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Abstract 

This paper is a review of scientific and statistical 
data management research at LBL in recent years 
in the areas of: logical modeling and user interfaces, 
database operators, and physical organization and 
access methods. In the area of logical modeling and 
user interfaces we discuss: SUBJECT, a system for 
organizing multi-dimensional data, GUIDE, a graph­
ical query system, and logical modeling of tempo­
ral data. In database operators we dicuss sampling 
from relational databases, and transposition of com­
pressed data. In the area of physical DB organization 
and access methods we discuss: header data com­
pression, rearrangement of data arrays to enhance 
data compression, batched interpolation search, bit 
transposed file organization, techniques for control­
ling overflow from multi-dimensionsal data structures 
(e.g. grid files), and data structures for temporal 
data. 

I Introduction 

This paper is intended as a review of the re­
search in scientific and statistical data management 
at Lawrence Berkeley Laboratory (LBL) in recent 
years. In an earlier paper [SW85J we have identi-

-Issued as LBL technical report LBL-21623. This work was 
supported by the Director, Office of Energy Research, Office 
of Basic Research Sciences, Division of Engineering, Mathe­
matical and Geoeciences of the U.S. Department of Energy 
under Contract DE-AC03·76SF00098. 

tOn leave from Univ. of Waterloo, Canada. Partially sup­
ported by Canadian NSERC Grant A3055. 
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fied the research issues in scientific and statistical 
databases (SSDBs). The research areas have been 
organized into three major groups: logical modeling 
and user interfaces, database operators, and physical 
organization and access methods. In this paper we 
follow this organization. We discuss here in some de­
tail our more recent research results, and some older 
results which bear on our more recent work. Our 
other work in SSDBs in also cited for completeness. 

In the area of logical modeling and user interfaces 
we commence with a discussion on modeling, brows­
ing, and querying of multi-dimensional data in the 
SUBJECT system. We then review a graphical user 
interface (GUIDE) which employs graphical search­
ing ond browsing over entity-relationship schemas 
and subject directories. Next, we discuss the logi­
cal modeling of temporal data which are commonly 
found in SSDBs, and operators for the manipulation 
of such data. 

In the area of database operators, we discuss 
first the implementation of sampling from relational 
databases, and then algorithms for the transposition 
of compressed data. 

In physical organization and access methods we be­
gin with a review header data compression and the 
rearrangement of data arrays to enhance data com­
pression efficiency. Next we examine batched inter­
polation searching. We then review our work on a file 
structure which is an extreme version of the trans­
posed file organization, called bit, transposed files. 
Then we have a discussion on reorganizing multi­
dimensional data structures (such a multi-paging, or 
grid files) to minimize page overflows. We conclude 
this section with a discussion of physical structures 



and access methods for temporal data. 
We have published several papers which describe 

and analyze the characteristics of SSDBs. The fol­
lowing two papers explain the motivation of our re­
search program. In [ShoB2J we analyzed several sta­
tistical applications, reviewed the existing literature, 
and discussed some known solutions. In [SOWB4J 
we studied in detail ten scientific database appli­
cations and we identified common characteristics 
among them. Other papers discussing various SSDB 
issues include: [SMB2J and [DNSSB3J. 

II Logical Modeling and User 
Interfaces 

The first two sections below represent two differ­
ent approaches to user interfaces, but both are de­
signed to alleviate the burden from the user of having 
to remember names, acronyms, formats, and com­
plex syntax rules. The first section describes a sys­
tem (SUBJECT) which is based on the modeling of 
multi-dimensional data in SSDBs as logical graphs. 
The second section discusses our work on a graphi­
cal user interface for data exploration (GUIDE). The 
third section discusses temporal data in SSDBs, and 
proposes a logical model and operators for such data. 

In addition to the topics discussed in this section, 
we have published several other papers that deal with 
logical aspects of SSDBs. They include: the model­
ing of summary data [JohBlb,JohBlaJ, spatial data 
analysis [MerB2J, metadata management [McCB2J, a 
semantic model for SSDBs [KreB2J, and micro/macro 
statistical DB management [WonB4J. 

1 SUB.JECT: modeling multi-dimen­
sional data 

1.1 Motivation 

One of the motivations for the SUBJECT system 
is the modeling of multi-dimensional structures that 
commonly exist in SSDBs. While in business appli­
cations the concept of an "entity" (e.g. employee, 
department, bank account) is common, it is more 
convenient in SSDBs to think about "cases," which 
are instances of an experiment, a simulation, or a sur­
vey. While cases can be given unique identification 
numbers (so that they can be thought of as instances 
of entities), they are commonly characterized by a 
set of parameters or categories. For example, trade 
data can be identified in terms of the exporting coun­
try, importing country, commodity, year, and month. 
Similarly, a corrosion experiment can be described in 
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terms of the temperature, acidity, salinity, length of 
exposure, and the material used. In all such exam­
ples there exists naturally a multi-dimensional space 
for which measured data are collected. 

The difficulty of dealing with multi-dimensional 
spaces is further compounded by the fact that each 
dimension can itself have a complex (usually hierar­
chical) structure. For example, a trade commodity 
can be broken into categories of food, energy, cloth­
ing, etc. Each category can be further broken into 
sub-categories, such as energy into the sub-categories 
of oil, coal, and gas. This sub-categorization of a 
single dimension can contmue into many levels, and 
sometimes overlaps may exist. Representing such 
complexity requires special facilities at the logical 
and user interface level. 

Another goal of the SUBJECT system is to provide 
a simple user interface that can be used by novice 
users with very little training. We wanted to avoid 
imposing on the user the burden of learning a syn­
tax for expressing queries, and having to remember 
names, acronyms and formats of data elements before 
specifying a query. Also, a novice user should be able 
to browse through descriptive information about the 
databases (meta-data), select a database to explore, 
and continue on to express queries using a single uni­
form interface. At the same time, experienced users 
should be provided with efficient ways (shortcuts) to 
~cessing the data. In addition, we wanted to avoid 
the problem of incondstency of names given to ele­
ments that are used in several files by providing some 
means of sharing the logical description of such ele­
ments. 

1.2 Approach and solution 

The main idea in the SUBJECT system is the use 
of an directed acyclic graph (DAG) with special node 
types to represent thE logical structure of both the 
data and the meta-data. The graph structure uses 
two types of nodes that are called cluster nodes and 
croS8 product nodes. Cluster nodes are used to rep­
resent the concept of a collection of items. Thus, a 
cluster node may represent a "state" , whose subordi­
nate nodes are a collection of cities. Similarly, cluster 
nodes can represent a collection of data values (e.g. 
years), or a collection of files. Cross product nodes 
are used to represent multi-dimensional structures, 
usually parameters or categories of the data. For ex­
ample, to model oil production by state by year by oil 
type, we would use a cross product node to represent 
the combination of state by year by oil type. 

In Figure 1 we illustrate the use of cross product 
nodes (marked with an X) and cluster nodes (marked 
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Figure 1: An example of a SUBJECT graph 

with a C). Starting from the top, "energy" is a (meta..­
data) cluster node of the files relating to energy data. 
"Oil production and conlumption" is a crOll prod­
uct node representing a file made of several param­
eters and measurements. The multi-dimensionality 
of the parameters are represented as a cross product 
node of "oil type", "state/city", and "year/month". 
Note that "state/city" is a cluster of clusters, while 
"year/month" is a cross product of clusters. In gen­
eral, if a combination of elements are needed to make 
up an item in the next level, a cross product node 
is used; if a single element in sufficient to represent 
an item in the next level, a cluster node is used. 
The system uses this semantic information in order 
to perform the aggregation of items correctly (when 
the user issues a query to extract summaries of the 
database). However the user need not be aware of 
node types when browsing through the graph. 

