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Abstract

Power Flow Analysis and Optimal Power Flow with

Physics-Informed Deep Learning

by

Kejun Chen

Power flow (PF) analysis is critical to power system operation and planning. Nowadays,

renewable energy power generation has been widely installed in power grids because they

are environmentally friendly. The high penetration of renewable energy brings signifi-

cant fluctuations to the power system states. Probabilistic power flow (PPF) analysis

aims to characterize the probability properties of voltage phasors with stochastic power

injections.

Exploiting the impressive capability of neural networks (NNs) in complex func-

tion approximation, we utilize the NN as a rapid PF solver in real-time applications.

Motivated by residual learning, the first work proposes a new NN structure based on the

physical characteristics of PF equations. Specifically, we add a linear layer between the

input and the output to the multilayer perceptron (MLP) structure. We design three

schemes to initialize the NN weights for the shortcut connection layer based on the lin-

earized PF equations. Numerical results show that the proposed approach outperforms

existing NN frameworks in estimation accuracy and training convergence. However, the

branch flow estimation accuracy of the NN-based methods on some benchmark systems

is lower than the linearized PF-based method. The inherent reason is that the NN
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outputs are voltage angles instead of voltage angle differences, while the latter deter-

mines the branch flows. To further improve the branch flow estimates, the second work

separates the training of voltage magnitudes and phase angles due to their different

properties. We incorporate the errors of voltage angle differences into the training loss

function.

Based on PF equations, optimal power flow (OPF) analysis minimizes the total

generation cost while subject to other operational constraints. To help the independent

system operator (ISO) clear the real-time energy market, we develop an unsupervised

learning-based framework to solve the OPF problem rapidly. We employ a modified

augmented Lagrangian function as the training loss. The multipliers are updated dy-

namically during the training process based on the degree of constraint violation. Nu-

merical results show that the dynamic updates of the penalty weight coefficient improve

the feasibility of solutions compared to the fixed pre-assigned coefficient.

To ensure the PF balance, the NN predicts a subset of decision variables,

and the remaining variables are obtained by a subsequent PF solver. However, the

variable splitting scheme introduces heavy computation complexity when it comes to

computing gradients in backpropagation. Hence, in the fourth work, we aim to reduce

the total computational time of the NN to enable a daily update of the NN. We propose

a physics-informed gradient estimation method based on a semi-supervised learning

framework. We employ ridge regression to obtain pseudo-optimal solutions and build

a hybrid dataset. We propose a batch-mean gradient estimation method based on

the linearized Jacobian model to speed up the training process. Numerical results show

x



that the proposed gradient estimation method achieves a similar convergence rate as the

ground truth Jacobian. Moreover, the proposed method rapidly obtains near-optimal

solutions, which is appealing in real-time applications.
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Chapter 1

Introduction

1.1 Overview

Power flow (PF) analysis determines the best operational points, which is es-

sential for the power system operation and planning. PF studies learn the mapping from

the input variables (load demands and power generations) to the output variables (volt-

age phasors and branch flows). Compared to conventional energy, such as fossil fuels,

renewable energy tends to be much less harmful to the environment because renewable

energy sources (RESs) do not produce greenhouse gas emissions [1]. However, renewable

energy generation is generally sensitive to ambient conditions, such as pressure, tem-

perature, humidity, and light intensity. This inherent randomness brings uncertainties

to the operational states of the system, including voltage phasors (voltage magnitudes

and phase angles) and branch flows (active and reactive branch flows). Therefore, the

high penetration of renewable energy generation in electricity grids has presented more
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challenges to system operators.

Probabilistic power flow (PPF) analysis describes the probability properties of

the output variables given the uncertain input variables, which is essential in address-

ing system reliability and robustness. Monte Carlo simulations (MCS) methods and

advanced MCS-based methods are prevalent in PPF analysis [2]. They generate the

input data samples from stochastic power injection distributions and run PF analysis

repeatedly to calculate their corresponding voltage phasors. Specifically, they employ

PF solvers such as the Newton–Raphson (NR) method to solve the inverse alternating

current PF (AC-PF) equations repeatedly [3]. Then, all the probability properties such

as mean, standard deviation (std), and probability density function (PDF) of voltage

phasors, can be obtained based on the data samples. However, a considerable amount

of samples are necessary for accurate probability descriptions. Therefore, the cumula-

tive computational time of MCS-based methods is heavy. One straightforward way to

reduce the total computational time is to speed up the run time of the individual PF

problem.

The widespread use of massive phasor measurement units (PMUs) has recently

allowed abundant measurement data to be collected. Thus, machine learning-based

approaches have gained increasing attention in PF analysis. For example, [4] and [5]

use the linear regression method to approximate the decoupled linear PF functions. In

addition, neural networks (NNs) have shown impressive capability in complex function

approximation [6]. This inspires us to utilize the NN to solve the highly non-linear

and non-convex alternating current PF (AC-PF) equations. The NN can serve as a PF

2



solver, which can achieve higher accuracy than traditional machine learning regression

methods. The offline training phase is time-consuming due to the backpropagation

process. Once the training is completed, the trained model can rapidly predict the

corresponding voltage phasors of new input samples. The computational time of feed-

forward propagation in the testing phase is low. The total computational time is still

ignorable even if many samples are needed to obtain desirable probability descriptions.

Therefore, PPF analysis can utilize the NN as the efficient workhorse of PF analysis.

We proposed two novel deep learning-based methods to approximate the in-

verse AC-PF mapping from power injections to voltage phasors. The main contribution

of our first work is that we propose a new NN design under physical guidance to im-

prove estimation accuracy and convergence rate [7]. The proposed NN structure based

on residual learning, together with the well-designed initialization methods, achieves

a faster convergence rate than the fully connected neural network (FCNN). We add a

linear shortcut connection layer from the input to the output. Inspired by the linearized

PF equations, we design three initialization schemes of the weights of the shortcut layer.

Two model-based initialization methods require the power grid parameters, while the

data-driven method requires the historical dataset. Compared to the random initializa-

tion scheme, the designed initialization methods achieve a faster convergence rate than

the random initialization.

However, even if the voltage phasor estimates are accurate, the branch flow

estimates on some test benchmark systems are inaccurate. The reason is that the NN

outputs are phase angles instead of phase angle differences, while the latter determines

3



the branch flows. We combine multi-task learning and variation-cognizant voltage mag-

nitudes to enhance branch flow estimation accuracy [8]. The training loss function

consists of the voltage angle difference and the voltage angle estimate errors. In ad-

dition, we split the historical voltage magnitude data into two subsets based on the

variation level of voltage magnitude at each bus. According to their std values, we

use ordinary least-square linear regression to predict voltage magnitudes with smaller

variations and the FCNN to estimate the larger ones. In the end, the proposed hybrid

strategy improves the overall accuracy of voltage magnitude estimates.

AC optimal power flow (AC-OPF) analysis is another critical problem in elec-

tricity grids. It minimizes the objective function while satisfying physical constraints,

including power balance and branch flow equations, and inequality constraints, such as

box constraints of power generations, voltage magnitudes, and branch flows. AC-OPF

problems are non-convex and highly non-linear due to the power balance equations. The

non-linear programming (NLP) solvers can be used to solve AC-OPF problems. How-

ever, the computational time required to solve the AC-OPF problem for the large-scale

bus system using the conventional optimization solver is long. Hence, the heavy compu-

tational burden makes them less appealing in real-time large system operations. Convex

relaxation techniques can relieve the computational complexity, while inexact convex

formulations may yield sub-optimal or infeasible solutions with significant optimality

gaps [9]. Approximation methods such as the direct current OPF (DC-OPF) model

linearize the AC-PF equations and significantly reduce the run time [10, 11]. However,

due to the significant fluctuations in renewable energy generation and load demand, the

4



AC-OPF models are essential to prevent network losses that may arise from the low-

fidelity linearized models. Besides, it is hard to recover the AC feasible solution from

the solution obtained by the DC-OPF model [12]. Hence, there is a need to explore

alternatives to conventional solvers, as they are unsuitable for real-time scenarios.

There is an increasing interest in applying deep learning-based approaches to

AC-OPF analysis, driven by their notable function approximation capabilities. The

offline-trained NN can serve as a rapid AC-OPF solver in the real-time energy market,

which allows ISOs to obtain the optimal system states rapidly. Several variable splitting

schemes have been proposed to reduce the violation of equality constraint. For example,

[13], [14], and [15] use NNs to output voltage phasors and obtain the power generation

values via power balance equations. To further address the load mismatch issue, [16]

and [17] utilize NNs to predict the controllable decision variables of generator buses and

reconstruct the other remaining decision variables by solving the PF equations. These

supervised learning frameworks rely on conventional optimization solvers to generate

data pairs, which requires extra data preparation time. Moreover, the resulting sub-

optimal or infeasible solutions may mislead the NN training process. Hence, there is

an increasing interest in employing unsupervised learning frameworks to bypass these

drawbacks.

We propose an unsupervised end-to-end framework to predict a partial set of

decision variables, including voltage phasors and power generations [18]. The nodal

power balance equations are always satisfied by adopting the decision variables splitting

scheme [19]. We use the augmented Lagrangian function as the training loss function,
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which consists of the generation cost and the penalty term for constraint violation

values. The Lagrangian multipliers are the weighting parameters in the training loss

function. Compared to the fixed weighting parameters, the Lagrangian multipliers are

adjusted dynamically according to the constraint violation degree, which improves the

feasibility. In addition, the fast decoupled power flow (FDPF) solver is used to recover

the voltage phasors [20], which reduces the training time compared to the NR method.

The proposed unsupervised end-to-end framework can serve as a rapid AC-OPF solver,

which is appealing for many real-time applications.

However, the variable splitting schemes introduce a heavy training burden

when it comes to computing gradients for backpropagation. Specifically, the gradient

of the reconstructed variables with respect to the NN output variables needs to be

calculated at each training iteration. Ref. [19] shows that the gradient computation

process involves the inverse operation of the Jacobian tensor according to the implicit

function theorem. The long training time prevents frequently and promptly updating

the NN with new data instances. In addition, without guidance from the data pairs,

the unsupervised learning framework may suffer from training failure on large-scale bus

systems in the worst scenario. The reason is that the subsequent FPDF solver cannot

find any feasible PF solution given the initial random NN output decision variables.

Considering the data-driven nature of the NN, the NN needs to be updated

timely by incorporating new data instances to ensure its performance. To have the data

pairs for training guidance while not increasing the data preparation time, we propose a

semi-supervised learning framework by utilizing data augmentation techniques to build

6



pseudo labels [21]. Instead of purely relying on the conventional optimization solver to

generate data pairs, we first employ a conventional optimization solver to generate a

small fraction of ground truth output variables for the input load demand samples and

then use ridge regression to predict pseudo values for other unlabeled input samples. Due

to the embedded PF solver, the inverse operation of the Jacobian matrix of reconstructed

variables with respect to the NN output variables needs to be computed at each training

iteration for backpropagation. Inspired by the linear AC-PF equations, we propose a

new physics-informed gradient estimation method for the Jacobian tensor to alleviate

the training burden and storage requirements [22]. The estimated gradients achieve

comparable convergence performance as the ground truth gradients but require much

less run time and storage. In addition, we remove branches (power lines) that are

unlikely to violate their apparent branch flow limits during training to eliminate the

unnecessary gradient computation for branch flow violation. This design is motivated

by the observation that a significant number of branch flows are far from their operating

limits [23, 24], and the resulting zero violation does not impact weight updates. The

proposed semi-supervised learning framework can complete training in one day, which

enables timely and frequent updates based on the latest data instances.

7



1.2 Literature Review

1.2.1 PPF analysis

The high penetration of renewable energy generation in the power grid brings

significant fluctuations to the system operating states. PPF analysis focuses on obtain-

ing the probability properties of voltage phasors under stochastic load demands and

power generations [25]. The existing methods for PPF analysis generally fall into two

categories: analytical and numerical methods [26].

Analytical methods attempt to obtain the output variables’ PDFs given the

input variables’ PDFs. The output variable is represented by the linear combinations

of input variables based on the first-order Taylor series expansion. This linear rela-

tionship may suffer significant errors when the input variables are far from nominal

operating states. For example, convolution-based methods apply convolution opera-

tions to obtain the PDFs of output variables [27]. The computational burden is heavy

due to the involvement of many convolution operations. Therefore, cumulants-based

methods replace the convolution operations with arithmetic operations to reduce the

computational complexity [28]. They calculate the self and joint cumulants of the out-

put variables and use series expansions to estimate their PDFs. However, the number

of joint cumulants that need to be calculated increases exponentially with more input

variables and higher-order joint cumulants. Besides, various series expansions may have

potential convergence failure issues. Moreover, using linear approximation equations

leads to significant errors when power injections deviate far from the nominal operating

8



point [29].

In addition, point estimate methods can obtain the statistical moments of

output variables based on the first few statistical moments of the input variables [30].

They respect the non-linear AC-PF equations and require less statistical information

on the input variables than analytical methods. However, the estimation accuracy

will decrease dramatically as the number of input variables increases, which leads to

performance degradation in medium- and large-scale bus systems [31]. In addition, to

handle random input variables inferred from data samples, [32] employs the non-linear

partial least square method to de-correlate the random input variables and uses the

arbitrary polynomial chaos expansion to obtain the probabilistic characteristics of the

output variables. Refs. [33, 34] combine K-means clustering with cumulant to address

the large fluctuations brought about by the high wind power integration. However, the

performance of K-means clustering will degrade with the increasing number of renewable

energy generators.

Given random power injection samples, numerical methods run deterministic

PF analysis repeatedly to calculate their corresponding voltage phasors. Branch flows

can be further determined using the branch flow equations when the voltage phasors

are known. Finally, all probability properties of voltage phasors and branch flows are

available. The MCS-based method, typically working with the NR solver, can accurately

solve the inverse AC-PF equations. Some advanced MCS-based approaches, such as

MCS with importance sampling [3] or Latin supercube sampling [35] and Quasi-Monte

Carlo [36, 37] can improve the sample efficiency by selecting more representative data

9



samples. However, these MCS-based methods require many simulation runs to obtain

accurate PDFs of the output variables. Due to the long cumulative computational

time, MCS-based methods are less appealing in real-time applications in large electrical

systems. Therefore, we focus on reducing the total computational time by speeding up

the computation of individual PF analysis.

Recently, machine learning-based methods have gained more attention in PF

analysis by shifting the training process offline. The mapping from the random input

variables to the output variables can be directly learned from the historical operational

data pairs. For example, [4] employs linear regression to learn the inverse AC-PF

equations. However, using linear models to approximate the non-linear relationship

may lead to significant errors. Ref. [38] uses the support vector regression method to

approximate the non-linear AC-PF equations. Refs. [39] and [40] employ Gaussian

process regression for PPF analysis. However, Gaussian process regression can only

obtain the PDF of a single target quantity in one shot, which prevents its application

in medium- and large-scale power systems if the PDFs of all buses’ voltage phasors

are required. In addition, NNs can approximate complicated functions according to the

universal approximation theorem [6]. Therefore, [41] suggests using NNs to estimate the

inverse AC-PF function. The NN’s outputs are the normalized variables instead of the

actual ones. It is hard to recover their original values and statistical properties precisely.

Besides, the loss function consists of the mean square errors of active/reactive branch

flows and voltage magnitudes/angles. Ref. [42] shows that it can be pretty challenging

for NNs to optimize multiple tasks in one shot. Moreover, [43] employs NNs to solve the

10



inverse AC-PF equations, with an auxiliary task to rebuild the PF model. However, the

NN’s outputs are the real and imaginary parts of voltage phasors, and converting them

to voltage magnitudes and angles may magnify the prediction errors. To exploit the

power grid topology features, [44] proposes a physical-guided graph neural network that

incorporates the physics of PF equations. However, the performance of the proposed

model is highly affected by the accuracy of topology information, which decreases the

model’s generalization ability under varying grid topologies [45].

Inspired by previous work, we proposed two novel deep learning-based ap-

proaches for rapid PF analysis in real-time scenarios. Motivated by residual learning,

the first work proposes a new physics-guided NN structure to approximate the non-linear

residuals of the inverse AC-PF equations. The main contributions are two-fold:

• We introduce a linear layer between the input and output in the MLP structure.

The shortcut connection layer captures the linearity of AC-PF equations while the

MLP learns the non-linear residuals.

• We propose three initialization schemes to initialize the weights of the shortcut

connection layer; two model-based schemes require the grid topology and line

parameters, while the data-driven-based initialization method can work without

these parameters.

