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Abstract

Inventory Models Motivated by Biopharmaceutical Manufacturing

by

Yang Wang

Doctor of Philosophy in Industrial Engineering and Operations Research

University of California, Berkeley

Professor Philip Kaminsky, Chair

The biopharmaceutical industry now is entering a more mature stage of its existence. In order
to prepare for increasingly fierce competition, firms are beginning to shift their focus from
developing new technology to improving manufacturing operations. However, the nature of
biomanufacturing poses many unique challenges for the industry. In this thesis, we consider
three closely related inventory models to address the challenges these firms are facing.

In the first model, we consider an inventory planning model with batch differentiation.
Batch production is a natural constraint in biomanufacturing and the decision of how many
batches to produce and how to differentiate the batches is crucial. In this work, we propose
a series of heuristic algorithms using the idea of certainty equivalent control which converts
a difficult stochastic integer programing to a deterministic problem. We show that our
heuristic algorithms perform extremely well when the demand variation is small and we also
explore how the trade-off between demand information and decision dynamics affects the
performance.

In the second model we combine the inventory model with a queuing model to address the
tactical level supply chain management and coordination issue between the manufacturer
and a third party contractor. Small biopharma firms usually outsource the filling/label-
ing/packing operations to a third party contractor. As a consequence, the firm experiences
large uncertainty in the time until the outsourced order is returned. We show that a ca-
pacity reservation contract that places an order at fixed intervals with a capacity constraint
can outperform the traditional inventory management (r, q) policy by not only reducing the
inventory cost at the firm, but also increasing the total profit of the entire system.

In the third model, we extend the traditional process flexibility literature by integrating
inventory capabilities and give general guidelines on how to design an effective supply chain
network. Given the expensive inventory storage capability in the biopharmaceutical industry,
firms are often interested in incorporating flexible plants that can produce multiple types of
product into an existing dedicated supply chain to better respond to demand uncertainty. We
develop models that help the firm explore many important strategic issues, such as whether
a new plant should be flexible or not, and whether and which plants should be modified to
have inventory capabilities.
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Chapter 1

Introduction

Biopharmaceuticals are medicines, including proteins, vaccines, nucleic acids, antibiotics,
etc., that are manufactured using biological technology. In contrast to the direct chemi-
cal synthesis typically used in traditional pharmaceutical manufacturing, the majority of
biopharmaceutical products are derived from live organisms. A typical biopharmaceutical
manufacturing (abbreviated biomanufacturing) process consists of four main stages as illus-
trated in Figure 1.1.

Figure 1.1: A typical biomanufacturing process

In the first fermentation stage, a solution of various materials is cultivated at a cell bank.
An important feature of this stage is that it can not be started and stopped freely, which is
distinct from the traditional manufacturing. After a warm-up period, the target product can
be harvested and purified continuously over time. Then, the target product in intermediate
form is lyophilized and stored in batches. These batches later are differentiated to meet final
product specifications via filling, labeling and packing in the distribution stage.

The combination of fundamental characteristics in biomanufacturing make operations
and supply chain management particularly challenging. We have summarized some of these
challenges (see Kaminsky and Wang (2012)[38]) as follows:

• Biomanufacturing is highly variable in both output quality and quantity due to the
nature of fermentation and purification processes.
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• The biomanufacturing process is in campaign style: once a campaign is started, it will
last for several weeks and cannot be stopped or altered and the output is naturally
stored in batches. Thus, production planning is challenging and vulnerable to demand
variation.

• The biomanufacturing process is highly regulated. Construction of new plants, expan-
sion of existing plants, and improvement of production processes takes a significant
amount of time.

• For small biopharmaceutical firms, some manufacturing steps are outsourced to a third
party contractor, which makes the inventory management difficult and supply chain
coordination important.

• Safe storage of biopharmaceuticals often requires sophisticated and expensive inventory
storage facilities, and product shortage may significantly impact a firm’s reputation, or
even lead to fatalities. Thus, surgically accurate inventory management and demand
prediction are desired.

• Research and development takes on average 10-15 years until approval from FDA and
similar organizations in other countries, and commercialization of the final product,
which leaves few years of effective patent protection. This makes the product selection
crucial and long-run capacity planning challenging.