A novice user can enter the SUBJECT system at 
the root node of the directed graph to find the sub­
ject categories that exist in the system. By selecting 
a subject category, the user is provided with more de­
tailed descriptions. The user can continue to browse 
the meta.-data in order to become familiar with the 
databases available in the system, and eventually se­
lect a data file. At this point, the user is allowed to 
explore the attributes and parameters of the file, and 
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express a query by selecting the desired nodes of the 
graph. This is where SUBJECT differs from conven­
tional approaches, where users are required to access 
the met~data first, remember names and formats of 
attributes, and then express a query using the syntax 
of the query language. 

An alternative to the browsing capability is pro­
vided for experienced users, where they can search for 
the data file using keys. Thus, they may quickly lo­
cate a desired data file, and proceed to express query 
conditions by moving around the directed graph of 
that file. The system is also designed to provide doc­
umentation associated with nodes in the graph. 

Another important concept of the graph represen­
tation is that of "node sharing", which permits more 
than one arc to point to the same node, thus form­
ing directed acyclic graphs. Node sharing allows at­
tribute domains to be shared between different file, 
providing several advantages: eliminating duplica­
tion of data values; achieving consistency of naming, 
where items that are the same, but reside in different 
files, are forced to have the same name; and allowing 
the specification of join domains between files, per­
mitting multiple physical files or fractions of these 
files to be viewed jointly as a single logical entity. 

A detailed description of the SUBJECT system 
and the advantages it provides are given in [CS81]. 



To summarize, the most important advantages are: 
modeling met~data and data in the same graph 
structure, supporting both novice and experienced 
users, eliminating the need to remember names, val­
ues and formats of data elements as a prerequisite to 
query specification, providing a mechanism for avoid­
ing duplication of data and using multiple names 
across data files, and expressing queries without the 
need to learn a query language. 

2 GUIDE: A Graphical User Inter­
face 

2.1 Introduction and Motivation 

The main motivation of our work comes from ex­
periences in using query languages of commercial 
Database Management Systems (DBMSs) and St~ 
tistical Packages. Even people with a computer sci­
ence background often have difficulty using the so­
called "high level user friendly languages." Non­
expert users may not have the patience, ability, or 
desire to learn and use these languages correctly. By 
non-expert users (as opposed to casual users), we 
mean non-computer science professionals such as so­
cial analysts, statisticians or accountants who have to 
deal with data regularly. The problem becomes much 
worse in an environment with very large databases 
that have very large and complex database defini­
tions (schemas). Large statistical databases such as 
the Census database and energy database are exam­
ples of such an environment. 

We believe that the following factors are the major 
reasons for the difficulty in using and understanding 
query languages. 

• The user has to remember too many things. 

• Semantically poor data models. 

• No feedback during the query process. 

• Lack of levels of detail in schemas. 

• Lack of meta-data browsing facility. 

• Limited and difficult-to-use aggregation facility. 

• Lack of integrated, easy-to-use data display. 

2.2 Approach 

Our goal is to put together a set of facilities into 
an integrated system that address some of the above 
mentioned problems. 
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First, there are facilities in the system that remove 
the memory burden from the user. The facilities pro­
vide menus, examples, illustrations, and help mes­
sages at any stage of query formulation. 

Second, a version of the Entity-Relationship (E-R) 
model is used to represent relationships between enc 

tities explicitly. This capability helps the user view 
the semantics of the DB schema. For experimental 
purposes, the graphics user facility interfaces to a 
subset of the query language CABLE [Sho78] which 
is implemented on top of the database system DATA­
TRIEVE, a DEC VAX/VMS product. 

Third, we chose to use a graphics user interface for 
the following reasons: . 

1. The E-R model schema can be displayed as a 
network of objects, each object representing an 
entity or relationship type. This gives the user 
an overall view of the schema at all times. 

2. Queries can be expressed as a traversal along 
the network of entities. Colors can be used to 
indicate the paths of the queries, and hence, pic­
torially indicate the scope and meaning of the 
queries. 

3. Parts of the schema can be selectively made vis­
ible or invisible and thus provide the basis to the 
implementation of multiple levels of detail to aid 
in the understanding and use of the schema. 

Fourth, the user can build the query in a piece­
meal fashion and have intermediate results of partial 
queries available at all times. 

Fifth, to handle the problem of meta-data and 
the large number of the entities and their attributes, 
two kinds of directories are provided. The first is 
called a "hierarchical subject directory" (similar to 
that in SUBJECT which can be used to organize 
the entities into logical groups hierarchically. The 
user is guided by the system through this directory 
to locate the relevant part of the sch~ma for which 
queries can be expressed. This is also a useful facil­
ity to browse and explore the subject matters of the 
database. The second kind of directories are called 
"hierarchical attribute directories," and are used to 
organize attributes of entities (or relationships) into 
groups similar to the subject directory, Each entity 
or relationship type has an attribute directory. Both 
kinds of directories are implemented as menus. 

Sixth, a facility is made available to "rank" ob­
jects according to their "relevancy" to a particular 
group of users. The entity and relationship types 
are ordered and classified into groups according to 
the users' interests and the frequency of access in 



queries. Different groups of users may have different 
classifications. The first group of objects (with rank 
1) is included the most important objects or focal 
points of the schema. The second group (with rank 
2) of objects provides (together with objects from 
the first group) the next, more detailed, level of the 
schema. As the rank of groups goes higher, we see 
more details. "Focus" can be specified in the schema 
so that a selected object will be placed in the center 
of the screen. Also,there are commands to move the 
picture around the screen, to zoom-in and zoom-out 
on the selected part of the picture. The idea is to 
present the right level of detail and the right part of 
the schema. 

Seventh, an interactive aggregation facility is avail­
able in which the user is allowed to select those at­
tributes from any entities as "parameter" attributes 
of the aggregation (called category attributes). Also, 
the user can select a set of "measured" attributes 
from any entities (called summary attributes), and 
for each such attribute, a simple descriptive statistics 
function such as sum, average, etc. can be applied. 

Eighth, a graphical data display facility is made 
available for the display of the aggregation result. 
Data display formats such as tabular, pie, bar, and 
plot are implemented. The important property is 
that the interface is completely menu-driven, and in­
tegrated with the rest of the GUIDE system in that 
it can be invoked from any point in GUIDE without 
having to get off GUIDE itself. 

All facilities are offered to the user through graph­
ics menu •. 

2.3 Results 

An implementation of a prototype system based 
on the approach mentioned before was completed. 
There are five stages of query formulation in GUIDE: 
schema definition, schema exploration, query expres­
sion, aggregation, and graphics output display. 

Data definition stage The Data Base Adminis­
trator (DBA) provides information about the schema 
during the definition stage. In addition to informa­
tion on entities, relationships, and their attributes, 
there are examples and explanations of these objects. 
The graphical layout of the schema is fed into the sys­
tem in this stage. Facilities are provided to the DBA 
to do the following: 

• specify a graphical layout of the schema; 

• build a hierarchical attribute directory for each 
entity and relationship type; 

• specify the "importance ranking" of entity and 
relationship in the schema. Every object is given 
a rank (currently from 1 to 5). 

Schema exploration stage During this stage, 
the user can use the hierarchical subject directory 
to reach the most relevant part of the schema. From 
there the schema can be graphically examined at sev­
eral levels of abstraction and only objects above a 
specified importance ranking are made visible. The 
user can also graphically edit the schema so that irrel­
evant objects can be removed from the screen. With 
the relevant part of the schema selected and displayed 
at the desired level of detail the user is now ready to 
express queries. 

Query expression stage In the query stage, the 
user can build up a query in a piecemeal fashion. The­
database retrieval results of a partial query can be 
shown if so desired. Examples and explanations on 
any object on the screen can be requested. Graphi­
cally, the user will be traversing a network of objects. 
The query is a path selected by the user and shown 
in different colors for each partial query. The user is 
also encouraged to experiment with different condi­
tions on the schema objects by adding or subtracting 
conditions and the result of these experimentations 
are available at any time. Piecemeal formulation of a 
query is an important facility. It is achieved through 
the formulation of "local queries." The user can con­
centrateon several parts of the schema being shown 
on the screen and can formulate a "local query" on 
each part so that each local query is completely in­
dependent of another. The idea is to allow the user 
to have a focused vision of small parts of the schema 
so that local results can be obtained and understood 
without having to compose a complex query covering 
a large schema space at the same time. The user can 
then link local queries to form a complex query. This 
complex query can then be treated as a local query 
when the user expresses additional local queries. All 
the local queries can be linked to form yet another 
more complex query, etc. This process continues un­
til the final query is formulated. The retrieval results 
of each local query are always available for display. 
The result of linking several local queries is also dis­
playable at any time . 

