
UCLA
UCLA Electronic Theses and Dissertations

Title
Bitcoin Fraud Detection Using Graph Neural Networks

Permalink
https://escholarship.org/uc/item/8sf1h2f9

Author
Dahal, Laxman

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8sf1h2f9
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Bitcoin Fraud Detection Using Graph Neural Networks

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Statistics

by

Laxman Dahal

2024

© Copyright by

Laxman Dahal

2024

ABSTRACT OF THE THESIS

Bitcoin Fraud Detection Using Graph Neural Networks

by

Laxman Dahal

Master of Science in Statistics

University of California, Los Angeles, 2024

Professor YingNian Wu, Chair

Graph neural network (GNN) is one of the most widely used methods that leverage relational

information in the data to learn and make predictions. Fraud detection is a challenging task

considering the nature of fraudulent transactions which changes drastically from one case to

another as fraudsters often collude to hide their abnormal behavior/features. To this end,

GNN has a fitting application because it leverages graph structure to learn relational infor-

mation to distinguish malicious transactions from legitimate ones. This study implements

various GNNs such as graph convolution network (GCN), graph attention network (GAT),

and modified GAT to predict fraudulent Bitcoin transactions. It focuses on benchmark-

ing the results of two versions of GAT against GCN to demonstrate the superior predictive

power of the attention mechanism. The two versions include conventional GAT and modified

GAT, the latter consists of a dynamic attention mechanism. The two versions of the GAT

model are also compared in detail. GNN has been used to detect fraud or anomalies for

various practical implementations such as financial transactions, credit cards, and customer

reviews. However, a detailed study focusing on the two versions of GAT and benchmarking

it against GCN has not yet been conducted. We show that GAT has an enhanced ability to

ii

predict fraudulent transactions. The excellent predictive performance of GAT gives a clear

indication that it could play a vital role in detecting broader cryptocurrency fraud. Finally,

this study discusses the challenges of building an explainable GNN models.

iii

The thesis of Laxman Dahal is approved.

Mark Stephen Handcock

Frederic R Paik Schoenberg

YingNian Wu, Committee Chair

University of California, Los Angeles

2024

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Background . 1

1.2 Machine Learning for Graphs . 3

1.2.1 Traditional ML Tasks . 4

1.3 Node Embedding . 9

1.3.1 Encoder and Decoder . 10

1.3.2 Random Walk-Based Approaches . 11

1.4 Fraud Detection Using GNN: A Survey . 12

1.5 Objectives . 14

1.6 Organization . 15

2 GNN Architectures . 16

2.1 Basics of Graph Neural Networks . 16

2.1.1 Permutation Invariance and Equivariance 16

2.1.2 Neighborhood Aggregation . 17

2.2 Graph Convolution Network . 18

2.2.1 Key Components of a GNN Layer . 19

2.2.2 Classical GCN Layer . 20

2.2.3 Build Practical GNN Model . 22

2.3 Graph Attention Network . 23

2.3.1 Graph Attention Layer . 23

2.3.2 Multi-Headed Attention . 25

v

2.4 Modified GAT (GATv2) . 26

3 Fraud Detection Using GNNs . 29

3.1 Dataset . 29

3.2 Model Training . 30

3.2.1 GCN . 31

3.2.2 GAT . 32

3.2.3 GATv2 . 32

3.3 Model Evaluation . 34

3.4 A Note on Explainability . 35

4 Conclusions . 38

4.1 Summary and Findings . 38

4.2 Limitations and Future Studies . 38

A Appendix . 40

A.1 Precision . 40

A.2 Recall . 40

A.3 F1-Micro . 42

A.4 F1-Macro . 42

A.5 AUC-ROC . 42

vi

LIST OF FIGURES

1.1 Graphical representation of directed (left) and undirected graph (right). 3

1.2 Three types of hierarchies in downstream ML tasks on graphs. 5

1.3 Comparison of a traditional and modern ML workflow on a graph. In the traditional

workflow, extensive feature engineering is required but in modern workflow graph rep-

resentation learning is leveraged. 10

2.1 Overview of the model architecture with 2-layer convolutions. 18

2.2 Multi-layer GCN with multiple spectral graph convolution. Each convolution layer

encapsulates each node’s hidden representation through the computational graph by

aggregating feature information from its neighbors. Each subsequent convolution is

followed by a nonlinear transformation such as ReLu. Source: Wu et al. (2020). . . . 19

2.3 Overview of the model architecture with 2-layer convolutions. Source: Zhou et al.

(2020b). 22

2.4 An illustration of multi- head attention (with K = 3 heads) by node 1 on its neighbor-

hood. Different arrow styles and colors denote independent attention computations.

The aggregated features from each head are concatenated or averaged to obtain
−→
hi

′.

Source: Veličković et al. (2017). 25

3.1 a) Number of transactional nodes per class; b) loss ratio curves of 609 buildings as a

function of the intensity measures. 30

3.2 Graphical visualization of Bitcoin transactions at time step 18. 31

3.3 Model architecture of classical GCN with three convolutional layers and a linear classifier. 32

3.4 Model architecture of GAT with two convolutional layers and an MLP classifier. . . . 33

vii

3.5 Model architecture of modified GAT with two convolutional layers (with modified at-

tention mechanism) and an MLP classifier. 33

3.6 Comparison of training losses as a function of epochs for GCN, GAT, and GATv2 models. 34

3.7 a) Training and b) validation accuracy of the three models. 35

3.8 Confusion matrix of a) GCN; b) GAT; c) GATv2. 36

3.9 Transaction graph with predicted label using GAT for time step 28. 37

A.1 Precision of GCN, GAT, and GATv2 for a) training; b) validation as a function of the

epochs. 41

A.2 Recall of GCN, GAT, and GATv2 for a) training; b) validation as a function of the

epochs. 41

A.3 F1-Micro of GCN, GAT, and GATv2 for a) training; b) validation as a function of the

epochs. 42

A.4 F1-Macro of GCN, GAT, and GATv2 for a) training; b) validation as a function of the

epochs. 43

A.5 AUC-ROC of GCN, GAT, and GATv2 for a) training; b) validation as a function of

the epochs. 43

viii

LIST OF TABLES

1.1 Summary of the GNN algorithms developed to detect and predict frauds 14

ix

CHAPTER 1

Introduction

1.1 Background

In recent years, Graph neural networks (GNNs) have become one of the emerging research

areas in the machine learning (ML) domain. From molecular fingerprinting (Jumper et al.,

2021) to predicting a source of misinformation in a social network (Monti et al., 2019),

GNNs have been implemented to solve a host of problems involving networks or graphs.

GNNs are designed to operate on networks, making them readily applicable to real-life

applications such as disease pathways, transportation networks, social misinformation web,

and financial transaction networks. These networks are incredibly complex to be accurately

represented by tabular data in Euclidean space. Hence, it is challenging for conventional deep

learning models such as convolutional neural networks (CNNs) to learn and make predictions

adequately. The inherent unstructured nature of these problems makes them suitable to be

represented as a graph. Additionally, a graph can accommodate rich relational information

(e.g., the strength and direction of connections) between its entities. GNN leverages such

relational information to make inferences. This indicates that any GNN or graph-based

statistical method should, at the very least, be able to operate on a non-Euclidean data

structure. To this end, GNNs are mathematically formulated to explicitly elucidate complex

relationships and interactions between entities in a network. The underlying objective of

GNN is to use representation learning to automatically learn features based on the arbitrary

topological structure of a graph. Several studies across various fields (Jumper et al., 2021;

Zhou et al., 2020a; Fan et al., 2019; Hamilton et al., 2017a) have demonstrated that state-of-

1

the-art GNNs can be developed by exploiting arbitrary topological structure and relational

information contained within a graph.

