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ABSTRACT OF THE THESIS

Security Through Stochasticity

Toward Adversarial Defense using Energy-based Models

by

Jonathan Craig Mitchell

Master of Science in Computer Science

University of California, Los Angeles, 2020

Professor Song-Chun Zhu, Chair

This paper serves as an investigation in the use of energy-based models for adversarial

defense via purification and training. Convergent and non-convergent energy-based

models are tasked to remove white-box adversarial signals embedded into images from

the CIFAR-10 dataset so that they may be classified correctly. This work presents

an analysis behind the stochastic behavior of MCMC sampling for adversarial noise

reduction in meta-stable energy basins and the benefits and challenges associated with

different regimes of energy-based learning for this task.
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CHAPTER 1

Introduction

Security and safety of machine learning systems is paramount due to their increased

adoption in modern society. Deep neural networks have a variety of use cases and

trained DNN models are being used in autonomous vehicle perception, person identi-

fication, fraud detection, and Natural Language Processing.

The goal of this work is to create an adversarial robust purification method to

remove adversarial signals from a perturbed image for the task of image classifica-

tion. This work leverages the use of an MCMC-based energy model as an auxillary

purification tool to remove adversarial signals.

This work explores the use of both convergent and non convergent energy based

models (EBM’s). The difference between these models is in the way they are trained

as well as their probability densities. The non convergent models are trained from

noise initialization whereas the convergent models are trained using persistent chains.

Non convergent models are great for image synthesis but lack steady state sampling,

a feature of the convergent models. In abusing synthesis of the non convergent model,

we attempt to reconstruct the adversarial signal in a stochastic fashion in order to

remove the noise as well as prevent an attacker from differentiating through the add-

on purification unit to create strong attacks.

We will also explore the use of adversarial-based classifier training that encompasses

the purification unit in order to create models robust both PGD attack and BPDA

attacks.
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CHAPTER 2

Background

2.1 Adversarial attacks

A seemingly benign change to an input of a trained state of the art classifier can cause

the classifier to be fooled. The adversary targets the input to create an adversarial

sample indistinguishable from the original input as shown in figure 2.1. This is known

as an adversarial attack; an algorithm that perturbs an image to fool a classifier. This

may cause serious security issues as vision algorithms integrate into our daily lives.

2.1.1 What are adversarial attacks

There are three categories of adversarial attacks with respect to vision and images. In

increasing order of strength these methods are widely known as ”black box”, ”transfer”

and ”white box” attacks respectively. Black box attacks are aware of a targets task,

dataset, and training environment (hyper parameters and tuning variables), but they

are not aware of the model parameters (weights). Transfer attacks utilize gradient-

based information of a surrogate model trained in the same environment as the target

model and attempt to transfer the attack to the target. A white box attack has direct

access to the model’s parameters and utilizes gradient based information to uniquely

target each specific model. This work is primarily concerned with white box attacks,

specifically FGSM, PGD, and BPDA attacks.

2.1.1.1 Formulation

. Consider the saddle point optimization formulation from [MMS17]. Given a dataset

{Xi}ni=1 where Xi ∈ RD with underlying data distribution q. Natural image training

based on empirical risk minimization seeks to minimize Eq[L(x, y, θ)] where x ∈ X

2



Figure 2.1: Adversarial signal added to a simple panda image using the FGSM attack

(equation 2.2) applied to GoogLeNet[SLJ14] trained on Imagenet [RDS14]

and y ∈ Rk are labels with k classes and θ are the classifiers trainable parameters.

However, simple empirical risk minimization will not provide an adversarially robust

classifier (as shown in fig 2.1). Therefore our goal is to train the classifier under the

following optimization criteria:

min
θ
E(x,y)∈q[max

δ∈S
L(x+ δ, y, θ)] (2.1)

Where S ∈ RD is the set of allowed pixel perturbation around the original image

constraints by the l∞ norm which is considered to be an ε− ball around x. δ is one of

those perturbations such that x + δ ∈ S. L(x + δ, y, θ) is the classifiers loss function.

