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Inferential Role Semantics for Natural Language
Peter Blouw (pblouw@uwaterloo.ca)

Chris Eliasmith (celiasmith@uwaterloo.ca)
Centre for Theoretical Neuroscience, University of Waterloo

Waterloo, ON, Canada N2L 3G1

Abstract

Cognitive models have long been used to study linguistic phe-
nomena spanning the domains of phonology, syntax, and se-
mantics. Of these domains, semantics is somewhat unique in
that there is little clarity concerning what a model needs to be
able to do in order to provide an account of how the mean-
ings of complex linguistic expressions, such as sentences, are
understood. To help address this problem, we introduce a tree-
structured neural model that is trained to generate further sen-
tences that follow from an input sentence. These further sen-
tences chart out the “inferential role” of the input sentence,
which we argue constitutes an important part of its meaning.
The model is trained using the Stanford Natural Language In-
ference (SNLI) dataset, and to evaluate its performance, we re-
port entailment prediction accuracies on a set of test sentences
not present in the training data. We also report the results of a
simple study that compares human plausibility ratings for both
ground-truth and model-generated entailments for a random
selection of sentences in this test set. Finally, we examine a
number of qualitative features of the model’s ability to gener-
alize. Taken together, these analyses indicate that our model
is able to accurately account for important inferential relation-
ships amongst linguistic expressions.
Keywords: natural language inference; recursive neural net-
works; language comprehension; semantics

Introduction
By most accounts, linguistic comprehension is the result of
cognitive processes that map between sounds and mental rep-
resentations of meaning (Christiansen & Chater, 2016; Pick-
ering & Garrod, 2013; Smolensky & Legendre, 2006). An
obvious challenge for these accounts is to provide a good the-
oretical characterization of the relevant representations. Nu-
merous proposals can be found in the literature, but there is
no obvious consensus regarding their relative merits.

Arguably, the reason for this lack of consensus is that lin-
guistic comprehension is itself a somewhat vague and ill-
defined phenomenon. In the context of efforts to model lin-
guistic comprehension, for instance, it is not entirely obvious
what a model needs to be able to do in order to provide an
account of how people understand complex linguistic expres-
sions such as phrases and sentences.

In this paper, we argue that one thing models of linguis-
tic comprehension need to be able to do is generate predic-
tions about what follows from a given sentence during a con-
versation. For example, to understand the statement “The
dancers parade down the street”, one must be able recog-
nize that the dancers are outside, that they are not standing
still, that there is likely a surrounding audience, along with
various other things. Comprehending a sentence therefore
involves drawing inferences that identify the expected con-
sequences of the occurrence of the sentence in the linguistic
environment. And since comprehending a sentence involves

Figure 1: Sentence encoding with a dependency tree recur-
sive neural network (DT-RNN). A dependency parser is used
to produce the computational graph for a neural network,
which is then used to produce a distributed representation of
sentence by merging distributed representations of individual
words. Figure adapted from Socher et al. (2014).

comprehending its meaning, it follows that meaning of an ex-
pression is at least partly determined by the inferences it li-
censes (Brandom, 1994)

To motivate this inferential approach to semantics, we in-
troduce a neural network model that learns to generate sen-
tences that are the inferential consequences of its inputs. The
model functions by first encoding a sentence into a distributed
representation, and then decoding this representation to pro-
duce a new sentence. The encoding procedure involves dy-
namically generating a tree-structured network layout of the
sort depicted in Figure 1. Once a sentence encoding is pro-
duced using this network, it is fed through an “inverse” tree-
structured network to produce a predicted sentence. Inter-
estingly, different inverse or decoding networks can be used
to generate different sentences from a single encoding. To
train the model parameters (i.e. the network weights shared
across different tree structures) we use the Stanford Natural
Language Inference dataset (Bowman et al., 2015).

In what follows, we first describe the model and then em-
pirically evaluate its ability to produce plausible entailments
for sentences unseen in the training data. We present experi-
mentally produced plausibility ratings for a random collection
of generated sentences, and from these ratings conclude that
the model captures something important about the inferential
roles of ordinary linguistic expressions. We further contend
that the model motivates the view that understanding a lin-
guistic expression is not (as is typically thought) a matter of
mapping it onto a representation that somehow constitutes its
meaning. Rather, understanding a linguistic expression is a
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matter of inferring the expected consequences of its occur-
rence in the linguistic environment. The reason for drawing
this conclusion is that the expected consequences of a sen-
tence cannot be “read off” of any single representation in
the model. Instead, these consequences are derived from the
global behavior of the model and the processes that it imple-
ments.