Although graphs are becoming the new frontier of deep learning, attempts to develop a

neural network architecture for graphs date back to the late 1990s. Several studies (Sper-

duti and Starita, 1997; Frasconi et al., 1998) proposed modified versions of recursive neural

networks (RNN) with a focus on graph structure such as directed acyclic graphs. Although

novel at the time, these methods were plagued by convergence issues, limited expressivity,

and representation inabilities. In 2010, the classic multilayer feedforward neural network

trained with the back-propagation algorithm (LeCun et al., 1998) was extended to perform

supervised learning tasks in a class of graphs such as cyclic/acyclic, and directed/undirected

graphs (Micheli, 2009; Scarselli et al., 2008). These methods alleviated some of the limita-

tions of the previous models, but their reliance on iteration to attain convergence limited

their extendability and scalability. However, the paradigm-shifting success of deep learn-

ing models such as convolutional neural network (CNN) (LeCun et al., 2015) renewed the

need to develop GNN. Thus, in a certain sense, the advancement in GNN architectures can

be attributed to the simple fact that CNN is designed to operate on one-dimensional (1D)

(e.g., text or speech) or two-dimensional (e.g., images) grid data. For tasks such as image

classification and semantic segmentation, CNN transforms the grid or sequence data to Eu-

clidean space before passing it through the hidden convolution layer and looping mechanism

to learn and make predictions. Specifically, CNN aims to predict spatially localized features

such as identifying handwritten digits or completing sentences in a paragraph. The essen-

tial components of CNNs include local connections, shared weights, and multiple hidden

layers. In literature, several researchers have attempted to generalize CNNs for graph data

without much success. The challenge is developing convolutional filters and pooling opera-

tors that can be implemented in both the Euclidean and non-Euclindean domains. Hence,

the first successful proposal of a graph-based neural network architecture in the form of a

graph convolutional network (GCN) (Kipf and Welling, 2016) took advantage of the notion

2

that a computational graph (and subsequently a GNN) can be defined by a node’s neigh-

bors. Specifically, the key idea in GCN is generating node embedding by aggregating local

neighborhood information and propagating that information across graphs to compute node

features.

1.2 Machine Learning for Graphs

A graph is a visual representation of the mathematical structure used to model the pairwise

(directed or undirected) relationship between two entities or objects. Mathematically, a

graph is defined as G = (V,R,E) where vi ∈ V are the nodes and (vi, r, vj) ∈ E are the

edges with relation type r ∈ R. Figure 1.1 highlights two classes of heterogeneous graphs:

directed and undirected. At a minimum, two key components (nodes and edges) are required

to define a graph (i.e., G = (V,E)), while additional features such as relationship type (R)

are optional. In Figure 1.1, the circled numbers represent the vertices (V) that are connected

by edges (E) (black line). The term “vertices” is synonymous with “nodes” and is hereafter

used interchangeably. As highlighted in the figure, the edges (or equivalently links) can be

directed or undirected. At its core, a graph simply defines the relationship and interaction

between nodes.

Figure 1.1: Graphical representation of directed (left) and undirected graph (right).

3

In graph-based ML, the downstream tasks can be broadly classified into three classes as

shown in Figure 1.2. These tasks are described as follows:

1. Node-level tasks aim to learn node-level features and solve the problem at an in-

dividual node level. An example of a node-level task is node classification where the

objective could be to determine if a transaction is fraudulent. The node-level task is

the most granular task possible in a graph.

2. Edge-level tasks focus on the connection and relationship between two nodes. Some

of the edge-level tasks include side-effect prediction of two drugs, recommender system,

etc.

3. Graph-level tasks involve an entire graph (or subgraph). Several types of actions

such as graph classification, clustering, and new graph generation can be performed at

the graph level.

1.2.1 Traditional ML Tasks

Traditional ML models such as linear regression, random forests, support vector machines

(SVM), and neural networks can handle all three hierarchies of tasks on a graph. How-

ever, these models require a rich set of features for them to achieve good performance. To

distinguish from graph-based ML, the term “traditional” ML is used to represent any ML

algorithm that is not designed to inherently handle geometric data structure. In a tradi-

tional ML pipeline, designing features and obtaining data to train and test the model is

integral to the success of the model. In fact, feature engineering is often leveraged to push

the mathematical limitations of an ML model and achieve high-level performance. Feature

engineering on graphs, however, has an added layer of complexity. In addition to capturing

the relational information between nodes, the features also need to correctly describe the

topological pattern of a network. Based on different ML tasks highlighted in Figure 1.2, the

4

Figure 1.2: Three types of hierarchies in downstream ML tasks on graphs.

5

following sub-sections give an insight into feature engineering for traditional ML tasks on

graphs.

Node-Level features

For node-level prediction, ML models need node features that can capture the importance

of a node in the graph as well as the topological structure around the node. The overall goal

of the node-level features is to characterize the relevance and significance of a node in the

network. Some of the approaches to extract node-level features are listed below:

1. Node degree: The degree (kv) of a node (say v) is simply the number of edges

connected to the node. It is one of the most basic node-level features that captures

the network structure without capturing the importance of a node or the neighboring

nodes.

2. Node centrality: Node centrality is intended to model the importance of a node to

the graph. Various node centrality methods are available such as eigenvector centrality,

betweenness centrality, and closeness centrality.

3. Clustering coefficient: A clustering coefficient is a measure of the degree to which

nodes in a graph tend to cluster together. It is given by ev = #of edges among neighboring node

(kv
2)

where kv is the degree of node, v, and ev ∈ [0, 1]. The clustering coefficient (ev)

measures the connectivity of v′s neighborhood nodes. For instance, ev = 1 signifies

that every neighboring node (of node v) in a graph or subgraph is connected to each

other while ev = 0 implies that none of the neighboring nodes are connected to each

other. This feature is useful to capture a one-degree neighborhood around a given

node.

4. Graphlets Graphlets are small subgraphs that are intended to describe the network

structure around the node of interest. Unlike the clustering coefficient, graphlets are

6

not limited to the one-degree neighborhood and can be generalized for a specified

subgraph.

The non-exhaustive list highlights some of the potential node-level features a traditional ML

model could leverage for node-level tasks such as node classification. For instance, node

degree, node centrality, and clustering coefficient could be used to detect the popularity of

an influence on social media platforms.

Link-level features

Link-level prediction tasks require link-level features that define relational properties between

two nodes. The objective of the link-level task is to predict new links based on the existing

links in the network. Mapping out citation networks is an excellent example of link-level tasks

where the goal is to predict the missing citation links. The three most common link-level

features are explained below:

1. Distance-based features: There are different variations of distance-based features-

all of which are based on the premise of computing distance between two nodes. The

shortest path distance is one of the most common metrics used as the link-level feature.

2. Local neighborhood overlap: Local neighborhood overlap captures the number of

neighboring nodes shared between two nodes v1 and v2. Several metrics are available

to quantify the local neighborhood overlap: common neighbors, Jaccard’s coefficient

(Niwattanakul et al., 2013), and the Adamic-Adar index (Adamic and Adar, 2003).

3. Global neighborhood overlap: One of the limitations of the local neighborhood

overlap is that the metric is always zero if two nodes do not have any neighbors in

common. To overcome this limitation, global neighborhood overlap accounts for the

entire graph. One of the most popular global neighborhood features is the Katz index

(Katz, 1953) which counts the number of all the possible walks between a given pair of

7

nodes. The Katz index is used to score two nodes which is subsequently used to make

link predictions.

Graph-level features

For graph-level tasks such as graph generation, graph-level features that effectively encom-

pass the structure of an entire network are essential to make predictions. Since a graph can

be complex, arbitrary, and sometimes ambiguous, distance- or centrality-based metrics (as

widely used as node- and link-level features) are inadequate in capturing the structure and

function of a graph or subgraph. At a graph level, feature vectors are designed as kernels.