Aggregation stage During this stage, the user 
• build a hierarchical subject directory for the can select graphically the category and summary at-

schema objects; tributes from entities for aggregation. Facilities are 
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available for the user to examine any entity included 
in a previous query by displaying the available at­
tributes within that entity, to find out the description 
on the entity and its attributes, and select aggregate 
functions for the summary attributes. 

Graphics data display stage In this stage, the 
aggregation result can be displayed in various forms 
such as graphs, bar charts, pie charts, etc., with a 
set of optional graphics enhancements. A graphics 
package has been interfaced to GUIDE for graphical 
displays. 

2.4 Summary 

A prototype of GUIDE became operational in sum­
mer of 1983. A real database of Current PopUlation 
Survey from the Bureau of Labor Statistics was in­
stalled. From the experience of using the system, we 
learned that the concepts motivated in GUIDE are 
justified, and the approach we took is a reasonable 
first step. But we also learned that the software and 
hardware environment in which GUIDE was built are 
not really powerful enough to provide the kind of in­
teraction speed needed for a powerful interface such 
as GUIDE. With the advent of powerful and inex­
pensive graphics hardware and much better graphics 
software, a more efficient implementation of GUIDE 
can be obtained. This work was reported in IWK82]. 

3 Modeling Temporal Data 

3.1 Problem description 

Our interest in managing temporal data stems 
from the needs of SSDBs, where physical exper­
iments, measurements, simulations, and collected 
statistics are often in the time domain. Such applica­
tions are inherently time dependent and the ability 
to manage data in the time domain is essential. The 
time aspect may not be as important in other appli­
cations (such as business databases) since such appli­
cations can often be satisfied with the most updated 
information only. Historical data would typically be 
archived, but not available on-line. 

Currently, there are no commercial systems that 
explicitly model or support temporal data. Even in 
the case that historical information is kept in com­
mercial applications, they are not typically accessed 
across the time dimension; rather one slice of the 
data for a certain point in time is accessed. Recently, 
there is renewed interest and new research in mod­
eling and managing time for business applications. 
Perhaps one of the reasons is that we can now afford 
to store on line historical information since memory 
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a) Detector data: irregular, discrete. 

b) Magnetic field: regular, continuous. 

I II 
c) Corrected detector data. 

Figure 2: Examples of Time Sequences 

and magnetic disk storage costs are rapidly decreas­
ing, as well as the advent of optical disks. 

Temporal data have special semantic features. 
There may be many interpretations to the time do­
main that could be confusing unless precise models 
and operations in that domain exist. To illustrate 
such semantic features we contrast below two se­
quences (in the time domain) of measurements taken 
in a typical high energy physics experiment: the se­
quence of detector measurements and the sequence 
of magnetic field measurements. In this experiment 
high energy particles are collided and the paths of 
the resulting sub-particles are recorded by detec­
tors. Each detector "fires" as the sub-particle goes 
by it. The sub-particles are subject to a magnetic 
field which causes them to curve according to their 
electric charge. The magnetic field tends to drift, and 
therefore it is measured at regular intervals. These 
magnetic field measurements are later used (during 
analysis) to correct the detector measurements. 

There are several other aspects to such an ex­
periment, but for simplicity we c(;>Dsider here only 
the measurements of the detectors and the magnetic 
field. The typical pattern of these measurements is 
shown in parts a) and b) of Figure 2. 

Note the differences between these two sequences 

.. 



of measurements. The first difference is that in the 
detector data the sequence of measurements appear 
in irregular positions over the time domain, while in 
the magnetic field data the measurements exist at 
regular intervals. This difference is important when 
we use both sequences to generate the corrected de­
tector data shown in part c) of Figure 2. For each 
detector measurement we need to find the corre­
sponding magnetic field value. Since magnetic field 
measurements do not always exist for the times that 
detector measurements are taken, the corresponding 
magnetic field values have to be interpolated from ex­
isting ones. This leads us to the second difference. In 
the detector data, measurements have the semantic 
interpretation of being discrete; that is values exist 
only at the points of measurements. In contrast, the 
magnetic field sequence is interpreted as a continu­
ous sequence in that values exist for any time point 
(and are interpolated if necessary.) 

The current practice of dealing with applications 
involving temporal data such as the example above, 
is to develop special purpose programs for each appli­
cation. Our goal is to provide data management tools 
that deal with temporal data as well defined data el­
ements that can be manipulated using system sup­
ported operators. Such tools should be useful across 
applications, and greatly simplify the development of 
applications involving temporal data. Furthermore, 
applications that use such tools could be modified 
or adapted if experimental conditions change with­
out having to rewrite new application programs. In 
general, our purpose is to model the various types of 
temporal data, so that their semantics are clear to 
the user. It is also necessary to provide query facil­
ities that permit users to specify conditions in the 
time dimension, as well as correlate temporal data 
sequences that may be varying at different rates. 

3.2 Approach and solution 

Our approach to modeling temporal data is to 
introduce a temporal data element called a time 
sequence (TS) which can assume different proper­
ties. Structurally, a TS consists only of the series 
of {time, value) pairs. The interpretation of the time 
sequences is determined by their properties. Thus, in 
the example above, both the detector data and the 
magnetic field data are conceptually represented as a 
sequence of (time,value) pairs, but the detector data 
is a "regular" TS of type "discrete" , and the magnetic 
field data is an "irregular" TS of type "continuous" 
which has an interpolation routine associated with 
it. The result is that both of these time sequences 
can be treated uniformly from a syntactic point of 
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view. Thus, operations over and between time se­
quences can be specified even though they have dif­
ferent semantic properties. In the example above, 
the value of the magnetic field that corresponds to a 
given detector value could then be retrieved or calcu­
lated by a system that supports time sequences. The 
system would know to use the interpolation routine 
(if needed) to produce the correct value, because the 
magnetic field TS is of type "continuous". 

In a paper describing this work [SK86j we have 
identified four properties that should be associated 
with time sequences. These properties are sufficient 
to capture the semantics of temporal data found in 
scientific applications that we have observed. These 
properties specify the "regularity" of the TS, its type 
(discrete, continuous, step-wise constant, and inter­
val), whether it is "static" (i.e. no new values are 
expected to be added) or "dynamic" (i.e. data val­
ues can be added dynamically), and the time do­
main description (start time, end time (for the static 
case), and time units). Distinguishing between reg­
ular and irregular TSs is clearly useful to a user as 
part of describing the behavior (semantics) of TSs. 
However, there are two other reasons for this distinc­
tion. The first is that there exist special statistical 
analysis methods (called "time series analysis") that 
can be applied only to regular TSs. The second rea­
son is that regular TSs can be stored and accessed 
more efficiently that irregular TSs. This aspect is 
discussed in some detail in the subsection describing 
temporal data structures (in the Physical Organiza­
tion section.). 

In general, we would like to specify the retrieval 
or manipulation of any subset of values of a TS in 
a single operation. For example, we may want to 
perform some arithmetic over the values of a certain 
detector's TS, and generate a new TS as a result. In 
addition, we may want to apply the same operation 
to a set of TSs, such as a subset of desired detectors. 
We refer to a collection of TSs as a time sequence ar· 
ray (TSA), where rows correspond to individual TSs, 
and the columns represent points in time. We have 
identified classes of operations that can be applied 
to TSAs. As is discussed in more detail in [SK86], 
these operators are designed to specify restrictions on 
TSAs in both dimensions (i.e. making selections in 
the time domain as well as selecting the desired TSs), 
and to specify operations over one or more TSAs to 
produce a new TSA. Thus, for example, they would 
permit the selection of a subset of detectors and a 
certain time range, and specify some operation to be 
applied to the set of time sequences of these detectors 
using a few concise commands. 

