
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Flexible and efficient resource management in a virtual cluster environment

Permalink
https://escholarship.org/uc/item/8sk258sb

Author
McNett, Marvin

Publication Date
2008

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8sk258sb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Flexible and Efficient Resource Management in a Virtual Cluster

Environment

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science

by

Marvin McNett II

Committee in charge:

Professor Geoffrey M. Voelker, Chair
Professor Rene L. Cruz
Professor Ramesh Rao
Professor Stefan Savage
Professor Amin Vahdat

2008

Copyright

Marvin McNett II, 2008

All rights reserved.

The dissertation of Marvin McNett II is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2008

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vii

List of Tables . ix

Acknowledgments . x

Vita . xi

Abstract of the Dissertation . xii

Chapter 1 Introduction . 1
1.1. Motivation . 2
1.2. Contributions . 3
1.3. Dissertation Organization . 6

Chapter 2 Usher: An Extensible Framework for Managing Clusters of Virtual
Machines . 7
2.1. Introduction . 7
2.2. Related Work . 10
2.3. System Architecture . 14

2.3.1. Design Goals . 14
2.3.2. System Overview . 16
2.3.3. Local Node Managers . 17
2.3.4. Controller . 18
2.3.5. Clients and the Client API 22
2.3.6. Component Interaction 22
2.3.7. Failures . 25

2.4. Implementation . 26
2.4.1. Local Node Managers . 26
2.4.2. Controller . 28
2.4.3. Client API . 30
2.4.4. Plugins . 31
2.4.5. Configuration Files . 34

2.5. Application Examples . 35
2.5.1. Ush Client . 35
2.5.2. Plusher . 37
2.5.3. Control Scripts . 38

2.6. Plugin Examples . 39

iv

2.6.1. IP Address Management 40
2.6.2. LDAP . 41
2.6.3. DNS . 43
2.6.4. Monitor . 43
2.6.5. Start Request Scenario 44

2.7. Usher Installations . 45
2.7.1. UCSD SysNet . 45
2.7.2. RRC-KI . 49

2.8. Conclusions . 51
2.8.1. Usher Availability . 51

2.9. Acknowledgement . 51

Chapter 3 Virtual Machine Scheduling in a Virtual Cluster Environment 53
3.1. Introduction . 53
3.2. Related Work . 58

3.2.1. Process Scheduling . 59
3.2.2. Application Scheduling 62
3.2.3. Virtual Machine Scheduling 63

3.3. Operational Goals . 65
3.4. Fair Maximum Utilization . 67

3.4.1. NP-hard Proof for Fair Maximum Utilization 71
3.5. Problem Classification . 73
3.6. Hungry Detection . 76
3.7. Heuristic Approaches to FMU 78

3.7.1. A Simple Single Resource Approach 79
3.7.2. Balanced CPU Scheduler 80

3.8. Simulated Annealing . 81
3.8.1. The SA Algorithm . 84
3.8.2. Setting SA Parameters 85
3.8.3. SA Parameters for FMU 87
3.8.4. Reducing SA Migrations 88
3.8.5. Migration Paths . 90
3.8.6. Allocation Prediction . 91
3.8.7. Resource Dependencies 92

3.9. A Greedy Approach . 93
3.9.1. The GBM Heuristic . 93

3.10.A Hybrid Approach? . 95
3.11.Conclusions . 95

Chapter 4 Scheduling Evaluation .. . 97
4.1. Methodology . 98
4.2. Hot Spot Alleviation . 100

4.2.1. Small Cluster (HSA-18:3) 101
4.2.2. Large Cluster (HSA-120:20) 115

v

4.3. General Purpose Cluster Workloads 117
4.3.1. Low Dynamism . 121
4.3.2. Moderate Dynamism . 128
4.3.3. High Dynamism . 134

4.4. Conclusions . 140

Chapter 5 Conclusions . 143

Appendix ACode Overview . 146
A.1. Usher Components . 148

A.1.1. Controller (usher/ctrl/) 148
A.1.2. Unraveling Twisted . 149
A.1.3. Local Node Manager (usher/lnm/) 151
A.1.4. Client API (usher/cli/) 153
A.1.5. Utilities (usher/utils/) 153

Appendix BUsher Events . 155

Appendix CWriting Usher Extensions 158
C.1. Clients . 158
C.2. Plugins . 160
C.3. VMM Wrappers . 163

Bibliography . 166

vi

LIST OF FIGURES

Figure 2.1 Usher Interfaces . 15
Figure 2.2 Usher Components . 17
Figure 2.3 Migrate request traversing plugin chain. 34
Figure 2.4 Ush Shell . 35

Figure 3.1 Scheduling virtual machines (VMs) onto a set of physical ma-
chines (PMs). 54

Figure 3.2 Virtual machine resource allocations for three different as-
signments. 68

Figure 3.3 Annealing of a solid to reduce its internal energy. 82
Figure 3.4 Sample solution landscape. 83

Figure 4.1 VM CPU allocations over time for BCPU applied to HSA-
18:3 5-20. 102

Figure 4.2 VM CPU allocations over time for BCPU2 applied to HSA-
18:3 5-20. 103

Figure 4.3 VM CPU allocations over time for SA applied to HSA-18:3 5-
20. 104

Figure 4.4 VM CPU allocations over time for GBM applied to HSA-
18:3 5-20. 105

Figure 4.5 VM CPU allocations over time for BCPU applied to HSA-
18:3 5-35. 106

Figure 4.6 VM CPU allocations over time for BCPU2 applied to HSA-
18:3 5-35. 107

Figure 4.7 VM CPU allocations over time for SA applied to HSA-18:3 5-
35. 108

Figure 4.8 VM CPU allocations over time for GBM applied to HSA-
18:3 5-35. 109

Figure 4.9 VM CPU allocations over time for BCPU applied to HSA-
18:3 6-35. 110

Figure 4.10 VM CPU allocations over time for BCPU2 applied toHSA-
18:3 6-35. 111

Figure 4.11 VM CPU allocations over time for SA applied to HSA-18:3 6-
35. 112

Figure 4.12 VM CPU allocations over time for GBM applied to HSA-
18:3 6-35. 113

Figure 4.13 VM CPU allocations over time for BCPU applied to HSA-
120:2040-35. 116

Figure 4.14 VM CPU allocations over time for BCPU2 applied toHSA-
120:2040-35. 117

Figure 4.15 VM CPU allocations over time for SA applied to HSA-120:2040-
35. 118

vii

Figure 4.16 VM CPU allocations over time for GBM applied to HSA-
120:2040-35. 119

Figure 4.17 VM CPU allocations over time for NULL applied to GPCW-LD.122
Figure 4.18 VM CPU allocations over time for BCPU2 applied toGPCW-

LD. 123
Figure 4.19 VM CPU allocations over time for SA applied to GPCW-LD. 123
Figure 4.20 VM CPU allocations over time for GBM applied to GPCW-LD.124
Figure 4.21 Counts and Jain’s Fairness Index of CPU hungry VMs over

time for BCPU2 applied to GPCW-LD. 126
Figure 4.22 Counts and Jain’s Fairness Index of CPU hungry VMs over

time for SA applied to GPCW-LD. 127
Figure 4.23 Counts and Jain’s Fairness Index of CPU hungry VMs over

time for GBM applied to GPCL-LD. 127
Figure 4.24 VM CPU allocations over time for NULL applied to GPCW-

MD. 129
Figure 4.25 VM CPU allocations over time for BCPU2 applied toGPCW-

MD. 129
Figure 4.26 VM CPU allocations over time for SA applied to GPCW-MD. 130
Figure 4.27 VM CPU allocations over time for GBM applied to GPCW-MD.130
Figure 4.28 Counts and Jain’s Fairness Index of CPU hungry VMs over

time for BCPU2 applied to GPCW-MD. 132
Figure 4.29 Counts and Jain’s Fairness Index of CPU hungry VMs over

time for SA applied to GPCW-MD. 133
Figure 4.30 Counts and Jain’s Fairness Index of CPU hungry VMs over

time for GBM applied to GPCW-MD. 133
Figure 4.31 VM CPU allocations over time for NULL applied to GPCW-HD.135
Figure 4.32 VM CPU allocations over time for BCPU2 applied toGPCW-

HD. 135
Figure 4.33 VM CPU allocations over time for SA applied to GPCW-HD. 136
Figure 4.34 VM CPU allocations over time for GBM applied to GPCW-HD.136
Figure 4.35 Counts and Jain’s Fairness Index of CPU hungry VMs over

time for BCPU2 applied to GPCW-HD. 139
Figure 4.36 Counts and Jain’s Fairness Index of CPU hungry VMs over

time for SA applied to GPCW-HD. 139
Figure 4.37 Counts and Jain’s Fairness Index of CPU hungry VMs over

time for GBM applied to GPCW-HD. 140

viii

LIST OF TABLES

Table 2.1 Code size of individual components. 26
Table 2.2 Local Node Manager remote API. 27
Table 2.3 Operations supported by theop on method. 28
Table 2.4 Controller remote API for use by Usher clients. 29
Table 2.5 Code size of UCSD plugins. 39

Table 3.1 Sample VM resource demands. 67
Table 3.2 Acceptable simulated annealing parameters for FMU. 87

Table 4.1 Total migration counts for small cluster hot spot alleviation
experiments. 114

Table 4.2 Total migration counts for large cluster hot spot alleviation
experiment. 120

Table 4.3 Scheduling costs for low dynamism general purposecluster
workload experiments. 125

Table 4.4 Scheduling costs for moderate dynamism general purpose clus-
ter workload experiments. 131

Table 4.5 Scheduling costs for high dynamism general purpose cluster
workload experiments. 137

Table C.1 VMM wrapper VM methods. 164
Table C.2 VMM wrapper node methods. 164

ix

ACKNOWLEDGMENTS

I dedicate this dissertation to my beautiful wife Karin, whosacrificed more for

its completion than most could imagine.

Chapter 2, in part, is a reprint of material as it appears in the USENIX LISA

Conference, 2007, McNett, Marvin; Gupta, Diwaker; Vahdat,Amin; Voelker, Geoffrey

M.. The dissertation author was the primary investigator and author of this paper.

x

VITA

2008 Doctor of Philosophy in Computer Science
University of California, San Diego
San Diego, CA, USA

1999 Master of Arts in Mathematics
University of Kansas
Lawrence, KS, USA

1994 Bachelor of Science in Aerospace Engineering
University of Kansas
Lawrence, KS, USA

PUBLICATIONS

“Usher: An Extensible Framework for Managing Clusters of Virtual Machines,”
Marvin McNett, Diwaker Gupta, Amin Vahdat, and Geoffrey M. Voelker, InProceed-
ings of the 21st Large Installation System Administration Conference, pp. 169-183,
November 2007.

“To Infinity and Beyond: Time-Warped Network Emulation,”
Diwaker Gupta, Kenneth Yocum, Marvin McNett, Alex C. Snoeren, Amin Vahdat, and
Geoffrey M. Voelker, InProceedings of the 3rd Symposium on Networked Systems De-
sign & Implementation, pp. 87-100, May 2006.

“Access and Mobility of Wireless PDA Users,”
Marvin McNett and Geoffrey M. Voelker, InACM Mobile Computing and Communica-
tions Review, Volume 9, Number 2, pp. 40-55, April 2005.

FIELDS OF STUDY

Computer Systems and Networking

Cluster Management

xi

ABSTRACT OF THE DISSERTATION

Flexible and Efficient Resource Management in a Virtual Cluster

Environment

by

Marvin McNett II

Doctor of Philosophy in Computer Science

University of California, San Diego, 2008

Professor Geoffrey M. Voelker, Chair

Virtual machine (VM) use in a cluster environment imposes many challenges

upon a cluster administrator. As the number of VMs across a site grows, manually

tracking transient site state information such as resourceavailability and VM locations

and status while enforcing policies for running large numbers of VMs across a clus-

ter becomes increasingly difficult. In this dissertation I focus on VM use in clusters

and consider the management and efficiency problems that arise in this unique envi-

ronment. I present Usher, a virtual machine management system designed to impose

few constraints upon the computing environment under its management. Usher enables

administrators to choose how their virtual machine environment will be configured and

the policies under which it will be managed. Usher cluster administrators can push

basic virtual cluster management tasks such as VM start and stop out to the users (vir-

tual cluster creators) themselves, reducing administrator workload and allowing users

to create virtual clusters on demand. The modular design of Usher allows for alternate

implementations for authentication, authorization, infrastructure handling, logging, and

virtual machine scheduling. The design philosophy of Usheris to provide an interface

whereby users and administrators can request virtual machine operations while delegat-

ing administrative tasks and policy enforcement for these requests to modular plugins.

I present an Usher scheduling plugin designed to map virtualmachines onto physical

xii

machines such that an arbitrarily defined utility is optimized. I discuss possible clus-

ter scheduling goals and present a representative cluster scheduling problem called Fair

Maximum Utilization (FMU). Exploration of scheduling heuristics of varying levels of

sophistication applied to FMU suggest that those which makebetter VM resource de-

mand predictions and only slight schedule adjustments workwell in general.

xiii

Chapter 1

Introduction

The proliferation of clusters of powerful, multi-processor and multi-core

servers has many cluster administrators looking for new ways to harness the full poten-

tial of their computing environments. These administrators often look to virtualization

as a means to increase their cluster utilization in a flexiblemanner. Though promises of

increased hardware utilization and flexibility in resourceprovisioning frequently moti-

vate virtual machine (VM) use in clusters of commodity computers, many administrators

influenced by these promises are not prepared for the difficulty of deploying and manag-

ing such a complex computing environment. As the number of VMs across a site grows,

manually tracking transient site state information such asresource availability and VM

locations and status while enforcing policies for running large numbers of VMs across a

cluster becomes increasingly onerous. Consequently, to the cluster administrator, hyper-

visor features and performance have become less important than the ability to effectively

manage large numbers of virtual machines across a site. To this end, I designed and im-

plemented Usher, a virtual cluster management system whichsubstantially reduces the

administrative burden of managing virtual machines acrossa physical cluster. In this

dissertation I present Usher, an extensible framework for managing clusters of virtual

machines, and demonstrate its ability to significantly reduce management and efficiency

problems inherent in virtual cluster environments.

1

2

1.1 Motivation

Cluster administrators often turn to VMs as a remedy for rigid, course grained

resource sharing models and low resource utilization. VMs provide a convenient mech-

anism for partitioning computing resources among users at nearly any granularity. Once

partitioned, VM priority and placement is dictated by the administrator, providing the

flexibility to support a wide range of cluster operational goals. In addition, the abil-

ity to multiplex several VMs on each physical machine enables tapping otherwise idle

resources, greatly increasing overall utilization.

Indeed, my own experience led me to seek better solutions to sharing cluster

computers among members of the Systems and Networking (SysNet) group at UCSD;

a model of distributing computing resources to users at the granularity of physical ma-

chines led to very poor resource utilization and starved users. Due to the nature of

research in the SysNet group, many required clusters of machines to carry out their re-

search. A physical machine checkout system providing remote console and power cycle

abilities for each machine quickly exhausted all computingresources. At the same time,

cluster-wide resource utilization was less than five percent.

With approximately 50 active users, over 200 physical machines were insuf-

ficient for the SysNet group. As surprising as this may seem, the problem is a result of

researchers’ reluctancy to return machines which they havespent significant time setting

up. Cluster setup and experimentation can be quite time consuming. Researchers want

to ensure they are completely finished with their work beforereleasing machines back

to the group.1 Returning machines sometimes took years.2 Unfortunately, acquiring ad-

ditional hardware did not alleviate the starvation problem. New machines were typically

claimed before arriving.

Though just an example, other highly experienced persons inindustry and

academia have confirmed [Eus07, Ham07, Kis07, O’H08] that they have very similar
1A system I designed to pull disk images from checked out machines (in about five minutes) when researchers

would not be using them and put the images back (again in aboutfive minutes) when ready to resume their experiments
went unused.

2Often, only because the student graduated.

3

problems to those faced by the SysNet group. Whether by researchers or groups in a

larger company, these resource sharing issues arise wherever clusters are shared between

self-interested parties. All of these individuals have expressed interest in virtualization

as a possible solution to their resource allocation problems.

As for SysNet, most users in need of a cluster (or even a singlemachine) do not

actually need physical machines, but rather the abstraction of physical machines, which

virtual machines provide. Therefore, SysNet chose to use VMs to alleviate their resource

sharing woes. In making that decision, however, I learned that manually managing more

than a few dozen VMs across a cluster is extremely time consuming and arduous to

track. Furthermore, proper monitoring of resource availability is difficult, making VM

placement hit-or-miss (e.g., placing two CPU hungry VMs on the same node while other

nodes remain nearly idle is likely to eventually happen). Clearly, such an environment

requires a VM management system. Similar to traditional operating systems, this system

must support a wide range of management policies and operational goals in an efficient

manner. I implemented Usher to meet these requirements.

1.2 Contributions

In this dissertation I focus on VM use in clusters and presentsolutions to

management and efficiency problems that arise in this uniqueenvironment. To address

manageability, I designed and implemented Usher, a virtualcluster management system

designed to substantially reduce the administrative burden of managing cluster resources

while simultaneously improving the ability of users to request, control, and customize

their resources and computing environment. Based upon feedback from users and ad-

ministrators from another Usher installation, I refactored Usher to be easily extensible.

This refactoring greatly improved the flexibility of Usher to adapt to different com-

puting environments. The current version of Usher imposes few constraints upon the

computing environment under its management. No two sites have identical hardware

and software configurations, user and application requirements, or service infrastruc-

4

tures. To facilitate its use in a wide range of environments,Usher combines a core set

of interfaces that implement basic mechanisms, clients forusing these mechanisms, and

a framework for expressing and customizing administrativepolicies through extensible

modules, or plugins.

Efficiency encompasses both virtual cluster setup time and operation. For

setup time, I consider the time devoted to virtual cluster creation and destruction. Usher

provides a single control point from which administrators can manage their entire vir-

tual cluster environment while pushing many of the mundane tasks involved with virtual

cluster administration out to the users (cluster creators)themselves. In this way, a min-

imal amount of setup time is required by Usher administrators. Usher makes pushing

setup responsibility out to users possible through an extensible plugin system. The plu-

gin system enables administrators to enforce arbitrary management policies or support

arbitrary operational goals. This design places the responsibility of enforcing these poli-

cies on Usher itself. The administrator is not required to approve all user requests. These

features (i.e., central control point and setup delegation) act to increase administrator ef-

ficiency in managing virtual cluster installations.

From my experience, deploying Usher transformed cluster management from

taking well over two hours to create a cluster of 20 VMs, complete with DNS entries

and user LDAP authentication, to around two minutes for a cluster of approximately 100

VMs.3 Usher enabled users to experiment with much larger personalclusters. Many

users created long running virtual clusters of over 100 nodes.4 The largest physical

cluster by a SysNet user was 50 nodes for only a few days.5 Several months saw over

500 virtual machines created by SysNet users on a 25 node Usher cluster.

To address operational efficiency, I implemented an Usher scheduling plugin.

This plugin seeks to provide a mechanism for enforcing the operational goals under

which administrators wants their sites to run. Enforcing these operational goals is ac-
3Actually, this is the time required for all the VMs to be up andrunning. Administrator time is only a few seconds

since creating such a cluster in Usher can be handled with a single command.
4Many of these would have been larger had more physical machines been dedicated to the Usher installation.
5That involved several days of asking other SysNet users to “borrow” their checked out physical machines for a

few days to meet a paper deadline.

5

complished by scheduling VMs across a site so as to maximize an administrator defined

utility of the mapping of VMs to physical machines. Utility is expressed as a mathe-

matical function over the set of feasible assignments of VMsto physical machines. This

design enhances flexibility as well. Administrators can support nearly arbitrary oper-

ational goals by expressing those goals as utility functions. Usher’s scheduling plugin

then works to maintain those goals as the system runs via monitoring and transparently

migrating VMs when goals are not being met. This design pushes the job of maintaining

a site’s operational goals onto Usher. Administrators are not required to continuously

monitor their site’s status to keep it in line with these operational goals, greatly decreas-

ing the time they spend maintaining their sites while increasing their ability to enforce

a wide range of operational goals.

To demonstrate the effectiveness of the Usher scheduling plugin, I present

several possible cluster scheduling goals and define a representative cluster scheduling

problem called Fair Maximum Utilization (FMU). The goal of FMU is to fairly maxi-

mize overall cluster resource usage in a best-effort fashion (i.e., no guarantees, or service

level agreements (SLAs)). In FMU, fairness is measured as the sum over all resources

of Jain’s Fairness Index of resource allocations to VMs wanting more of that particular

resource. In other words, FMU tries to give all VMs as much of aresource as it desires.

When that is not possible, it fairly divides the resource among those VMs wanting more

of that resource. This is an appropriate scheduling goal forSysNet, where users are

allowed to create clusters of any size and use them as desired.

FMU is an instance of a multiple objective combinatorial optimization prob-

lem. I prove that FMU is in the class of NP-hard problems. As a result, deterministic,

polynomial-time algorithms for solving this problem are not known to exist. Therefore,

solution strategies which approximate optimal solutions are required.

I designed heuristics of varying levels of sophistication for optimizing arbitrar-

ily defined utility functions over the set of all feasible assignments of VMs to physical

machines. I then experimentally evaluated these heuristics with FMU scheduling to es-

tablish each heuristic’s suitability to scheduling in environments with a range of VM

6

dynamism levels. My results indicate that schedulers whichmake better VM resource

demand predictions and only slight schedule adjustments work well in general.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows.Chapter 2 describes

the Usher system, details its design and implementation, and discusses its use in two

different cluster environments. Chapter 3 presents the virtual machine scheduling prob-

lem, defines our canonical FMU scheduling problem, proves FMU’s inclusion in the

set of NP-hard problems, and presents heuristics for findinggood solutions to the FMU

scheduling problem. Chapter 4 presents experimental results for my heuristics applied

to a range of virtual cluster environment workload characteristics. Chapter 5 discusses

future directions and Chapter 6 concludes. There are also three appendices. Appendix A

presents an overview of the Usher source code, Appendix B lists all core Usher events,

and Appendix C discusses writing Usher extensions (clients, plugins, and hypervisor

wrappers).

Chapter 2

Usher: An Extensible Framework for

Managing Clusters of Virtual Machines

Here, we present the Usher virtual machine management system. Usher pro-

vides an extensible framework and client API enabling plugins and custom applications

to control virtual clusters. In addition to managing VMs across a site, Usher enables us

to experiment with complex virtual machine management policies. In Chapter 3, we use

Usher to study VM scheduling heuristics for efficient resource utilization.

In this chapter, we provide an overview of the Usher system architecture and

implementation. We then present specific examples of Usher plugins and applications.

The chapter ends with a discussion of two Usher installationwith very different man-

agement goals.

2.1 Introduction

Usher is a virtual cluster management system designed to substantially reduce

the administrative burden of managing cluster resources while simultaneously improv-

ing the ability of users to request, control, and customize their resources and computing

environment. System administrators of cluster computing environments face a num-

ber of imposing challenges. Different users within a cluster can have a wide range of

7

8

computing demands, spanning general best-effort computing needs, batch scheduling

systems, and complete control of dedicated resources. These resource demands vary

substantially over time in response to changes in workload,user base, and failures. Fur-

thermore, users often need to customize their operating system and application environ-

ments, substantially increasing configuration and maintenance tasks. Finally, clusters

rarely operate in isolated administrative environments, and must be integrated into ex-

isting authentication, storage, network, and host addressand name service infrastructure.

Usher balances these imposing requirements using a combination of abstrac-

tion and architecture. Usher provides a simple abstractionof a logical cluster of vir-

tual machines, or virtual cluster. Usher users can create any number of virtual clusters

(VCs) of arbitrary size, while Usher multiplexes individual virtual machines (VMs) on

available physical machine hardware. By decoupling logical machine resources from

physical machines, users can create and use machines according to their needs rather

than according to assigned physical resources.

Architecturally, Usher is designed to impose few constraints upon the com-

puting environment under its management. No two sites have identical hardware and

software configurations, user and application requirements, or service infrastructures.

To facilitate its use in a wide range of environments, Usher combines a core set of in-

terfaces that implement basic mechanisms, clients for using these mechanisms, and a

framework for expressing and customizing administrative policies in extensible mod-

ules, or plugins.

The Usher core implements basic virtual cluster and machinemanagement

mechanisms, such as creating, destroying, and migrating VMs. Usher clients use this

core to manipulate virtual clusters. These clients serve asinterfaces to the system for

users as well as for use by higher-level cluster software. For example, an Usher client

called ush provides an interactive command shell for users to interactwith the sys-

tem. We have also implemented an adapter for a high-level execution management sys-

tem [ABD+07], which operates as an Usher client, that creates and manipulates virtual

clusters on its own behalf.

9

Usher supports customizable modules for two important purposes. First, these

modules enable Usher to interact with broader site infrastructure, such as authentication,

storage, and host address and naming services. Usher implements default behavior for

common situations; e.g., newly created VMs in Usher can use asite’s DHCP service to

obtain addresses and domain names. Additionally, sites cancustomize Usher to imple-

ment more specialized policies; at UCSD, an Usher VM identity module allocates IP

address ranges to VMs within the same virtual cluster.

Second, pluggable modules enable system administrators toexpress site-

specific policies for the placement, scheduling, and use of VMs. As a result, Usher

allows administrators to decide how to configure their virtual machine environments

and determine the appropriate management policies. For instance, to support a general-

purpose computing environment, administrators can install an available Usher schedul-

ing and placement plugin that performs round-robin placement of VMs across phys-

ical machines and simple rebalancing in response to the addition or removal of vir-

tual and physical machines. With this plugin, users can dynamically add or re-

move VMs from VCs at any time without having to specify service level agreements

(SLAs) [AFF+01, RRX+06, WSVY07], write configuration files [Beg06], or obtain

leases on resources [CIG+03, GIYC06]. With live migration of VMs, Usher can dy-

namically and transparently adjust the mapping of virtual to physical machines to adapt

to changes in load among active VMs or the working set of active VMs, exploit affini-

ties among VMs (e.g., to enhance physical page sharing [Wal02]), or add and remove

hardware with little or no interruption.

Usher enables other powerful policies to be expressed, suchas power man-

agement (reduce the number of active physical machines hosting virtual clusters), dis-

tribution (constrain virtual machines within a virtual cluster to run on separate nodes),

and resource guarantees. Another installation of Usher uses its cluster to support scien-

tific batch jobs running within virtual clusters, guarantees resources to those jobs when

they run, and implements a load-balancing policy that migrates VMs in response to load

spikes [CGK+06].

10

Usher is a fully functional system. It has been installed in multiple cluster

computing environments including UCSD, University of Hawaii, and the Russian Re-

search Center in Kurchatov, Russia. At UCSD, Usher has been in production use since

January 2007. It has managed up to 400 virtual machines in virtual clusters across 62

physical machines.

2.2 Related Work

Since the emergence of widespread cluster computing over a decade

ago [ACPtNT95, Mer], many cluster configuration and management systems have been

developed to achieve a range of goals. These goals naturallyinfluence individual ap-

proaches to cluster management. Early configuration and management systems, such as

Galaxy [VD00], focus on expressive and scalable mechanismsfor defining clusters for

specific types of service, and physically partition clusternodes among those types.

More recent systems target specific domains, such as Internet services, com-

putational grids, and experimental testbeds, that have strict workload or resource al-

location requirements. These systems support services that express explicit resource

requirements, typically in some form of service level agreement (SLA). Services pro-

vide their requirements as input to the system, and the system allocates its resources

among services while satisfying the constraints of the SLA requirements.

For example, Océano provides a computing utility for e-commerce [AFF+01].

Services formally state their workload performance requirements (e.g., response time),

and Océano dynamically allocates physical servers in response to changing workload

conditions to satisfy such requirements. Cluster-on-Demand (COD) performs resource

allocation for computing utilities and computational gridservices [CIG+03]. COD im-

plements a virtual cluster abstraction, where a virtual cluster is a disjoint set of physical

servers specifically configured to the requirements of a particular service, such as a local

site component of a larger wide-area computational grid. Services specify and request

resources to a site manager and COD leases those resources tothem. Finally, Emulab

11

provides a shared network testbed in which users specify experiments [WLS+02]. An

experiment specifies network topologies and characteristics as well as node software

configurations, and Emulab dedicates, isolates, and configures testbed resources for the

duration of the experiment.

Rocks and Rolls provide scalable and customizable configuration for compu-

tational grids [BKSP04, SCB04]. Though these systems have eased the pain of deploy-

ing and managing clusters, the decision to use such a system comes at the cost of much

flexibility. While many groups purchase cluster hardware for tasks amenable to tradi-

tional static installation and configuration of a site’s computing infrastructure (e.g., batch

processing) or horizontal scale out of services, others require more flexible computing

models.

The recent rise in virtual machine monitor (VMM) popularityhas naturally

led to systems for configuring and managing virtual machines. For computational grid

systems, for example, Shirako extends Cluster-on-Demand by incorporating virtual ma-

chines to further improve system resource multiplexing while satisfying explicit service

requirements [GIYC06], and VIOLIN supports both intra- andinter-domain migration

to satisfy specified resource utilization limits [RRX+06]. Sandpiper develops policies

for detecting and reacting to hotspots in virtual cluster systems while satisfying appli-

cation SLAs [WSVY07], including determining when and whereto migrate virtual ma-

chines, although again under the constraints of meeting thestringent SLA requirements

of a data center.

On the other hand, Usher provides a framework that allows system administra-

tors to express site-specific policies depending upon theirneeds and goals. By default,

the Usher core provides, in essence, a general-purpose, best-effort computing environ-

ment. It imposes no restrictions on the number and kind of virtual clusters and machines,

and performs simple load balancing across physical machines. We believe this usage

model is important because it is widely applicable and natural to use. Requiring users

to explicitly specify their resource requirements for their needs, for example, can be

awkward and challenging since users often do not know when orfor how long they will

12

need resources. Further, allocating and reserving resources can limit resource utiliza-

tion; guaranteed resources that go idle cannot be used for other purposes. However, sites

can specify more elaborate policies in Usher for controlling the placement, scheduling,

and migration of VMs if desired. Such policies can range frombatch schedulers to

allocation of dedicated physical resources.

In terms of configuration, Usher shares many of the motivations that inspired

the Manage Large Networks (MLN) tool [Beg06]. The goal of MLNis to enable admin-

istrators and users to take advantage of virtualization while easing administrator burden.

Administrators can use MLN to configure and manage virtual machines and clusters

(distributed projects), and it supports multiple virtualization platforms (Xen and User-

Mode Linux). MLN, however, requires administrators to express a number of static

configuration decisions through configuration files (e.g., physical host binding, number

of virtual hosts), and supports only coarse granularity dynamic reallocation (manually

by the administrator). Usher configuration is interactive and dynamic, enables users to

create and manage their virtual clusters without administrative intervention, and enables

a site to globally manage all VMs according to cluster-wide policies.

XenEnterprise [xen] from XenSource and VirtualCenter [vmwa] from

VMware are commercial products for managing virtual machines on cluster hardware

from the respective companies. XenEnterprise provides a graphical administration con-

sole, Virtual Data Center, for creating, managing, and monitoring Xen virtual machines.

VirtualCenter monitors and manages VMware virtual machines on a cluster as a data

center, supporting VM restart when nodes fail and dynamic load balancing through live

VM migration. Both list interfaces for external control, although it is not clear whether

administrators can implement plugins for enforcing policy, integrating the systems into

existing infrastructure, or controlling VMs in response toarbitrary events in the system.

