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Abstract

Background: Multiparametric magnetic resonance imaging (mpMRI) improves
detection of clinically significant prostate cancer (csPCa), but the subjective
Prostate Imaging Reporting and Data System (PI-RADS) system and quantitative
apparent diffusion coefficient (ADC) are inconsistent. Restriction spectrum imaging
(RSI) is an advanced diffusion-weighted MRI technique that yields a quantitative
imaging biomarker for csPCa called the RSI restriction score (RSIrs).
Objective: To evaluate RSIrs for automated patient-level detection of csPCa.
Design, setting, and participants: We retrospectively studied all patients (n = 151)
who underwent 3 T mpMRI and RSI (a 2-min sequence on a clinical scanner) for
suspected prostate cancer at University of California San Diego during 2017–
2019 and had prostate biopsy within 180 d of MRI.
Intervention: We calculated the maximum RSIrs and minimum ADC within the pros-
tate, and obtained PI-RADS v2.1 from medical records.
Outcome measurements and statistical analysis: We compared the performance of
RSIrs, ADC, and PI-RADS for the detection of csPCa (grade group �2) on the best
available histopathology (biopsy or prostatectomy) using the area under the curve
(AUC) with two-tailed a = 0.05. We also explored whether the combination of
PI-RADS and RSIrs might be superior to PI-RADS alone and performed subset anal-
yses within the peripheral and transition zones.
sevier B.V. on behalf of European Association of Urology. This is an open access article
org/licenses/by/4.0/).
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Results and limitations: AUC values for ADC, RSIrs, and PI-RADS were 0.48 (95% con-
fidence interval: 0.39, 0.58), 0.78 (0.70, 0.85), and 0.77 (0.70, 0.84), respectively.
RSIrs and PI-RADS were each superior to ADC for patient-level detection of csPCa
(p < 0.0001). RSIrs alone was comparable with PI-RADS (p = 0.8). The combination
of PI-RADS and RSIrs had an AUC of 0.85 (0.78, 0.91) and was superior to either PI-
RADS or RSIrs alone (p < 0.05). Similar patterns were seen in the peripheral and
transition zones.
Conclusions: RSIrs is a promising quantitative marker for patient-level csPCa detec-
tion, warranting a prospective study.
Patient summary: We evaluated a rapid, advanced prostate magnetic resonance
imaging technique called restriction spectrum imaging to see whether it could give
an automated score that predicted the presence of clinically significant prostate
cancer. The automated score worked about as well as expert radiologists’ interpre-
tation. The combination of the radiologists’ scores and automated score might be
better than either alone.

� 2022 The Authors. Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Multiparametric magnetic resonance imaging (mpMRI) has
become an integral part of prostate cancer (PCa) detection
because it improves the detection of clinically significant
prostate cancer (csPCa), while reducing the detection of
indolent tumors [1,2]. The standardized qualitative scoring
system for mpMRI, Prostate Imaging Reporting and Data
System (PI-RADS), has contributed to this success [3]. How-
ever, concerns remain regarding variable interpretation of
mpMRI across readers, particularly when a PI-RADS �3
lesion is detected on mpMRI [4–7]. This contributes to
health disparities, as high-quality MRI is available only to
a fraction of the men screened or diagnosed each year
(22 million and >250 000, respectively, in the USA alone)
[8–11]. Quantitative mpMRI metrics are a promising means
to standardize interpretation [12–16].

Restriction spectrum imaging (RSI) is an advanced tech-
nique for diffusion-weighted imaging (DWI) that accounts
for a complex tissue microstructure by estimating the con-
tributions of distinct tissue compartments believed to cor-
respond to restricted intracellular water, hindered
extracellular water, freely diffusing water, and vascular flow
[15,17]. We have recently developed a PCa MRI biomarker,
called the RSI restriction score (RSIrs), which relies specifi-
cally on the restricted intracellular water signal (Fig. 1).
RSIrs gives improved cancer conspicuity and voxel-level
PCa detection compared with the current clinical standard
for quantitative DWI, the apparent diffusion coefficient
(ADC) [17,18].