This saddle point formulation can be decomposed into the inner maximization portion;

whose goal is to create ”true adversaries” that are able to fool the classifier. The outer

minimization portion is tasked to limit the amount of these adversaries and create a

robust classifier that can’t be fooled. Robustness is a heuristic used to measure the

accuracy of a classifier with respect to adversarial samples.

2.1.1.2 Targeted vs Untargeted attacks

There is also a distinction among adversarial attack destinations. Given an input xi

with label yi, a targeted attack is one where the adversary attempts to perturb the

input xi so that the classifier predicts class yj st i 6= j where j is a specific class

3



target. An untargeted attack creates an adversary to increase L(x, y, θ) solely to

cause misclassification of yi without any specific ”targeted” class in mind. In both

cases the perturbation should be ”imperceptible” such that the original image and the

adversarial image can not be distinguished by humans.

2.1.1.3 Specific attacks

In this work we describe three different untargeted attacks. The Fast Sign Gradient

Method (FGSM) attack is an l∞ bounded adversarial algorithm from [MMS17] that

computes adversarial examples using eq (2.2)

x̂ = x+ εsgn(∇xL(θ, x, y)) (2.2)

where L represents the loss function after a forward pass of the network and x̂ = x+ δ

is the adversarially perturbed image, x corresponds to the original image, y the class

label, θ the model parameters, and ε is the constraint of allowed perturbation of

each pixel with respect to the l∞ norm. We also borrow a variant of FSGM from

[MMS17] known as Projected Gradient Descent (PGD), that iteratively attacks each

newly formed adversarial image and projects it back to the l∞ constrained ε-ball around

the original image x

x̂i+1 = Πx+S(x̂i + αsgn(∇xL(θ, x, y))) (2.3)

where α is the learning rate and where the space of allowed pixel perturbations on x is

S specified by the aforementioned l∞-ball around x. This ensures that the difference

between x and the adversarial image x̂i+1 (which has gone through multiple attacks)

is imperceptible. Both of these attacks are considered white box because they utilize

gradient information of the model and untargeted because they are not being pushed

towards a specific class.

Currently, the most robust form of adversarial defense against equationss 2.2, 2.3

is to train a classifier on adversarial samples, as shown in [MMS17]. However, this de-

tracts from the original task of the model in that it does not increase task performance

(natural image classification) and increases both training time and computational load.

For this purpose, auxillary white box defense methods that do not require classifiers
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to undergo adversarial training have been explored such as [SKN17], [SKC18], etc. We

will refer to these methods as ”add-on purification” and their defense algorithms as pu-

rifiers. These purifiers proved hopeful until further analysis by the authors of [ACW18]

revealed that the majority of these methods were simply adding non-differentiable com-

ponents/layers to existing classifiers which caused them to ”obfuscate” their gradients

and create weak adversarial samples during testing.

To combat this ”false sense of security” the authors of [ACW18] created a Back-

wards Pass Differentiable Attack (BPDA) which is a straight-through attack algorithm

that is able to differentiate through add-on purifiers to the core network in order to

create adversarial samples [ACW18]. The approach consists of performing a forward

pass on the network in standard fashion and simply replacing the purifier with the

identity on backwards pass differentiation.

x̂i+1 = Πx+S(x̂i + αsgn(∇xL(θ, f(g(x)), y)) (2.4)

Eq 2.4 provides an approximation of the true gradient because on average g(x) ≈ x.

However, this also requires that more iterations of the attack are performed because

g(x) is treated as an approximation of the true gradient on each step. The function

g(x) is the purifier in this case. We can treat the output as xp ← g(x) where xp is a

purified image. We perform the same projection as in eq 2.3 after the perturbation.

2.2 DeepFrame

The use of MCMC based models for adversarial defense is based on the MCMC prop-

erty that after an infinite number of steps the distribution pθ(x) should not depend on

the initial state. Therefore, if the initial state contains adversarial noise, after enough

MCMC steps, that noise should disappear. However, full MCMC mixing behavior is

not desired because sampling would occur between different modes of the distribution.