Tree-Structured Neural Networks
To build our model, we take advantage of recently developed
techniques for using neural networks to define composition
functions that merge distributed representations of words into
distributed representations of phrases and sentences (Socher
et al., 2012, 2014). The core idea behind these techniques is
to produce a parse tree for a sentence, and then transform the
tree into a neural network by replacing its edges with weights
and its nodes with layers of artificial neurons. Activation is
then propagated up the tree by providing input to layers that
correspond to certain nodes, as shown in Figure 1. The input
at each node is typically a distributed representation or “em-
bedding” corresponding to a single word (see Mikolov et al.,
2013).

This general method can be applied using arbitrary tree
structures, and we adopt a dependency-based syntax in the
experiments described below. There are three reasons for this
choice (Socher et al., 2014). First, the assignment of different
network weights to different dependency relations allows for
the creation of networks that are more sensitive to syntactic
information. Second, the semantic role of an individual word
can often be read off of the dependency relation it bears to a
head word, which allows for the creation of networks that are
also sensitive to semantic information. Finally, dependency
trees are less sensitive to arbitrary differences in word order,
which helps to ensure that simple variations of a sentence get
mapped to similar distributed representations. The model we
adapt - the dependency tree recursive neural network (DT-
RNN) - is introduced in Socher et al. (2014)

Some formal details concerning the behavior of DT-RNNs
are helpful at this point. First, an input sentence s is converted
into a list of pairs, such that s = [(w1,x1),(w2,x2), ...(wn,xn)],
where w is a word and x is the corresponding word embed-
ding. Next, a dependency parser is used to produce a tree that
orders the words in the sentence in terms of parent-child rela-
tions. Each node in this tree is then assigned an embedding in
a two-step manner. First, all of the leaf nodes in the tree (i.e.
nodes that do not depend on other nodes) are assigned embed-
dings by applying a simple transformation to their underlying
word embeddings:

hi = f (Wvxi +b) (1)

where hi is the embedding for some leaf node i in the tree, xi
is the embedding for the word corresponding to this node, Wv
is a matrix that transforms word representations, b is a bias
term, and f is an element-wise nonlinearity. Second, embed-

dings are recursively assigned to all of the non-leaf nodes by
composing the embeddings of their children as follows:

hi = f (Wvxi + ∑
j∈C(i)

WR(i, j) ·h j +b) (2)

where hi is again the embedding for some node i in the tree,
xi is the embedding for the word corresponding to this node,
j is an index that ranges over the children, C(i), of the node i,
and WR(i, j) is a matrix associated with the specific dependency
relation between node i and its jth child. h j is the embedding
corresponding to this child. So, in the example tree in Figure
1, the embeddings for nodes 1, 4, and 6 would be computed
first, since these nodes have no children. Then, embeddings
will be computed for any nodes whose children now all have
assigned embeddings (in this case, nodes 2 and 7). And so
on, until an embedding is computed for every node.

Model training is done via backpropogation and requires
that a cost function be defined for the sentence embeddings
produced at the root of each tree. The free parameters are
the weights Wv and Wr∈R, along with the bias term b. Word
embeddings can also be fine-tuned over the course of training.

Generating Entailments
Choosing an appropriate cost function for a recursive neu-
ral network can be difficult, since it is not always clear what
makes for a “good” sentence embedding. It is accordingly
common to see these networks applied to narrow classifica-
tion tasks such as the prediction of sentiment ratings (e.g.
Socher et al., 2012). Our goal is define an optimization ob-
jective that accounts for the principle that understanding a
linguistic expression involves drawing inferences about what
follows from it.

To accomplish this goal, we define a model composed of
two DT-RNNs, one that encodes an input sentence into a dis-
tributed representation, and another that decodes this repre-
sentation into a new sentence that is entailed by the input sen-
tence. This model is inspired by Iyyer et al.’s (2014) work us-
ing DT-RNNs analogously to autoencoders, but introduces a
decoding procedure that computes an appropriate response to
the input sentence, rather than merely reconstructing it. Other
related work is described in (Kolesnyk et al., 2016).

The model is trained on pairs of sentences standing in en-
tailment relations. A dependency parser1 is again used to pro-
duce a tree-structured network for each sentence, but the net-
work associated with the second sentence is run in reverse, as
shown in Figure 2. A word prediction is generated at each
node in this second tree using a softmax classifier, which al-
lows us to define a cross-entropy loss function over nodes and
trees as follows:

J(θ) =−∑
i

∑
j

t(i)j log p(c(i)j |si) (3)

1We use the SpaCy python library, available at https://spacy.io
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Figure 2: Generating entailments with paired encoder and decoder DT-RNNs. The decoder network computes a probability
distribution over words at each node, conditioned on the sentence representation produced by the encoder. The parameters of
both the encoder and decoder are trained via backpropogation through structure using error derivatives supplied at each node in
the decoding tree. The encoder and decoder trees are dynamically generated for each pair of sentences in the training data.

where t(i)j is the target probability (i.e. 1) for the correct word

at the jth node in the ith training example, p(c(i)j |si) is the
computed probability for this word given the input sentence
si, and θ is the set of combined parameters for the encoder
and decoder DT-RNNs.