In Kaminsky and Wang (2012)[38] we categorizes these challenges into three levels: (1)
strategic decisions, which are directly related to the firm’s long-term objectives and per-
formance. Such decisions are usually made by the highest level of management, and once
executed, are extremely difficult and costly to change. Typical strategic decisions include new
facility construction, existing facility modification, new product development and selection;
(2) tactical decisions, which are relatively short term (on the order of months) decisions that
support longer term strategic policy, and that define the approaches that firms use to achieve
their objectives. Typical tactical decisions range from process and pipeline development
to manufacturing planning, supply chain coordination, campaign scheduling, and capacity
planning; (3) operational decisions, includes the detailed daily decision-making necessary to
operate the biopharmaceutical supply chain. Typical operational decisions include operator
assignment, detailed facility schedules, transportation plans, maintenance scheduling and
inventory planning. In this thesis, we present three crucial and closely related inventory
models to address the aforementioned challenges from each of these levels:

1. Inventory planning with batch differentiation (Chapter 2)

In this chapter we focus on developing an inventory model to aid the firm in mak-
ing daily operational decisions related to production planning and batch differentia-
tion. The key idea here is to use certainty equivalent control which converts a difficult
stochastic integer programing into an easy-to-solve deterministic problem. We show
that such a scheme with various extensions performs extremely well when the demand
variation is small and also explore how the trade-off between demand information and
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decision dynamics affects the performance.

2. Outsourcing strategy for intermediate production steps (Chapter 3)

In this chapter we address the tactical-level supply chain management and coordination
issue for a firm who outsources the last filling/labeling/packing operations to a third
party contractor, and as a consequence must deal with uncertainty in the time until
the outsourced order is returned. We demonstrate that a capacity reservation contract
that places a capacity-constrained order at a fixed interval can outperform a traditional
(r, q) policy, not only reducing inventory cost at the firm but also increasing the total
profit of the entire system.

3. Process flexibility with inventory (Chapter 4)

In this chapter, we concentrate on advising a firm on strategic decisions related to
building new plants and modifying existing plants. Given the expensive nature of
inventory storage capability in the industry, the firm is interested in incorporating
flexible plants that can produce multiple types of product into the supply chain in
order to better respond to demand uncertainty with limited inventory. We develop
models that combine inventory along with flexibility and provide general guidelines on
how to design an effective plant-product network in this setting.

Next, we present the details of each of these three topics, and in Chapter 5 we present
our closing remarks.
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Chapter 2

Inventory Planning with Batch

Differentiation1

2.1 Introduction

Motivated by an inventory planning problem in a leading “orphan drug” biopharmaceutical
firm with which we have worked, we consider the joint production and inventory allocation
problem faced by a small biopharmaceutical firm that must differentiate batches of interme-
diate product into market-specific end products to meet demand over a finite horizon. This
firm manufactures and distributes a biopharmaceutical treatment for a rare genetic disorder
that leads to severe, potentially life threatening, symptoms in people who have the disorder:
a so-called “orphan drug”. There is a relatively small set of patients who can benefit from
the drug, which results in a limited incentive for firms to invest in drug development. In
many countries, the government gives certain tax and patent incentives to encourage firms to
develop orphan drugs. However, due to the nature of biomanufacturing process the interme-
diate product is stored in huge discrete batches. The typical size of one batch is 16,000 vials,
while the demand for different markets only ranges from several hundreds to thousands vials.
In order to distribute the product to the market, the intermediate product must be packaged
into different-sized vials, properly labeled, and packed into cartons for each country. Since
the firm outsources its final filling/labeling/packing operations to a third party contractor
(we’ll address outsourcing strategy in Chapter 3), an entire batch must be filled and labeled
at once. In addition, once a vial is labeled for a particular market, it is illegal to re-labeled
it for another market. Therefore it is crucial for the firm to make the correct decision on (1)
how many batches to manufacture, and (2) how to differential batches to satisfy uncertain
demand in different markets. Failing to do so results in either large inventory holding cost
or possibly in patient fatalities. The problem setting is illustrated in Figure 2.1.

1This is a collaborated work with Professor Stefanus Jasin and Professor Hyun-Soo Ahn from Ross School
of Businnes, University of Michigan. This work has been accepted for publication in Operations Research.
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Figure 2.1: Batch production and differentiation