Thus, we rely on a ”meta-stable” region around the adversarial signal that would pre-

vent mixing between modes and enable us to purify an image within the same local

energy basin. Additionally, the stochastic nature of the DeepFrame model [LZW15],

[WXZ18], when used for LMC sampling, makes it tough for an attacker to backpropa-
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gate through the purification network to create effective adversarial samples, thus we

utilize security through stochasticity.

2.2.1 Formulation

To present a formal definition of the models used herein, we begin with an energy-based

Gibbs-Boltzmann density and propose the formulation as seen in [NHH19], [BZ19].

pθ(x) =
1

Z(θ)
exp{−U(x; θ)}

where x is an image signal and U(x; θ) is an energy potential that belongs to a

family of distributions P = {pθ}θ∈Θ

Stochastic gradients are useful in cases where the partition function Z(θ) =
∫
X
exp{−U(x; θ)}dx

is intractable. Our goal in using this energy-based model is to synthesize realistic im-

ages x ∼ pθ(x) to be as close as possible to the true data distribution q(x). In doing

so we formulate our loss function as

min
θ
KL(q||pθ) = min

θ
Eq

[
log

q(x)

pθ(x)

]
(2.5)

min
θ
Eq[log q(x)]− Eq[log pθ(x)] (2.6)

where Eq does not depend on θ. Additionally, for an i.i.d dataset {Xi}ni=1, using

the law of large numbers we can approximate the expectation of the true underlying

distribution Eq[log pθ(x)] ≈ 1
n

∑n
i=1 log pθ(Xi) therefore

= min
θ
−Eq[log pθ(x)] (2.7)

= max
θ
Eq[log pθ(x)] (2.8)

and therefore minimizing KL(q||p) also maximizes the log likelihood of pθ(x) which is

equivalent to minimizing the negative log likelihood. The likelihood l(x|θ):

min
θ
l(x|θ) = min

θ
log(Z(θ) + Eq[U(X; θ)] (2.9)

We can approximate the intractable partition function using the gradient of logZ(θ)

which can be expressed in closed form as ∇θ logZ(θ) = −Epθ [∇θU(X; θ)] [GBC16],

thus we can minimize l(θ) by taking the derivative

∂

∂θ
l(x|θ) =

∂

∂θ
Eq[U(X; θ)]− Epθ [

∂

∂θ
U(X; θ)] (2.10)
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≈ ∂

∂θ

( 1

n

n∑
i=1

U(X+
i ; θ)− 1

m

m∑
i=1

U(X−i ; θ)
)

(2.11)

where U(X+
i ; θ) are known as positive samples that follow the true underlying dis-

tribution of the data q and where U(X−i ; θ) are known as negative samples obtained

using MCMC from the models currently learned distribution pθ(x). [NHH19]. Posi-

tive samples are simply randomly sampled training images while the negative (MCMC)

samples are obtained using Langevin dynamics. The advantage of using an energy-

based model is that it does not have to approximate the partition function because

it simply tries to create ”realistic” synthesized images from our model and compare

them to the data itself. Thus MLE forces the MCMC samples from the model pθ(x)

to be as close to q as possible.

For this application we consider our model pθ(x) to be a lightweight Convolutional

Neural Network (CNN) where a forward pass of the network f(x; θ) = −U(x; θ) and

where U(x; θ) ∈ R. Moreover, there are two regimes for training the DeepFrame

model; convergent and non-convergent. Convergent models have a probability density

function that closely approximates the steady state of the model’s distribution pθ (con-

verges to steady state). Non-convergent models have a probability density function

near pθ but only as a crude approximation. The non-convergent models have great

synthesis as shown in [NHZ19] and don’t need as many Langevin updates (eq 2.12)

to purify adversarial signals making them ideal for purification over a large number of

adversarial attacks. The non-convergent models can be initialized from noise whereas

the convergent models need many more updates to approximate the steady state dis-

tribution and must be initialized from persistent chains. Explicit details on how to

train these auxillary networks can be found in [NHZ19], [NHH19].

2.2.1.1 Langevin dynamics

We utilize the Langevin equation to perform Langevin Monte Carlo (LMC) sampling

of the model during training to obtain the negative samples. LMC is a special case of

HMC that is used when the trajectory to propose a new state consists of one leapfrog

step. [Nea12]. In typical LMC we sample momentum variable values from their zero

mean and unit variance Gaussian white noise distribution Zi ∼ N(0, I).