We train the model via stochastic gradient descent by back-
propogating through both the decoder and encoder tree for
each training example. The result of training is a set of
weights associated with dependencies for both encoding and
decoding, a set of weights for predicting a distribution over
words from a node embedding for each dependency, a set of
biases (we allow dependency-specific biases), and the input
transformation matrix Wv. When the trained model is used to
perform inference using a novel input sentence, the encoder
DT-RNN is assembled into a tree using the learned encoding
weights. The decoder DT-RNN is then also assembled into
a tree using the learned decoding weights, and activation is
propagated through the encoder and into the decoder to pro-
duce a probability distribution over words at each tree node.
The words with the highest probability at each node are then
used to construct the predicted entailment for the input sen-
tence. The tree structure for the decoder can either be selected
randomly or stipulated ahead of time.

Experiments
In the remainder of the paper, we describe a number of basic
experiments that illustrate how this general modeling frame-
work can be used to illuminate the phenomenon of language
comprehension. We first perform a basic evaluation of how
well the decoder model is able to generate entailments by
measuring the percentage of correct word predictions over
all decoding tree nodes in both the training set and an un-
seen test set. We then present the results of an experiment
designed to evaluate the quality of the entailments generated
by our model. Next, following Kolesnyk et al. (2016), we it-
erate the encoding-decoding procedure to generate chains of

entailments from a given input sentence that delineate simple
inferential roles. Finally, we analyze the effect of substitut-
ing individual words in an input sentence. The goal of this
analysis is to evaluate the extent to which the model is able
to learn indirect inferential roles for words and appropriately
generalize to a wide range of novel sentences that can be sub-
stitutionally derived from a single familiar sentence.

Training Data
To train encoder and decoder networks, we use a subset of the
Stanford Natural Language Inference dataset introduced in
Bowman et al. (2015). This dataset consists of approximately
570,000 sentence pairs with labeled inferential relationships.
Specifically, the first sentence in each pair can either entail,
contradict, or be neutral with respect to the second sentence,
and since our interest is generating entailments, we restrict
our attention to pairs labeled with the entailment relation.

To reduce the amount of noise and complexity in the
dataset, we also perform some simple pre-processing steps.
First, we screen for misspelled words,2 and eliminate all sen-
tence pairs containing a misspelling. Second, we eliminate all
sentence pairs containing a sentence longer than 15 words in
order to avoid fitting model parameters to a small number of
very long sentences that produce highly complex dependency
trees. After preprocessing, the data consists of 106,288-pair
training set, a 1701-pair development set, and 1666 pair test
set. We train on the training set and use the development set
for tuning hyperparameters such as the learning rate and the
number of training epochs. The vocabulary used during train-
ing and testing consists of 22,555 words.

Quantitative Evaluations
To evaluate the ability of the model to generate plausible en-
tailments, we first measure the proportion of correct word-
level predictions during decoding in both the training set and

2We use the PyEnchant python library, available at
http://pythonhosted.org/pyenchant/.
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Table 1: Examples of Entailments Generated From Novel Test Sentences.

Sentence A boy and girl child swing together on a swing set. A young blond boy is eating cake with a spoon.
Entailment Two kids swing on a swing. A boy is eating a cake.

Sentence A young man sleeping next to a dog A surfer is performing a jump stunt in the ocean.
Entailment A man is near a dog. A surfer and a surfboard is outside.

Table 2: Word-Level Accuracy for Entailment Generation

Model Training Set (%) Test Set (%)
Chance 6.0 5.9

DT-RNN 66.7 61.8

the test set. We provide the tree structure of each entailed
sentence during decoding, so inference involves propagating
activities through paired trees of the sort depicted in Figure 2
to generate a set of word predictions. Some example entail-
ments produced from sentences drawn from the test set are
listed in Table 1. The decoding tree used to produce each
entailment is chosen randomly in these examples.