VirtualCenter does provide a mechanism to call arbitrary scripts in response

to a limited set of events. However, these run as separate processes from VirtualCenter

itself, so they have no access to its internal state. Also, VMWare’s Infrastructure Man-

agement SDK provides functionality similar to that provided by the Usher client API.

13

However, this SDK does not provide the tight integration with VMWare’s centralized

management system that plugins do for the Usher system.

In addition, these commercial offerings are all tied to managing a single VM

product, whereas Usher is designed to interface with any virtualization platform that

exports a standard administrative interface. Furthermore, they are closed source, propri-

etary, and infinitely more expensive than the free, open source Usher system.

Enomaly [eno], formerly known as Enomalism, was developed in parallel with

Usher. Originally, Enomalism was a free, open source systemdesigned to manage vir-

tual machines using Red Hat’s libvirt toolkit [lib]. It has since evolved into a platform

for elastic cloud computing. Enomaly aims to provide a system which would enable

businesses to offer their own elastic cloud services similar to that of the Amazon Elastic

Compute Cloud (EC2) [ec2]. Enomaly is still free and open source. Their revenue is

generated by paid support and custom extensions to their product.

Recently, a number of both free and commercial VM managementproducts

have been introduced.

Eucalyptus [euc] is an open source system for implementing cloud comput-

ing on private clusters. This is similar in spirit to Enomaly. Eucalyptus aims at being

compatible with Amazon’s EC2 interface.

Kodiak [kod] from Bluebear is a commercial (although free and open source)

hypervisor agnostic VM management system with support for “many” hypervisors out

of the box. Bluebear claims that Kodiak is “the industry’s only application that’s both

hypervisor-agnostic and cross-platform”. However, Kodiak only supports a single hy-

pervisor at the time of this writing. In addition, Bluebear claims that “Kodiak is also

extensible through a soon to be published open framework”. Apparently, the folks at

Bluebear believe in the Usher approach to VM management, butneglect to acknowl-

edge Usher’s predating of their system.

ConVirt [conb], originally called “XenMan”, is another hypervisor agnostic

VM management system released under the GNU Public License.ConVirt provides a

convenient graphical management console for managing VMs across multiple PMs. At

14

the time of this writing, it appears that Convirt does not support plugins or provide a

client API to integrate with third-party applications.

Tashi [tas] is a cluster management project proposed by Intel Research. Their

goal is to develop a layer of utility software to convert clusters into cloud computers

enabling remote users to operate on large, locally stored data sets. Tashi will manage

both virtual and physical machines to operate on massive internet-scale datasets without

the overhead of moving the data between sites.

Sun Microsystems very recently announced availability of aVM management

system named xVM Ops Center [xvm]. This system was designed to manage their Xen

based hypervisor called xVM Server across x64 and SPARC systems. The feature set of

xVM Ops Center is similar to that of VMware’s VirtualCenter.

Finally, Microsoft entered the VM management space with their System Cen-

ter Virtual Machine Manager [sys]. This system enables configuration and manage-

ment of virtualized infrastructures running on their Hyper-V hypervisor or VMware

ESX Server. Again, the feature set of this commercial offering is very similar to that of

VMware’s VirtualCenter.

2.3 System Architecture

This section describes the architecture of Usher. It beginswith a brief sum-

mary of the goals guiding the Usher system design, followed by a high-level overview

of the core Usher system. It then describes the purpose and operation of each of the

various core system components, and how they interact with each other to accomplish

their tasks. It ends with a discussion of how the Usher systemaccommodates software

and hardware failures.

2.3.1 Design Goals

As mentioned, no two sites have identical hardware and software configura-

tions, user and application requirements, or service infrastructures. As a result, Usher

15

Figure 2.1 Usher Interfaces

was designed as a flexible platform for constructing virtualmachine management instal-

lations customized to the needs of a particular site.

To accomplish this goal, there were two design objectives for Usher. First,

Usher maintains a clean separation between policy and mechanism. The Usher core

provides a minimal set of mechanisms essential for virtual machine management. For

instance, the Usher core has mechanisms for starting, migrating, and stopping virtual

machines, as well as, maintaining and querying the global state of the system.

Second, Usher is designed for extensibility. The Usher coreprovides three

ways to extend functionality, as illustrated in Figure 2.1.First, Usher provides an inter-

face to integrate with different virtual machine managers (VMMs). For instance, while

Usher provides a reference implementation for use with the Xen VMM, it is straightfor-

ward to implement this adapter for other VMMs. Second, developers can use a Plugin

API to enhance Usher functionality. For example, plugins can provide database func-

tionality for persistently storing system state using a file-backed database, or provide

authentication backed by local Unix passwords. Plugins canalso extend the opera-

tions API exposed to connected clients for cases where the core API does not provide

functionality desired or required. Third, Usher provides aClient API for integrating

with user interfaces and third-party tools, such as the Usher command-line shell (Sec-

tion 2.5.1) and the Plush execution management system (Section 2.5.2).

16

2.3.2 System Overview

A running Usher system consists of three main components: local node man-

agers (LNMs), a centralized controller, and clients. Figure 2.2 depicts the core compo-

nents of an Usher installation.

One LNM runs on each physical node and interacts directly with the VMM

to perform management operations such as creating, deleting, and migrating VMs on

behalf of the controller. Since Usher was designed to be VMM agnostic, one key role of

the LNM is to wrap the administrative API of the underlying VMM, so that VMs of that

type can be managed by Usher. The local node managers also collect resource usage

data from the VMMs and monitor local events. LNMs report resource usage updates

and events back to the controller for use by plugins and clients.

The controller is the central component of the Usher system.It receives au-

thenticated requests from clients and issues authorized commands to the LNMs. It also

communicates with the LNMs to collect usage data and manage virtual machines run-

ning on each physical node. The controller provides event notification to connected

clients and plugins registered to receive notification for aparticular event (e.g., a VM has

started, been destroyed, or changed state). Plugin modulescan perform a wide range of

tasks, such as maintaining persistent system-wide state information, performing DDNS

updates, or doing external environment preparation and cleanup.

The Usher client library provides an API for applications tocommunicate with

the Usher controller. Essentially, clients submit requests to the controller when they need

to manipulate their VMs or request additional VMs. The controller can grant or deny

these requests as its operational policy dictates. One purpose of clients is to serve as

the user interface to the system, and users use clients to manage their VMs and monitor

system state. More generally, arbitrary applications can use the client library to register

callbacks for events of interest in the Usher system.

Typically, a few services also support a running Usher system. Depending

upon the functionality desired and the infrastructure provided by a particular site, these

services might include a combination of the following: a database server for maintaining

17

Figure 2.2 Usher Components

state information or logging, a NAS server to serve VM filesystems, an authentication

server to provide authentication for Usher and VMs created by Usher, a DHCP server

to manage IP addresses, and a DNS server for name resolution of all Usher created

VMs. Note that an administrator may configure Usher to use anyset of support services

desired, not necessarily restricted to the preceding list.

2.3.3 Local Node Managers

The local node managers (LNMs) operate closest to the hardware. As shown

in Figure 2.2, LNMs run as servers on each physical node in theUsher system. The

LNMs have three major duties: i) to provide a remote API to thecontroller for man-

aging local VMs, ii) to collect and periodically upload local resource usage data to the

controller, and iii) to report local events to the controller.

Each LNM presents a remote API to the controller for manipulating VMs on

its node. Upon invoking an API method, the LNM translates theoperation into the

equivalent operation of the VM management API exposed by theVMM running on the

node (i.e., the LNM is essentially an adapter for the VM management API exposed by

the underlying VMM). Note that all LNM API methods are asynchronous so that the

18

controller does not block waiting for the VMM operation to complete. We emphasize

that this architecture abstracts VMM-specific implementations — the controller is obliv-

ious to the specific VMMs running on the physical nodes as longas the LNM provides

the remote API implementation. As a result, although our implementation currently

uses the Xen VMM, Usher can target other virtualization platforms. Further, Usher is

capable of managing VMs running any operating system supported by the VMMs under

its management.

As the Usher system runs, VM and VMM resource usage fluctuatesconsider-

ably. The local node manager on each node monitors these fluctuations and reports them

back to the controller by request. The report includes resource usage of CPU utilization,

network receive and transmit loads (for both bits and packets per second), and disk I/O

activity (for both blocks and operations per second) in 1, 5,and 15-minute averages.

Typically, these statistics are not readily available fromthe VMM, leaving the LNM

writer charged with the job of collecting and maintain thesevalues.

In addition to changes in resource usage, VM state changes sometimes occur

unexpectedly. VMs can crash or even unexpectedly appear or disappear from the sys-

tem. Detecting these and other related events requires careful monitoring by the local

node managers, possibly assisted by VMM support for internal event notification. Ad-

ministrators can set a tunable parameter for how often the LNM scans for missing VMs

or unexpected VMs. If available, the LNM will register callbacks with the VMM plat-

form for other events, such as VM crashes. Otherwise, the LNMwill periodically scan

to detect these events.

2.3.4 Controller

The controller is the center of the Usher system. It can either be bootstapped

into a VM running in the system, or run on a separate server. The controller provides

the following:

• User authentication

19

• VM operation request API

• Global state maintenance

• Event notification

User authentication: Usher uses SSL-encrypted user authentication. All users ofthe

Usher system must authenticate before submitting requeststo the system. Adminis-

trators are free to use any of the included authentication modules for use with various

authentication backends (e.g., LDAP), or implement their own. Information on imple-

menting and registering an authentication module with the Usher system can be found

in Appendix C.2.

An administrator can register multiple authentication modules, and Usher will

query each in turn. Authentication module registration is specified in the controller’s

configuration file. This support is useful, for instance, to provide local password au-

thentication if LDAP or NIS authentication fails. Upon receiving a user’s credentials, the

controller checks them against the active authentication module chain. If one succeeds

before reaching the end of the chain, the user is authenticated. Otherwise, authentication

fails and the user must retry.

VM operation request API: A key component of the controller is the remote API for

Usher clients. This API is the gateway into the system for VM management requests

(via RPC) from connected clients. Typically, the controller invokes an authorization

plugin to verify that the authenticated user can perform theoperation before proceeding.

The controller may also invoke other plugins to do preprocessing such as checking re-

source availability and making placement decisions at thispoint. Usher calls any plugin

modules registered to receive notifications for a particular request once the controller

receives such a request.

Usher delegates authorization to plugin modules so that administrators are

free to implement any policy or policies they wish and stack and swap modules as the

system runs. In addition, an administrator can configure themonitoring infrastructure to

20

automatically swap or add policies as the system runs based upon current system load,

time of day, etc. In its simplest form, an authorization policy module openly allows

users to create and manipulate their VMs as they desire or view the global state of the

system. More restrictive policies may limit the number of VMs a user can start, prohibit

or limit migration, or restrict what information the systemreturns upon user query.

Once a request has successfully traversed the authorization and preprocessing

steps, the controller executes it by invoking asynchronousRPCs to each LNM involved.

As described above, it is up to any plugin policy modules to authorize and check re-

source availability prior to this point. Depending upon therunning policy, the autho-

rization and preprocessing steps may alter a user request before the controller executes

it. For example, the policy may be to simply “do the best we can” to honor a request

when it arrives. If a user requests more VMs than allowed, this policy will simply start

as many VMs as are allowed for this user, and report back to theclient what action

was taken. Finally, if insufficient resources are availableto satisfy an authorized and

preprocessed request, the controller will attempt to fulfill the request until resources are

exhausted.

A powerful feature of the Usher system is the ability for plugins themselves

to extend the API exposed to clients by the Controller. For example, one might imagine

a plugin which allows for a connected client with sufficient privileges to restart selected

LNMs, the controller, or even the entire Usher system. The controller exposes a method

which allows for connected clients to call methods exposed by a plugin (see Section

2.4.2).

Global state maintenance: The controller maintains a few lists which constitute the

global state of the system. These lists link objects encapsulating state information for

running VMs, running VMMs, and instantiated virtual clusters (VCs). A virtual cluster

in Usher can contain an arbitrary set of VMs, and administrators are free to define VCs

in any way suitable to their computing environment.

In addition to the above lists, the controller maintains three other lists of VMs:

21

lost, missing, andunmanagedVMs. The subtle distinction between lost and missing is

that lost VMs are a result of a LNM or VMM failure (the controller is unable to make

this distinction), whereas a missing VM is a result of an unexpected VM disappearance

as reported by the LNM where the VM was last seen running. A missing VM can be

the result of an unexpected VMM error (e.g., We have encountered this case upon a

VMM error on migration). Unmanaged VMs are typically a result of an administrator

manually starting a VM on a VMM being managed by Usher; Usher is aware of the VM,

but is not itself managing it. The list of unmanaged VMs aids resource usage reporting

so that Usher has a complete picture of all VMs running on its nodes.

Having the controller maintain system state removes the need for it to query all

LNMs in the system for every VM management operation and state query. However, the

controller does have to synchronize with the rest of system.I discuss synchronization

further in Section 2.3.6.

Event notification: Usher often needs to alert clients and plugin modules when vari-

ous events in the system occur. Events typically fall into one of three categories:

• VM operation requests

• VM state changes

• Errors and unexpected events

Connected clients automatically receive notices of state changes of their vir-

tual machines. Clients are free to take any action desired upon notification, and can

safely ignore them. Plugin modules, however, must explicitly register with the con-

troller to receive event notifications. Plugins can register for any type of event in the

system (see Appendix B for a complete list of events for whicha plugin can be regis-

tered). For example, a plugin may wish to receive notice of VMoperation requests for

preprocessing, or error and VM state change events for reporting and cleanup.

22

2.3.5 Clients and the Client API

Applications use the Usher client API to interact with the Usher controller.

This API provides methods for requesting or manipulating VMs and performing state

queries. We refer to any application importing this API as a client.

The client API provides the mechanism for clients to securely authenticate

and connect to the Usher controller. Once connected, an application may call any of the

methods provided by the API. All methods are asynchronous, event-based calls to the

controller (Section 2.4). As mentioned above, connected clients also receive notifica-

tions from the controller for state changes to any of their VMs. Client applications can

register to have specific callbacks invoked for these notifications.

2.3.6 Component Interaction

Having described each of the Usher components individually, we now describe

how they interact in more detail. We first discuss how the controller and LNMs interact,

and then describe how the controller and clients interact. Note that clients never directly

communicate with LNMs; in effect, the controller “proxies”all interactions between

clients and LNMs.

Controller and LNM Interaction

When an LNM starts or receives a controller recovery notice,it connects to the

controller specified in its configuration file. The controller authenticates all connections

from LNMs, and encrypts the connection for privacy. Upon connection to the controller,

the LNM passes a capability to the controller for access to its VM management API.

Using the capability returned by the LNM, the controller first requests infor-

mation about the hardware configuration and a list of currently running virtual machines

on the new node. The controller adds this information to its lists of running VMs and

VMMs in the system. It then uses the capability to assume management of the VMs

running on the LNM’s node.

23

The controller also returns a capability back to the LNM. TheLNM uses this

capability for both event notification and periodic reporting of resource usage back to

the controller.

When the controller discovers that a new node already has running VMs (e.g.,

because the node’s LNM failed and restarted), it first determines if it should assume

management of any of these newly discovered VMs. The controller makes this determi-

nation based solely upon the name of the VM. If the VM name endswith the domain

name specified in the controller’s configuration file, then the controller assumes it should

manage this VM. Any VMs which it should not manage are placed on theunmanaged

list discussed above. For any VMs which the controller should manage, the controller

creates a VM object instance and places this object on its running VMs list. These in-

stances are sent to the LNMs where the VMs are running and cached there. Whenever

an LNM sees that a cached VM object is inconsistent with the corresponding VM run-

ning there (e.g., the state of the VM changed), it alerts the controller of this event. The

controller then updates the cached object on the LNM. In thisway, the update serves as

an acknowledgment and the LNM knows that the controller received notice of the event.

Similarly, the controller sends VM object instances for newly created VMs

to an LNM before the VM is actually started there. Upon successful return from a

start command, the controller updates the VMs cached objectstate on the LNM. Sub-

sequently, the LNM assumes the responsibility for monitoring and reporting any unex-

pected state changes back to the controller.

One scenario which must be resolved by the Controller and LNMis failed

migration. It is difficult to distinguish between a failed and very slow VM migration. In

this case, a tunable timeout value is set. Migrations which do not complete withing that

time are expected to have failed. At this point, the controller notifies the LNM which

returns the VM back to its run state for monitoring purposes.

In the event that a migration assumed to have failed subsequently succeeds,

one of two events will occur: i) the destination LNM detects the VM during its periodic

scan of its VMM state and reports back to the controller, or ii) the source LNM reports

24

the VM as missing. In the first case, the controller notifies the source LNM that the VM

is no longer there, and the LNM deletes its cached copy of the VM. In both cases, the

controller updates its VM object to reflect the VMs new location and sends a cached

copy of the VM to the new LNM.

Controller and Client Interaction

Clients to the Usher system communicate with the controller. Before a client

can make any requests, it must authenticate with the controller. If authentication suc-

ceeds, the controller returns a capability to the client forinvoking its remote API meth-

ods. Clients use this API to manipulate VMs.

Similar to the local node managers, clients receive cached object instances

corresponding to their VMs from the controller upon connection. If desired, clients can

filter this list of VMs based upon virtual cluster grouping tolimit network traffic. The

purpose of the cached objects at the client is twofold. First, they provide a convenient

mechanism by which clients can receive notification of events affecting their VMs, since

the controller sends updates to each cached VM object when the actual VM is modified.

Second, the cached VM objects provide state information to the clients when they re-

quest VM operations. With this organization, clients do nothave to query the controller

about the global state of the system before actually submitting a valid request. For ex-

ample, a client should not request migration of a non-existent VM, or try to destroy a

VM which it does not own. The client library is designed to check for these kinds of

conditions before submitting a request. Note that the controller is capable of handling

errant requests; this scheme simply offloads request filtering to the client.

The controller is the authority on the global state of the system. When the

controller performs an action, it does so based on what the controller believes is the

current global state. The cached state at the client reflectsthe controller’s global view.

For this reason, even if the controller is in error, its stateis typically used by clients for

making resource requests. The controller must be capable ofrecovering from errors due

to inconsistencies between its own view of the global state of the system and the actual

25

global state. These inconsistencies are typically transient (e.g., a late event notification

from an LNM), in which case the controller may log an error andreturn an error message

to the client.

2.3.7 Failures

As the Usher system runs, it is possible for the controller orany of the local

node managers to become unavailable. This situation could be the result of hardware

failure, operating system failure, or the server itself failing. Usher has been designed to

handle these failures gracefully.

In the event of a controller failure, the LNMs will start a listening server for

a recovery announcement sent by the controller. When the controller restarts, it sends

a recovery message to all previously known LNMs. When the LNMs receive this an-

nouncement, they reconnect to the controller. As mentionedin Section 2.3.6, when an

LNM connects to the controller, it passes information aboutits physical parameters and

locally running VMs. With this information from all connecting LNMs, the controller

recreates the global state of the system. With this design, Usher only requires persistent

storage of the list of previously known LNMs rather than the entire state of the system

to restore system state upon controller crash or failure.

Since the controller does not keep persistent information about which clients

were known to be connected before a failure, it cannot notifyclients when it restarts.

Instead, clients connected to a controller which fails willattempt to reconnect with

timeouts following an exponential backoff. Once reconnected, clients flush their list

of cached VMs and receive a new list from the controller.

The controller detects local node manager failures upon disconnect or TCP

timeout. When this situation occurs, the controller changes the state of all VMs known

to be running on the node with the failed LNM tolost. It makes no out of band attempts

to determine if lost VMs are still running or if VMMs on which LNMs have failed are

still running. The controller simply logs an error, and relies upon the Usher administrator

or a recovery plugin to investigate the cause of the error.

26

2.4 Implementation

In this section we describe the implementation of Usher, including the inter-

faces that each component supports and the plugins and applications currently imple-

mented for use with the system.

The main Usher components are written in Python [pyt]. In addition, Usher

makes use of the Twisted1 network programming framework [twi]. Twisted provides

convenient mechanisms for implementing event based servers, asynchronous remote

procedure calls, and remote object synchronization. Table2.1 shows source code line

counts of the main Usher components, for total of 4930 lines of code.

Table 2.1 Code size of individual components.

Component LoC
LNM (w/ Xen hooks) 1409
Controller 2076
Client API 786
Utilities 659
Total 4930

2.4.1 Local Node Managers

Local Node Managers export the remote API shown in Table 2.2 to the con-

troller. This API is made available to the controller via a remote object reference passed

to the controller when an LNM connects.

This API includes methods to query for VM state information and VM re-

source usage details using theget details andget statusmethods, respectively.

State information includes run state, memory allocation, IP and MAC addresses, the

node on which VM is running, VM owner, etc. Resource usage includes 1, 5, and 15-

minute utilizations of the various hardware resources.

Thereceive method creates a cached copy of a VM object on an LNM. An

LNM receives the cached copy when it connects to the controller. The LNM periodically
1We are using Version 2.5.0 at the time of this writing.

27

Table 2.2 Local Node Manager remote API.

Method Name Description
get details(vm name) get VM state information
get status(vm name) get VM resource usage statistics
receive(vm instance) receive new cached VM object
start(vm name) start cached VM
op on(operation, vm name) operate on existing VM
migrate(vm name, lnm name) migrate VM to LNM
get node info() get node physical characteristics
get current node stats() get node dynamic and resource usage info
get current vm stats() get resource usage statistics for all VMs

compares the state of the VM object with the actual state of the virtual machine. If the

states differ, the LNM notifies the controller which updatesthe LNM’s cached copy of

the VM as an acknowledgment that it received the state changenotice.

In addition, the cached copy of a VM at its LNM contains methods for manip-

ulating the VM it represents. When a VM manipulation method exposed by the LNM’s

API is invoked (one ofstart, op on, ormigrate), the method calls the correspond-

ing method of the cached VM object to perform the operation. This structure provides

a convenient way to organize VM operations. To manipulate a VM, a developer simply

calls the appropriate method of the cached VM object. Note that the controller must still

update the state of its VM object as an acknowledgment that the controller knows the

operation was successful.

Most operations on an existing VM are encapsulated in theop on function,

and have similar signatures. Table 2.3 shows the list of valid operations to theop on

method.

All VM operations invoke a corresponding operation in the VMM’s admin-

istration API. Though Usher currently only manages Xen VMs,it is designed to be

VMM-agnostic. An installation must provide an implementation of Usher’s VMM in-

terface to support new virtual machine managers.

The LNM’s remote API exposes a few methods that do not operateon

VMs. The get node info method returns hardware characteristics of the phys-

28

Table 2.3 Operations supported by theop on method.

Operation Description
pause pause VM execution, keeping memory image resident
resume resume execution of a paused VM
shutdown nicely halt a VM
reboot shutdown and restart VM
hibernate save VM’s memory image to persistent storage
restore restore hibernated VM to run state
destroy hard shutdown a VM
cycle destroy and restart a VM

ical machine. The controller calls this method when an LNM connects. The

get current node stats method is similar to theget status method. Ad-

ditionally, it reports the number of VMs running on the VMM and the amount of free

memory on the node. Finally, theget current vm stats method returns resource

usage for all VMs running on the physical machine.

2.4.2 Controller

Similar to the local node manager, the controller is an event-based server.

Upon startup, the controller listens for connections on twoports, one for client con-

nections and the other for LNM connections.

The remote API exported by the controller to connecting clients closely re-

sembles the interface exported by LNMs to the controller. Table 2.4 lists the methods

exported by the controller to Usher clients. This API is madeavailable to clients via a

capability passed upon successful authentication with thecontroller.

Note that most of these methods operate on lists of VMs, rather than single

VMs expected by the LNM API methods. Since Usher was designedto manage clusters,

the common case is to invoke these methods on lists of VMs rather than on a single VM

at a time. This convention saves significant call overhead when dealing with large lists

of VMs.

Thestart andmigrate methods both take a list of LNMs. Forstart,

29

Table 2.4 Controller remote API for use by Usher clients.

Method Name Description
list(vm list, status) list state and resource usage

information for VMs
list lnms(lnm list, status) list LNMs and resource usage

information for VMMs
start(vm list, lnm list) start list of VMs on LNMs
op on(operation, vm list) operate on existing VMs
migrate(vm list, lnm list) migrate VMs to LNMs
plugin method(plugin, method, call method exposed by a
event, arguments) registered plugin
set lnm acl(lnm list, acl) set ACL for a list of LNMs
register plugin(plugin, event, register a plugin for an event
configuration dictionary)
unregister plugin(plugin, event, unregister a plugin for an event
order)

the list specifies the LNMs on which the VMs should be started.An empty list indicates

that the VMs can be started anywhere. Recall that this parameter is simply a suggestion

to the controller. Policies installed in the controller dictate whether or not the controller

will honor the suggestion. Likewise, the LNM list passed to themigrate method is

simply a suggestion to the controller as to where to migrate the VMs. The controller can

choose to ignore this suggestion or ignore the migrate request altogether based upon the

policies installed.

The operations supported by theop on method in the controller API are the

same as those to theop on method of the remote LNM API (Table 2.3).

As mentioned, plugins provide the ability to extend the operations API ex-

posed by the controller to clients. It is often convenient for plugins to expose a few

methods. An SQL plugin may wish to provide a few database management operations,

for example. In addition, plugins can be pure API extension modules which register for

a pseudo event which never fires (e.g., an LNM restart method). Plugin methods are

made available via the controller’splugin method method. Clients specify the plu-

gin and method name, along with the event for which the pluginis registered (a single

30

plugin can be registered for multiple events) and an argument dictionary to pass to the

plugin method. This is an extremely convenient and powerfulfeature of Usher which

allows for the system to provide customized operations for any installation.

Usher also allows for access control at the LNM level. For instance, an admin-

istrator may wish to restrict starting and managing VMs on a particular node to only a

specified list of users. This level of control is provided through access control lists main-

tained for each LNM. Connected clients with sufficient privileges can modify these lists

through theset lnm acl method.

Finally, the controller provides methods for clients to register and unreg-

ister plugins “on the fly”. Providing these methods enables adding functionality or

changing policy as the system runs. In this way, administrators can avoid down time

due to modifying or changing the active set of plugins. The controller provides the

register plugin and unregister plugin methods for this purpose. The

register plugin method takes the plugin name to be registered along with the

event for which it should be registered. It also takes a configuration dictionary which

contains all configuration parameters for the plugin. Theunregister plugin takes

the name of the plugin to unregister along with the event nameand an order parameter

to uniquely identify the plugin (since a plugin can be registered for multiple events and

even multiple times for the same event).

2.4.3 Client API

The client API closely mirrors that of the controller. An important difference

between these two APIs, though, is that the client API signatures contain many addi-

tional parameters to aid in working with large sets of VMs. These additional parameters

allow users to operate on arbitrary sets of VMs and virtual clusters in a single method

call. The API supports specifying VM sets as regular expressions, explicit lists, or

ranges (when VM names contain numbers). The client API also allows users to spec-

ify source and destination LNMs (i.e., physical machines) using regular expressions or

explicit lists.

31

Another difference between the client and controller APIs is that the client

API expands theop on method into methods for each type of operation. Explicitly

enumerating the operations as individual methods avoids confusing application writers

unfamiliar with theop on method. These methods simply wrap the call to theop on

method, which is still available for those wishing to call itdirectly.

Finally, the client API containsconnect andreconnect methods. These

methods contact and authenticate with the controller via SSL. They also start the client’s

event loop to handle cached object updates and results from asynchronous remote

method calls. Thereconnect method is merely a convenience method to avoid hav-

ing to pass credentials to the API if a reconnect is required after having been success-

fully connected. A reconnecting application can use this method upon an unexpected

disconnect.

Appendix C.1 contains information on writing Usher clients.

2.4.4 Plugins

Plugins are separate add-on modules which can be registeredto receive no-

tification of nearly any event in the system. Plugins live in aspecial directory (aptly

named “plugins”) of the Usher source tree. Usher also looks in a configurable location

for third-party/user plugins. Any plugins found are automatically sourced and added to

a list ofavailableplugins.

To register a plugin, an administrator can include a sectionfor it, which in-

cludes any configuration parameters for the plugin, in theplugins section of its own

configuration file. Any plugins listed in the controller’s configuration file are loaded at

startup. In addition, the controller provides an API callregister pluginwhich can

be called from anywhere in the Usher code (e.g., even in otherplugins) or by connected

clients with sufficient privileges.

Each plugin is required to provide a method namedentry point to be

called when an event fires for which it is registered. It is possible to add a single plugin

to multiple event handler chains, as well as, multiple timesto a single event handler

32

chain.

By default, plugins for each event are called in the order in which they are

registered. Therefore, careful consideration must be given to ordering while registering

plugins. A plugin’s configuration object can optionally take anorder parameter that

governs the order in which plugins are called on the event’s callback list. The plugin

API also provides a converseunregister plugin call to change event handling at

runtime.

When an event occurs in the system, the controller calls theentry point

method of each registered plugin in turn. Theentry pointmethod receives the event

type, as well as the VM or list of VMs involved in the event (forVM related events which

are the most common). VM manipulation request events typically involve lists of VMs,

whereas VM operation completion events typically involve asingle VM since operations

are carried out with an asynchronous remote method call for each VM involved.

Plugins can be as simple or complex as necessary. Since the controller invokes

plugin callback chains asynchronously (in their own thread), complex plugins should

not interfere with the responsiveness of the Usher system (i.e., the main controller event

loop will not block waiting for a plugin to finish its task).

Sites can install or customize plugins as desired. The Ushersystem supports

taking arbitrary input and passing it to plugins on request events.2 For example, a request

to start a VM may include information about which OS to boot, which filesystem to

mount, etc. Plugin authors can use this mechanism to completely customize VMs at

startup.

Appendix C.2 contains information on writing Usher plugins.

Events

There are currently forty events for which plugins can be registered in the

core Usher system. These are broken down into five different categories: client, cluster,

controller, LNM, and VM events. Appendix B contains a complete list of all events in
2A request event is an event generated as a result of receivinga client request to operate on a VM or set of VMs.

33

the core Usher system at the time of this writing.

In addition, plugins can create additional events for whichother plug-

ins may register. For example, a monitoring plugin may create an event named

monitor sample. A scheduling plugin may then register for this event to be noti-

fied when new data is available for re-scheduling.

Policy Enforcement

Policies in an Usher installation are implemented as plugins. As an ex-

ample, an administrator may have strict policies regardingstartup and migration

of virtual machines. To enforce these policies, a plugin (orplugins) is writ-

ten to authorize start and migrate requests. This plugin gets registered for the

start request andmigrate request events, either manually using the con-

trollersregister plugin command, or by specifying these registrations in the con-

troller’s configuration file. Once registered, subsequent start and migrate requests are

passed to the plugin (in the form of a Request object) for authorization. At this point, the

plugin can approve, approve with modification, or simply reject the request. Once this is

done, the request is passed on to any other plugins registered on thestart request

or migrate request event lists with a higher order attribute.

Figure 2.3 depicts a migrate request traversing the plugin callback chain for

the migrate event. Each plugin receives the encapsulated migrate request object, per-

forms its operation, then passes the request object to theentry point method of the

subsequent plugin in the chain. Notice that each plugin is free to modify the request

object as it sees fit (as shown for Plugin 2). In this way, policy plugins can enforce any

rule(s) an administrator wishes to define — including denying the request altogether by

converting it into an empty request.