The most important current clinical use of mpMRI is to
guide the decision of whether to biopsy—that is, patient-
level detection of csPCa [1,2,19–22]. Here, we evaluate RSIrs
as a quantitative marker for patient-level detection of csPCa
(grade group �2) without reliance on the subjective expert
manual identification of specific lesions. We compared the
performance of RSIrs with that of conventional ADC as well
as of PI-RADS v2.1 in a dataset not used in prior studies. We
hypothesized that RSIrs is superior to ADC for patient-level
detection of csPCa on biopsy.
2. Patients and methods

2.1. Study population

With IRB approval, we retrospectively studied all men who underwent

MRI with RSI for suspected PCa at University of California San Diego

(UC San Diego) between 2017 and 2019, and had a prostate biopsy

within 180 d of MRI. MRI examinations included standard mpMRI as

well as a 2-min RSI series with four b values in a single acquisition (part

of routine clinical prostate MRI at UC San Diego for use with an Food and

Drug Administration–cleared postprocessing workflow).
2.2. MRI acquisition and processing

Scans were collected on a 3-T clinical MRI scanner (Discovery MR750;

GE Healthcare, Waukesha, WI, USA) using a 32-channel phased-array

body coil (acquisition parameters are shown in Table 1).

We performed postprocessing of MRI data in MATLAB (MathWorks,

Natick, MA, USA), including corrections for distortions from B0 inhomo-

geneity, gradient nonlinearity, and eddy currents [23,24]. We performed

RSI calculations as described previously (Fig. 1) [17,18]. Briefly, we cor-

rected diffusion signals for noise and distortion, and then scaled by the

median b = 0 signal within each patient’s prostate. We modeled signal

intensity for each b value as a linear combination of exponential decays

representing four diffusion compartments with previously empirically

determined diffusion coefficients: 1.0e�4, 1.8e�3, 3.6e�3, and

>>3.0e�3 mm2/s, approximately representing restricted, hindered, free

diffusion, and flow, respectively [17]. All postprocessing was accom-

plished on a desktop computer (64 GB RAM; 8-core, 2.40 GHz Intel Xeon

E5-2630 v3 CPU).

ADC maps were generated automatically, per clinical routine, using

vendor software on the MRI system and the Axial DWI acquisition with

b values of 0 and 1000 s/mm2. As a secondary analysis, we also calcu-

lated voxel-wise ADC from the RSI acquisition in MATLAB, using b values

of 0, 500, and 1000 s/mm2, and repeated the main analyses using these

alternate ADC maps.

We manually segmented the prostate gland, peripheral zone, and

central gland on T2-weighted imaging and verified on DWI volumes

using MIM (MIM Software Inc., Cleveland, OH, USA). We visually

inspected these imaging volumes to ensure that there was no severe

distortion or movement. More variability might be expected in routine

clinical use, where these careful quality assurance steps might not be

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Fig. 1 – Diagram of a previously developed and validated four-compartment diffusion MRI model based on the restriction spectrum imaging (RSI) framework.
The RSI restriction score (RSIrs) is a continuous cancer biomarker and is indicative of the contribution of intracellular restricted diffusion at a given location.
MRI = magnetic resonance imaging. Digital artwork by Lia Seibert.

Table 1 – Acquisition parameters for clinical multiparametric MRI and RSI

Sequence FOV (mm2) Voxel size (mm3) Echo time (ms) Repetition time (ms) b values Diffusion directions

RSI 240 � 120 2.5 � 2.5 � 6.0 68 4500 0, 500, 1000, 2000 2, 6, 6, 12a

Axial DWI 1 280 � 280 1.75 � 1.75 � 5.0 64 7990 0, 1000 1, 30b

Axial DWI 2 240 � 144 1.5 � 1.5 � 5.0 63 4000 0, 1400 1, 30b

Axial T2 FSE 240 � 240 0.75 � 0.75 � 3.0 102 6080 NA NA
Coronal T2 FRFSE 200 � 200 0.52 � 0.89 � 3.0 102 4950 NA NA
Axial T1 LAVA-Flex 340 � 272 1.06 � 1.21 � 4.0 2 4 NA NA
Sagittal T2 FRFSE 250 � 250 0.65 � 0.71 � 4.0 103 3690 NA NA
DCE 240 � 240 0.94 � 1.43 � 3.0 2 4 NA NA

DCE = dynamic contrast enhanced; DWI = diffusion-weighted imaging; FOV = field of view; FSE = fast spin echo; FRFSE = fast recovery fast spin echo;
LAVA = liver acquisition with volume acquisition; MRI = magnetic resonance imaging; NA = not available; RSI = restriction spectrum imaging.
a Default tensor directions (six directions, NEX = 2).
b Default orthogonal directions (three directions, NEX = 10).
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feasible, so we added a uniform 5-mm margin on the prostate contour to

allow for the possibility of imperfections in the contour or modest move-

ment effects.