The proposed framework has the voltage angles as the NN outputs instead

of the voltage angle differences. However, the branch power flows are directly related

to voltage angle differences instead of the voltage angles. We find the model perfor-
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mance degrades when it comes to computing the branch flow estimates. In the second

work, we employ two different data-driven methods to further improve voltage magni-

tude estimates and multi-task learning to enhance branch flow estimates. The main

contributions of the second work can be summarized as follows:

• We utilize two different NNs to separate the training of voltage magnitudes and

phase angles because they have different features.

• We split load buses into two sub-datasets based on historical variations of volt-

age magnitudes. For the voltage magnitude prediction, we use simple ordinary

least-square linear regression instead of the NN for the load bus whose voltage

magnitude has relatively small variations.

• Branch flows are more related to voltage angle differences than voltage angles.

Therefore, we use the joint loss of voltage angles and voltage angle differences to

help further improve the estimation accuracy of branch flows.

1.2.2 AC-OPF analysis

AC-OPF analysis is essential for power system operation and planning in power

systems. It minimizes the total power generation cost while satisfying many operational

constraints, such as power balance equations, power generation limits, and branch flow

limits. AC-OPF problems can be solved by NLP solvers, such as the interior point

method. However, due to the highly non-linear power balance equations, solving the

non-convex AC-OPF problem by NLP solvers can be computationally expensive [46, 47].
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Hence, there is a need to explore rapid AC-OPF solvers for real-time scenarios. The

existing approaches for AC-OPF analysis generally fall into three categories: convexifi-

cation, approximation, and data-driven methods.

Convex relaxation refers to transforming a non-convex optimization problem

into a convex one. Various convex relaxations have been applied to the AC-OPF prob-

lems to provide tighter objective value bounds and improve the optimality gaps. For

example, semi-definite programming (SDP) relaxations can recover the exact solution to

the original AC-OPF problem under certain conditions [48, 49]. Second-order cone pro-

gramming (SOCP) relaxations are more scalable to large-scale power grids due to their

advantages in computation efficiency over SDP relaxations [50, 51]. However, SOCP

relaxations do not retain the phase angle information, which prevents their usage in

a transmission power grid with mesh topology. Quadratic convex (QC) relaxations

enclose the sine and cosine functions in the AC-PF equations to construct convex en-

velopes [52, 53]. Ref. [9] shows that these relaxed problems can provide lower bounds for

the original AC-OPF problem and achieve a zero-duality gap under certain conditions.

However, if convex relaxations are inexact, e.g., the rank-1 constraint violation [54],

they provably yield AC infeasible solutions.

Approximation methods adopt linearized PF equations in the AC-OPF prob-

lem formulation [10, 11]. With a desirable approximation method, the obtained solution

should be close to the optimum of the original problem. One of the most popular ap-

proaches is DC-OPF analysis, which assumes flat voltage magnitudes and ignores line

losses and reactive power injections. The DC-OPF problem can be solved quickly for
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large-scale power grids; thus, they have been widely used for real-time market clearing.

However, it is challenging to recover an AC-feasible solution from the DC-OPF solution

[12].

Many research efforts have been made to utilize deep learning-based approaches

to help conventional solvers conduct rapid AC OPF analysis. Ref. [55] employs a clas-

sification algorithm to tell apart the active and inactive constraints and then reduces

the optimization problem size by removing those inactive constraints. Ref. [56] uses

NN to provide warm-start points for the conventional optimization solvers to speed up

their computational time. Driven by the powerful approximation capabilities of NNs,

many approaches focus on an end-to-end NN framework to learn the optimal mapping

directly. The NN takes in the active and reactive power demand and outputs the power

generation and voltage phasors. The time-consuming training process is shifted offline.

In the real-time energy market, the ISO can employ the trained NN to rapidly solve the

AC-OPF problem and obtain the optimal system operating state. These approaches can

be divided into two main categories: supervised learning and unsupervised learning.

Based on historical data pairs, the NN used in [57] outputs all decision vari-

ables simultaneously but ignores equality and inequality constraint violations, which

may cause significant load mismatches and inequality constraint violations. Ref. [58]

incorporates inequality constraint violation penalty in the training loss function, which

helps to obtain the decision variables that satisfy the inequality constraints. However,

it does not consider the power balance equations and may lead to load mismatches.

For enhancing solution feasibility, there is an increasing research interest in using NNs
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to predict a partial set of decision variables and reconstruct the remaining variables

through equality constraint completion. There are generally two different schemes to

split decision variables. For example, [14] and [15] use the FCNN to predict the voltage

magnitudes and phase angles and then compute active and reactive power generations

using power balance equations. Moreover, graph neural networks, convolutional neural

networks (CNNs), and Chebyshev CNNs can take the place of FCNNs to leverage the

power grid’s topology information; see [57, 59, 60].

Ref. [61] employs principal component analysis to compress the space of output

decision variables to speed up the training efficiency. However, using the NN to output

all the decision variables simultaneously cannot strictly satisfy equality constraints.

For example, these proposed methods cannot ensure the power balance equation is

satisfied with load buses. Therefore, [16] and [17] use the NN to output the active power

generations and voltage magnitudes of generator buses and the voltage magnitude of

the slack bus. The remaining decision variables can be obtained by solving AC-PF

equations to satisfy power balance equations. To this end, supervised learning-based

methods typically rely on conventional solvers to generate training data pairs that serve

as ground truth. It may take a long time for conventional optimization solvers to

generate many samples for a large-scale bus system. Moreover, the resulting solutions

may not be global optimum and can mislead the NN training process.

Semi-supervised learning can cope with the missing or imbalanced dataset issue

and has been widely applied in detecting abnormal events and faults [62, 63]. For AC-

OPF analysis, iteration-based optimization solvers are typically utilized to obtain the
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optimal targets, which may lead to long run time in large-scale bus systems. Therefore,

there is increasing interest in developing unsupervised learning frameworks for solv-

ing the AC-OPF problems without the aid of conventional optimization solvers. The

feasibility and optimality can be ensured by designing a proper training loss function,

including the generation costs, equality constraint violations penalties, and inequality

constraint violations penalties [64, 65]. To ensure load demand balance, [19] uses the

NN to predict the controllable decision variables and employs a PF solver to obtain

the voltage magnitude and phase angles. However, balancing the weighting parameters

of different loss terms can be challenging in multi-task learning. For example, increas-

ing the weighting parameter of the generation costs term may promote solutions with

lower costs but larger constraint violations. Motivated by the principle of augmented

Lagrangian, ref. [66] trains the primal and dual NNs jointly and uses the estimated

dual values for the training loss function of the primal NN. In this case, inaccurate dual

variable estimates in the initial training process will mislead the primal NN learning

direction.

Inspired by previous work, we propose an end-to-end unsupervised learning

framework for AC-OPF analysis. The equality constraints are guaranteed to be satisfied

via the PF solver. The contributions can be summarized as follows:

• We employ the augmented Lagrangian function as the training loss function, in-

cluding the total generation cost and inequality constraints violation value. The

Lagrangian multipliers are adjusted dynamically according to the inequality con-

straints violation value during training. Compared to the fixed weight parameter,

16



the proposed dynamic parameter adjustment helps improve the feasibility of the

solution.

• We employ FDPF to solve the AC-PF equations, which significantly reduces the

computational time in the forward propagation compared to the NR method.

However, integrating the PF solver into the learning framework brings new

challenges to the NN training process regarding computing gradients in backpropaga-

tion. Specifically, the gradients of the recovered decision variables with respect to the

NN output variables need to be calculated at each training iteration. Ref. [19] calculates

the ground truth Jacobian of the AC-PF equations based on the implicit function theo-

rem. However, the computational complexity of computing the inverse of the Jacobian

grows quadratically with the power grid size, which leads to a long training time. Due

to the data-driven nature, frequent updates of the NN by accommodating new data

instances are essential to ensure that the quality of NN solutions does not degrade [67].

To alleviate the heavy computational burden, [16] and [17] adopt the zeroth-order gra-

dient estimation method [5]. The zeroth-order gradient estimation method is easier

to implement than the ground truth Jacobian. However, the resulting gradients can

be far from the ground truth values, which may provide an incorrect gradient descent

direction and mislead the NN learning process. Moreover, without data pair guidance,

the subsequent PF solver in the unsupervised learning framework may fail to find any

feasible solution in the initial training process.

We propose novel physics-informed gradient estimation methods based on a
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semi-supervised learning framework to improve the convergence property. The proposed

method can achieve timely and frequent updates of the NNs for large-scale bus systems.

The contributions of the fourth work can be summarized as follows:

• We use ridge regression to build a hybrid dataset instead of relying purely on

the conventional optimization solver to generate data pairs. Ridge regression

can rapidly predict pseudo-optimal solutions for the given input load demands.

The pseudo-pairs can provide practical guidance for the NN learning process and

improve the convergence rate.

• We exclude power lines that are unlikely to be binding to their flow limits to curtail

unnecessary gradient computations. In addition, we develop physicals-informed

batch-mean gradient estimation methods to accelerate the gradient computation in

the backpropagation process. The proposed gradient method achieves comparable

performance as the ground truth Jacobian while the computation complexity is

significantly reduced, which enables a frequent and daily NN update.

The rest of the thesis is organized as follows. Chapter 2 formulates the PF

problem and connects PF analysis and PPF analysis. In addition, the residual learning-

based NN framework and the multi-task learning framework are detailed. Chapter

3 formulates the AC-OPF problem and describes unsupervised and semi-supervised

learning frameworks. The conclusion and future work are depicted in Chapter 4.

Notation: Upper (lower) boldface letters are used for matrices (column vec-

tors). Sets are denoted by calligraphic letters. (·)⊤ is vector/matrix transpose; ∥ · ∥2
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denotes vector ℓ2-norm; (·)−1 and (·)† denote inverse and pseudo-inverse, respectively.

1n ∈ Rn is the all-ones column vector. In ∈ Rn×n is the identity matrix of size n. ⊙

denotes the element-wise product.

1.3 Contributions

The main contributions of this thesis can be summarized as:

1. Inspired by residual learning, we propose a novel physics-guided NN framework to

solve the AC-PF equations. Leveraging the linearized approximation of the AC-

PF equations, we propose three schemes to initialize the weights of the shortcut

connection layer. It can be employed as a rapid PF solver to reduce the cumulative

computational time of lots of samples in PPF analysis.

2. In PF analysis, we develop a hybrid learning strategy based on the variation

level of the voltage magnitude at each bus to improve the estimation accuracy.

In addition, we utilize the multi-task learning technique to improve the branch

flow estimation accuracy by incorporating the prediction errors of voltage angle

differences into the training loss function.

3. We propose an end-to-end unsupervised learning framework for AC-OPF analy-

sis. We integrate the PF solver into the learning framework to satisfy the AC-PF

equations. In addition, we utilize the augmented Lagrangian function as the train-

ing loss, where the Lagrange multipliers are adjusted adaptively to improve the

feasibility of the solution.
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4. In AC-OPF analysis, we adopt a semi-supervised learning framework aided by

the pseudo-labeling technique to provide sufficient guidance for the NN updates

while not introducing extra long data pair preparation time. To reduce the NN

training time, we propose physics-informed batch-mean gradient estimation ap-

proaches along with a reduced branch set to relieve the complexity of the gradient

computation.
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Chapter 2

Probabilistic Power Flow Analysis

This section describes the proposed two novel deep learning-based frameworks

for PPF analysis. The proposed NN can serve as a rapid AC-PF solver and reduce the

total computation time for many data samples in PPF analysis. Inspired by residual

learning, the first work designs a new physics-informed neural network framework to

improve the voltage phasor estimation accuracy and NN training convergence rate.

However, the advantages of the proposed learning framework are not evident in the

branch flow estimates compared to the voltage phasor estimates. The potential reasons

are that the NN outputs are phase angles instead of phase angle differences, while

the latter determines the branch flows. Hence, the second work proposes a variation-

cognizant strategy to improve the voltage magnitude estimate accuracy and utilizes

multi-task learning to improve branch flow accuracy.
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2.1 Problem Formulation

PF analysis is the cornerstone of PPF analysis. Hence, we introduce the power

system description and the AC-PF problem formulation and then connect the PF prob-

lem to the PPF analysis.

2.1.1 System Description

Given the nodal power injections, PF analysis attempts to obtain the system

operating status in an electrical grid, including voltage magnitudes and phase angles.

There are three different types of buses in the power system modeling: PQ buses, PV

buses, and one slack bus. A PQ bus (a.k.a. load bus) has no generator connected,

where its active and reactive power injections are specified. A PV bus (a.k.a. generator

bus) has generators connected, and its active power and voltage magnitude are given.

Lastly, the slack bus has the specified voltage angle and magnitude. Therefore, the

phase angles and voltage magnitudes of PQ buses and voltage angles of PV buses are

unknown system status. Here, consider an electrical grid with M transmission lines

and N buses, where there are Ng PV buses (denoted by set Ng), N −Ng − 1 PQ buses

(denoted by set Nl), and one slack bus.
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2.1.2 AC-PF Problem Formulation

According to Kirchhoff’s Law, the AC-PF equations can be expressed as:

Pi =
N∑

j=1
ViVj(Gij cos θij + Bij sin θij), ∀i ∈ Ng ∪Nl , (2.1a)

Qi =
N∑

j=1
ViVj(Gij sin θij −Bij cos θij), ∀i ∈ Nl , (2.1b)

where Pi and Qi are the active and reactive power injections at bus i. Vi and θi are the

corresponding voltage magnitude and phase angle. θij := θi − θj is the angle difference

between bus i and j. Gij and Bij are the real and imaginary parts of the (i, j)-th

element of the nodal admittance matrix Y ∈ CN×N . The active and reactive branch

flows between the connected buses i and j can be calculated by:

Pij = ViVj

tij
(Gij cos θij + Bij sin θij)− GijV 2

i

t2
ij

, (2.2a)

Qij = ViVj

tij
(Gij sin θij −Bij cos θij) + Bij

t2
ij

V 2
i −

bc
ij

2t2
ij

V 2
i , (2.2b)

where tij and bc
ij denote the tap ratio and the total line-charging susceptance between

bus i and j, respectively.

Let z collect voltage magnitudes and phase angles of all buses:

z := [θs; θg; θl; Vs; Vg; Vl]⊤ , (2.3)

where subscripts (·)s, (·)g and (·)l denote the quantities corresponding to the slack
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bus, generator buses, and load buses, respectively. Let x = [Pg; Pl; Ql]⊤ and y =

[θg; θl; Vl]⊤. The nodal admittance matrix Y can be partitioned similarly, and it can

be reorganized to a new matrix Ỹ given in Eq.(2.4).

Ỹ =


Yss Ysg Ysl

Ygs Ygg Ygl

Yls Ylg Yll


, (2.4)

where, for instance, Ygs is formed from rows of Y that correspond to PV buses and the

column for the slack bus. To this end, the inverse AC-PF function, denoted as f(·), can

be compactly expressed as (2.5). Based on the AC-PF equations (2.1), the PF solver

aims to calculate the unknown voltage phasors in y for the given nodal power injections

in x.

y = f(x) . (2.5)

2.1.3 From PF Analysis to PPF Analysis

PPF analysis attempts to characterize the uncertainties of voltage phasors

brought by the fluctuations of power injections. MCS methods have been widely ap-

plied to PPF analysis. Given the power injection samples, MCS methods repeatedly

conduct PF analysis to calculate the corresponding voltage phasor for all samples. The

probabilistic descriptions of voltage phasors can be further obtained. A considerable

number of samples are required to guarantee accurate probability distribution. There-
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fore, the total computational burden is heavy. In this case, speeding up the computation

of PF analysis can help reduce the cumulative computation time of PPF analysis.

Deep learning techniques have gained increasing attention for PF analysis be-

cause the NN has shown powerful generalization abilities in function approximation.

The NN takes in the power injections and predicts the corresponding voltage phasors.

The NN can be employed as a rapid PF solver by shifting the time-consuming training

process offline. The reasons are as follows. There are typically two stages of the NN-

based methods: training and testing. In the training phase, the NN weights are updated

during backpropagation to minimize the prediction errors of the voltage phasors. The

training process may be time-consuming due to backward propagation. In the testing

phase, a new power injection sample is fed into the trained NN, and the corresponding

voltage phasors can be predicted rapidly. The computation time in the testing stage

is ignorable because the computational burden of the forward propagation is low. To

this end, the trained NN can rapidly obtain the phase angles for many power injection

samples in PPF analysis.

2.2 Physics-guided Residual Learning for PPF Analysis

In this section, we propose an NN framework based on the physical characteris-

tics of the AC-PF equations. First, we design a new NN structure motivated by residual

learning. Specifically, we add a linear layer from the input to the output. Then, we

propose three initialization schemes for the short connection layer based on the linearity
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of the AC-PF equations. Two model-based schemes require line parameters and grid

topology information. Under the missing or inaccurate power line parameters scenario,

we design a data-driven scheme that only needs historical data samples.