Besides authorization policies, one can imagine policies for VM operation and

placement. For example, initial VM placement, VM scheduling (i.e., dynamic migration

based on load or optimizing a utility function), or reservations. A policy plugin for

initial placement would be registered for thestart request event (probably with

34

Figure 2.3 Migrate request traversing plugin chain.

a higher order attribute than the startup authorization policy discussed above so that it

is called later in the plugin callback chain). Some simple policies such a plugin might

support are round-robin and least-loaded. Scheduling and reservation plugins could be

registered with a timer to be fired periodically to evaluate the state of the system and

make decisions about where VMs should be migrated and which VMs might have an

expired reservation, respectively.

2.4.5 Configuration Files

Each component of the Usher system has its own configuration file. The Usher

configuration module handles parsing of these configurationfiles. This module extends

ConfigObj [cona] to support additional data types and allow for variables to be defined

which apply to all subsections of a nested level. All valid configuration parameters, their

type, and default values are specified in the code for each component and documented

in an included sample configuration file. Likewise, plugins and clients typically include

a sample configuration files with all valid options documented there.

The configuration system tries to read in values from the following locations

(in order): a default location in the host filesystem, a default location in the user’s home

directory, and finally a file indicated by an environment variable. This search ordering

enables users to override default values easily. Values read in later configuration files

replace values specified in a previously read file.

35

Figure 2.4 Ush Shell

2.5 Application Examples

This section gives a sense for the broad range of applications which can take

advantage of Usher’s client API to manage virtual machines.Here, we discuss three

such applications: a shell namedush, an XML-RPC server namedplusher, and a simple

control script for driving VM scheduling experiments.

It is easy to imagine other potential client applications. Acurrent wish list of

future clients includes: a web interface for managing VMs via a web browser, a Firefox

[fir] extension for managing VMs, a command line suite providing executables callable

from a UNIX shell (bash, tcsh, etc.), and a flashy graphical user interface.

2.5.1 Ush Client

The Usher shellush provides an interactive command-line interface to the

API exported by the Usher controller. In this regard, the commands available inush

mirror the client API.Ush provides persistent command line history and comes with

extensive online help for each command. If provided,ushcan read connection details

and other startup parameters from a configuration file.Ush is currently the most mature

36

and preferred interface for interacting with the Usher system. Ush is implemented in

Python and currently consists of 1180 lines of code (over 400of which is simply online

documentation).

Since Usher is extremely extensible,ushwas written to be extensible as well.

First, ushgives users the ability to create or replace command optionsthrough its con-

figuration file. This ability is convenient since plugins maybe in use which extend

options for some commands. For example, a DNS plugin may takeinput to specify

whether it should add round robin or reverse DNS entries for aVM. This input could be

passed via extra options to the start command.3 In addition, it is sometimes convenient

to replace existing options. For example, an IP address handling plugin may replace the

“ip addrs” option to start with its own option. Such command option modifications

can easily be made to a site with a few lines in theushsite configuration file.

In addition to changing command options,ushwas written to allow new com-

mands to be easily added. Adding the new command to the dictionary of commands

along with a method to invoke is all that is required. If desired, a list of command

options may also be specified.

Adding commands is sometimes used for command aliasing. Meth-

ods exposed by plugins registered with the controller can becalled via the

“plugin method” command inush. Using theplugin method command is rather

cumbersome in practice, so adding additional commands toushfor plugin commands is

often desirable.

We now describe a sampleush session from the UCSD Usher installation,

along with a step-by-step description of actions taken by the core components to perform

each request. In this example, user “mmcnett” requests ten VMs. Figure 2.4 contains a

snapshot ofushupon completion of the start command.

First a user connects to the Usher controller by running the “connect” com-

mand. In connecting, the controller receives the user’s credentials and checks them

against the LDAP database. Once authentication succeeds, the controller returns a capa-
3At UCSD, we added an “--rr” option to theushstart command to indicate that round robin DNS entries should

be added for these new VMs.

37

bility for its remote API and all of user mmcnett’s VMs. The somewhat unusual output

“<Command 0 result pending...>” reflects the fact that all client calls to the

controller are asynchronous. When “connect” returns,ushresponds with the “Command

0 result:” message followed by the actual result “Connected”.

Upon connectingushsaves the capability and cached VM instances sent by

the controller. Once connected, the user runs the “list” command to view his currently

running VMs. Since the client already has cached instances of user mmcnett’s VMs,

the list command does not invoke any remote procedures. Consequently,ushresponds

immediately indicating that user mmcnett already has two VMs running.

The user then requests the start of ten VMs in the “sneetch” cluster. In this

case, the-n argument specifies the name of a cluster, and the-c argument specifies

how many VMs to start in this cluster. When the controller receives this request, it

first calls on the authorization and IP management modules toauthorize the request and

reserve IP addresses for the VMs to be started. Next, the controller calls the initial

placement plugin to map where the authorized VMs should be started. The controller

calls thestart method of the remote LNM API at each new VM’s LNM. The LNMs

call the corresponding method of the VMM administration APIto start each VM. Upon

successful return of all of these remote method calls, the controller responds to the

client (ush) that the ten VMs were started in two seconds and provides information

about where each VM was started. After completing their bootsequence, user mmcnett

can ssh into any of his new VMs by name.

2.5.2 Plusher

Plush [ATSV06] is an extensible execution management system for large-scale

distributed systems, andplusheris an XML-RPC server that integrates Plush with Usher.

Plush users describe batch experiments or computations in adomain-specific language.

Plush uses this input to map resource requirements to physical resources, bind a set of

matching physical resources to the experiment, set up the execution environment, and

finally execute, monitor and control the experiment.

38

Since Usher is essentially a service provider for the virtual machine “re-

source”, it was natural to integrate it with Plush. This integration would allow users

to request virtual machines (instead of physical machines)for running their experiments

using a familiar interface.

Developingplusher4 was straightforward. Plush already exports a simple con-

trol interface through XML-RPC to integrate with resource providers. Plush requires

providers to implement a small number of up-calls and down-calls. Up-calls allow re-

source providers to notify Plush of asynchronous events. For example, using down-calls

Plush requests resources asynchronously so that it does nothave to wait for resource al-

location to complete before continuing. When the provider finishes allocating resources,

it notifies Plush using an up-call.

To integrate Plush and Usher inplusher, it was only necessary to implement

stubs for this XML-RPC interface in Usher. The XML-RPC stub uses the Client API

to talk to the Usher controller. The XML-RPC stub acts as a proxy for authentication

— it relays the authentication information (provided by users to Plush) to the controller

before proceeding. When the requested virtual machines have been created,plusher

returns a list of IP addresses to Plush. If the request fails,it returns an appropriate error

message.

2.5.3 Control Scripts

As an example of a very simple client, we wrote VM control scripts as an

Usher client to automate runs of the scheduling experimentsof Chapter 4. These scripts

proved invaluable to running scheduling experiments whichare often long in duration.

The control scripts use the client API to initialize each experiment. Initializing

each experiment involves starting VMs with the proper resources, initial placement, and

load. Experiments run for each scheduler of interest over a range of parameters (e.g.,

number of VMs and physical machines, loads, etc.). Upon completion of all experi-

ments, the control scripts save the experimental results and clean up by shutting down
4Theplusherapplication was written by Diwaker Gupta. Thanks to Diwakerfor being the first person (other than

myself) to attempt to write an Usher application.

39

all running VMs.

Though this is a fairly straightforward client, the abilityto script VM man-

agement operations is extremely powerful. Scripting is a major component of large

infrastructure management today. As a result, administrators can conveniently control

Usher managed VMs with familiar tools.

2.6 Plugin Examples

I now describe a few existing Usher plugins to demonstrate the adaptability

of the Usher system to support a wide range of computing environments. The plugins

presented here will be limited to those written by the authorfor use by the SysNet group

at UCSD. Nonetheless, these show the extensibility of Usher, which can be leveraged

by any administrator to incorporate Usher into her installation.

The SysNet installation uses the following plugins: an SQL database plugin

for IP address management supporting access control on named address ranges and

multiple VLANS (uipmgr); an LDAP plugin for user authentication for both Usher

and VMs created by Usher (uldap); a DNS plugin for modifying DNS entries for

VMs managed by Usher (udns); a monitoring plugin to track VM resource utilization

(umon); and a scheduling plugin to determine where VMs should run (usched). We

will defer detailed discussion of the scheduling plugin to Chapter 3.

All plugins for the UCSD installation are written in Python.Table 2.5 contains

line counts for these plugins.

Table 2.5 Code size of UCSD plugins.

Plugin LoC
IP Manager 250
LDAP 869
DNS 140
Monitor 85
Scheduler 1,786

40

2.6.1 IP Address Management

The IP address management plugin uses a PostgreSQL [pos] database to man-

age and provide access control on named IP address ranges. A useful feature of Post-

greSQL is its support for an IPv4 data type via the Indexable IPv4 range [ipv] extension.

This extension is very convenient for defining address ranges (arbitrary or CIDR), test-

ing inclusion of addresses in ranges, etc.

When an IP address on a particular range is requested, the plugin finds the

next available address on that range and returns it along with other network specific

parameters for that address (e.g., netmask, vlan, etc). If an address is not available, or

the range does not exist, the request fails.

The SysNet installation does not use DHCP to assign IP addresses to VMs

for two reasons. First, the SysNet group manages several subnets,5 spanning multiple

VLANs. Since setting up interfaces on different VLANs is handled by scripts on each

physical machine, a VLAN number must be passed to the LNM whenstarting a VM.

Passing of VLAN numbers cannot be done with DHCP.

The second reason for not using DHCP is that it is impossible to assign own-

ership of arbitrary IP address ranges to specified users. When starting a VM, an address

range can be specified by name.6 Permissions on the specified range are checked so that

only authorized users can assign addresses from that range.

Events and Operation

The IP manager plugin registers for the following events:ctrl start,

start request, start, start failure, register, unregister, and

state change.

Upon receiving actrl start event, this plugin cleans up the list of reserved

IP addresses and sets the state of all used IP addresses to “unknown”. It also removes

addresses which have been in the “lost”, “missing”, or “unknown” state7 for longer
5Some are externally routable, others routable only withingUCSD.
6Otherwise, addresses are taken from a default range with open access.
7The “lost” and “missing” states correspond to VM states described in Section 2.4.2.

41

than a tunable expiration duration. Since the controller queries the global state of the

system at startup, it regenerates the correct list of used IPaddresses at startup (see the

discussion of theregister event below). In this way, we avoid inconsistencies and

lost IP addresses.

Thestart request event will cause the IP manager plugin to reserve IP

addresses for the set of VMs being started. Reserving addresses is necessary since a

start may fail for some subset of the VMs. In this case, the plugin reclaims any unused

reserved address upon receiving astart failure event.

In the event of a successful start, the firing of thestart event will cause

the plugin to move the IP address for the VM (only one VM perstart event) for the

reserved to the used table.

The IP manager plugin sets the state of the IP address to that of the VM (e.g.,

run) upon receipt of aregister event object. Setting the address state is necessary

since, as mentioned, thectrl start event sets the state of all used IP addresses to

“unknown”. Therefore, each VM found during the state regeneration period of controller

restart will have its IP address state in the database updated (or added if not there). The

unregister event causes the plugin to reclaim the IP address used by the VM.

Finally, the IP manager plugin updates the state of an IP address to be that of

the VM using that address upon receipt of astate change event. This can happen

when a VM goes missing, is lost, or crashes.8

2.6.2 LDAP

The LDAP plugin serves two purposes. First, it provides methods for manag-

ing and authenticating Usher users. Second, it provides theconvenience of creating a

branch in the LDAP database for each cluster an Usher user creates. This branch enables

each VM the user creates to authenticate its users through the LDAP database.

This functionality provides a convenient authentication service to virtual clus-

ter creators. First, it allows Usher users to use their Ushercredentials as their VM login
8A crash actually causes the IP address to be reclaimed since the VM will need to be restarted and can get a new

address at that time.

42

credentials since they are automatically added as a user in each cluster created. Since

each cluster uses a different branch in the LDAP database, weuse aliasing in LDAP to

provide Usher users a single set of credentials. In addition, the plugin adds each Usher

user to the “admin” group of each cluster the user creates. VMfilesystems can then

be configured to grant special privileges to this group (e.g., sudo privileges). This ap-

proach is convenient when using a read-only NFS root filesystem where no default root

password is set.

Second, and more importantly, this arrangement addresses the cluster authen-

tication problem for Usher users in the SysNet group. Authentication for clusters is

challenging enough for experienced administrators. Delegating this problem to users is

not only time consuming for them, but could lead to insecure VMs.

Creating a separate branch for each cluster allows Usher users to create ac-

counts and groups for their clusters without burdening the Usher administrator with this

task. This capability is especially conducive to collaborative work, a common case in a

research lab setting. An administrator could easily be overwhelmed with management

requests in a setting where users are free to create their ownclusters, yet are unable to

fully manage them. This approach pushes many mundane administrative tasks out to the

users who have the incentive to create accounts on their VMs.

Allowing Usher users to modify the LDAP database requires careful config-

uration of the LDAP server, however. An LDAP server configuration file that allows

Usher users to only manage branches which they own is included with the Usher source

code. In addition, the Usher plugin for the LDAP server includes scripts for installa-

tion on a user’s VM filesystems to modify cluster LDAP entries(i.e., to add, modify, or

delete users and groups).

Events and Operation

The LDAP plugin registers for the following events:cluster register,

client authenticate, andlnm authenticate. The LDAP plugin creates a

new branch for a cluster in its LDAP database upon receiving acluster register

43

event object. As mentioned, this branch authenticates users of the new cluster. The clus-

ter creator also has permissions to manage users and groups in this new LDAP branch.

The Usher credential checker module generatesclient authenticate

andlnm authenticate events when a client or LNM attempt to authenticate. The

LDAP module then returns whether or not the credentials passed in the event object are

valid.

2.6.3 DNS

By default, Usher names VMs using the following naming scheme:

<requested VM name>.<creator’s username>.<Usher

system domain name>

where the Usher system domain name is specified in a configuration file read by the

controller at startup. The DNS plugin adds both A and PTR records for each VM into a

DNS server specified in the plugin’s configuration file. Optionally, a round robin DNS

entry can be added for each VM if the keyword parameter “rr” isset in the start request

object passed to the plugin.

This plugin registers for theregister and unregister events. The

register event prompts the DNS plugin to add records (A, PTR, and/or round robin)

to its DNS server, whereas theunregister event prompts removal of the entries.

2.6.4 Monitor

The monitoring plugin is responsible for consolidating resource usage data

for all VMs and PMs into a format convenient for consumption by plugins and clients.

This information is maintained by each LNM and up-to-date information is returned to

the monitoring plugin upon request. Other plugin modules may use this data, for ex-

ample, to restrict user resource requests based on the current system load or to make

VM scheduling decisions to determine where VMs should run. Clients uses may in-

clude triggering arbitrary action when loads reach a threshold or simply reporting the

44

information back to interested users.

The Monitor plugin registers for a “periodic” event. The controller fires this

event at a specified interval. Unlike other events, periodicevents are not appended to

event callback lists. Rather, they register with Twisted which periodically calls them

from its main event loop thread.9

In addition, the monitor plugin provides a new event, aptly named “moni-

tor sample”. This new event enables plugins register to be notified when the monitoring

plugin has collected and consolidated a new data sample.

Each time the monitor plugin is fired, it collects information about resource us-

age of each VM and PM as reported by their LNMs. Currently, theLNM is responsible

for providing instantaneous load data, as well as, data averaged over 1, 5, and 15 minute

intervals for VM CPU cycle consumption, network transmit and receive bandwidth, net-

work transmit and receive packet counts, and disk read and write request counts.

2.6.5 Start Request Scenario

As a concrete example of plugin operation, we outline the sequence of events

for a scenario of starting a set of VMs.

When a request to start a list of VMs arrives, the controller calls the modules

registered for the “start request” event. The IP address module is in the callback list for

this event. This module receives the request object and reserves IP addresses for each of

the new VMs.

The controller generates a separate VM start command for each VM in the

start list. Prior to invoking the start command, the controller triggers a “register VM”

event for each VM. The IP management and DNS plugin modules are registered for this

event. The IP management module adds changes the state of theaddress from “reserved”

to “init” to reflect the fact that this is now a VM included in the controller’s view of the

global state. The DNS plugin simply sends a DDNS update to addA and PTR records

for this VM in our DNS server.
9Similarly, one-off “timer” events are registered with Twisted and called by its event loop as well.

45

Finally, upon return from each start command, a “start” event fires. The IP

manager plugin is registered to receive this event. This plugin checks the result of the

command, then either marks the corresponding IP address as in use by changing its state

from “reserved” to “init” (upon success) or releases it (upon failure). Eventually, the IP

module changes the state of the address to match that of the VMusing it when it receives

a “state changed” event for this VM (from “init” to “run” if all goes well).

2.7 Usher Installations

This section presents details of two early deployments of Usher in a produc-

tion environment. The first deployment is for the UCSD CSE Systems and Networking

research group, and the second deployment is at the Russian Research Center, Kurcha-

tov Institute (RRC-KI). The two sites have very different usage models and computing

environments. In describing these deployments, our goal isto illustrate the flexibility

of Usher to meet different virtual machine management requirements and to concretely

demonstrate how sites can extend Usher to achieve complex management goals.

Usher does not force one to setup or manage their infrastructure as done by

either of these two installations. These installations demonstrate the flexibility Usher

offers in setting up a virtual cluster computing environment.

2.7.1 UCSD SysNet

The UCSD CSE Systems and Networking (SysNet) research grouphas been

using Usher experimentally since June 2006 and for production since January 2007.

The group consists of nine faculty, 60 graduate students, and a handful of research staff

and undergraduate student researchers. The group has a strong focus on experimental

networking and distributed systems research, and most projects require large numbers

of machines in their research. As a result, the demand for machines far exceeds the

supply of physical machines, and juggling physical machineallocations never satisfies

all parties. However, for most of their lifetimes, virtual machines can satisfy the needs

46

of nearly all projects: resource utilization is bursty withvery low averages (1 percent

or less), an ideal situation for multiplexing; virtualization overhead is an acceptable

trade-off to the benefits Usher provides; and users have complete control over their

clusters of virtual machines, and can fully customize theirmachine environments. Usher

can also isolate machines, or even remove them from virtualization use, for particular

circumstances (e.g., obtaining final experimental resultsfor a paper deadline) and simply

place them back under Usher management when the deadline passes.

At the time of this writing, the SysNet group has staged up to 62 physical

machines from their hardware cluster into Usher. On those machines, Usher has multi-

plexed over 400 virtual machines in dozens of virtual clusters. The SysNet Usher con-

troller runs on a Dell PowerEdge 1750 with a 2.8 GHz processorand 2 GB of physical

memory. This system easily handles their workload. Although load is mostly dictated by

plugin complexity, using the plugins discussed in Section 2.6, the Usher controller con-

sumes less than 2 percent CPU on average (managing over 300 virtual machines) with

a memory footprint of approximately 20MB. The Usher implementation is sufficiently

reliable that SysNet is now migrating the remainder of theiruser base from dedicated

physical machines to virtual clusters, and Usher will soon manage all physical nodes

(>200) in the SysNet cluster.

Usage

The straightforward ability to both easily create arbitrary numbers of virtual

machines as well as destroy them has proved to be very useful,and the SysNet group

has used this capability in a variety of ways. As expected, this ability has greatly eased

demand for physical machines within the research group. Projects simply create VMs

as necessary. Usher has also been used to create clusters of virtual machines for students

in distributed systems and networking courses; each student or student group can create

a cluster on demand to experiment with distributed protocolimplementation, etc.

Often, projects require a machine or set of machines visibleto the world on

which services are run. This situation is easily handled with Usher. The SysNet group

47

uses the IP manager plugin (see Section 2.6.1) to provide externally routable addresses

to such projects. These projects then specify at VM startup to use an address on the

range containing their externally routable addresses.

The group also previously reserved a set of physical machines for general login

access (as opposed to reserved use by a specific research project). With Usher, a virtual

cluster of convenience VMs now serves this purpose, and an alias with round-robin DNS

provides a logical machine name for reference while distributing users among the VMs

upon login. Even mundane tasks, such as experimenting with software installations

or configurations, can benefit as well because the cost of creating a new machine is

negligible. Rather than having to undo mistakes, a user can simply destroy a VM with

an aborted configuration and start from scratch with a new one.

The SysNet group currently uses a simple policy module in Usher to deter-

mine the scheduling and placement of VMs. This module reliesupon monitoring data

collected by a monitoring plugin to make its decisions. It uses heuristics to place new

VMs on lightly loaded physical machines, and to migrate VMs when a particular VM

imposes sustained high load on a physical machine. Users arereasonably self-policing;

they could always create large numbers of VMs to fully consume system resources, for

example, but in practice do not. Eventually, as the utilization of physical machines in-

creases to the point where VMs substantially interfere witheach other, the group will

interpret it as a signal that it is time to purchase additional hardware for the cluster.

This policy works well for the group, but of course is not necessarily suitable

for all situations, such as the RRC-KI deployment describedin Section 2.7.2.

Usher Filesystems at UCSD

The UCSD SysNet group’s installation of Usher uses read-only NFS root

filesystems for both VMs and VMMs with a separate writable NFSserver for persistent

VM filesystem customizations. There are a few reasons for this setup. First, live migra-

tion of virtual machines requires a filesystem accessible bythe VM at both the source

and destination VMM. Since migration is a requirement of theSysNet installation, Sys-

48

Net VMs must have their root filesystems provided via network-attached storage.

In addition, serving the root filesystem read-only has multiple benefits. First, it

is straightforward to keep filesystems across all running VMs synchronized and updated

using read-only NFS root filesystems. Furthermore, an experienced administrator can

manage this filesystem to ensure that it is secure (e.g., default firewall rules, minimal

services started by default, latest security patches, etc.).

Since all VMs mount this filesystem, it is important that it beas responsive

as possible. Ensuring that the NFS server serving this filesystem is read-only helps

improve performance. Furthermore, an administrator can configure a read-only NFS

server to cache the entire filesystem in main memory. As a result, reads go to disk

infrequently.

One issue with using a read-only root filesystem is that some files and directo-

ries on the filesystem must be writable at system startup. We solve this problem using a

ramdisk for any files and directories which must be writable.Early in the boot process,

these files and directories are copied into the ramdisk, thenmounted using the--bind

flag to make them writable.

Since the SysNet installation serves its root filesystems read-only, another

NFS server provides persistent writable storage. The UsherVM filesystems are con-

figured to initialize their NFS mounted filesystems at boot time. The VMs create the

following directories on the group’s read-write NFS server:

• /net/global: This directory is where users install or store anything theywould

like to have globally accessible by all of their clusters. The contents of

/net/global is the same for all VMs a user creates.

• /net/cluster: This directory is where users can store files they want accessible by

the current cluster only. The contents of/net/cluster is the same for all VMs

in the same cluster.

• /net/local: This directory is unique to the current VM only. The contentsof

/net/local is different for every VM a user creates. Users can use this direc-

49

tory to set up services and configuration files specific to particular VMs.

Finally, all SysNet users are given a home directory. Automount takes care

of mounting these directories upon login. Alternatively, Usher users can choose an

alternate URI (stored in LDAP) for their home directory.

In each of/net/global, /net/cluster, and/net/local, there ex-

ists a System V init style directory structure in theetc directory. Startup scripts in the

VM filesystems have been modified to run scripts in the directory for the appropriate

runlevel from these three locations after the regular system startup scripts run. With this

configuration, even though users cannot write to the root filesystem to change startup

scripts, they can have services started for their VMs at VM boot.

Finally, as mentioned above, the VMM filesystems are also served read-only

NFS root. This has the same advantages as those listed above,with one additional

advantage. It eliminates a common excuse for not placing checked out machines into

the Usher system during periods when groups are not using them. The excuse referred

to is that users do not want to loose the extensive modifications they have made to the

filesystem on the local disk. Since our VMMs do not run from local disk (the disk is

never even mounted), these users can get their machines backin the exact state they

were in before being put into the Usher system.

2.7.2 RRC-KI

Usher has also been deployed at the Russian Research Center,Kurchatov In-

stitute (RRC-KI). The RRC-KI deployment demonstrates the flexibility of Usher to in-

tegrate with different computing environments, and to employ different resource utiliza-

tion policies. Whereas the UCSD SysNet Usher deployment targeted a general-purpose

computing environment, the RRC-KI Usher deployment targets a batch job execution

system that provides guaranteed resources to jobs.

RRC-KI contributes part of its compute infrastructure to the Large Hadron

Collider (LHC) Grid effort [lcg]. Scientists submit jobs tothe system, which are sched-

uled via a batch job scheduler. Jobs are assigned to physicalmachines, and one machine

50

only runs a single job at any time.

Measurements spanning over a year indicated that the overall utilization of

machines in this system is fairly low [CGK+06]. While there were some long, compute

intensive jobs, there was a large fraction of short, I/O driven jobs. Motivated by these

measurements, the goal was to build a flexible job execution system that would improve

the aggregate resource utilization of the cluster.

A straightforward approach is to multiplex several jobs on asingle machine,

and power down the unused machines. However, conventional process-based multiplex-

ing on commodity operating systems is infeasible for a variety of reasons, some social

and some technical: scientists want at least the appearanceof absolute resource guaran-

tees for their jobs; jobs often span multiple processes, which makes resource accounting

and allocation challenging; and the number of physical machines needed depends on the

workload and cannot be assigneda priori.

Virtual machines are a natural solution to this problem. Since each job gets

its own isolated execution environment, resource accounting becomes easier for multi-

process jobs. VMs also provide much stronger isolation guarantees than conventional

processes. Each job can be given guaranteed resource reservations while still main-

taining the abstraction of a physical machine. A trace-driven simulation showed that a

VM-based infrastructure would enable significant savings [CGK+06].

One of the biggest challenges to this approach is management. For a VM-

based infrastructure to scale, the RRC-KI team need an automated system for deploying

and managing virtual machines, a system that can schedule VMs in an intelligent man-

ner, and migrate and place VMs to optimize utilization without sacrificing performance.

A prototype system is currently being used at RRC-KI with Usher as the core manage-

ment framework.

Central to this infrastructure is thePolicy Daemonresponsible for job schedul-

ing and dynamically managing virtual machines (creation, migration, destruction) as a

function of the current workload. The Policy Daemon uses theUsher client API to

monitor VM status and control VM resource utilization from asingle control point us-

51

ing secure connections to the physical hosts. The current testbed comprises of a small

number of nodes hosting production Grid jobs in the Usher-based environment with

plans to expand the system to manage a few hundred nodes [Kur].

2.8 Conclusions

Usher is an extensible, event-driven management system forclusters of virtual

machines. The Usher core implements basic virtual machine and cluster management

mechanisms, such as creating, destroying, and migrating VMs. Usher clients are appli-

cations that serve as user interfaces to the system, such as the interactive command-line

shell Ush, as well as applications that use Usher as a foundation for creating and ma-

nipulating virtual machines for their own purposes. Usher supports customizable plugin

modules for flexibly integrating Usher into other administrative services at a site, and for

installing policies for the use, placement, and schedulingof virtual machines according

to the site-specific requirements. Usher has been in production use both at UCSD and at

the Russian Research Center in Kurchatov, Russia, and initial feedback from both users

and administrators indicates that Usher is successfully achieving its goals.

2.8.1 Usher Availability

Usher is free software distributed under the new BSD license. Source code,

documentation, and tutorials are available at:

http://usher.ucsd.edu

Source code, configuration files, and initialization scripts for the UCSD plugins are also

available for download at the site above.

2.9 Acknowledgement

This chapter, in part, is a reprint of material as it appears in the USENIX LISA

Conference, 2007, McNett, Marvin; Gupta, Diwaker; Vahdat,Amin; Voelker, Geoffrey

M.. The dissertation author was the primary investigator and author of this paper.

Chapter 3

Virtual Machine Scheduling in a

Virtual Cluster Environment

In this chapter we introduce the virtual machine schedulingproblem. We de-

fine our problem, then discuss work closely related to VM scheduling. We propose

reasonable cluster scheduling goals and present our canonical cluster scheduling prob-

lem called Fair Maximum Utilization (FMU). After proving that that FMU is in the class

of NP-hard problems, we finish with detailed discussion of several heuristic approaches

for FMU scheduling. Our solvers generalize to solving any scheduling problem that fits

into the framework we define.

3.1 Introduction

Having solved the problem of managing large numbers of virtual machines

across a site (Chapter 2), we now look to the problem of mapping virtual machines onto

available computing resources for optimum utility. Figure3.1 depicts this problem.

Given a set of VMs, each with its own resource demands, our problem is to place these

VMs onto a (possibly heterogeneous) set of physical machines such that an arbitrarily

defined utility is optimized. In this chapter, we refer to an optimal assignment of VMs

to physical machines as a “solution”. We refer to an arbitrary assignment of VMs to

52

53

Figure 3.1 Scheduling virtual machines (VMs) onto a set of physical machines (PMs).

physical machines as either an “assignment” or a “schedule”.

VM scheduling can be partitioned into two categories: contractual and best-

effort. A contractual scheduler seeks to place VMs onto PMs so as to provide guaranteed

quantities of resources. This type of scheduling is required by providers offering service-

level agreements (SLA) to their clients (e.g., datacenters). In this setting, a scheduler

can either find schedules which satisfy all contracts, or not. In cases where all contracts

cannot be satisfied, utility functions are often employed todetermine which contracts to

honor to maximize profit. Another possibility in contractual scheduling is for service

providers to create SLAs after they have determined how to divide resources among

VMs so as to maximize profit.1 In this case, users do not specify exact resource needs,

but rather how valuable a unit of resource is to them. In either case, contractual schedul-

ing uses utility functions to determine what quantities, ifany, of a particular resource

VMs will receive.

On the other hand, best-effort scheduling seeks to place VMsonto PMs so as

to maximize arbitrarily defined utility without providing guarantees about how much of

a particular resource a VM will receive, or exclude VMs from running. This type of

scheduling uses utility functions to determine where VMs should run rather than what

quantities of resources they will receive. In best-effort scheduling, weights and admis-
1This is essentially a multi-dimensional multiple-knapsack (MDMK) problem.

54

sion control can be employed to provide pseudo guarantees about resource allocations if

desired. This flexibility may make best-effort scheduling more suitable for general pur-

pose cluster computing where multiple operational goals might exist. In this dissertation

we focus on best-effort VM scheduling which is ideal for shared research clusters.

Another consideration in the VM scheduling problem is how VMresource

demands are made known. Establishing the resource demands of a VM involves either

reporting or monitoring. Reporting originates within the VM whereas monitoring is

external. Both approaches have advantages. With reporting, VMs know their applica-

tions and can send notices to indicate whether they are receiving sufficient resources.

This reporting is typically handled by the application(s) itself, or by a separate moni-

toring application running within the VM. With reporting nopredictions need be made

about how VMs will behave in the future. When a VM’s resource demands change, it

will notify the system. This type of “grey box” auditing lends itself to scheduling for

enforcement of SLAs.

On the other hand, monitoring is completely black box. Administrators do not

need to know anything about the operating systems or applications running on the VMs

in their cluster, and users do not need to implement their ownreporting mechanisms.

Since VMs do not report when their resource demands change, monitoring requires that

predictions be made about how a VM will behave in the future.

In this dissertation, virtual machines are treated as blackboxes; we know noth-

ing about the applications running on our VMs and make no a priori assumptions about

what resources a VM might desire. Hence, we use monitoring todetermine our VMs’

resource demands as they run. Our schedulers base predictions about a VM’s resource

desires in the near future upon how it has behaved in the recent past. Further, since

VM resource desires can vary with time, a solution at one moment is not necessarily a

solution at another, making our problem one of “scheduling”rather than “placement”.