For instance, a kernel can simply be defined as K(G,G′) = ϕ(G)T · ϕ(G′) where ϕ(·) is

the feature representation of the graph. The kernel, K(G,G′) ∈ R, measures the similarity

between the data in the graph. Once a kernel is defined, off-the-shelf ML models such as

kernel SVM can directly be used to make predictions.

1. Graphlet kernel: Graphlet kernel draws its motivations from the idea of bag-of-words

(McCallum et al., 1998; Joachims, 1998). The bag-of-words uses the word count as a

feature for documents with no regard to the order of the words. In graph theory, this

concept can be generalized as the bag-of-graphlets since the underlying idea is counting

the number of graphlets. In graphlet kernel, a list of graphlets of size k is assembled

to compute the kernel. One of the limitations of the graphlet kernel is that counting

the k−sized graphlets for a graph with size n is computationally expensive since the

enumeration takes nk computational complexity.

2. Weisfeiler-Lehman kernel: To address the computational limitations of graphlet

kernel, Weisfeiler-Lehman (WL) kernel (Shervashidze et al., 2011) was proposed to

design an efficient graph feature descriptor ϕ(G). The WL kernel is a generalization of

the bag-of-node-degrees that leverage K−hop neighborhood information to iteratively

enrich node information in the kernel. Specifically, the WL kernel applies a K−step

8

color refinement algorithm (often hash maps) to enrich node colors. To capture differ-

ent K−hop neighborhood structures, nodes with similar colors are grouped together.

Finally, the idea of a bag of colors is implemented to represent the graph. The WL

kernel is computationally efficient as the time complexity is linear in the number of

edges for each iteration step.

Several other graph kernels such as random-walk kernel (Vishwanathan et al., 2010) and

shortest-path graph kernel (Borgwardt and Kriegel, 2005) have also been proposed in the

literature but are not presented here for brevity. For the scope of this study, if one wanted

to implement traditional ML algorithms, developing node- and link-level features would be

the most relevant.

1.3 Node Embedding

The Section 1.2.1 discussed feature engineering at three different levels for various down-

stream ML tasks such as node classification, link prediction, and new graph generation.

Figure 1.3 highlights the overview of the workflow. One of the key components of traditional

ML tasks is the need for feature engineering and feature design to capture the various aspects

of a graph such as the topological structure of a network, the importance of a node in the

network, etc. The “modern” graph ML leverages graph representation learning which allevi-

ates the need to develop graph- and task-specific features. As demonstrated in Figure 1.3, for

a given graph, representation learning is implemented to compute a low-dimensional feature

vector for each node in the graph. The low-dimensional vector is subsequently used as the

input for the downstream ML tasks. In the subsequent sections, several widely used node

embedding algorithms are discussed.

9

Figure 1.3: Comparison of a traditional and modern ML workflow on a graph. In the traditional

workflow, extensive feature engineering is required but in modern workflow graph representation

learning is leveraged.

1.3.1 Encoder and Decoder

Within the node embedding space, the encoder and decoder framework (Hamilton et al.,

2017b) is proposed as a unified workflow that capitalizes on the idea of an encoder function

(Equation 1.1a) that maps each node to a low-dimensional vector, and a decoder function

(Equation 1.1b that reconstructs the graph from a learned encoder. Generally, the encoder

and decoder are formulated as

ENC : ENC(v) → zv ∈ Rd (1.1a)

DEC(ENC(u),ENC(v)) = DEC(zu, zv) ≈ sG(u, v) (1.1b)

where ENC(v) embeds node v of graph G into a d−dimensional space and a pairwise decoder

DEC(zu, zv) computes a similarity measure which quantifies the similarity of two nodes (u

and v) in the original graph (G). The goal is to optimize the encoder and decoder functions

such that similarities between u and v in the original graph (i.e. sG(u, v)) is adequately

10

reconstructed by DEC(zu, zv) with minimal loss. The loss function is represented as

L =
∑

(u,v)∈D

ℓ (DEC(zu, zv), sG(u, v)) (1.2)

where D is a set of training node pairs. Once the encoder-decoder engine is optimized, the

encoder can be used to generate embeddings, which can then be directly used as the feature

inputs for the downstream ML tasks. It is important to note that the encoder-decoder

framework is unsupervised or self-supervised learning that relies on neither the node labels

nor the node features. Additionally, node embedding is task-independent and can be used

for any ML task.

1.3.2 Random Walk-Based Approaches

The encoder-decoder system presented in Section 1.3.1 is a generic framework for node em-

beddings. Conceptually, the simplest encoder-decoder function could be a simple embedding

function (also sometimes known as “shallow” embedding) where the encoder is just a lookup

function that returns a unique embedding vector that each node is assigned. However, with

the advances in computational capacity, several studies have proposed a stochastic mea-

sure of node similarity based on the idea of random walks (Perozzi et al., 2014; Grover

and Leskovec, 2016). Similar to shallow encoding, the goal is to learn the embedded vector

representation of node u (i.e., zu) by leveraging the predicted probability of visiting node

v on random walks starting from node u. Equation 1.3 outlines the loss function random

walk-based approaches aim to minimize by using a random walk strategy, R. that makes

NR random walks.

L =
∑
u∈V

∑
v∈NR(u)

− log

(
exp(zTu zv)∑

n∈V exp(zTu zn)

)
(1.3)

DeepWalk and node2vec are the two most popular random walk-based embedding ap-

proaches but use different optimizations and approximations to compute the loss in Equa-

tion 1.3. DeepWalk employs a “hierarchical softmax” technique to compute the normalizing

11

factor, using a binary-tree structure to accelerate the computation. In contrast, node2vec

approximates Equation 1.3 using “negative sampling” instead of normalizing over the full

vertex set. In other words, node2vec approximates the normalizing factor using a set of

random “negative samples” and allows for a flexible definition of random walks.

1.4 Fraud Detection Using GNN: A Survey

Fraud is almost as old as the World Wide Web. It is a decades-old problem. There are

different shapes and forms of fraudulent activities prevalent in society. For generalization,

fraud can be grouped under the umbrella term anomalies. Anomalies appear in virtually

all sectors- including but not limited to fabricated citation networks, spam email detection,

controversy detection, fake news detection, source of cyberbullying, rumor detection, and

source of fake tweets. It is not an exaggeration to say that virtually every ML algorithm

ever proposed has been implemented to detect fraud or anomaly. Anomaly detection is a

unique problem that continues to evolve over time. The following three factors make anomaly

detection a challenging problem: 1) anomalies, by definition, are not a normal occurrence

which signifies that the dataset to train and test the model tends to be highly imbalanced,

2) the nature, scope, and scale of the fraudulent activities evolve as fraudsters leverage

technology to camouflage themselves better and develop sophisticated fraud schemes, and

3) the point of origin of the fraud if often unique from one fraud to another which makes

it difficult to pinpoint the root node and learn from its corresponding attributes. Although

the scope of this study is financial fraud, the remainder of this section presents a non-

exhaustive survey of state-of-the-art methods developed to detect fraud across various sectors

and benchmark datasets. Fundamentally, the studies presented below attempt to solve the

three challenges outlined above.

Financial fraud detection is an active area of research with thousands of research publica-

tions every year. The vast population of research is grouped into two broader groups: GCN

12

and GAT. In the past decade or so there has been substantial development in graph-based

ML algorithms which can be roughly grouped into two groups based on the development of

GCN and GAT. It is indisputable that GCN and GAT helped lead the advancement of GNN

methods. To this end, Table 1.1 highlights the non-exhaustive, hand-curated list of recent

studies that have leveraged GNN methods to detect fraud in financial and social networks.

Specifically, Lu and Li (2020) proposed Graph-aware Co-Attention Networks (GCAN) to pre-

dict a fake tweet based on the retweets and the features of the account retweeting. GCAN

makes use of Gating Recurrent Units (GRU) and 1-D CNN to learn the sequential correlation

of retweets. In any modern internet platform, a recommender system is the backbone and

often determines the success of any e-commerce or digital platform including social media.