2.3. Clinical data

We reviewed clinical records to obtain histopathology results (highest

grade group [25] on biopsy or prostatectomy, if applicable) and imaging

results (highest PI-RADS category reported). MRI examinations were

read per routine practice by board-certified, subspecialty fellowship–

trained radiologists, using all available images and standard PI-RADS cri-

teria. Transition from PI-RADS v2 to v2.1 occurred in 2019; v2 results

were updated retrospectively to v2.1 by a board-certified radiologist

with 7 yr of experience (M.E.H.) [3,26]. Images from the MRI acquisition

were also available to the radiologists at the time of interpretation, with

postprocessing applied via commercially available software per clinical

routine. After providing standard PI-RADS categories based on conven-

tional images, radiologists could comment on the MRI images in their

report. However, the quantitative RSIrs biomarker evaluated in this study
was not available at the time of clinical interpretation. Prostate biopsies

(systematic, targeted, or both) and radical prostatectomies (where appli-

cable) were performed per clinical routine. Board-certified pathologists

interpreted histopathology specimens from biopsy and prostatectomy

specimens. Thus, both clinical imaging and pathology results in this

study represent real-world performance at an academic medical center.
2.4. Statistical analyses

2.4.1. Primary analysis: patient-level detection of csPCa

We generated receiver operating characteristic (ROC) curves for patient-

level detection of csPCa using ADC, RSIrs, and PI-RADS. In the primary

analysis, we analyzed RSIrs and ADC as quantitative metrics, taking the

maximum RSIrs and minimum ADC within the prostate. It is important

to note that the use of the minimum ADC here differs from clinical prac-

tice, where an expert radiologist typically identifies a suspicious lesion

and then calculates the mean ADC from all or part of that lesion [27].

Our approach using the maximum RSIrs and minimum ADC is analogous

to the use of the maximum standardized uptake value in positron



Table 2 – Characteristics of the patients included in this study

Age (yr), median (IQR) 66 (59–72)
Time from MRI to biopsy (d), median (IQR) 16 (1–35)
PSA at time of MRI (ng/ml), median (IQR) 7.3 (5.3–10.4)
Prostate volume (ml), median (IQR) 45 (34–61)
PSA density (ng/ml2), median (IQR) 0.16 (0.11–0.25)
Previous biopsy Biopsy naïve 105

Had undergone past biopsy 46
Past biopsy benign 12
Past biopsy grade group 1 29
Past biopsy grade group 2 3
Past biopsy grade group 3 2

PI-RADS version v2 104
v2.1 47

Best available pathology Systematic 7
Targeted 17
Systematic and targeted 85
Prostatectomy 42

Clinical T stage Negative biopsy 25
T1c 94
T2a 13
T2b 11
T2c 8

Benign or low-grade PCa csPCa

PI-RADS category (% of detection rate) 1 0 0
2 2 (40.0%) 3 (60.0%)
3 23 (85.2%) 4 (14.8%)
4 30 (54.5%) 25 (45.5%)
5 10 (15.6%) 54 (84.4%)

Gleason grade group None 25
1 40
2 38
3 20
4 16
5 12

csPCa = clinically significant PCa; IQR = interquartile range; MRI = magnetic resonance imaging; PCa = prostate cancer; PSA = prostate-specific antigen.
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emission tomography imaging for cancer [28]. We chose this prostate-

wide approach to evaluate whether a quantitative metric could be used

in fully automated fashion within the prostate, without relying on sub-

jective delineation of individual lesions that depend on reader experi-

ence [11]. We considered biopsies finding only grade group 1 cancers

(Gleason �6) or benign tissue as negative results for the ROC curves.

We assessed performance by the area under the ROC curve (AUC) and

made statistical comparisons via 10 000 bootstrap samples to calculate

95% confidence intervals and bootstrap p values for the difference

between the performance (AUC) of ADC, RSIrs, and PI-RADS [29]. We

used two-sided a = 0.05 to determine statistical significance.

We used procedures analogous to those described above for subse-

quent analyses as follows:

2.4.2. Quantitative diffusion MRI within PI-RADS categories

To determine whether RSIrs enhances the detection of higher-grade PCa

compared with PI-RADS alone, we repeated the RSIrs patient-level anal-

ysis within the strata of each PI-RADS category (ie, 3, 4, and 5).