The word vectors that provide input to the encoder are
initialized using 300-dimensional Word2Vec embeddings
(Mikolov et al., 2013), while biases are initialized as the zero
vector. Each set of weights associated with a syntactic de-
pendency is initialized as a 300× 300 identity matrix with
mean-zero Gaussian noise for both the encoder and decoder.
The word transformation matrix, Wv, is initialized in the same
way. During learning, all of these matrices are updated using
stochastic gradient descent, along with the Word2Vec embed-
dings and the biases. We perform approximately 5 epochs of
training using an initial learning rate of 6×10−4, and we pro-
gressively anneal this rate over the course of training.

To collect accuracy measures, we simply tally the propor-
tion of nodes in the decoding trees for which the predicted
word is the same as the actual word given in the relevant test
set; the decoding tree is determined by a parse of the correct
entailment in every case. We compare against a baseline ac-
curacy of chance. As shown in Table 2, The DT-RNN model
performs considerably better. It is worth noting that gener-
ated sentences containing words not present in the correct en-
tailment may still be appropriate, given that no entailment is
uniquely correct. It is also worth noting that prior work in-
volving SNLI has almost uniformly focused on the problem
of classifying sentence pairs. Given that our interest is in gen-
eration rather than classification, we cannot easily draw com-
parisons to earlier work, and therefore use novel methods of
evaluation.

Empirical Evaluations
Next, we conduct a simple study in which human subjects
are asked to evaluate the plausibility of model-generated sen-
tences. During the study, participants are shown a series of

Table 3: Plausibility Ratings for Inferential Relations.

Source Status Mean Likert Rating (1-5)
Human Entailment 4.05 ± 0.09
Model Entailment 3.53 ± 0.12
Human Contradiction 2.05 ± 0.12

* Margins are bootstrapped 95% confidence intervals.

sentences introduced as true captions for unseen images.3

For each caption, the participants are shown an alternate cap-
tion and asked to evaluate the likelihood that it is also true
of the corresponding image. Evaluations are recorded using
a five point Likert scale that ranges from “Extremely Un-
likely” (1) to “Extremely Likely” (5). The original caption
in each case is the first sentence in a pair randomly chosen
from the SNLI test set, while the alternate captions are ei-
ther (a) model-generated entailments, (b) human generated
entailments drawn from the test set, or (c) human generated
contradictions also drawn from the test set. This between-
subjects experimental design is similar to the method used by
Bowman et al. (2015) to validate human-generated sentence
pairs during the creation of SNLI. The main difference is that
we evaluate model-generated sentences in addition to human-
generated sentences.

Seventy-five participants from the United States were re-
cruited through Amazon’s Mechanical Turk and split evenly
into the three conditions. The main captions were identical
across conditions, and each participant was asked to rate 20
caption pairs.4 Participants were paid $1.00 for their time.
Two of the seventy-five participants failed to complete the
study and did not have their responses included in the results.
Repeat participation was blocked by screening Mechanical
Turk worker IDs.

The Likert ratings collected during the study are assess-
ments of the plausibility of the inferential transition from one
sentence (the main caption) to another (the alternate caption).

3Note that all of the sentence pairs in SNLI were generated by pro-
viding subjects with a caption for an unseen image and asking them
to produce a further caption that is either true, false, or maybe true
of the image. So all of the sentences in SNLI can be described as
image captions. The point of using this caption-based strategy in
the construction of the dataset is to eliminate co-reference ambigu-
ities that make it difficult to determine the appropriate inferential
relationship between two sentences. See Bowman et al. (2015) for
more details.

4Two of the main captions had no associated contradictions in SNLI,
so subjects in the contradiction condition only rated 18 captions.
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Figure 3: A model-generated inferential network around the sentence “A man is outside”. Each inferential transition is the
result of generating a predicted entailment after encoding the sentence at the beginning of each arrow. The entire network is
generated starting with only the four outermost sentences, which are drawn from the SNLI test set.

The transitions involving sentence pairs drawn directly from
SNLI offer a kind of gold standard for both good and bad
transitions. The results shown in Table 2 indicate that model-
generated transitions are seen to be almost as plausible as the
gold-standard transitions drawn from SNLI. We take this to
be preliminary evidence that model is able to capture cer-
tain tacit inferential relationships between natural language
expressions.

Qualitative Extensions
In order to further analyze the model’s behavior, we exam-
ine a number of qualitative features of the inferential re-
lationships it is able to learn. First, we examine iterative
applications of the model to its own predictions, following
similar work by Kolesnyk, Rocktäschel, and Reidel (2016)
that makes use of a sequential LSTM. Next, we examine the
model’s ability to disciminate the inferential significance of
lexical items by performing simple word-by-word substitu-
tions in an input sentence. The point of these analyses is to
demonstrate that models of the general class we are proposing
are useful tools for both formalizing and learning the inferen-
tial roles of a wide variety of linguistic expressions.