This work is still in progress, and the precise syn-



tax of operators over TSAs will be developed in the 
future. However, the framework of defining the pre­
cise semantics of TSs and operators over TSAs seem 
fundamental to clear and concise definition, retrieval 
and manipulation of temporal data. 

III DB Operators 

In this section of the paper we briefly review our 
work on sampling from relational databases and on 
transposition algorithms for compressed data. 

In another paper, we discuss the question of which 
operators should be included in a SSDB management 
system [0Ik83j. 

1 Sampling 

1.1 Introduction 

This section is concerned with the question of how 
to efficiently extract random samples of relational 
queries from a relational data management system. 
Our goal is to obtain the samples without first com­
puting the entire query result which is to be sampled. 
This work was reported in [OR86bj. 

Why sample? 

Random sampling is used on th08l occasions when 
processing the entire dataset is not necessary and is 
considered too expensive in terms of reponse time 
or resource usage. The savings generated by sam­
pling may be due to reductions in the cost (in reponse 
time or resources, CPU and I/O time) in retrieving 
the data from the DBMS. Retrieval costs are signif­
icant when dealing with large statistical or scientific 
databases. 

In addition, savings may result from reductions in 
the cost of subsequent "post processing" of the sam­
ple. Such "post processing" of the sample may in­
volve expensive statistical computations, or further 
physical examination of the real world entities de­
scribed by the sample. Examples of the latter in­
clude physical inspection and/or testing of compo­
nents for quality control, physical audits of financial 
records, and medical examinations of sampled pa­
tients for epidemiological studies. 

Clearly for sampling to be useful, the application 
must not require the complete answer to the query. 
Thus random sampling is typically used to support 
statistical analysis of a dataset, either to estimate pa­
rameters of interest or for hypothesis testing. Appli­
cations include scientific investigations such as high 
energy particle physics experiments, quality control, 
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and policy analyses. For example, one might sample 
a join of welfare recipient records with tax returns 
or social security records in order to estimate welfare 
fraud rates. 

Why put sampling in DBMS? 

Given that one wants to perform sampling, is it 
worthwhile to put the sampling operator into the 
DBMS? 

We believe that one should put sampling operators 
into the DBMS for reasons of efficiency. By embed­
ding the sampling within the query evaluation, we 
can reduce the amount of data which must be re­
trieved in order to answer sampling queries, and can 
exploit indices created by the DBMS. 

Sampling can also be used in the DBMS to pro­
vide estimates of the answers of aggregate queries, in 
applications where such estimates may be adequate 
(e.g. policy analysis), and where the cost in time or 
money to fully evaluate the query may be excessive. 

Sampling may also be used to estimate database 
parameters used by the query optimizer to choose 
query evaluation plans. 

1.2 Sampling from Relations 

In the technical report [OR86cj we discuss how to 
apply classical sampling methods to sampling from 
entire database relations resident on disk. We ex­
amine sampling from variably blocked files, grid files 
and B+ -tree indexed files. 

One basic tactic employed is acceptance/rejection 
sampling to accommodate the variable numbers of 
records stored on pages. 

We also discuss the use of sequential sampling al­
gorithms for sampling from relations as they are gen­
erated. 

1.3 Sampling from Relational Operators 

In the VLDB paper [OR86bj we show how to sam­
ple the output of individual relational operators such 
as selection, projeCtion, intersection, union, differ­
ence, and join. Our sampling algorithms avoid the 
need to first compute the entire result of the rela­
tional operator. These sampling techniques fOrin the 
basic building blocks for sampling from more com­
plex composite queries. The techniques entail a syn­
thesis of the basic file sampling techniques and al­
gorithms for implementing relational operators. We 
discuss only simple random sampling. 

The fundamental problem with sampling from re­
lational operators is that most of the relational oper­
ators (except selection and intersection) modify the 



inclusion probabilities of records in a non-uniform 
fashion. Hence it is not generally possible to simply 
interchange sampling and relational operators. 

Our basic strategy for dealing with this problem is 
the use of acceptance/rejection sampling techniques 
to adjust the inclusion probabilities so as to produce 
a uniform random sample. 

Typically these methods require information on 
the cardinality of the sampled domain values in the 
target relations. This information can be readily ob­
tained only if the target relations are either indexed 
or hashed. 

Given the necessary indices, the sampling algo­
rithms attain computational complexity which are 
proportional to the sample sizes. However, the con­
stant factor is usually the inverse of the ratio of aver­
age cardinality of domain values to maximum cardi­
nality. If this ratio is large, these sampling algorithms 
may be quite expensive. 

2 Transposition 

2.1 Motivation 

Material 
Steel 
Steel 

" 
" 
" 
" 
" .. 
.. 
" 
" 
" .. 
" 
" 
" 
" 

copper .. 
" 

Temp. 
1000 
1000 

" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" ,,-

" 
" .. 

Cor-
Acidity Salinity Time rosion 

100 1 10 0.7 
100 1 20 0.9 
" " 1.2 
" " 1.5 

" .. 1.7 

" " 100 2.3 

" 2 10 0.8 

" 2 20 1.0 

" " 1.2 

" " 1.5 .. " 1.8 

" " 100 2.4 

" 
" 

200 

The most common operations over summary databases 
(besides searching) are transposition and aggrega-

Table 1: Multi-factor parametric experiment 

tion. The former requires a re-ordering of the cat- support of data analysis. Since many large summary 
egory attributes for the purpose of presentation and SSDBs are typically compressed, efficient transpo­
analysis. An example is to transpose the database sition and aggregation methods directly over com­
in Table 1 so that temperature and acidity appear pressed data without first decompressing are impor­
after material, salinity and time. Transposition op- tanto 
erations are required to obtain the popular file struc- Note that transposition and aggregation opera­
ture called transposed file. Transposed files are the tions are closely related. An aggregation operation 
most efficient file structure for many SSDB applica- on attribute A can be realized by first transposing A 
tions. The motivation of transposed files is that the from its original position to the right of the rightmost 
typical access of SSDBs is to fetch a long sequence category attribute in the database, then the corre­
of individual records and extract a small number of sponding summary attribute values are aggregated 
attributes. By storing the records as a collection of (typically by a simple arithmetic operations such as 
contiguous attribute columns, i.e., all of the data for sum, weighted average, etc.). For example, collaps­
a field (attribute) are stored together, only those at- ing the temperature dimension from the database in­
tribute columns which are needed for a query need volves transposing the attribute to the right of the 
be retrieved. time attribute, then the corrosion values are aggre-

Aggregation operations are used to "collapse" gated. 
away some category attributes to obtain a more con- Our approach to transposition and aggregation 
cise database to facilitate more efficient analysis. An is to design new algorithms that can operate di­
example of aggregation is a request such as: "what is rectly on compressed data without first decompress­
the average corrosion level of steel by temperature, ing them. In [WL86bJ several algorithms are devel­
acidity, and salinity?" Since the dimension time is oped and described in detail. Most commercial sta­
ignored in the request, the corrosion values are ag- tistical DBMSs decompress the data first. 
gregated on the time dimension. The answer to the 
above request is obtained by averaging the corrosion 
level values over all time values for each combination 
of the other category attributes. 

Efficient methods of performing transposition and 
aggregation are the keys to efficient SSDB system 

9 

2.2 Results 

Below the main idea and the applicability of each 
algorithm will be briefly highlighted. A detailed de­
scription can be found in [WL86b]. 



The first algorithm is a "general" algorithm in the 
sense that it can be used in all situations. First, the 
physical database is read, and for each data item, a 
"tag" is computed and stored with the data item on 
disk. A ta.g is the logical sequence number for the 
data item in the transposed space. The second step 
involves sorting the tag and data item pairs in as­
cending order of the tags. After the sorting is done, 
the tags associated with the data item are discarded. 
As the tags are stripped, the necessary headers for 
the data items are generated and these headers and 
the data items represent the result of the transposi­
tion. 