As a result of varying resource desires, our schedulers mustcontinuously monitor and

estimate VM resource demands to find new solutions as the system runs.

Another consideration is whether a distributed or centralized approach to VM

55

scheduling should be adopted. Though distributed approaches provide scalability (as-

suming information dissemination overhead can be controlled) and reliability (no single

point of failure), we only consider centralized approaches. With a centralized sched-

uler all VM resource demands are collected by a single scheduler (of course, a failover

controller could be used for redundancy) and all migration decisions are made there.

This greatly simplifies our problem by eliminating the need for complex dissemination

and agreement protocols required by distributed scheduling approaches. In addition, en-

forcing complex global operational goals can be difficult ina distributed approach. Our

experience is that a centralized server can scale to large clusters. Managing over 400

virtual machines induced less than three percent sustainedload on our single processor

2.8GHz Xeon controller node.

The schedulers we explore periodically monitor resource usage and evaluate

whether assignments exist which improve upon the utility ofthe current assignment.

This is the steady state operation of our schedulers. When animproving assignment is

found, the utility improvement is measured against the costof migrating VMs to the

new assignment. If migration cost is acceptable, the scheduler initiates the migrations

required to transition the current VM mapping to the new schedule.

As mentioned, moving from one assignment or solution to another has a cost.

Migration of VMs is expensive in terms of both network bandwidth and CPU usage.

So, any approach to solving the VM scheduling problem shouldaccount for assignment

transition cost, as well as assignment utility. We discuss methods for reducing migra-

tions below, though this is an area warranting further study.

Given the scheduling problem as formulated above, we implemented an Usher

scheduling plugin which utilizes data collected by the monitoring plugin (see Section

2.6.4) to make its scheduling decisions. The scheduling plugin registers for the “mon-

itor sample” event provided by the monitoring plugin to be alerted when updated re-

source usage data is available. Scheduling frequency is an integral multiple of the mon-

itoring frequency. Once a new monitor sample is available, the scheduling plugin em-

ploys a specified heuristic for finding a utility improving assignment. We present the

56

scheduling heuristics we evaluated below. First, however,we elaborate on the meaning

of utility and discuss some reasonable operational goals for a virtual cluster environ-

ment.

For our VM scheduling problem, we represent utility as a mathematical func-

tion to be optimized. Utility functions are designed to reflect how well an assignment

meets a specified set of operational goals for a computing environment. The domain of

a utility function is the set of allfeasibleassignments of VMs to PMs, where feasible so-

lutions are those which satisfy all problem constraints, such as physical memory limits

or explicitly stated rules (e.g., VM1 and VM2 cannot be on thesame node). Fortunately,

feasibility often helps in our approach by pruning the solution space to make searching

for good solutions faster. We discuss feasible solutions toour problem in more detail

below.

Clearly, utility functions vary from site to site. Unfortunately, deciding upon

goals for a computing environment, let alone a defining a utility function designed to

achieve those objectives, can be onerous. Operational goals are often more educated

intuition than absolute and very often conflict with other ideas, or notions, about how a

site should operate. These facts make constructing a utility function based on those goals

as much art as science. In Section 3.3 we present a few possible operational goals to

give a sense for the myriad of scheduling policies (and hence, different utility functions)

under which sites may wish to operate. Section 3.5 discussesconstruction of a utility

function for our FMU problem.

Before moving on, we must point out that the opposite of utility is cost. We

refer to our problem as trying to maximize utility or minimize cost. Where utility func-

tions are bounded between zero and one, cost can simply be defined as one minus utility.

Another definition when utility functions are not bounded may be to define cost as one

divided by utility. In any case, when we talk of utility, our goal is to maximize our utility

function. When we talk of cost, our goal is to minimize our cost function.

57

3.2 Related Work

We now present work closely related to our virtual machine scheduling prob-

lem. This problem has many similarities to process and thread migration for load balanc-

ing in physical clusters. Process and thread migration is a rich topic with a long history.

Here, we only cover highly relevant work in process and thread scheduling. Another area

similar to VM scheduling is application scheduling. In application scheduling large, dis-

tributed applications consisting of several processes (ortasks) compete for resources in a

cluster. Schedulers must determine where processes in an application are able to receive

the resources they desire. This is a special class of processscheduling worth discussing

separately. Finally, we discuss more recent work on actual VM scheduling and how our

approach differs.

Before proceeding, we must point out that, although many approaches to

scheduling of applications in the Grid [FK98] and Planetlab[CCR+03] exist [CZBL00,

TC00, VD02, VD03, CDK+04, OCP+06], these are not appropriate for our VM schedul-

ing problem. In many ways, schedulers for the Grid and Planetlab are more difficult to

design and implement. First, these schedulers must handle resource discovery in an

environment where availability is highly dynamic. In our problem available resources

are known by a centralized scheduler (although resource availability can change, mech-

anisms are in place to keep the scheduler updated as to what the global availability of

resources is at any one time). In addition, schedulers for the Grid and Planetlab are

not centralized and do not make decisions for all entities inthe system. Rather, they

attempt to find the best places for a single application to run, and have only the interest

of a single user in mind. Though there is much we can learn fromthese schedulers, the

key differences between our cluster environment and these geographically distributed

computing platforms preclude us from directly applying their scheduling approaches to

our problem.

58

3.2.1 Process Scheduling

Leland et al. [LO86] perform simulations of heuristics for initial placement

and migration of processes in a homogeneous cluster environment. They studied the

benefit of initial placement onto processors with the fewestresident processes, in ad-

dition to migration to processors with the fewest resident processes. Their simulations

were driven using data from a five month trace of 9.5 million processes. They found that

simple heuristics for initial placement and migration can significantly improve response

ratios of processes that demand large amounts of CPU time without negatively impacting

other processes. Though initial placement heuristics are future work in this dissertation,

their initial placement heuristic places newly arriving processes on the least loaded pro-

cessor. It is unlikely that such a simple initial placement heuristic would work in virtual

clusters since users tend to start VMs in groups, then run similar jobs on each. Because

of this this usage model, we expect round robin placement which evenly spreads newly

arriving VMs across the cluster would be better. Many of the experiments we have run

indicate that round robin placement is indeed better, but further exploration is necessary

to definitively make this claim. Their migration heuristicsare distributed and receiver

initiated. No migrations occur until a processor becomes idle, at which time it sends

a broadcast to all other processors indicating that it will accept bids to run processes.

Upon receipt of all bids, the idle processor notifies the winner which migrates a process

to the idle processor. This strategy is clearly not suitablefor VM scheduling as it simply

looks to keep all processors busy without sufficient regard to fairness or other possible

cluster operational goals.

Harchol-Balter and Downey [HBD95] compare two cluster process migration

strategies using trace driven simulation. The first strategy makes migration decisions

based upon process age. The second migrates new processes based upon whether their

name is on a list of processes known to be long lived. Both approaches resulted in

considerable reduction in process slowdown in their simulations. Their first approach

migrates only older processes which can likely benefit from migration. The migration

decision is a function of memory size and number of processesat the source and desti-

59

nation hosts. Such a heuristic would not be suitable for VM scheduling which depends

upon what resources VMs are consuming at the source and destination rather than the

number of VMs at each node. In addition, migrations are only considered when new

processes enter the system. This approach is clearly insufficient for VM scheduling

since a VMs resource usage often changes considerably during its lifetime. As opposed

to a single process with a single purpose, VMs consist of several processes, each with

its own purpose resulting in a much more dynamic entity than aCPU bound process.

Regarding their second approach, although we could maintain a list of VMs known to

be heavy resource users, we have no notion of VM lifetime. In addition, because a VM

runs several processes rather than a single process over itslifetime, it is more difficult to

maintain a list which classifies VM behavior.

Nuttall and Sloman [NS97] examine workload characteristics to determine

when dynamic process migration is beneficial. They separately consider both CPU and

I/O bound workloads. They contend that dynamic migration isnot useful under realistic

workloads and that papers showing benefits use an unrealistic exponential distribution

for process lifetimes. Interestingly, their simulations showed their dynamic migration

heuristics do improve response time by about ten percent. Inaddition, they acknowl-

edge in a postscript that their synthetic workloads were unintentionally more bursty than

trace data collected in the Harchol-Balter and Downey study. They admit this probably

decreased the effectiveness of their dynamic migration heuristics. Nuttall and Sloman

use load vectors which indicate the level of resource usage for CPU and local and re-

mote I/O to trigger migrations. When a host’s load vector exceeds a threshold value,

migration of a process who’s load vector exceeds a thresholdis considered. A central-

ized algorithm is used to determine to which host a process should be migrated. Nuttall

and Sloman’s process schedulers do not appear to consider the resource usage vectors

componentwise. Rather, they lump all resources into a single vector which makes se-

lection of process and destination “hit-or-miss”. Also, aswith most process scheduling

heuristics, fairness does not seem to be a concern or goal of their scheduler.

MOSIX [BS99] is a system for cluster computing which preemptively and

60

transparently migrates processes between networked workstations for load balancing.

MOSIX has no central control and each node operates as an autonomous system. Load

balancing algorithms continuously attempt to balance loadby migrating processes from

higher to less loaded nodes. Migration decisions are based on process profiling and

resource availability provided by their information dissemination algorithm. Online al-

gorithms determine the best location for processes based onresource availability and

process behavior. Migration decisions in MOSIX are based upon multiple criteria. How-

ever, their criteria are somewhat different than virtual clusters due to the differences in

platform. For example, system-call rates and IPC volume factor into their migration

decisions. Ultimately, the MOSIX scheduler is concerned with CPU load and available

memory. Their decentralized approach requires information dissemination algorithms

to keep nodes informed about resource availability, and nodes must cooperate to make

any migration decisions. Though nodes in the MOSIX system work closely together, it

is not clear how well their distributed scheduler applies toVM scheduling. Despite this,

the goals of the MOSIX scheduler are, perhaps, the most similar in spirit to those of our

VM scheduler.

Ultimately, there is no fundamental difference between process and VM

scheduling. In fact, many hypervisors simply run VMs as processes in a privileged

or host operating system (e.g., [kvm] and [vmwb]). Nonetheless, many process migra-

tion schemes focus on CPU, typically with the goal of minimizing makespan of jobs or

load balancing CPU across a cluster.

Another important distinction between process and VM scheduling is that lo-

cal resource sharing models are tunable in a virtualized cluster. Hypervisor schedulers

are more sophisticated than operating system process schedulers, allowing for more

flexibility in how VMs are scheduled to run locally and what resources they are allowed

to access. Because of this, VM schedulers must understand the behavior of a node’s

underlying hypervisor scheduler to predict how VMs will behave on that node. This

understanding is critical in making scheduling decisions.

Many process scheduling heuristics assume that processes will consume as

61

much CPU as they are given. This assumption is not always trueand is certainly not

the case with VMs. This assumption greatly simplifies the problem by removing the

need to monitor process behavior in order to determine whichprocesses should be mi-

grated from overloaded nodes. Such a simplifying assumption cannot be made in VM

scheduling.

Clearly, VMs bring a new usage model to a cluster environmentand hyper-

visors provide additional knobs for local resource provisioning and functionality for

monitoring resource consumption. As a result, there is a necessity to provide schedul-

ing mechanisms which consider complex local resource sharing policies and can utilize

additional resource usage information to make better scheduling decisions.

3.2.2 Application Scheduling

Application scheduling is a class of process scheduling in which large dis-

tributed applications compete for cluster resources. Typically, these applications run as

services, so there is no notion of completion time. Application schedulers usually seek

to provide resource guarantees (SLAs) to applications as a whole. This is typical in a

datacenter.

Kelly [Kel03, Kel04] considered the problem of computing optimal resource

allocations to agents given agent utility functions for those resources. Kelly related

this problem to that of allocating resources in a utility data center. This problem is

related to our problem of deciding where VMs should run to optimize utility based

upon VM resource desires. However, Kelly’s model lumps all cluster resources into a

single pool on which agents bid for discrete sets of resources, called “bundles”. We,

on the other hand, do not partition our computing resources into discrete sets (e.g., two

CPUs, three disks, etc.), but rather share those resources between all VMs competing

for them on each node. Kelly’s model applies to multi-tieredapplications which scale

horizontally. This model allows Kelly to formulate the allocation problem as a multi-

dimensional multiple choice knapsack (MDMCK) problem for which efficient dynamic

programming solutions exist. Because FMU does not exclude VMs from running, it

62

cannot be framed as a knapsack problem. Also, we do not treat our system as one large

pool, so each node in our system would have to be a separate sack. Finally, Kelly’s

approach requires partitioning resources into bundles, which we do not do in FMU. For

these reasons, Kelly’s dynamic programming approach cannot be applied to our VM

scheduling problem.

Other application placement heuristics have been proposed(e.g., [CDK+04,

KKP+06]). The problem with applying these methods to VM scheduling is that most

prior approaches attempt to place applications on nodes where their resource demands

will be met, based upon prior knowledge of application resource demands (stated explic-

itly or through SLAs) or assumptions as to what those demandswill be. This approach

is in line with “contractual scheduling” defined in the chapter introduction and reduces

the problem to one of packing, where a satisfying assignmentis one which places appli-

cations on nodes which can deliver the resources they desire. Often, utility functions are

used to distinguish good from bad satisfying assignments. Policies must be established

to handle cases where satisfying assignments cannot be found.

On the other hand, we focus on a best-effort approach which does not nec-

essarily provide virtual machines with specified amounts ofresources or prevent VMs

from running when sufficient resources are not available. Our target is that of a general

purpose cluster environment where resources are shared in arbitrary ways in accordance

with policies imposed by the site administrator. Though ourscheduler can be setup to

provide pseudo resource guarantees, we are not restricted to such settings. In this way,

we wish to support a virtual cluster environment similar in spirit to a multi-user oper-

ating system. There, users’ resource allocations are governed by the resource sharing

policies of the underlying operating system; processes typically share resources fairly,

but can be “niced” and limited in their resource consumptionusingulimit.

3.2.3 Virtual Machine Scheduling

Recently, researchers have begun to consider VM scheduling. Sandpiper

[WSVY07] develops policies for detecting and reacting to hotspots in virtual cluster

63

systems while satisfying application SLAs. Sandpiper determines when and where to

migrate virtual machines under the constraints of meeting the stringent SLA require-

ments of a data center. Migrations are triggered when resource usage of a node exceeds

a threshold value. Since Sandpiper is scheduling for SLAs, their problem reduces to one

of packing. Their scheduler then looks to find new mappings which satisfy all SLAs

while alleviating all hot spots. In cases of high loads, Sandpiper is unable to find solu-

tions and gives up. This behavior is different from our best-effort approach which looks

to find the best place for VMs to run based upon their resource desires.

VirtualIron provides LiveCapacity [liv] for scheduling VMs across pools of

physical machines. LiveCapacity migrates VMs only if placing the VM on the destina-

tion does not exceed a specified utilization threshold. It isnot clear whether only CPU

is considered in this decision. LiveCapacity balancing is only re-evaluated every few

minutes, so highly dynamic environments may not benefit fromusing this scheduler.

VMware offers their Distributed Resource Scheduler (DRS) [vmwa] as an

add-on to their VM management suite. DRS continuously monitors VM loads and

determines if any user-specified allocation rules have beenviolated. If a violation is

found, resources are allocated to the VM by either migratingit to another server with

more resources, or migrating other VMs away from the node on which the VM in vio-

lation is running. DRS appears to be another example of a packing approach where VM

assignments which meet all VM resource requirements are sought. It is not clear what

heuristics VMware uses to find satisfying assignments.

The LBVM (load balancing of virtual machines) system [lbv] seeks to migrate

VMs to load balance workloads across a cluster. Each candidate for migration is listed

in a configuration file and, at regular intervals, algorithmsfor each VM are executed.

These algorithms may choose to migrate their VM based on arbitrary predicates (e.g.,

node five minute CPU load is greater than 70 percent).

It is not clear what the criteria for selecting a destinationnode is for LBVM.

Also, there is no mention of coordination between algorithms to avoid unintended con-

sequences such as hot spots arising due to all VMs in a round migrating to the same

64

physical node. The flexibility of separate algorithms for each VM may make such coor-

dination difficult. Further information is needed before additional comparison between

LBVM and our method can be made.

DRS and LBVM both provide flexible VM scheduling where per VM allo-

cation rules can be specified. However, because they consider VMs individually, it is

unlikely that they could easily support scheduling policies for global characteristics such

as fairness to all hungry VMs. Also, both schedulers seem to be designed for environ-

ments with excess capacity (this is also true for LiveCapacity). That is, migrations are

initiated when a node which can meet all of a VMs resource demands has been found.

Again, this situation is not best-effort scheduling where VMs can tolerate varying levels

of service.

3.3 Operational Goals

Determining where VMs should be placed in a cluster depends upon the op-

erational goals of the site. Once these goals are defined, utility functions for achieving

them can be specified. Though it is easy to imagine any number of operational goals,

we give just a few examples of reasonable objectives.

Power Management: One popular area of interest today is power management. High

costs of energy necessitate practical solutions to minimizing energy use. This is a rea-

sonable goal in nearly any setting. Approaches to achievingthis goal range from very

simple to extremely complex. For example, a simple policy for achieving this goal may

be migrating VMs off sets of PMs when overall utilization of particular computing re-

sources are below threshold values [KUS+04]. More complicated policies may strive

to place VMs on machines on which they have been determined torun more energy

efficient [NS07].

Another reasonable power management goal proposed for use in the UCSD

SysNet group is to balance power consumption across racks. This goal emerged from a

desire to prevent racks from tripping breakers in a machine room lacking proper power

65

provisioning.

Simple VM Placement: A reasonable policy in VM placement may be to try to evenly

spread VMs across physical machines when workloads are known to be similar with

the goal of load balancing across physical machines. Another may be to simply put

constraints upon how many VMs can run on a physical machine with the goal of better

accommodating workload spikes.

Network Traffic: Since VMs on the same node communicate without using the phys-

ical network interface, a practical policy may be to place heavily communicating VMs

on the same physical machine when possible. Another may be tosimply place them in

the same rack so that their network traffic is restricted to a single switch.

Service Level Agreements: Where contracts are involved, administrators need the

ability to guarantee levels of performance to their clients. These service level agree-

ments (SLAs) define constraints under which a site may operate. Strict SLAs in which

guarantees are absolute essentially reduce VM scheduling to a multi-dimensional mul-

tiple knapsack problem. While complicating the problem, soft SLAs which guarantee

resources with some probability can result in much higher resource utilization than strict

SLAs. Our approaches (discussed below) may also be good for providing soft SLAs.

Resource Utilization: Using the UCSD SysNet group as an example, allocating com-

puting resources to users at the granularity of physical machines often results in poor

resource utilization. Thus, a reasonable goal for a VM scheduling policy may be to max-

imize overall resource utilization, where multiple resources are considered important.

Unfortunately, a policy of maximizing overall resource utilization which does

not consider fairness can result in starved and frustrated users. So, a goal to maxi-

mize overall resource utilization while being fair to thosesharing the resources is more

tenable. This is the exact goal of the SysNet installation. We refer to this as the Fair

Maximum Utilization (FMU) problem and present it in detail in the following section.

66

As a final note, notice that many operational goals are actually constraints

(e.g., hard SLAs) whereas others are rather fuzzy (e.g., FMU) and lend themselves to

being expressed as utility functions. Though constraints which do not greatly restrict the

feasible solution space can be enforced in our solution methodology, satisfying complex

constraints which greatly limit the ratio of feasible to allpossible assignments (feasi-

ble or infeasible) can be problematic. When assignment feasibility checks cannot be

performed quickly, the solution methodology presented here breaks down.

3.4 Fair Maximum Utilization

As introduced above, the goal of the Fair Maximum Utilization (FMU) prob-

lem is to maximize overall resource utilization across a site while maximizing fairness

to VMs contending for those resources. We now clarify the terms “overall resource

utilization” and “fairness”.

Overall resource utilization: Overall resource utilization implies that utilizations of

a specified set of resources (e.g., CPU, network, disk I/O, memory) all factor into the

total utilization calculation. As a simple example, consider a site consisting of two PMs

offering ten units of CPU and ten units of network transmit bandwidth each (here, CPU

and network transmit are the only resources being considered important). Now, imagine

scheduling the four VMs in Table 3.1.

Table 3.1 Sample VM resource demands.

VM Name CPU Units Network TX Units
VM1 12 10
VM2 11 15
VM3 5 1
VM4 6 2

Figure 3.2 depicts VM resource allocations for four possible assignments. In

Figure 3.2 a, VM1, VM2, and VM3 are assigned to run on PM1 and VM4 is assigned to

67

Figure 3.2 Virtual machine resource allocations for three different assignments.

run on PM2. The length of each shaded rectangle represents the amount of the resource

received by that VM. Notice that, in this schedule, PM2 is notbeing fully utilized.

In this section we assume that resources are fairly shared locally in a work

conserving manner. For example, network transmit on PM1 in Figure 3.2 a is being

shared by VM1, VM2, and VM3. VM3 only desires one unit and is able to get it since

there are only two other VMs contending for that resource. VM1 and VM2 are then able

to receive their fair share of10/3 units, plus an additional7/6 units each (total of 4.5

units) since VM3 is not using all of its fair share.

The schedule in Figure 3.2 b fully utilizes available CPU, but not network

transmit bandwidth. So, this schedule does not maximize overall resource utilization.

Clearly, any schedule which separates VM1 and VM2 maximizesoverall uti-

lization as shown in Figure 3.2 c and d. Notice that, concerning utilization, VM3 and

VM4 can be placed anywhere while separating VM1 and VM2 sincethis already results

in 100 percent overall resource utilization. However, placing them both on the same

node as in Figure 3.2 c clearly hurts fairness, discussed next.

Fairness: Fairness implies that no VM is able to consume substantiallymore of a

particular resource than another VM desiring more of that resource than it is receiving.

We define the following terms:

68

hungry VM: A VM desiring more of a particular resource than it is cur-
rently receiving.2

satisfied VM: A VM receiving as much of a particular resource as it de-
sires.

pseudo-hungry VM: A satisfied VM receiving more of a particular re-
source than the average amount being received by thehungryVMs
for that resource.

Briefly, pseudo-hungry VMs arise from imbalance in the schedule. For exam-

ple, imagine a system of two physical machines offering 100 CPU units each and three

VMs desiring 75 CPU units each. If we place two VMs on the first PM and the third on

the second PM, the two VMs on the first PM are hungry VMs and the VM on the second

PM is a pseudo-hungry VM. In this case, the average being received by hungry VMs is

50 units. Since the VM on the second PM is receiving 75 CPU units (and is therefore

satisfied), it is classified as pseudo-hungry since it is receiving more than the average

amount being received by the hungry VMs for CPU. Note that theset of pseudo-hungry

VMs is a subset of the set of satisfied VMs.

Notice that each resource,r, under consideration has a set ofhungryVMs

associated with it:

Hr = Hr,1 ∪ Hr,2 ∪ · · · ∪ Hr,M

whereM is the number of physical machines.

Letting V be the set of all VMs, the set ofsatisfiedVMs for resourcer, is

simplySr = V \ Hr.

Using the above definitions, fairness implies thathungryVMs of a particular

resource should all be receiving approximately the same amount of that resource, with

no satisfiedVMs receiving more, across all physical machines. Lettingρr be the set of

pseudo-hungryVMs for resourcer, define the set ofaugmented hungryVMs as:

Ĥr = Hr ∪ ρr

Then, the goal of fairness is to ensure that all VMs inĤr are receiving approximately

the same amount of resourcer. We refer to this as being “fair to hungry VMs” rather
2These are referred to as “hogs” in the scheduler code.

69

than “fair to augmented hungry VMs” since fairness to pseudoVMs is meaningless. The

mere existence ofpseudo-hungryVMs implies that thehungryVMs are being treated

unfairly.

Revisiting the above example, Figure 3.2 a is not fair since asatisfied VM,

VM4, is receiving more CPU (6 units) than the average allocation of those desiring more

(10/3 units). In other words, not all VMs in̂HCPU = {V M1, V M2, V M3, V M4}

(V M4 ∈ ρCPU) are receiving the same amount of CPU.

Figure 3.2 b is a fair schedule since all VMs desiring more CPUand transmit

bandwidth are all receiving the same amount of those resources. That is, all VMs in

ĤCPU = {V M1, V M2, V M4} are all receiving the same amount of CPU (five units)

while all VMs in ĤTX = {V M1, V M2} are all receiving the same amount of network

transmit bandwidth (five units). This schedule, however, does not maximize overall

resource utilization as do those of Figure 3.2 c and d.

As mentioned above, the schedule in Figure 3.2 c is unfair since VM2 is re-

ceiving more CPU than VM1, VM2, and VM3 (ten units vs.10/3 units) which all

desire more CPU. Also, this schedule allocates ten units of network transmit to VM2

while only seven units are given to VM1, which desires more.

Though not completely fair, the schedule of Figure 3.2 d bestmeets our criteria

of maximizing overall utilization while being fair tohungryVMs. Notice that VM3

and VM4 both receive as much network transmit bandwidth as desired since they do

not exceed their local fair share of that resource. The remaining network transmit is

consumed by VM1 and VM2 on their respective PM since the localschedulers are work-

conserving3 and their demand exceeds the amount of that resource available locally.

The schedule in Figure 3.2 d is only slightly unfair to VM2, which only re-

ceives eight units of network transmit bandwidth versus nine units for VM1. This, how-

ever, is the most fair schedule possible. One remedy for thisslight imbalance might be

to periodically swap VM3 and VM4. However, VM migration is not free, and an ad-

ministrator should consider how much unfairness she is willing to tolerate before taking
3Work-conserving scheduling ensures that resources do not go idle while there is demand.

70

such actions.

3.4.1 NP-hard Proof for Fair Maximum Utilization

As evidence that the Fair Maximum Utilization (FMU) problemis not trivial,

I prove that it is in the class of NP-hard problems.

Formally, the FMU problem4 is:

Given:

• an ordered set ofR resources,
• a multiset ofM physical machines with some capacity of each re-

source to fairly share,5

P = {~p1, ~p2, . . . , ~pM |~pi ∈ R
R, i = 1, . . . , M}

where each component of~pi is the amount of that resource shared at
machinei,

• a multiset ofN virtual machines with some desire for each resource,

V = {~v1, ~v2, . . . , ~vN |~vi ∈ R
R, i = 1, . . . , N}

where each component of~vi is the amount of that resource desired by
VM i

find an assignment of VMs to PMs which maximizes overall resource utilization

U =
1

R

R
∑

i=1

(
wi

ci
)

M
∑

j=1

uij (3.1)

where,

wi = weight of resourcei,
∑R

i=1
wi = 1,

ci = total capacity of resourcei
uij = amount of resourcei consumed at nodej

while maximizing fairness to hungry VMs

F =
1

R

R
∑

i=1

wi

(

Hi
∑

j=1

aij)
2

(Hi

Hi
∑

j=1

a2

ij)

(3.2)

where,
4Actually, the FMU problem is more general, where a physical machine can offer multiple instances of a particular

resource and a VM can desire multiple instances of a resource. Nonetheless, for proving FMU is NP-hard, the
definition here is sufficient and far more tidy notationally.

5That is, the underlying scheduler will fairly share the resource in a work-conserving manner.

71

wi = weight of resourcei,
∑R

i=1
wi = 1,

Hi = number of augmented hungry VMs for resourcei
aij = amount of resourcei allocated to augmented hungry VMj

Equation 3.2 is known as Jain’s Fairness Index [JCH84].6 Notice thatU ∈ [0, 1] and

F ∈ [0, 1].

Theorem 3.4.1.FMU is NP-hard.

Proof. The3−PARTITION problem has been shown to be NP-complete in [GJ79].

So, to prove Theorem 3.4.1, we show that3−PARTITION ≤p FMU.

Let S be a multiset ofN = 3M integers such that the sum of the integers in

S equalsMB andB/4 < i < B/2 ∀i ∈ S. The3−PARTITION problem asks

whetherS can be partitioned intoM subsets such that the sum of the integers in each

subset equalsB.

The reduction to an instance of FMU is as follows. For eachi ∈ S, add a VM

to V with scalar desire equal toi. Next, addM VMs to V with scalar desireMB + 2

(i.e., we addM hungry VMs). LetP be the multiset ofM scalars with valueMB + 1.

Note that, in this case, we have an instance of FMU withR = 1 (it is not important what

the resource actually is, just that there is a single one).

Claim: ∃ an assignment of VMs to PMs whereU = 1 andF = 1 ⇐⇒ S can be

partitioned intoM subsets with sumB.

(⇒) Assume∃ an assignment of VMs to PMs withU = 1 andF = 1. Since the capac-

ity of each physical machine isMB+1, the only possible way to getU = 1 is to place a

hungry VM on each physical machine. Since we only haveM hungry VMs, we clearly

must have exactly one hungry VM per physical machine.

Now, since we have exactly one hungry VM per physical machineandF = 1,

it must be the case that the sum of resource consumed by the non-hungry VMs placed on

each physical machine must be equal. In particular the sum ofresource consumed by the
6We originally found that the coefficient of variation workedwell as a fairness measure. However, the coefficient

of variation is not guaranteed to be in [0,1]. The astute reader may have noticed thatF =
1

1+COV 2 .

72

non-hungry VMs placed on each of theM physical machines must equalB. Therefore,

S can be partitioned intoM subsets with sumB.

(⇐) AssumeS can be partitioned intoM subsets with sumB. Then, placing the VMs

in each of theM subsets on a different physical machine along with exactly one hungry

VM will clearly give us an assignment withU = 1 andF = 1.

The above reduction is obviously polynomial time, so3−PARTITION ≤p

FMU. ∴ FMU is NP-hard.

Notice that the FMU problem as defined above is for the case where each

physical and virtual machine has a single availability and desire for each resource, re-

spectively. The more general case is each physical machine offering multiple instances

of a particular resource (e.g., multiple CPUs) and each VM having multiple desires for

a particular resource (e.g., multiple virtual CPUs). It is easy to see that the above proof

applies to the more general problem since the above reduction also polynomial time

reduces3−PARTITION to an instance of this more general form.

3.5 Problem Classification

In its purest form, FMU is an instance of a multiple objectivecombinatorial

optimization (MOCO) problem.Combinatorial optimizationis the search for an “opti-

mal arrangement” of a set of discrete objects [Law01]. In FMU, the objects are VMs

and the arrangements are placements of VMs onto physical machines. So, we seek to

find optimal assignments of VMs to PMs. Optimal refers to minimizing (or maximiz-

ing) a function, typically referred to as thecost function, whose domain is the set of all

feasible assignments of VMs to PMs. In standardcombinatorial optimization, this is a

scalar valued function. Recall, however, that FMU possesses two objectives: maximize

Equation 3.1 while simultaneously maximizing Equation 3.2. Hence, we have a MOCO

problem. Formally, a MOCO problem is:

73

Given a discrete vector valued cost function:

C(s) : s ∈ S → R
N (3.3)

where

S is a finite discrete set of feasible solutions

N ∈ Z
+

find an arrangement,s∗ ∈ S, which minimizes cost:

C(s∗) ≤ C(s)∀s ∈ S

Possible strategies

In MOCO, the objectives are often in conflict. Therefore, onemust give suffi-

cient consideration to defining the total order “≤”. For example, defining the FMU cost

function as

C(s) =





1 − U(s)

1 − F (s)



 =





CU(s)

CF (s)



 (3.4)

one possibility for the total order is lexicographical ordering where

C(s1) ≤ C(s2) if CU(s1) < CU(s2) ∨ (CU(s1) = CU(s2) ∧ CF (s1) ≤ CF (s2))

Defining the total this way treats utilization as the primaryconsideration, with fairness

only being considered once utilization has been maximized.This is often far from the

best strategy. It is easy to imagine scenarios where a very slight decrease in utilization

between one assignment and another dramatically increasesfairness.