7



X∗i = Xi −
ε2

2

∂

∂x
U(Xi; θ) + εZi (2.12)

Where ε > 0 is a constant noise factor. According to the work of [CFG14], [NHH19],

the momentum update of the second HMC variable as well as the Metropolis-Hastings

update step can be ignored in practice. For this application it is useful to observe that

the added noise introduces stochastic behavior into the algorithm which contributes to

the stochastic vector in the purification triangle 3.7. This should halt backpropagation

through the purifier (DeepFrame) and prevent the BPDA attack from creating strong

adversaries. Once trained, the Energy-based model (EBM) is able to sample realistic

images from the data.

8



CHAPTER 3

Purification

3.1 Add-on purification

We can consider the result of eq 2.12 as extracted MCMC (negative) samples from the

model pθ(x). The EBM is trained using natural images and therefore knows nothing

about adversarial signals. The EBM has shown to be proficient in sampling realistic

images from noise and persistent chains. Therefore, if we initialize the MCMC sam-

pling process from adversarial images, and iteratively sample using equation 2.12 we

can get rid of the adversarial signal. We demonstrate the effectiveness of this method

as a defense against the BPDA attack mentioned earlier by purifying adversarial signals

that result from BPDA.

Figure 3.1 is provided as a visual representation of the BPDA algorithm flow.

Figure 3.1: Visualization of the BPDA pipeline

9



Algorithm 1 Adversarial defense against BPDA attack using purification

Require: Xm
i=1 = mini batch of natural images of size m, K = 15 langevin updates,

T = 100 adversarial attack iterations, α = 1 adv step size, ε = 8
255

maximum allowed

per-pixel deviation, error = 0,

for t=1:T do

if t = 1 then

X̃t−1 = X

end if

Xp ← g(X̃t−1) where g(.) is eq 2.12 (purification)

X̂t ← X̂t−1 + α∇XL(Xp, Y,Θ) using eq 2.4 (make new adv)

X̃t ← max(min (X̂t, x+ ε), x− ε) enforces l∞ norm by projecting into ε-ball of X

if argmax(σ(f(Xp))) 6= Y ∀i ∈ Xi then

error ← error + 1

breaks classifier

end if

end for

Where Xm
i=1 is a mini batch of natural images of size m and X̃, X̂ are its adversarial

counter-parts. On the first iteration t = 1, we purify the original image X but on

iterations t > 1 we purify the adversarial images X̃ in order to remain consistent with

BPDA. Classifier f is evaluated on ”purified” samples and not on the original images.

Therefore adversarial attacks that utilize gradient-based information of the original

image data will be less successful because they lack knowledge of the purified samples.

L(Xp, Y,Θ) represents the loss function of a classifier f where Y are the data

labels and θ are its weights/parameters. The function g(x) creates the purified image

Xp using eq 2.12 with ε = 0.01 for K langevin updates, T is the number of attack

iterations of BPDA which we have set to 100 in order to be consistent with results from

[ACW18]. The step size α denotes the strength of each adversarial perturbation (length

of path in ε-ball), and ε specifies the ε-ball around the original image X which is the

maximum allowed per-pixel deviation that approaches the limit of human perceptibility

constrained by the l∞ norm. σ() represents the log-softmax function.

10



label plane car bird cat deer dog frog horse ship truck

color red orange blue purple white cyan pink brown magenta turqoise

Table 3.1: Label maps for purification images

3.1.1 Saturation

The use of the non-convergent energy-based model risks not only removing the adver-

sarial signal but also important image features. When the non-convergent (short-run)

model runs too many Langevin updates (eq 2.12) sampling moves towards the mode

of the dataset instead of the steady state (as convergent models do). Examples of

this saturating phenomena are shown in figure 3.6 which display purified images in the

saturation region. The columns span 20 attack iterations of BPDA and each row is the

result of a purified adversary over each iteration. The more Langevin steps performed,

the more both the adversarial signal and important image features are reduced (satu-

ration). Therefore, more Langevin updates will not lead to better adversarial defense

on its own. This is present if we consider the increased number of colored boxes from

3.4, 3.5, 3.6. In these figures each colored image represents an incorrectly classified

image where each color maps to a label shown in table 3.1. A concise description of

this phenomena can be visualized in figure 3.2. Readers can refer to fig 3.3 to visualize

how adversarial and purified images relate to the classifier’s loss landscape.