The second algorithm performs the operation in 
main memory in one pass. This is feasible in the 
event when the transposed subspace is small enough 
to fit into main memory. The main idea of the algo­
rithm involves scanning the physical database once, 
and employing the reverse array linearization to find 
the proper slot for each data item in the memory 
buffer. A compression algorithm then runs over the 
data in memory and the result is stored in com­
pressed form on disk. 

For the case that the transposed subspace is too· 
large to fit in main memory, a third algorithm can be 
used: The algorithm takes advantage of the situation 
when there are a small number of large fragments of 
transposed subspace that are already in the right po­
sition. The algorithm involves the merging of these 
fragments, and compressing of the result. This al­
gorithm is used instead of the first algorithm if the 
number of fragments is small. 

A fourth algorithm takes advantage of the situa­
tion when the cross-product of the cardinalities of the 
transposed attributes are relatively small and they 
can be moved as a group. In this situation, N buffers 
are used to store the temporary result of transpo­
sition where N is equal to the product of cardinali­
ties of the transposed attributes. 'rhis algorithm is 
slower but not as memory intensive as the second 
algorithm. But when applicable, it offers better per­
formance than the first and third algorithms. 

These transposition algorithms have been ana­
lyzed and implemented. They operate directly on 
compressed data without the need to first decom­
press them. The methods proposed are applicable 
to databases that are compressed using the general 
method of run-length encoding. A decision proce­
dure is also given to select the most efficient algo­
rithm based on the transposition request, available 
memory, as well as the database parameters. Formu­
las have been developed which identify the required 
memory space, 

All four algorithms are implemented using C. The 

algorithms have the same order of I/O performance 
as that of other published algorithms for transpos­
ing uncompressed data. Since aggregation operations 
can be developed on top of transposition operations, 
the result of this work can be applied directly to ef­
ficient aggregation algorithms on compressed data. 

In conclusion, direct manipulation of compressed 
data can yield great efficiency. Algorithms need to be 
developed and analyzed for other operators on com­
pressed data. Transposition is just one (and impor­
tant) such operation. We are now researching other 
operators which can be applied to compressed data. 

IV Physical Organization and 
Access Methods 

Much of our work has been done in physical organi­
zation and access methods (including compression), 
because SSDBs exhibit unique data and query char­
acteristics. The large size of SSDBs and the inade­
quacies of commercial data structures has compelled 
attention to specialized methods of compressing, or­
ganizing and accessing SSDBs. 

In addition to the topics discussed in detail be­
low we have published several papers on: database 
machine design for SSDBs [Haw82], main memory 
database techniques !DKO*S4], and a survey of phys­
ical database support te-.hniques for SSDBs IOlkS6]. 

1 Header Compression 

1.1 Problem 

The problem addressed by header compression is 
the design of data compression methods for statis­
tical data which permit fast random access to the 
compressed data. 

Many statistical databases include large tables of 
summary statistics (e.g., contingency tables, census 
tables, etc.). Such tables often contain many miss­
ing and/or zero values. Furthermore, the counts in 
such tables are often highly skewed in distribution, 
with many small counts (which could be stored in 
a few bytes) and fewer large counts (requiring sev­
eral bytes). Such tables are often stored by sorting 
them in lexicographic order of the keys. This leads 
to clustering of data values, especially of nulls and 
zeros. 
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Data compression offers savings in disk space re­
quirements. Furthermore, for large accesses of con­
tiguous blocks of data often found in SSDB queries, 
data compression can yield significant savings in disk 
transfer time. While data compression is normally 
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thought to increase the CPU time needed to access 
data (because of the required decompression) directly 
processing the compressed data (e.g., for transposi­
tion and aggregation operations) can yield significant 
savings in CPU time. This topic is discussed else­
where in this paper. 

1.2 Approach 

The header compression technique is composed of 
four basic ideas: 

1. run length compression of strings of nulls, 

2. segregating the run length information from the 
compressed data, 

3. organizing the cumulative run lengths as a B­
tree index, 

4. r~presenting cumulative run lengths via partial 
sums trees. 

1.3 Run length encoding 

Run length encoding is a classic ad hoc compres­
sion technique, which is especially well suited to the 
compression of statistical data which often displays 
clustering of null(zero) and non-null elements into 
lengthy runs. 

T!:'e basic idea is to replace consecutive sequences 
(runa) of null (Iero) elements with a count of the 
run length. Runs of nonzero elements must also be 
prefaced with a count (run length). 

1.4 Segregation 

In applications where sequential decoding of the 
compressed data is sufficient (e.g., communications 
and tape based applications) the run length infor­
mation is interleaved with the compressed (nonzero) 
data. 

However, this implies that the time to access some 
element is proportional to its location in the com­
pressed dataset. If, instead, we segregate the run 
lengths from the compressed data, then we find an 
element in time proportional to its location in the list 
of runs. If the runs are long, this can be an appre­
ciable savings. 

1.5 B-tree Index 

·Once we have segregated the run lengths, we can 
accumulate them to form an index. A simple arrary 
of cumulative run lengths could be searched via bi­
nary searching, in time O(log2(n». A B-tree index 

is clearly faster, offering access times of O(log,(n), 
where f is the average node fanout. 
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The use of interpolation search of cumulative runs 
to achieve access times of o (log log n) is described 
elsewhere in this paper. 

1.6 Partial sum trees 

Storing cumulative sums of run lengths presents 
two problems. One problem is that the sums become 
large and require several bytes to store, whereas run 
lengths usually require only one or two bytes. The 
second problem is that updating them requires time 
linear is the location of the update (in terms ofruns). 

Both problems can be ameliorated by represent­
ing the cumulative counts (run lengths) via partial 
sum trees, a well known technique of encoding rank 
information in trees. Basically, the idea is to store 
in each internal node of a binary tree the sum of the 
counts of its leaves. In our case the leaves contain the 
lengths of the individual runs. By adding and sub­
tracting the counts stored in the internal. nodes as 
we traverse the tree during a search, we can compute 
the cumulative count for any leaf. 

It is easy to adapt the partial sum trees to B-trees, 
we merely promote the partial sum of a subtree up 
one level in the B-tree (so that additional disk ac­
cesses are not needed when searching within a B-tree 
node). 

The result of all this is that we can attain loga­
rithmic access and updating to the compressed data .. 
Constructing the B-tree (from the bottom up) can 
be done in time linear with the number of runs. 

A detailed description of this work is to be found 
in IES80,EOS81j. The second paper also discusses 
a generalization which permits encodings of variable 
length numbers. 

2 Re~rrangement of data to achieve 
efficient compression 

2.1 Overview 

Data compression provides several useful benefits 
for large databases. The most obvious advantage is 
the reduction in storage costs. Such costs comprise 
a large portion of the total cost for large archival 
databases (e.g., scientific, statistical, temporal) for 
which the average activity rate is often low. Data 
compression reduces the amount of I/O time required 
for long sequential data transfers which are common­
place in scientific and statistical database (SSDB) 
applications. In distributed DBMSs compression can 
yield significant reductions in communications costs 
of inter-site transfers of large files. As described in an 



earlier section of this paper, it is possible to perloi'm. 
database operations (e.g., transposition) directly on 
compressed data, thereby potentially reducing CPU 
time requirements. 

2.2 Approach 

It is often possible to improve the amount of data 
compression by rearranging the data. This approach 
was taken in many other applications. A simple ex­
ample consists of sorting a file, so as to bring together 
data with similar prefixes, thus improving the possi­
bilities for prefix compression (also called front com­
pression). Another example consists of using special 
space filling curve rasterization techniques for image 
data to improve data compression. Of course it is 
necessary to store a specification of how the data 
was rearranged. 