2.2.1 Designed Framework inspired by Residual Learning

Residual neural networks (ResNets) have been widely applied to image recog-

nition. Based on the vanilla MLP structure, ResNets introduce some extra shortcut

connection layers [68]. A representative residual block that skips two weight layers is

depicted in Fig. 2.1a. Let G(·) denote the underlying mapping u 7→ v̄. The MLP

is used to approximate the residual function R(·). In this case, the original function

G(u) := R(u) + u can be achieved by introducing a shortcut connection layer. Com-

pared to vanilla MLPs, ResNets can effectively address the accuracy degradation issue,

i.e., the NN performance decreases with the number of layers increasing.

We design an NN structure by adding a shortcut connection layer between the

input and the output, as shown in Fig. 2.1b. Instead of learning the non-linear mapping

x 7→ y directly, the designed structure uses the MLP to approximate the latent residual

function R(·). In the context of PF analysis, this implies the MLP aims to learn the

non-linearity lying in the AC-PF equations while the linearity is captured via the linear

shortcut connection layer. The motivations are given as follows. The linearized PF

equations are widely adopted in PF analysis for the transmission power grid due to the

physics of AC-PF equations. Thus, the linear shortcut connection layer is capable of

learning the linearity. Supposing the underlying mapping is close to an identity function,
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(a) One residual building
block skipping two layers

(b) Proposed NN structure
inspired by residual learning.

Figure 2.1: The residual block structure and the proposed NN structure based on resid-
ual learning.

[68] claims that pushing the residual to zero is likely easier than directly learning the

desired function. Inspired by this principle, we consider learning the residuals regarding

the linearized AC-PF equations easier than directly learning the non-linear function.

The MLP structure comprises fully connected linear layers and rectified linear unit

(ReLU) activation functions, denoted as σ. Let Wi and bi represent the weight matrix

and bias of the i-th fully connected linear layer. Ws and bs denote the weight matrix

and bias of the shortcut connection layer. Formally, as shown in Fig. 2.1b, the residual

output yr and the output y can be expressed as:
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yr = W3(σ(W2(σ(W1x + b1)) + b2)) + b3 , (2.6)

y = yr + (Wsx + bs) . (2.7)

2.2.2 Initialization Schemes for the Shortcut Layer

This section introduces three initialization schemes of the linear shortcut con-

nection layer. The motivations are given as follows. If Ws and bs are initialized

randomly, the value of yr = y − (Wsx + bs) is prone to be updated randomly in the

initial training stage. However, the advantage of residual learning will be more evident

if the residual yr can be pushed to close zero, which speeds up the learning process.

To drive yr to zero, Wsx + bs should be close to the output y. Based on the linear

property of the AC-PF function, three schemes are adopted to initialize the shortcut

linear connection layer, including two model-based methods and one data-driven-based

method.

2.2.2.1 Pre-Initialization using a Linearized PF model

A decoupled linearized PF model has been proposed in [69]:

Pi =
N∑

j=1
−B′

ijθj +
N∑

j=1
GijVj , i ∈ Ng ∪Nl , (2.8a)

Qi =
N∑

j=1
−Gijθj +

N∑
j=1
−BijVj , i ∈ Nl , (2.8b)
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where B′
ij denotes the imaginary part of the (i, j)-th element of the nodal admittance

matrix without the shunt elements, line-charging susceptance, as well as the equivalent

admittance of transformers. If we separate the unknown voltage magnitudes and phase

angles with known ones, Eq.(2.8) can be rewritten as:

x = Ec + Fy , (2.9)

where

E =


−B′

gs Ggs Ggg

−B′
ls Gls Glg

−Gls −Bls −Blg


∈ R(2N−Ng−2)×(Ng+2) ,

F =


−B′

gg −B′
gl Ggl

−B′
lg −B′

ll Gll

−Glg −Gll −Bll


∈ R(2N−Ng−2)×(2N−Ng−2),

c = [θs; Vs; Vg]⊤ ∈ RNg+2 .

Matrices E and F are determined by the power grid topology and line parameters. In

addition, c collects the voltage phasor of the slack bus and voltage magnitudes of the

PV buses. Based on Eq.(2.9), the linearized mapping from x to y can be calculated by:

y = F†x− F†Ec , (2.10)
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where F† denotes the pseudo-inverse of F. Note that F may not be invertible due to

the possible zero bus injections. To this end, we can use F† and −F†Ec to pre-initialize

Ws and bs, respectively.

2.2.2.2 Pre-Initialization using Jacobian model

The first-order Taylor series expansion of AC-PF equations around the nominal

operating point, denoted as (x0, y0), can be expressed as:

x = x0 + J(y− y0) , (2.11)

y = J−1x− J−1x0 + y0 , (2.12)

where J ∈ R(2N−Ng−2)×(2N−Ng−2) refers to the Jacobian matrix evaluated at the nominal

operating point. We can use J−1 and −J−1y0 + x0 to pre-initialize Ws and bs so that

the residual output represents the higher-order remainder of the Taylor series in the

first training iteration. Given that the power injection values are close to the nominal

values, the residuals are expected to be close to zero, which helps speed up the NN

training process.

2.2.2.3 Pre-Initialization using Data-driven model

The aforementioned physics-guided initialization methods may not work due

to missing or inaccurate information on power grid topology and line parameters. We

propose a data-driven-based initialization scheme using ridge regression, which only
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requires the historical dataset. The advantages of using ridge regression over ordinary

least-square regression are as follows. Ref. [70] shows that significant initial values of

the NN weights may cause the gradient explosion problem. The regularization term in

ridge regression can effectively shrink the coefficients compared to the ordinary linear

regression method, which contributes to obtaining NN initial weights with small values.

Let X ∈ Rn×(2N−Ng−2) and yo
i ∈ Rn×1 denote the input data and the i-th

dimension of the output data, where n denotes the number of training samples. Ridge

regression aims to find the optimal value of βi and αi by solving the problem:

arg min
βi,αi

L := ∥yo
i − (Xβi + αi1n)∥22 + λr∥βi∥22 . (2.13)

β⊤
i and αi can be used to initialize the i-th row of Ws and bs, respectively. λr is

a positive parameter that balances the emphasis given to minimizing the fitting error

of data pairs vs minimizing the regularization term of coefficients. If λr = 0, ridge

regression will degrade to the ordinary least-square linear regression model.

The closed-form solution to Eq.(2.13) is derived as follows. The objective

function L can be rewritten as:

L = β⊤
i (X⊤X+λI2N−Ng−2)βi−2β⊤

i X⊤yo
i +2αiβ

⊤
i X⊤1n−2αi1⊤

n yo
i +α2

i 1⊤
n 1n+yo

i
⊤yo

i .

(2.14)

The gradients of the objective function with respect to the parameters can be expressed
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as:

∇βi
L = −2(X⊤yo

i −X⊤Xβi − αiX⊤1n − λβi) , (2.15)

∇αiL = −21⊤
n yo

i + 21⊤
n Xβi + 2αi1⊤

n 1n . (2.16)

We have ∇βi
L = 0 and ∇αiL = 0 at the optimal solution. Hence, the optimal values

of βi and αi should satisfy:

β∗
i = (X⊤X + λI2N−Ng−2)−1(X⊤yo

i − α∗
i X⊤1n) , (2.17)

α∗
i = 1

n
(1⊤

n yo
i − 1⊤

n Xβ∗
i ) . (2.18)

Based on Eqs.(2.17) and (2.18), we can further calculate β∗
i by:

β∗
i =

(
X⊤X + λI2N−Ng−2 −X⊤HX

)−1
X⊤(I2N−Ng−2 −H)yo

i (2.19)

with H = 1
n1n1⊤

n ∈ Rn×n. α∗
i can be obtained by plugging Eq.(2.19) to Eq.(2.18).

2.2.3 Simulation Results

The effectiveness of our proposed methods is verified based on the IEEE-30,

IEEE-118, IEEE-300 [71], SouthCarolina-500 [72], and PEGASE-1354 [73] bus systems.
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2.2.3.1 Data generation

We use a mixture of synthetic and real datasets for a comprehensive evaluation.

The active load demands use the actual data provided by the global energy forecasting

competition 2012 [74]. Then, a power factor is drawn randomly from the uniform

distribution over the interval (0, 1). The values of data samples are scaled to match the

power system capacity. For the IEEE-30 bus, the active power generations are modeled

as multivariate Gaussian distributions; the ratio of the std value to the mean value is

0.2. The correlation coefficient among different buses is 0.2. On the IEEE-118 and

IEEE-300 bus systems, active power generations are from actual PV plants installed in

California [75]. The load demands are modeled as multivariate Gaussian distributions.

The ratios of the std values to the mean values are 0.1, 0.01, and 0.2 for the IEEE-

118, IEEE-300, and SouthCarolina-500 bus systems, respectively [76]. The correlation

coefficients for the active and reactive load demands are 0.8 and 0.2 between the same

bus and different buses, respectively. For the PEGASE-1354 bus system, the ratio of the

std value to the mean value is 0.1 for the active power generations and load demands.

Finally, we generate training data pairs using the NR solver in Matpower 7.0 [71].

2.2.3.2 Methods for comparison

We compare the proposed methods with the following five existing works:

• Cumulants [28]: Based on the first-order Taylor expansion, AC-PF equations are

linearized around the nominal operating point (cf. Eq.(2.12)).
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• FC [41]: The model-based initialization method and activation function are de-

signed based on the MLP structure.

• TPBNN [43]: The MLP is adopted to approximate the inverse AC-PF function,

with an auxiliary task to rebuild the forward AC-PF mapping. The reconstruction

error serves as a regularization term in the training loss function.

• ResNet [68]: The ResNet is composed of stacked residual building blocks. The

identity mapping in the residual block (cf. Fig. 2.1a) is replaced with a linear

layer to improve its generalization capability. The output layer is linear due to

possible negative values of voltage angles.

• RR: Ridge regression is used to learn the inverse AC-PF equations (cf. (2.13)).

λr is set to 10−4 in the simulations.

In addition, we adopt four different initialization schemes for the shortcut connection

linear layer, including random [77], data-driven PF model, linearized PF model, and

Jacobian model, to initialize the shortcut connection linear layer of our proposed frame-

work. They are named as Random, Data-driven, Linearized PF, and Jacobian, respec-

tively.

2.2.3.3 Training details

We use the Adam optimizer with mini-batch for the NN training [78]. The

batch size is 32, and the training loss function is the mean square error (MSE). The

validation dataset is used to tune the hyperparameters. The training process will stop
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when the validation loss has no further improvement [79]. We train and test five times

to alleviate randomness. Table 2.1 shows the neural network structures and the dataset

size tested on the benchmark systems. The simulations are implemented on an iMac

equipped with an i7-8007 CPU and 32GB RAM. The neural network training is based

on PyTorch 1.7.1 in Python 3.7.

Table 2.1: Hyperparameters of the NN structures. The second column indicates the
number of neurons in each layer. The last column shows the size of each dataset.

Cases Structure [Training, Validation, Testing]
30 [53 100 100 53] [12k, 4k, 4k]
118 [181 300 300 181] [20k, 5k, 5k]
300 [530 200 200 200 530] [20k, 5k, 5k]
500 [909 300 300 300 300 909] [28k, 6k, 6k]
1354 [2447 300 300 300 300 2447] [34k, 8k, 8k]

2.2.3.4 Evaluation criteria

We adopt three different evaluation criteria for comprehensive evaluation:

• Average root mean square error (ARMSE): Let O, Ô ∈ RM×D denote matrices

containing the actual and estimate values. Their (i, j)-th element are represented

as Oi,j and Ôi,j , respectively. M and D denote the number of data samples and

the dimension of output variables.

ARMSE := 1
D

D∑
j=1

√∑M
i=1(Ôi,j −Oi,j)2

M
. (2.20)
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• Mean absolute percentage error (MAPE): The MAPE of the j-th response is:

MAPE := 1
M

M∑
i=1

∣∣∣∣∣Ôi,j −Oi,j

Oi,j

∣∣∣∣∣× 100% . (2.21)

• Average Wasserstein distance (AWD): Wasserstein distance can measure the dis-

tance between two probability distributions [80]. Let ρj and ρ̂j denote the prob-

ability distributions of the j-th column of O and Ô, respectively. The first-order

Wasserstein distance loss between them can be calculated as:

lwd(ρ̂j , ρj) = inf
γ∈Γ(ρ̂j ,ρj)

∫
R×R
|ρ̂j − ρj | dγ(ρ̂j , ρj) , (2.22)

where Γ(ρ̂j , ρj) represents the set of all measures on R×R whose marginal distribu-

tions are ρ̂j and ρj on the first and second factors. Thus, the average Wasserstein

distance of all responses can be obtained as:

AWD := 1
D

D∑
j=1

lwd(ρ̂j , ρj). (2.23)

2.2.3.5 PF analysis results

Based on Table 2.2, we can draw several conclusions:

• The proposed NN structure with the designed initialization method is more accu-

rate than the other competing methods. For example, the Data-driven, Linearized

PF, and Jacobian methods are around 2.1, 2.7, and 2.8 times smaller than the
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FC method on average. The proposed initialization schemes outperform random

initialization.

• The performance of non-linear solvers is better than the linear solvers such as

Cumulants and RR methods.

• The ResNet and Random methods do not outperform the FC method significantly,

which means that the advantage of only introducing shortcut connection layers is

not evident.

Table 2.2: ARMSEs of voltage phasor calculations in different cases (10−4)

Cases Voltage phasor Cumulants RR FC TPBNN ResNet Random Data-driven Linearized PF Jacobian

IEEE-30 angle 188.40 3.66 2.96 6.29 2.17 2.06 1.43 1.35 1.94
magnitude 13.72 1.78 2.17 5.20 1.44 1.23 1.08 1.02 1.16

IEEE-118 angle 289.31 24.33 7.36 61.37 8.14 7.14 2.70 2.46 2.72
magnitude 11.93 1.43 4.07 9.84 5.09 2.93 0.79 1.24 0.85

IEEE-300 angle 302.38 108.55 21.71 32.66 35.11 23.59 12.87 7.80 6.96
magnitude 27.94 11.23 5.58 8.20 8.81 10.65 2.42 2.18 1.94

SouthCarolina-500 angle 309.28 259.15 16.18 798.32 13.40 7.83 8.95 6.93 8.26
magnitude 58.46 46.68 10.91 15.13 8.48 3.35 3.67 3.31 3.43

PEGASE-1354 angle 207.19 164.72 32.20 - 30.84 13.79 12.77 9.13 8.78
magnitude 7.82 6.59 10.23 - 10.11 15.53 4.34 3.53 3.54

Table 2.3: ARMSEs of the branch flow calculations for different cases

Cases Branch flow Cumulants RR FC TPBNN ResNet Random Data-driven Linearized PF Jacobian

IEEE-30 active 3.998 0.038 0.108 0.618 0.057 0.029 0.028 0.031 0.028
reactive 1.064 0.048 0.103 0.457 0.056 0.036 0.034 0.041 0.033

IEEE-118 active 2.836 0.282 0.391 3.585 0.745 0.255 0.071 0.105 0.077
reactive 1.341 0.153 0.321 1.654 0.440 0.221 0.067 0.108 0.065

IEEE-300 active 0.930 0.209 1.718 2.430 4.526 5.146 0.496 0.557 0.508
reactive 2.314 0.686 0.924 2.080 1.817 2.869 0.471 0.452 0.427

SouthCarolina-500 active 1.658 1.427 4.394 17.896 2.834 0.970 0.756 0.767 0.741
reactive 3.843 3.095 3.015 81.021 2.091 1.205 0.909 0.798 0.859

PEGASE-1354 active 1.103 1.131 16.164 - 15.843 11.94 7.066 5.808 5.922
reactive 2.197 1.857 20.48 - 8.189 19.65 6.841 5.395 5.406

As shown in Fig. 2.2 and Fig. 2.3, the average MAPEs of phase angles and volt-

age magnitudes of the Data-driven method are 0.028% and 0.0042%, similarly, 0.023%

and 0.0065% of the Linearized PF method, and 0.023% and 0.0042% of the Jacobian

method.
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Figure 2.2: The MAPEs of phase angle calculations on the IEEE-118 bus system.

Figure 2.3: The MAPEs of voltage magnitude calculations on the IEEE-118 bus system.

Table 2.3 shows the ARMSEs of active and reactive branch flows. Despite

inaccurate voltage phasor estimates, the RR and Cumulants methods achieve the best

performance of the active branch flow estimates on the IEEE-300 and PEGASE-1354

bus systems, respectively. The reason is as follows. The output variables are voltage

angles instead of voltage angle differences. The branch flow between two connected buses

depends on their phase angle difference. Thus, smaller voltage angle estimate errors do
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not necessarily imply smaller estimation errors of the voltage angle differences, which

may lead to more significant branch flow estimate errors.