Identifying and removing illicit actors in the network is crucial to developing a responsible

recommender system. To address this, Zhang et al. (2020) proposed a robust recommender

system that implements GCN to eliminate the fraudulent reviews from the dataset before

training the recommender system. Similarly, some studies (Wang et al., 2019) have re-

searched the impact of the evolution of licit customers’ financial behavior and how that can

be leveraged to detect fraudulent behaviors. The financial transactional data often exhibits

multifaceted information as the customer’s financial behaviors evolve over time. To extract a

richer representation, the proposed study (Wang et al., 2019) implemented a large multi-view

network through a hierarchical attention mechanism to better correlate different neighbors

and different views. By expanding the labeled data through social relations, the authors were

able to achieve comparable accuracy to the state-of-the-art methods when implemented on

the Alipay dataset.

More recently, researchers have started to explore various ways to enhance the established

GCN and GAT architecture. For instance, Dou et al. (2020) did extensive work on detecting

camouflaged fraudsters and proposed the CARE-GCN algorithm. Specifically, they devel-

oped a label-aware similarity measure to identify camouflage at the feature level (i.e., node

level) and at the link level. Subsequently, they implemented RL to determine the optimal

13

Table 1.1: Summary of the GNN algorithms developed to detect and predict frauds

GNN Class Algorithm Dataset Application Reference

GCN

GRU + GCN Twitter
Detect the source of

fake tweet
GCAN (Lu and Li, 2020)

GCN Yelp, Amazon
Robust recommender system

that account for fake reviews
GraphRfi (Zhang et al., 2020)

RL + GNN Yelp, Amazon Detect camouflaged fraudsters CARE-GNN (Dou et al., 2020)

GAT

Hierarchical

GAT
Alipay

A multi-view attention mechanism

to predict financial fraud
SemiGNN (Wang et al., 2019)

LSTM + GNN Alipay Predict credit risk TemGNN (Wang et al., 2021)

Multi-attention

GAT
Alibaba Predict credit card defaulter MAHINDER (Zhong et al., 2020)

Gated Temporal

GAT
Yelp, Amazon Detect credit card fraud GTAN (Xiang et al., 2023)

amounts of neighbors to be selected across different relations which are ultimately aggregated

to detect a camouflaged fraudster. At the time of the publication, the CARE-GNN was at

the top of the leaderboard for two benchmarks- Yelp and Amazon datasets. A standard GNN

model can also be advanced by utilizing the temporal properties of the network as proposed

by Xiang et al. (2023). The authors proposed a semi-supervised model that is designed

to work on the temporal transaction graph. The messages among the temporal nodes are

passed through the gated attention network which learns the transaction representation and

helps model the fraud patterns through risk propagation. At the time of this writing, the

GTAN is the top-ranked algorithm for two fraud detection benchmarks (Yelp and Amazon

datasets).

1.5 Objectives

The primary objective of this study is to implement various GNN models to investigate

fraud detection in Bitcoin transactions. Specifically, we aim to implement GCN, GAT, and

14

modified GAT to 1) detect fraudulent transactions and 2) evaluate if the attention mechanism

in GAT boosts the performance. In a financial transaction network, fraud detection is often

represented as a node-level task where account holders are represented as a node and the

goal is to determine if a given account holder is a fraud or not. Equivalently, the same

fraud detection can also be framed as an edge-level prediction problem by representing the

transaction as an edge between two nodes (customers). The flexibility in problem formulation

makes GNN extremely adaptable and generalizable. In fact, the definition of learning and

prediction tasks depends on the problem and consequently network representation. If the

fraud detection problem is framed as the node classification task, GNN is designed to learn

graph structure at the node level in addition to learning the node-level features. Similarly,

if the problem is outlined as the edge classification, the graph structure is learned based on

the pair of nodes.

1.6 Organization

The remainder of the thesis is organized as follows. In Chapter 2, a spectrum of GNN-based

architectures such as GCN, GAT, and modified GAT are presented. The chapter gives a

detailed mathematical background into the aforementioned architectures and a guide on how

to build a GNN. In Chapter 3, the three GNN models are implemented to detect fraudulent

Bitcoin transactions. A detailed performance evaluation of the models is also presented while

comparing the three models. Finally, Chapter 4 summarizes findings, discusses limitations,

and provides recommendations for potential future studies.

15

CHAPTER 2

GNN Architectures

2.1 Basics of Graph Neural Networks

Some of the fundamental concepts of GNN such as node embedding (Section 1.3), and fea-

ture representation (Section 1.2.1) have been previously discussed. This section presents

a few additional theoretical underpinnings that distinguish GNN from CNN. Some com-

mon concepts such as stochastic gradient descent, forward-propagation, back-propagation,

regularization, and activation functions are not discussed in detail for brevity.

2.1.1 Permutation Invariance and Equivariance

Permutation invariance/equivariance is one of the unique characteristics of GNN that dis-

tinguishes it from other deep learning methods such as CNN. GNNs are inherently invariant

to permutation because the graph representation of a network will always be the same no

matter how the nodes are ordered. For instance, a network with N nodes will have N !

permutations or order plans. The permutation invariant property implies that just learning

one function (say, f) is sufficient to map all N ! variations of order plans. Similarly, for node

representation, GNN is permutation equivariant which signifies that for different order plans,

the vector representation of the node at the same position is always the same. GNNs consist

of multiple permutation invariant/equivariant functions across various layers which ensures

that the model will produce the same output regardless of the order of nodes in the input

graph. This property is essentially what makes GNN the perfect fit for unstructured and

16

unordered data. Other popular models such as CNN are not permutation invariant as they

produce different results for the same inputs but with different orders. For instance, CNN

utilizes a pooling operation, which is often a fixed dimension (e.g., 3×3 operator) that slides

across the feature maps to summarize the feature representation. The pooling operation is

not permutation invariant/equivariant, as the output would be totally different if the same

image is rotated.

2.1.2 Neighborhood Aggregation

At its core, the mechanism by which the information is aggregated and propagated is what

determines if a neural network is permutation invariant/equivariant. In a seminal work on

GCN, Kipf and Welling (2016) proposed a key concept of layer-wise propagation rule moti-

vated by the first-order approximation of localized spectral filter on graph (Hammond et al.,

2011). The authors demonstrated that by stacking multiple K-localized convolutional layers,

rich information can be aggregated, propagated, and transformed to ultimately develop a

multi-layer GCN model. Figure 2.1 gives a graphical illustration of a simple GNN model

architecture. The input graph is an undirected graph with six nodes where node A is the

target node. The primary objective of neighborhood aggregation is to compute node fea-

tures (of the target node A in this example) through node embeddings based on the local

network neighborhood. The node embeddings can be computed using different aggregation

approaches across the layers. One of the simplest aggregation approaches is to average the

messages from neighbors and propagate them to the downstream layers. Various aggrega-

tion operators/functions such as min(·), max(·), and mean(·) can be used to combine the

information. It is important to note that the aggregation operator needs to be permuta-

tion invariant, for the ordering of hA and hC should not matter in the third NN at the 0th

convolution layer.

In the Figure 2.1, the two-layer convolution is essentially node A’s computational graph.

Unique from classical CNN, in GNN, every node gets to define its own computation graph

17

based on its neighborhood. Ultimately, the idea of neighborhood aggregation is what enables

GNN to extract such rich and comprehensive information from spatial graphs.

Figure 2.1: Overview of the model architecture with 2-layer convolutions.