Iterative Inferences
Once an input sentence has been passed through the model to
generate an entailment, it is possible to use this entailment as
a new input to the model. Repeated applications of the model
accordingly make it possible to chart out an “inferential net-
work” around a particular starting sentence. Figure 3 offers
a simple model-generated example of an inferential network
in which numerous sentences describing men doing things
outdoors are eventually mapped to the sentence “A man is
outside”.

In general, predicted entailments that are shorter than an in-
put sentence tend to be more abstract and general, while pre-
dicted entailments that are longer than an input sentence tend
to introduce plausible elaborations (Kolesnyk et al., 2016).
For instance, the sentence “A bird is in a pond.” can be used
to generate the sentence “A little bird is outside in a small
pond.” by using a decoding tree with nodes for two additional
adjectives and an additional adverb.

Substitutional Analysis
If individual words in an input sentence are replaced, it be-
comes possible to identify the impact of particular words on

the inferences that are licensed by a particular sentence. In
Figure 4, for instance, the replacement of a subject noun or
the main verb can be seen to have significant effects on the
kinds of entailments that are generated. The model is im-
pressively sensitive to sophisticated linguistic cues concern-
ing agreement. For instance, the model correctly infers that
“boy” should be paired with the male possessive “his”, while
“girl” should be paired with the female possessive “her”. It
is worth emphasizing that all of the sentences that result from
substitution are completely novel from the model’s perspec-
tive. The fact that the model is able to generate reasonable
entailments for many of these sentences suggests that it is
able generalize beyond the training data quite successfully.

A further application of substitutional analysis involves ex-
amining a model’s ability to learn about theoretically inter-
esting constructions involving negations, quantifiers, and nu-
merals. For instance, the model exhibits a rudimentary ability
to handle numerals appropriately, as is shown by the inference
from “A boy and a girl...” to “Two kids...” Negations are a bit
more troublesome: the model correctly infers “not outside”
from “in a car”, but incorrectly infers “not indoors” from
“in a store”. Quantifiers, finally, are an open question: the
model correctly infers “The women” from “Many women”,
but it is not clear that this is the result of learning a relation
between “Many” and the plural forms of nouns. Examining
specific linguistic constructions in this substitutional manner
is a promising avenue for future research.

Discussion
Overall, the point of this work is to motivate an approach to
semantics based on inferential relationships amongst linguis-
tic expressions (Brandom, 1994). Our use of the encoder-
decoder DT-RNN model is designed to illustrate how general-
ized inferential roles can be learned for arbitrary linguistic ex-
pressions from examples of how sentences are distributed as
tacit “premises” and “conclusions” in a space of inferences. It
is accordingly possible to characterize this work as an exten-
sion to the well-known distributional approach to semantics
(Turney & Pantel, 2010), wherein we replace the generic no-
tion of a linguistic context with the more fine-grained notion
of an inferential context.

As with most natural language generation systems, many
of the sentences produced by our model are defective in some
way. As can be seen in the examples in Table 1, our gener-
ated entailments are almost always thematically appropriate,
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Figure 4: Substitutional analysis using the sentence “A boy in a beige shirt is sleeping in a car”. The model is able to predict
appropriate entailments for a range of sentences that are similar to this initial sentence shown at the top left. The fact that these
substitutionally-derived sentences are not present in SNLI dataset indicates that our model is able to generalize by interpolating
between the example inferential transitions found in the training data.

but sometimes contain agreement errors or misplaced words
that render the entailment as a whole ill-formed. And, not in-
frequently, the model produces entailments that are more or
less incomprehensible. There are two ways to address these
problems. The first involves the use of increased amounts
of training data to provide the model with a more points in
the “space of inferences” to interpolate between. The second
involves the use of more sophisticated network architectures
that help the model to learn to more selectively make use of
only the input information that is most relevant to generating
a good entailment. LSTM network architectures, such as the
Tree LSTM (Tai et al., 2015), are likely to provide improve-
ments on this second front.

Finally, an important limitation of our work is that we do
not consider the relationship between linguistic expressions
and the non-linguistic world. A natural way to account for
this relationship is to suppose that a sentence’s occurrence in
the linguistic environment licenses certain expectations about
what can be seen, heard, or otherwise perceived. To return
to our initial example, if one understands the statement “The
dancers parade down the street”, one will expect to see and
hear dancers upon going to the relevant street. We accord-
ingly suggest that if an individual can adequately infer all that
follows from a given linguistic expression, both linguistically
and non-linguistically, then there is nothing further they need
to be able to do to count as understanding what the expression
means. The main consequence of this view is that inference
should be at the core of any theory of semantic cognition.
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