Fuzzy logic [ZKY96] is another option for treating multipleobjectives. In

this approach, objects have a degree of membership in a set, and may be a member

of multiple sets. This degree of membership is defined by membership functions with a

range in[0, 1]. In FMU, the object are values of utilization and fairness ofan assignment.

In fuzzy logic, linguistic values are used to define the sets wherein assign-

ments may fall for each of the objective functions. For example, high could be used to

74

characterize the values of utilization and fairness for an assignment. Then, satisfaction

of a schedule is determined by its degree of membership in thesets of high utilization

and high fairness. Rules can then be defined to characterize the “goodness” of solutions.

Since we do not employ fuzzy logic in our solution approach, the interested reader can

refer to [ZKY96] for additional information.

A simplification

Rather than defining a total order or resorting to fuzzy sets,FMU can be sim-

plified into a scalar valued function. Experience has shown that simplification works

well in practice.

Certainly, there are several possibilities for convertingEquation 3.3 into a

scalar valued function. One logical choice may be to take theLp-norm of the solution

vector of Equation 3.3:

C(s) = |~x|p, ~x ∈ R
N (3.5)

where,

|~x|p ≡

(

∑

i

|xi|
p

)1/p

The most common norm , often simply denoted|~x|, is theL2-norm:

|~x| =
√

|x1|2 + |x2|2 + · · ·+ |xN |2

What is interesting about theLp-norm for FMU is that, at its extremes,

|~x|1 =
∑

i

|xi|

and

|~x|∞ ≡ max
i

|xi|

larger components of the vector are treated with increasingemphasis. In other words,

asp → ∞, we move from focusing on each objective with equal weight, to focusing

exclusively on the objective with highest cost. So, when utilization is low (i.e., its cost

is high) in FMU, its effect on the cost function will be more dramatic than if utilization

75

and fairness were treated equally. What is a reasonable value forp in FMU? We discuss

experiments for various values in Chapter 4.

Another possibility for transforming Equation 3.3 into a scalar valued function

is to simply compute a weighted sum of each component. For FMU, this yields,

C(s) = CU(s) + wCF (s) (3.6)

wherew ∈ [0, 1]. This works well, but in practice, a better scalar valued cost function

is:

C(s) = CU(s) + w(U(s))CF (s) (3.7)

That is, make the fairness weight a function of utilization.The intuition here is that,

when utilization is low, fairness is not very important since hungry VMs should already

be placed where they are getting as much as the system can possibly give them. If this

were not the case, utilization could be increased by moving hungry VMs to PMs where

they will get more of their coveted resource. For FMU, we found the following cost

function:

C(s) = CU(s) + (1 − CU(s))2CF (s) (3.8)

works well in practice. We use this cost function in the experiments in Chapter 4.

As a final note, none of the above modifications to the cost function change

the fact that FMU is still NP-hard sinceC(s) = 0 ⇐⇒ U(s) = F (s) = 1 in all cases.

3.6 Hungry Detection

The distinction betweenhungryandsatisfiedVMs is important to the FMU

problem. Certainly, Equation 3.2 cannot be evaluated without knowing which VMs are

in Ĥr for each resource,r. If we had a mechanism by which a VM could notify us when

it is not getting the resources it desires, we could easily classify those as hungry and all

others satisfied. Unfortunately, the black box nature of ourscheduling system precludes

the use of such mechanisms. So, the job of distinguishing between hungry and satisfied

76

VMs fall to our system. Making this distinction in a running system requires careful

consideration.

The first step in hungry detection is understanding how resources are shared

on a physical machine. Thus, the sharing policy of the underlying VMM must be

properly understood. The Usher scheduling plugin allows for specification of arbitrary

resource sharing models for the resources of interest. One must simply subclass the

SharingModel class of the scheduler code.

The CPU sharing model we use is based on the Xen [BDF+03] Credit sched-

uler. This scheduler fairly shares physical processors between virtual machines in a

work-conserving manner. The scheduler provides transparent, cross CPU migration and

can be tuned per-VM with weight and cap specifications. In ourwork, we assume that

all VMs are weighted equally, though this restriction is notnecessary for our solution

methodology.

Keep in mind that, a virtual CPU7 (VCPU) can only consume up to what is

provided by a single processor in a multiprocessor PM. So, ifa single threaded (i.e.,

single VCPU VM) VM is the only VM running on a two processor PM,it would only

consume cycles offered by a single CPU rather than both. On the other hand, a VM with

two VCPUs could potentially consume all available cycles from both physical CPUs.

As you can imagine, figuring out how many cycles each VCPU willreceive for arbitrary

numbers of VMs with arbitrary numbers of VCPUs on machines with several physical

CPUs can be difficult. Figuring out which of these VCPUs is hungry adds another

challenge.

Though an example using the Xen Credit scheduler model wouldbe overly

complicated, a very simplified example will help to clarify how understanding of the

underlying scheduler helps us to determine which VMs are hungry and which are sat-

isfied. Imagine a fair CPU scheduler on a single CPU physical machine hosting only

single VCPU VMs. LetN be the number of VMs andQ be the number of CPU cycles

per second being offered by the physical machine. In this case, the following simple
7A virtual CPU is the CPU abstraction presented to the VM by thehypervisor. VMs can have any number of

virtual CPUs up to the limit of the VMM.

77

heuristic works to determine which VMs are CPU hungry:

If the CPU load on the physical machine isQ, then

1. find the maximum CPU allocated to a VM,VMAX

2. add all VMs with CPU allocation equalVMAX to Ĥ

Ĥ is the set of hungry VMs.

This, of course, is a very simplified example. Also, since theXen scheduler

is not exact, some error must be tolerated. For example, we may need to change the

condition on machine load to0.95Q and put all VMs with CPU allocation equal to

0.95V MMAX in Ĥ. Due to these inaccuracies, any black box strategy for categorizing

VMs as hungry or satisfied will not be perfect.

3.7 Heuristic Approaches to FMU

Loosely speaking, if you could count the number of computingclusters in ex-

istence today, you would likely have a good guess at the number of different cluster

operational goals as well. Many of those goals lend themselves to the use of virtual

machines. For this reason, any approach to solving the virtual cluster scheduling prob-

lem must be sufficiently general to be applicable to a wide range of virtual cluster usage

scenarios.

As with FMU, many combinatorial optimization problems are NP-hard. Those

which are not often lend themselves to much simpler solutiontechniques. Occasionally,

even NP-hard scheduling problems can be tackled when known greedy algorithms or

polynomial time approximation schemes (PTAS) exist. Of course, one must be willing

to sacrifice optimal solutions for near optimal solutions when using these, but this is

often acceptable in scheduling. Indeed, near optimal solutions are acceptable for FMU

since finding good schedules is only part of our problem.8 Unfortunately, no good PTAS

has been discovered for the general FMU problem. However, simplified versions of the

problem do present themselves to efficient solvers.
8As discussed below, we still have the problem of getting to the new configuration.

78

3.7.1 A Simple Single Resource Approach

Restricting FMU to a single resource greatly simplifies our problem and

known greedy heuristics and PTAS for similar problems can beemployed to assist in

finding good schedules. As an example, the reader may be wondering about the FMU’s

relationship to bin packing or the knapsack problem. Thoughthere is some similarity

between FMU and these problems, they are not the same. The Related Work section

(Section 2.2) elaborates on the key differences between these problems. Nonetheless,

reducing FMU to a single resource allows us to use either greedy methods or PTAS for

bin packing to help find good assignments. The heuristic for this is as follows:

1. bin pack all satisfied VMs (e.g., using first fit decreasing [D07] or a
known PTAS if tighter bounds are desired)

2. round-robin place all hungry VMs where they will receive the highest
CPU allocation

We call this the Divide and Bin Pack (DBP) algorithm. Note that this heuristic still

requires hungry detection.

Using a scheduling simulator written to facilitate quick evaluation of different

scheduling heuristics, we tested DBP with 25 physical nodes, 300 VMs, and 45 CPU

hungry VMs. Load for the remaining VMs was taken from a Paretodistribution with

shape parameter of one. We found that DBP routinely found schedules with 99 percent

CPU utilization with the coefficient of variation of CPU allocation to hungry VMs less

than 0.1. In other words, DBP met the goals of FMU quite well. Of course, this approach

is only valid for settings involving a single instance of a single resource at each PM and

VMs with only a single virtual instance of that resource. This is clearly not in line with

hardware and computing environments of today.

For this reason, we look to more powerful solution methodologies for FMU.

A popular approach for many combinatorial optimization problems is to use what are

known asmetaheuristics. The term “metaheuristic” refers to a heuristic which guides

a lower-level heuristic in a search for an optimal solution to a given utility function.

We look at one such heuristic in Section 3.8 called SimulatedAnnealing. We will also

79

explore simpler greedy approaches to FMU which arrive at newschedules much quicker

than SA, but are less likely to find very good schedules. First, however, we introduce

a very simple scheduling heuristic which will give us a baseline with which we can

compare our more sophisticated schedulers. We call this heuristic “Balanced CPU”

(BCPU).

3.7.2 Balanced CPU Scheduler

As a baseline, the Balanced CPU (BCPU) scheduler is a very simple scheduler

with which we compare results of our more complex schedulersdiscussed below. The

purpose of this comparison is to determine how much better (or worse) our schedulers

perform than an extremely simple solver. The BCPU solver simply tries to balance

CPU load across all PMs by minimizing the maximum load of all physical nodes in

the system. It only considers the CPU resource and knows nothing about hungry and

satisfied VMs (unlike the more sophisticated DBP scheduler mentioned above). All

decisions are based on the current VM CPU usage, not what the VM might actually

want. Note, this is identical to the minimum makespan problem (where time is now

load), which itself is NP-hard [GJ79]. We, however, apply a known4/3 approximation

algorithm [Gra69] for minimum makespan to our problem. The heuristic for BCPU is

as follows:

1. sort VMs in decreasing order of their CPU allocations

2. assign VM to PMs in sorted order, scheduling the VM on the PMthat
has the lowest CPU consumed so far

Note that one issue with the above BCPU scheduler is that migration count can

needlessly increase when two VMs with the same desire swap positions in the ordered

list due to scheduling imperfections. For example, two VMs with 100MHz desire may

get 99MHz and 101MHz respectively in one sample, then 100MHzand 98MHz the

next. This will cause the BCPU scheduler to assign them to a PMin a different order,

likely resulting in needless migrations of these VMs. To alleviate this, we propose a

second BCPU scheduler we call BCPU2. This uses the simpler two approximation for

80

minimum makespan presented in [Gra69]. Applying this to FMUyields the following

algorithm:

1. sort VMs in order of their fully qualified domain name

2. assign VM to PMs in sorted order, scheduling the VM on the PMthat
has the lowest CPU consumed so far

Note that [Gra69] orders jobs arbitrarily which, in essence, is what sorting by

VM fully qualified domain name does. Since this will always sort VMs in the same order

(excluding VM arrival and departure), the needless swap issue above is eliminated. We

present results for both schedulers alongside those for ourmore elaborate schedulers in

the following chapter.

We make one small modification to the above algorithms by introducing a

migration resistance in step 2 to avoid excessive migrations. If the CPU consumption

after placement on the PM with the lowest utilization in step2 is within five percent of

the CPU consumption of the VM’s current PM (were the VM placedthere), we leave the

VM assigned to its current PM. This greatly reduces migrations which do not strongly

affect the characteristics of the final schedule.

As a final comment, we could certainly conceive of other possible tweaks

to our simple schedulers. However, tweaking simple schedulers quickly complicates

them. Since our intent is to show that our schedulers are better than extremely simple

schedulers, we do not consider additional modifications to our BCPU schedulers. Note,

we do not claim that a simple scheduler which performs as wellas or better than our

more sophisticated schedulers does not exist.

3.8 Simulated Annealing

Simulated annealing (SA) [KGV83] is a well known metaheuristic for solving

combinatorial optimization problems. SA can be viewed as animprovement over the

simple hill climbing/descending algorithm to allow for non-convex solution landscapes

to be searched for globally optimal solutions. The inspiration for this method comes

81

Figure 3.3 Annealing of a solid to reduce its internal energy.

from annealing in solids whereby a solid is heated to a temperature at which the chemical

bonds between its atoms begin to break, allowing atoms to move freely. The solid is then

slowly cooled to allow atomic bonds to reform. Figure 3.3 depicts the process of heating

and slowly cooling of a solid. The new state of the solid presumably has a much lower

internal energy than its previous state. The slow cooling iskey in allowing atoms to find

these lower energy configurations.

Similarly, SA seeks optimal solutions by allowing candidate solutions with

higher energy to be accepted with probability based upon thedifference in energy be-

tween the current and candidate solution and current simulation temperature. At high

temperatures, nearly all candidate solutions are accepted. As the simulation runs, tem-

perature is gradually decreased, causing solutions with higher energy (i.e., less desir-

able) to be accepted with less probability. So, as temperature decreases, SA behaves

more and more like simple hill climbing/descending (hill descending in this case).

In the remainder of this section, we use the terms “energy” and “cost” inter-

changeably since utility functions in optimization problems are often referred to as “cost

functions”.

The accepting of higher energy solutions is what enables SA to climb away

from local minima and more thoroughly explore the entire solution space. Hill climb-

ing/descending alone does not posses this property. Figure3.4 contains an example

solution space searched by SA. Here, cost is plotted againstthe states in the feasible

solution space.

Starting at the “current” state, a simple hill descending algorithm would

terminate at stateS1 as its solution. SA’s ability to climb out of “bad” local minima

allows it to move out of theS1 trough and over into theS2 trough, resulting in a better

82

Figure 3.4 Sample solution landscape.

solution at stateS2. Given sufficient running time, a properly constructed SA solver

would eventually find the global minima atS3. The ability to escape troughs in the

solution landscape is a key feature of metaheuristics.

83

3.8.1 The SA Algorithm

We apply the SA algorithm as originally proposed in [KGV83] to FMU. Pseu-

docode for the [KGV83] variant of SA is as follows:

SA(s cur, alpha, mod, temp, time max, cost thr)
time = 0
cost cur = cost(s)
cost best = cost cur
s best = s cur
while time < time max

s new = neighbor(s)
cost new = cost(s new)
if cost new ≤ cost cur

s cur = s new
cost cur = cost new
if cost new ≤ cost best

cost best = cost new
s best = s new
if cost new ≤ cost thr

return s new
else if random() < exp((cost cur − cost new)/temp)

s cur = s new
cost cur = cost new

if not time%mod
temp = alpha ∗ temp

time = time + 1
return s best

where,

alpha - temperature reduction factor

cost() - function returning cost of a given state

cost best - lowest cost (energy) encountered so far

cost cur - current state cost

cost new - new state cost

cost thr - threshold value for early termination

exp() - exponential function

mod - number of annealing steps at each temperature

neighbor() - function returning a neighbor of a given state

random() - function returning a random number in[0, 1]

84

s best - best state visited so far

scur - current state

s new - new state to examine

temp - simulation temperature

time max - maximum time to run simulation

This variant uses theMetropolis procedure[MRR+53] to simulate annealing

at a given temperature. Here, at each temperature, a series of mod states are considered.

Theneighbor function is used to probabilistically choose a new state in the neighbor-

hood of the current state. Briefly, this function typically performs a small perturbation

to the current state (e.g., randomly migrate a VM) to yield a new “nearby” state for con-

sideration. For each new state, if the cost is less than the current state, the new state be-

comes the current state. If the cost is greater than the current state, it can still become the

current state if the conditionrandom() < exp((cost cur − cost new)/temp), known

as theMetropolis criteria, is met. This is what allows SA to climb out of troughs to

explore larger regions of the solution space. The heuristicrepeatedly runs the Metropo-

lis procedure at each temperature formod steps, decreasing temperature by a factor of

alpha after eachmod steps, until the total time reachestime max.

3.8.2 Setting SA Parameters

Notice that there are several parameters which must be specified for the SA al-

gorithm: s cur, alpha, mod, temp, time max, cost thr. As with most metaheuristics,

SA must be properly tuned to the problem at hand. Here, the input parameters must be

tuned for the givencost andneighbor functions, and, to some extent, the acceptance

criteria (Metropolis criteria in this case).

Worth mentioning is thecost thr parameter, sometimes referred to as the

“stopping criteria”. Setting this is at the discretion of the experimenter. If an accept-

able value of the cost function in known, settingcost thr can often save substantial

simulation time when an acceptable assignment is close to the current assignment.

Indeed, there is a wealth of information on tuning SA, as wellas, optimizations

to the original algorithm. However, it is not the intent of this chapter to study properties

85

and convergence aspects of SA (or any other metaheuristic) applied to FMU, but rather

show that metaheuristics are a reasonable approach to efficiently finding good mappings

of VMs to PMs for FMU scheduling. Improving the efficiency of SA, in addition to, the

behavior of other metaheuristics applied to FMU is beyond the scope of this dissertation.

Below, we present only a high-level discussion on setting parameters and

defining the neighbor function of SA. The interested reader is referred to [SY99] for in

depth coverage of the theory for properly setting these values and defining this method.

Neighbor function: Theneighbor function for SA must be given careful considera-

tion. An important property of this function is that it have the ability to reach any state

in the feasible solution space from any other state in a finitenumber of steps. For exam-

ple, aneighbor function for FMU which swaps VMs between two PMs does not posses

this property since all PMs would always host the same numberof VMs. In addition,

efficient searching requires that the number of steps between any two states in the valid

solution space be sufficiently small.

Another important property of theneighbor function is that it not be biased

toward very good moves. The reason for this is that very good moves in a states neigh-

borhood can move the current solution into a deep local minima. This may prevent

SA from escaping to find other, potentially better solutions. We slightly relax this re-

quirement for FMU, as will be explained in Section 3.8.4 where we define our neighbor

function.

Cooling schedule: The alpha, mod, temp, and time max parameters define the

“cooling schedule” for SA. It is common to determine values for these parameters

through trial and error, although methods have been proposed for setting and dynam-

ically tuning these as a simulation runs [SY99].

As with annealing of solids, the cooling schedule is important to finding a

global minimum. If cooling is too fast, crystal lattices do not form in the solid and inter-

nal energy is not minimized. Similarly, a fast SA cooling schedule (smallmod and/or

smallalpha) will quickly fall into a local minima and be unable to escapesince the prob-

86

ability of accepting higher cost moves approaches zero as temperature approaches zero.

Very slow cooling schedules require very long running timesto find good local minima,

or result intime max being reached before the simulation ends, stopping before agood

local minima is found. We use parameter sweeps in our scheduling simulator to discover

reasonable constant values for these.

Efficiency: Two major contributors to the computational cost of SA are the calculation

of the cost and neighbor functions. These should be fairly inexpensive since both will

be computed at each step. The cost function should be such that only local changes need

to be recomputed. Though our cost function is somewhat hefty, this property does hold.

3.8.3 SA Parameters for FMU

As shown in Section 3.8, there are few tuning knobs for SA which affect new

schedule quality. We used our VM scheduling simulator to perform parameter sweeps

of alpha, temp (initial temperature),time max, andmod to determine good values for

these parameters for FMU. Though we did not find excellent exact values for these in our

simulations, we did discover acceptable ranges for each parameter. We summarize these

ranges in Table 3.2. There,M andN are the number of VMs and PMs, respectively.

As should be expected, good ranges fortime max, andmod were dependent upon

simulation size.

Table 3.2 Acceptable simulated annealing parameters for FMU.

Parameter Range
alpha [0.7, 0.9]
temp [7.5, 12.5]
time max [MN

2
, MN]

mod [time max
2N

, 2time max
N

]

Unless otherwise specified, we chosealpha = 0.8, temp = 10, time max =

MN
2

, andmod = 2time max
N

for the experiments in this dissertation.

One pitfall to avoid with SA is the desire to reach a solution quickly by spec-

87

ifying low values foralpha, temp, or mod. This results in quick descent into a local

minima which may be of poor quality (E.g.S1 in Figure 3.4). In addition, a low value

for time max does not allow the algorithm sufficient time to “feel around”the solu-

tion space in search of good assignments. The temptation to set these values low stems

from the desire to reduce migration costs. We discuss this tradeoff and methods for

controlling high migration counts in more detail below.

3.8.4 Reducing SA Migrations

Finding good mappings of VMs to PMs in virtual machine scheduling is only

part of the problem. Once a better assignment of VMs to PMs is found, the problem

of migrating the VMs to their new locations remains. VM migration comes at a cost

of both network bandwidth and CPU. It is, therefore, prudentto minimize the number

of migrations necessary to move to a better schedule. However, limiting the number

of moves (migrations) actually works against the spirit of SA, in which many configu-

rations are examined and often accepted in an effort to find a global optimum or good

local minima.

Fortunately for us, finding the globally optimal assignmentis not always nec-

essary or even desirable. Looking back at Figure 3.4, if we imagine that distance along

thex-axis is proportional to the number of migrations necessaryto move between states,

the migration overhead of moving from “current” to the globally optimal solution atS3

may be far too expensive. There, theS2 mapping may be more appealing due to its prox-

imity to “current” and the fact that it is only slightly more costly than the assignment at

S3.

So, what we are really striving for in FMU is a solver which finds good sched-

ules near our current schedule. For SA, we simply want to ensure that it is given suf-

ficient opportunity to climb out of nearby “shallow” local minima to look for nearby

“deep” local minima. If SA falls into a deep nearby local minima, we have probably

found an acceptable new schedule.

Theneighbor function can play a pivotal role in quickly finding nearby deep

88

local minima. As mentioned above, theneighbor function can be biased toward making

good moves. Although this is not good for SA in general, it coincides with our goal of

finding good nearby solutions, as opposed to searching the entire solution space for a

global minima. This bias can be tuned as the simulation runs to allow for more aggres-

sive searches (i.e., less bias towards good moves) when stuck in a local minima with

unacceptably high cost.

Our neighbor function takes a parameter which specifies how often a good

move should be made. If a good move should be made, our neighbor function finds the

set of most hungry VMs consisting of the hungry VM for each resource receiving the

least of that resource and randomly migrates them. Otherwise, our neighbor function

simply migrates a randomly chosen VM to a randomly chosen PM.A feasibility check

is performed for each suggested migration.

Notice that randomly migrating the most hungry VMs does not necessarily

result in good moves. Nonetheless, the possibility of good moves is certainly higher

than that of a purely random move.

Another possibility for reducing migration count is to rollthe cost of migration

back into our cost function to penalize solutions requiringlarge numbers of migrations.

Unfortunately, this approach has two problems. First, adding migration cost back into

the cost function changes our solution landscape as we search for a good assignment. It

is not clear how this change affects convergence aspects of SA. Such a change would

certainly make it much harder for SA to move away from poor local minima, limiting

the advantage of this approach.

A second problem with charging our cost function with migration cost is that

it requires maintaining how many migrations are required toget from one schedule to

another. For example, imagine that SA moved a VM multiple times in its effort to

find a better schedule. It would be likely that we could simplymove that VM from its

initial position to its final position, skipping all the intermediate migrations performed

by SA during its solution search. In addition, it is not always as trivial as removing

intermediate migrations from the path. As discussed next, problem constraints may

89

preclude migrating VMs directly to their destination. Having to keep track of how many

migrations are necessary between two assignments adds additional computation cost to

our cost function evaluation (which is already slightly expensive).

What is more, its not clear how the cost of migration should becharged to

our cost function. Should it be a constant charge or depend upon link speeds between

nodes, CPU speeds, or something else? For these reasons, we do not use this approach

to limiting SA migration counts.

3.8.5 Migration Paths

Another issue we must consider is moving from an old to a new schedule.

Moving between schedules cannot always be done in arbitraryorder. Migrations must

not violate constraints such as physical memory limits or resource allocation guarantees.

As a simple example, imagine that all PMs in Figure 3.2 b have ten units of memory

and each VM there consumes five units of memory. Then, it wouldnot be possible

to swap VM2 and VM3 to arrive at the more fair schedule in Figure 3.2 d since this

would involve first migrating VM2 to PM2, which would temporarily require 15 units

of memory. In this case, hibernating VM2 and restoring it on PM2 after VM3 has been

migrated to PM1 is one option for getting around this limitation. If there were a third

PM in the system, another option would be for VM2 to be migrated there, then to PM2

after VM3 has been migrated to PM1.

Fortunately, ourneighbor function does not move to assignments which vi-

olate problem constraints since those assignments do not belong to the set of feasible

solutions. However, the shortest path (i.e., the one requiring the fewest migrations) to

a new assignment is not always the same as the order of migrations taken by the SA

heuristic. As an optimization, we first check to see if a simple ordering which migrates

VMs directly to their new destination does not violate any problem constraints. If a vio-

lation is found, the path as taken by SA is used. For simplicity, optimizing this to check

for additional shortened paths was not done. In practice, wefound constraint violations

in our optimized path were rare.

90

3.8.6 Allocation Prediction

Notice that SA requires cost, and hence Equations 3.1 and 3.2, to be calculated

for each new schedule under consideration. This, in turn, requires that we know how

resources will be shared on a PM given a list of local VMs and their resource desires.

Thus, the sharing policy of the underlying VMM must be properly modeled.

In our experiments, resources are assumed to be fairly shared in a work-

conserving fashion. The Xen Credit scheduler is assumed with default parameters for

CPU, and networking resources are assumed to be fairly shared between all VMs. Nei-

ther of these assumptions are required. If properly modeled, it is possible to support

more sophisticated sharing policies such as relative weights and maximum threshold

values for CPU, or network traffic shaping.

For a fair-share, work-conserving scheduler, a simple algorithm determines

the resource “hungry level”,hl, for a set of VMs running on a given PM. Any VMs

desiring more of the resource thanhl are givenhl units and placed in the set of hungry

VMs for that resource for that PM. All others VMs are given their desire of the resource

and placed in the set of satisfied VMs for that resource. The hungry level determination

algorithm is as follows:

get hungry level(capacity, desires, max alloc)
if max alloc < 0

max alloc = capacity
sort(desires)
hl = minimum(capacity/length(desires), maxalloc)
get smallest desire
desire = desires.pop()
while desire and desire < hl

capacity− = desire
hl = minimum(capacity/length(desires), maxalloc)
desire = desires.pop()

return hl

where,

capacity - total amount of resource available on PM

desires - list of all VM desires for the resource

91

length() - function returning the length of the desires list

max alloc - maximum number of units of resource which can be consumed
by a virtual resource

minimum() - function returning the minimum of two values

pop() - member function returning the list head

sort() - sorting function which sorts desires in ascending order

The max alloc variable merits some explanation. This is the maximum

amount of a resource which can be consumed by a VM virtual resource. For exam-

ple, with multiple CPUs, a virtual CPU cannot consume more than the capacity of a

single CPU. Imagine a four processor PM with capacity of 10 units each. A single vir-

tual CPU would not be able to consume more than 10 CPU units, even though the CPU

capacity of the PM is 40 units.

Each time a VM is moved from one PM to another, the hungry level, hl,

hungry andsatisfied sets, and allocations for each resource for the new schedulemust

be determined using the above algorithm. Once these are established, the cost for the

new schedule can be computed and tested to see if the new schedule should become the

current schedule. This somewhat expensive cost function calculation is acceptable for

our problem. We discuss this in more detail below.

3.8.7 Resource Dependencies

One difficulty in determining resource allocation is dependencies between re-

sources. For example, in Xen, network traffic to and from a guest VM induces a sig-

nificant CPU load in both that domain,9, as well as, Domain 0.10 So, when a VM is

migrated to a location where it can receive more network bandwidth, its CPU desire

will increase accordingly. Likewise, if a VM with heavy network traffic is migrated to

a location where it will receive less CPU than it needs to maintain its bandwidth, its

network load will also decrease.
9In Xen, a VM instance is referred to as a “domain”.

10Domain 0 is a privileged VM in Xen through which all other VMs and their virtual devices are managed. We
assume that handling of network traffic has not been delegated to another domain.

92

Understanding this dependency and representing it mathematically has proven

challenging.11 This is an area warranting further study. Note, however, that our solution

strategy applies equally well once this relationship is fully understood since the cost

function of our SA solver can still be evaluated.

3.9 A Greedy Approach

Recall that one problem encountered in our application of SAto FMU is the

large number of moves (i.e., migrations) incurred by the annealing process. We men-

tioned that methods for reducing high migration counts often work against the spirit

of SA by precluding the solver from fully exploring its solution space. Nonetheless,

experiments using SA with a reasonable threshold,cost thr, and aneighbor function

biased toward good moves often yielded very good schedules for FMU with far fewer

migrations.

The Greedy Best Move (GBM) solver evolved from our experiments using

the adapted SA solver above. It was discovered that turning up the periodicity of biased

moves often resulted in good solutions with very few migrations. Taking this to extreme,

we conceived of the GBM solver which always tries to make “smart” moves. The result

is a solver which often finds good nearby schedules, but cannot climb out of bad local

minima.

3.9.1 The GBM Heuristic

Under GBM, the best moves for each VM are determined and kept in a list

sorted by cost improvement. Cost for GBM uses the same cost function as that for SA.

For each VM, this list contains the best destination PM for that VM at its head. Each list

is constructed by evaluating the value of the cost function with the corresponding VM

at every other PM, while keeping all other assignments static. To illustrate, a system

with ten VMs and five PMs would create ten lists (one for each VM) of four tuples each.
11This is at least for Xen, where strange interactions betweenCPU usage and networking performance has been

observed.

93

Each tuple would consist of two components: i) the destination PM and ii) the change

in cost,∆C, if the VM were migrated to that PM. These lists are sorted by the ∆C

component of each tuple. Using these move lists, the GBM heuristic is as follows:

1. for each VM, create a smaller, candidate move list from itsmove list
consisting of moves within a prescribed fraction of its bestmove.

2. for each VM, randomly choose a move from its candidate movelist

3. insertion sort VMs in ascending order of the∆C value of their selected
move into a global moves list

4. for each VM in the global moves list, check to see if its selected move
still reduces cost. If so, migrate VM to its destination.

Programatically, creating the moves list and steps 1-3 are all done in a single

loop to avoid storage overhead of keeping these lists for each VM.

The point of steps 1 and 2 in the GBM heuristic is to avoid having all VMs

choose a single PM to which to migrate. It is easy to imagine alternative methods for

avoiding an overly attractive PM. Passing the bestN candidates for each VM to step 4

and checking them in turn may be prudent, but comes at the costof additional checks

for each VM. Another option might be to remove PMs from all VM move lists after they

have been selected as a destination.

In step 4, we simply walk down the global moves list, migrating VMs if their

move still reduces cost. A previous migration can easily invalidate a VM’s selected

move. For example, a global moves list may have two hungry VMsmigrating to the

same PM when it should only receive a single hungry VM. This can happen since we

are only looking at single moves at a time, as opposed to move combinations, when

constructing the VM move lists. This approach, however, is far more efficient than

finding the globally optimal move, assuming it will be made, finding the second best

globally optimal move, assuming it will be made, and so on.

We present experimental results for the GBM heuristic in Chapter 4.

94

3.10 A Hybrid Approach?

The main drawback of using the SA heuristic is that it incurs high migration

counts. The benefit of this approach is its ability to escape bad local minima to more

thoroughly search the solution space for good assignments.On the other hand, a short-

coming of our GBM heuristic is that it lacks the ability to escape poor local minima,

whereas its advantage is that it often finds acceptable assignments with a much smaller

migration overhead.