2.2 Graph Convolution Network

Graph convolution network (GCN) is the first of its kind to generalize well-established neural

network architectures such as RNN or CNN to work on spectral graphs that are arbitrar-

ily structured. Kipf and Welling (2016) demonstrated that by leveraging simple yet robust

simplifications of spectral graph convolutions, GCN can be used for fast, scalable, and accu-

rate semi-supervised classification tasks in a graph. A GCN is a neural network model that

is built by stacking multiple spectral graph convolutions (as shown in Figure 2.1), each of

which is followed by a point-wise nonlinearity. Figure 2.2 shows a graphical representation

of a multi-layer GCN with filters.

18

Figure 2.2: Multi-layer GCN with multiple spectral graph convolution. Each convolution layer

encapsulates each node’s hidden representation through the computational graph by aggregating

feature information from its neighbors. Each subsequent convolution is followed by a nonlinear

transformation such as ReLu. Source: Wu et al. (2020).

2.2.1 Key Components of a GNN Layer

A single GNN layer within the GCN model is comprised of two primary components 1)

message passing or transformation, and 2) aggregation. A GNN layer compresses a set of

vectors into a single vector by encoding the information in a neighboring node and self-node

to generate the output embedding which is then aggregated, transformed, and propagated

to another layer. A typical message computation could look as follows:

m(l)
u = MSGl

(
h(l−1)
u

)
(2.1)

where MSG is the message computation function, m
(l)
u is the message of node u, and h

(l−1)
u is

the input node embedding. The message computation is intended to encapsulate the message

which will be sent to the other nodes. A very simple example of a message computation

function is a linear layer (as shown in Equation 2.2) where W(l) is the weight matrix.

m(l)
u = W(l)h(l−1)

u (2.2)

19

The other key component of any given GNN layer is message aggregation. As highlighted

in Figure 2.1, the message aggregator function for each node aggregates the messages from

the nodes’s neighbors. The aggregator function can be formulated as:

h(l)
v = AGG(l)

(
m(l)

u , u ∈ N(v)
)

(2.3)

where the AGG() function can be a common aggregation operation such as summation, av-

erage, maximum, minimum, or any other distance-based metrics as described in Chapter 1.

One of the issues in the aggregator function as described in Equation 2.3 is that the infor-

mation from node v itself could get lost. This issue can be circumvented by concatenating

self-node information to the node embedding as shown highlighted in Equation 2.4

h(l)
v = CONCAT

(
AGG(l)

(
m(l)

u , u ∈ N(v)
)
,m(l)

v

)
(2.4)

where m
(l)
v is the self information of node v computed using Equation 2.2. Once the node-

level message is computed and aggregated, the nonlinear activation function (e.g., ReLu,

Sigmoid) is used to add expressiveness. The activation function is often written as σ(·).

2.2.2 Classical GCN Layer

In the notations that have been described so far, a classical GCN layer as defined in Kipf

and Welling (2016), can be mathematically represented as follows

h(l)
v = σ

 ∑
u∈N(v)

W(l) h
(l−1)
u

|N(v)|

 (2.5)

where the message is normalized by some normalization factor which is then aggregated by

taking the sum across all neighbors including the messages from self edges. The output is the

embedding of node v at layer l. The GCN layer outlined in Equation 2.5 essentially builds a

graph-based neural network model, say f(·), that encodes the embeddings. The formulation

shown in Equation 2.5, shows the embedding of the lth layer computes using the embedding

from the (l − 1)th layer.

20

Alternatively, for the sake of defining the algorithm of the GNN layer (f(X,A)), Equa-

tion 2.5 can be re-formulated in a more generic form as

f(H(1), A) = σ
(
AH(1)W (1)

)
(2.6a)

f(H(1), A) = σ
(
D̂− 1

2 ÂD̂− 1
2H(1)W (1)

)
(2.6b)

where Â = A+ IN is the adjacency matrix of the graph G with added self-connections, IN is

the identity matrix, D̂ii =
∑

j Âij, W
(l) is the learnable weights, σ(·) is an activation function.

Additionally, H(l) ∈ RN×D is the embedded feature matrix at the lth layer, H(0) = X is

the input feature matrix, H(L) = Z is the output feature matrix, and L is the number of

layers. Algorithm 1 outlines the algorithm of the graph convolution layer. The seemingly

simple yet noble idea of self-connection and symmetric normalization is what makes GCN

so powerful because the symmetric normalization (of A) enables matrix multiplication (e.g.,

Equation 2.6a) without scaling the feature vectors.

Algorithm 1 Graph Convolutional Layer

Data: Graph adjacency matrix A, Feature matrix X, Learnable weight matrix W , Activa-

tion function σ

Result: Output feature matrix H

Input : Graph adjacency matrix A, Feature matrix X, Learnable weight matrix W , Acti-

vation function σ

Output: Output feature matrix H

1 D̂− 1
2 = Diagonal degree matrix of A with elements D̂ii =

∑
j Âij Ã = A + IN ; // add

self-connections

2 Â = D̂− 1
2 ÃD̂− 1

2 ; // symmetric normalization

3 H = σ(Â ·X ·W)

4 return H

21

2.2.3 Build Practical GNN Model

Like other neural network models, GNN can easily be enhanced by stacking convolutional

layers. Since the fundamental idea of GNN is rooted in the neural network framework,

modern deep learning modules such as batch normalization, dropout, attention/gating, skip

connection, and pooling, can be easily included in the model. Figure 2.3 outlines the overall

implementation workflow of a GNN model.

Figure 2.3: Overview of the model architecture with 2-layer convolutions. Source: Zhou et al.

(2020b).

In this study, a classical two-layer GCN is implemented with batch normalization but no

dropout. The results obtained from the model are presented and compared against other

graph-based models in Chapter 3.

22

2.3 Graph Attention Network

One of the major limitations of GCN is that it applies a uniform convolution operation

to all neighbors at any given convolutional layer. In modern deep learning frameworks,

attention mechanisms have become a gold standard, especially in many sequence-based tasks

(Bahdanau et al., 2014). Inspired by the cognitive attention of human beings, the attention

mechanism implicitly determines the neighboring nodes that the node of interest should pay

the most attention to. Graph attention networks (GATs) (Veličković et al., 2017) represent

a significant advancement in the real of graph-based deep learning. The use of masked self-

attentional layers addresses the shortcomings of conventional GCNs and results in a novel

GAT architecture that is computationally efficient and does not require spectral features of

the entire graph upfront.

2.3.1 Graph Attention Layer

The overarching theoretical and practical underpinning of GATs is to focus on the most

relevant parts of the input to make decisions. In the spectral graph domain, self-attention

is referred to as the node embedding computed to represent a computational graph of the

target node through the attention mechanism. In the seminal work on transformers, Vaswani

et al. (2017) demonstrated that self-attention can significantly improve the performance of

sequence-based tasks and construct powerful state-of-the-art deep learning models.

Following the mathematical formulation of GCNs as shown in Equation 2.5, a typical

GAT layer can be formulated as

h(l)
v = σ

 ∑
u∈N(v)

αvuW
(l)h(l−1)

u

 (2.7)

where αuv is the weight for every neighbor u of node v. The weight is an implicit way of

controlling how attention node V should give its neighboring nodes.

To define a graph attention layer, let N be the total number of nodes in a graph or a

23

network and F be the number of features in each node. Let us define the input to each graph

attentional layer as a set of node features: h = {
−→
h1,

−→
h2, . . . ,

−→
hN},

−→
hi ∈ RF . This results in

the output feature representation in the form of F ′: h′ = {
−→
h′
1,
−→
h′
2, . . . ,

−→
h′
N}, where

−→
h′
i ∈ RF ′

.

