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Abstract
Generalization to new tasks requires learning of task represen-
tations that accurately reflect the similarity structure of the task
space. Here, we argue that episodic memory (EM) plays an es-
sential role in this process by stabilizing task representations,
thereby supporting the accumulation of structured knowledge.
We demonstrate this using a neural network model that infers
task representations that minimize the current task’s objective
function; crucially, the model can retrieve previously encoded
task representations from EM and use these to initialize the
task inference process. With EM, the model succeeds in learn-
ing the underlying task structure; without EM, task represen-
tations drift and the network fails to learn the structure. We
further show that EM errors can support structure learning by
promoting the activation of similar task representations in tasks
with similar sensory inputs. Overall, this model provides a
novel account of how EM supports the acquisition of struc-
tured task representations.
Keywords: Episodic memory (EM); task representation;
structure learning; neural network modeling.

Reusing task representations via EM
Prior neural network modeling work has shown that having
an explicit representation of the current task (in a separate
model layer, projecting to the rest of the model) can facilitate
task performance by reducing interference from other tasks
(Flesch, Nagy, Saxe, & Summerfield, 2023; Masse, Grant, &
Freedman, 2018; ?, ?; Russin, Zolfaghar, Park, Boorman, &
O’Reilly, 2022). Crucially, this representation should also re-
flect the structure across related tasks, so knowledge about
other tasks can be leveraged for generalization to new tasks
(Yang, Joglekar, Song, Newsome, & Wang, 2019; Flesch,
Saxe, & Summerfield, 2023; Ito et al., 2022; Tafazoli et al.,
2024). Consider the problem of driving. Vehicles travel on
the right in the US and on the left in the UK. When travel-
ing from the US to the UK for the first time, one needs to
construct a UK representation to avoid interference, but this
representation also needs to be structurally related to the US
representation to benefit from prior knowledge about driving.
How should an intelligent agent build task representations on-
line that satisfies both criteria?

Previous studies have suggested that episodic memory
(EM) contributes to this process by retrieving previously
formed task representations. This claim is supported by a
large body of experimental work (for a review, see Egner,
2023). It also resonates with theoretical work on amortized
inference, which posits that inferring an appropriate task rep-
resentation online can be computationally costly, and that per-

formance can be improved by re-using the products of these
costly inference processes (Dasgupta, Schulz, Goodman, &
Gershman, 2018; Dasgupta & Gershman, 2021); in line with
this view, it has been shown that EM in particular can support
efficient re-use when the same task repeats (Dasgupta et al.,
2018; Lu et al., 2023).

Here, we go beyond prior work by demonstrating that EM
helps the model learn task representations that veridically re-
flect the structure across tasks. This contribution of EM to
structure learning arises for two reasons: First, inferring a
task representation with information about the ongoing task
only is underdetermined – representations that support good
performance for the ongoing task might not be unique, caus-
ing the representation for a task to drift over time. This lack
of stability can hinder the accumulation of relational structure
across tasks – it is difficult to build an intricately structured
building on shifting sands. EM can counteract this instabil-
ity by biasing the network to consistently re-use previously
discovered task representations. We also demonstrate that the
stabilizing influence of EM is sometimes not enough to sup-
port structure learning, but in this case EM errors can help to
rescue structure learning by promoting activation of similar
task representations in tasks with similar sensory inputs.