2.2 Literature Review

Our problem is essentially a centralized batch production and differentiation problem faced
by a firm that must coordinate production of batches and allocations of batches to end
products for different markets. Alternatively, it can be viewed as a multi-retailer inventory
problem where, in each period, total orders from all retailers must be a multiple of an
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exogenously determined batch size. Various models related to batch production/ordering
have been studied in the literature. Veinott (1965)[63] studies the problem of batch ordering
for a single retailer. For the backorder case, he shows that a (R, nQ) policy, in which the
inventory level is raised to at least R by ordering the smallest multiple of Q whenever it falls
below R, is optimal for both the finite and infinite horizon problems. Axsäter (1993, 1995,
1998, 2000)[2, 3, 4, 5], Forsberg (1997)[24], and Cachon (2001)[11] study the batch ordering
problem for two-echelon distribution systems with one warehouse and N retailers. The
papers by Axsäter assume that retailers and warehouse use a continuous review (Q,R) policy.
Axsäter (1993) assumesN identical retailers and proposes an exact and approximate methods
to evaluate and optimize the performance of the system. Axsäter (1998) extends these results
to 2 non-identical retailers, Forsberg (1997) extends these results to N non-identical retailers
with Poisson demand, and Axsäter (1995, 2000) consider compound Poisson demand. In all
of these continuous time models, there is no allocation issue. All demands are filled using a
first-come-first serve approach. Cachon (2001) relaxes the Poisson demand assumption and
models the periodic review version of the system, adopting a (R, nQ) policy with random
allocation at the warehouse. He characterizes the optimal re-order point at each retailer
given a re-order point at the warehouse, and then searches for the optimal warehouse re-
order point. Chen (2000)[15] considers the batch production problem in a multi-echelon
serial system (N stages) under periodic review and finds that a modified version of Veinott’s
(1965) (R, nQ) policy is optimal, and Chao (2009)[14] extends this model to allow fixed
replenishment intervals (e.g., stage 1 can order new products every day, stage 2 can order
new products every week, etc.). The authors show that the system achieves the minimum
expected average cost when the ordering times for all of the stages are synchronized. In all
of these work, however, the batch ordering restriction is imposed on each individual retailer
or stage. In contrast, in our problem, the batch ordering restriction is placed on the total
orders from all retailers. The manufacturer utilizes this information to decide how many
batches to produce.

Our problem is also related to the discrete time multi-retailer inventory model under
limited resources, in which the allocation issue is explicitly studied: Given a scarce resource
such as production capacity shared by multiple retailers, each of whom sells unique products,
the decision maker must decide how to allocate production capacity in each period. DeCroix
and Arreola-Risa (1998)[20] characterize the optimal policy for homogeneous products and
develop heuristic controls for the non-homogeneous case. Shaoxiang (2004)[53] extends these
results to two non-homogeneous products, and Janakiraman et al. (2009)[33] further extend
these results to more than two products and develop an asymptotically optimal control.
In all these works, there is a single capacity constraint on the resource; in contrast, the
constraint in our setting comes from the nature of batch production.

In contrast to most of the existing related literature, which primarily study the struc-
ture of the optimal ordering/allocation control, our primary objective in this chapter is to
explore the performance of a simple yet commonly used heuristic control, and analyze dif-
ferent approaches for improving its performance. (For a special case, we also derive the
structure of optimal allocation control.) First, we provide a theoretical performance bound
for Deterministic Control (DC) relative to the optimal control in our setting. In the DC
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approach, all random variables (i.e., random demands) are replaced by their expected values,
and the resulting deterministic optimization is solved to determine the operating control. In
other words, the original stochastic dynamic problem is transformed into a deterministic
optimization problem. Due to the challenges in estimating complete demand distribution in
practice, as well as the challenges in solving the original stochastic dynamic problem, DC
and its variants have became popular approaches for solving industrial scale inventory prob-
lem (Treharne and Sox (2002)[61], Calmon (2015)[12]). Indeed, based on our own limited
interactions with industry practitioners, many inventory managers only use a combination
of simple ordering policy (e.g., base-stock policy) and a form of spread-sheet optimization.
The later is essentially a deterministic optimization and, more often than not, only utilizes
a one-point approximation of demand.

Despite the prevalence of DC control, however, we are not aware of a rigorous analysis
of the theoretical performance of DC in the inventory literature (see Sections 2.4 and 2.5
for more discussions). There is a deep literature focusing on deterministic inventory models,
but this line of works tends to focus on solution approaches for these deterministic models
and for the most part, the quality of a deterministic model as an approximation for the
related stochastic model is not rigorously addressed. In this chapter, we show for our model
that although DC can perform very poorly if the planning horizon is very long, under some
technical conditions (see Theorems 2.5.2 and 2.5.3), periodic re-optimizations of DC (i.e., the
so-called Certainty Equivalent Control (CEC)) improve the performance of DC by damp-
ening the impact of the length of planning horizon on total costs. If, however, the size of
demand variation is also relatively large, then re-optimizations only have a limited benefit
and we need to apply more sophisticated heuristics control. These results shed light on the
appropriateness of either DC or CEC approach in practice.