To retain sufficient expressive power, as a pre-processing step, a shared linear transfor-

mation, parametrized by a weight matrix, W ∈ RF ′×F is applied to every node. Following

the learnable linear transformation, a shared self-attention mechanism (α) is implemented

on the nodes to compute attention coefficients as shown in Equation 2.8.

a : RF ′ × RF ′ → R (2.8a)

eij = a(Wl

−→
hi ,Wr

−→
hj) (2.8b)

The attention coefficients indicate the importance of node j′s features to node i. In the

baseline formulation, the self-attention would allow every node to attend to all other neigh-

boring nodes. However, to only focus on the important part of the graph structure, masked

attention is implemented. In masked attention, attention coefficients are only computed in

some neighborhoods of node i which is then normalized across all neighboring nodes j using

a softmax function as follows

αij = softmaxj(eij) =
exp(eij)∑

k∈Ni
exp(eik)

(2.9)

In this study, our attention mechanism a will be a single-layer feedforward neural net-

work parametrized by a weight vector −→al ∈ RF ′
and −→ar ∈ RF ′

, followed by a LeakyReLU

nonlinearity (with negative input slope 0.2). Let ·T represent transposition and || represent

concatenation. The coefficients computed by our attention mechanism may be expressed as:

αij =
exp

(
LeakyReLU

(−→al TWl

−→
hi + −→ar TWr

−→
hj

))
∑

k∈Ni
exp

(
LeakyReLU

(−→al TWl

−→
hi + −→ar TWr

−→
hk

)) (2.10)

Once the normalized attention coefficients are determined, it is fed into the GAT for-

mulation in Equation 2.7 to compute the final output feature representation after linear

24

combination W and nonlinear (σ) operation. It is important to note that GAT is agnostic

to the choice of attention mechanism, a. In this study, the attention mechanism is a simple

single-layer neural network, but it can be replaced with any other complex learning model.

2.3.2 Multi-Headed Attention

Although a graph attention layer is well-behaved, since the parameters of the attention

mechanism are jointly trained, it can sometimes lead to convergence issues. To avert the

convergence issues and stabilize the learning process of the attention mechanism, multi-

headed attention can be used, as proved effective by Vaswani et al. (2017). Figure 2.4 the

Figure 2.4: An illustration of multi- head attention (with K = 3 heads) by node 1 on its neigh-

borhood. Different arrow styles and colors denote independent attention computations. The ag-

gregated features from each head are concatenated or averaged to obtain
−→
hi

′. Source: Veličković

et al. (2017).

schematics of graph attention layer with K = 3 attention heads. The target node in the

figure is h1 with five neighboring nodes. The three different colors represent three attention

heads where attention coefficients are computed individually which are then concatenated

25

or averaged to compute the output features.

Again, following the similar formulations as highlighted in Equation 2.7 and Equation 2.5,

the multi-headed attention is mathematically represented as

h(l)
v = σ

 1

K

K∑
k=1

∑
u∈N(v)

αvuW
(l)h(l−1)

u

 (2.11)

where K is the number of attention heads. GATs are computationally efficient as the compu-

tation of attentional coefficients can be parallelized across all edges of the graph in addition

to parallelizing aggregation across all nodes. Since the main idea of the attention mechanism

is to only focus on important parts of the input graph, embedding is highly localized thus

capturing local features. Finally, the attention weights can transferred from one part of the

graph to another so it does not depend on the global graph structure and thus make it an

inductive learning process.

2.4 Modified GAT (GATv2)

Although GAT is a state-of-the-art graph-based architecture, Brody et al. (2021) showed,

through a controlled implementation, that GAT might have a limited ability to capture

attention because it relies on a static attention mechanism. To address this issue, they

proposed a simple modification by altering the order of operations. They simply apply ”a”

layer after the non-linearity and the ”W” layer after the concatenation, effectively applying

an MLP to compute the score for each query-key pair. This, they argued, has the ability

to enhance the attentiveness and expressiveness of GAT dynamically. The modified GAT is

hereafter referred to as GATv2.

The order of operation in the conventional GAT is given by

e(hi, hj) = LeakyReLU(aT [̇Whi||Whj]) (2.12)

26

Algorithm 2 Graph Attention Network (GAT)

1: Input: Graph G = (V,E), Node features X, Number of attention heads K

2: Initialize learnable parameters: Win, Wout, a

3: function MultiHeadAttention(X,A)

4: Initialize empty list of output features: outputs = [] for k in range(K) do
5:

Compute attention coefficients:

α
(k)
ij = softmax

(
LeakyReLU

(
a(k) · [WinXi,W

inXj]
))

6: Compute weighted sum of neighboring features:

h
(k)
i =

∑
j∈Ni

α
(k)
ij ·WoutXj

7: Append h
(k)
i to outputs

8: Concatenate and normalize outputs: H = concatenate(outputs), H =

LayerNorm(H)

9: Return: Output features H

10: end function

11: Compute adjacency matrix: A = preprocess(A)

12: Apply self-attention: H = MultiHeadAttention(X,A)

13: Perform graph-level pooling if needed

14: Make predictions or use for downstream tasks

27

whereas the order of operation in the modified GAT is as follows

e(hi, hj) = aTLeakyReLU(W [̇hi||hj]) (2.13)

28

CHAPTER 3

Fraud Detection Using GNNs

The various graph-based neural network models detailed in Chapter 2 are implemented in this

chapter. In particular, GCN, GAT, and modified GAT (namely GATv2) are implemented

to detect fraudulent Bitcoin transactions. The performance of the three models is compared

in detail. The objective of implementing GCN is to use it as a benchmark to compare how

self-aggregation and attention mechanisms in GAT enhance the ability of GNN in learning

graph representation.

3.1 Dataset

The dataset used in this study is an anonymized transaction graph collected from the Bit-

coin blockchain and published by Elliptic (Weber et al., 2019). It is one of the world’s

largest labeled transaction datasets publicly available in any cryptocurrency. The transac-

tion graph is made of 203,769 nodes and 234,355 edges. A node in the graph represents a

transaction while an edge can be viewed as the flow of bitcoin between two transactions.

Each node/transaction has 166 features, which have been anonymized due to privacy and

intellectual property reasons. The nodes are labeled into three classes, namely, licit, illicit,

or unknown. Figure 3.1a breakdown the dataset by class. The vast majority of data (more

than 75%) is unlabeled, more than 20% of data is labeled as legit, and about 2.2% of data

is labeled as fraudulent. Figure 3.1b presents the number of transactions per time step. The

time step of each node represents the timestamp a transaction was tallied in the Bitcoin

network. There are 49 evenly spaced time steps with each representing two weeks. Each

29

time step contains a single connected component of transactions and there are no edges

connecting the different time steps.

(a) (b)

Figure 3.1: a) Number of transactional nodes per class; b) loss ratio curves of 609 buildings as a

function of the intensity measures.

Out of the 166 anonymized futures, the first 94 represent local information about the

transaction such as time of the transaction, transaction fee, output volume, number of in-

coming or outgoing Bitcoins, etc. The final 72 features are engineered features that include

aggregated information about transactions of one-hop neighbors within a time step. Fig-

ure 3.2 illustrates the transaction graph for a time step (18th time step to be precise), and

transactions that included a fraudulent transaction.

3.2 Model Training

The GNN models are implemented using the PyTorch Geometric package in Python (Fey

and Lenssen, 2019). In total, three GNN models are built using the elliptic dataset. The

following sections discuss in detail the architecture of the implemented models and their

performance evaluations.

30

Figure 3.2: Graphical visualization of Bitcoin transactions at time step 18.

3.2.1 GCN

The first implementation is the classic graph convolution network. Figure 3.3 presents the

architecture encoded. It consists of three convolutional layers followed by a linear classifier.

The three convolutional layers decrease output feature dimensions from 165 to 128 to 64

respectively and the linear classifier maps the final embedding space to a single dimension

while considering bias. In each forward pass, a layer applies a graph convolution operation

to update node representations based on their local neighborhood information in the graph.

After each convolutional layer, nonlinearity is introduced by applying a hyperbolic tangent

(i.e., tanh) activation function. The output of the last graph convolutional layer (namely

conv3) represents the embeddings of nodes in a lower-dimensional space as the output di-

mension is two. The tanh activation function is applied again to constrain the embeddings

within a bounded range. Finally, the embeddings are passed through the linear classifier

to predict the target variable. A sigmoid activation function is applied to ensure that the

31

output falls within the range [0, 1].