As a result, another approach is to apply a hybrid heuristic to FMU which uses

GBM until its solutions are no longer suitable, then switches to our more aggressive SA

solver to move to a better location in the solution space. After finding a better assignment

using SA, the hybrid solver returns to using the GBM solver.

Though this hybrid approach seems to be a reasonable balancebetween find-

ing good schedules and high migration counts, time constraints prohibited us from ex-

ploring its behavior in this dissertation.

3.11 Conclusions

In this chapter we defined our virtual machine scheduling problem and dis-

tinguished it from other types of process, application, andVM scheduling problems.

We seek scheduling solutions to best-effort VM scheduling where VMs are not guaran-

teed quantities of resources and VMs are not excluded from running based upon system

loads and resource availability. We introduced our canonical VM scheduling problem

in this framework called Fair Maximum Utilization (FMU). FMU seeks to maximize

overall cluster resource usage in a fair manner. We put forward several algorithms for

our virtual machine scheduling problem of various levels ofsophistication. As opposed

to our more elaborate schedulers, our basic approaches makeno attempt to interpret

monitoring data to classify virtual machines as hungry or satisfied. In addition, these

basic approaches do not try to determine how VMs will behave on a physical node after

a VM migration to or from that node.

95

In the following chapter, we evaluate the scheduling heuristics presented here.

One question we seek to answer is whether basic algorithms are (or can be) as effective

as more sophisticated heuristics. An important goal in our evaluation is to show which

of our heuristics, in general, are practical approaches to enforcing operational goals of a

virtual cluster installation.

Chapter 4

Scheduling Evaluation

We now focus on evaluating our proposed scheduling approaches. To deter-

mine how well our schedulers perform, we focus on: i) qualityof the scheduler’s solu-

tions (i.e., utilization and fairness), ii) scheduler agility (i.e., how quickly does it arrive

at a better schedule), and iii) the overhead of finding and moving to better schedules.

In evaluating our schedulers, it is critical to understand the experimental en-

vironment and how our schedulers behave in them. Having several items to specify in

an experiment (e.g., VM and PM counts, initial placement, initial load, load characteris-

tics, etc.), it easy to inadvertently favor one scheduler over another. Though we cannot

always provide “a level playing field” for each scheduler in our experiments, we try

to remove as many advantages as possible, or clearly state when one scheduler has an

advantage over another in a given environment. Our ability to game an experiment in

favor of one scheduler or another makes it difficult to provide solid quantitative results

of one scheduler’s performance versus another. For example, stating that scheduler X

is 10 percent better than scheduler Y in regard to fairness carries little weight since any

tweak to the experimental environment almost surely changes this number (sometimes

substantially).

In addition, some experimental setups simply do not lend themselves to sub-

stantial improvement. For example, an experiment which begins in an optimal state

without significant changes in loads would not cast our schedulers in a favorable light.

96

97

On the other hand, one must question the validity of an experiment which begins in the

most unfavorable configuration, since such would be uncommon in practice. For these

reasons and those above, we often discuss the quality of our scheduler’s assignments and

their suitability to a particular environment (e.g., “goodin a dynamic environment”).

Though we also give quantitative results, the reader is encouraged to consider them in

context.

4.1 Methodology

We study the behavior of our BCPU, BCPU2, SA, and GBM schedulers under

the following virtual cluster scenarios:

Hot spot incident: Here, several VMs on a small set of nodes suddenly
increase their CPU demands.

Pseudo general purpose cluster workload:Here, virtual cluster work-
loads are generated from statistical properties of observed general pur-
pose cluster workloads.

Before presenting experimental results, we first discuss a few details.

Testbed: Our testbed consists of 20 Dell PowerEdge R200 servers equipped with dual

Intel Xeon X3210 CPUs running at 2.13GHz. These are dual coreprocessors, so each

PM has a total of four CPU cores. Each machine has a total of 4GBof main memory

and dual onboard 1Gbps network interfaces. Only one of the two network interfaces is

used in our experiments.

We run Xen 3.1.0 with Linux 2.6.18 kernels for both Domain 0 and guest

domains. Each guest domain runs with 128MB of main memory. All VMs run NFS-

root (including Domain 0 VMs), so no local hard drive is ever accessed.

CPU load reporting: In our experiments, we report CPU as the number of cycles

per second averaged over the previous minute rather than a load percentage. Using

cycles rather than percentage is necessary since we may be operating in a heterogeneous

98

environment where some machines have faster processors than others. Though this is

not a perfect measure since cycles are not exactly equivalent across different processor

models, it is the best measure we have for comparing a VMs allocation on different

machines. Certainly, a relationship should be establishedto compare cycles between

very different architectures (e.g., between Xeons and Opterons). We do not consider

migration between machines with vastly different architectures here.

CPU loader application: To induce a desired CPU load in our experiments, we have

written a CPU loader application. Writing an application toconsume a specified number

of cycles per second is not a trivial task. Our CPU loader application currently loops

over generating 1000 random numbers, checking to see how much system and user time

have been consumed over the previous second using thegetrusage system call, and

sleeping every 0.05 seconds for an adjusted number of milliseconds to reach the target

usage. Sleep time must be adjusted to mitigate interactionsbetween this application,

the imperfect Xen scheduler, and VM migration — all of which cause our application

to occasionally miss its target load. Our loader calibratesitself every two seconds to

ensure it is within five percent of its target load. If not, ourapplication adjusts its load,

causing the sleeping time to be increased or decreased as necessary. As a result of this

design, our loader may be off by as much as five percent.

Scheduling granularity: As mentioned above, our schedulers rely upon loads aver-

aged over one minute intervals. So, reported resource usagefor a VM is only valid one

minute after a migration. The same holds for the source and destination PMs involved

in the migration. Therefore, scheduling can only be done at aminimum granularity of

one minute plus our data collection interval. We collect monitoring data at 20 second

intervals so our minimum scheduling interval is 80 seconds.Note that the duration over

which load is averaged as well as data collection interval are tunable. We have selected

these intervals as a balance between fidelity and monitoring/scheduling overhead.

99

4.2 Hot Spot Alleviation

The purpose of the hot spot alleviation experiments is to seehow well our

schedulers react to an imbalance in resource demands acrossa set of PMs. This also

applies to the case where a subset of the running VMs suddenlyincrease their resource

demands. Such is a common scenario in a multi-tenant environment where jobs, appli-

cations, or services are started on all of a tenants VMs simultaneously. This causes a

subset of the VMs to suddenly become active and possibly require rescheduling.

To observe our scheduler’s reaction under the worst case scenario, we limit

our testbed to use only a single core on each PM and increase the load on a set of VMs

residing on the same PM or PMs.

In these experiments there is no load on the VMs and no scheduler running at

time zero. At time 20, each VM begins consuming 213MHz (ten percent) of the physical

machines CPU. At 140 seconds, a number of VMs increase their CPU demands. These

VMs are all packed onto the fewest number of nodes possible. VM desires do not change

after 140 seconds for the remainder of the 600 second experiment. At 260 seconds, a

scheduler is turned on and runs for the remainder of the experiment (shaded area in the

figures). During this time, VMs are periodically migrated tobetter assignments found

by the scheduler. Depending upon the scheduler, there may ormay not be multiple

migration rounds. For example, the SA scheduler is often very good at determining the

optimal placement in a single iteration.

The above experiments are performed in two environments. The first consists

of a small cluster of 18 VMs running on three PMs. The second isa larger cluster of

120 VMs running on 20 PMs.

In all hot spot alleviation experiments we study VM CPU allocations, overall

system CPU utilization, and system fairness to hungry VMs. Our graphs show individ-

ual VM CPU allocations and overall system CPU utilization (right y-axis) over time.

VM allocations are plotted with solid lines, Domain-0 loadswith dashed lines, and

overall CPU utilization with a dash-dot line. Shaded areas of the graphs indicate regions

100

where the schedulers were running.

4.2.1 Small Cluster (HSA-18:3)

In our first set of experiments, 18 VMs run on three physical machines. The

small number of VMs and PMs involved allows for us to reason about our schedulers’

behaviors and resulting assignments. We refer to these as the “HSA-18:3” experiments.

Initial placement evenly spreads the VMs so that six VMs are running on each PM.

Results are presented for the following scenarios:

• five VMs increase their desire to 427MHz1

• five VMs increase their desire to 747MHz2

• six VMs increase their desire to 747MHz

Although many additional scenarios were studied, these three provide good insight into

the behavior of our heuristics. Results of those additionalstudies were consistent with

results presented here.

Five VMs to twenty percent demand (HSA-18:35-20)

The first subset of the HSA-18:3 experiments have five VMs on a single PM

increase their CPU demand to 427MHz (20 percent of a single PM’s CPU capacity).

Figures 4.1 through 4.4 depict results of this experiment for BCPU, BCPU2, SA, and

GBM.

What is noteworthy is that this schedule does not impose moretotal CPU

demand on the system than it is capable of supporting. Total CPU demand in this case

is 4907MHz whereas the system can provide a total of 6400MHz (i.e., total demand is

only 77 percent of total capacity). So, if properly scheduled, all five VMs which increase

load should receive their desired 427MHz of CPU.
1Here, this is 20 percent of a PM’s CPU capacity.
2Here, this is 35 percent of a PM’s CPU capacity.

101

Figure 4.1 VM CPU allocations over time for BCPU applied to HSA-18:3 5-20. Here,
five VMs increase their desire from 213MHz to 427MHz at time 140. The scheduler is
activated at time 260. This scenario does benefit from the very simple BCPU scheduler.

From Figure 4.1, we can see that our system does benefit from the very simple

BCPU scheduler. Within one minute of our scheduler activation, all hungry VMs begin

receiving near their desired CPU. Recall that CPU allocation is averaged over a one-

minute interval, so we can infer that VMs are receiving theirdesired CPU from the

fact that the VM CPU allocations steadily climb for one minute following the minute

after activating the scheduler. We can also infer that all VMs have reached their newly

assigned PM in less than one minute from the Domain 0 loads, which fall steadily after

one minute of migrating VMs (database logs confirm this). Notice, however, that our

simple BCPU scheduler never really settles on a new assignment — even after finding a

good assignment — and begins a new round of migration after one minute of monitoring

VMs at their new locations. This behavior is due to BCPUs lackof categorizing VMs

as hungry. Instead, BCPU assumes that VMs will only desire what they are currently

receiving and tries to spread them such that the minimum available CPU of all PMs is

maximized. As a result, slight variations in allocations toVMs desiring the same amount

102

Figure 4.2 VM CPU allocations over time for BCPU2 applied to HSA-18:35-20.
Here, five VMs increase their desire from 213MHz to 427MHz at time 140. The sched-
uler is activated at time 260. BCPU2 performs better than BCPU since it maintains VM
assignment order.

of CPU cause the VM assignment order to be changed at each iteration. This ordering

change results in needless migrations. As discussed above,we mitigate this issue in

our heuristic with a migration resistance. However, this resistance does not completely

eliminate such migrations.

We must also point out that this scenario (and all other hot spot alleviation ex-

periments) provides an ideal initial placement for the BCPUscheduler, since, by getting

more CPU than all other VMs, the increased desire VMs end up being placed first. So,

it should be no surprise that BCPU finds a near optimal solution in its first iteration.

Finding optimal solutions in its first iteration is not the case in general, since hungry

VMs often receive less of a resource than satisfied VMs in an unbalanced system. This

general case causes BCPU to incorrectly guess actual VM CPU desires, resulting in re-

peated adjustment as it discovers that the system is imbalanced. This effect is not seen

in these experiments.

103

Figure 4.3 VM CPU allocations over time for SA applied to HSA-18:3 5-20. Here,
five VMs increase their desire from 213MHz to 427MHz at time 140. The scheduler is
activated at time 260. SA finds an optimal schedule in a singleiteration, albeit with high
migration count.

Migration cost is evident from the decrease in VM CPU allocations during the

migration process as seen in Figure 4.1. Not evident from this figure is that individual

PM loads are often 100 percent while sending and receiving VMs. As a result, we see

cycles being stolen from both migrating and stationary VMs during migration periods.

This loss is compounded for migrating VMs which must pause for a time during their

final round of memory copying in addition to possible performance degradation due to

enabling of shadow paging during migration in Xen [CFH+05]. To control migration

impact, the number of simultaneous migrations to and from a PM, as well as network

bandwidth available for migration, are tunable. We, however, did not turn that knob

here. Migration cost will be discussed in more detail below.

Figure 4.2 shows results for BCPU2. Here, we see that BCPU2 performs

better than BCPU since it maintains VM assignment order fromiteration to iteration.

Notice that BCPU2 actually finds an optimal assignment aftera single iteration. In-

104

Figure 4.4 VM CPU allocations over time for GBM applied to HSA-18:3 5-20. Here,
five VMs increase their desire from 213MHz to 427MHz at time 140. The scheduler
is activated at time 260. GBM finds an optimal schedule in a single iteration with low
migration count.

terestingly, BCPU2 does do an unnecessary (although not harmful) migration at 540

seconds. Overall, BCPU2 performed seven total migrations compared to BCPU’s 33.

Figure 4.3 shows that simulated annealing performs quite well under this sce-

nario. The SA scheduler settles on an optimal assignment after a single schedule itera-

tion. In this case, the scheduler assigns two of the PMs three213MHz and two 427MHz

VMs and the third PM seven 213MHz VMs and one 427MHz VM. Noticealso that the

system is now utilized to our target of 77 percent. In addition, we see that VM migration

produces loads in the Domain 0s slightly greater than that ofBCPU2, although it does

not migrate VMs beyond the first iteration. Our SA solver performed nine migrations in

this particular experiment.

Figure 4.4 depicts results for GBM. Notice that GBM also found an optimal

solution in a single scheduling iteration. Interestingly,this schedule places one 213MHz

and two 427MHz VMs on the first PM, seven 213MHz and one 427MHz VMs on the

105

Figure 4.5 VM CPU allocations over time for BCPU applied to HSA-18:3 5-35. Here,
five VMs increase their desire from 213MHz to 747MHz at time 140. The scheduler is
activated at time 260. Here, BCPU’s high migration overheadrobs CPU cycles from
VMs.

second, and five 213MHz and two 427MHz VMs on the third. Clearly optimal schedules

are not unique in this case. Finally, notice that the migration time and overhead are less

than for SA, BCPU, or BCPU2. GBM performed only four migrations to reach an

optimal schedule.

Five VMs to thirty-five percent demand (HSA-18:3 5-35)

We now have our five VMs increase their desire to 747MHz (35 percent of a

single PM’s CPU capacity). Under this scenario demand (6507MHz total) slightly ex-

ceeds our system’s capacity (6400MHz total), yet there is noschedule which maximizes

overall utilization that is perfectly fair to our VMs with increased CPU demand. Results

of this experiment are plotted in Figures 4.5 through 4.8.

Figure 4.5 contains results of the BCPU scheduler applied tothis scenario.

Again, BCPU never settles on a particular assignment. Notice that, although overall

106

Figure 4.6 VM CPU allocations over time for BCPU2 applied to HSA-18:35-35.
Here, five VMs increase their desire from 213MHz to 747MHz at time 140. The sched-
uler is activated at time 260. BCPU2 eventually settles on a very good assignment.

CPU consumption is nearly 100 percent, our 747MHz-desire VMs receive approxi-

mately 600MHz on average due to excessive migration overhead. We can clearly see

that the inefficiencies of BCPU are exacerbated at higher loads.

Results for BCPU2 are shown in Figure 4.6. These results are quite impres-

sive for such a simple scheduler. Compared with BCPU, BCPU2 incurs much lower

migration cost and actually looks to settle on a very good assignment after three rounds

of scheduling. Overall, BCPU performed 49 migrations over the experiment duration

whereas BCPU2 performed only 15. Clearly, the better packing of the BCPU scheduler

does not compensate for the increased migration overhead inour two experiments thus

far.

Applying our SA solver reveals the strength of this approach. Figure 4.7 shows

results for SA applied to HSA-18:35-35. After a single scheduling round, overall uti-

lization is maximized (100 percent) and 4 out of 5 747MHz VMs are receiving approx-

imately 733MHz and the fifth approximately 665MHz. This assignment places two

107

Figure 4.7 VM CPU allocations over time for SA applied to HSA-18:3 5-35. Here,
five VMs increase their desire from 213MHz to 747MHz at time 140. The scheduler is
activated at time 260. SA finds an optimal schedule in one iteration in this scenario.

747MHz VMs and three 213MHz VMs on each of two PMs and one 747MHz VM and

seven 213MHz VMs on the third PM. The observant reader may notice that this schedule

should result in four 747MHz VMs receiving 747MHz, and one 747MHz VM receiving

640MHz. Recall, however, that our loader runs at up to five percent error. The actual

numbers are within this error bound.

Another very good schedule places three 747MHz VMs on a single PM, two

747MHz VMs and three 213MHz VMs on another, and 10 213MHz VMs on the third

PM. It is very unlikely, however, that our scheduler would have suggested this assign-

ment. The reason is that 10 VMs, each receiving 10 percent of the available CPU on

a single PM, would have been categorized ashungryVMs by the scheduler’s hungry

determination heuristics. As a result, there would be a substantial fairness cost incurred

upon this schedule since 10 hungry VMs would receive near 213MHz while two receive

near 747MHz and three receive near 640MHz.

Missing out on good schedules which perfectly pack (i.e., to100 percent ca-

108

Figure 4.8 VM CPU allocations over time for GBM applied to HSA-18:3 5-35. Here,
five VMs increase their desire from 213MHz to 747MHz at time 140. The scheduler is
activated at time 260. GBM found good schedules which it continued to refine, but did
not find an optimal schedule within the 600 second experiment.

pacity)satisfiedVMs onto a single node is a limitation of our SA and GBM approaches.

Missing some good schedules is a result of the black-box approach we take to hun-

gry VM detection which will always categorize a VM or set of VMs as hungry on a

PM where a resource is fully utilized. For this, there is no good solution. Fortunately,

schedules which perfectly packsatisfiedVMs are quite rare.

Finally, Figure 4.8 shows results of the GBM scheduler applied to the HSA-

18:3 5-35 scenario. In this case, GBM does not find a great scheduleafter its first

scheduling iteration. It continues to make small corrections and refinements to its sched-

ule round after round, increasing overall CPU utilization and fairness. Within the 600

second experiment, the system does not converge upon an assignment.3 Nonetheless,

GBM clearly outperforms the BCPU scheduler and is far betterthan doing no schedul-

ing at all. Notice that the small corrections made each rounddo not have a large impact
3It eventually will, it just did not within 600 seconds in thisexperiment.

109

Figure 4.9 VM CPU allocations over time for BCPU applied to HSA-18:3 6-35. Here,
six VMs increase their desire from 213MHz to 747MHz at time 140. The scheduler is
activated at time 260. BCPU continues its habit of needlessly migrating VMs after
initially finding a good schedule.

upon VM allocation. The ability to make small corrections without large impact upon

VM performance is a key feature that makes GBM desirable for the hybrid approach.

Note that GBM is not deterministic since there is randomization involved in

the choice of which locally optimal PM to move a VM. Therefore, in our experiments,

it was common for GBM to actually find an optimal solution within one round under

this scenario. For this reason, we believe that a bit more work in making this scheduler

deterministically choose the best location based upon previous VM destination choices

would help GBM to converge more quickly.

Six VMs to thirty-five percent demand (HSA-18:3 6-35)

We now look at increasing the number of VMs with increased CPUdesire to

six. We only show the case of six VMs increasing their desire to 747MHz since BCPU2,

110

Figure 4.10 VM CPU allocations over time for BCPU2 applied toHSA-18:36-35.
Here, six VMs increase their desire from 213MHz to 747MHz at time 140. The sched-
uler is activated at time 260. This figure shows that BCPU2 begins having trouble with
higher demand scenarios, eventually settling on an unfair schedule.

SA, and GBM all easily handle scenarios where the system is not fully utilized.4 What

is different about this setting is that there are multiple optimal solutions in which our

747MHz desire VMs each receive 640MHz (i.e., 30 percent). Figures 4.9 through 4.12

contain results for this scenario.

We see no surprises concerning the behavior of the BCPU scheduler in Figure

4.9. BCPU continues its habit of needlessly migrating VMs after a good schedule has

been found. This behavior was observed in each of our experiments with BCPU. On

the other hand, we see that our BCPU2 scheduler begins to havedifficulty with the

higher CPU demand scenario. This difficulty is a result of itspoorer quality packing of

VMs onto PMs. Recall that BCPU2 uses a two-approximation jobscheduling heuristic.

Though BCPU2 does seem to settle into an assignment by experiment end, it settles into

a rather unfair one.
4Note that BCPU2 only handles a single resource, however.

111

Figure 4.11 VM CPU allocations over time for SA applied to HSA-18:3 6-35. Here,
six VMs increase their desire from 213MHz to 747MHz at time 140. The scheduler
is activated at time 260. Again, SA shows its strength of quickly finding an optimal
schedule, and its weakness of requiring many migrations to reach the new schedule.

On the other hand, both SA and GBM quickly find optimal solutions (all hun-

gry VMs receiving 640MHz of CPU). Our SA scheduler is able to find an optimal

schedule in one iteration, whereas GBM takes two. Interestingly, they settle on two

very different solutions. SA finds an optimal schedule in which two 747MHz VMs

and four 213MHz VMs are assigned to each PM. GBM, however, manages to find an

interesting solution in which three 747MHz and one 213MHz VMs are placed on one

PM, two 747MHz and four 213MHz VMs on another, and one 747MHz and seven 213

MHz VMs on the third. Again, the VM receiving approximately 650MHz in the GBM

solution is within the five percent error of our CPU loader application.

Small cluster hot spot alleviation conclusions

To be thorough, we ran many other combinations of HSA-18:3 experiments.

The experiments presented above, however, provide good coverage of the behavior

112

Figure 4.12 VM CPU allocations over time for GBM applied to HSA-18:3 6-35. Here,
six VMs increase their desire from 213MHz to 747MHz at time 140. The scheduler
is activated at time 260. GBM begins to separate itself as a good, general purpose
scheduler by quickly finding an optimal solution requiring few migrations.

of our schedulers, so presenting additional experimental results would be redundant.

Nonetheless, observations from the additional experiments did highlight a few high level

characteristics not necessarily evident from the previousresults.

First, our BCPU scheduler continuously migrates VMs, even after finding

good schedules. However, BCPU does often treat hungry VMs fairly at the cost of

stealing CPU cycles due to migration overhead.

The BCPU2 scheduler tends to split the hungry VMs into distinct sets. Though

its schedules often maximize CPU utilization, they often suffer in fairness. In addition,

as total desire increases further and further beyond systemcapacity, BCPU2 takes longer

to converge on an assignment. These behaviors are also adversely affected by increased

standard deviation in VM resource desires.

Our SA and GBM schedulers often quickly converge to optimal solutions.

Even a very restricted SA solver often manages to find very good or optimal solutions

113

in a single iteration. Occasionally GBM takes a few iterations to converge, and in rare

instances, slowly converges over several iterations.

Table 4.1 presents total migration counts of our schedulersfor each scenario.

Notice both our BCPU schedulers tend to suffer from increased migration counts at

higher loads. Also, GBM is typically more efficient in terms of migration costs than

SA. In cases where GBM results in higher migration counts than SA, those costs are

amortized over longer time intervals. In other words, unlike SA, GBM does not typically

suggest large numbers of migrations at each scheduling interval.

Table 4.1 Total migration counts for small cluster hot spot alleviation experiments.

Experiment Scheduler Migration Count

5 VMs to 427MHz (HSA-18:35-20)

BCPU 33
BCPU2 7
SA 9
GBM 4

5 VMs to 747MHz (HSA-18:35-35)

BCPU 49
BCPU2 15
SA 9
GBM 10

6 VMs to 747MHz (HSA-18:36-35)

BCPU 33
BCPU2 16
SA 10
GBM 5

Recall our VMs each have 128MB of memory. We have seen that thecost of

migration is CPU load in Domain 0 which acts to steal CPU away from hungry VMs. In

addition, VM performance is impacted during migration due to shadow paging overhead

in Xen. Since increased VM memory size will increase migration duration, it will act to

increase total migration cost, an important considerationwhen choosing a scheduler.

Finally, keep in mind that our BCPU and BCPU2 schedulers onlyconsider a

single resource. Since that is all we are considering in these experiments, these two sim-

ple schedulers perform quite well relative to our more complicated SA and GBM sched-

ulers. Due to other resources dependencies upon CPU, it remains to be seen whether

114

considering other resources greatly affects schedule quality.

4.2.2 Large Cluster (HSA-120:20)

We now verify that scheduler behaviors observed in our smallscale experi-

ments hold at a larger scale. These large cluster hot spot alleviation experiments, re-

ferred to as HSA-120:20, ran 120 VMs on 20 physical machines.The HSA-120:20 ex-

periments were valuable because they emphasized characteristics observed in the small

scale experiments.

Again, initial placement evenly spreads the VMs so that six were running on

each PM at time zero. We limit the results presented here to a single scenario in which 40

VMs increase their desires to 747MHz (35 percent) at 260 seconds. Other experiments

support the behaviors reported here.

Forty VMs to thirty-five percent demand (HSA-120:20 40-35)

Figures 4.13 and 4.14 contain results for BCPU and BCPU2. Notice that

BCPU clearly outperforms BCPU2 in this scenario in terms of utilization and fairness.

Recall that BCPU2’s advantage was a reduction in migrationsby fixing assignment or-

der. However, this advantage shrinks when more resource demand is placed upon our

system than it is able to provide. This experiment clearly highlights this weakness of

BCPU2.

Once again, from Figure 4.15, SA is able to find an optimal solution in a single

scheduling step. However, the larger system did delay finding the optimal schedule by

20 seconds, as VMs do not begin migrating until time 280 seconds. This step involved

migrating 110 of our 120 VMs. These migrations took a total oftwo minutes and 20

seconds. This heuristic clearly does not appear to be a good scheduler for a very dynamic

system.

Finally, GBM’s behavior of making small corrections at eachiteration holds

here. This behavior can be seen in Figure 4.16 where GBM continues adjusting its

schedule for the remainder of the experiment. Notice that GBM does not manage to find

115

Figure 4.13 VM CPU allocations over time for BCPU applied to HSA-120:2040-
35. Here, 40 VMs increase their desire from 213MHz to 747MHz at time 140. The
scheduler is activated at time 260. BCPU continues its habitof migrating needlessly in
this large cluster setting.

either fair or maximum utilization schedules. It does continue refining and improving

its schedule however.

Table 4.2 provides migration counts for our schedulers under the HSA-

120:2040-35 experiment. Clearly, BCPU and BCPU2 are extremely expensive sched-

ulers for maintaining fairness and high utilization in larger systems with high demand.

It seems unlikely such simple schedulers would be of great value in a general setting.

Of course, our failure to find a simple scheduler which outperforms our SA and GBM

schedulers does not mean such a scheduler does not exist.

The tendency of SA to make large improvements and GBM to make small

improvements to a schedule makes them ideal partners for a hybrid approach. Such

an approach would use SA to make large schedule corrections to high cost schedules,

then switch to GBM to keep a system running near optimal through small schedule

corrections. Once GBM is no longer able to find schedules below a threshold cost, SA

116

Figure 4.14 VM CPU allocations over time for BCPU2 applied toHSA-120:2040-
35. Here, 40 VMs increase their desire from 213MHz to 747MHz at time 140. The
scheduler is activated at time 260. Again, BCPU2 suffers when overall resource demand
is high due to non-optimal packing.

could be used again.

4.3 General Purpose Cluster Workloads

We now experiment with our scheduling heuristics under a fewsynthetic, gen-

eral purpose cluster workloads. Our workload generator is based upon statistical proper-

ties of cluster workload traces collected in [LGW04]. In particular, we use their results

to generate Weibull random variates for our job durations and exponential random vari-

ates for our job inter-arrival times. These traces were collected over a year from five

research clusters dedicated to parallel and distributed computing research. These clus-

ters ranged in size from 32 to 72 nodes. Since such trace data for virtual cluster usage

does not exist, we believe this a reasonable approximation of user behavior in some vir-

tual cluster environments. To be thorough, we run our experiments for various values of

117

Figure 4.15 VM CPU allocations over time for SA applied to HSA-120:2040-35.
Here, 40 VMs increase their desire from 213MHz to 747MHz at time 140. The sched-
uler is activated at time 260. SA again finds an optimal schedule in one iteration in this
large cluster. Migration count, however, is quite excessive.

job duration and inter-arrival rate.

Unlike process scheduling where it is often assumed that a process will con-

sume as much CPU as it is given, we randomly select a desired CPU cycle rate for each

of our jobs. Certainly, it would be difficult to collect tracedata on a process’ desired

CPU rate (we know of no such attempt). So, in the absence of real world data, we have

opted to use a Weibull distribution from which we draw a job’sdesired CPU rates. For

all experiments, we set the shape parameter of our CPU demandWeibull distribution at

0.53 and scale parameter at 21. The values drawn from this distribution are interpreted

as percent of single CPU capacity of our physical nodes. We have set a minimum of

eight percent5 and a maximum of 100. These parameter values result in 45 percent of

all jobs desiring eight percent (171MHz in our setting), 10 percent desiring 100 percent

(2133MHz), and an average desire of 38 percent (811MHz).
5This minimum ensures we do not have too many idle clusters in our experiments. Perhaps we could massage

distribution parameters a bit to avoid this, but we are already approximating an unknown distribution.

118

Figure 4.16 VM CPU allocations over time for GBM applied to HSA-120:2040-35.
Here, 40 VMs increase their desire from 213MHz to 747MHz at time 140. The sched-
uler is activated at time 260. GBM continues to refine its schedule, but doesn’t find an
optimal schedule withing 600 seconds. The GBM heuristic suffers from not maintaining
VM moves as it generates its next schedule.

In each experiment, we use our 20 node cluster running 120 virtual machines

for one hour. Again, VMs are initially evenly spread with sixVMs per node. Job

inter-arrival times are exponential variates (i.e., we consider job arrival to be a Poisson

process), job durations drawn from a Weibull distribution,and job desired CPU cycle

rates (discussed below) are drawn from a Weibull distribution. For all experiments we

study VM CPU allocations, total VM allocation, overall system CPU utilization, and

system fairness to hungry VMs.

To model multiple virtual clusters running on our physical cluster, we ran-

domly divide our 120 virtual machines into clusters rangingin size from one to 18

VMs. For our experiments, this resulted in 12 different virtual clusters of size 9, 18, 17,

15, 12, 1, 8, 8, 3, 8, 8, and 13 VMs. Round robin initial placement of VMs is used so

that no two VMs in a cluster are on the same node. When a job arrives, it is assigned to

119

Table 4.2 Total migration counts for large cluster hot spot alleviation experiment.

Scheduler Migration Count
BCPU 307
BCPU2 282
SA 110
GBM 27

all VMs in a randomly selected virtual cluster. So, if our first virtual cluster above were

randomly chosen to run a job, that job would run on all nine VMsin that virtual cluster.

This behavior is in accordance with that observed in our Usher installation at UCSD.

Our users typically setup a virtual cluster for a particularpurpose and tend to start jobs

simultaneously on all nodes in that cluster.

In these experiments, we refer to the case where no scheduleris in use as

running a “NULL” scheduler. The NULL scheduler simply returns the current schedule

as the next assignment. We introduce the NULL scheduler heresince this experimental

setup is extremely favorable to the case where no scheduler is used — especially for

more dynamic workloads. Since all VMs in a cluster are initially placed round robin

onto PMs, and jobs startup simultaneously on all nodes in a cluster, new jobs are already

evenly spread across physical machines. In addition, jobs are randomly assigned to

clusters, so we are nearly evenly spreading jobs across different clusters. Finally, we are

experimenting in a homogeneous environment where all physical machines are identical.