Model architecture
We developed a neural network augmented by a task repre-
sentation layer and an EM buffer (Fig. 1a). The model infers
a task representation at each task switch point (task switches
are explicitly signaled to the model – a simplification that al-
lows us to focus on the influence of EM on task representa-
tion). Several recent models of task inference have assumed
orthogonal or non-overlapping task representations to i) avoid
interference across tasks and ii) improve computational fea-
sibility (Franklin, Norman, Ranganath, Zacks, & Gershman,
2020; ?, ?); as a result, these models can not directly represent
similarity structure across tasks. To get around this limitation,
we leveraged the idea of using gradient-based search in acti-
vation space to infer task representations online (Giallanza,
Campbell, Cohen, & Rogers, 2023; Hummos, 2022): After
a task switch, the model finds a task representation by ad-
justing the task layer activation to optimize the ongoing task
objective. Concretely, the model collects a small sample of
observations from the ongoing task. Then, to minimize the
loss of this sample, the model performs gradient descent in
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Figure 1: (a) A neural network model with a task representation (TR) layer and an episodic memory (EM) module that encodes
and retrieves task representations. (b) The model infers a task representation by performing gradient descent until convergence
in the space of task representations (activation patterns) to minimize the loss objective of the ongoing task; during this inference
process, the network weights are not adjusted. The inferred task representation is a locally optimal solution to the current task
objective. EM can speed up this process by retrieving a previously encoded task representation to initialize the gradient search.
(c) At the end of every task, the model encodes an EM. After a task switch, the model collects a small sample of observations
from the ongoing task. This small sample is first used as a cue to retrieve a previously encoded EM, which initializes the task
inference process. Then, the gradient search process is executed to optimize the task objective on this small sample. (d) To
encode a new memory (the n-th memory in this demo), the model first uses the current observation {xt ,yt} to form a memory
key, kt . Then, the model simply stores a copy of the current task representation, ct , indexed by kt . (e) To recall a memory at
time t, the model uses the current observation {xt ,yt} to form a memory key kt , and performs a one-nearest-neighbor search for
the task representation c∗ with the most similar memory key.

the space of task representations until convergence (Fig. 1b),
while holding network weights fixed. The discovered task
representation is held constant within the ongoing task (i.e.,
until the next task switch occurs; Flesch, Nagy, et al., 2023;
Russin et al., 2022). As the task representations are not con-
strained to be orthogonal, this model has greater flexibility
for learning rich relations across tasks. We focus here on
blocked (rather than interleaved) curricula, which are chal-
lenging for standard neural networks due to catastrophic in-
terference (McClelland, McNaughton, & O’Reilly, 1995).

Our model is augmented with a non-differentiable EM
module (Fig. 1a; Pritzel et al., 2017; Ritter et al., 2018).
EM encoding occurs right before every task switch (Fig. 1c).
Each memory encodes i) the task representation, ct , and ii) a
memory key kt for memory indexing (Fig. 1d). The memory
key is simply a copy of the sensory experience xt and yt . Our
assumption that EM encoding selectively occurs at the ends
of events is consistent with empirical data (Baldassano et al.,
2017; Ben-Yakov & Henson, 2018; Barnett et al., 2023); prior
modeling work has shown that this is computationally opti-
mal for retrieval success (Lu, Hasson, & Norman, 2022).

When learning temporal sequences (see Simulation 1), the
model replays the just-experienced sequence at the end of the
task to obtain a more informative task representation, which
is then stored in EM. Concretely, replay involves perform-
ing task inference by optimizing the objective over the entire
just-experienced sequence rather than a limited sample of ini-

tial observations. Without replay, the task representation can
overfit the observations available at the beginning of that task.

Episodic retrieval is similarity-based and occurs after a task
switch (Fig. 1c). First, the model forms a memory key,
kt , using the current observations. Then, it performs a one-
nearest-neighbor search over all memories (Fig. 1e) to find
the previously formed task representation with the most sim-
ilar memory key. The retrieved task representation initial-
izes the task inference process. Finally, the model refines
this retrieved task representation by performing task infer-
ence (i.e., gradient-based optimization of task representation
to optimize the ongoing objective). This refinement is im-
portant, as a retrieved representation stored in the past might
not be aligned with the current network weights (which are
constantly adjusted for learning purposes).