Figure 3.4: Adversarial purification using K=15 langevin steps (eq 2.12)
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Figure 3.2: Visualization of the energy landscape U(x; θ). The blue line represents the

data distribution q. The yellow dashed line represents steady state samples x ∼ pθ

from a convergent DeepFrame model and the red dashed line represents the adversarial

samples x̂ ← x + δ from PGD or BPDA. Note that all three distributions have rela-

tively the same energy because there is no perceptible difference between them (due

to the l∞ norm perturbation restriction). The blue sample represents the occurrence

of saturation when an adversarial sample is purified using too many Langevin steps,

as seen in fig 3.6. In this case, the sample goes towards the mode of the distribution

which has low energy.
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Figure 3.3: Visualization of the loss landscape L(x, y, θ) of the classifier f . The gray

region around the data X represents the ε-ball of allowed perturbation. Adversarial

samples and purified samples have higher loss than the data. In this case the purified

samples are within the ε-ball but that need not be true. The steady state distribution

(from convergent sampling) may also have much higher loss than the data distribution.

13



Figure 3.5: Adversarial purification using K=30 langevin steps (eq 2.12)

Figure 3.6: Adversarial purification using K=45 langevin steps (eq 2.12)

3.2 Purification Triangle

Non-convergent noise initialized synthesis model’s are able to start from noise and

create realistic images. Therefore, they create direct pathways between noise and

realistic images. Our assumption is that these models will treat the adversarial signals

as ”noise” and simply purify them through synthesis.
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Figure 3.7: Purification Triangle where Langevin sampling represents stochastic

Langevin dynamics in eq 2.12 where Xpur are purified samples and Xadv are the ad-

versaries created from Xpur using eq 2.4

We consider the Pearson correlation between the adversarial residual RA = x̂ − x

and the purified residual Rp = xp−x as a meaningful metric to determine the relative

distance traveled in RD by the purification process. The purification process can be

represented by the stochastic Langevin sampling vector Xpur ← g(xadv) in figure 3.7.

Consider figure 3.8 which displays the correlation between RA, Rp over different step

sizes α in 1. If the step size of the BPDA attack α is smaller, then the adversary

traverses a finer path in the l∞ ball of the image space, leading to stronger adversarial

noise, causing each Langevin step to be less orthogonal to the adversarially perturbed

image. When using a larger step size in the BPDA attack, we obtain a rougher

approximation of the ”true” adversarial path, leading to weaker noise which allows

the Langevin sampling process to recognize and remove this noise. For this reason,

residual correlation is a quantifiable metric to assess purification on the BPDA attack.

Figure 3.8 displays this correlation over different attack and Langevin steps. Therefore,

the step size α quantifies how much the adversarial signal appears as a feature instead

of noise. If the signal appears as noise, the model will be able to directly reduce the

noise and traverse the synthesis path, but if the signal appears as a feature then the

model will keep it and classify incorrectly.
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Figure 3.8: Residual Correlation of the purification triangle. Only 20 attack iterations

(x-axis) are shown because the loss saturates after that. Results are displayed for step

size α = 1
127.5

,0.5,1.