Since this scenario is so favorable to no scheduling, any scheduler doing better than the

NULL scheduler is performing quite well.

A key motivation for running these experiments is to evaluate how well our

schedulers perform at different levels of cluster activity. In other words, how dynamic

can the job load be before our schedulers are unable to provide benefit? To this end, we

run experiments for three levels of workload dynamism: low,moderate, and high. Each

dynamism level uses a different value for average job inter-arrival times (by changing the

rate parameter of our exponential distribution) and average job duration (by modifying

120

the job duration Weibull scale parameter). Our parameters for both inter-arrival rate and

job duration are in accordance with [LGW04]. Values for all distribution parameters are

specified in the respective results section.

In each section, we present results for each scheduler’s time to find a new

schedule in addition to time to migrate VMs to their new assignments. Recall that

our schedulers base their migration decisions on one minuteaverage utilizations. So,

after VMs are migrated, one minute must pass before a new scheduling can occur. All

heuristics were run on a Dell PowerEdge 1750 server with 2.8GHz Intel Xeon processor

and 2GB of memory.

Note that our BCPU scheduler’s behavior of excessive migrations resulted

in instability in our testbed in the high dynamism general purpose workload scenario.

Kernel and Xend errors were prevalent under this scheduler in the highly dynamic ex-

periments. For this reason, we exclude results for our BCPU scheduler in this section.

Needless to say, the results we were able to get did not bode well for the BCPU scheduler

in this setting, so it would not be a good choice, regardless.

4.3.1 Low Dynamism

For our low dynamism general purpose cluster workload experiments, we

draw job inter-arrival times from an exponential distribution with expected value of

120. So, jobs arrive every 120 seconds on average. Job durations were taken from a

Weibull distribution with scale parameter of 240 and shape parameter of 0.46. This re-

sulted in jobs with average duration of 567 seconds and median duration of 108 seconds.

This may represent a cluster with a small number of users which regularly submit long

running jobs or run services. We refer to these as the “GPCW-LD” experiments.

CPU allocations

Here we study individual VM CPU allocations, total VM CPU utilization, and

overall system CPU utilization (includes Domain-0 CPU allocations) in an environment

with low workload dynamism for each scheduler. Plotting both total VM allocation and

121

Figure 4.17 VM CPU allocations over time for NULL applied to GPCW-LD. The
workload is not highly active during the one hour run.

overall CPU allocation enables us to see the CPU cost of excessive migrations.

Figure 4.17 contains plots of the above values for this scenario without a

scheduler. We plot VM CPU allocations using solid lines (values on lefty-axis), to-

tal VM allocation — as a percent of available CPU — with a dashed line (values on

right y-axis), and overall CPU utilization with a dash-dot line (values on righty-axis).

Notice that there are relatively few events in this workloadwith jobs starting

and stopping every few minutes. Only a few jobs last under a minute and appear as

small bumps in the corresponding VM allocation plot. Since we are allocating jobs to

clusters, notice that sets of allocation lines tend to overlap. Though difficult to see, this

trend breaks occasionally where clusters overlap due to theround robin scheduling. This

overlap is one source of unfairness for the NULL scheduler. We discuss fairness in more

detail below.

Figure 4.18 contains VM CPU allocations for the BCPU2 scheduler applied to

GPCW-LD. BCPU2 does improve overall utilization over the NULL scheduler. How-

122

Figure 4.18 VM CPU allocations over time for BCPU2 applied toGPCW-LD. Though
better than no scheduler, this scheduler does exhibit excessive migrations which could
rob VMs of CPU cycles at higher loads.

Figure 4.19 VM CPU allocations over time for SA applied to GPCW-LD. Though
migration overhead is high, SA does an excellent job finding utilization improving as-
signments. SA is a viable scheduler in this low dynamism environment.

123

Figure 4.20 VM CPU allocations over time for GBM applied to GPCW-LD. GBM
perfoms admirably in this environment, clearly outperforming the NULL scheduler and
often outperforming SA. GBM isn’t able to settle on a schedule during inactive periods
as does SA.

ever, BCPU2’s excessive migrations make VM allocations vary wildly and could rob

VMs of CPU cycles at higher loads.

Table 4.3 contains costs of scheduling for all low dynamism general purpose

cluster workload experiments. On average, BCPU2 took 35 (7 + 28 = 35) seconds to

find and move to a new schedule. BCPU2 generated 36 migrationson average at each

scheduling and a total of 1231 migrations in 34 scheduling rounds over the one hour

simulation. In other words, BCPU2 continued rescheduling at every opportunity.

Figure 4.19 reveals that our SA solver performs quite well inthis low dy-

namism scenario. Though migration counts are high, SA does settle on very good as-

signments during inactive periods.

On average, SA was able to find new schedules in 23 seconds in this scenario.

On average, SA performed 109 migrations per schedule. This average migration count

resulted in an average of 44 seconds to migrate VMs to their new locations with a max-

124

Table 4.3 Scheduling costs for low dynamism general purposecluster workload ex-
periments.

BCPU2 SA GBM
Avg schedule search time (sec) 7 23 19
Max schedule search time (sec) 18 34 27
Number of reschedules 34 8 20
Avg migration time (sec) 28 44 4
Max migration time (sec) 66 59 10
Avg migration count 36 109 4
Max migration count 78 118 20
Total migration count 1231 869 73

imum migration time of 59 seconds. In total, SA took 67 seconds (23 + 44 = 67) to

find new schedules and migrate VMs to their new destinations.In this low dynamism

environment, 67 seconds is an acceptable duration for arriving at a new schedule.

Our GBM scheduler also performs very well in this environment. Figure 4.20

contains CPU allocation plots for GBM applied to the GPCW-LDscenario. GBM

clearly outperforms the NULL scheduler and often out performs SA. However, GBM

isn’t able to settle on a schedule during inactive periods asdoes SA. Interestingly, this is

a result of VMs oscillating between hungry and satisfied as they migrate between nodes.

From Table 4.3 GBM finds new schedules in an average of 19 seconds and

migrates VMs in an average of four seconds. This results in a 23 second average to find

new schedules and migrate VMs. Surprisingly, GBM takes nearly the same amount of

time to find schedules as SA. However, its schedules result inan average of just four

migrations per update. This behavior gives GBM much more agility than SA (which

helps in the highly dynamic experiments).

Fairness

We have yet to discuss fairness in detail. Previous experiments have been

rather straightforward, and fairness could be deduced fromCPU utilization plots. Here,

however, it is not clear how fair our schedulers are since we have no way of knowing

which VMs are hungry as the experiment runs. Each of Figures 4.21 through 4.23

125

Figure 4.21 Counts (top) and Jain’s Fairness Index (bottom)of CPU hungry VMs over
time for BCPU2 applied to GPCW-LD. BCPU2 is able to reduce hungry counts, but has
difficulty with fairness.

contain low dynamism plots of CPU hungry VMs counts (top) andJain’s Fairness Index

(bottom) as the simulation runs for BCPU2, SA, and GBM. Theseare plotted against

the same values for the NULL scheduler for comparison.

We plot CPU hungry counts to show that periods where fairnessis perfect are

often periods where there are no hungry VMs in the system. Also, a scheduler able to

reduce the number of hungry VMs is actually performing well by satisfying more VM

demands.

Figure 4.21 reveals BCPU2’s occasionally has trouble maintaining fairness as

compared with the NULL scheduler. This should not be a surprise since the BCPU2

heuristic does not consider fairness, but tends to do well when there is low activity in

the workload. Also notice that BCPU2 does succeed in decreasing the number of hungry

VMs throughout the experiment. These results, combined with the utilization results,

indicate that BCPU2 is a viable scheduler in this environment.

Figure 4.22 shows that SA does very well in this scenario. Though there is

126

Figure 4.22 Counts (top) and Jain’s Fairness Index (bottom)of CPU hungry VMs over
time for SA applied to GPCW-LD. SA does a better job of maintaining fairness than
BCPU2 in this environment, often finding perfectly fair schedules.

Figure 4.23 Counts (top) and Jain’s Fairness Index (bottom)of CPU hungry VMs over
time for GBM applied to GPCW-LD. GBM does a good job maintaining fairness in this
environment.

127

one brief spike, SA quickly corrects the unfairness and eventually finds a perfectly fair

schedule. SA is certainly a viable scheduler in this low workload activity environment,

outperforming BCPU2 in all areas.

Finally, Figure 4.23 shows GBM’s effectiveness in maintaining fairness in this

environment. Note that the scale is different on this fairness plot, and Jain’s Fairness

Index for GBM only briefly drops to 0.84.

4.3.2 Moderate Dynamism

We now increase our workload dynamism. For our moderate dynamism gen-

eral purpose cluster workload experiments (GPCW-MD), we set our job average inter-

arrival rate at 60 seconds. For job durations, we set our Weibull scale parameter to 121.7

(taken from [LGW04]) and leave our shape parameter set at 0.46. This results in jobs

with average duration of 287 seconds and median duration of 55 seconds. We expect to

see our slower schedulers begin to have difficulty with this scenario.

CPU allocations

Here we study our schedulers in an environment with moderateworkload dy-

namism for each scheduler. Figure 4.24 contains plots of individual VM CPU alloca-

tions, total VM CPU utilization, and overall system CPU utilization (includes Domain-0

CPU allocations) for this scenario without a scheduler. We plot VM CPU allocations

using solid lines (values on lefty-axis), total VM allocation — as a percent of available

CPU — with a dashed line (values on righty-axis), and overall CPU utilization with a

dash-dot line (values on righty-axis). Notice that our workload is now more dynamic

than the previous experiments with many more jobs arriving and ending during the one

hour experiment.

Figure 4.25 contains VM CPU allocations for the BCPU2 scheduler applied

to GPCW-MD. Clearly, BCPU2 is not ideal for this more dynamicsetting. Notice that

most schedules are less desirable than our round robin initial placement. Also, BCPU2

seems to begin having trouble finding decent schedules at approximately time 1500.

128

Figure 4.24 VM CPU allocations over time for NULL applied to GPCW-MD. The
workload varies moderately during the one hour run.

Figure 4.25 VM CPU allocations over time for BCPU2 applied toGPCW-MD. The
excessive migrations are ineffective in this scenario withschedules often less desirable
than the NULL scheduler.

129

Figure 4.26 VM CPU allocations over time for SA applied to GPCW-MD. Though
somewhat effective, SA suffers during periods of high activity.

Figure 4.27 VM CPU allocations over time for GBM applied to GPCW-MD. GBMs
low migration count adjustments easily handle this scenario. GBM clearly outperforms
the NULL scheduler.

130

This could be due to poor packing of the workload combination. BCPU2 does recover

from this toward experiment end, but this is obviously a poorchoice under this scenario.

Table 4.4 contains costs of scheduling for all moderate dynamism general pur-

pose cluster workload experiments. On average, BCPU2 took 35 (3+32 = 35) seconds

to find and move to a new schedule. BCPU2 generated 43 migrations on average at

each scheduling and a total of 1469. These are a bit higher than those of the low dy-

namism experiments. These higher migration counts are not surprising in this more

dynamic setting with more VM CPU demand changes. Again, BCPU2 migrates VMs

on 34 occasions over the one hour simulation, continuing itshabit of rescheduling at

every opportunity.

Table 4.4 Scheduling costs for moderate dynamism general purpose cluster workload
experiments.

BCPU2 SA GBM
Avg schedule search time (sec) 3 19 14
Max schedule search time (sec) 9 26 21
Number of reschedules 34 8 24
Avg migration time (sec) 32 50 4
Max migration time (sec) 173 86 11
Avg migration count 43 106 4
Max migration count 85 117 20
Total migration count 1469 851 88

From Figure 4.26 SA begins to reveal its limitations. High migration counts

preclude SA from scheduling often enough to improve over theNULL scheduler. SA

was only able to reschedule eight times during the one hour experiment. On many

occasions, SA performs worse than NULL.

On average, SA was able to find new schedules in 19 seconds withaverage

migration time of 50 seconds. This total of 69 seconds to find and move to new schedules

is nearly the same as the low dynamism experiments. However,this is not fast enough

for this more dynamic setting.

Our GBM scheduler now begins to show its superiority for general purpose

workload scheduling as it performs very well in this environment as well. Figure 4.27

131

Figure 4.28 Counts (top) and Jain’s Fairness Index (bottom)of CPU hungry VMs
over time for BCPU2 applied to GPCW-MD. Though it reduces hungry counts, BCPU2
results in poor fairness – occasionally under 65 percent.

contains CPU allocation plots for GBM applied to the GPCW-MDscenario. Again,

GBM outperforms the NULL scheduler. From Table 4.4 GBM finds new schedules in

an average of 14 seconds and migrates VMs in an average of fourseconds. This results

in an 18 second average to find new schedules and migrate VMs. Again, GBM migrates

only four VMs on average. These small schedule adjustments give GBM much more

agility than the other schedulers, making it superior in this environment.

Fairness

Each of Figures 4.28 through 4.30 contains plots of counts ofCPU hungry

VMs (top) and Jain’s Fairness Index (bottom) as the simulation runs for BCPU2, SA,

and GBM. These are plotted against the same values for the NULL scheduler for com-

parison.

Figures 4.28 and 4.29 show that BCPU2 and SA are able to reducethe number

of hungry VMs. However, BCPU2 often has difficulty maintaining fairness with Jain’s

132

Figure 4.29 Counts (top) and Jain’s Fairness Index (bottom)of CPU hungry VMs over
time for SA applied to GPCW-MD. SA greatly reduces hungry counts and does a fair
job maintaining fairness in this environment.

Figure 4.30 Counts (top) and Jain’s Fairness Index (bottom)of CPU hungry VMs over
time for GBM applied to GPCW-MD. GBM does a decent job maintaining fairness in
this dynamic environment.

133

Fairness Index dropping below 0.65 for a period. SA does a decent job of maintaining

fairness. However, both of these schedulers performed poorly in overall CPU utilization,

making them undesirable for this scenario.

Fairness for GBM can be seen in Figure 4.30. Compared to BCPU2and SA,

GBM does very well in terms of fairness. However, GBM does notreduce the hungry

counts as much as the other two schedulers. Nonetheless, GBMs superior utilization

and fairness measures make it a better choice here.

4.3.3 High Dynamism

For our high dynamism experiments, we set our average inter-arrival rate at

25 seconds. We refer to these as the “GPCW-HD” experiments. At this arrival rate, we

ran experiments with job durations (in seconds) taken from aWeibull distribution with

scale parameter of 60 and shape parameter of 0.46. These parameters correspond to a

Weibull distribution with mean of 142 and median 27.

CPU allocations

Figure 4.31 shows individual VM CPU allocations (solid lines) for this sce-

nario without a scheduler. Notice that the workload is highly dynamic and varies consid-

erably over the one hour run. Many jobs last under a minute andappear a small bumps

in the corresponding VM allocation plot.

Figure 4.32 contains VM CPU allocations for the BCPU2 scheduler applied to

GPCW-HD. Clearly, BCPU2 is not ideal for this dynamic setting. Excessive migrations

impose high CPU loads in the node Domain-0s, robbing cycles from VMs. This is

evident from the often large difference between the VM totaland overall utilization

lines in Figure 4.32. Notice that most schedules are less desirable than our round robin

initial placement.

Table 4.5 contains costs of scheduling for all high dynamismgeneral pur-

pose cluster workload experiments. Unfortunately, time tofind a new schedule was

not recorded in these experiments. However, we expect thesetimes to be similar to

134

Figure 4.31 VM CPU allocations over time for NULL applied to GPCW-HD. The
workload varies considerably during the one hour run.

Figure 4.32 VM CPU allocations over time for BCPU2 applied toGPCW-HD. Exces-
sive migrations rob VMs of CPU cycles. Schedules are often less desirable than initial
placement.

135

Figure 4.33 VM CPU allocations over time for SA applied to GPCW-HD. SA’s high
migration count scheduling cannot handle this highly dynamic scenario.

Figure 4.34 VM CPU allocations over time for GBM applied to GPCW-HD. GBM’s
low migration count adjustments make it feasible even in this highly dynamic environ-
ment.

136

the previous two scenarios. Migration time averaged 86 seconds with a maximum time

of 258 seconds for this scenario. So, on average, BCPU2 took at least 86 seconds to

find and move to a new schedule. On average, BCPU2 generated 67migrations at each

scheduling and a total of 1410 migrations in 21 schedules over the one hour simulation.

These numbers shine light on BCPU’s poor performance in thisscenario.

Finding optimal schedules is of questionable value if the time it takes to move from one

schedule to another is longer than the average time between workload change events.6

Table 4.5 Scheduling costs for high dynamism general purpose cluster workload ex-
periments.

BCPU2 SA GBM
Avg schedule search time (sec) NA NA NA
Max schedule search time (sec) NA NA NA
Number of reschedules 21 12 28
Avg migration time (sec) 86 134 9
Max migration time (sec) 258 366 59
Avg migration count 67 113 6
Max migration count 91 119 20
Total migration count 1410 1358 162

Figure 4.33 reveals that our SA solver does not fare much better. Again, ex-

cessive migrations take away significant cycles from the VMsthemselves. This envi-

ronment is clearly too dynamic for a scheduler with such highmigration counts. On

average, SA performed 113 migrations per schedule in this scenario. This migration

count resulted in an average of 134 seconds to migrate VMs to their new locations with

a maximum migration time of 366 seconds! As with BCPU2, finding and moving to

optimal schedules takes longer than the average time between workload change events.

Also notice that SA was only able to find 12 new schedules due toits long migration

times. This lack of agility makes SA impractical for this scenario.

As we might expect, our GBM scheduler performs much better inthis dynamic

environment. Figure 4.34 contains CPU allocation plots forGBM applied to the GPCW-

HD scenario. GBM’s tendency to make slight adjustments to the current schedule results
6It is also unadvised for this time to be greater than the history with which the migration decisions were made.

137

in better schedules with little overhead. As seen in the first10 minutes, GBM is able to

find much better schedules when they exist. Also, it never lags more than a few percent

from the NULL scheduler’s overall utilization levels.

Table 4.5 reveals the key reason GBM is superior to BCPU2 and SA in this

scenario. GBM’s average migration count of 9 and average migration time of 6 sec-

onds allowed it to make 28 slight adjustments totaling 162 migrations over the hour

long duration. Such agility is critical to successful scheduling in this highly dynamic

environment.

Fairness

Each of Figures 4.35 through 4.37 contains plots of counts ofCPU hungry

VMs (top) and Jain’s Fairness Index (bottom) as the simulation runs for BCPU2, SA,

and GBM. These are plotted against the same values for the NULL scheduler for com-

parison.

Figure 4.35 reveals BCPU2’s inability to effectively maintain fairness as com-

pared with the NULL scheduler. This is not a surprise since the BCPU2 heuristic does

not consider fairness.

Figure 4.36 shows that SA also suffers in its ability to effectively maintain

fairness. Although somewhat better since it does consider fairness, SA is simply too

slow to correct bad or unfair schedules. Also notice that SA often increases the number

of hungry VMs. This increase is due to the high migration overhead which steals CPU

cycles from VMs. Clearly, SA is inappropriate for this environment.

Finally, Figure 4.37 shows GBM’s effectiveness in maintaining fairness in this

dynamic environment. The fact that GBM performs at least as well as NULL in this

highly dynamic environment is quite impressive. GBM’s low migration count adjust-

ments make it agile enough to effectively schedule in environments with this level of

dynamism.

In reality, as clusters are started and stopped, we expect NULL to be inade-

quate for any level of dynamism. Furthermore, our overly simplistic assumption that

138

Figure 4.35 Counts (top) and Jain’s Fairness Index (bottom)of CPU hungry VMs over
time for BCPU2 applied to GPCW-HD. BCPU2 results in poor fairness – occasionally
under 65 percent.

Figure 4.36 Counts (top) and Jain’s Fairness Index (bottom)of CPU hungry VMs
over time for SA applied to GPCW-HD. SA does a poor job maintaining fairness in this
dynamic environment. High migration overhead also resultsin high hungry VM counts.

139

Figure 4.37 Counts (top) and Jain’s Fairness Index (bottom)of CPU hungry VMs over
time for GBM applied to GPCW-HD. GBM does a decent job maintaining fairness in
this dynamic environment.

all VMs in a cluster have the exact same resource demands highly favors the NULL

scheduler. In reality, we don’t expect this to hold in every case. Therefore, a GBM like

scheduler is recommended over doing no scheduling, even in more dynamic environ-

ments like this.

4.4 Conclusions

In this chapter we presented experimental results for our scheduling heuristics

under two scenarios: hot spot alleviation and general purpose cluster workloads. Small

scale hot spot alleviation experiments shed light on each scheduler’s behavior when con-

fronted with an imbalance in resource demands across the cluster. We found that our

less sophisticated Balanced CPU (BCPU and BCPU2) schedulers were able to find rea-

sonable schedules, but often continued needlessly rescheduling. Resistance thresholds

and the constant ordering modification of BCPU2 did not alleviate this. Larger scale

140

experiments confirmed that these behaviors hold for higher numbers of VMs and PMs.

Our Simulated Annealing (SA) and Greedy Best Move (GBM) schedulers dis-

played their ability to quickly find optimal solutions in small scale hot spot alleviation

experiments. However, SA suffered from high migration counts to move from the cur-

rent assignment to its improved assignment. GBM, on the other hand, found good as-

signments in just a few migrations although it occasionallyrequired multiple scheduling

rounds to arrive at optimal solutions. These characteristics held for both schedulers in

the larger scale experiments.

General purpose cluster workload experiments confirmed that many of the be-

haviors witnessed in the hot spot alleviation experiments held in a dynamic environment.

These experiments also revealed weaknesses in our schedulers under certain workloads.

First, we did not even present results for BCPU since its excessive migration counts cre-

ated kernel and Xen instabilities in our testbed. Similarly, BCPU2 often resulted in high

migration counts, albeit not as severe as BCPU. BCPU2 results confirmed that BCPU2’s

inability to recognize good assignments and not schedule make it inappropriate for even

low dynamism environments. Also, BCPU2 often resulted in poor fairness between

hungry VMs since it does not consider fairness in its scheduling heuristic.

Although SA worked well in our low dynamism general purpose cluster work-

load experiments, its high migration counts made it inappropriate in more dynamic set-

tings. Further work on reducing SA migration counts would berequired to make SA a

viable general purpose scheduling heuristic.

GBM’s low migration count adjustments made it agile enough to effectively

schedule over the full range of dynamism levels tested. Its resource allocation prediction

based move selection made its moves more likely to be utilityimproving moves —

resulting in vastly improved utility in just a few migrations. Our experiments reveal that

GBM is clearly suitable for scheduling in a range of cluster environments.

Though GBM found and moved to new schedules much faster than our other

heuristics, rules of thumb for how fast a scheduler should beto be effective are, unfortu-

nately, difficult to specify. This really depends upon what characteristics of the workload

141

one wishes to target. For example, even in highly dynamic environments, there exist un-

derlying stabilities which an administrator may wish to target over short-lived workload

events. In a general purpose setting, it is easy to imagine some users will run long jobs

(e.g., compute jobs) or services (e.g., apache), while others run many very short lived

jobs (e.g., grep). It may be reasonable to schedule infrequently for these longer lived

jobs and disregard the short jobs as background noise which does not significantly affect

the long term balance of the system.

In our environment, we chose one minute as our minimum scheduling fre-

quency and based our decisions on a VMs one minute load average. In this setting, the

longer a process runs, up to one minute, the more impact it will have on new schedules.

Though not absolutely necessary, we recommend that a scheduler be able to find and

arrive at new schedules in less time than the load average interval used to determine its

new schedules.

Chapter 5

Conclusions

Managing virtual machines in a virtual cluster environmentposes difficult

challenges for site administrators. In this dissertation,I presented Usher, an extensi-

ble, event-driven management system for managing clustersof virtual machines which

vastly improves an administrators ability to confront the challenges presented by this

complex computing environment. Usher’s extensibility viaits plugin system adds the

flexibility to integrate Usher into a site’s existing infrastructure and enforce a site’s ad-

ministrative policies and operational goals.

Usher improves administrator efficiency in both virtual cluster setup and main-

tenance. Usher enables clusters of arbitrary size to be created with a single command,

reducing cluster setup time from hours to seconds. Usher’s plugin system relieves ad-

ministrators from the need to manually enforce their site’sadministrative policies or

approve all VM operation requests. This delegation of authority allows administrators

to push many VM administration tasks out to the users themselves. Plugins also enable

administrators to charge Usher with the responsibility of maintaining their site’s oper-

ational goals. Scheduling plugins continuously monitor a site’s operational status and

adjust VM assignments to PMs (via transparent live migration) when goals are not being

met.

I implemented one such scheduling plugin and designed heuristics of varying

levels of sophistication for optimizing the utility of VM assignments to PMs based upon

142

143

utility functions designed for a site’s operational objectives. I defined the Fair Maxi-

mum Utilization (FMU) problem as a possible operational goal for the SysNet group

and proved its inclusion in the set of NP-hard problems. Experimental results support

that, using the Greedy Best Move (GBM) heuristic which makesgood VM resource

allocation predictions and only slight schedule adjustments, Usher is able to effectively

maintain the goal of fairly maximizing resource consumption for virtual cluster work-

loads of varying levels of dynamism.

Work remains for future study. There are a number of additional experiments

which could be run to show my scheduler’s adaptability to more complex computing en-

vironments. Time constraints did not allow for experimentsinvolving scheduling across

a cluster of multi-core computers. Likewise, experiments in a heterogeneous environ-

ment would most likely have revealed the inadequacy of roundrobin placement without

scheduling in such a cluster. My schedulers consider factors such as resource capac-

ity (e.g., CPU speed) and multiple resource instances per node (e.g., multiple CPUs),

yet experimental results for these environments were not generated. Such results would

further illustrate the power of the schedulers presented here.

Better scheduling heuristics should also be sought. Alternate heuristics with

the properties of good resource allocation predictions andsmall schedule adjustments

should be explored, in addition to improvements to GBM itself. GBM’s lack of tracking

the moves it will suggest causes it to make mistakes such as suggesting migrating two

hungry VMs to the same node. It, therefore, misses many good moves after the first.

It may also be worthwhile to attempt to reduce the number of moves suggested

by the simulated annealing (SA) heuristic by categorizing and eliminating unnecessary

moves. For example, SA may suggest swapping two VMs with nearly identical resource

demands in its search for better assignments. An efficient method for detecting these

unnecessary moves may make SA a viable option for VM scheduling.

The GBM-SA hybrid approach was not explored. In addition, more efficient

metaheuristics such as Tabu search could be evaluated. These heuristics are likely to

reduce migration counts due to their faster convergence andmore efficient searching of

144

the solution space.

Another area for further study is the relationship between non-CPU resource

consumption and induced CPU load. Due to the strong dependence of non-CPU re-

source availability on CPU availability, the importance ofconsidering non-CPU re-

sources in scheduling is not known. Once established, scheduling heuristics can use this

relationship to better predict node-local resource allocations when VMs are migrated to

and from physical nodes. Comparing results from a multi-resource scheduler with those

from a CPU-only scheduler will reveal whether scheduling for CPU alone is sufficient.

Appendix A

Code Overview

Code for the Usher system is written in Python and makes heavyuse of

Twisted [twi], an event-driven networking framework also written in Python. In par-

ticular, Usher uses Twisted’s Perspective Broker module toprovide asynchronous RPC

between clients and the controller and LNMs and the controller. See the documentation

on the Twisted site for the fine details of using this module. As shown in Figure 2.2

of Section 2.3.2, the Usher system consists of three main components: a centralized

controller, local node managers (LNMs), and clients.

Let us go straight to the code to see where these are implemented. Below is a

tree listing of the code directory (usher/) in the top-level project directory.

usher/
|-- __init__.py
|-- cli
| |-- __init__.py
| |-- api.py
| |-- callbacks.py
| |-- config.py
| |-- config_skel.py
| ‘-- vm.py
|-- ctrl
| |-- __init__.py
| |-- app.tac
| |-- client.py
| |-- cluster.py
| |-- config.py

145

146

| |-- lnm.py
| |-- request.py
| |-- server.py
| ‘-- vm.py
|-- lnm
| |-- __init__.py
| |-- app.tac
| |-- config.py
| |-- server.py
| |-- stats_upldr.py
| |-- vm.py
| ‘-- xen_vmm.py
|-- plugins
| |-- __init__.py
| |-- sample.py
| |-- sample2
| | |-- __init__.py
| | ‘-- plugin.py
| ‘-- test.sh
‘-- utils

|-- __init__.py
|-- config.py
|-- credcheck.py
|-- events.py
|-- misc.py
|-- notify.py
|-- plugin.py
|-- result.py
|-- upb.py
‘-- usherr.py

6 directories, 37 files

Also in the top-level directory areconfigs/ andinitscripts/. The

configs/ directory contains default configuration files for each of the controller,

LNMs, and client API. Each file contains a line indicating where Usher will check to

find the file or an environment variable to specify where to look. Theinitscripts/

directory contains simple startup scripts for both the local node managers and controller.

After editing these files for your installation, they shouldbe placed where your system

will find and run them at boot time or run manually when you wantto start the services.

147

A.1 Usher Components

From the listing above, notice that each of the main components has a direc-

tory in theusher/ directory wherein its source code resides. We now discuss these in

turn.

A.1.1 Controller (usher/ctrl/)

Beginning with the controller, we see eight files (ignoring the init .py

files). Below, we give a brief explanation of the purpose of each and any important

details. For further information, please refer to the code itself. Also in this section,

we introduce a few Twisted objects used by Usher without muchexplanation. For now,

please bear with us and we will give a more detailed explanation of these objects in the

following section.

app.tac: This is a Twisted application file. In a nutshell, Twisted provides facilities

for creating a forking, daemonized server using their “twistd” application. This

saves us from having to write that part of the code ourselves.Regular Python

code is used in theapp.tac file which essentially contains code for starting var-

ious Twisted servers under a single controlling process. Ifyou need an additional

listening server (or client connection) at process start, it should be added there.

client.py: This file provides the implementation of the TwistedIRealm interface

for use by clients as well as the Client API (thepb.Avatar). This is the API

exposed to clients connecting to the controller.

cluster.py: This defines the Cluster object which is apb.Cacheable. Not much

is really done with this at this point. It is updated and made available to plugins

for their use.

config.py: This file subclasses the Config object (found in

usher/utils/config.py). It contains a ConfigObj specification

file which specifies what configuration parameters will be accepted and default

148

values for each. Each new configuration parameter should be added to this

specification. Configuration files are read at service startup and values set at that

time. Theconfig.py file contains a function namedget cfg for retrieving a

reference to the configuration object. An optional section parameter can be passed

to get cfg to only get values from a particular section of the configuration file.

lnm.py: This is the LNM counterpart toclient.py. It provides the implementation

of the TwistedIRealm interface for use by LNMs as well as the LNM API (the

pb.Avatar). This is the API exposed to LNMs connecting to the controller.

request.py: This file defines theRequest object and allRequest subclasses

(StartRequest. MigrateRequest, etc). Every request to the controller

from a client generates aRequest object which is first passed to plugins regis-

tered for that request type. After traversing its plugin chains, this object is used to

initiate the request via itsexecute method.

server.py: The core server code can be found here. Looking at the code forthe

controller, we first see theUsherCtrl class. TheUsherCtrl class is defined

here which is basically a container class for maintaining global state variables and

provides accessor methods to those needed elsewhere. In addition, the constructor

sets up the services we start in theapp.tac file and retains references to those.

vm.py: This file provides the implementation of theVM object. This is a

pb.Cacheable which gets passed to clients and LNMs. Clients which own

a VM always receive a cached copy of theVM object on the controller. Likewise,

LNMs get a cached copy for every VM running locally. This object provides

most methods for manipulating VMs (e.g.,start, shutdown, migrate, etc).