To address the limitation of CEC, we analyze two improvements of CEC: (1) Open-Loop
Feedback Control (OLFC) and (2) Multi-Point Approximation Control (MPAC). Note that,
to reduce the computational burden, in the CEC approach we deliberately de-emphasize two
key elements of the original stochastic problem: (1) demand variation (because we ignore
demand distribution information except for its expected value) and (2) decision dynamics
(because we ignore the fact that future decisions will be contingent on current decisions,
demand realizations, and system dynamics). Both OLFC and MPAC highlight the potential
improvement of more explicitly considering these two elements. Unlike CEC, which only uses
expected demand information, OLFC uses the complete demand distribution information
for calculating batch production and product allocation. However, it only partially models
decision dynamics in an ad-hoc manner via frequent re-optimizations. MPAC, on the other
hand, explicitly models decision dynamics with a Dynamic Program (DP) but only uses
partial demand distribution information via a multi-point approximation of the distribution.
(See Table 2.1 for a comparison of all approaches analyzed in this chapter.)

We emphasize that both OLFC and MPAC do utilize more demand distribution informa-
tion beyond the expected values used by DC and CEC. The crucial and practically relevant
question that we attempt to answer is this: When designing a heuristic control for an inven-
tory problem, is it more important to major in demand information (e.g., by exerting a lot of
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efforts in estimating the whole demand distribution curve) and minor in decision dynamics,
or the other way around? That is, can we compensate the use of a less granular demand
distribution approximation with a more sophisticated decision dynamic, and vice versa? We
show that, for our model, although OLFC improves on the performance of CEC, the mag-
nitude of this improvement can be limited, especially when the size of demand variation is
large. Indeed, we show that a solution of OLFC can be identical to a solution of CEC in
some cases. This suggests that, in our setting, the benefit of using a complete demand dis-
tribution information is already captured, at least partially, by periodic re-optimizations of
a deterministic model—which is surprising, even if it only holds for some cases. In contrast
to OLFC, with a carefully chosen demand approximation in each period, MPAC exhibits a
stronger theoretical performance bound even with only a slightly more granular demand dis-
tribution approximation than expected value. This highlights the importance in our setting
of effectively modeling decision dynamics–incorporating the complete demand distribution
without a detailed enough model of decision dynamics is insufficient.

Since optimally solving a large-scale stochastic inventory problem is often intractable in
practice, developing computationally efficient heuristic controls with analytic performance
bounds becomes important. In addition to providing a guidance for constructing effective
heuristic controls for the specific model that we are considering, the approach taken in this
chapter, i.e., comparing the two heuristic controls— OLFC (capturing the fidelity of demand
distribution information but simplifying the decision dynamics) and MPAC (capturing the
decision dynamics but simplifying the demand distribution)— could potentially be applied
to other inventory problems to lend insight into factors that drive heuristic performance,
which can ultimately lead to more effective heuristic controls.

In Section 2.3, we formulate our model; in Sections 2.4 and 2.5, we introduce DC and CEC,
and analyze their performances; in Section 2.6, we discuss OLFC and MPAC; in Section 2.7,
we present results of our computational experiments; and finally, in Section 2.8, we conclude
the chapter.

2.3 The Stochastic Planning Problem

We consider a discrete-time model where a firm (a centralized decision maker) must satisfy
demands in multiple markets (which we call retailers) through joint production and alloca-
tion decisions. In each period, the sum of allocated units across all end-product markets
must equal the number of units in the batches produced in that period. Specifically, we
consider a model with T discrete periods and m retailers, where the time periods are in-
dexed by t ∈ {1, ... , T} and the retailers are indexed by i ∈ {1, ... ,m}. Demands across
different periods are assumed to be independent and stationary. We assume that lead time
is zero and unsatisfied demands are backordered. In general, our basic solution approach
is straightforward to extend to deterministic lead times.) The following notations are used
throughout the chapter:
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Notations:

Dt,i Demand faced by retailer i in period t.
Fi(·) Cumulative demand distribution for retailer i.
µi Expected demand in a period faced by retailer i.
∆t,i Dt,i − µi
hi Per unit holding cost for retailer i.
pi Per unit penalty cost for retailer i.
c Per unit production cost
B Batch size (i.e., the number of units in a batch).
Iπt,i Starting inventory at retailer i at the beginning of period t under policy π.
I1,i Starting inventory at retailer i at the beginning of period 1.
Nπ
t,i Number of new units allocated to retailer i in period t under policy π.

Zπ
t Number of new batches produced in period t under policy π.

Cπ Total costs under policy π.