3.3 Reconstruction-based Purification

The non-convergent MCMC model is trained using noise initialization z ∼ U(−1, 1)

and is optimized based on equation 2.11 so that the positive and negative samples are

as similar as possible. If we are able to initialize this model from noise z and obtain

realistic images then we can consider this model to be a generator of the form x =

Mθ(z). This was discovered in [NHZ19], which also claims that we can reconstruct an

image x by running gradient descent over the reconstructive loss. We utilize this result

and take an approach similar to Defense-Gan [SKC18] to reconstruct our adversarial

image x̂ from noise. In Defense-Gan, the authors utilize a generator network and

sample from the latent vector G(z) to reconstruct an adversarial image. Their claim

is that generative sampling will lead to imperfect reconstruction which will remove a

lot of the adversarial noise. However their results are only supported on the MNIST

dataset and not on CIFAR-10. To adopt this algorithm for the task of reconstruction-

based purification we consider the adversarial image x̂ and the reconstruction loss
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L(z) = ||x̂−Mθ(z)||22 (3.1)

where we initialize z0 from uniform noise and perform

zt+1 ← zt − η∇ztL(zt) (3.2)

In order to generate negative samples from the noise Mθ(z) we must perform equation

2.12 for K steps which involves computing the gradient of the energy-based network.

Then we must also compute the gradient from equation 3.2 and store both in memory,

thus taking the double derivative. Therefore, this defense method is extremely com-

putationally heavy and we provide a separate category for it in our results in table

3.5.

In order to achieve adversarial an even more stochastic and robust model we utilize

a recursive ”rolling” procedure. we first reconstruct the adversarial image

xt ← h(x̂)

where x̂ is the adversarial image and h(.) is equation 3.2, which is run for 240 iterations.

Then we ”roll” the algorithm and reconstruct x240 by setting x240 as the reconstruction

target and running the algorithm for another 240 iterations.

x480 ← h(x240)

The advantage in ”rolling” is that we have already removed a lot of the adversarial

signal from x̂ by producing x240, so each time we ”roll” we lose an even greater amount

of the signal. The only tricky part is discovering which iteration to use when creating

another roll. This was empirically found to be 240 iterations when using the squarred

euclidean norm for 3.1. When performing this method we are able to achieve 22%

accuracy on the BPDA attack without any adversarial training or task adjustment.

3.4 Adversarial training

Naturally trained classifier are extremely susceptible to adversarial attacks because of

their limited input space. The CIFAR-10 training dataset contains only 50k 32x32
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Figure 3.9: (Left) visualization of the first 100 langevin steps for the first reconstruction

iteration for K=0 (top), 50 (mid), 100 (bot) using eq 2.12 from noise initialization.

(Right) Visualization for reconstruction iteration 50, 150, 240. Note that the bottom

right images appears identical to the first 20 images of the CIFAR-10 testing set.

colored images. In order to increase robustness we explicitly train on the adversarial

samples provided by the BPDA attack. It is important to note that this method is no

longer ”add-on purification” because we add the task ”defend” to an existing classifier

whose primary goal used to be natural image classification.

3.4.1 Network capacity

Network capacity plays a large role in determining the capability of any adversarial

trained network because the necessary data distribution to approximate is larger than

a simple set of natural images. Not only must the classifier learn the task-dependent

natural image samples but it must also learn the space of the attacker (which does

not benefit the task!). For this purpose, training experiments were conducted using

Res-Net50 [HZR15] and WideResNet-30 [ZK16]. ResNet-50 contains 25x106 trainable

parameters and the 30x10 variant of WideResNet-30 contains 45.6x106 params. The

adversarial robustness of ResNet-50 is less than WideResNet-30 solely due to training

capacity limitations according to [MMS17]. Add-on experiments were performed using

WideResNet-18 with 11x106 trainable parameters whereas adversarial training uses

WideResNet-30.

3.4.2 BPDA training

In order to provide a training algorithm that encompasses purification we re-formulate

the optimization criterion in equation 2.1 to:

min
θ
E(x,y)∈q̄[max

δ∈S
L(g(x+ δ|ζ), y, θ)] (3.3)
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where q̄ is the distribution of the purified samples and where g(.) is equation 2.12

where ζ are the weights of the DeepFrame model and x̂ = x + δ is the adversarial

input returned from equation 2.4.

Our goal is now to train a classifier robust to the BPDA attack and the PGD

attack. In doing so, the classifier will be able to perform its original task (natural

image classification) while being robust. We note the distribution p(x|ζ, θ) as the

purified image distribution with respect to g(x) where dom g = S because x+ δ ∈ S.

Purified image samples need not necessarily be in S because we place no constraint on

the output of g(.). We describe the joint distribution as q̄(x) = q(x), p(x|ζ).