In addition, all operations on a particular VM are serialized here.

A.1.2 Unraveling Twisted

Before moving on, a few notes on what all the Twisted lingo used above really

means, and how Twisted’s Perspective Broker works are in order.

149

First, in Twisted’s Perspective Broker module, aRealm generates capabil-

ities which are returned to authenticated clients. In Twisted speak, theRealm re-

turns an “Avatar”, which is a remote reference to an API. ARealm in Twisted

gets passed along with a list of Twisted credential checkers(something that implements

thetwisted.cred.checkers.ICredentialsChecker interface), to the con-

structor of thetwisted.cred.portal.Portal class to generate ourPortal.

From the Twisted API documentation [twi] fortwisted.cred.portal.Portal:

A Portal is associated with oneRealm and zero or more credentials
checkers. When a login is attempted, thePortal finds the appropriate
credentials checker for the credentials given, invokes it,and if the creden-
tials are valid, retrieves the appropriateAvatar from theRealm.

That about says it all as far asPortals are concerned. The

Portal is then given to the server factory for perspective broker

(twisted.spread.pb.PBServerFactory), which is passed to the

twisted.application.internet.SSLServer method (in app.tac)

to connect the factory to the network and start the Twisted event loop.

Getting down to the gory details, when a client connects to the controller (We

restrict the discussion toCliRealm since it is basically the same forLNMRealm), the

requestAvatar method of theCliRealm instance gets fired. This method returns

a reference to apb.Avatar (a remote API reference) to the client. This method does

a few things, like add the actualAvatar to the client’s dictionary in theUsherCtrl

instance if it does not already exist, and calls theAvatar’s attached method.

More interesting is themind parameter to therequestAvatar method.

This is a remote reference back to the client which is passed by the client when running

login. Through this, the controller is able to call back methods which the client exposes

to the controller (by prepending the method names withremote). This is quite handy

for sending notifications back to the client. Finally, notice that therequestAvatar

returns a 3-tuple. The first item of the tuple is simply the interface which theAvatar

implements. The second is the remote reference to theAvatar. The third is a no-

argument function which the protocol should call when the client connection has been

150

lost.

Now, the fun begins. Continuing with the client, when a client connects (via

login), theCliRealm instance returns a reference to an instance of theClient

(which is anAvatar). This Avatar is essentially a remote reference to an API

exposed by the controller to the client. With this remote reference, the remote client

can call any methods beginning with “perspective ” in the Client class (i.e., the

pb.Avatar class). These methods, in turn, generateRequest objects which are

passed to plugin chains before being carried out.

In Twisted, all remote method calls are asynchronous, immediately return-

ing aDeferred (i.e., an instance of thetwisted.internet.defer.Deferred

class). ThisDeferred is then called back with the result of the remote procedure call

when it becomes available. Handling this result is done via acallback chain which is

created on the caller’s side using theDeferred’s addCallback method. A call-

back chain can be made arbitrarily long by simply adding moreand more callbacks

with this method. The first callback in the chain is passed theresult of the RPC as

its first parameter. Subsequent callbacks are called with the result of the previous as

their first parameter. Errors can be handled in a similar manner using theDeferred’s

addErrback method. The fine details of TwistedDeferred can be found in the

main Twisted manual.

So, nearly all remote API calls are followed by the creation of a callback chain

to handle the results. Hence, all the real work is done by functions added to the callback

chain in the API method.

A.1.3 Local Node Manager (usher/lnm/)

Next, we give a brief explanation about the purpose of each ofthe LNM files

and any important details. For further information, see thecode itself.

app.tac: See the explanation for the controller’sapp.tac file above.

config.py: See the explanation for the controller’sconfig.py file above.

151

server.py: The main LNM server code can be found here. It also provides the API

used by the controller to request VM administrative operations. These methods

are found in the LNM class beginning with “remote ”.

vm.py: TheLNMVM class is implemented here. This is apb.RemoteCache object

for theVM objects created at the controller. This file handles settingup the cached

copy and methods for keeping it synchronized with the realVM object at the con-

troller.

xen vmm.py: This file provides a wrapper around the Xen virtual machine manager

administrative API for use by the LNM. This wrapper is used bythe LNM to

manage locally running virtual machines.

LNMs are simply clients of the controller which connect to a different service

than Usher clients. Being a client is slightly different from a server, and the main class,

LNM in the LNM’s server.py file, subclassespb.Referenceable. This allows

our main class to define methods beginning withremote to be made available to

anything holding a reference to theLNM instance. Hence, when our LNM server calls the

login function, it passes a reference to itself (theclient argument), to the controller.

Now, any methods beginning with “remote ” can be called by the controller.

The controller is not a client of the LNMs, since the PB protocol is symmetric

once a connection is established — each end has a reference toan API on the other.

So we make the LNM the client in this connection since its mucheasier for the LNMs

to find the centralized controller than the other way around.In addition, we want the

LNMs to have to provide credentials to the controller beforebecoming a trusted member

of the system. Users may not want their VMs running on unauthenticated nodes.

Finally, notice that all VMM specific code has been pulled outinto a separate

module. The module should be named<VMM type> VMM.py. The LNM class of

server.py subclasses theLNMBase class of the VMM specific module. Currently,

only Xen VMM.py exists.

152

A.1.4 Client API (usher/cli/)

Next, we give a brief explanation about the purpose of each ofthe client files

and any important details. For further information, see thecode itself.

api.py: This is a library which clients can use to access the Usher controller. De-

velopers wishing to tie their application to the Usher system can use the API

presented inapi.py to do so. Clients create an instance of theAPI by simply

importing api. From there, the instance can be grabbed usingtheapi.get api

method.

callbacks.py: This provides a callback interface which applications can subclass

to receive event notifications. Applications must overridethe methods there to

receive callbacks for the respective event.

config.py: See the explanation for the controller’sconfig.py file above.

config skel.py: This is a skeletonconfig.py file for use by client application

writers to define configuration options for their applications.

vm.py: See the explanation for the LNM’svm.py file above.

A.1.5 Utilities (usher/utils/)

Utility modules are located in theusher/utils/ directory. These include:

config.py: Other modules get their configuration by importing this module and us-

ing theget cfg function to receive aConfigObj instance containing configu-

ration parameters. This module also adds a few parameter types.

credcheck.py: Twisted’s checkers.ICredentialsChecker interface is

implemented here to allow plugins registered for theclient authenticate

andlnm authenticate events to authenticate users. See the Appendix C.2

for additional information on writing credential checkers.

153

events.py: This file contains a dictionary with all valid events for which plugins can

be registered in the Usher system. These are listed in Appendix B. This file also

defines the importantEventListDispatcher class which is the object with

which plugins are registered to be called for the respectiveevent.

misc.py: A few miscellaneous methods which do not really belong anywhere else

are implemented here.

notify.py: This file contains logging and error notification methods.

plugin.py: This file provides theUsherPlugin class which all plugins subclass.

It also contains utility methods for finding available plugins at controller startup

and handling plugin specifications.

result.py: The very importantUsherResult class is defined here. An

UsherResult instance is returned by the controller for most client API calls.

It slso contains theUsherResPkgr class which packages results from a list of

Deferreds from an API call into anUsherResult.

upb.py: This file is necessary because of Twisted’s inadequate credential checking

system.

usherr.py: All Usher exceptions are defined here.

Appendix B

Usher Events

Below is a complete list of events in the core Usher system. This list can be

extended by plugins.

Client Events:

• client authenticate: A client is attempting to authenticate.

• client connect: A client has connected.

• client disconnect:A client has disconnected.

Cluster Events:

• cluster register: A new cluster has been registered with the controller.

Controller Events:

• ctrl start: The Controller has started.

• list request: A request to list VMs has been received.

• periodic: A periodic timer has fired. For scheduling periodic tasks.

• timer: A timer has fired. For scheduling 1-shot future tasks.

• request: A request has been received (any type).

154

155

• lnm list request: A request to list LNMs has been received.

• api extension: An api extension method has been called (pseudo event nothing

called)

LNM Events:

• lnm authenticate: An LNM is attempting to authenticate.

• lnm connect: A Local Node Manager has connected.

• lnm disconnect:A Local Node Manager has disconnected.

VM Events:

• cycle: A VM has been cycled.

• cycle failure: A VM cycle has failed.

• cycle request: A request to cycle a list of VMs has been received.

• migrate: A VM has been migrated.

• migrate failure: A VM migration has failed.

• migrate request: A request to migrate a list of VMs has been received.

• pause:A VM has been paused.

• pausefailure: A VM pause has failed.

• pauserequest: A request to pause a list of VMs has been received.

• poweroff: A VM has been powered off.

• poweroff failure: A VM poweroff has failed.

• poweroff request: A request to poweroff a list of VMs has been received.

• reboot: A VM has been rebooted.

156

• reboot failure: A VM reboot has failed.

• reboot request: A request to reboot a list of VMs has been received.

• register: A VM has been registered with the controller.

• resume: A VM has been resumed.

• resume failure: A VM resume has failed.

• resume request: A request to resume a list of VMs has been received.

• shutdown: A VM has been shutdown.

• shutdown failure: A VM shutdown has failed.

• shutdown request: A request to shutdown a list of VMs has been received.

• unregister: A VM has unregistered with the controller.

• start: A VM has been started.

• start failure: A VM start has failed.

• start request: A request to start a list of VMs has been received.

• state change:The state of a VM has changed.

Appendix C

Writing Usher Extensions

In this Appendix, We present the details of writing Usher extensions. Recall

that there are three ways to extend Usher: clients, plugins,and VMM API wrappers. We

discuss each of these in turn.

C.1 Clients

Usher client applications utilize the Usher client API

(usher/cli/api.py) to interact with the Usher controller. Clients import

usher.cli.api, then create anusher.cli.api.API instance for interaction

with the controller.

After that, it is a simple matter of having your application use the methods

provided by yourAPI instance. See the docstrings in theusher/cli/api.py file

for information on using these methods (signatures, parameter descriptions, etc).

Concerning configuration files for your clients, first decideupon an appropri-

ate name for a section title for your application’s configuration file. For example,ush

uses “ush” for its configuration file section. Then, using theconfig skel.py file

included with the Usher client API source code, create a configuration file handler for

your application by specifying thesection title variable and your configuration

specification and saving it asconfig.py in your application’s source directory.

See the the ConfigObj Validation section of the ConfigObj [cona] documenta-

157

158

tion for details on writing a specification. A specification is not required, but is probably

a good idea. It is fairly straightforward to write one using the ConfigObj docs and ex-

amples.

With the above, configuration files will be read from:

• /etc/usher/<section title>.config where “section title” is

whatever you named your section.

• /.usher/<section title>.config

• anything pointed to by the environment variable<SECTION TITLE> CONFIG

(where “SECTION TITLE” is whatever you named your section capitalized)

To get both your application’s and the client API’s configuration sections as a dictionary

of dictionaries, just call theget cfg method without specifying a section. Then, to get

options from a particular section, it is just a matter of indexing with that section first.

For example, to get the value of the client API’sctrl host option, use

cfg = config.get_cfg()
ctrl_host = cfg[’cli’][’ctrl_host’]

If your section (named “mysection”) has an option named “myopt”:

myopt = cfg[’mysection’][’myopt’]

If you only need options from a particular section, you can specify that section in the

get cfg call. Then, you only need the option as an index. For example,if your section

(named “mysection”) has an option named “myopt”:

cfg = config.get_cfg(’mysection’)
myopt = cfg[’myopt’]

For additional details of writing Usher clients, please refer to the Usher source

code.

159

C.2 Plugins

The usher/utils/plugin.py file provides theUsherPlugin class

which all plugins must subclass. Check out this class to see what it does. The

most important thing to see here is that subclasses ofUsherPlugin must define the

entry point method.

When a plugin is registered for an event, an instance of itsUsherPlugin

subclass is placed on the callback list for that event. When the corresponding event fires,

theentry point method is called for each plugin on the callback list in orderof pri-

ority (set by the order instance variable or order of registration). The arguments passed

to the plugin are given in Appendix B (and also in theusher/utils/events.py

file).

When the plugin completes execution, itsentry pointmethod must return

a tuple of the same type as it received. That is, the return type for theentry point

method must be the same as its arguments. This is necessary since this is passed to

subsequent plugins on the same callback list. This is not to say that your plugin cannot

modify these arguments (for mutable objects), or replace them (for immutable objects).

On the contrary, being able to modify these arguments or return something different (but

with the same type) is a very powerful feature of the callbacklist.

If your plugin will be registered for multiple events, theentry point

method will essentially be a dispatcher to the appropriate class method designed to han-

dle the event. As a simple example, let’s look at theentry point method for the

Usher DNS plugin:

def entry_point(self, *args):
if self.event == ’register’:

vm = args[0]
self.zone = vm.usherctrl.cfg.get(’name_suffix’)
self.add_vm(vm)

elif self.event == ’unregister’:
vm = args[0]
self.zone = vm.usherctrl.cfg.get(’name_suffix’)
self.remove_vm(vm)

return args

160

For the register and unregister events, aVM object is passed as

the only item in theargs tuple. Theentry point method calls the appropriate

method based on the event for which its instance was registered. Also notice that this

entry point method simply returns theargs tuple it received unmodified.

For a more complicatedentry point method example, see the Usher IP

Management plugin.

Getting back to theUsherPlugin class, plugin writers also to set the fol-

lowing class variables in theirUsherPlugin subclass:

• name - plugin name (often just name)

• author - plugin author

• description - brief description of the plugin (often justdoc if you have

added a docstring to your module)

• version - plugin version

Also, plugin writers should define their plugin’s configuration specification

in thespecification variable at the top of their plugin module, or in the plugin’s

init .py file if the plugin is a package rather than a single file. See theConfigObj

Validation section of the ConfigObj documentation for additional details on writing a

specification. A specification is not required, but is probably a good idea. It is also

fairly straightforward how to write one using the ConfigObj docs and examples. Also,

other plugins are a great place to look for sample specifications.

Plugins should also be shipped with a sample configuration file (at least in

a README) which shows an example of registering the plugin and what events the

plugin was written to handle. See the README that ships with the udns plugin for an

example.

Optionally, plugins can create new events for which pluginscan be registered.

This is another powerful feature of plugins. To do this, simply create a dictionary named

events in your plugin module or in your plugin packagesinit .py file with the

161

name of the events as dictionary keys, and a brief description of each event as values.

Then, at the appropriate point in your plugin, call the controller’sfire eventmethod,

passing the new event name as the argument.

Two sample plugins have been included in the main distribution in the

usher/plugins directory. The firstsample.py is a single file plugin which writes

a few messages to the controller’s log file. In addition, thisfile creates a new event

called “sample event” which it fires after sleeping for five seconds. The second

sample, sample2, is a plugin package illustrating multi-file plugin setup. This sample

also merely prints a few messages to the controller’s log file.

This should be all you need to get started writing your plugin. If your plugin

needs to access or modify controller state, you will need to familiarize yourself with

the controller code. Start by reading the Code Overview section above, then digging

into the code and docstrings therein. Also, be sure to check out any existing plugins

for additional examples. Plugins are typically short, single files, so going to the code is

often the best course of action when you have questions.

Credential Checkers

Writing a credential checker is surprisingly easy. Credential check-

ers are simply plugins registered for theclient authenticate and

lnm authenticate events. These receive a tuple of the form:((

username:str, password:str), valid:bool) as input. Note that

the return type of a plugin must be the same as its input type (see the Writing Plugins

section above for information about writing plugins).

So, credential checkers merely need to return a tuple of type: ((str,

str), bool)with the boolean field set to True for authentication successful, or False

for authentication failed.

162

Caveats

When a plugin is registered, it is placed on a callback list for the event for

which it was registered. Each of these callback lists runs ina separate thread so that

slow plugins only slow down their callback chain (and not theentire controller). This

also makes it easier for an administrator to identify slow, or broken plugins. This design

does come at a cost.

Plugins are called in order on any given event callback list.However, since

each list itself is run as a separate thread, there may be multiple event callback lists in

execution at any one time. For this reason, plugins should beused with caution since

they are free to perform arbitrary action, even actions which manipulate the internal

state of the controller. In particular, proper locking should be considered when writing

plugins which modify controller state.

Since most plugins do not directly modify controller state,the above is typi-

cally not a problem. Just be aware of it if you do write or use a plugin which does.

C.3 VMM Wrappers

Usher can be extended to support management of nearly any type of virtual

machine. This is accomplished by wrapping the VM administration API of the underly-

ing VMM to create an adapter for use by the Usher controller. The interface exposed by

the adapter are the methods starting with “remote ” in theusher/lnm/server.py

file. These methods, in turn, call corresponding secondary methods in the same file (usu-

ally of the same name with the “remote ” prefix stripped) in separate threads. In this

way, LNMs do not become unresponsive to commands when one a previous command

takes a long time to complete (e.g., migrate commands can sometimes take tens of sec-

onds).

These secondary methods rely upon the existence of the methods in Table C.1

and Table C.2 in a file named<vmm name> vmm.py. These methods constitute the

Usher VMM wrapper interface.

163

The “vmm name” above is the name of the underlying VMM in lower case

(e.g.,xen vmm.py). The VMM name is specified in the LNM’s configuration file to

specify which wrapper should be used.

Table C.1 VMM wrapper VM methods.

Method Description
start start VM
migrate migrate VM from this node
shutdown soft shutdown VM
poweroff hard shutdown VM
reboot shutdown and start VM
cycle poweroff and start VM
hibernate hibernate a VM
restore restart hibernated VM
pause pause a VM (still in RAM)
resume unpause VM
vmm rename rename a VM with VMM
get status get dictionary of attributes

Table C.2 VMM wrapper node methods.

Method Description
get currentstats get list of all current stats
get currentnodestats get dictionary of current node stats
get currentvm stats get dictionary of all current VM stats
get nodeinfo get dictionary of static node attributes
get details list of dictionaries of all VM static attributes
get vmm states dictionary of all VM states as seen by VMM

Notice that the VMM wrapper interface consists of two components: VM

methods (Table C.1) and node methods (Table C.2). VM methodsare members of the

VMOps class. With the exception of theget status method, all methods of Table

C.1 manipulate VMs.

Methods which manipulate VMs either succeed, returningNone (a Python

type), or throw an exception with a descriptive message. Exceptions are logged and au-

tomatically propagated back to the controller by Twisted. The single VM query method,

164

get status, returns a dictionary of VM attributes. See the code for whatattributes

are expected.

Node operations return dictionaries or lists of dictionaries of VM and node

attributes. This allows the controller to query the state ofall nodes and VMs under its

management. These methods are used at controller startup togenerate the global state

of the system and periodically by the Monitor plugin to monitor resource usage.

Briefly, theget current stats call combines the information returned

by both theget current node stats andget current vm stats methods

which return 1, 5, and 15 minute resource usages for the physical machine and all VMs

respectively. This call combines the two so that resource usage samples are taken at

nearly the same time for both.

Refer to the code for what attributes are expected for each ofthese methods.

Bibliography

[ABD+07] Jeannie Albrecht, Ryan Braud, Darren Dao, Nikolay Topilski, Christopher
Tuttle, Alex C. Snoeren, and Amin Vahdat. Remote Control: Distributed
Application Configuration, Management, and Visualizationwith Plush.
In Proceedings of the Twenty-first USENIX Large Installation System Ad-
ministration Conference (LISA), November 2007.

[ACPtNT95] Thomas E. Anderson, David E. Culler, David A. Patterson, and the
NOW Team. A Case for Networks of Workstations: NOW. InIEEE
Micro, February 1995.

[AFF+01] K. Appleby, S. Fakhouri, L. Fong, M. K. G. Goldszmidt, S. Krishnaku-
mar, D. Pazel, J. Pershing, and B. Rochwerger. Océano — SLA-based
Management of a Computing Utility. InProceedings of the IFIP/IEEE
Symposium on Integrated Network Management, May 2001.

[ATSV06] Jeannie Albrecht, Christopher Tuttle, Alex C. Snoeren, and Amin Vah-
dat. PlanetLab Application Management Using Plush.ACM Operating
Systems Review (SIGOPS-OSR), 40(1), January 2006.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven H, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the Art
of Virtualization. InProceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, 2003.

[Beg06] Kyrre Begnum. Managing Large Networks of Virtual Machines. InPro-
ceedings of the 20th Large Installation System Administration Confer-
ence, pages 205–214, 2006.

[BKSP04] G. Bruno, M. J. Katz, F. D. Sacerdoti, and P. M. Papadopoulos. Rolls:
Modifying a Standard System Installer to Support User-customizable
Cluster Frontend Appliances. InIEEE International Conference on Clus-
ter Computing, 2004.

[BS99] Amnon Barak and Amnon Shiloh. Scalable Cluster Computing with
MOSIX for Linux. In Proceedings of Linux Expo 99, pages 95–100, 1999.

165

166

[CCR+03] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson,
Mike Wawrzoniak, and Mic Bowman. PlanetLab: An Overlay Testbed
for Broad-Coverage Services.ACM Computer Communications Review,
33(3), July 2003.

[CDK+04] K. Cooper, A. Dasgupta, K. Kennedy, C. Koelbel, G. Marin,M. Mazina,
J. Mellor-crummey, F. Berman, H. Casanova, A. Chien, H. Dail, X. Liu,
A. Olugbile, O. Sievert, H. Xia, L. Johnsson, B. Liu, M. Patel, D. Reed,
W. Deng, and C. Mendes. New Grid Scheduling and ReschedulingMeth-
ods in the Grads Project. InProceedings of NSF Next Generation Software
Workshop: International Parallel and Distributed Processing Symposium.
Santa Fe, USA: IEEE CS, pages 209–229, 2004.

[CFH+05] Christopher Clark, Keir Fraser, Steven Hand, Jacob GormHansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. LiveMigration
of Virtual Machines. InProceedings of the Second ACM Symposium on
Networked Systems Design & Implementation, pages 273–286, Berkeley,
CA, USA, 2005. USENIX Association.

[CGK+06] Ludmila Cherkasova, Diwaker Gupta, Roman Kurakin, Vladimir Do-
bretsov, and Amin Vahdat. Optimising Grid Site Manager Performance
with Virtual Machines. InProceedings of the 3rd USENIX Workshop on
Real Large Distributed Systems (WORLDS), 2006.

[CIG+03] Jeffrey S. Chase, David E. Irwin, Laura E. Grit, Justin D.Moore, and
Sara E. Sprenkle. Dynamic Virtual Clusters in a Grid Site Manager. In
Proceedings of the 12th IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC’03), 2003.

[cona] Configobj. http://www.voidspace.org.uk/python/
configobj.html.

[conb] Convirt.http://xenman.sourceforge.net/.

[CZBL00] Henri Casanova, Dmitrii Zagorodnov, Francine Berman, and Arnaud
Legrand. Heuristics for Scheduling Parameter Sweep Applications in
Grid Environments. InProceedings of the 9th Heterogeneous Comput-
ing Workshop, page 349, Washington, DC, USA, 2000. IEEE Computer
Society.

[D07] Gyrgy Dsa. The Tight Bound of First Fit Decreasing Bin-Packing Algo-
rithm Is FFD(I)11/9 OPT(I)+6/9. InCombinatorics, Algorithms, Prob-
abilistic and Experimental Methodologies. Springer Berlin / Heidelberg,
2007.

[ec2] Ec2.http://aws.amazon.com/ec2/.

[eno] Enomaly.http://www.enomaly.com/.

167

[euc] Eucalyptus.http://eucalyptus.cs.ucsb.edu/.

[Eus07] Alan Eustace. Personal communication, February 2007. Senior VP of
Engineering, Google.

[fir] Firefox. http://www.mozilla.com/firefox/.

[FK98] Ian Foster and Carl Kesselman.The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1998.

[GIYC06] Laura Grit, David Irwin, Aydan Yumerefendi, and Jeff Chase. Harnessing
Virtual Machine Resource Control for Job Management. InProceedings
of the First International Workshop on Virtualization Technology in Dis-
tributed Computing (VTDC), November 2006.

[GJ79] Michael R. Garey and David S. Johnson.Computers and Intractability; A
Guide to the Theory of NP-Completeness. W H Freeman and Company,
1979.

[Gra69] R.L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM
Journal on Applied Mathematics, 17:416–429, 1969.

[Ham07] Jeff Hammerbacher. Personal communication, October 2007. Engineer-
ing Manager, Facebook.

[HBD95] Mor Harchol-Balter and Allen B. Downey. ExploitingProcess Lifetime
Distributions for Dynamic Load Balancing. InProceedings of the Fif-
teenth ACM Symposium on Operating Systems Principles (SOSP), page
236, New York, NY, USA, 1995. ACM.

[ipv] Indexable ipv4 range extension. http://pgfoundry.org/
projects/ip4r.

[JCH84] R. Jain, D.M. Chiu, and W. Hawe. A Quantitative Measure of Fairness
and Discrimination for Resource Allocation in Shared Systems. Technical
Report TR-301, DEC, 1984.

[Kel03] Terence Kelly. Utility-directed Allocation. InFirst Workshop on Algo-
rithms and Architectures for Self-Managing Systems, 2003.

[Kel04] Terrance Kelly. Generalized Knapsack Solvers for Multi-unit Combina-
torial Auctions. Technical Report HPL-2004-21, HP Labs, 2004.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated
Annealing.Science, 220:671–680, 1983.

[Kis07] Jay Kistler. Personal communication, November 2007. VP of Engineer-
ing, Yahoo!

168

[KKP+06] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviri-
denko, and A. Tantawi. Dynamic Placement for Clustered Web Applica-
tions. InProceedings of the 15th International Conference on World Wide
Web, pages 595–604. ACM, 2006.

[kod] Kodiak. http://www.bluebearllc.net/kodiak/.

[Kur] Roman Kurakin. Personal communication. Email dated 5/10/2007.

[KUS+04] M. Kallahalla, M. Uysal, R. Swaminathan, D. E. Lowell, M.Wray,
T. Christian, N. Edwards, C. I. Dalton, and F. Gittler. SoftUDC: A New
Adaptive Management Paradigm.IEEE Computer, November 2004.

[kvm] KVM - Kernel-based Virtual Machine. http://kvm.qumranet.
com/.

[Law01] Eugene Lawler.Combinatorial Optimization: Networks and Matroids.
Courier Dover Publications, 2001.

[lbv] load balancing of virtual machines.http://lbvm.sourceforge.
net/.

[lcg] LCG project.http://lcg.web.cern.ch/LCG/.

[LGW04] Hui Li, David Groep, and Lex Wolters. Workload Characteristics of a
Multi-cluster Supercomputer. InJob Scheduling Strategies for Parallel
Processing, pages 176–193. Springer Verlag, 2004.

[lib] libvirt. http://libvirt.org/.

[liv] LiveCapacity. http://virtualiron.com.

[LO86] Will Leland and Teunis J. Ott. Load-balancing Heuristics and Process
Behavior. SIGMETRICS Performance Evaluation Review, 14(1):54–69,
1986.

[Mer] Phil Merkey. Beowulf History. http://www.beowulf.org/
overview/history.html.

[MRR+53] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and
E. Teller. Equations of State Calculations by Fast Computing Machines.
Journal of Chemical Physics, 21(6):1087–1092, 1953.

[NS97] Mark Nuttall and Morris Sloman. Workload Characteristics for Process
Migration and Load Balancing. InProceedings of the 17th International
Conference on Distributed Computing Systems (ICDCS ’97), page 133,
Washington, DC, USA, 1997. IEEE Computer Society.

169

[NS07] Ripal Nathuji and Karsten Schwan. VirtualPower: Coordinated Power
Management in Virtualized Enterprise Systems. InProceedings of
Twenty-first ACM Symposium on Operating Systems Principles(SOSP),
pages 265–278, New York, NY, USA, 2007. ACM.

[OCP+06] David Oppenheimer, Brent Chun, David Patterson, Alex C.Snoeren, and
Amin Vahdat. Service Placement in a Shared Wide-area Platform. In
Proceedings of the Annual Conference on USENIX ’06 Annual Technical
Conference, pages 26–26, Berkeley, CA, USA, 2006. USENIX Associa-
tion.

[O’H08] David O’Hallaron. Personal communication, July 2008. Director of Intel
Research Pittsburgh.

[pos] PostgreSQL.http://www.postgresql.org/.

[pyt] Python.http://www.python.org/.

[RRX+06] P. Ruth, Junghwan Rhee, Dongyan Xu, R. Kennell, and S. Goasguen.
Autonomic Live Adaptation of Virtual Computational Environments in a
Multi-Domain Infrastructure. InIEEE International Conference on Auto-
nomic Computing (ICAC’06), June 2006.

[SCB04] F. D. Sacerdoti, S. Chandra, and K. Bhatia. Grid Systems Deployment and
Management Using Rocks. InIEEE International Conference on Cluster
Computing, 2004.

[SY99] Sadiq M. Sait and Habib Youssef.Iterative Computer Algorithms with
Applications in Engineering: Solving Combinatorial Optimization Prob-
lems. IEEE Computer Society, 1999.

[sys] System center.http://www.microsoft.com/systemcenter/.

[tas] Tashi.http://incubator.apache.org/tashi/.

[TC00] Kenjiro Taura and Andrew Chien. A Heuristic Algorithm for Mapping
Communicating Tasks on Heterogeneous Resources. InProceedings of
the 9th Heterogeneous Computing Workshop, page 102, Washington, DC,
USA, 2000. IEEE Computer Society.

[twi] Twisted. http://twistedmatrix.com/.

[VD00] Werner Vogels and Dan Dumitriu. An Overview of the Galaxy Manage-
ment Framework for Scalable Enterprise Cluster Computing.In Proceed-
ings of the IEEE International Conference on Cluster Computing, 2000.

[VD02] Sathish S. Vadhiyar and Jack J. Dongarra. A FrameworkFor Migrating
Applications Under Changing Load Conditions in the Grid, 2002.

170

[VD03] Sathish S. Vadhiyar and Jack J. Dongarra. A Performance Oriented Mi-
gration Framework For the Grid. InProceedings of the 3st International
Symposium on Cluster Computing and the Grid, page 130, Washington,
DC, USA, 2003. IEEE Computer Society.

[vmwa] VirtualCenter.http://www.vmware.com/products/vi/vc/.

[vmwb] VMware Workstation. http://www.vmware.com/products/
ws/.

[Wal02] Carl A. Waldspurger. Memory Resource Management inVMware ESX
Server. InProceedings of the Fifth Symposium on Operating Systems
Design and Implementation (OSDI), December 2002.

[WLS+02] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and AbhijeetJoglekar.
An Integrated Experimental Environment for Distributed Systems and
Networks. InProceedings of the Fifth Symposium on Operating Sys-
tems Design and Implementation, pages 255–270, Boston, MA, Decem-
ber 2002. USENIX Association.

[WSVY07] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin
Yousif. Black-box and Gray-box Strategies for Virtual Machine Migra-
tion. InProceedings the Fourth Symposium on Networked Systems Design
and Implementation (NSDI), April 2007.

[xen] XenEnterprise.http://www.xensource.com/products/xen_
enterprise/.

[xvm] xVM. http://www.sun.com/software/products/
xvmopscenter/.

[ZKY96] Lotfi Asker Zadeh, George J. Klir, and Bo Yuan.Fuzzy Sets, Fuzzy Logic,
and Fuzzy Systems. World Scientific, 1996.

