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The World Health Organization (WHO) considers antimicrobial resistance to be one of the critical global public 
health priorities to address. Escherichia coli is a commensal bacterium of the gut microbiota in humans and 
animals; however, some strains cause infections and are resistant to antibiotics. One of the most common ways 
of acquiring pathogenic E. coli strains is through food. This review analyzes multidrug-resistant E. coli isolated 
from food, emphasizing Latin America and Mexico, and the mobile genetic elements (MGEs) responsible for 
spreading antibiotic resistance determinants among bacteria in different environments and hosts. We conducted a 
systematic search of the literature published from 2015 to 2022 in open access databases and electronic repositories. 
The prevalence of 11 E. coli pathotypes was described, with diarrheagenic E. coli pathotypes being the most 
frequently associated with foodborne illness in different Latin American countries, highlighting the presence of 
different antibiotic resistance genes mostly carried by IncF-type plasmids or class 1 integrons. Although the global 
incidence of foodborne illness is high, there have been few studies in Mexico and Latin America, which highlights 
the need to generate updated epidemiological data from the “One Health” approach, which allows monitoring 
of the multidrug-resistance phenomenon in E. coli from a common perspective in the interaction of human, 
veterinary, and environmental health.
Key words: food, Escherichia coli, antimicrobial resistance, Mexico, Latin America

INTRODUCTION

Bacterial resistance to antibiotics has a serious impact on 
public health, which is why the World Health Organization 
(WHO) considers it one of the critical priorities to be addressed. 
Foodborne illnesses are the set of diseases caused by the ingestion 
of food and/or water containing etiological agents in sufficient 
quantities to affect the health of the consumer. These diseases are 
characterized by a wide variety of symptoms, such as diarrhea, 
vomiting, abdominal pain, headache, nausea, and fever; in some 
cases, there are severe complications, such as sepsis, meningitis, 
miscarriage, hemolytic uremic syndrome, Reiter’s syndrome, 
Guillain–Barré syndrome, or even death [1]. About 250 pathogens 

have been described that affect humans through contaminated 
food and beverages. It is estimated that 420,000 people die 
every year from consuming contaminated food and that 550 
million people suffer from diarrheal diseases, of which 230,000 
die each year [2]. The etiology of foodborne diseases is varied; 
viruses, parasites, and bacteria may be involved, with the main 
agents responsible for mortality being Norovirus, Campylobacter 
spp, Salmonella enterica, Salmonella Typhi, Taenia solium, 
Staphylococcus aureus, Clostridium perfringens, Shigella sp, 
Listeria monocytogenes, hepatitis A virus, and Escherichia coli 
(mainly O157:H7) [2]. The latter, being part of the intestinal 
microbiota, is an important indicator of fecal contamination; its 
detection in the environment is used to monitor the prevalence, 
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types, and movement of resistance genes within and between 
clinical, agricultural, food, community, and environmental settings 
[3, 4]. It is estimated that 85% of infections caused by E. coli are 
transmitted through food by the fecal-oral route, with cattle and 
the products or by-products obtained from them being one of the 
main reservoirs that contaminate food and the environment. This 
contamination happens through the elimination of the pathogen in 
their feces, spreading between animals by direct contact, through 
drinking troughs, shared feed, contaminated grazing sites, or 
other environmental sources [5].

This review aims to provide an update on the involvement of 
E. coli pathotypes in the development of foodborne diseases as 
well as the wide range of genetic mechanisms that the bacterium 
uses to resist the effects of antimicrobials, highlighting the 
potential for transfer of these determinants through mobile or 
mobilizable genetic elements. The importance of approaching 
this phenomenon from the “One Health” point of view, a current 
approach promoted by the WHO to comprehensively address and 
contain the spread of the disease, and containing the spread of 
multidrug-resistant (MDR) bacteria in a comprehensive manner 
is also discussed.