Simulation 1. Learning compositional structure
We developed a task-dependent sequence-learning environ-
ment (Fig. 2a) based on the paradigm from Beukers et al.
(2023). The task varies along three orthogonal dimensions.
All dimensions are binary – the first dimension is either cafe
(0) or bar (1); the second dimension is either chat (0) or work
(1); the third dimension is either jazz (0) or blues (1). Every
task dimension influences the transition structure across states
independently. For example (see Fig. 2b), if the current task
is bar + work + jazz, then state [1, 4, 5] leads to [7, 10, 12].
Note that, if the first task dimension changes from bar to cafe
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Figure 2: (a) The graph used to generate task-dependent sequences in Simulation 1. State transitions are controlled by the task
identity (e.g., bar + work + jazz). For example, in a bar, the blue transitions will be used. At the very beginning of the sequence,
a three-dimensional task-indicative signal (TIS) is presented. (b) In the bar + work + jazz task (i.e., task 110), the state [1, 4, 5]
goes to [7, 10, 12], and then [13, 16, 17]. (c) The ideal neural representational geometry for the eight tasks should form a cube,
as the three binary task dimensions are orthogonal. (d) To test if the representation for the third dimension is orthogonal to the
other two, we can compute the cross-condition generalization performance (CCGP; Bernardi et al., 2020) along dimension 3:
We can start with training a classifier to differentiate the representations for task 101 versus 100. Then, we test the resulting
decision plane (marked in light blue) to differentiate the third dimension while varying the other two task dimensions (i.e., 001
versus 000, 111 versus 110, and 011 versus 010). If the test accuracy is 1 for all combinations of train-test splits and across all
three dimensions, then CCGP is maximal (i.e., 1).

(i.e., in a cafe + work + jazz task), then [1, 4, 5] leads to [8,
10, 12] – only the first element of the state is impacted.

Given the current state, the model’s objective is to predict
the upcoming state. At the beginning of every sequence, a
three-dimensional task-indicative signal (TIS) was presented
(e.g. the TIS for bar + work + jazz is 110, see Fig. 2b). All
models were trained on a blocked curriculum for six epochs.
In every epoch, the model cycles in a random order through 7
of the 8 tasks (all tasks except for the holdout task 000; Fig.
2c), receiving a block of 200 sequences per task.

At the end of every sequence, the model first replays the
just-experienced sequence to update its task representation.
Then, it encodes a memory consisting of the TIS as the mem-
ory key and the current task representation. Whenever there
is an existing memory indexed by the same memory key, the
encoded task representation for that old memory is updated
using the new one. Then, the weights are updated to min-
imize the loss of this sequence. At the beginning of every
new sequence, the model first uses the just-observed TIS to
retrieve a previously formed task representation to initialize
task inference. Then, the model performs task inference us-
ing the initial observations of the sequence.

Ideally, the neural representations for the eight tasks should
form a cube (Fig. 2c). In other words, the coding direction
representing the cafe-bar difference should be “abstract” (as
defined by Behrens et al., 2018; Bernardi et al., 2020; Vaidya
& Badre, 2022) – it should be invariant to whether the cur-
rent task is chat or work and jazz or blues. We used cross-
condition generalization performance (CCGP; Bernardi et al.,
2020) to measure abstraction along the three task dimensions.

For example, consider dimension 3: We can start with train-
ing a classifier to differentiate the neural representations for
task 000 versus 001. This classifier should generalize regard-
less of what the first two task dimensions are. Namely, the re-
sulting decision plane (the light blue plane in Fig. 2d) should
also reliably classify 100 versus 101, 010 versus 011, and 110
versus 111. CCGP is maximal (i.e., 1) if the classifier gener-
alization performance is 1 for all three task dimensions.