Note that ∆t,i = Dt,i−µi is the difference between the actual and expected demand faced
by retailer i in period t. Since total allocated units across all retailers must equal total units
contained in the new batches, we must have:

∑m
i=1 N

π
t,i = Zπ

t B. For analytical tractability,
although we require Zπ

t to be a non-negative integer for all t and i, we allow Nπ
t,i to be a non-

negative real number. (In the context of biopharmaceutical problem that we consider, the
magnitude of demand in each retailer (i.e., country) is typically on the order of hundreds to
thousands. This justifies our relaxation of Nπ

t,i since a simple rounding error has a relatively
negligible impact on the overall system performance.) Under the backorder assumption, the
starting inventory level at retailer i at the beginning period t+ 1 under policy π is given by:

Iπt+1,i = Iπt,i +Nπ
t,i −Dt,i = I1,i +

t∑
s=1

Nπ
s,i −

t∑
s=1

Ds,i. (2.1)

At the beginning of period t, upon observing the available inventories at all retailers,
the firm first decides how many new batches to produce. After producing the new batches,
it must decide how many units of end product to allocate to each retailer (i.e., how many
units to label and package for each market). Demands are then realized and inventories
are consumed. Remaining units are held in inventory until the next period and unsatisfied
demands are backordered. Let Π denote the set of non-anticipating controls, i.e., the set of
controls that determine how many new batches to produce and how many units to allocate
to each retailer in period t using only the accumulated information up to the beginning of
period t. Let C∗ denote the expected total costs under an optimal control π∗ ∈ Π. We can
write C∗ as follows:
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C∗ = inf
π∈Π

T∑
t=1

E

[
cZπ

t B +
m∑
i=1

pi(Dt,i −Nπ
t,i − Iπt,i)+ +

m∑
i=1

hi(N
π
t,i + Iπt,i −Dt,i)

+

]
(2.2)

s.t.
m∑
i=1

Nπ
t,i = Zπ

t B, Z
π
t ∈ Z+, Nπ

t,i ∈ R+ ∀t, i (2.3)

Iπt+1,i = Iπt,i +Nπ
t,i −Dt,i ∀t, i (2.4)

Iπ1,i = I1,i ∀i (2.5)

where all the constraints must be satisfied almost surely. Let It = (It,i), Nt = (Nt,i), and
Dt = (Dt,i) denote the vector of starting inventory levels, allocated units, and realized
demands in period t, respectively. We can write the optimal control problem (2.2) using
Bellman’s equation as follows:

Ct(It) = min
Zt∈Z+,Nt∈Ω(Zt)

{cZtB +G(It +Nt) + E [Ct+1(It +Nt −Dt)]} for t = 1, 2, ..., T

CT+1(IT+1) = 0, (2.6)

where
Ω(Z) = {N : Ni ∈ R+,

∑m
i=1Ni = ZB} and G(y) = E [

∑m
i hi(y −D)+ +

∑m
i=1 pi(D − y)+].

In general, the joint production and allocation problem formulated in (2.6) is difficult
to solve and its optimal control is challenging to characterize. As might be expected given
the batch production requirements, the optimal expected cost Ct(It) is not convex in start-
ing inventory levels, so a simple base-stock style control is not likely to be optimal for this
problem. It is also not difficult to find examples where the optimal decision as a function
of inventory levels changes depending on the period for a given planning horizon. To cal-
culate the optimal control, it is therefore necessary to explicitly solve the entire dynamic
programming (2.6), which is generally intractable due to the problem size. As an illustra-
tion, if demand is discrete and integral, solving the full DP requires an exponential amount
of space O ((Imax − Imin)m) to store the state information where Imax (Imin) is the maximum
(minimum) possible inventory level. In addition, since the problem is not convex, to ensure
global optimality, there is also an exponential number of decisions O((ZmaxB)m) that need
to be explored.

2.4 Deterministic Control

In this section, we analyze the performance of the simple non-adaptive heuristic control we
introduced above—Deterministic Control (DC)—in which all random demand variables are
replaced by their expected values and the resulting deterministic optimization problem is
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solved (Treharne and Sox (2002)[61]). Although not always known by that name (indeed,
it is sometimes naively employed by managers without any name at all), DC is popular in
practice because it addresses two complicating problems that arise when solving the origi-
nal problem: (1) estimating the whole demand distribution curve is often challenging (for
instance, the firm that motivates this project uses a one-point estimate of demand instead
of the estimate of complete demand distribution— an approach which, in our experience,
is common); (2) the optimal control problem, even if demand distribution can be fully esti-
mated, is difficult to solve (for a typical industrial-scale problem, even solving a deterministic
version of the problem is already quite challenging). Naturally, these concerns have often
motivated practitioners to use a heuristic control that can be implemented with as little
detailed demand information as possible.