MATERIALS AND METHODS

A systematic search of the literature was carried out to identify 
recent bibliographic citations reporting the association of E. coli 
in the development of foodborne illness as well as the mechanisms 
of resistance to antibiotics most frequently used to treat infections 
caused by the bacterium. The search was initially performed in the 
PubMed database, using the following keywords: “Escherichia 
coli in foodborne diseases”, “Escherichia coli pathotypes and 
foodborne diseases”, “Antimicrobial resistance in Escherichia 
coli”, “Mechanisms of antibiotic resistance in Escherichia 
coli”, “Horizontal genetic transference of resistance genes in 
Escherichia coli”, and “Genetic elements carrying antimicrobial 
resistance genes in Escherichia coli”. In order to obtain studies 
reported in Mexico and Latin America, we also used the Google 
Scholar search engine and the following keywords: “Foodborne 
diseases in Mexico”, “ETA in Mexico”, “Foodborne diseases 
in Latin America”, “Foodborne diseases in Latin America”, 
“Escherichia coli isolated from food”, “Escherichia coli isolated 
from food in Mexico”, “Escherichia coli isolated from food 
in Latin America”, “Mechanisms of antibiotic resistance in 
Escherichia coli”, and “Dissemination of antimicrobial resistance 
in Escherichia coli”. A total of 220 articles were retrieved. The 
articles were selected based on the following criteria: a) to 
address epidemiological data on foodborne diseases and their 
associations with E. coli, b) to describe virulence determinants 
in diarrheagenic and extraintestinal pathotypes of E. coli, c) to 
characterize E. coli strains isolated from food, d) to determine 
antibiotic resistance genes in enterobacteria and E. coli, and e) 
to describe the mechanisms and elements of genetic material 
transfer. This review did not generate data that had to be recorded 
in repositories with an accession number.

RESULTS

A total of 95 articles and 4 electronic repositories from 
educational and health institutions were included, which were 
limited to a publication and/or update period from 2015 to 2022.

Pathotypes of E. coli associated with foodborne diseases in 
Mexico and Latin America

Among the most frequent infections caused by E. coli are enteric 
and diarrheal diseases. Foodborne diarrheagenic pathotypes 
of E. coli produce virulence factors (VFs) encoded by several 
important genes widely reported around the world (Table 1) 
[6, 7]. The group of diarrheagenic pathotypes is composed of 
enteropathogenic E. coli (EPEC), Shiga toxin-producing E. coli/
enterohemorrhagic E. coli (STEC/EHEC), enteroinvasive E. 
coli (EIEC), enteroaggregative E. coli (EAEC), enterotoxigenic 
E. coli (ETEC), and diffusely adherent E. coli (DAEC) [6, 8]; 
STEC, one of the most important pathogens causing foodborne 
diseases, includes E. coli O157:H7. Serogroups other than 
O157 (O26, O45, O103, O111, O121, and O145) are known as 
non-O157 STEC serogroups and are also related to foodborne 
diseases. Transmission of an STEC causing infections occurs 
mainly via the consumption or handling of contaminated food, 
such as raw or undercooked minced meat products, raw milk, 
raw vegetables, contaminated raw sprouted seeds, and contact 
with infected animals [6, 9]. However, although the pathotypes 
mentioned are highly related to foodborne diseases, there 
are intestinal pathotypes that have shown severe intestinal 
involvement, such as adherent-invasive E. coli (AIEC). AIEC is a 
pathotype with particular importance in the last decades due to its 
frequent presence in patients with Crohn’s disease and ulcerative 
colitis, which are commonly referred to as inflammatory bowel 
disease (IBD), and is a relevant pathotype because it is an 
intestinal bacterium with severe clinical implications [10, 11]. 
Extraintestinal pathogenic E. coli (ExPEC) diseases can cause a 
wide variety of infections at multiple anatomic sites. This group 
includes uropathogenic E. coli (UPEC), neonatal meningitis E. coli 
(NMEC), sepsis-associated E. coli (SEPEC), avian pathogenic E. 
coli (APEC), and a potentially emerging ExPEC lineage called 
endometrial pathogenic E. coli (EnPEC) [12]. ExPEC possess 
multiple virulence traits and genes (Supplementary Table 1) 
[12–15], which allow them to invade and adapt to body sites 
outside the gastrointestinal tract on any surface, such as food 
products, especially raw meats [13]. The transmission capacity 
of ExPEC strains is considered to be of great importance due to 
the variety of diseases they cause. Neonatal meningitis caused 
by NMEC strains is one of the most common infections, and it 
contributes to a neonatal mortality rate of 10% and a morbidity 
rate of 30% [14]. UPEC is one of the main causes of nosocomial 
infections and community-acquired urinary tract infections [16]. 
In Mexico alone, 549,984 cases of urinary tract infections have 
been reported so far in 2023 [17], with E. coli being the main 
etiological agent. Although these infections are treatable, the 
increase in MDR bacteria among ExPEC strains represents a 
major challenge , as it implies an increase in health care costs and 
leads to complications, drug treatment failures, as well as higher 
morbidity and mortality rates [18].