To understand the effect of EM, we trained three kinds of
models: Our baseline was a recurrent neural network (RNN)
with Gated Recurrent Units (GRU; Cho et al., 2014) but no
task layer and no EM; we compared this to a no-EM model
(a GRU with a task layer but no EM) and a with-EM model
(a GRU with a task layer an EM). Then we measured perfor-
mance during training (Fig. 3b) and test (Fig. 3c) as well
as CCGP for the learned task representations during test (Fig.
3a). During training, the (baseline) GRU was slow at learning
(Fig. 3b) as blocked training led to catastrophic interference
across tasks (McClelland et al., 1995). The no-EM model
showed a distinctive pattern of performance where its per-
formance was poor at the start of task blocks but it improved
sharply within blocks. The improvement within blocks can be
explained in terms of the model inferring task representations
that help it minimize across-task inference; the drop at block
boundaries can be explained in terms of the model failing to
re-find old task representations during the inference process,
which impedes the accumulation of knowledge. With EM,
the performance reached the ceiling almost immediately after
a task switch (Fig. 3b), as the model was able to re-load pre-
viously used task representations that give it access to knowl-
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Figure 3: (a) CCGP for the task representations is higher for models with EM. (b) Prediction accuracy averaged across all
seven trained tasks over six training epochs. The dashed lines marked the epoch boundary. GRUs suffered from interference
across tasks, slowing learning. No-EM models showed good learning within task blocks but large decreases in performance
when the task switched. By contrast, the performance of the with-EM models reached the ceiling more rapidly, as they can
retrieve the previously formed task representation. (c) During test, accuracy was measured for all eight tasks. The with-EM
model was the best at both the trained tasks and the novel holdout task. (d) Turning off end-of-sequence replay for the with-
EM model reduces performance. This suggests that replaying the just-experienced sequence allowed the with-EM model to
encode a more informative task representation. (e, f) Models with EM needed fewer gradient steps to find a locally optimal task
representation (e), and they had lower representation drift (f), defined as the change of task representation when encountering
the same task twice across two consecutive epochs. (g) The task RDM computed as the L2 distance between TISs. (h, i) The
RDMs for task representations during test. The with-EM model RDM (h) was highly correlated with the task RDM (Spearman
r = 0.89, p < 10−4), but the no-EM model RDM was not (i). N = 30 models. Errorbands indicate 2 SEs.

edge acquired in previous blocks.
During the test phase, while the weights were frozen, the

model with EM performed the best both for the trained tasks
and the holdout task (Fig. 3c). The model with EM also had
better CCGP compared to the no-EM model and the GRU
(Fig. 3a). These findings of good holdout performance and
high CCGP both support the claim that EM promotes struc-
ture learning. Additionally, we found that end-of-event replay
was important for task performance – when replay was turned
off from the with-EM model (Fig. 3d), the performance for
both trained tasks and the holdout task was reduced.

We also found that models with EM were more efficient
at building the ongoing task representations: They i) needed
fewer gradient steps for task inference (Fig. 3e) and ii) had
lower representational drift (operationalized as the change of
representation when encountering the same task twice) com-
pared to the no-EM model (Fig. 3f).

Finally, to further understand the learned task representa-
tions, we compared the representational dissimilarity matri-
ces (RDMs; Kriegeskorte, Mur, & Bandettini, 2008) between
the ground truth (Fig. 3g) versus the model representations
(Fig. 3h, 3i). Consistent with the CCGP results, the with-
EM model RDM was highly correlated with the task RDM
(Fig. 3h), and this was not the case for the no-EM model (Fig.
3i). Moreover, this RDM analysis shows that, for the no-EM
model, the representations for all tasks became highly simi-
lar, which suggests that – by the end of training – the no-EM

model had largely “given up” on using the task layer, instead
relying on the RNN to support task-specific responding.

To summarize: Without EM, task representations for the
same task can drift perpetually. This suggests that finding a
task representation according to the ongoing task objective
is underdetermined – there are multiple task representations
that satisfy the objective. As a result, the task inference pro-
cess cannot consistently re-discover previously used repre-
sentations. This is problematic, as having stable task repre-
sentations is essential for accumulating knowledge about the
temporal structure of the ongoing task as well as the rela-
tion across tasks. We found that having EM helped to reduce
representation drift; effectively, EM acted as a constraint for
the underdetermined task inference problem by requiring the
model to re-use previously formed task representations.

Simulation 2. Learning similarity structure
The model’s goal in Simulation 2 was to learn a set of clas-
sification tasks, where the tasks differed only in the angle of
their decision boundaries (Fig. 4a). The angles ranged from
0 to 360 degrees at 30-degree intervals. Therefore, the rela-
tion across tasks was a ring structure (Fig. 4a). At time t,
the model received a coordinate x, and it had to predict the
associated label y. As there was no temporal structure in this
simulation, we used a feedforward version of our model (the
model in Fig. 1a without recurrent connections).