If we train our model in the purified distribution q̄(x), and attempt to move any

adversarial input into that distribution using Langevin dynamics, then the model

should be robust in that distribution. We follow training algorithm 2.

Algorithm 2 Adversarial Training using BPDA attack and Purification

Require: Xm
i=1 = mini batch of natural images of size m, K = 1 langevin updates,

T = #epochs, α = 0.5 adv step size, ε = 8
255

maximum allowed per-pixel deviation,

Xp bank of purified samples intialized to X, η classifier learning rate, r = 0.01

rejuvination rate.

for t=1:T do

Xp ← g(X̃t−1) where g(.) is eq 2.12 for 1 step

θ ← θ − η∇xpL(Xp, Y, θ) Update weights of classifier f on Xp, Y using gradient

descent

X̂t ← X̂t−1 + α∇XL(Xp, Y,Θ) using eq 2.4

X̃t ← max(min (X̂t, x+ ε), x− ε) enforces l∞ norm by projecting into ε-ball of X

end for

3.5 Results

In table 3.5 we display the results of reconstruction-based purification (3.3), add-

on purification (3.1) and adversarial training 3.4 using non-convergent EBMs. The

results are based on the BPDA atack eq (2.4) and the PGD attack eq (2.3). The

reconstruction-based purification method is given its own column because it was only
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BPDA attack Reconstruction-based Add-on purification Add-on purification Adversarial Training l∞

Ours 22 9 33 8/255

PixelDefend[SKN17] - 9 - 8/255

Ma et al[MLW18] - 5 - 8/255

PGD Attack

Ours - 41 40 8/255

Madry et al[MMS17] - - 41 8/255

Du et al[DM19] - 38 - 8/255

Table 3.2: Results of adversarial attacks

run on random subsamples of the CIFAR-10 testing dataset due to computational

constraints. All BPDA attacks were run using 100 iterations with step size 1 and

ε = 8
255

to be consistent with [ACW18]. PGD attacks were run for 20 iterations

using a step size of 1
255

to be consistent with [MMS17]. These results demonstrate the

difficulty in combating the BPDA attack and the effectiveness of adversarial training.

We also note that the accuracy with respect to the original dataset of natural images

is 89% for the case of the PGD-trained classifier and 74% for the case of the BPDA

trained classifier instead of the usual 99% on natural images. Therefore adversarial

training reduces overall generalization accuracy with respect to the original task; image

classification.

Add-on purification using energy-based models was attempted in [DM19] for the

PGD attack. We assume that these results (38%) are merely due to gradient obfus-

cation and that they should be evaluated on the BPDA attack instead. We include

our results for this task as a means of completeness (41%) with the warrant that it

obfuscates the gradient.

3.6 Conclusion

Throughout this process we have demonstrated just how difficult white-box attacks

are to combat. Currently there are no defense methods better than training the model

on adversarial samples. Add-on purification has been explored since 2018 but the best

results are in-line with the method presented here at 9%. While this may not be ideal,

it demonstrates a weakness in DNNs that holds vast importance when integrating
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them into secure applications. Overall, reconstruction-based add-on purification (sec

3.3) presents the best results but it is infeasible for current computational constraints.

A further investigation to explore convergent and conditional based EBMs is needed to

continue this approach. In theory MCMC should be able to reduce all of the adversarial

signal, but that may take an infeasible number of steps to run.

3.7 Future applications

Convergent models are troublesome to train and extremely unstable at inference. How-

ever, their use for a means of purification is a further topic to explore because they

create steady state samples and can run for a long time without mixing. In the future,

we hope to evaluate convergent models on the task of adversarial purification because

they demonstrate a lower Pearson correlation between the residuals shown in fig 3.7.

If a stable convergent conditional energy-based model can be trained using the

CIFAR-10 dataset, then we can sample from the joint distribution p(x, y) by using

the conditional model and summing over the marginal distributions p(x|y)∀y ∈ K.

This may keep sampling in each meta-stable region pure, however it also risks the

possibility that a single label might dominate the meta-stable basin which would lead

to ”unpure” sampling.
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