In Latin America, at least 77 million people get ill each year 
from consuming contaminated food, up to 9,000 people die each 
year, and 10–17 cases per 100,000 are children under 5 years 
of age who manifest hemorrhagic colitis or sporadic infection 
with enterotoxin-producing E. coli. Although E. coli is generally 
considered harmless to humans, certain pathogenic strains can 
infect the intestinal area and cause severe disease [6]. Studies in 
different Latin American countries (Table 2) [1, 7, 19–22] have 
indicated differences in the prevalence of various pathotypes of 



L. Babines-Orozco, et al. 6

doi: 10.12938/bmfh.2023-022 ©2024 BMFH Press

E. coli. For example, in Colombia and Nicaragua, most of the 
reported cases of diarrhea are associated with ETEC, while in 
Argentina, Mexico, Brazil, Paraguay, and Peru, the most frequent 
pathotype is EAEC; on the other hand, in Chile, Venezuela, and 
Uruguay, the main associated pathotype is EPEC [23].

Mexico, like many developing countries, experiences a high 
incidence of foodborne diseases caused by diarrheagenic strains 
of E. coli found in different foods. These strains show high 
resistance to first-line antibiotics [22]. In 2017, the General 
Director of Inocuidad Agroalimentaria, Acuícola y Pesquera 
del Servicio Nacional de Sanidad e Inocuidad y Calidad 
Agroalimentaria (SENASICA) reported that 16,000 people die 
every year due to foodborne diseases in the country [24]. In 
Mexico, more than 120,000 cases of intestinal infectious diseases 

have been reported [25], with diarrheal diseases being the second 
most common cause of morbidity in children under five years of 
age, with a mortality rate of 27.78 per 100,000 in children under 
one year of age and 3.47 per 100,000 in children between one and 
four years of age [26]. E. coli infections are mainly transmitted 
through food, such as undercooked ground meat, raw milk, salads, 
leeks, raw potatoes, vegetables, fruits, and other foods [6] often 
associated with poor hygienic conditions. According to the WHO 
list of priority antibiotic resistant pathogens published in 2017, E. 
coli resistant to carbapenems and 3rd generation cephalosporins, 
as well as extended-spectrum beta-lactamase (ESBL) producers, 
is among the pathogens of critical priority or first attention, as it 
has acquired resistance to a high number of antibiotics and can 
cause severe and often lethal infections [9].

Table 1.	 Intestinal pathotypes of E. coli and their main virulence factors

Pathotype Clinical symptoms Host Virulence factor Virulence gene Location References
EHEC/
STEC

Non-bloody diarrhea, 
abdominal pain, fever and 
vomiting

Ruminants (bovine), 
adults, children

Shiga toxin stx1, stx2 Phage [6, 7]
Intimin eae Locus LEE
Enterohemolysin E-hly(ehxA) Plasmid

EAEC Watery diarrhea with 
bloodless mucus

Adults, children, travelers 
to developing countries

AAF/I-V (Fimbriae) aggA, aafA, agg3A-5A Plasmid/ [6, 7]
Transcriptional Activator aggR Chromosome 
Pet (protease SPATE) pet
EAST1 astA
Mucinase pic

EPEC Acute diarrhea, abdominal 
pain, vomiting and fever

Children <5 years old, 
adults with high inoculums

Bundlin bfpA Plasmid [6, 7]
Intimin eae Locus LEE
Enterohemolysin E-hly(ehxA) Plasmid

ETEC Acute watery diarrhea Children <5 
years old, adults, 
immunocompromised, 
travelers

Heat-stable toxin est Plasmid/ 
Chromosome

[6]
Heat-labile toxin elt
EAST1 asta

EIEC Dysentery Children <5 
years old, adults, 
immunocompromised, 
travelers

Invasin A invA Plasmid INV [6]
Watery diarrhea Antigen H ipaH

DAEC Watery diarrhea without blood Humans Adhesin F1845 daaC Plasmid/ [6, 7]
Chromosome

EHEC: enterohemorrhagic E. coli; STEC: Shiga toxin-producing E. coli; EAEC: enteroaggregative E. coli; EPEC: enteropathogenic E. coli; ETEC: entero-
toxigenic E. coli; EIEC: enteroinvasive E. coli; DAEC: diffusely adherent E. coli.