Our work arose from problems of choosing the stor­
age structures for large sparse multi-dimensional ar­
rays in scientific and statistical databases. Typically 
such arrays are defined over the cross product of cer­
tain category attributes (i.e., attributes defined over 
discrete categories such as material, corrosive agent, 
fabrication technique). The concatenation of the cat­
egory attributes constitutes a key for the data values 
in the array. 

The category attributes need not be stored in the 
database. Instead array linearization is used to imc 
plicitly store the category attributes. The values of 
the category attributes for each data value can be 
calculated from its location in the linearized array, 
assuming a specific ordering for the array lineariza­
tion. Only the measured attribute (e.g., sub-particle 
count) need be stored in the database. These ar­
rays are often sparse, with many zero counts. Ex­
amples include reliability data, spectra, mortality 
and census databases. Stich databases are frequently 
retrieved but infrequently modified (often append 
only). Hence the effort required to reorder and com­
press the data can be amortized over many retrievals. 

The compression method we discuss here is run 
length encoding. It has long been a popular method 
of data compression. The basic technique consists 
of replacing runs (consecutive sequences) of identical 
values (usually zeros or nulls) by a repetition count 
and a single copy of the repeated value. A variety of 
methods have been proposed· to encode the counts. 
In all of these methods the size of the compressed 
data is proportional to the number of nonzero ele­
ments plus the number of runs. Hence, we use the 
number of runs as our measure of the efficiency with 
which a particular dataset is encoded. 
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2.3 Results 

Many data compression methods are unsuitable for 
database applications because they require sequenc 
tial decoding. However, in previous work (described 
in the previous section on header compression), it 
was shown that run length encoding can be com­
bined with a B-tree index so as to provide random 
access to the data in time O(log(n)), where n is the 
number of runs of consecutive zero (or nonzero) ele­
ments. Again the size of the B-tree index is propor­
tional to the number of runs. There are two possible 
directions to proceed, we can either model the data 
deterministically or probabilistic ally. We use a deter­
ministic model if all of the data is in hand. We have 
proved that finding an arrangement with less than a 
specified number of runs is NP-complete for data ar­
ray having two or more dimensions (attributes). The 
proof uses a reduction to a variant of the .travelling 
salesman problem. We also showed that the same 
heuristic algorithms which are used for the travelling 
salesman problem can be applied in our case. One 
such heuristic runs in polynomial time and achieves 
a solution which is at most 50 percent more costly 
than the optimum. 

Alternatively, we can use a concise probabilistic 
model of the data which predicts the location of the 
nonzero data elements. We can then search for the 
average optimal category ordering for the probabilis­
tic model. This approach is more tractable and can 
be used when an estimate of the probability distri­
bution of values in the array can be obtained. Such 
estimates may be calculated by sampling a given ar­
ray or by knowledge of the scientific process which 
generates the data. Our. main result for this model 
is that the optimal way in which to arrange the cat­
egories is a Double Pipe Organ arrangement on each 
dimension of the multi-dimensional file. An example 
of this arrangement is shown in Figure 3. This ar­
rangement is a generalization of the well-known Pipe 
Organ arrangement which was proved to be optimal 
for minimizing disk arm movement in sequential files. 
We also devised efficient algorithms that achieve this 
optimal rearrangement, as reported in [OR86a]. 

This work raises some new problems about other 
possible rearrangements that can be made -to a file 
to enhance its compression. The problem of order­
ing the attributes in the array linearization function 
is still open and we plan to try to find an exact so­
lution or a good heuristic to solve it. We plan to 
apply the idea of rearrangement to other types of file 
structures. For example many types of bit-maps can 
be rearranged as the order of the attribute values is 
flexible. In some cases only partial rearrangement is 

1.( 



Alloy A Alloy B Alloy C Alloy D Alloy E Alloy F 
Part 1 0 1 0 1 0 1 
Part 2 1 1 1 1 1 1 
Part 3 0 1 0 1 1 0 
Part 4 0 1 0 1 0 0 

Table 2: Part Failures: Naive Ordering of Columns 

Alloy A Alloy C Alloy E Alloy B Alloy D Alloy F 
Part 1 0 0 0 1 1 1 
Part 2 1 1 1 1 1 1 
Part 3 0 0 1 1 1 0 
Part 4 0 0 0 1 1 0 

Table 3: Part Failures: Better Ordering of Columns 

Figure 3: A Double Pipe Organ for 13 elements. Bars 
are proportional to probabilities of nonzero elements. 

allowed or only one dimension may be permuted as 
order must be preserved on other dimensions. We 
expect to show that our methods are applicable to 
a wide range of file designs as well as different com­
pression methods. For example we plan to look at 
whether Huffman encoding of a file may be improved 
by some preliminary rearrangement of the attributes. 

3 Interpolation Search 

3.1 Introduction 

Our interest in batched interpolation search comes 
from three separate search problems in statistical 
and scientific databases. The first problem involves 
the searching of data items in a file which has been 
compressed with the header compression technique 
[ES80,EOS81J. The second problem is related to the 
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searching of hierarchical relationship implemented 
in a file structure called hierarchical transposed file 
[WL86aJ. The third problem is the searching of data 
items in a sparse multi-dimensional data structures. 
All three of these search problems can be reduced to 
batched interpolation search over ordered files. 

The Interpolation Search Algorithm has received 
extensive attention. The major result is the loglog(N) 
1 (where N is the number of keys in the table) com­
plexity behavior of a single search. However, the ef­
fect of batching search queries is not taken into con­
sideration. 

The research on interpolation search to date con­
centrates mainly on main-memory data structure 
and ignores the secondary memory consideration. 
We are interested in adding block accesses as well 
as providing block access approximation expressions 
to the basic Interpolation Search algorithm. These 
algorithms are described next. 

3.2 Results 

An Algorithm for Batched Interpolation Search 
(BIS) 

Let B = (al,a2, ... ,a,.) be an ordered collection 
of search keys to be applied to file X. The idea be­
hind algorithm BIS is that in searching file X for each 
element ai in B, one can take advantage of the pre­
vious search for element at-I, Since both B and X 
are ordered, BIS can start the search for O:i at the 
place of X where O:i-l was found. The savings of 
batched searching are achieved because the size of 
file X is monotonically decreasing. The behavior of 

'"log" designates base 2 logarithm. 
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Figure 4: Savings from batch searching. 

BIS is still O(loglog(N)), but n is reduced by a term 
proportional to N. The savings gained in practice are 
discussed in the next section. 

To experiment with BIS, we generated 6 sorted 
files of uniformly distributed random integers be­

. tween ° and 231 • 1,000 sets of batched records are 
also generated with integers uniformly distributed 
hetween ° and 231 with size Ie for Ie = 1 to 20. 

Figure 4 shows the results of executing batched 
and unbatched interpolation search algorithms on a 
file of 400,000 uniformly distributed integers. The 
savings due to the batching of queries over the un­
batched interpolation search are roughly 50%. 

An Algorithm for Blocked Batched Interpo­
lation Search (BBIS) 

In this section, algorithm BIS is modified to take 
blocking into consideration. The idea is to decide 
whether we need to bring a new block into memory 
for each search item in the batch. The block access 
approximation for BBIS is performed by assuming 
that the chances of requiring a new block are propor­
tional to the distance between two consecutive search 
steps. The analysis of BBIS has been experimentally 
validated. 

3.3 Experimental Results 

In this experiment, five sorted files of 400,000 in­
tegers unifomly distributed between 0 and 231 were 
generated, each with a different blocking factor. A 
1,000 sets of sorted records were also generated with 
size Ie for Ie = 1 to 20. 
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Figure 5: Savings from batch searching with blocking 
factor of 100. 
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Figure 5 shows the savings of batched block ac­
cesses over unbatched block accesses in a file of 
400,000 records with blocking factor of 100. Again, 
there is roughly 50% savings. 

3.4 Summary 

The basic Interpolation Search algorithm was ex­
tended to provide batched searching over blocked and 
non-blocked database environments. In [LW85] an­
alytic expressions for the behavior of these exten­
sions were developed. All expressions are validated 
by extensive experiments. In addition, algorithms 
for batched interpolation search over non-uniformly 
distributed ordered files are also developed and anal­
ysed. 

