of the underly-
ing VMM to create an adapter for use by the Usher controllee ihterface exposed by
the adapter are the methods starting witefrot e "intheusher /| nm server. py
file. These methods, in turn, call corresponding secondaitiods in the same file (usu-
ally of the same name with the enot e_” prefix stripped) in separate threads. In this
way, LNMs do not become unresponsive to commands when oneveéops command
takes a long time to complete (e.g., migrate commands caetsoes take tens of sec-
onds).

These secondary methods rely upon the existence of the deeithhdable C.1
and Table C.2 in a file namedvmmnane>_vnmm py. These methods constitute the

Usher VMM wrapper interface.
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The “vmmname” above is the name of the underlying VMM in lower case
(e.g.,xen_viim py). The VMM name is specified in the LNM’s configuration file to

specify which wrapper should be used.

Table C.1 VMM wrapper VM methods.

| Method | Description |
start start VM
migrate migrate VM from this node

shutdown soft shutdown VM
poweroff hard shutdown VM

reboot shutdown and start VM
cycle poweroff and start VM
hibernate hibernate a VM

restore restart hibernated VM
pause pause a VM (still in RAM)
resume unpause VM

vmm.rename| rename a VM with VMM
getstatus get dictionary of attributes

Table C.2 VMM wrapper node methods.

| Method | Description

getcurrentstats get list of all current stats
getcurrentnodestats| get dictionary of current node stats
getcurrentvm_stats | get dictionary of all current VM stats

getnodeinfo get dictionary of static node attributes
getdetails list of dictionaries of all VM static attributes
getvmm_states dictionary of all VM states as seen by VMM

Notice that the VMM wrapper interface consists of two comgais: VM
methods (Table C.1) and node methods (Table C.2). VM methmsisnembers of the
VMps class. With the exception of thget _st at us method, all methods of Table
C.1 manipulate VMs.

Methods which manipulate VMs either succeed, returiloge (a Python
type), or throw an exception with a descriptive messageepians are logged and au-

tomatically propagated back to the controller by Twistelke Eingle VM query method,
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get _st at us, returns a dictionary of VM attributes. See the code for wdtaibutes
are expected.

Node operations return dictionaries or lists of dictioaarof VM and node
attributes. This allows the controller to query the statalbhodes and VMs under its
management. These methods are used at controller starggmévate the global state
of the system and periodically by the Monitor plugin to monitesource usage.

Briefly, theget current st at s call combines the information returned
by both theget _current _.node_st at s andget _curr ent vmst at s methods
which return 1, 5, and 15 minute resource usages for the gdiysiachine and all VMs
respectively. This call combines the two so that resoureg@samples are taken at
nearly the same time for both.

Refer to the code for what attributes are expected for eattese methods.
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