Table 2.	 Reports of foodborne E. coli in Latin American countries

Country Finding References

Argentina The STEC pathotype is endemic in Argentina with a prevalence of approximately 500 cases per year and an incidence 
of 12 to 14 cases per 100,000 in children under five years of age. [19]

Colombia Total prevalence of E. coli of 36.8% (28/76): Meats: 42% (16/38 samples) where 1/16 are STEC and vegetables 31% 
(12/38 samples) where 1/12 are STEC and 1/12 are EAEC. [1]

Paraguay The frequency of pathotypes in pediatric patients is: 34% ETEC, 22% EAEC, 23% EPEC, 15% EIEC, 4% STEC and 3 
2% ETEC/EAEC, 0.5% ETEC/EAEC/EIEC. [20]

Peru In 3,284 E. coli strains isolated from pediatric patients in eight previous studies atypical EPEC (54/74, 73%) was the 
most frequent pathotype. [21]

Venezuela The frequency of diarrheogenic E. coli is 18.9%, with EPEC being the most frequently isolated pathotype, followed by 
ETEC and EIEC, while EAEC strains are in last place. [7]

Costa Rica The prevalence of diarrheogenic E. coli is 8.4% corresponding to EPEC. [21]
Mexico The frequency of diarrheogenic strains was 23%; EAEC was the most commonly isolated category, followed by EPEC 

and ETEC (12.2%, 5.1% and 4.3%, respectively). [22]

STEC: Shiga toxin-producing E. coli; ETEC: enterotoxigenic E. coli; EAEC: enteroaggregative E. coli; EPEC: enteropathogenic E. coli; EIEC: enteroinva-
sive E. coli; STEC: Shiga toxin-producing E. coli.
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E. coli genome and genetic plasticity
The complete genome of E. coli ranges from 4.6 to 5.9 million 

base pairs and contains 4,200 to 5,500 genes. The enormous 
plasticity of its genome has allowed it to adapt to diverse 
ecological niches, the intestinal environment, and extraintestinal 
body sites, reflecting the great genetic diversity within the species 
and causing a wide spectrum of diseases. Unlike other organisms, 
E. coli has mechanisms to improve its gene pool, such as a) 
changes in the nucleotide sequence of the genome (mutations), 
b) genome remodeling through recombination, and c) acquisition 
of exogenous genes through horizontal gene transfer (HGT). In 
addition, it is estimated that 10–16% of the E. coli chromosome 
arose through HGT events, greatly facilitating its genetic 
flexibility and providing accessory genetic elements, such as 
those for antibiotic resistance or VFs [27, 28].

Due to the ability that E. coli possesses to exchange genetic 
material with other bacterial species, it has become an ideal 
candidate for the study of resistance gene reservoirs in distinct 
niches [3]. Most E. coli strains enter environments and ecosystems 
through anthropogenic activities, discharge from livestock and 
poultry production, hospital and municipal wastewater, or direct 
contact with livestock, poultry, food-producing animals, and 
this consequently facilitates the transfer of resistance from non-
pathogenic to pathogenic strains in the same environment [4, 5], 
which makes community and sanitary infections caused by E. coli 
of greater concern and importance than toxigenic and diarrheal 
strains with high mortalities in various populations around the 
world [3].

Study of the easy adaptation, environmental changes, and 
genomic diversity that characterize E. coli requires the analysis 
of its genetic environment and the MGEs associated with VFs 
and antibiotic resistance genes, which could provide helpful 
information at the epidemiological and medical levels [4].

DISCUSSION

Antimicrobial resistance in E. coli isolated from food in Mexico 
and Latin America

In recent years, interest in antimicrobial resistance in E. coli 
isolated from food in Mexico and Latin America has increased 
not only because of the presence of pathogenic E. coli in food 
but also because of commensal strains with multidrug resistance 
worldwide. These commensal strains can act as reservoirs 
of resistance genes that can be shared with other resident or 
pathogenic microorganisms in mixed infections and contribute to 
treatment failure, highlighting the need to implement monitoring 
and control strategies for these threats [7, 29].