Figure 3.3: Model architecture of classical GCN with three convolutional layers and a linear

classifier.

3.2.2 GAT

In this study, two versions of GAT are implemented. The first iteration of GAT implemen-

tation directly adopts the architecture proposed by Veličković et al. (2017). As previously

discussed in Section 2.3.1, the attention coefficient is computed as

αij =
exp

(
LeakyReLU

(−→al TWl

−→
hi + −→ar TWr

−→
hj

))
∑

k∈Ni
exp

(
LeakyReLU

(−→al TWl

−→
hi + −→ar TWr

−→
hk

)) (3.1)

As depicted in Figure 3.4, two message-passing layers are included with the purpose

of applying the attention mechanism to aggregate information from neighboring nodes and

produce updated node features. The updated node features are supplied to a sequential

multi-layer perceptron (MLP). The MLP consists of linear layers followed by dropout and

ReLU activation. The output of the MLP is passed through a sigmoid activation function

to produce the final output of the model, which includes the probabilities of the predicted

classes.

3.2.3 GATv2

In one of the important contributions to GAT, Brody et al. (2021) showed that GAT has a

limited ability to capture attention because it relies on a static attention mechanism. The

32

Figure 3.4: Model architecture of GAT with two convolutional layers and an MLP classifier.

authors showed, through a controlled problem, that by modifying the order of operations

one can dynamically enhance the attentiveness and expressiveness of GAT. The modifica-

tion is shown in Equation 3.2. Other than this minor modification, the architecture and

implementation of GAT and GATv2 are exactly the same as described in Figure 3.5

αij =
exp

(−→a TLeakyReLU
(
Wl

−→
hi + Wr

−→
hj

))
∑

k∈Ni
exp

(−→a TLeakyReLU
(
Wl

−→
hi + Wr

−→
hk

)) (3.2)

Figure 3.5: Model architecture of modified GAT with two convolutional layers (with modified

attention mechanism) and an MLP classifier.

Figure 3.6 presents the training loss for the three models. As expected, the training

loss for GCN starts slightly higher and remains noticeably higher as the number of epochs

increases. On the contrary, the loss for GAT and GATv2 sees a drastic drop after 5 epochs

33

after which the loss decreases gradually. The rate and margin of reduction for GAT and

GATv2 are identical to GATv2 with a slight and seemingly insignificant lead. This highlights

the enhanced performance of GAT models while giving an early indication that the dynamic

representation in GATv2 has an insignificant impact on the performance of the attention

mechanism.

Figure 3.6: Comparison of training losses as a function of epochs for GCN, GAT, and GATv2

models.

3.3 Model Evaluation

To compare the three models, an extensive model evaluation is undertaken based on the

best model from the training phase. Figure 3.7 demonstrates the training and validation

accuracy. Figure 3.7a shows that all three models start to capture the data well after a few

epochs. It is evident that the GAT and GATv2 reach 90% accuracy instantaneously but

34

GCN requires a few additional epochs. The training accuracy of the GAT model is better

than the GCN model. A near-identical trend is observed for the validation with GAT models

outperforming the GCN model as shown in Figure 3.7b. The plots for F1-Micro, F1-Macro,

Precision, Recall, and AUC-ROC are presented in Appendix A. The accuracy is computed

as

accuracy =
TP + TN

TP + FN + TN + FP
(3.3)

(a) (b)

Figure 3.7: a) Training and b) validation accuracy of the three models.

Figure 3.8 displays confusion matrices for the three models. Consistent with previous

observations, GAT and GATv2 perform better with higher rates of true negatives, true

positives, false positives, and false negatives. For instance, the true negatives of GCN, GAT,

and GATv2 are 8260, 8318, and 8306, respectively. It is evident that the misclassification

(false positives and false negatives) is lower in GAT-based models.

3.4 A Note on Explainability

To explain the model and its performance, we plot the transaction graph at time step 28

as shown in Figure 3.9. The blue, green, and red colors represent unlabeled, legit, and

fraudulent, respectively. A graph like Figure 3.9 can be instrumental in explaining the

35

(a) (b)

(c)

Figure 3.8: Confusion matrix of a) GCN; b) GAT; c) GATv2.

36

model. However, since the data used in this study is anonymized, the trend in Figure 3.9 is

hardly explainable.

Figure 3.9: Transaction graph with predicted label using GAT for time step 28.

37

CHAPTER 4

Conclusions

4.1 Summary and Findings

Graph neural networks (GNN) are gaining popularity for various prediction tasks involving

geometric data such as financial transactions. In this study, we investigated the effectiveness

of various GNN models such as graph convolutional network (GCN), graph attention network

(GAT), and modified graph attention network (GATv2). First, an extensive background in

graph-based machine learning is presented along with different types of learning and node

embeddings. In particular, the study focused on GAT and attention mechanism as a potential

alternative to traditionally used GCN models. The use of masked self-attentional layers in

GAT is discussed to address the shortcomings of conventional GCNs. One of the advantages

of the GAT architecture is that it is computationally efficient and does not require spectral

features of the entire graph upfront. In the second half, the theoretical background on GCN,

GAT, and GATv2 are described in detail. Finally, the three GNN models are implemented

to predict fraudulent Bitcoin transactions. The extensive model evaluation indicated that

GAT performs better but the performance between GAT and GATv2 are comparable.

4.2 Limitations and Future Studies

While GATs exhibited superior performance compared to GCN, there are several limitations

that could lead to potential future studies. First, the dataset could be expanded to include

more Bitcoin transactions. The majority of the transactions were not labeled, which is to be

38

expected because the majority of financial transactions are non-fraudulent. However, having

a dataset that has more labeled data could be beneficial in developing the models. In this

study, the GNN models were implemented only on Bitcoin transactions. Future studies could

extend the implementation to other financial transaction datasets. Moreover, the current

implementation included time steps but the built model was static. In practical application,

having a dynamic model that updates as more transaction data become available in real-time

could be one potential way to deal with the changing dynamics of fraud and camouflage.

Furthermore, the data used in the current study had anonymized features which hindered our

ability to develop an explainable model. Future studies should focus on the interpretability of

graph-based deep learning models to understand the underlying fraud detection mechanisms.

39

APPENDIX A

Appendix

The following abbreviations are used in this appendix

1. TP = True Positive

2. FP = False Positive

3. FN = False Negative

4. TN = True Negative

A.1 Precision

Precision measures a model’s ability to avoid false positives. It is given by,

Precision =
TP

TP + FN
(A.1)

A.2 Recall

Recall, also known as sensitivity, measures a model’s ability to capture all positive instances.

It is computed as

Precision =
TP

TP + FN
(A.2)

40

(a) (b)

Figure A.1: Precision of GCN, GAT, and GATv2 for a) training; b) validation as a function of

the epochs.

(a) (b)

Figure A.2: Recall of GCN, GAT, and GATv2 for a) training; b) validation as a function of the

epochs.

41

A.3 F1-Micro

The F1 score is the harmonic mean of precision and recall. It provides a single metric to

balance both precision and recall.

F1 Micro =
2 × Precision×Recall

Precision×Recall
(A.3)

(a) (b)

Figure A.3: F1-Micro of GCN, GAT, and GATv2 for a) training; b) validation as a function of

the epochs.

A.4 F1-Macro

A.5 AUC-ROC

AUC-ROC measures the area under the curve of the receiver operating characteristic (ROC)

curve, which plots the true positive rate (recall) against the false positive rate (1 - specificity)

for different threshold values. It quantifies the model’s ability to distinguish between positive

and negative instances across all possible threshold values. It ranges from 0 to 1, where a

value closer to 1 indicates better model performance.