Given the fact that a DC-like approach is widely used in practice, an interesting set
of questions arises. In many settings, a deterministic model is a poor approximation of
a stochastic system and its solution is typically suboptimal when applied to its stochastic
counterpart. However, in a few canonical settings such as Linear Quadratic Gaussian Control
problem (see Stengel (1994)[58]), it is known that DC performs quite well and can even be
optimal. The important question for our multi-product inventory problem is: How much
is actually lost if a heuristic control derived from a deterministic model such as DC is
applied in a stochastic setting? Is there any setting in which a deterministic model is a good
approximation of a stochastic system? If so, in what sense?

Our results in this section show that DC performs reasonably well when the magnitude
of demand variation is relatively small relative to its mean (i.e., the coefficient of variation is
small) and the length of planning horizon is relatively short. We characterize the performance
of this deterministic heuristic and show that the performance of DC deteriorates at the rate
of T 3/2 as the length of planning horizon increases.

To evaluate the performance of DC, we first define CD as follows:

CD = min
z,n

T∑
t=1

[
c ztB +

m∑
i=1

pi (µi − xt,i − nt,i)+ +
m∑
i=1

hi(xt,i + nt,i − µi)+

]
(2.7)

s.t.
m∑
i=1

nt,i = ztB, zt ∈ Z+, nt,i ∈ R+ ∀t, i (2.8)

xt+1,i = xt,i + nt,i − µi ∀t, i (2.9)

x1,i = I1,i ∀i (2.10)

where the variables {xt,i} can be interpreted as the starting inventory levels for each retailer
at the beginning of each period in a deterministic system with demands equal their expected
values and under allocation {nt,i}.

Note that (2.7) can be written as a mixed integer linear program (MILP). We first explore
the relationship between CD and C∗. In much of the DC literature (e.g., Jasin and Kumar
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(2012)[35], Ciocan and Farias (2012)[19]), the optimal value of the deterministic problem
often serves as either a lower or upper bound for the optimal value of the original stochastic
control problem. This allows the optimal value of the deterministic problem to be used as
a proxy for performance analysis of any feasible heuristic control. Unfortunately, this is not
the case here due to the integrality of zt, i.e., CD 6≤ C∗. To see why, note that a standard
argument for proving either CD ≤ C∗ or CD ≥ C∗, depending on the context, is to apply
Jensen’s inequality and replace all random variables with their expected values. Since we
still require the number of batches to be integral, this strategy does not work. It is possible
to further relax this assumption and allows zt to be a real number, so we immediately get
CD ≤ C∗. However, the resulting lower bound is too loose to be useful for performance
benchmarking.

To describe DC, we let z = zD and n = nD denote an optimal solution to (2.7).

Deterministic Control - DC

1. At the beginning of period 1, solve CD

2. For t = 1, 2, ..., T , do:

(a) At the beginning of period t, produce exactly zDt new batches

(b) After the new batches arrive, allocate exactly nDt,i units to retailer i

As we define it, DC precludes any consideration of the starting inventory, or backorder,
levels prior to making the production and allocation decisions in each period because both
decisions are directly dictated by zD and nD, regardless of the actual demand realizations.
We define E[CDC ] to be the expected total costs associated with implementing DC. The
following result provides a bound for the regret introduced by implementing DC:

Theorem 2.4.1. Let σ = maxi E[(D1,i − µi)2]1/2. Then,

E[CDC ]− C∗ ≤ 2σ(T + 1)3/2

[
m∑
i=1

(pi + hi)

]
.

The proof of Theorem 2.4.1 can be found in Appendix A.1.1. Two comments are in order.
First, due to the non-differentiability of (·)+ = max(·, 0) in (2.7), the optimal solution zD

and nD may not be unique. However, the bound in Theorem 2.4.1 holds regardless of the
choice of optimal solution. Second, the performance of DC is proportional to the size of
demand variability as measured by σ. If σ = 0, then DC is optimal regardless of the length
of planning horizon T . When σ > 0, however, the bound in Theorem 2.4.1 depends not only
on σ but also on T 3/2. This scaling factor is not an artifact of the proof; our simulation
results in Section 2.7 do show that the relative regret of DC quickly becomes worse as T
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increases. Indeed, this is the reason why DC may perform very poorly for a multi-period
inventory problem even when the magnitude of demand variation is relatively small compared
to its mean. This is in contrast to the performance of DC-type heuristic controls in other
application areas such as revenue management and dynamic pricing, where the regret scales
with

√
T instead of T 3/2 (Gallego and van Ryzin (1994)[28], Jasin (2014)[34], Jasin and

Kumar (2013)[36]). Intuitively, in revenue management application, the penalty due to lost
sales is only applied once to the cumulative sales at the end of period T ; in contrast, in the
multi-period inventory problem, the penalty due to under/over sales (i.e., holding/backorder
cost) is applied in every period. This explains the difference in the performance of DC-
type heuristic controls in the two application areas. The following result is a corollary of
Theorem 2.4.1.