The high frequency of antibiotic-resistant E. coli in food, 
clinical, community, and environmental settings worldwide has 
been mainly attributed to the excessive and inappropriate use 
of antibiotics in human and veterinary medicine. Despite the 
strategies implemented for the prudent use of antimicrobials, 
both in livestock production and in the clinical area, for many 
years, the percentages of MDR bacteria have remained high, 
representing a constant therapeutic challenge [3, 30, 31]. 
Furthermore, the appearance of MDR E. coli with high virulence 
potential is alarming given the risk it represents for human health 
through the food chain. The increasing evidence of antibiotic 
resistance genes in diarrheagenic strains (Supplementary Table 2) 
[32–38] and ExPEC has seriously complicated the treatment of 

infections, since the presence of resistance genes in MGEs 
increases the possibility of spreading antibiotic resistance among 
STEC bacteria and other bacteria associated with foodborne 
diseases but also minimizes the possible therapeutic options for 
human infections [39, 40]. In Mexico, a high rate of resistance 
to quinolones has been observed in clinical, environmental, 
diarrheagenic, and pediatric isolates. Multidrug resistance has 
even been found in UPEC; however, the lack of sufficient data on 
the virulence spectrum and isolates from community and hospital 
infections makes infection control and management difficult [16]. 
Even so, unlike reports on clinical isolates and although the global 
incidences of foodborne diseases are high, there are few studies 
on food in Mexico and Latin America, which demonstrates the 
importance of generating updated data in order to provide useful 
information to maximize the potential impact of food-borne 
infections.

Mechanisms of antibiotic resistance in E. coli
Pathogenic strains of E. coli can harbor VFs and antibiotic 

resistance genes in the same MGEs facilitating their 
dissemination among isolates, as well as commensal strains 
that promote the evolution of resistance to different antibiotic 
families and eventually act as a gene reservoir conferring a 
high prevalence of resistance genes among foodborne zoonotic 
pathogens [30, 39, 40]. Pathogenic strains recovered from food 
and cases of diarrhea and food poisoning come to possess high 
rates of resistance to groups of commonly used antibiotics, such 
as quinolones, aminoglycosides, macrolides, cephalosporins, 
sulfonamides, fluoroquinolones, and tetracycline, with the genes 
qnr, dfrA1, blaSHV, blaTEM-1, blaCTX-M, tetA, tetB, aac (6)-Ib, 
sul, cat-1, cmlA, and aadA1 being the most commonly found in 
diarrheagenic strains, food, water, and some livestock animals, 
which is why resistance to antibiotics used in animals can be 
transmissible to humans through contact with or consumption of 
animal products [32–36].

In Latin America, resistance to beta-lactams is the most reported 
resistance mechanism, followed by resistance to quinolones [41]. 
Several studies have shown the presence of ESBL-producing E. 
coli in food sources such as meat and dairy products [38], as well 
as β-lactamase AmpC in beef and pork [33, 34]. Although the 
most commonly found beta-lactamases in E. coli are TEM, SHV, 
CTX-M, OXA, and NDM [42], studies in Latin America show 
a high persistence of the blaTEM-1 gene in diarrheagenic strains 
(Supplementary Table 2). However, genes such as blaCMY, blaSHV, 
blaOXA, blaCTX-M, blaNDM, and blaTEM-1 have been identified in 
strains isolated from meat for human consumption and the feces 
of animals and encoded in different mobilizable genetic elements 
(Tables 3 and 4) [34, 43–62]. As mentioned above, resistance to 
quinolones is the second most reported resistance mechanism 
in Latin America, with aac(6’)-Ib-cr and qnr genes being the 
most frequently found [41]. However, genes belonging to the 
chromosomal resistance mechanism, such as gyrA and parC [36], 
have also been identified in diarrheagenic strains isolated from 
meat or animals (Supplementary Table 2 and Table 3).

Mechanisms of resistance to antibiotics of last therapeutic resort
Other resistance mechanisms that have been described in 

E. coli isolates include resistance to fosfomycin caused by 
mutations in genes of the glpT o uhpA/T transporters [42] and 
by the inactivation of fosfomycin by fosfomycin-modifying 
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enzymes such as FosA, FosB, FosC, or FosL. The fosA gene 
and its different subtypes have been found to be associated with 
plasmids in strains of E. coli and the Enterobacteriaceae family, 
with the fosA gene being the most commonly found in human and 
food-producing animal isolates [63].