4 Bit Transposed Files 

4.1 Introduction and Motivation 

Scientific and Statistical Databases (SSDBs) ex­
hibit many specialized data usage and characteris­
tics. Despite the development of many advanced ac­
cess methods, the dominant file structure for very 
large SSDBs is still the simple sequential file. The 
major reason is a "mismatch" between conventional 
access methods such as inverted files, B-trees, hash­
ing, etc. and the characteristics of SSDBs. First, 
since the cardinality of SSDBs attributes is typi­
cally small, most access methods simply partition the 
database into a small number of still very large files, 

.. 
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with prohibitively expensive overhead for the point­
ers, structures, tables, etc., with only limited selec­
tive power added. Second, since SSDBs are largely 
static, the expensive overhead associated with the 
dynamic facilities of most access methods is not jus­
tified. Thh-d, the values of SSDBs attributes tend 
to cluster, and current access methods often do not 
take advantage of this opportunity for compression. 
Fourth, the access to SSDBs is typically long "sweep" 
Le., a long sequence of individual records is fetched 
and a small number of attributes extracted. This 
kind of range access is not supported well by most 
access methods. 

The search for an appropriate file structure begins 
with the fourth point mentioned above, which is the 
motivation for the well-known attribute transposed 
files. Conventional files store the data as a collec­
tion of contiguous records, i.e., all the fields for a 
single record are stored together on a disk page. At­
tribute transposed files store the data as a collection 
of contiguous attribute columns, i.e., all of the data 
for a field (attribute) is stored together. Bit trans­
posed files (BTF) store the data as a collection of bit 
columns, i.e., all of the data for a single bit position 
of an attribute encoding is stored together. Thus 
,the file structure we propose can be seen to be an 
extreme form of the attribute transposed file. 

The basic advantage of attribute transposed files is 
that only those attribute columns which are needed 
for a query need be retrieved. In many statistical 
applications only a small fraction of the attributes 
are needed for a query. Bit transposed files offer three 
advantages: 

1: Clever data encodings will permit us to retrieve 
only a fraction of the bit vectors used to encode 
an attribute in order to perform a selection. 

2. The bit vectors are amenable to data compres­
sion via run length encoding, especially if the 
data records have been sorted. 

3. Selection criteria can be formulated as boolean 
expressions on the bit vectors, facilitating fast 
evaluation and specialized hardware. 

In summary, the bit transposed file system offers 
an efficient means of performing selections. 

4.2 Overview 

The BTF system has three major components: an 
index encoder, transposed bit vector loader, and a 
query processor on bit vectors. . 

The index encoder translates each field in each 
record in the database into a series of bits based on 
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several encoding schemes. The result is that each 
record of the database is translated into a bit pat­
tern. 

The second component, called the transposer, 
stores the bit patterns in a transposed manner so 
that for each bit position of the bit pattern, a file 
is produced which contains the bit value of that bit 
position from all the records in the database. The 
result is n BTFs where n is equal to the number of 
bit columns that result after encoding. Because val­
ues in large statistical databases tend to cluster, we 
have developed a compression method to compress 
the BTFs so that long runs of O's and l's can be 
stored more efficiently. 

The third component of this file structure is the 
query processor on BTFs. The processor trans­
lates the retrieval requests on the database into a 
boolean expression on the BTFs. The translation 
algorithm takes as input the encoding schemes for 
the attributes and the query type of the query. The 
resultant boolean expression is evaluated by using 
the primitive boolean operators AND, OR, and NOT 
that can operate directly on compressed BTFs. 

4.3 Results 

A prototype system was implemented, which in­
cludes a bit compression package, a query language 
parser and evaluator, and an index encoding opti­
mizer. There are four basic index encoding schemes 
and a composite scheme that allows designers of 
BTFs to combine the other encoding scheme. The 
index encoding optimizer accepts as input the usage 
statistics of the attributes and total size for the BTFs 
and generates the optimal index encoding schemes 
for each attribute. A dynamic programming tech­
nique is used to find successively larger subset of the 
attributes. The system was prototyped using a real 
database of 110,000 records. The result is a ten­
fold improvement of both time and space over typical 
commercial DBMSs such as Datatrieve. 

There are several extensions to the BTF structure 
that are added since the publication of the BTF pa­
per [WLO*85J. First, hierarchies (l-to-many rela­
tionships) are introduced between BTFs to better 
model the SSDB environment. An example of hier­
archy in SSDBs is the hierarchical relationship be­
tween cities, counties, and states. An efficient file 
structure (called an association file) to support these 
kinds of hierarchical relationships has been designed 
and coupled with the bit transposed file structure. 
An user interface facility has also been built to make 
the BTF and association files into a self-contained 
system [WL86aJ. 



Another extension to BTF is the idea we called 
"common subexpression removal". This idea uses 
compressed bit maps as efficient temporary storage 
for partial results. This approach saves the subset of 
data which is of interest to users. In turn this col­
lection of bit maps can be used by other queries as 
an efficient access path. An algorithm has been de­
veloped that automatically incorporates these com­
mon subexpressions into the incoming queries to 
reduce the length of the boolean expressions and 
hence improve the efficiency of evaluating the queries 
[WLR86J. 

Another extension is the retrieval optimization. 
The problem here is that there could be a signifi­
cant performance difference depending on the order 
of evaluating the boolean expression. The general 
solution of finding the optimal order has been shown 
to be NP-complete. Our approach is use heuristics 
that have been proven to find near optimal order for 
similar problems in order to evaluate the boolean ex­
pression on bit maps. The algorithm takes advantage 
of the different compression rates associated with the 
compressed bit maps as a guideline of choosing the 
order [LW86J. 

5 Multidimensional Partitioning Al­
gorithms 

5.1 Overview 

The problem of multidimensional partitioning 
arises in many database applications where it is re­
quired to store files which are indexed by one or more 
search attributes on disk pages such that the map­
ping from the key space to the physical address space 
is order preserving. Many scientific applications 
which make use of spatial or temporal data require 
such files. Examples include results of hydrodynam­
ics calculations and particle track data from high en­
ergy physics experiments. File structures which sup­
port such requirements are the Grid Files of different 
types and other order preserving file structures. In 
all of these methods the possible range of values for 
each attribute is partitioned into segments, the inter­
section of these segments define hyper-rectangles or 
cells. Each record is associated with a cell based on 
the segments to which its attribute values belong. In­
formation about the partitioning is stored in a direc­
tory which is stored on disk or in fast storage depend­
ing on its size. Similar to multidimensional hashing 
methods, these methods allow retrieval of records in a 
fixed number of disk accesses. The advantage of this 
type of file organization over multidimensional hash­
ing is that range queries can be processed efficiently 
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as tuples with similar values on a search attribute 
tend to cluster together on the same page. Also pe­
riodic reports and tabulations which require that the 
data is sorted by one of the attributes can be read­
ily obtained from the file without the need to sort 
the output. Such capabilities are very important in 
scientific and statistical data base management sys­
tems. 

The performance of different partitioning algo­
rithms can be measured in terms of retrieval time 
for different types of queries, the directory size, and 
the storage utilization. In this work, we study par­
titioning algorithms which associate every cell of the 
partitioning with a disk page of fixed capacity. There 
is a constraint on the total number of pages available 
for storing the database. In case the algorithm as­
signs to a cell more records than its capacity, over­
flow occurs and the overflow records are stored in a 
separate area. Therefore overflow records introduce 
additional retrieval cost and our goal is to find parti­
tionings which minimize the amount of total overflow 
generated by the mapping. 

5.2 Approach 

The approach in grid file type organization, is to 
change the partitioning dynamically as the file grows 
while guaranteeing zero overflow. The insertion (or 
removal) of new partitioning lines, in order to re­
fine the segmentation, can be quite costly in terms of 
pointer updates and other directory maintenance op­
erations. In the case that the file is reiatively static 
or that the growth structure is predictable, it may 
be beneficial to determine a "good" partitioning in 
advance in order to avoid frequent changes in the 
directory. This approach can also be used when con­
verting an existing file into a dynamic grid file where 
a good initial partitioning is required, or when peri­
odically reorganizing a grid file. 