All models were trained for five epochs. In every epoch,
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Figure 4: (a) The model was given twelve different classification tasks (6 trained, 6 held out), where the ground truth structure
across tasks forms a ring. For example, the 8th task is a classification task where the true decision boundary is 240 degrees
(counterclockwise from task 0 position). In every epoch, the models experienced tasks with odd indexes in a blocked curriculum
(i.e., the trained tasks were 1, 3, 5, ..., 11). After training, all models were tested on all 12 tasks, including the holdout tasks
(i.e., 0, 2, 4, ..., 10). (b, c, d) The task representations over blocks during training for the model with EM (b) formed a ring
structure resembling the ground truth. This was not the case for the model without EM (c). This EM-related benefit was
largely due to memory errors, as models with perfectly accurate EM (d) also did not acquire the ground truth structure. (e) The
distribution of memory errors during the test phase shows that similar tasks are more confusable. (f) The ground truth RDM
that encodes the ring structure. (g) The average (over models) RDM for models with regular EM closely resembles the ground
truth (r = 0.75, p < 10−4). (h, i) The RDM for no-EM models (h) and perfect EM models (i) had lower correlations with the
ground truth. (j) The mean performance across all trained tasks during training. (k) The mean performance for all tasks during
test. Models with regular EM were much better when generalizing to novel holdout tasks. (l) Models with no EM needed
more gradient steps to find a locally optimal task representation during training. (m) Models with no EM showed much higher
representational drift for the same task. N = 30 models. Errorbands indicate 2 SEs.

the model experienced the odd-numbered tasks (1, 3, 5, ...,
11) in a blocked manner. Every block contained 300 trials.
The order of the six tasks was randomized. Then, during the
test phase, all models were tested on all 12 tasks. The weights
were frozen, but the task representation (the purple task layer
in 1a) was allowed to be adjusted normally. Note that tasks 0,
2, 4, ..., and 10 were holdout tasks, so they were novel to the
model during the test phase.

For the regular EM models, memories were indexed by ob-
servations, or {x,y} pairs. At the beginning of every new
task, the model collected a small sample of 10 observations,
{xi,yi}10

i=0. For every observation {xi,yi}, the model retrieved
the task representation with the closest observation, then re-
turned the average of these task representations. This re-
trieved pattern was used to initialize the task inference pro-
cess, in which the task representation was optimized to min-

imize the loss over {xi,yi}10
i=0 until convergence. These 10

observations were also used as memory keys to be encoded
along with the current task representation. In addition to the
regular EM model, we also included a perfect EM model that
used the true task ID as the memory key and consequently
never made memory errors (unlike the regular EM model,
which sometimes retrieved memories from the wrong task).

We visualized the task representations discovered for every
block by projecting them onto the subspace spanned by the
first two principal components (PC; Fig. 4b, 4c, 4d). For the
model with EM, the task representations formed a ring struc-
ture that resembles the ground truth (Fig. 4b). This was not
the case for the model without EM (Fig. 4c). Interestingly,
this was also not the case for the perfect EM model (Fig. 4d).
The finding that regular EM but not perfect EM learned the
ring structure shows that naturally-occurring memory errors
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can help to reveal the similarity structure across tasks. For ex-
ample, if the ongoing task is task 8, the model might retrieve
EM of task representation formed for task 7 or 9 (Fig. 4e), as
the observations of these tasks are similar. As a result, rep-
resentations for these three tasks will be used in overlapping
sets of scenarios, making them more similar.

To quantitatively compare the structure across learned task
representations versus the ground truth during the test phase,
we computed the RDMs (Kriegeskorte et al., 2008) for the
ground truth relation across tasks (Fig. 4f), models with reg-
ular EM (Fig. 4g), models with no EM (Fig. 4h), and models
with perfect EM (Fig. 4i). The model RDMs were averaged
across models. We then measured the Spearman correlation
between each model RDM versus the ground truth task RDM
– the results show that the regular EM model was much better
at learning the ground truth structure than the no-EM model
and the perfect EM model.

Consistent with the previous simulation, learning the ring
structure was useful for generalizing to novel tasks consistent
with the learned structure. We tracked the performance for all
tasks during training (Fig. 4j) and test (Fig. 4k). Importantly,
during the test phase, models with regular EM were much
better at generalizing to unseen holdout tasks compared to
the two alternative models (Fig. 4k).