2.2.3.6 Wasserstein distance comparison results

Wasserstein distance calculates the minimum effort of transforming the proba-

bility mass from one distribution to another. It can serve as a good criterion to evaluate

the probabilistic distribution difference between the estimate and the ground truth. Ta-

ble 2.4 and Table 2.5 show the AWD of voltage phasor and branch flow distributions.

The physics-guided initialization methods achieve better results than the Random and

Data-driven methods.

Table 2.4: AWDs of voltage phasor distributions in different cases (10−4)

Cases Voltage phasor Cumulants RR FC TPBNN ResNet Random Data-driven Linearized PF Jacobian

IEEE-30 angle 152.99 2.07 0.86 2.03 0.70 0.76 0.53 0.49 0.70
magnitude 10.73 0.59 0.51 1.99 0.35 0.37 0.28 0.25 0.32

IEEE-118 angle 257.96 12.7 1.96 10.43 2.22 2.48 0.92 0.86 0.91
magnitude 10.17 0.58 0.94 2.98 1.32 0.74 0.22 0.52 0.20

IEEE-300 angle 266.14 69.72 4.57 5.81 7.07 4.75 3.49 2.36 2.22
magnitude 22.44 4.08 1.29 2.53 1.78 3.14 0.60 0.62 0.52

SouthCarolina-500 angle 167.55 160.44 3.26 59.16 2.82 1.75 2.44 1.71 1.82
magnitude 35.30 29.06 1.62 3.24 1.22 1.05 1.19 0.97 0.89

PEGASE-1354 angle 108.80 101.01 5.79 - 5.66 5.22 3.92 2.79 2.72
magnitude 4.75 2.40 2.26 - 2.75 5.32 1.53 1.04 1.09

Table 2.5: AWDs of branch flow distributions in different cases

Cases Branch flow Cumulants RR FC TPBNN ResNet Random Data-driven Linearized PF Jacobian

IEEE-30 active 3.293 0.019 0.024 0.246 0.019 0.013 0.016 0.018 0.012
reactive 0.871 0.014 0.025 0.194 0.014 0.012 0.014 0.025 0.010

IEEE-118 active 2.420 0.145 0.121 1.740 0.213 0.147 0.045 0.080 0.039
reactive 1.144 0.074 0.117 0.715 0.160 0.115 0.039 0.085 0.030

IEEE-300 active 0.781 0.134 0.644 1.043 2.066 2.894 0.249 0.268 0.256
reactive 1.880 0.325 0.396 1.049 0.907 2.073 0.347 0.289 0.296

SouthCarolina-500 active 0.924 0.860 1.273 6.772 0.922 0.540 0.395 0.356 0.356
reactive 2.278 1.935 1.176 7.537 0.803 0.922 0.681 0.569 0.630

PEGASE-1354 active 0.611 0.629 7.089 - 6.815 9.806 4.493 3.077 3.148
reactive 1.274 0.890 4.523 - 5.277 14.079 5.105 3.497 3.589
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2.2.3.7 PDF estimation comparison results

As shown in Fig. 2.4 and Fig. 2.5, the proposed methods achieve smaller esti-

mation errors in the PDF estimates. It is worth pointing out that the voltage magnitude

of bus 16 has the most significant std value. Hence, we plot its PDF to verify that the

proposed methods can track the voltage magnitude with large fluctuations. As shown

in Fig. 2.5, the RR method cannot accurately estimate the highly skewed PDF.

Figure 2.4: Voltage angle of bus 1 for the IEEE-300 bus system.

Figure 2.5: Voltage magnitude of bus 16 for the IEEE-300 bus system.
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2.2.3.8 Computational time

The testing time is short because the forward propagation is fast. Table 2.6

shows the training time of different NN structures. Compared to MLPs, residual blocks

need extra time due to the backward propagation of the shortcut connection.

Table 2.6: The training time of each epoch for different NN structures (seconds).

Cases FC TPBNN ResNet Proposed approaches
30 0.87 2.32 1.13 1.07
118 1.55 4.11 1.90 1.91
300 2.13 6.27 1.97 2.37
500 3.57 15.66 4.57 3.74
1354 4.58 - 6.10 5.77

2.2.3.9 Convergence rate

For a fair comparison, we use the same learning rate 10−4 for all the NN-based

methods to demonstrate the evolution process of the training loss. As shown in Fig. 2.6

and Fig. 2.7, after training the first epoch, the proposed initialization schemes have

achieved much smaller error values than the other methods. A faster convergence rate

is appealing whenever the training time is limited.

In addition, we observe that the designed three initialization schemes converge

faster than random initialization. Thus, we demonstrate how initial weights will affect

the entire training process. Fig. 2.8a shows the initial weights of the shortcut connection

layer under random initialization. After training 500 epochs, the pattern of the NN

weights still looks random, as shown in Fig. 2.8b. In contrast, using the Data-driven

initialization method, Fig. 2.9 shows that the pattern of updated weights is quite similar
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to that of the initial weights. This phenomenon indicates that initialization methods

affect the NN updates during training.

Figure 2.6: The training loss evolution process (starting from when the first epoch’s
training is done) on the IEEE-30 bus system.

Figure 2.7: The training loss evolution process (starting from when the first epoch’s
training is done) on the IEEE-118 bus system.
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(a) Initial weights (b) Updated weights after 500 epochs’ train-
ing

Figure 2.8: Weights of the shortcut connection linear layer of the Random method for
the IEEE-30 bus system.

(a) Initial weights (b) Updated weights after 500 epochs’ train-
ing

Figure 2.9: Weights of the shortcut connection linear layer of the Data-driven method
for the IEEE-30 bus system.
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2.3 Variation-cognizant PPF via Multi-task Learning

Based on the branch flow equations, the branch flow between two connected

buses is related to the voltage angle difference compared to the voltage angles. The

training loss function used in section 2.2 consists of the voltage magnitude and phase

angle estimation errors. Hence, the proposed NN framework shows more evident advan-

tages in the voltage phase estimates than the branch flow estimates. In this section, we

propose two separate learning frameworks for the voltage magnitude and phase angles

to improve branch flow estimation accuracy. First, we combine linear regression and

the FCNN to predict the voltage magnitudes. Then, we employ multi-task learning

to enhance the accuracy of branch flow calculations by incorporating the voltage angle

difference errors into the loss function design.

2.3.1 Proposed methods for PF Analysis

Based on the AC-PF equations (2.1), the mapping from the known power injec-

tions to the unknown phase angles and voltage magnitudes can be compactly rewritten

as:

ya = fa(x) , (2.24)

Vl = fm(x) , (2.25)

where ya = [θl; θg] collect the unknown phase angles. We adopt two different learning

frameworks to approximate the mapping from x to the voltage magnitudes Vl and
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voltage angles ya, respectively.

2.3.1.1 Hybrid learning framework for voltage magnitudes

In a per-unit power system, voltage magnitudes are typically around 1; thus,

the voltage magnitude fluctuations are small. The std values of voltage magnitudes can

be obtained based on the historical operational data. We split the load buses into two

disjoint subsets according to the std values:

Nl = Nls ∪Nlb and Nls ∩Nlb = ∅, (2.26)

where Nls := {Nl | std(Vl) ≤ γ} collects the load buses with small std values while

Nlb := {Nl | std(Vl) > γ} collects the load buses with large std values. The threshold

parameter γ can be learned via the validation process.

We propose two different learning strategies for these two subsets. The NN

has shown an impressive capability in non-linear function approximation. Hence, for

the load buses in Nld, we employ the NN to learn the inverse AC-PF mapping from

the power injections to voltage magnitudes. However, if the voltage magnitude remains

nearly constant regardless of the variations of power injections, the complicated NN

may lead to overfitting. Hence, we adopt ordinary least-squares linear regression for the

load buses in Nlc.
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2.3.1.2 Branch flows computation via Multi-task Learning

The motivation for introducing multi-task learning for phase angle estimation

is as follows. As shown in (2.2), branch flows depend on the voltage angle differences

between the connected buses instead of voltage angles. In the meantime, the relationship

between phase angle and phase angle difference is not bijective. The phase angles

uniquely determine the phase angle differences, while the opposite does not hold. Thus,

accurate phase angle estimates do not always ensure accurate phase angle difference

estimates. In the first work, the loss function only includes the errors of voltage angle

estimates. Therefore, we consider incorporating the estimation errors of voltage angle

differences to help improve branch flow estimation accuracy. Hence, the joint training

loss function is designed as follows:

Lnew := L(∆ya) + αaL(∆yad) := L(ȳa − ya) + αaL(ȳad − yad), (2.27)

where L(·) is the mean square error, and αa is used to balance the relative importance

of two tasks. Let A ∈ RM×(N−1) denote the reduced incidence adjacency matrix (the

column related to the slack bus is deleted) whose element is 1 for the from node while -1

for the end node of a branch. Voltage angle differences can be calculated by yad = Aya,

and the voltage angle difference estimates ȳad can be obtained in a similar fashion.

2.3.2 Simulation Results

This section verifies the effectiveness of the proposed methods in solving voltage

phasors and branch flows and estimating their probabilistic properties on the IEEE-300
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and PEGASE-1354 bus systems.

2.3.2.1 Data generation

The solar panel outputs and active power demands are generated based on

the data in [75] and [74], respectively. The actual data samples are insufficient for

our simulation; thus, we use multivariate Gaussian distribution as a synthetic data

supplement. The mean value refers to the nominal value, and the ratio of mean value

to std is 0.01 and 0.1 on the IEEE-300 and PEGASE-1354 bus systems, respectively.

The correlation coefficient of active and reactive power injections for the same bus is

0.8 and 0.2 for different buses.

2.3.2.2 Methods for comparison

We compare the proposed methods (M3 and M4) with two existing approaches

(M1 and M2):

• M1: Assume a linear relationship

ya

Vl

 = Hx + ϵ, and use least-squares linear

regression to predict the voltage magnitudes and phase angles.

• M2 (cf. [41]): Train one FCNN to predict both voltage magnitudes and phase

angles simultaneously.

• M3: Train two separate FCNNs to predict the voltage magnitudes and phase

angles, respectively.
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• M4: Use the hybrid learning method and multi-task learning method to estimate

the voltage magnitudes and phase angles, respectively.

2.3.2.3 Training details

The mini-batch training with Adam optimizer on Pytorch 1.7.1 in Python

3.7 is adopted [78]. The mini-batch size is 32, and the activation function is ReLu.

αa is set to 1 and 10 on the IEEE-300 and PEGASE-1354 bus systems, respectively.

Table 2.7 shows the data size, NN structure, and learning rate. We train and test these

methods five times to alleviate the randomness.

Table 2.7: Hyperparameters of different methods on different bus systems

Bus systems [Training, Validation, Testing] Methods Voltage phasors Neural network structure Learning rate

IEEE-300 [20k, 5k, 5k]

M2 angle and magnitude [530 200 200 200 530] 1× 10−4

M3 angle [530 300 300 299] 5× 10−5

magnitude [530 200 200 231] 1× 10−4

M4 angle [530 300 300 299] 5× 10−5

magnitude [530 200 200 137] 1× 10−4

PEGASE-1354 [26k, 6k, 6k]

M2 angle and magnitude [2447 300 300 300 300 2447] 7× 10−5

M3 angle [2447 400 400 400 1353] 5× 10−5

magnitude [2447 400 400 400 1094] 7× 10−5

M4 angle [2447 400 400 400 1353] 7× 10−5

magnitude [2447 400 400 400 718] 7× 10−5

2.3.2.4 Evaluation criteria

Three evaluation criteria are employed to provide a comprehensive evaluation

of different methods.

• Average root mean square error (RMSE) of all responses:

Average RMSE := 1
d

d∑
i=1

√
1
n
∥Ō(: , i)−O(: , i)∥22 , (2.28)
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where O(: , i) represents the i-th response (i.e., column of matrix O), and similarly

for Ō(: , i).

• Average Wasserstein distance [80]:

AWD := 1
d

d∑
i=1
W1(ρ̄i , ρi) , (2.29)

where W1 refers to the first-order Wasserstein distance, and ρ̄i and ρi denote the

estimates and targets of probability distributions of the i-th response, respectively.

• Average mean absolute error (MAE) of the mean value e1 and the std value e2:

e1 := 1
d

d∑
i=1
|µ̄i − µi|, e2 := 1

d

d∑
i=1
|σ̄i − σi|. (2.30)

where µ̄i and µi denote the mean values of the i-th response, and σ̄i and σi are

their corresponding std values.

2.3.2.5 PF analysis results

Table 2.8 shows that the proposed hybrid learning method performs best in

the voltage magnitude estimates. As shown in Tables 2.9 and 2.10, the proposed multi-

task learning method improves the estimation accuracy of the voltage angle differences,

yielding more accurate branch flow estimates. M4 performs slightly worse than M3 in the

voltage angle estimates on the PEGASE-1354 bus system. The reason is that it is hard

to ensure all tasks reach their optimalities simultaneously in multi-task learning. Since
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these two tasks are highly related, minimizing the voltage angle difference estimation

error does not significantly degrade the voltage angle estimate accuracy.

Table 2.8: Average RMSEs of voltage magnitudes (10−4)

Cases M1 M2 M3 M4
IEEE-300 16.15 4.36 3.68 3.34

PEGASE-1354 2.58 6.81 2.75 2.11

Table 2.9: Average RMSEs of voltage angles and angles differences calculations (10−3)

Cases Voltage M1 M2 M3 M4

IEEE-300 angle 23.15 2.31 2.24 2.10
angle difference 0.91 0.51 0.50 0.38

PEGASE-1354 angle 5.96 1.53 0.97 1.11
angle difference 0.84 0.81 0.59 0.53

Table 2.10: Average RMSEs of branch flows calculations

Cases Branch flow M1 M2 M3 M4

IEEE-300 active 2.92 1.51 1.69 0.93
reactive 1.23 0.96 0.70 0.56

PEGASE-1354 active 22.12 8.67 7.89 5.60
reactive 5.51 5.55 3.01 2.03

2.3.2.6 Probabilistic descriptions comparison results

Fig. 2.10 and Table 2.11 show the proposed hybrid learning method has the

least AWD of voltage magnitude estimates. Besides, Fig. 2.11 and Table 2.12 illustrate

that the proposed method M4 outperforms the other methods in probabilistic distribu-

tions of branch flows. As shown in Table 2.13, the proposed method M4 achieves the

smallest MAEs in the reactive branch flow estimates. Besides, M4 reduces the MAE of

the std values at least by half on the active branch flow estimates.
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Figure 2.10: The Wasserstein distance of voltage magnitude distributions for the IEEE-
300 bus system.

(a) Active branch flow (b) Reactive branch flow

Figure 2.11: The Wasserstein distance of branch flows distributions for the IEEE-300
bus system.

Table 2.11: AWD of the voltage phasors distributions (10−4)

Cases Voltage M1 M2 M3 M4

IEEE-300 angle 139.544 5.580 5.104 5.102
magnitude 8.136 1.057 1.182 0.917

PEGASE-1354 angle 25.199 3.840 3.066 3.629
magnitude 0.969 1.548 0.946 0.674
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Table 2.12: AWD of the branch flows distributions

Cases Branch flow M1 M2 M3 M4

IEEE-300 active 1.843 0.527 0.772 0.403
reactive 0.579 0.369 0.323 0.228

PEGASE-1354 active 16.511 3.975 3.853 2.788
reactive 3.979 2.998 1.827 1.177

Table 2.13: Average MAE of estimate mean and std of branch flows

Cases Branch flow M1 M2 M3 M4

IEEE-300
active mean 1.27 0.16 0.38 0.29

std 1.27 0.57 0.72 0.28

reactive mean 0.22 0.19 0.23 0.14
std 0.36 0.34 0.19 0.11

PEGASE-1354
active mean 12.43 1.79 1.79 1.95

std 12.98 4.30 4.13 2.09

reactive mean 2.88 1.75 1.32 0.94
std 3.11 3.30 1.37 0.70

2.4 Summary

This chapter introduces a novel physics-informed NN learning framework to

speed up the PF analysis. Three different initialization schemes are designed to utilize

the linear property of AC-PF equations. The Linearized PF and Jacobian initializa-

tion schemes require accurate information on network topology and line parameters,

while the Data-driven initialization only needs historical data. Tested on IEEE bench-

mark systems, extensive simulation results show that the proposed learning framework

outperforms the competing methods in estimation accuracy and training efficiency.

Next, we propose a hybrid learning strategy for voltage magnitude estimates

and multi-task learning to improve branch flow estimate accuracy. According to the std

values of voltage magnitudes, two different data-driven models are employed to estimate
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the voltage magnitudes. In addition, the joint loss, consisting of the voltage angles and

voltage angle differences, is adopted to improve the accuracy of branch flow estimates.