2.4.3. Combination of PI-RADS and RSI

To explore overall performance of the combination of PI-RADS and RSIrs,

we generated an ROC curve for PI-RADS + RSIrs by concatenating the

within–PI-RADS strata performance from above (ie, the logistic posterior

probabilities) across categories. We then calculated the AUC of the

resulting ROC curve for PI-RADS + RSIrs and compared it with either

PI-RADS or RSIrs alone.

2.4.4. Peripheral zone and transition zone

We again repeated the patient-level analysis in subgroups with lesions

in only either the peripheral zone or the transition zone. For the transi-

tion zone analysis, we limited the search for the maximum RSIrs and
minimum ADC to the central gland (transition and central zones). We

performed an analogous analysis for patients with peripheral zone can-

cers. Then, to evaluate whether zone-specific searching was necessary to

optimize performance, we repeated the transition zone and peripheral

zone subgroup analyses but allowed the search for the maximum RSIrs
and minimum ADC to include the whole prostate.
3. Results

A total of 151 patients met the criteria for inclusion (charac-
teristics are summarized in Table 2). Ten radiologists had
interpreted the imaging for these 151 patients, reading a
median of 18 cases each (interquartile range [IQR]: four to
24 cases). The radiologists were board certified and subspe-
cialty fellowship trained, with a median of 4 yr of experi-
ence (IQR: 4–9 yr). More experienced radiologists read
more cases, so the mean number of years of experience
per case was 8.5 yr (standard deviation: 1 yr).
3.1. Primary analysis: patient-level detection of csPCa

All 151 patients were included in the primary (whole-
prostate) analysis. AUC values for ADC, RSIrs, and PI-RADS
are reported in Table 3. Both RSIrs (p < 0.0001) and PI-
RADS (p < 0.0001) were superior to ADC as a patient-level
classifier of higher-grade PCa. The performance of RSIrs
was comparable with that of PI-RADS (p = 0.8). The his-
tograms and ROC curves for the primary analysis are shown
in Figures 2 and 3A, respectively.



Table 3 – Comparison of patient-level performance for the detection of grade group �2 cancer between minimum ADC, maximum RSIrs, highest
PI-RADS, and within–PI-RADS maximum RSIrs (PI-RADS + RSIrs)

Analysis ADC RSIrs PI-RADS PI-RADS + RSIrs

Whole prostate (n = 151) 0.48 0.78a 0.77 0.85b

(0.39, 0.58) (0.70, 0.85) (0.70, 0.84) (0.78, 0.91)
Peripheral zone (n = 103) 0.48 0.78a 0.78 0.89b

(0.37, 0.60) (0.68, 0.87) (0.69, 0.86) (0.82, 0.95)
Transition zone (n = 37) 0.48 0.84a 0.73 0.86b

(0.23, 0.72) (0.68, 0.95) (0.54, 0.88) (0.70, 0.97)
PI-RADS 3 (n = 27) 0.46 0.70 0.50 –

(0.26,0.66) (0.50,0.87) – –
PI-RADS 4 (n = 55) 0.33 0.74a 0.50 –

(0.19,0.47) (0.60,0.87) – –
PI-RADS 5 (n = 64) 0.56 0.73 0.50 –

(0.33,0.77) (0.54,0.88) – –

ADC = apparent diffusion coefficient; RSIrs = restriction spectrum imaging restriction score; PI-RADS = Prostate Imaging Reporting and Data System.
Numbers shown are area under the receiver operating characteristic curve and 95% confidence intervals.
a RSIrs was superior to ADC.
b PI-RADS + RSIrs was superior to PI-RADS alone (p < 0.05).

Fig. 2 – Histograms of (A) minimum conventional ADC in the prostate, (B) maximum RSIrs in the prostate, and (C) highest PI-RADS v2.1 category in the
prostate. The blue color represents patients with no cancer or low-grade cancer, orange represents patients with higher-grade (grade group �2) prostate
cancer, and brown represents overlap of blue and orange. ADC = apparent diffusion coefficient; PI-RADS = Prostate Imaging Reporting and Data System;
RSIrs = restriction spectrum imaging restriction score.
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3.2. Quantitative diffusion MRI within PI-RADS categories

We found 27, 55, and 64 patients with the maximum PI-
RADS categories 3, 4, and 5, respectively. AUC values for
the maximum prostate RSIrs within the PI-RADS groups 3,
4, and 5 are shown in Table 3. Performance for RSIrs was
numerically greater than that for ADC in each subset,
although confidence intervals were wide. The difference
was statistically significant within patients with PI-RADS 4
lesions (p < 0.0001) but not within patients with PI-RADS
3 (p = 0.10) or 5 (p = 0.13) lesions.
There was no significant difference in performance
between the alternate ADC maps and vendor-calculated
ADC maps (p = 0.24).