Also consistent with the previous simulation, models with
EM needed fewer gradient steps for task inference (Fig. 4l).
Furthermore, representational drift – the change of task repre-
sentation when revisiting the same task (Fig. 4m) – was much
smaller for models with EM. Without EM, representational
drift was high (Fig. 4m) even after task performance con-
verged during training (Fig. 4j). This comparison again sug-
gests that task inference is underdetermined, in the sense that
there exist many locally optimal task representations for the
ongoing task objective; as such, previously discovered task
representations cannot be consistently re-discovered. The
role of EM is to constrain task inference by biasing the model
to re-use previously found task representations. Importantly,
though, the results from the perfect EM condition show that
stability alone was not sufficient to drive structure learning, as
perfect EM minimized drift but did not permit learning of the
ring structure – in this case, the model needed the extra fac-
tor of memory errors (present in the regular EM condition) to
help stitch the task representations together.

Discussion
We present a neural network model of how EM can support
online inference of task representation and shape the rela-
tional structure of task representations. Model comparison
results suggest EM played a key role in acquiring the com-
positional structure in Simulation 1 and the similarity struc-
ture in Simulation 2; this, in turn, supported generalization to
novel tasks that are consistent with the learned task structure.

Our simulation results indicate two ways in which EM can
facilitate the acquisition of structured task representations.
First, EM reduces representation drift and stabilizes task rep-
resentations, which is essential for accumulating knowledge

about the relations between tasks. Across the two simula-
tions, we found that, without EM, representations for the
same task can drift substantially even after performance con-
verges. This indicates the ongoing task objective is often not
constrained enough in the sense that there are many locally
optimal task representations. Importantly, not all of these
representations reflect how the ongoing task relates to other
tasks. Our results show that EM can act as a constraint for
task inference by biasing the model to re-use previously dis-
covered task representations.

Simulation 2 also indicates a second, distinct way in which
EM can benefit structure learning: When the similarity struc-
ture of memory keys is consistent with the similarity structure
across tasks, memory errors can help, rather than hinder, the
acquisition of the structure. In this situation, memory errors
(retrieving a similar task in place of the correct one) will bias
the model to use similar representations for similar tasks.

It is notable that perfect (i.e., error-free) EM was sufficient
for structure learning in Simulation 1 but not in Simulation 2.
We think this is a consequence of the Simulation 1 task be-
ing more difficult. That is, in Simulation 1, the model was
strongly incentivized to re-use parts of previously learned
task representations when learning new tasks because the
state transition structure is hard to learn (so “jump-starting”
the process with a useful task representation boosts perfor-
mance a lot). In Simulation 2, the task itself is simple so
re-use did not provide as strong of a benefit; in this case, hav-
ing the extra factor of similarity-based memory errors was
helpful for learning similarity structure.

With regard to replay: Our results are consistent with
findings showing that humans rapidly replay the just-
experienced sequence right before event boundaries (Sols,
DuBrow, Davachi, & Fuentemilla, 2017; Silva, Baldassano,
& Fuentemilla, 2019) – in Simulation 1, end-of-event replays
allowed our model to infer (and then store in EM) a more in-
formative task representation, compared to the task represen-
tation inferred based only on data from the start of the task.
This predicts that disruption of end-of-event replay would re-
duce the informativeness of the encoded task representation
for later parts of the event but not for the beginning.

In the future, it will be useful to compare our model to other
accounts of the role of EM in task representation. Giallanza,
Campbell, and Cohen (2023) proposed the episodic general-
ization and optimization (EGO) framework, which also uses
EM to store and retrieve task representations. A key differ-
ence is that our model uses EM to initialize task inference,
whereas EGO uses backpropagation (through a differentiable
EM) to adjust how past memories influence the ongoing task
representation. Future work can explore the similarities and
differences in the predictions made by EGO versus our model
and test them empirically. If the use of EM (shared by the
two models) is the key to acquiring structured task represen-
tations, then one might expect structured task representations
to emerge in EGO in the scenarios described here.
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