In addition to fosfomycin resistance, the clinical efficacy 
of colistin, an antibiotic used as a last resort in the treatment 
of multidrug-resistant infections, was compromised by the 
emergence of the plasmid-mediated gene family expressing 
colistin resistance, comprising the mcr-1 to mcr-9 genes, in the 
last 4 years [64]. The most worrying characteristics of the mcr 
genes are their localization in transferable plasmids, because these 
plasmids facilitate their dissemination by conjugation between 
different bacterial species, and their constant co-localization with 
genes encoding ESBL and plasmid AmpC [48, 65]. Currently, the 
mcr-1 gene has been identified in E. coli isolates in humans and 
in various foods of animal origin, including meat from chickens, 
pigs, piglets, cattle, calves, and turkeys [42].

In Latin America, the mcr-1, mcr-3 and mcr-5 genes have been 
reported in strains isolated from animals, food, and humans, in 
contrast to other countries, with the mcr-2, mcr-3, mcr-4, mcr-5 
genes having been reported in Asian and European countries and 
the mcr-9 gene having been reported in the USA [66].

Genetic elements involved in the mobilization of resistance 
genes

As mentioned above, HGT involves the mobilization of 
genetic elements between bacteria in response to the stress of 
rapid bacterial adaptation. HGT is one of the main mechanisms 
responsible for the acquisition of resistance genes and an important 

factor in bacterial evolution. Elements such as transposons 
and integrons are involved in intracellular mobility between 
chromosomes and replicons, while plasmids, bacteriophages, 
or integrative conjugative elements (ICE) are involved in 
intercellular gene exchange. According to Latin American 
reports, plasmids, integrons, transposons, and insertion sequences 
(ISs) are the main genetic mobilization elements observed in E. 
coli (Tables 3 and 4). Studies done in other non-Latin American 
countries (mainly European) also show a wide distribution of 
resistance determinants in foodborne E. coli around the world 
(Supplementary Table 3) [3, 4, 50, 53, 63, 65, 67–93].

Plasmids
With a determinant role in the dissemination of antibiotic 

resistance, plasmids have the capacity to be transmitted 
horizontally in an autonomous way or can be mobilized. 
Besides being dispensable when they no longer possess 
genes indispensable for their host, plasmids that confer multi-
resistance are normally large (>50 Kb) and conjugative and 
possess mechanisms that control the number of plasmid copies, 
regulating their replication rate [43]. The identification of plasmid 
characteristics provides important knowledge for understanding 
the contribution and acquisition of new resistance genes through 
MGEs as well as their ability to replicate in a wide range of 
hosts, making them perfect vectors for the propagation of MDR 
bacteria. Currently, E. coli strains carrying multidrug resistance 
plasmids are one of the most critical and worrisome antibiotic 
resistance problems, as they encode resistance to β-lactams, 
quinolones, aminoglycosides, tetracyclines, sulfonamides, and 
many other classes of drugs, causing ineffective treatments [28].

Table 3.	 Plasmids related to antimicrobial resistance of E. coli reported in Latin American countries

Plasmid Gene that disseminates Sample origin Study country References
IncF blaCMY, blaSHV, blaOXA-1-like, blaCTX-M tetA, tetB, aac(6′)-Ib, sul2, sul3, 

aadA, cmlA, qepA, dfr2
Pig feces and soil Brazil [43, 44]
Human Argentina

IncFII  blaCTX-M-15, blaNDM-1 Human Mexico [45]
IncX1 blaCTX-M, sul3, qnrB, dfrA12, cmlA1 Poultry cloacal swabs Cuba [46]
IncFIA blaCTX-M-15, blaCMY, blaSHV, blaOXA-1-like, tetA, tetB, aac(6′)-Ib, aadA, 

sul1, sul2, sul3, floR, cmlA
Pig feces and soil Brazil [44, 47]
Clinical isolate Mexico

IncFIB blaTEM-1 mcr-1, floR, aac(6′)-Ib-cr, aadA1, aadA5, tetA, tetB, cat, qnr, 
dfrA, sul1, sul2, strA, strB, blaCTX-M-15, blaSHV-12