3.3. Combination of PI-RADS and RSI

AUC values for RSIrs concatenated within–PI-RADS subsets
(PI-RADS + RSIrs) and applied to all 151 patients are shown
in Table 3. PI-RADS + RSIrs was superior to either PI-RADS
(p = 0.001) or RSIrs (p = 0.03) alone. ROC curves are shown
in Figure 3A.



Fig. 3 – Receiver operator characteristic (ROC) curves for conventional ADC (solid orange), RSIrs (dark green), PI-RADS (dashed orange), and the combination of
PI-RADS and RSIrs (PI-RADS + RSIrs, light green) for patient-level detection of higher-grade prostate cancer (A) anywhere in the prostate, (B) in the peripheral
zone, and (C) in the transition zone. For the whole prostate, the AUC values for ADC, RSIrs, PI-RADS, and PI-RADS + RSIrs were 0.48 (95% confidence interval:
0.39, 0.58), 0.78 (0.70, 0.85), 0.77 (0.70, 0.84), and 0.85 (0.78, 0.91), respectively. For peripheral zone cases, the AUC values for ADC, RSIrs, PI-RADS, and PI-
RADS + RSIrs were 0.48 (0.37, 0.60), 0.78 (0.68, 0.87), 0.78 (0.69, 0.86), and 0.89 (0.82, 0.95), respectively. For transition zone cases, the AUC values for ADC, RSIrs,
PI-RADS, and PI-RADS + RSIrs were 0.48 (0.23, 0.72), 0.84 (0.68, 0.95), 0.73 (0.54, 0.88), and 0.86 (0.70, 0.97), respectively. ADC = apparent diffusion coefficient;
AUC = area under the curve; PI-RADS = Prostate Imaging Reporting and Data System; RSIrs = restriction spectrum imaging restriction score.
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3.4. Peripheral zone

We found 103 patients with a peripheral zone lesion and no
transition zone lesion (15 benign, 23 grade group 1, and 65
csPCa). AUC values are shown in Table 3. RSIrs performance
was comparable with that of PI-RADS for the peripheral
zone (p = 0.98) and superior to that of ADC (p = 0.0002).
ROC curves are shown in Figure 2B. PI-RADS + RSIrs was
superior to either PI-RADS (p = 0.005) or RSIrs alone
(p = 0.003). Similar results were obtained when searching
the whole prostate for the maximum RSIrs.

3.5. Transition zone

We found 37 patients with a transition zone lesion and no
peripheral zone lesion (14 benign, 15 grade group 1, and
eight csPCa). AUC values are shown in Table 3. RSIrs perfor-
mance was superior to that of ADC (p < 0.0001) in the tran-
sition zone. RSIrs performance was numerically superior to
that of PI-RADS, but this difference was not statistically sig-
nificant (p = 0.08). PI-RADS + RSIrs was superior to PI-RADS
(p = 0.005) but not RSIrs alone (p = 0.63). ROC curves are
shown in Figure 3C. RSIrs images and ADC maps for two
patients with transition zone lesions are shown in Figure 4.
Similar results were obtained when searching the whole
prostate for the maximum RSIrs, suggesting that zone-
specific searching may not be necessary.
4. Discussion

RSIrs performed well for quantitative, automated detection
of csPCa at the patient level. ADC proved unreliable as a
quantitative marker with an analogous approach. We note
that routine clinical use of ADC is not automated and fully
quantitative; rather, it is typically used within expert-
defined lesions. RSIrs was based solely on a 2-min diffusion
MRI acquisition on a standard clinical scanner; yet, perfor-
mance was comparable with PI-RADS categories assigned
by experts using all images from a complete mpMRI
examination.