The simulation results show that the proposed methods achieve promising performance

in estimating branch flows and their probability descriptions.
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Chapter 3

Optimal Power Flow Analysis

This section introduces the AC-OPF problem formulation and depicts two pro-

posed end-to-end learning-based frameworks for the AC-OPF analysis. We propose an

unsupervised learning-based framework that utilizes the Lagrangian dual function as

the training loss function. Compared to the fixed weighting parameter in the training

loss function, we adopt dynamically updated Lagrange multipliers based on the con-

straint violation to guide the NN training process and improve the feasibility of the

decision variables. However, the training time is long due to the complicated gradient

computation, which prevents a daily NN update for accommodating new data instances.

Hence, we develop novel batch-mean gradient estimation approaches based on the semi-

supervised learning framework to reduce the data preparation and training time. The

proposed gradient estimation method achieves a comparable convergence rate as the

group truth gradient while significantly improving the training efficiency.
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3.1 AC-OPF Problem Formulation

The AC-OPF problem minimizes the total generation cost while satisfying a

set of operational constraints [81]:

min
V,θ,Pg ,Qg

∑
i

ci(Pg,i) (3.1a)

s.t. Pg,i − Pd,i = Vi

N∑
j=1

Vj(Gij cos θij + Bij sin θij) (3.1b)

Qg,i −Qd,i = Vi

N∑
j=1

Vj(Gij sin θij −Bij cos θij) (3.1c)

Pij = −GijV 2
i + ViVj(Gij cos θij + Bij sin θij) (3.1d)

Qij = BijV 2
i + ViVj(Gij sin θij −Bij cos θij) (3.1e)

P 2
ij + Q2

ij = |Sij |2 ,∀(i, j) ∈M (3.1f)

|Sij |2 ≤ (Smax
ij )2, ∀(i, j) ∈M (3.1g)

P min
g,i ≤ Pg,i ≤ P max

g,i , ∀i ∈ N \ Nd (3.1h)

Qmin
g,i ≤ Qg,i ≤ Qmax

g,i , ∀i ∈ N \ Nd (3.1i)

V min
i ≤ Vi ≤ V max

i , ∀i ∈ N (3.1j)

θref = 0 (3.1k)

Pg,i = Qg,i = 0 , ∀i ∈ Nd. (3.1l)

Pg,i, Qg,i, Pd,i and Qd,i denote the active and reactive power generations and load

demands at bus i. Vi denotes the voltage magnitude of bus i. θij := θi − θj represents

the voltage angle difference between bus i and j. Pij and Qij denote the active and
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reactive branch flows from bus i to bus j. Gij and Bij are the real and imaginary parts of

the (i, j)-th element of nodal admittance matrix Y ∈ CN×N , respectively. In addition,

Eq.(3.1a) is the objective function that captures the total active power generation costs,

where ci(·) is the power generation cost function of generator i. Eqs.(3.1b) and (3.1c)

refer to the nodal power balance equations based on Kirchhoff’s law. Eqs.(3.1d) and

(3.1e) represent the branch flow balance equations, and Eq.(3.1g) gives the upper limits

of apparent power flows. Eqs.(3.1h)-(3.1i) depict the operational constraints for the

active and reactive power generation outputs. Eq.(3.1j) depicts the operating limits of

voltage magnitudes. The phase angle of the slack bus is set to 0. Eq.(3.1l) implies that

the load buses do not connect to any generators.

3.2 Unsupervised Learning Framework for AC-OPF Anal-

ysis

This section depicts the proposed NN learning framework and describes the

training loss function based on the Lagrangian dual function.

3.2.1 AC-OPF problem via Lagrangian Function

The AC-OPF problem (3.1) can be formulated as a generic optimization prob-

lem with inequality constraints, which can be solved by the augmented Lagrangian
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method:

min f(y, z2) (3.2a)

s.t. h(y, z1, z2) ≤ 0, (3.2b)

where f(y, z2) refers to the objective function (3.1a), and the vector-valued function

h(·) collects all inequality constraints (3.1g)-(3.1j).

Lagrangian relaxation penalizes the inequality constraint violation values by

introducing the Lagrange multipliers to the loss function. After relaxing all inequality

constraints by adding the constraint violation penalties to the objective function, the

augmented Lagrangian function can be expressed as [82]:

L(x, y, z1, z2, µ) = f(y, z2) + 1
2αh

1⊤
d ∗

(
(ReLu(µ + αhh(y, z1, z2)))2−µ⊙µ

)
, (3.3)

where µ ∈ Rd, d = M +4(Ng +1)+2N collects the Lagrange multipliers associated with

the inequality constraints. αh is a constant coefficient. ReLu(·) denotes the element-wise

rectified linear unit; ⊙ denotes the element-wise product;

The dual function of Eq.(3.3) is given as:

g(µ) = min
y,z1,z2

L(y, z1, z2, µ). (3.4)

The dual problem maximizes the dual objective (3.4) to provide the tightest lower bound
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of f(y, z2):

max
µ≥0

g(µ). (3.5)

The primal-dual approach updates the primal and dual variables sequentially at each

iteration to solve the dual problem. Let µk denote the Lagrange multiplier vector at the

k-th iteration. The primal update attempts to obtain the primal variables {yk, z1,k, z2,k}

by solving the dual function (3.4). Then, the Lagrange multiplier at the next iteration

can be calculated by:

µk+1 := ReLu
(
µk + αhh(yk, z1,k, z2,k)

)
. (3.6)

3.2.2 NN Learning framework for AC-OPF Analysis

Let (Pg)Ng and (V)Ng denote the active power generations and voltage mag-

nitudes of generator buses, respectively. Pg,ref and Qg,ref denote the active and reactive

power generations of the slack bus, respectively. Let x = [(Pd)N ; (Qd)N ] ∈ R2N col-

lect the load demands of all buses. Let y = [(Pg)Ng ; (V)Ng ; Vref; θref] ∈ R2Ng+2 collect

a partial set of decision variables. The remaining decision variables are collected in

z1 = [(V)Nd
; θNg∪Nd

] ∈ R2Nd+Ng and z2 = [Pg,ref; Qg,ref; (Qg)Ng , S2
ij ] ∈ RNg+M+2. Let

v = [θ; V] ∈ R2N collect the phase angles and voltage magnitudes of all buses. Fig. 3.1

shows the schematic of the proposed learning framework. The FCNN is utilized to

approximate the mapping x 7→ y. Given x and y, the PF solver can solve the PF
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equations (3.1b) and (3.1c) to obtain the phase angles and voltage magnitudes. Given

the voltage phasors, z2 can be determined based on the power flow and branch flow

equations. Let fr(·) represent the mapping v 7→ z2, which can be obtained by solving

the equality constraints (3.1b)ref , (3.1c)ref , (3.1b)Ng , and (3.1d)-(3.1f).

Figure 3.1: The proposed unsupervised learning framework for solving AC-OPF.

Remark. The motivation for the decision variable splitting scheme is as follows [19]. In

PF analysis, when x and y are available, we can build 2Nd+Ng power balance equations,

which is a subset of Eqs.(3.1b)-(3.1c). The unknown voltage magnitudes and phase

angles in z1 can be obtained by solving the PF equations via the PF solver. Once the

voltage magnitudes and phase angles of all buses are known, z2 are uniquely determined

by the remaining equality constraints. Therefore, the variable splitting scheme ensures

the satisfaction of branch flow and power balance.

Let y := W(x), where W collects the NN weights. Assume the FCNN only

has one hidden layer. The mapping from the input x to the output y can be calculated

as:

y = B
(
Sigmoid(W2ReLu(W1x))

)
, (3.7)

59



where Wi denotes the weight matrix of i-th linear layer. Sigmoid(·) is the activation

function of the output layer. B(·) is a linear operator to ensure that the output variables

satisfy their box constraints. For example, let βi ∈ [0, 1] denote the NN output for

voltage magnitude at bus i. Then, the decision variable Vi ∈ [V min
i , V max

i ] can be

recovered by:

Vi = B(β) := βiV
min

i + (1− βi)V max
i . (3.8)

We implement similar transformations to all decision variables in y to satisfy the related

box constraints.

3.2.3 Combine NN training with Lagrangian Duality

As shown in Fig. 3.1, y is computed by the forward propagation, i.e., y :=

W(x). After plugging y = W(x) and {z1, z2} = u (W(x)) into the augmented La-

grangian function (3.3), we can express the Lagrangian function parameterized by the

NN weights W as:

LW := L(W(x), u(W(x)), µ). (3.9)

We adopt the Lagrangian function LW as the training loss function. Algorithm 1 shows

the proposed learning framework. The trained FCNN can serve as a rapid AC-OPF

solver. For any input x, the FCNN can rapidly predict y. The other decision variables

in z1 and z2 can be obtained based on the power flow and branch flow equations.

Remark. The proposed learning framework does not rely on the training data pairs for
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Algorithm 1 Unsupervised learning framework via Lagrangian function
Input: Training dataset X , coefficient αh, initial value of multiplier µ0, maximum

training epoch n, multiplier updating period m.
1: for epoch i = 1, 2, . . . , n do:
2: Sample data points x ∈ X .
3: Compute y through feedforward propagation.
4: Obtain z1 usingthe PF solver.
5: Compute z2 according to Eqs. (3.1b)-(3.1f).
6: Calculate the loss function (3.9), and update W via backpropagation.
7: µi+1 ← µi.
8: if i mod m ≡ 0 then
9: µi+1 ← ReLu

(
µi + αhh(y, z1, z2)

)
.

10: end if
11: end for

NN updates. Therefore, it falls into the category of unsupervised learning. According

to the constraint violation degree in Eq.(3.6), the penalty term in the loss function is

dynamically adjusted via the periodic update of the Lagrange multiplier µ. The proposed

approach can better guide the NN training process than the fixed penalty coefficient,

which improves the solution feasibility.

3.2.4 Simulation Results

This section shows the performance of our proposed approach based on the

IEEE-30 and IEEE-118 bus systems.

3.2.4.1 Data generation

The nominal values of load demands are denoted as (P̃d)N and (Q̃d)N . We gen-

erate 5000 samples that are uniformly distributed over [0.9P̃d, 1.1P̃d] and [0.9Q̃d, 1.1Q̃d],

with a training/validation/testing ratio of 10:1:1.
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3.2.4.2 Methods for comparison

The proposed learning framework that uses the NR and FDPF solvers are

named NR-Dual and FDPF-Dual, respectively. We compare them with the conventional

solver MIPS and two existing unsupervised learning-based methods DC3 and NGT.

The proposed methods and DC3 adopt the variable splitting scheme VS1 to guarantee

satisfying power balance equations. The NGT method uses the variable splitting scheme

VS2, which may lead to load mismatches at load buses.

• VS1 (cf. Fig 3.1): The NN output is y. Given x and y, the decision variables in

z1 can be obtained by solving the AC-PF equations via the follow-up PF solver.

Given v, the decision variables in z2 can be obtained through z2 = fr(v).

• VS2 (cf. Fig 3.2): The NN output is v, and the remaining decision variables

in Pg and z2 are obtained by the power flow and branch flow equations, i.e.,

Eqs.(3.1b)-(3.1e)

Figure 3.2: The proposed unsupervised learning framework using VS2 for solving AC-
OPF.
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3.2.4.3 Training details

We implement the simulations on a server with NVIDIA Titan RTX GPU with

25GB of RAM. The Adam optimizer is used for NN training based on Pytorch 1.7.1.

The batch size is 32, and the number of the training epoch is n = 1000. The FCNN has

one hidden layer, and the number of neurons of the hidden layer is 50 and 100 for the

IEEE-30 and IEEE-118 bus systems, respectively. The PF solver stops iterations when

the norm of load mismatches is less than 10−5. We update the Lagrange multiplier every

10 epoch instead of every epoch to help stabilize the training process [83]. Finally, αh

is set to 2.

3.2.4.4 Evaluation criteria

We have the following performance evaluation metrics for a comprehensive

evaluation:

1. Optimality: The total generation cost.

2. Feasibility: The feasibility rate is obtained using the ratio of the number of

satisfied inequality constraints to the total number of inequality constraints. In

addition, we calculate the mean and maximum values of ν := ReLu(h(y, z1, z2))

to evaluate the constraint violation degree.

3. Load mismatch: The relative error of the reconstructed load demands and the

input load demands.

4. Computational efficiency: The computational time.
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3.2.4.5 Feasibility of the proposed method

Table 3.1 shows the average nominal values of the decision variables in the

per unit system (base value is 100 MVA). The nominal value can be a reference for

evaluating the constraint violation degree. Table 3.2 shows the proposed method can

obtain close feasible solutions because the mean and maximum violation values reach

a magnitude of 10−6 and 10−4, respectively. Fig. 3.3 shows that the proposed method

obtains a generator allocation strategy similar to that of the conventional optimization

solver MIPS.

Table 3.1: The nominal values of decision variables

Test cases Decision variables Nominal values

IEEE-30

Pg 0.32
Qg 0.22
V 1.00
S2

ij 0.03

IEEE-118

Pg 0.80
Qg 0.36
V 1.03
S2

ij 0.58

Table 3.2: Feasibility evaluation of the FDPF-Dual method

Test cases Decision variables ν Mean (10−6) ν Max (10−4)

IEEE-30

Pg 0 0
Qg 0 0
V 0 0
S2

ij 0.53 0.19

IEEE-118

Pg 0 0
Qg 3.37 1.68
V 0 0
S2

ij 3.10 4.50
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Figure 3.3: The boxplot of the active power generations on the IEEE-30 bus system.

3.2.4.6 Performance comparison with DC3

The training loss function of DC3 consists of the total generation cost and in-

equality constraint violation penalty, as shown in Eq.(3.10). The coefficient λν balances

the relative importance of these two terms. For example, a smaller value of λν will

likely promote a solution with a lower generation cost but a larger inequality constraint

violation value.

LDC3 := f(y, z2) + λν∥ν∥22 . (3.10)

Table 3.3 shows the performance of DC3 under different values of λν . For the

IEEE-30 bus system, the proposed NR-Dual and FDPF-Dual methods speed up the

computation by 90x and 30x than MIPS, respectively, with only 0.15% more expensive

generation cost. With λν = 1, DC3 achieves the cheapest generation cost, but the mean

and maximum values of ν are 15 and 11 times greater than the FDPF-Dual method.
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With λν = 20, DC3 obtains a worse solution in both feasibility and optimality than

the proposed methods. In addition, the speedup factor is 68 and 220 for NR-Dual and

FDPF-Dual than MIPS on the IEEE-118 bus system. The FDPF solver runs 3x faster

than the NR solver in solving the AC-PF equations. The proposed methods achieve at

least 99% feasibility rates but the generation costs are only 0.19% and 0.16% greater

than MIPS.

Table 3.3: Performance comparison

Test cases Methods λν Generation cost ν Mean (10−6) ν Max (10−4) Feasibility rate (%) Computation time (s)

IEEE-30

DC3

1 0.0645 2.78 2.09 99.44 0.13
2 0.0647 1.19 0.83 99.63 0.13
3 0.0648 0.47 0.55 99.85 0.13
5 0.0650 0.39 0.39 99.85 0.13
10 0.0652 0.36 0.40 99.85 0.13
15 0.0655 0.28 0.27 99.85 0.13
20 0.0659 0.26 0.25 99.69 0.13

MIPS - 0.0646 0 0 99.99 12.05
NR-Dual - 0.0647 0.23 0.21 99.80 0.13

FDPF-Dual - 0.0647 0.18 0.19 99.78 0.39

IEEE-118

DC3

1 13.145 23 72 97.66 0.52
3 13.156 8.20 31 98.48 0.52
5 13.161 7.92 32 98.62 0.52
10 13.174 4.27 18 98.94 0.52
15 13.181 2.88 13 99.16 0.52
20 13.184 2.96 13 99.11 0.52

MIPS - 13.137 0 0 99.95 35.33
NR-Dual - 13.162 1.66 9 99.21 0.52

FDPF-Dual - 13.158 1.45 8 99.17 0.16

3.2.4.7 Performance comparison with NGT

The training loss function of the NGT method consists of the total generation

cost, inequality constraint violation penalty, and load mismatch. The NN outputs are

voltage magnitudes and phase angles of all buses. Based on power balance equations,

we can rebuild the active and reactive load demands of load buses, denoted by x̂d :=
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[(P̂d)Nd
; (Q̂d)Nd

]. The error of load mismatch can be calculated as follows:

Ld := ∥xd − x̂d∥22 . (3.11)

The training loss function of the NGT method is:

LNGT := f(y, z2) + η(1− τ)∥ν∥22 + ητLd , (3.12)

where η and τ ∈ [0, 1] serve as the weighting parameters to balance three tasks.