Corollary 2.4.2. Suppose that demands are Poisson with µi = µ∗ for all i. Then, there
exists a constant M > 0 independent of T and µ∗ such that,

E[CDC ]− C∗

C∗
≤ M

(
T

µ∗

)1/2

.

The proof of Corollary 2.4.2 can be found in Appendix A.1.2. The bound in Corollary 2.4.2
is proportional to

√
T/µ∗. Thus, even for the case of Poisson demand, where the coefficient

of variation goes to zero as the mean goes to infinity, T must be small relative to µ∗ for DC to
be reasonably effective. While this may not be an issue for instances with very large µ∗, this
result shows that the applicability of DC is, at best, limited. To re-emphasize, in the context
of our inventory problem, DC may perform poorly, even for instances with a small coefficient
of variation, unless the planning horizon is also short. This paints a rather bleak picture
on the usefulness of a deterministic approximation for multi-period stochastic inventory
problems in general. The main culprit here is the manner in which randomness accumulates
over time due to the per-period holding and penalty costs, which scale polynomially with T .
This gives rise to an important question: Is it possible to construct an alternative heuristic
control that retains the simplicity of DC and yet is more effective than DC, at least in the
setting with a small coefficient of variation and typical industrial planning horizon (which
is about 2 to 5 years, i.e., T = 24 to 60 if one period equals one month)? It turns out
that simple re-optimization of DC at the beginning of every period significantly reduces the
dependency of relative regret on T . This makes DC more practically appealing and amenable
to problems with a longer planning horizon. We introduce and analyze this approach in the
next section.
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2.5 Improving Deterministic Control via

Re-optimization

We next discuss several modifications to the basic DC that can improve its performance.
For analytical tractability, we will focus our attention only on the class of controls that use
zD as the production control, but optimize the allocation control. (One might expect an
additional improvement if the production control is also further optimized— this makes the
analysis extremely challenging, but we computationally test this approach in Section 2.7.)

For a given production control, except for some special cases, the optimal allocation con-
trol is difficult to determine when we have multiple retailers. In the case of homogeneous
retailers with identical cost structures and i.i.d demands, we are able to completely char-
acterize an optimal allocation control. We then prove that, as long as the size of demand
variation is not too large compared to its mean, a simple re-optimization of DC at the be-
ginning of every period suffices to guarantee a significant improvement over DC. This result
gives credence to the practice of re-optimization that is often employed in industry. More-
over, our analysis of re-optimization also suggests a natural inventory-balancing control that
can be implemented in real-time. We discuss this at the end of this section.

Recall that zD is computed at the beginning of the horizon by solving for CD. Let Π̃
denote the set of non-anticipating controls that use zD as the production control. Also,
let Jπ denote the total costs under control π ∈ Π̃ and J∗ denote the total costs under the
optimal allocation control for a given production control zD. We can write:

J∗ = inf
π∈Π̃

T∑
t=1

E

[
czDt B +

m∑
i=1

pi(Dt,i −Nπ
t,i − Iπt,i)+ +

m∑
i=1

hi(N
π
t,i + Iπt,i −Dt,i)

+

]
(2.11)

s.t.
m∑
i=1

Nπ
t,i = zDt B, N

π
t,i ∈ R+ ∀t, i (2.12)

Iπt+1,i = Iπt,i +Nπ
t,i −Dt,i ∀t, i (2.13)

Iπ1,i = I1,i ∀i (2.14)

Similar to C∗ in Section 2.2, we can write J∗ using Bellman’s equation as follows:

Jt(It) = min
Nt∈Ω(zDt )

{
czDt B +G(It +Nt) + E [Jt+1(It +Nt −Dt)]

}
t = 1, . . . , T (2.15)

where JT+1(IT+1) = 0 and Ω(·) is as defined in Section 2.2.