An analysis of the transition zone was underpowered
because relatively few csPCa cases could be included (there
were many more false positives from PI-RADS interpreta-
tion than true positives in the transition zone). With that
limitation, there was no suggestion of worse performance
for RSIrs in the transition zone, with an AUC of 0.84 (0.68,



Fig. 4 – Axial images from two patients with transition zone lesions: T2-weighted MRI (T2W), conventional ADC, and RSIrs. Patient A had a PI-RADS 3 lesion
(yellow arrow) in the left transition zone; he underwent prostatectomy and was found to have Gleason 3 + 4 prostate cancer. Patient B had a PI-RADS 5 lesion
(green arrow) on multiparametric MRI, with subsequent biopsy showing benign prostatic tissue with acute and chronic inflammation. The RSIrs map readily
highlights the cancer for patient A. The RSIrs map for patient B has no false-positive voxels (and is shown on the same color scale as the map for patient A).
ADC = apparent diffusion coefficient; MRI = magnetic resonance imaging; PI-RADS = Prostate Imaging Reporting and Data System; RSIrs = restriction spectrum
imaging restriction score.
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0.95) for RSIrs, compared with 0.73 (0.54, 0.88) for
PI-RADS (p = 0.08). This should be investigated further in
larger datasets, as a prior retrospective analysis using a dif-
ferent RSI model found superior specificity for RSI in the
transition zone [30].

In exploratory analyses, we found that combining PI-
RADS categories and the maximum RSIrs might improve
performance over either of these alone. RSIrs had an AUC
of �0.70 within each PI-RADS subset, including PI-RADS 3.
Concatenating the within–PI-RADS ROC results showed that
the combination of PI-RADS and RSIrs also performed better
than PI-RADS alone across the full dataset. This last finding
should be interpreted cautiously because there were rela-
tively few patients in each PI-RADS category subset. In the
future, larger datasets will permit development of a multi-
variable model with PI-RADS and RSIrs, which could then
be validated in an independent dataset. In contrast, all other
findings in this study already represent validation tests in
an independent dataset from the one used to develop the
quantitative RSIrs biomarker.

Our approach is clinically feasible. RSIrs was calculated
from a 2-min acquisition on a standard clinical scanner,
and all postprocessing was achieved in 14 min per patient
using a desktop computer. Similar RSI models are already
commercially available and in clinical use. The present
study demonstrates performance of a quantitative RSI met-
ric for csPCa detection in a completely independent dataset
from that used to develop the model and with a distinct
acquisition protocol (different b values and echo time).
PI-RADS categories for this study were assigned during
routine clinical practice. All readers were board-certified
and subspecialty-trained attending radiologists at an aca-
demic center and adhered to PI-RADS standards, but this
does not preclude some inter-reader variability. The goal
of this analysis was not to use idealized PI-RADS implemen-
tation with central reads, but rather to obtain a real-world
comparator for the quantitative biomarker. Performance
for PI-RADS here is within the range of expected values
[4]. Clinical decision-making surrounding biopsy may have
been influenced by any number of imaging and nonimaging
clinical factors, per standard of care. However, as none of
these additional risk factors are formally incorporated into
PI-RADS, there is nothing to suggest that this decision-
making would unduly influence the relative performance
of PI-RADS, ADC, and RSIrs among men who did undergo
biopsy. Studies to incorporate RSIrs and other clinical factors
for optimal decision-making are ongoing and would only
improve on the encouraging performance demonstrated in
the present work.

Limitations of this study include its retrospective, single-
institution design. Patients who did not undergo biopsy
were excluded, although mpMRI is known to have a high
negative predictive value, and the population included in
this study is most likely to benefit from improvements in
quantitative MRI. Imaging for this dataset was acquired on
a single scanner. This study relied on PI-RADS interpretation
per clinical routine, which reflects real-world practice at our
institution but may differ from the centralized review by
one or two readers. Biopsy as the gold standard is also a lim-
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itation (some cancers may be missed), although this also
reflects real-world performance; neither prostatectomy
nor template-mapping biopsy is offered for routine diagno-
sis. In a post hoc subset analysis, the main findings were
unchanged when evaluating only those who did not have
a prostatectomy (results not shown). We could not ade-
quately evaluate lesion-level performance because the ret-
rospective analysis does not permit histopathologic
verification of lesions detected by RSIrs, although the
patient-level decision of whether to biopsy is the most
important clinical use case of MRI [1,2], and voxel-level per-
formance with RSIrs was quite good in prior studies [17,18].
5. Conclusions

In an independent validation, the performance achieved by
RSIrs for patient-level detection of csPCa was superior to
that of conventional ADC and comparable with that of rou-
tine, clinical PI-RADS. The combination of PI-RADS and RSIrs
may perform better than either RSIrs or PI-RADS alone.
These patterns held true within the transition zone, a region
known to be more challenging for standard mpMRI. RSIrs
holds promise as a quantitative marker and should prospec-
tively be studied for improvement of PCa diagnosis.
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