In practice, a small relative error (e.g., less than 1%) of the load mismatch

is acceptable [64]. However, as shown in Tables 3.4 and 3.5, the relative error of load

mismatch is significantly greater than 1% on two IEEE benchmark systems. Besides, the

computation times are 0.002s and 0.006s for the IEEE-30 and IEEE-118 bus systems,

respectively.

Table 3.4: Performance of the NGT method on the IEEE-30 bus system

η τ Generation cost ν Mean (10−6) ν Max (10−4) Feasibility rate (%) Load mismatch (%)

5
0.2 0.0642 0.23 0.03 99.99 5.29
0.5 0.0651 1.72 1.92 99.68 5.13
0.8 0.0648 11.41 13.2 99.21 5.56

10
0.2 0.0646 0.20 0.25 99.95 5.55
0.5 0.0662 1.14 1.41 99.77 5.52
0.8 0.0664 6.33 6.78 99.38 5.22

15
0.2 0.0654 0.46 0.57 99.88 5.50
0.5 0.0665 0.88 0.99 99.80 5.22
0.8 0.0670 4.29 4.81 99.48 5.08
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Table 3.5: Performance of the NGT method on the IEEE-118 bus system (τ = 0.5)

η Generation cost ν Mean (10−4) ν Max (10−2) Feasibility rate (%) Load mismatch (%)
5 8.80 2.88 2.56 79.10 140.40
10 12.71 0.43 0.25 99.20 21.93
15 12.91 0.09 0.51 98.69 18.77
20 13.07 0.00 0.20 99.50 16.94

3.3 Gradient Estimation method to Accelerate NN Train-

ing for AC-OPF

The unsupervised learning framework proposed in section 3.2 does not rely

on the input-output data pairs for NN training. The optimal solution can be obtained

by incorporating both the objective function and penalty term of constraint violations

in the training loss function. In this context, without any guidance from the explicit

targets, the NN output values can be random in the initial training iterations. Hence, in

the worst-case scenario, the subsequent PF solver may fail to find any feasible solution

to the AC-PF equations, which leads to training failure. In this section, we propose

a semi-supervised learning framework to help the NN output find a reasonable initial

solution for the subsequent PF solver.

In addition, introducing a PF solver in the learning framework brings new

challenges when it comes to computing gradients of the reconstructed variables with

respect to the predicted variables. Ref. [19] derives the ground truth gradient based on

the implicit function theorem and shows the gradient computation involves the inverse

operation of the Jacobian matrix. The computation complexity grows quadratically

with the power grid size, which leads to long training time for a large-scale bus system.
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A timely update of the NN by considering the new training data instances is essential

to ensure its performance due to its data-driven nature. Hence, we propose a physics-

informed batch-mean gradient estimation approach along with a reduced branch set to

reduce the computation time.

3.3.1 Semi-supervised Learning via Data Augmentation

Fig. 3.1 depicts the proposed learning framework with the PF solver to ensure

the equality constraint satisfaction. Due to its data-driven nature, the NN requires a

large number of training data pairs to achieve high accuracy. Instead of relying purely on

the conventional optimization solver to obtain the optimal solutions for all the demand

samples, we use the pseudo-labeling technique to build a hybrid dataset, significantly

reducing the data preparation time. The data generation process is given as follows.

First, we use the conventional optimization solver to obtain the optimal solutions to a

small portion of load demand samples. Then we employ ridge regression to learn the

mapping x 7→ y. The trained model can rapidly predict the optimal solutions for all the

remaining unpaired load demand samples. These pseudo-labels may not be feasible or

optimal, but they can provide essential guidance for the NN training process. Algorithm

2 presents the data preparation process.

3.3.1.1 Training Loss

The training loss function should consider the optimality and feasibility of the

solution. The variable splitting scheme ensures the satisfaction of equality constraint.
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Algorithm 2 AC-OPF data generation process using pseudo-labeling
Input: Load demand dataset X .
Output: Hybrid load demand dataset X̂ .

1: Use a conventional optimization solver to obtain the optimal solutions to a small
portion of load demand samples in X .

2: Utilize ridge regression to learn the mapping x 7→ y based on data pairs (x, y).
3: Use the trained regression model to predict pseudo labels for the remaining data

samples in X . Project the pseudo labels into their feasible range, i.e., y =
min{max {y, ymin}, ymax}

4: Obtain z1 via the FDPF solver and compute z2 = fr(v).

Thus, the training loss function consists of three parts: 1) the generation cost Lo, 2)

the penalty loss of the inequality constraint violation Lc, and 2) the error between

pseudo-labels and FCNN estimates Ls. The overall training loss function is designed as

follows:

ℓ(y, z1, z2) := Lc + woLo + wsLs, (3.13)

where wo and ws represent the weight parameters to balance the order of magnitude of

different loss terms. The supervised learning loss Ls is given as:

Ls(Pg, v) = ∥Pg − P̃g∥2 + ∥v− ṽ∥2, (3.14)

where P̃g and ṽ denote the pseudo-labels of the corresponding variables. Additionally,

let wv denote the weight parameter to balance the violation loss between z2 and Vd.
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The box constraint violation loss Lc is given as:

Lc(z2, Vd) = lc(z2) + wvlc(Vd), (3.15)

where lc(c) is defined as:

lc(c) := ∥ReLU(c− cmax)∥2 + ∥ReLU(cmin − c)∥2. (3.16)

Remark (The role of weight wv). The weight parameter value set up wv is crucial

to avoid the potential vicious cycle and guarantee feasibility. The chain rule in the

backpropagation process implies:

dLc(z2(Vd), Vd)
dVd

= ∂lc(z2)
∂z2

dz2
dVd

+ wv
d lc(Vd)

dVd
, (3.17)

where dz2
dVd

is related to the power grid parameters, which can have significant values

in the transmission power grids. Thus, the power grid parameters and wv should have

a similar order of magnitude to ensure no loss terms will be ignored in the training

loss function. In the forward pass, z2 is dependent on Vd through the power flow and

branch flow equations. Hence, if Vd is far from its upper and lower bound, the resulting

z2 will also have a significant violation loss. In this case, more effort will be put into

minimizing the first loss term while increasingly ignoring the second one, leading to a

vicious cycle.

Ref. [17] shows using a pre-trained model to warm up the NN weights can help
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reduce the optimality gap. Inspired by their work, we use the following supervised loss

function in the first few training epochs to give the NN a warm start:

Lwp(Pg, VN̄d
) = ∥Pg − P̃g∥2 + wwp∥VN̄d

− ṼN̄d
∥2 , (3.18)

where the weight parameter wwp balances the relative importance of two loss terms.

The benefits are given as follows. First, in the initial stage of training, the NN output

values can be pretty random. In the worst-case scenario, the PF solver may be unable to

find a feasible PF solution to the NN output y, leading to the training failure. Second,

a large feasible range of the decision variables may cause heavy training time due to the

extensive search space.

3.3.2 Gradient Computation

3.3.2.1 Implicit gradient computation

We need to calculate the derivative dℓ
dW = dℓ

dy ×
dy
dW in the backpropagation,

where dy
dW is straightforward to obtain. Based on the chain rule, the calculation of dℓ

dy

is given as follows:

dℓ(y, z1(y), z2(y, z1(y)))
dy

= ∂ℓ

∂y
+ ∂ℓ

∂z1

dz1
dy

+ ∂ℓ

∂z2

dz2
dy

, (3.19)

dz2(y, z1(y))
dy = ∂z2

∂y + ∂z2
∂z1

dz1
dy , (3.20)
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where ∂z2
∂y , ∂z2

∂z1
and dz1

dy can be obtained from the nodal Jacobian matrix and branch

Jacobian matrix based on the power flow and branch flow equations, respectively.

Let Jnodal denote the nodal Jacobian matrix, which collects the gradients of

the active and reactive power injections with respect to the phase angles and voltage

magnitudes. Jnodal be derived from Eqs.(3.1b)-(3.1c). Jnodal is composed of four blocks

given as:

Jnodal :=

 JP θ JP V

JQθ JQV

 ∈ R2N×2N . (3.21)

Each block is an N × N matrix. Let p = [p1, p2 . . . , pM ]⊤ and q = [q1, q2 . . . , qM ]⊤

collect the active and reactive branch flows. Let vj denote the j-th element of v and ⊙

represent the point-wise product. Based on the apparent branch flow equation (3.1f),

we have

∂ s2

∂ vj
= 2p⊙ Jab

(:,j) + 2q ⊙ Jrb
(:,j) ∈ RM , (3.22)

where Jab ∈ RM×2N and Jrb ∈ RM×2N represent the gradients of the active and reactive

power flows with respect to the phase angles and voltage magnitudes, which can be

derived from Eqs.(3.1d)-(3.1e). Jab
(:,j) and Jrb

(:,j) are the j-th column of Jab and Jrb,

respectively.

We can rewrite the PF equations as an implicit function f(y, z1(y)) = 0. Based
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on the implicit function theorem, dz1
dy can be calculated by [19]:

dz1(y)
dy = −( ∂f

∂z1
)−1( ∂f

∂y) ∈ R(2Nd+Ng)×(2Ng+1), (3.23)

where ∂f
∂z1

:= Jz1 can be obtained as the corresponding elements of Jnodal:

Jz1 :=

 JP θ
z1 JP V

z1

JQθ
z1 JQV

z1

 ∈ R(2Nd+Ng)×(2Nd+Ng). (3.24)

In addition, ∂f
∂y := Jy can be calculated by:

Jy :=
[

∂f
∂Pg

∂f
∂VN̄d

]
∈ R(2Nd+Ng)×(2Ng+1), (3.25)

where ∂f
∂Pg

is straightforward to compute because Pg only gets involved in (3.1b). Sim-

ilarly, ∂f
∂VN̄d

can be obtained as the corresponding elements of Jnodal.

In addition, ∂z2
∂Pg

= 0 because the decision variables in z2 depends on the

voltage phasors. ∂z2
∂y and ∂z2

∂z1
can be obtained as the corresponding elements of Jnodal

and Jab/Jrb.

To this end, by plugging (3.23) and (3.20) into (3.19), dℓ
dy is obtained by

dℓ

dy = ∂ℓ

∂y + ∂ℓ

∂z2

∂z2
∂y + ( ∂ℓ

∂z1
+ ∂ℓ

∂z2

∂z2
∂z1

)(−J−1
z1 Jy). (3.26)

Instead of directly calculating the matrix inverse, we can solve a system of linear equa-
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tions:

dℓ

dy = ∂ℓ

∂y + ∂ℓ

∂z2

∂z2
∂y − k⊤Jy, (3.27)

where k ∈ R2Nd+Ng can be calculated using:

∂ℓ

∂z1
+ ∂ℓ

∂z2

∂z2
∂z1

= k⊤Jz1. (3.28)

3.3.2.2 Proposed batch gradient estimation method

Let Jz1 ∈ R(2Nd+Ng)×(2Nd+Ng)×b denote the tensor notation of Jz1, where b

refers to the batch size. In mini-batch training, we need to compute the gradient based

on Eq.(3.27) at each training iteration. The computation complexity of solving Eq.(3.28)

using lower–upper decomposition can be up to O(b × (2Nd + Ng)3) [84], which grows

quadratically with the power grid size and gets amplified by the batch size. To relieve

the computational burden, we have the following three strategies:

• Motivated by the linearized PF analysis, we propose a linearized Jacobian formu-

lation to replace the original non-linear function computation.

• We propose a decoupled formulation of Eq.(3.28) based on the strong coupling

relationships between P -θ and Q-V .

• Instead of calculating tensor Jz1, we compute the mean values of a batch of

samples and obtain the batch-mean Jacobian matrix.
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Linearized Jacobian model: Let v̄i denote the mean value of the voltage

magnitude pseudo label values. In the transmission grid, the phase angle difference

between two connected buses is typically small, and the voltage magnitude value is

close to 1 in the per unit system [85]. Thus, we have the following assumptions:

sin θij ≈ θij , (3.29)

cos θij ≈ 1, (3.30)

Vi sin θij ≈ v̄iθij , (3.31)

Vj sin θij ≈ v̄jθij , (3.32)

ViVj sin θij ≈ v̄iv̄jθij , (3.33)

ViVj cos θij ≈ v̄iVj . (3.34)
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Based on Eqs.(3.29) - (3.34), the linearized Jacobian can be calculated by:

JP θ
ij = v̄iv̄jGijθi − v̄iv̄jGijθj − v̄iBijVj , (3.35a)

JP V
ij = v̄iBijθi − v̄iBijθj + GijVi, (3.35b)

JQθ
ij = −v̄iv̄jBijθi + v̄iv̄jBijθj − v̄iGijVj , (3.35c)

JQV
ij = v̄iGijθi − v̄iGijθj −BijVi, (3.35d)

JP θ
ii = −

∑
j ̸=i

JP θ
ij , (3.35e)

JQθ
ii = −

∑
j ̸=i

JQθ
ij , (3.35f)

JP V
ii =

∑
j ̸=i

v̄jBijθi −
∑
j ̸=i

v̄jBijθj + 2GiiVi +
∑
j ̸=i

GijVj , (3.35g)

JQV
ii =

∑
j ̸=i

v̄jGijθi −
∑
j ̸=i

v̄jGijθj − 2BiiVi −
∑
j ̸=i

BijVj . (3.35h)

The linear equations (3.35a)-(3.35h) can be compactly written in the matrix-vector

form:

[
JP θ

ij JP V
ij JQθ

ij JQV
ij

]⊤
= A(ij)v(ij), (3.36)

[
JP θ

ii JP V
ii JQθ

ii JQV
ii

]⊤
= A(i)v, (3.37)
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where

v(ij) := [θi θj Vi Vj ]⊤ , (3.38)

A(ij) =



v̄iv̄jGij −v̄iv̄jGij 0 −v̄iBij

v̄iBij −v̄iBij Gij 0

−v̄iv̄jBij v̄iv̄jBij 0 −v̄iGij

v̄iGij −v̄iGij −Bij 0


. (3.39)

A(i) ∈ R4×2N is a sparse matrix whose i-th and (i + N)-th columns can be

calculated by:

A(i), [:, i, i+N ] =



−v̄i

∑
j ̸=i

v̄jGij 0

∑
j ̸=i

v̄jBij 2Gii

v̄i

∑
j ̸=i

v̄jBij 0

∑
j ̸=i

v̄jGij −2Bii


, (3.40)

and the j-th and (j + N)-th columns (for any bus j connected with bus i) can be
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calculated by:

A(i), [:, j, j+N ] =



v̄iv̄jGij v̄iBij

−v̄jBij Gij

−v̄iv̄jBij v̄iGij

−v̄jGij −Bij


. (3.41)

Based on Eqs. (3.1d) and (3.1e), the linearized Jacobian of the branch flow can

be calculated by:

 p(ij)

q(ij)

 =

 Aab
(ij)

Arb
(ij)

v(ij), (3.42)

where

p(ij) =
[

∂pij

∂θi

∂pij

∂θj

∂pij

∂Vi

∂pij

∂Vj

]⊤

, (3.43)

q(ij) =
[

∂qij

∂θi

∂qij

∂θj

∂qij

∂Vi

∂qij

∂Vj

]⊤

, (3.44)
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Aab
(ij) =



−v̄iv̄jGij v̄iv̄jGij 0 v̄iBij

v̄iv̄jGij −v̄iv̄jGij 0 −v̄iBij

v̄jBij −v̄jBij −2Gij Gij

v̄iBij −v̄iBij Gij 0


, (3.45)

Arb
(ij) =



v̄iv̄jBij −v̄iv̄jBij 0 v̄iGij

−v̄iv̄jBij v̄iv̄jBij 0 −v̄iGij

v̄jGij −v̄jGij 2Bij −Bij

v̄iGij −v̄iGij −Bij 0


. (3.46)

Note that A(ij), A(i), Aab
(ij) and Arb

(ij) can be pre-computed before the NN training

process, which speeds up the gradient computation time during training.

Decoupled Jacobian model

Inspired by the strong coupling relationship of P -θ and Q-V , we remove the

off-diagonal blocks in Jz1 and rewrite Eq. (3.28) as:

∂ℓ

∂z1
+ ∂ℓ

∂z2

∂z2
∂z1

=
[

k⊤
p JP θ

z1 k⊤
q JQV

z1

]
, (3.47)

where k := [kp; kq], kp ∈ RNd+Ng and kq ∈ RNd . Compared to Eq. (3.28), the decou-

pled formulation (3.47) requires solving two smaller sets of linear systems. Thus, the

computational complexity can be reduced from O((2Nd + Ng)3) to O((Nd + Ng)3) +
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O(N3
d ).