Clinical isolate Colombia [47, 48]
Mexico

Incl1 blaCTX-M-14, blaTEM-1 Clinical isolate Uruguay [43, 49]
Chicken, beef and pork meat Brazil

IncR blaCTX-M, qnrS, tetA, dfrA14, gyrA, parC, strB Poultry cloacal swabs Cuba [46]
Incl2 mcr-1.5 Human Argentina [43]

IncHI2 blaCTX-M-2, blaTEM-1, sul1, aac(6′)-Ib-cr, tetA, tetB, qnrB, dfrA12, gyrA, 
parC

Chicken meat Brazil [43, 46]
Poultry cloacal swabs Cuba

IncX2 qnrB19, tetA Chicken Paraguay [50]
IncA / C blaCMY-2 Cattle, pig, turkey, human, 

horse
Chile [43, 51]

blaNDM-1 Honduras
Colombia

IncN blaCMY, blaSHV, blaOXA-1-like, tetA, tetB, aadA, sul2, qnrB10, aac(6′)-
Ib-cr

Pig feces and soil Brazil [43, 44]
Human Argentina

IncX4 mcr-1 Chicken meat Brazil [52]
Human
Food

ColE-Like qnrB19 Human Peru [43]
Bolivia
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Among the most frequently reported plasmids in E. coli of food 
origin are IncFII, IncFIB, and Incl1 isolated from animals for 
human consumption, such as chickens and pigs [94]. However, 
studies in Latin America have reported a great diversity of 
plasmid groups, such as IncI1, IncFIB, IncFIA, IncFIC, IncHI2, 
IncQ1, IncFII, IncN, IncR, IncX1, IncX4, IncA/C, IncK, IncP, 
IncHI1, IncI2, IncColE, and IncY, isolated from food, production 
animals, pork, chicken meat, and raw vegetables [52, 63].

Integrons
Gene dissemination can also be regulated by integrons 

capable of integrating and expressing antibiotic resistance 
genes. Due to variations in the amino acid sequences of their 
integrases, there are five classes of “mobile” integrons associated 
with antibiotic resistance: class 1, class 2, class 3, class 4, and 
class 5 integrons [95]. Class 1 and 2 integrons are frequently 
detected and well characterized among bacteria belonging to the 
Enterobacteriaceae family, including E. coli, with the first three 
classes of integrons being the most involved in the acquisition 
of the MDR phenotype [96]. Class 1 and 2 integrons have been 
found in plasmids and transposons, and class 3 integrons have 
only been found in plasmids and have generally been recovered 
from clinical contexts; on the other hand, class 4 integrons, or 
“superintegrons”, and class 5 integrons have minor roles in 
antibiotic resistance [95].

Studies in different countries around the world have found 
the presence of integrons in foods such as raw meats, seafood 
products, fresh vegetables, and fresh fruits, indicating the presence 
of class 1 integrons as one of the most abundant in strains of E. 
coli isolated from food products. Class 1 and 2 integrons have 
been identified in research in the livestock sector and on poultry 
farms, and class 1, 2, and 3 integrons have been identified in 
poultry, fruits and vegetables, with the dfrA1 and aadA1 genes 
being the most reported in food products [53].

In Latin America, class 1 and 2 integrons have been reported 
(Table 4) with various origins. In Mexico, food of animal origin 
and fecal samples from domestic animals, humans, and wild 
animals have been shown to be potential sources of class 1 and 
2 integrons [53, 97–99]. In Argentina, class 1 integrons have 
been identified in STEC strains isolated from food, animals, and 
the agricultural environment [32], and in Chile, class 1 and 2 
integrons have been identified in strains of porcine origin [34].

Transposons
Just as plasmids play an important role in the mobilization of 

genes between cells, transposons, or “jumping genes”, are one of 
the main mobile elements of dissemination due to their ability to 
change position within a genome and cause insertional mutations, 
duplications, and rearrangements in the genome [95].