42

(a) (b)

Figure A.4: F1-Macro of GCN, GAT, and GATv2 for a) training; b) validation as a function of

the epochs.

(a) (b)

Figure A.5: AUC-ROC of GCN, GAT, and GATv2 for a) training; b) validation as a function of

the epochs.

43

Bibliography

Adamic, L.A., Adar, E., 2003. Friends and neighbors on the web. Social networks 25,

211–230.

Bahdanau, D., Cho, K., Bengio, Y., 2014. Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473 .

Borgwardt, K.M., Kriegel, H.P., 2005. Shortest-path kernels on graphs, in: Fifth IEEE

international conference on data mining (ICDM’05), IEEE. pp. 8–pp.

Brody, S., Alon, U., Yahav, E., 2021. How attentive are graph attention networks? arXiv

preprint arXiv:2105.14491 .

Dou, Y., Liu, Z., Sun, L., Deng, Y., Peng, H., Yu, P.S., 2020. Enhancing graph neural

network-based fraud detectors against camouflaged fraudsters, in: Proceedings of the 29th

ACM international conference on information & knowledge management, pp. 315–324.

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., Yin, D., 2019. Graph neural networks

for social recommendation, in: The world wide web conference, pp. 417–426.

Fey, M., Lenssen, J.E., 2019. Fast graph representation learning with PyTorch Geometric,

in: ICLR Workshop on Representation Learning on Graphs and Manifolds.

Frasconi, P., Gori, M., Sperduti, A., 1998. A general framework for adaptive processing of

data structures. IEEE transactions on Neural Networks 9, 768–786.

Grover, A., Leskovec, J., 2016. node2vec: Scalable feature learning for networks, in: Pro-

ceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and

data mining, pp. 855–864.

Hamilton, W., Ying, Z., Leskovec, J., 2017a. Inductive representation learning on large

graphs. Advances in neural information processing systems 30.

44

Hamilton, W.L., Ying, R., Leskovec, J., 2017b. Representation learning on graphs: Methods

and applications. arXiv preprint arXiv:1709.05584 .

Hammond, D.K., Vandergheynst, P., Gribonval, R., 2011. Wavelets on graphs via spectral

graph theory. Applied and Computational Harmonic Analysis 30, 129–150.

Joachims, T., 1998. Text categorization with support vector machines: Learning with many

relevant features, in: European conference on machine learning, Springer. pp. 137–142.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvu-

nakool, K., Bates, R., Ž́ıdek, A., Potapenko, A., et al., 2021. Highly accurate protein

structure prediction with alphafold. Nature 596, 583–589.

Katz, L., 1953. A new status index derived from sociometric analysis. Psychometrika 18,

39–43.

Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolutional net-

works. arXiv preprint arXiv:1609.02907 .

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. nature 521, 436–444.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to

document recognition. Proceedings of the IEEE 86, 2278–2324.

Lu, Y.J., Li, C.T., 2020. Gcan: Graph-aware co-attention networks for explainable fake news

detection on social media, in: Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics, pp. 505–514.

McCallum, A., Nigam, K., et al., 1998. A comparison of event models for naive bayes text

classification, in: AAAI-98 workshop on learning for text categorization, Madison, WI.

pp. 41–48.

Micheli, A., 2009. Neural network for graphs: A contextual constructive approach. IEEE

Transactions on Neural Networks 20, 498–511.

45

Monti, F., Frasca, F., Eynard, D., Mannion, D., Bronstein, M.M., 2019. Fake news detection

on social media using geometric deep learning. arXiv preprint arXiv:1902.06673 .

Niwattanakul, S., Singthongchai, J., Naenudorn, E., Wanapu, S., 2013. Using of jaccard

coefficient for keywords similarity, in: Proceedings of the international multiconference of

engineers and computer scientists, pp. 380–384.

Perozzi, B., Al-Rfou, R., Skiena, S., 2014. Deepwalk: Online learning of social representa-

tions, in: Proceedings of the 20th ACM SIGKDD international conference on Knowledge

discovery and data mining, pp. 701–710.

Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G., 2008. The graph

neural network model. IEEE transactions on neural networks 20, 61–80.

Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M., 2011.

Weisfeiler-lehman graph kernels. Journal of Machine Learning Research 12.

Sperduti, A., Starita, A., 1997. Supervised neural networks for the classification of structures.

IEEE Transactions on Neural Networks 8, 714–735.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,

Polosukhin, I., 2017. Attention is all you need. Advances in neural information processing

systems 30.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., 2017. Graph

attention networks. arXiv preprint arXiv:1710.10903 .

Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M., 2010. Graph

kernels. Journal of Machine Learning Research 11, 1201–1242.

Wang, D., Lin, J., Cui, P., Jia, Q., Wang, Z., Fang, Y., Yu, Q., Zhou, J., Yang, S., Qi, Y.,

2019. A semi-supervised graph attentive network for financial fraud detection, in: 2019

IEEE International Conference on Data Mining (ICDM), IEEE. pp. 598–607.

46

Wang, D., Zhang, Z., Zhou, J., Cui, P., Fang, J., Jia, Q., Fang, Y., Qi, Y., 2021. Temporal-

aware graph neural network for credit risk prediction, in: Proceedings of the 2021 SIAM

International Conference on Data Mining (SDM), SIAM. pp. 702–710.

Weber, M., Domeniconi, G., Chen, J., Weidele, D.K.I., Bellei, C., Robinson, T., Leiserson,

C.E., 2019. Anti-money laundering in bitcoin: Experimenting with graph convolutional

networks for financial forensics. arXiv preprint arXiv:1908.02591 .

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y., 2020. A comprehensive survey

on graph neural networks. IEEE transactions on neural networks and learning systems

32, 4–24.

Xiang, S., Zhu, M., Cheng, D., Li, E., Zhao, R., Ouyang, Y., Chen, L., Zheng, Y., 2023.

Semi-supervised credit card fraud detection via attribute-driven graph representation, in:

Proceedings of the AAAI Conference on Artificial Intelligence, pp. 14557–14565.

Zhang, S., Yin, H., Chen, T., Hung, Q.V.N., Huang, Z., Cui, L., 2020. Gcn-based user

representation learning for unifying robust recommendation and fraudster detection, in:

Proceedings of the 43rd international ACM SIGIR conference on research and development

in information retrieval, pp. 689–698.

Zhong, Q., Liu, Y., Ao, X., Hu, B., Feng, J., Tang, J., He, Q., 2020. Financial defaulter

detection on online credit payment via multi-view attributed heterogeneous information

network, in: Proceedings of The Web Conference 2020, pp. 785–795.

Zhou, F., Yang, Q., Zhong, T., Chen, D., Zhang, N., 2020a. Variational graph neural net-

works for road traffic prediction in intelligent transportation systems. IEEE Transactions

on Industrial Informatics 17, 2802–2812.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M., 2020b.

Graph neural networks: A review of methods and applications. AI open 1, 57–81.

47

	Introduction
	Background
	Machine Learning for Graphs
	Traditional ML Tasks

	Node Embedding
	Encoder and Decoder
	Random Walk-Based Approaches

	Fraud Detection Using GNN: A Survey
	Objectives
	Organization

	GNN Architectures
	Basics of Graph Neural Networks
	Permutation Invariance and Equivariance
	Neighborhood Aggregation

	Graph Convolution Network
	Key Components of a GNN Layer
	Classical GCN Layer
	Build Practical GNN Model

	Graph Attention Network
	Graph Attention Layer
	Multi-Headed Attention

	Modified GAT (GATv2)

	Fraud Detection Using GNNs
	Dataset
	Model Training
	GCN
	GAT
	GATv2

	Model Evaluation
	A Note on Explainability

	Conclusions
	Summary and Findings
	Limitations and Future Studies

	Appendix
	Precision
	Recall
	F1-Micro
	F1-Macro
	AUC-ROC