Batch-mean Jacobian tensor estimate

To relieve the computational burden of the inverse operation of the Jacobian

tensor, we propose a batch-mean estimation mechanism to eliminate the batch dimen-

sion. Let T ∈ R2N×b and Tij ∈ R4×b denote the tensor expression of v and v(ij), respec-

tively. T̄ij and T̄ represent the mean values of a batch of samples. Based on Eqs.(3.36)

and (3.37), we have the batch-mean Jacobian tensor estimates given as follows:

Jij ≈ A(ij)T̄ij ∈ R4, Jii ≈ A(i)T̄ ∈ R4. (3.48)

For any data sample, the absolute errors brought about by the batch-mean

replacement in J P θ
ij , J QV

ij , J P θ
ii and J QV

ii are given as:

eP θ
ij = |v̄iv̄jGij(θij − Θ̄ij)− v̄iBij(Vj − V̄j)|, (3.49)

eQV
ij = |v̄iGij(θij − Θ̄ij)−Bij(Vi − V̄i)|, (3.50)

eP θ
ii = |

∑
j ̸=i

v̄iv̄jGij(θij − Θ̄ij)− v̄iBij(Vj − V̄j)| ≤
∑
j ̸=i

eP θ
ij , (3.51)

eQV
ii = | − 2Bii(Vi − V̄i) +

∑
j ̸=i

v̄jGij(θij − Θ̄ij)−Bij(Vj − V̄j)|,

≤ |2Bii(Vi − V̄i)|+
∑
j ̸=i

|v̄jGij(θij − Θ̄ij)−Bij(Vj − V̄j)|, (3.52)

where Θij ∈ Rb and Vi ∈ Rb represent the tensor expression of θij and Vi, respectively.

Their mean values are denoted as Θ̄ij and V̄{i,j}, respectively. The estimation errors
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should not be significant due to the following three properties:

• The phase angle difference θij is small, and the value of θij − Θ̄ij should be small

as well. In addition, the value of conductances Gij is typically smaller than that

of susceptance Bij . Thus, the value of Gij(θij − Θ̄ij) should not be significant.

• The voltage magnitude is typically operated in a small range around 1, which

implies that the value of (Vj − V̄j) is small. Even if the value of susceptance Bij

is large, the multiplication value of Bij(Vj − V̄j) can still be small.

• The diagonal entries have more significant error values than the off-diagonal entries

due to the summation over N − 1 bus. Thanks to the sparse connection of the

power grid, this summation may only contain a few non-zero values.

Reduced branch set

The gradient of the branch flows with respect to the voltage magnitude can be

derived based on Eq.(3.22). As shown in Eqs.(3.1d) and (3.1e), the active and reactive

branch flows of different data samples in one batch can be completely different. Thus,

applying the batch-mean estimation mechanism to the branch flow Jacobian estimates

may lead to significant errors. We propose a reduced branch model to relieve the

computational burden of the branch Jacobian computation.

Let S̃2
ij collect the pseudo values of the squared apparent branch flow of branch

(i, j). The constraint violation will likely occur if the pseudo value is close to its upper

bound. We design an indicator function lp(·) to help identify those unlikely violated
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constraints:

lp(i, j) :=
∑

s̃ij∈S̃2
ij

ReLU (s̃2
ij − βb(smax

ij )2), (3.53)

where the parameter βb ∈ [0, 1] are used to quantify the likelihood of constraint violation.

We can calculate lp(·) for all branches in M and build a reduced branch set, which

contains the likely violated constraints, denoted by Mr ⊆M with Mr elements:

Mr = { (i, j) ∈M| lp(i, j) > 0 }. (3.54)

Due to the supervised training loss Ls, the NN estimates are expected to be close to the

pseudo-labels. The constraints in M\Mr are unlikely to be violated during training

because they are chosen based on the pseudo values. Computing the gradient for a

reduced branch set can reduce the computational burden of NN training. The summary

of the proposed learning semi-supervised learning framework is shown in Algorithm 3.

3.3.3 Simulation Results

The effectiveness of our proposed methods has been verified on the IEEE-118,

PEGASE-1354, PEGASE-2869, and PEGASE-9241 bus systems.

3.3.3.1 Simulation setup

We generate 10, 000 data samples that are uniformly distributed over [0.8P̃d, 1.2P̃d]

and [0.8Q̃d, 1.2Q̃d], with a training/validation/testing ratio of 7:1:2. In the data aug-
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mentation process, we employ the conventional optimization solver MIPS [71] to gen-

erate 100 ground truth data pairs, with a training and validation ratio of 8:2. The

batch size is set to 32. We implement the NN training process with the Adam optimizer

based on Pytorch 1.21.1. MultiStepLR function is used for the learning rate schedule,

which decays the learning rate lr by γ when the training epochs reach the milestone.

The learning rate schedule can avoid training oscillations due to large learning rates

and improve training efficiency. Table 3.6 shows the hyperparameter setup for the NN

training.

Table 3.6: The FCNN structure, weight parameters, training epochs, and learning rate.

Bus system FCNN structure wwp wv wo ws nwp ntol Learning rate schedule (lr & milestone & γ)
IEEE-118 [236, 50, 236] 10 10 0.1 0.1 1 100 0.0005 & 90 & 0.2

PEGASE-1354 [2708, 50, 50, 2708] 10 100 0.01 0.01 1 100 0.0005 & 70 & 0.2
PEGASE-2869 [5738, 50, 50, 50, 5738] 10 100 0.001 0.01 1 10 0.0005 & 1 & 0.1
PEGASE-9241 [18482, 50, 50, 50, 18482] 10 100 0.0001 0.01 5 15 0.001 & 5 & 0.01

3.3.3.2 Methods for comparison

Table 3.7 shows the comparison methods. The supervised learning framework

relies on the conventional optimization solver to generate the data pairs, which may lead

to a long data preparation time. The data preparation time of the unsupervised learning

framework is ignorable because it does not require data pairs for NN training. The data

preparation time of the proposed semi-supervised learning framework is significantly less

than that of the supervised learning framework. However, it can provide more guidance

than the unsupervised learning framework.

The details of three decision variable splitting schemes are given as follows:

• VS1: The NN output is y, and the subsequent FDPF solver calculates z1 by
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Table 3.7: Methods for comparison

Framework Variable splitting Neural network Method Gradient computation method

Supervised

VS1

FCNN MFCNN [16] Zeroth-order estimation
MSTRT [17] Zeroth-order estimation

Chebyshev CNN MCHC [59] Post-processing with the PF solver
CNN MCNN [59] Post-processing with the PF solver

VS2 FCNN MFCNNV [13] Explicit Jacobian

VS3
FCNN MCOMP [61] Post-processing with the PF solver
LSTM MLSTM Post-processing with the PF solver

Unsupervised VS1 FCNN MDC3 [19] Implicit Jacobian
MDUAL [86] Implicit Jacobian

VS2 FCNN MNGT [64] Explicit Jacobian

Semi-supervised VS1 FCNN

M0 Batch-mean estimation with all branches
M1 Batch-mean estimation & reduced branch set
M2 Linearized Jacobian & batch-mean estimation & reduced branch set
M3 Decoupled Jacobian & batch-mean estimation & reduced branch set
M4 Linearized decoupled Jacobian & batch-mean estimation & reduced branch set

solving the inverse PF equations. The gradient of z1 w.r.t. v is complicated due

to the inverse PF equations. Given voltage phasors of all buses v, the decision

variables in z2 can be calculated by z2 = fr(v).

• VS2: The NN output is v, and the remaining decision variables in Pg and z2 are

obtained using the forward power flow and branch flow equations. The gradient

of Pg and z2 w.r.t. v is straightforward due to this explicit mapping.

• VS3: The NN outputs are v, Pg and Qg. Given v, the apparent branch flows can

be obtained by the branch flow equations.

The proposed work adopts VS1 because it can ensure the power balance equations and

avoid the load mismatch. The gradient computation of VS2 is straightforward because

the Jacobian can be derived explicitly from the forward power flow equations.

3.3.3.3 Evaluation criteria

We have the following criteria for a comprehensive performance evaluation:

• Optimality: The optimality gap is defined as lcost := C−Co
Co
×100%, where C and
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Co represent the objective function obtained by the NN and MIPS, respectively.

• Feasibility: The inequality box constraint violation loss can be obtained by

lv(za) = ReLU (za − zmax
a ) + ReLU

(
zmin

a − za
)
, where za = [Pg; Pg,ref ; Qg; Qg,ref ;

V; s2]. Besides, lmax
v and l̄v denotes the maximum and mean values of lv(za),

respectively.

• Load mismatch: el denotes the ratio of the absolute error of load demand

estimate to the ground truth value.

• Computational time: Ttrain and ttrain denote the total training time and the

average training time of each epoch, respectively. Topt and Tprop represent the

total computational time of testing samples of MIPS and the proposed method,

respectively.

• Storage: The memory size of the Jacobian data.

3.3.3.4 Numerical results for the data augmentation

As shown in Table 3.8, the average std values of the decision variables are

small. Ridge regression yields promising results in predicting the decision variables with

small perturbations in supervised learning (cf. section 2.3). As shown in Table 3.9,

the prediction errors of Pg and V are small, which indicates the pseudo values can

provide practical guidance for the NN training via the supervised loss. As shown in

Table 3.10, compared to supervised learning, the data preparation time of the proposed

semi-supervised learning framework has been reduced significantly. Table 3.11 shows
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the sizes of the reduced branch set under different values of βb. A smaller value of

βb leads to a larger set Mr, which implies the choice of unlikely violated constraints

pretends to be more conservative and leads to a more significant computational burden.

After the heuristic tuning process, we set βb = 0.7 in the simulations.

Table 3.8: The average std values and the ridge regression parameters of the decision
variables.

Bus system std (Pg) std (VN d
) αp αv

IEEE-118 0.032 0.002 0.01 0.1
PEGASE-1354 0.067 0.001 1 1
PEGASE-2869 0.082 0.001 10 10
PEGASE-9241 0.062 0.003 100 500

Table 3.9: The ℓ2 norm of prediction errors of the ridge regression method.

Bus system ℓ2(Pg) ℓ2(Qg) ℓ2(V) ℓ2(θ)
IEEE-118 0.165 0.278 0.018 0.219

PEGASE-1354 1.828 1.235 0.042 0.691
PEGASE-2869 4.279 2.061 0.083 2.993
PEGASE-9241 5.599 4.615 0.406 8.825

Table 3.10: Data preparation time.

Bus system Learning framework Time

IEEE-118
Supervised 0.2h
Unsupervised 0.02s
Semi-supervised 0.2min

PEGASE-1354
Supervised 2.2h
Unsupervised 0.3s
Semi-supervised 3min

PEGASE-2869
Supervised 6.4h
Unsupervised 0.6s
Semi-supervised 9min

PEGASE-9241
Supervised 12.2h
Unsupervised 0.9s
Semi-supervised 20.5min
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Table 3.11: The size of reduced branch set under different βb. The third column shows
the ratio of Mr to M .

Bus system βb Mr Mr/M

IEEE-118

0.9 29 0.15
0.7 33 0.17
0.5 55 0.29
0.3 94 0.50

PEGASE-1354

0.9 18 0.009
0.7 42 0.02
0.5 113 0.05
0.3 245 0.12

PEGASE-2869

0.9 30 0.006
0.7 51 0.01
0.5 101 0.02
0.3 243 0.05

PEGASE-9241

0.9 37 0.002
0.7 73 0.004
0.5 134 0.008
0.3 356 0.022

3.3.3.5 Performance comparison for NN

Table 3.12 shows the performance comparison results. On the PEGASE-1354/-

2869/-9241 bus systems, the proposed methods achieve the best performance in feasi-

bility. The proposed methods achieve lower generation cost than MFCNN and MDC3.

On the PEGASE-9241 bus system, without data pair guidance, the training of MDC3

and MDUAL based on the unsupervised learning framework fail because the follow-up

FDPF solver cannot find any PF feasible solution. The constraint violation loss of the

proposed methods is much smaller than MSTRT without sacrificing much in optimality.

MFCNNV and MNGT adopt VS2, which results in significant load mismatches. MCOMP

and MLSTM avoid load mismatches by using the FDPF solver in post-processing but

leads to significant inequality constraint violations. In addition, the performance of
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M0 achieves comparable results as M1, which implies the unlikely violated constraints

identified by the indicator function do not affect the optimal solution. M4 achieves

comparable results as M1, which indicates the proposed gradient estimation method

based on the linearized and decoupled Jacobian matrix does not significantly impact

the training accuracy.

As shown in Table 3.13, M4 achieves comparable training time of each epoch as

the zeroth-order method. Compared to MDC3 using the ground truth Jacobian tensor,

the proposed gradient estimation methods require much less storage and computational

time. On the IEEE-118, PEGASE-1354 and PEGASE-2869 bus systems, the speedup

ratios of M4 to MDC3 of ttrain are 7x, 12x, and 18x, respectively. The proposed methods

on the PEGASE-9241 bus system can complete data preparation and training in 9 hours

and achieve daily NN updates. As shown in Table 3.14, the total computational time

of testing samples of the proposed method is much less than that of the conventional

optimization solver. Thus, the proposed methods have shown significant advantages in

the real-time energy market for faster market clearing time.

Table 3.12: Comparison Results: Feasibility and Optimality. Training failure (✗) is
indicated when the FDPF solver cannot find feasible PF solutions. The winners of
methods without load mismatch are highlighted in bold.

Cases Evaluation metrics MFCNN MSTRT MFCNNV MCHC MCNN MCOMP MLSTM MDC3 MDUAL MNGT M0 M1 M2 M3 M4

118

lmax
v (10−1) 0.33 0.01 0.89 0.46 3.05 2.25 0.53 0.01 0.05 0.00 0.04 0.02 0.03 0.10 0.06
l̄v(10−4) 0.68 0.02 5.45 1.60 7.84 11.2 2.73 0.02 0.13 0.00 0.07 0.04 0.05 0.18 0.12

lcost 0.88 0.30 0.00 0.00 0.00 0.04 0.02 0.27 0.04 -1.22 0.32 0.25 0.26 0.49 0.54
el (%) 0 0 10 0 0 0 0 0 0 10 0 0 0 0 0

1354

lmax
v (10−1) 5.8 3.8 26.4 10.1 31.1 42.4 16.3 4.8 3.7 4.0 1.6 1.3 1.3 1.3 1.4
l̄v(10−4) 8.6 2.8 26.2 5.1 14.7 38.0 18.2 2.3 3.0 3.4 0.63 0.44 0.41 0.46 0.44

lcost 0.98 0.03 0.08 0.00 0.00 0.00 0.00 0.76 0.80 -2.99 0.05 0.05 0.05 0.06 0.06
el (%) 0 0 12 0 0 0 0 0 0 22 0 0 0 0 0

2869

lmax
v (10−1) 13.5 6.6 72.3 32.6 66.4 72.5 134.6 6.1 7.0 3.6 4.1 3.6 3.6 4.1 3.9
l̄v(10−4) 43.4 6.7 22.0 9.9 13.2 19.8 78.2 1.8 5.0 1.5 1.3 0.9 1.1 1.1 1.2

lcost 0.91 0.08 0.12 0.00 0.00 0.00 0.01 0.80 1.49 -2.24 0.04 0.04 0.04 0.09 0.09
el (%) 0 0 544 0 0 0 0 0 0 284 0 0 0 0 0

9241

lmax
v (10−1)

✗

165.2 52.6 18095

-

129.2 567.7

✗ ✗

2.2 33.6 23.6 27.7 29.2 28.4
l̄v(10−4) 70.0 10.2 1455 41.8 74.9 4.6 5.4 4.0 3.9 4.8 4.0

lcost 0.01 0.05 0.03 0.12 0.00 -3.13 0.03 0.03 0.03 0.03 0.03
el (%) 0 484 0 0 0 128 0 0 0 0 0
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Table 3.13: The training time and the memory size of the gradient data.

System Gradient calculation Method Storage ttrain Ttrain

IEEE-118

zeroth-order MFCNN 0.02MB 2s 6min
MSTRT 2s 6min

Jacobian MDC3 14.4MB 29s 48min

batch mean

M0 0.58MB 17s 28min
M1

0.47MB

11s 18min
M2 4s 7min
M3 11s 18min
M4 4s 7min

PEGASE-1354

zeroth-order MFCNN 0.13MB 2.1min 17.5h
MSTRT 1.3min 4.3h

Jacobian MDC3 1.87GB 16.0min 6.6h

batch mean

M0 0.06GB 3.5min 5.8h
M1

0.05GB

2.4min 4.0h
M2 1.5min 2.5h
M3 2.2min 3.6h
M4 1.3min 2.1h

2869

zeroth-order MFCNN 0.260MB 7.9min 26.3h
MSTRT 6.1min 10.1h

Jacobian MDC3 8.432GB 89.0min 14.8h

batch mean

M0 0.266GB 10.9min 101min
M1

0.263GB

8.1min 75min
M2 6.0min 56min
M3 7.0min 62min
M4 4.9min 47min

9241

zeroth-order MFCNN 0.73MB ✗ ✗

MSTRT 39.3 min 10.1h
Jacobian MDC3 87.457GB ✗ ✗

batch mean

M0 2.745GB 49.5min 8.2h
M1

2.737GB

44.5min 7.4h
M2 32.7min 5.4h
M3 32.4min 5.4h
M4 31.1min 5.1h

3.3.3.6 Convergence analysis

Fig. 3.4 shows the training loss evolution process of different gradient esti-

mation methods. The proposed method achieves a comparable convergence rate as
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Table 3.14: The testing time comparison results.