Because of their self-recombination system, transposons can 
transfer from one plasmid to other plasmids or from a DNA 

Table 4.	 Integrons, transposons, and insertion sequences associated to antimicrobial resistance genes in E. coli reported in Latin American countries

Genetic element Rearrangement of genes that disseminate Sample origin Study country References
Integrons
Class 1 and 2 aacA4-catB3-dfrA1, aadA1, dfrA1, aadB, aacC, dfrA17 Chicken Mexico [53, 54]

Clinical isolate
Class 1 and 2 dfrA12-orfF-aadA28, dfrA17-aadA5, dfrA29, aadA7, aadA29, dfrA12-

orfF-aadA2-cmlA-aadA1, dfrA1-sat2-aadA30
Canine isolates Brazil [55]

Class 1 and 2 cat1, dfrA1, blaTEM−1, tetA, tetB, aac(6)-Ib Cattle and swine Chile [34]
Class 1 dfrA17, aadA5, sul1, sul2, sul3 Clinical isolate Uruguay [56]
Class 1 aadA1b, aadA2, aadA11cΔ, dfrB3-aadA1di-catB2-aadA6k Biopurification Argentina [53]
Transposons
Tn6242 sul1, mphA, mphR Clinical isolate Mexico [47]
Tn6652 blaCTX-M-14, blaTEM-1 Clinical isolate Uruguay [49]
Tn5387 qnrB19 Human Peru [43]

Bolivia
Tn3000 blaNDM-1 ND Brazil [51]
Tn4401 blaKPC Clinical isolate Argentina, Chile [51, 57, 58]

Brazil
Tn125 and Tn5393 blaNDM-1 ND Colombia [51]
Tn3 mcr -5.3 Horse Brazil [59]
Insertion sequences
ISApl1-IS30 mcr-1 Clinical isolate Colombia [60]

Wild Animal Argentina
Production Animals Mexico
Human Bolivia

IS1 ND Human Argentina [61]
Colombia

IS26 ND Human Argentina [61, 62]
blaCTX-M-8, blaCTX-M-15 Public wastewater 

treatment plants
Brazil

ISEcp1-IS10 blaCTX-M-14 Clinical isolate Uruguay [49]

ND: Not described.
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chromosome to a plasmid and vice versa, causing great variability 
and giving them the ability to efficiently spread resistance/
virulence genes between species, regardless of their level of 
genetic relatedness [28, 84].

Although most of the reported transposons are of clinical 
origin, their incidence and spread are potentially dangerous for 
future or current transmission in food, and this has not yet been 
sufficiently studied.

Insertion sequences
The insertion sequences are the simplest transposon elements 

found in prokaryotes, capable of being transposed independently 
in an organism [90], and play an important role in the evolution 
and dissemination of antimicrobial resistance genes [60]. 
However, like transposons, they can be found in chromosomes 
or plasmids, in addition to having complete or partial promoters, 
which are frequently located at the ends, allowing them to 
increase the expression of neighboring genes [51].

The precise search for these elements in different countries 
showed with greater frequency sequences such as IS26 and 
ISEcp1 in both Latin American and non-Latin American countries 
(Table 4 and Supplementary Table 3), related to different origins, 
but being significant for the prevalence and perspectives formed 
in each study, giving greater openness to the investigation of 
elements related to IS, and genes involved with these.

E. coli is one of the bacteria most commonly associated with 
foodborne diseases due to the ease of contamination of food 
when harvested or handled under minimal hygienic conditions, 
as well as the intrinsic capacity of the bacterium to persist and 
acquire virulence determinants that allow it to cause damage 
to susceptible hosts. In addition, it has been shown that E. coli 
pathotypes present high rates of resistance to antibiotics, which 
limits the therapeutic options to treat infections. In this review, 
studies reported in the last six years were analyzed to investigate 
the participation of E. coli in the development of foodborne 
diseases in Mexico and Latin America. Furthermore, this review 
concentrated on the contents of genes involved in resistance to 
different families of antibiotics used in the clinic, with special 
emphasis on describing those harbored in MGEs such as 
plasmids, integrons, transposons, and insertion sequences, which 
facilitate the dissemination of genes among strains of E. coli and 
other enterobacteria.

Although the global incidence of foodborne diseases is high, 
few studies have been carried out in Mexico and Latin America, 
highlighting the need to generate updated and comprehensive 
epidemiological data with a “One Health” approach to monitor the 
phenomenon of resistance in E. coli from a common perspective 
in the interaction of human, veterinary, and environmental health 
in order to provide more information and minimize the impacts of 
foodborne infections caused by MDR E. coli. Finally, it is hoped 
that this literature review will contribute to a better understanding 
of the current situation regarding the prevalence of antimicrobial 
resistant E. coli strains in food and their potential risk to human, 
veterinary, and environmental health.
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