An example of this problem is shown in Figures 6 
and 7, where a file with two attributes, each attribute 
having 5 possible values is given. The numbers in 
each cell indicate the number of records with speci­
fied attribute values. It is required to partition this 
file into 16 pages, where the capacity of each page 
is 3 records. As can be seen, the partitioning shown 
in Figure 7 has less total overflow records than the 
partitioning shown in Figure 6. 

5.3 Results 

We have developed dynamic programming algo­
rithms for finding the optimal partitioning of a given 
multidimensional file. Our objective is to minimize 



1 2* 4* 0 0 
1 1 1 1 0 

2 1 1 1 4* 

1 1 1 1 2 

1 1 2 1 1 

Figure 6: Example of partitioning with c=3 and 
K=16. Total overflow is 5. Asterisks indicate cells 
with overflow. 

1 2 4* 0 0 

1 1 1 1· 0 
2 1 1 1 4* 

1 1 1 1 2 

1 l' 2 1 1 

Figure 7: Another example of partitioning with c=3 
and K=16. Total overflow is 3. Asterisks indicate 
cells with overflow. 

the total overflow subject to constraints on page ca­
pacity, storage utilization and total number of pages 
available to accommodate the file. This approach is 
practical for small problelil.8 and it was tested exten­
sively on inputs generated under different assump­
tions on the distribution of values in the file. We 
then tested three different heuristics with relatively 
fast running times for obtaining sub-optimal solu­
tions. The idea behind the heuristics is to solve the 
partitioning problem separately on each dimension 
in an optimal way and then combine these solutions 
to yield an overall solution to the problem. The de­
cision as to how many segments to allocate to each 
dimension is made in a different way in each one of 
the heuristics. 

Extensive testing for large problems and compar­
isons with the optimal solution for smaller problerils 
were made. The heuristics were shown experimen­
tally to provide much better solutions than existing 
known heuristics. The results of this work were re­
ported in [RS85]. 

In the future, we plan to look at flexible parti­
tioning algorithms which divide the space of possible 
attribute values into rectangular regions not neces­
sarily forming a grid. Initial experiments with such 
designs indicate that the total overflow can be re­
duced significantly by removing the grid restriction 
at the expense of having to store more information 
a.bout the structure to allow efficient retrieval. 

We plan to study other related optimization prob­
lems such as minimizing the maximum overflow from 
a page instead of the total overflow. The maximum 
overflow represents a worst case situation whereas 
the total overflow is a measure of average perfor­
mance. 

We also plan to investigate probabilistic algo­
rithms which attempt to minimize the expected 
amount of overflow when some assumptions can be 
made about the distribution of attribute values. We 
think that this approach can lead to interesting re­
sults because such algorithms were successfully em­
ployed previously on related problems such as bin­
packing. In that case, the expected performance 
of the probabilistic algorithm was shown to be very 
close to that of the optimal algorithm. 

6 Temporal Data Structures 

6.1 Problem description 

In a previous section entitled Modeling Temporal 
Data we discussed the motivation for paying special 
attention to temporal data in scientific applications. 
In the following, we describe physical data structures 
and access methods that are needed to support the 
requirements of temporal data. 

We use here the concepts of a time sequence (TS) 
and a time sequence array (TSA) as described in the 
section on modeling temporal data. Briefly, a TS is a 
sequence of data values in the time domain that are 
associated with a certain entity (e.g., a detector). We 
assume that each such entity has a unique identifier 
that we refer to as a surrogate. As was pointed out 
before, it is convenient to view the collection of TSs 
for all surrogates as a two dimensional array, called a 
TSA, where each row represents a TS. Our problem 
is to design data. structures and access methods for 
the TSAs that are efficient for the expected access 
of such data. Obviously the two major concerns are 
efficient storage and efficient access time. 

6.2 Approach and results 

Our approach to the design of efficient physical 
support for temporal data is to take advantage, 
whenever possible, of the properties of temporal data 
so' as to minimize the amount of storage used while 
maintaining reasonable access time. There are three 
such properties. 

. The first property that can be exploited is that 
temporal data are essentially "append only". Once 

. they are collected, no updates or deletions are made, 
except to correct mistakes. Thus, the physical orga­
nization should mainly support retrieval operations 
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well; update and delete operations need not be sup­
ported efficiently. This property suggests that we can 
store values consecutively in storage without concern 
to the reorganization that insert and delete opera­
tions could cause. 

the second property is that TSs are often regular; 
i.e. the time points of the TS are equally spaced, 
and there exists a value associated with each time 
point. In such a case, it is not necessary to store the 
times associated with each value explicitly; rather 
it is sufficient to keep a description of the time se­
quence (start time, interval, end time). Regularity is 
a very important property for efficient storage utiliza­
tion and access methods. The most storage efficient 
physical structure that can be hoped for is a struc­
ture that stores the surrogate values and the time 
values only once, rather than with each data value, 
i.e. both the surrogate and time values are "factored 
out". It is eaay to see that when TSs are regular, the 
two dimensional array representation of a TSA can 
provide the desired storage efficiency since we can 
store the identifiers of the rows (i.e. the surrogates) 
and columns (Le. the time points) only once. 

The third property that can be taken advantage of 
is that temporal data is often static. By "static" we 
mean a dataset that haa been fully collected, and 
no more additions over the time dimension are ex­
pected. In many SSOB applications, such as running 
a physics experiment or collecting statistics on gaso­
line production, the entire set of time sequences are 
collected ahead of time, and then are subject to anal­
ysis. More efficient data structures can be designed 
for static TSAs because the data can be analyzed 
ahead of time for better storage utilization. 

In addition to taking advantage of the properties 
of temporal data, we need to characterize the access 
patterns to the data to ensure that the physical struc­
t ures are appropriate for the applications. We make 
several assumptions. 

First, we assume that operations in the time do­
main often involve time ranges. Thus, storing the 
data values according to their time sequence order 
would cause physical clustering of the values, and 
minimize the number of pages (blocks) read from sec­
ondary storage for range queries in the time domain. 
Obviously, the order of values in TSs should be pre­
served. 

Second, we assume that random access in the time 
domain is necessary since we want to support effi­
ciently queries that select any time point (or time 
segment) of TSAs. 

Third, we assume that random access of the sur­
rogates is necessary since we want to support queries 
that request only a subset of the surrogates. 

Fourth, we wish to provide the option that the sur­
rogate domain is ordered. This assumption implies 
that physical clustering along the surrogate domain 
may be desirable for some applications. 

In [SK86], we have designed several models for 
data structures and access methods of temporal 
data. The variations of the models depend on the 
properties discussed above, and on expectations of 
different access patterns. The three parameters 
that determine the most desirable design are: regu­
lar/irregular, static/dynamic, and random access re­
quirements. All models use the basic structure of 
a two dimensional array representing the TSA, with 
variation to accommodate the parameters mentioned 
above. In general, the models for regular TSAs are 
more efficient than irregular TSAs (in terms of stor­
age and access time). Some of these designs directly 
benefit from our work on multi-dimensional parti­
tioning algorithms, and rearrangement for efficient 
compression discussed in other sections of this pa­
per. 
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7 Current Work 

The research on several of the topics discussed in 
this paper is still in progress. In temporal data mod­
eling we are developing a syntax for operators over 
temporal data. Our res--arch in sampling continues 
into weighted sampling and sampling from queries 
involving multiple relational operators. Our research 
into multi-dimensional data partitioning algorithms 
continues with investigations of non-grid partition­
ings, alternative optimization criteria (e.g. mIDI­
max overBow, average overBow). Our work on bit 
transposed files continues on optimal index encod­
ing methods, and retrieval query optimization. Our 
research into data structures for temporal data still 
requires detailed analyses of the proposed data struc­
tures. 
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