System Tprop Topt
118 0.3s 3.4min

PEGASE-1354 10.4s 37.7min
PEGASE-2869 50.2s 109.7min
PEGASE-9241 361.7s 209.1min

the ground truth method. The convergence performance of the zeroth-order gradient

method is the worst because it cannot provide accurate gradient descent directions for

the NN weight updates. We implement 5 simulation runs independently, and Fig. 3.5

and Fig. 3.6 show the training loss evolution process of M4 on the PEGASE-1354 and

IEEE-118 bus systems, respectively. The oscillations are due to a large learning rate

instead of adopting the proposed estimated gradients in training. The training loss

stabilizes after reducing the learning rate and finally converges to a better solution. As

shown in Fig. 3.7, a large learning rate leads to oscillations, while a small learning rate

leads to a slow convergence rate. The adoption of the learning rate schedule strategy

can help avoid overshooting the local minimum and improve training efficiency.

3.4 Summary

This chapter proposes a novel end-to-end unsupervised learning-based frame-

work for the AC-OPF analysis. Given load demands, the framework can rapidly yield a

high-quality optimal solution. Power balance and branch flow equations are guaranteed

to be satisfied using the decision variable splitting. The augmented Lagrangian func-

tion is adopted as the training loss function. Numerical results show that our approach
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Figure 3.4: The training loss trajectory of different gradient estimation methods on the
IEEE-118 bus system. The learning rate is set to 0.0005 for the initial 90 epochs, then
reduced to 0.0001 for the last 30 epochs.

Figure 3.5: The total training loss trajectory of the proposed method M4 over epochs
on the IEEE-118 bus system. The learning rate is 0.0005 in the first 90 epochs and
0.0001 in the last 30 epochs.

outperforms two existing unsupervised learning-based works.

Next, we propose physics-informed gradient estimation methods based on the

semi-supervised learning framework to speed up NN training for large-scale power grids.
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Figure 3.6: The total training loss evolution process of the proposed method M4 over
epochs on the PEGASE-1354 bus system. The learning rate is 0.0005 in the first 70
epochs and 0.0001 in the last 50 epochs.

Figure 3.7: The total training loss trajectory of the proposed method M4 over epochs
using different learning rate schedules on the IEEE-118 bus system. The plot starts
from the second epoch for better demonstration.

By utilizing the data augmentation process aided by ridge regression, the data pair

preparation time has been significantly reduced compared to the supervised learning
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framework. The proposed batch-mean linearized decoupled gradient estimation meth-

ods, along with the reduced branch set, relieve the computational burden of computing

the ground truth Jacobian tensor in NN training. The NN training can be completed

within one day, which enables timely and frequent NN updates to accommodate new

instances. The trained NN will serve as a rapid online AC-OPF solver to obtain the

optimal system operating states in the real-time energy market.
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Algorithm 3 Semi-supervised OPF learning framework utilizing batch-mean gradient
estimation
Input: Load demand dataset X .
Output: The trained FCNN.

1: Construct the hybrid load demand dataset X̂ using the Algorithm 1. ▷
Pseudo-labeling

2: Calculate the indicator function Eq.(3.53) to identify the reduced branch set
Mr.

3: for episode e = 1, 2, . . . , ntol do
▷ The variable splitting scheme

4: Let the FCNN predict the decision variables y, z1, and z2; cf. Fig. 3.1.
▷ The branch set

5: if the method M0 is adopted then
6: Calculate the Jacobian for all branches in M using Eq. (3.22).
7: else if for the method M1-M4 then
8: Calculate the Jacobian for branches in the reduced branch set Mr

using Eq. (3.22).
9: end if

▷ The Jacobian computation scheme

10: if for the method M0, M1, or M3 then
11: Compute the nodal Jacobian matrix (3.21) based on the PF equations

(3.1b)-(3.1c).
12: else if for the method M2 or M4 then
13: Calculate the linearized Jacobian matrix using Eqs. (3.36) and (3.37).
14: end if
15: Calculate batch-mean gradient using the Eq. (3.48)

▷ The training loss
16: if e ≤ nwp then:
17: Calculate the training loss function Eq. (3.18) for the warm-up epochs.
18: else
19: Calculate the training loss function Eq. (3.13).
20: end if

▷ The decoupled formulation
21: if for the method M0, M1, or M2 then
22: Calculate the derivative dℓ

dy using Eq. (3.27).
23: else if for the method M3 or M4 then
24: Compute the derivative dℓ

dy using the decoupled formulation Eq. (3.47).
25: end if
26: Update the weights of the FCNN through backpropagation until the training

loss converges.
27: end for
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Chapter 4

Conclusion and Future work

4.1 Conclusion

In this thesis, we propose two deep learning-based approaches in place of con-

ventional PF solvers to solve the AC-PF equations rapidly. With the aid of NN, the

cumulative computational time of solving lots of power injection samples can be sig-

nificantly reduced in PPF analysis. In addition, we propose two deep learning-based

approaches to rapidly solve the AC-OPF problem, which is appealing in real-time energy

markets.

In the first work, we propose a novel residual learning-based framework with

three designed initialization schemes. A shortcut connection linear layer between the

input and the output is introduced to the vanilla MLP structure. Hence, the MLP aims

to approximate the non-linear residuals to the linearized AC-PF equations instead of

learning the original non-linear functions. We propose three initialization schemes to
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utilize the linear property of the AC-PF equations. Two model-based methods require

knowledge of power grid topology and line parameters. The data-driven method can ad-

dress the missing power grid parameter issue because it achieves promising performance

by capturing the linearity based on the historical dataset. Simulation results show that

the proposed NN framework with the initialization schemes can improve the estimation

accuracy of voltage phasors. In addition, the residual learning-based framework achieves

a better convergence property than the vanilla MLP, which has significant advantages

when the training time is limited.

However, the numerical results show the advantages of the proposed methods

are more evident in estimating voltage phasors than branch flows. Hence, in the second

work, we propose a hybrid learning strategy to improve the estimation accuracy of

voltage magnitudes. Specifically, we split the load buses into two subsets according to

the fluctuations of the historical voltage magnitudes. We employ ordinary least-square

linear regression for the load buses with smaller std values, while we use the MLP for the

load buses with larger std values. In addition, we incorporate the phase angle difference

estimates error into the training loss, which improves the estimation accuracy for branch

flows. Numerical results demonstrate the effectiveness of the proposed methods in

improving the voltage phasor and branch flow estimates.

In the third work, we propose an end-to-end unsupervised learning framework

to solve the AC-OPF problem rapidly. The power balance and branch flow equations

are strictly satisfied by incorporating the PF solver into the learning framework. The

augmented Lagrangian function is used as the training loss to ensure feasibility and
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optimality, which consists of the generation cost and the inequality constraint violation.

The Lagrange multiplier is updated according to the inequality constraint violation

value during training. Simulation results show that the proposed work can quickly yield

highly feasible solutions with negligible optimality losses.

Integrating the PF solver into the learning framework leads to a heavy compu-

tation burden when it comes to gradient computation. In the fourth work, we propose a

semi-supervised learning framework with novel batch-mean gradient estimation methods

to improve training efficiency. The pseudo-labeling technique based on ridge regression

is utilized to build a hybrid dataset, which can significantly reduce data pair preparation

time. In addition, motivated by the linear properties of the AC-PF equations, we pro-

pose novel physics-informed batch-mean gradient estimation approaches to accelerate

the backpropagation process. We utilize a reduced branch set to alleviate the compu-

tation complexity arising from the branch flow gradient calculations. The simulation

results show that the proposed learning framework can rapidly yield feasible and near-

optimal solutions to AC-OPF problems. Moreover, the proposed gradient estimation

method achieves a comparable convergence performance as the ground truth Jacobian

gradient but requires much less training time and storage. The proposed method en-

ables timely and frequent updates of the NNs, which is essential to ensure the NN

performance due to its data-driven nature.
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4.2 Future Work

Renewable energy sources (RESs) are more environmentally friendly and cheaper

than conventional energy sources such as coal and oil. However, RESs such as wind and

solar are sensitive to ambient conditions, which brings significant fluctuations to the

power grid operating states. The high penetration of RESs in the power grid has pre-

sented more challenges to the independent system operators. A battery energy storage

system (BESS) is an advanced technique that allows renewable energy to be stored and

released flexibly. BESS is essential in integrating RESs into the power grid because it

can effectively relieve renewable energy uncertainty. The penetration of RES and bat-

tery leads to a multi-period OPF problem, which considers the dynamics of the battery

and the real-time prediction of renewable energy generation. Hence, we will extend the

single-period AC-OPF problem 3.1 to a multi-period AC-OPF problem in future work.

4.2.1 Literature Review

The multi-period AC-OPF problem can be formulated as a mixed integer non-

convex programming problem and solved by the conventional optimization solver. An

SOCP relaxation is proposed to find the globally optimal solution, which aims to solve

the multi-period OPF problems for large-scale power grids in a reasonable time [87].

Ref. [88] proposes a spatially distributed algorithm in parallel to reduce the computa-

tion time of the multi-period OPF problem. Ref. [89] shows the high-memory GPU

can solve a multi-period OPF instance with more than 10 million variables can be
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solved in less than 10 minutes. Ref. [90] develops a sequential convex programming

procedure to tighten the SOCP relaxation gap. To address the renewable energy uncer-

tainty, a scenario reduction method is employed to reduce the computation complexity

brought about by the enormous scenarios of RESs [91]. However, these optimization-

based methods cannot rapidly solve the multi-period AC-OPF problem under renewable

energy uncertainty, which prevents usage in the real-time energy market.

There is an increasing interest in utilizing deep learning to solve the multi-

period AC-OPF in real-time applications. Ref. [92] formulates the multi-period AC-

OPF problem as a sequence-to-sequence learning problem and employs a long short-term

memory recurrent neural network to obtain the optimal power generation schedule. To

cope with the computationally demanding scenario, a generative adversarial network

is adopted to select representative periods for renewable energy generations [93]. A

sampling technique based on the determinantal point process is used to find a small set

of significant samples to enhance the computational efficiency [94]. However, the major

drawback of these deep learning-based approaches is that they do not obtain the optimal

solution that is responsive to renewable energy forecasting errors. In other words, they

rely on the forecast values to optimize the multi-period OPF problem in a static way.

Reinforcement learning has shown promising capability in solving stochastic

optimization problems and has been widely used in the power grid control domain. The

multi-period AC-OPF problem can be formulated as a Markov decision process, and the

RL agent can be used to optimize the decision variables under the system uncertainty.

Ref. [95] utilizes the RL agent to determine the energy storage (ES) installations under
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the stochastic RESs, load demands, and storage prices. Ref. [96] employs the RL agent

to guide the expert to solve the real-time scheduling problem in the high-penetrated

renewable power grid. Inspired by the primal-dual method, Ref. [97] utilizes the RL

agent to determine the power generation output and the battery’s operating status

in the stochastic dynamic OPF. Their proposed method archives a higher feasibility

rate than the unsupervised learning method MDC3 and the supervised learning method

MFCNN. However, the training reward curve fluctuates up and down in a wide range,

which indicates an unstable training process and results in many local minima. Ref. [98]

shows RL outperforms the model predictive controller in the critical load restoration

process under imperfect renewable forecast errors. Therefore, in future work, we plan

to utilize the RL agent to optimize the multi-period AC-OPF to investigate the effect

of renewable energy forecast errors.

4.2.2 Problem Formulation

This section details the objective function and the operational constraints of

the multi-period AC-OPF problem formulation.

4.2.2.1 Objective function

The objective function Eq.(4.1) consists of the total generation cost of the

conventional generators and the line loss from battery charging and discharging [97].

Let ci(·) denote the cost function of the generator at bus i. P g
i,t and Qg

i,t are the active

and reactive power generation outputs of generator bus i. P c
i,t and P dis

i,t denote the
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charging and discharging power values of the energy storage (ES) unit at bus i and time

t. ηc
i and ηdis

i refer to the charging and discharging efficiency.

min
∑

t

∑
i

(
ciP

g
i,t + (1− ηc

i )P c
i,t + ( 1

ηd
i

− 1)P dis
i,t

)
. (4.1)

4.2.2.2 Conventional generators

Let P̄ g
i and S̄g

i denote the maximum active and apparent power capacities of

the generator at bus i, respectively. Eq.(4.2a) shows the active power constraint, and

Eq.(4.2b) depicts the apparent power capacity limit.

0 ≤ P g
i,t ≤ P̄ g

i , (4.2a)

(P g
i,t)

2 + (Qg
i,t)

2 ≤ (S̄g
i )2 . (4.2b)

4.2.2.3 Renewable energy sources

Let P res
i,t and Qres

i,t denote the active and reactive power generation outputs of

the RES installed at bus i at time t. P̂ res
i,t denotes the forecast value of the active power

output. Eq.(4.3a) and Eq.(4.3b) show the operational limits of the active and reactive

power output from the RES at the i-th bus, respectively.

0 ≤ P res
i,t ≤ P̂ res

i,t , (4.3a)

(P res
i,t )2 + (Qres

i,t )2 ≤ (S̄res
i )2 (4.3b)
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4.2.2.4 Energy storage

P es
i,t and P̄ es

i represent the active power exchange value and its maximum ca-

pacity, respectively. SoCi,t denotes the value of the state of charge (SoC). Ci represents

the maximum power capacity of the ES unit. Eq.(4.4a) limits the active power exchange

value of the ES unit at bus i. Eq.(4.4b) indicates the battery cannot be charged and

discharged simultaneously. The apparent power capacity limit is given in Eq.(4.4c).

The dynamic constraint of SoC and its operational limit are shown in Eq.(4.4d).

0 ≤ P c
i,t ≤ P̄ es

i , 0 ≤ P dis
i,t ≤ P̄ es

i , (4.4a)

P c
i,tP

dis
i,t = 0 , P es

i,t = P dis
i,t − P c

i,t , (4.4b)

(P es
i,t)2 + (Qes

i,t)2 ≤ (S̄es
i )2 , (4.4c)

SoCi ≤ SoCi,t ≤ SoCi SoCi,t = SoCi,t−1 +
(

ηc
i P c

i,t −
P dis

i,t

ηd
i

)
× ∆t

Ci
. (4.4d)

4.2.2.5 Power flow constraints

Let P d
i,t and Qd

i,t represent the active and reactive load demands of the i-th bus

at time t. Vi,t is the voltage magnitude and θij,t is the phase angle difference between

bus i and bus j. Pij,t and Qij,t are the active and reactive branch flows. Eqs.(4.5a)

and (4.5b) show the active and reactive power balance equations. Eqs.(4.5c), (4.5d)

and (4.5e) are branch flow equations. Eq.(4.5f) refers to the apparent branch flow limit.
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Eq.(4.5g) implies the phase angle of the slack bus is set to 0.

P g
i,t − P d

i,t = Vi,t

N∑
j=1

Vj,t(Gij cos θij,t + Bij sin θij,t) (4.5a)

Qg
i,t −Qd

i,t = Vi,t

N∑
j=1

Vj,t(Gij sin θij,t −Bij cos θij,t) (4.5b)

Pij,t = −GijV 2
i,t + Vi,tVj,t(Gij cos θij,t + Bij sin θij,t) (4.5c)

Qij,t = BijV 2
i,t + Vi,tVj,t(Gij sin θij,t −Bij cos θij,t) (4.5d)

P 2
ij,t + Q2

ij,t = |Sij,t|2 , (4.5e)

|Sij,t|2 ≤ (Smax
ij,t )2 , (4.5f)

θref,t = 0 (4.5g)

4.2.2.6 Voltage limit

The voltage magnitude should be operated within a desired range:

V min
i ≤ Vi ≤ V max

i (4.6a)

4.2.2.7 Multi-period AC-OPF probelm

Let Xi,t := {P g
i,t, Qg

i,t, P res
i,t , Qres

i,t , P c
i,t, P dis

i,t , Qes
i,t, Pij,t, Qij,t, Vi,tθi,t} collect the de-

cision variables. The multi-period AC-OPF problem can be expressed as:

max
{Xi,t}i∈N , t∈T

(4.1) , s.t. (4.2a)− (4.6a). (4.7)
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