2.5.1 Optimal Allocation Control

In general, the optimal allocation control that achieves J∗ is challenging to compute; doing
so requires solving a full DP using backward recursion, which is computationally intractable
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if T, m, or the support for demand distribution is large. However, if all retailers are homo-
geneous with identical cost structure (i.e., hi = h∗ and pi = p∗ for all i) and i.i.d. demands
(i.e., Dt,i ∼ D for all t and i), a simple and easy-to-implement allocation control is optimal:

Theorem 2.5.1. Suppose that I1 = 0, pi = p∗ and hi = h∗ for all i, and demand at all
retailers in all periods is i.i.d. Then, the optimal allocation control can be obtained as follows:

(1) At the beginning of period t, sort all retailers from the smallest inventory level to the
largest, It,1 ≤ It,2 ≤ . . . ≤ It,m. Let θt = max{k ∈ Z+ |

∑k
i=1 i(It,i+1 − It,i) ≤ zDt B}.

(2) Raise the inventory of retailers with i ≤ θt to the same level, i.e.,

Nt,i + It,i =
1

θt

(
θt∑
i=1

It,i + zDt B

)
∀i ≤ θt.

(3) Allocate nothing for all retailers with i > θt by setting Nt,i = 0, ∀ i > θt.

The proof of Theorem 2.5.1 can be found in Appendix A.1.3. In other words, when all
retailers are homogeneous, the optimal allocation control is to balance the inventory levels
in as many retailers as possible by allocating the new units starting with a retailer with the
lowest inventory level. If the retailers are not homogeneous (either in demand distribution
or cost parameters), this allocation control is no longer optimal. However, all is not lost. In
Section 2.5.3, we will show that an inventory balancing control similar to the one described
in Theorem 2.5.1 is near-optimal in the non-homogeneous setting.

2.5.2 Certainty Equivalent Control

Motivated by our discussion in Section 4.1, we now consider a simple heuristic control based
on re-optimizing the deterministic counterpart of J∗, which we call Certainty Equivalent
Control (CEC). Re-optimizations have been shown to significantly improve the performance
of DC-type heuristic controls in many application areas (Jasin (2014)[34], Jasin and Kumar
(2012)[35], Reiman and Wang (2008)[49]. and Ciocan and Farias (2012)[19]). In the context
of assemble-to-order system, Plambeck and Ward (2006)[46] and Dogru et al. (2010)[22]
propose adaptive controls that utilize some forms of re-optimization. However, their results
do not carry over to our setting for at least two reasons: (1) In the assembly-to-order setting
considered in these papers, the firm first observes demand before making a decision while,
in our setting, the firm first makes a decision before observing demand; (2) in this assemble-
to-order setting, the firm can make continuous adjustments while, in our setting, the firm
is limited to making adjustments at the beginning of each period. In a standard inventory
control setting, Secomandi (2008)[52] analyzes the impact of re-optimization on performance.
He shows that re-optimization does not always improve the original solution and provides
sufficient conditions for re-optimization to guarantee a better result. However, he does not
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provide a theoretical performance bound for his approach. The lack of existing results in the
literature is quite surprising given the practicality and prevalence of re-optimization-based
heuristic controls in industry. In fact, many companies with which have interacted employ
a form of rolling horizon approach that periodically re-optimizes their planning models.
Our results in this subsection contribute to the literature by characterizing the benefit of
re-optimizations on model performance.

Define JDt (It) as follows:

JDt (It) = min
n

T∑
s=t

[
czDs B +

m∑
i=1

pi(µi − xs,i − ns,i)+ +
m∑
i=1

hi(xs,i + ns,i − µi)+

]
(2.16)

s.t.
m∑
i=1

ns,i = zDs B, ns,i ∈ R+ ∀s, i (2.17)

xs+1,i = xs,i + ns,i − µi ∀s, i (2.18)

xt,i = It,i ∀i (2.19)

where, as before, the variables {xt,i} can be interpreted as the starting inventory levels for
each retailer at the beginning of each period in a deterministic system where demands equal
their expected values and under allocation {nt,i}. Let n∗t = (n∗ts,i)s≥t, i≥1 denote an optimal
solution of JDt (It). (Note that n∗t is a function of It. We suppress its dependency on It for
notational brevity.) The complete description of CEC is given below.

Certainty Equivalent Control - CEC

1. At the beginning of period 1, solve CD

2. For t = 1, 2, ..., T , do:

(a) At the beginning of period t, produce exactly zD new batches

(b) Solve JDt (It) and allocate exactly n∗tt,i units to retailer i

(c) Update It+1 = It + n∗tt −Dt

In contrast to DC, which is implemented independent of demand realizations, CEC in-
corporates realized demands and updated inventory/backorder level by re-optimizing the
deterministic allocation problem at the beginning of every period. We now examine whether
re-optimization is sufficient to significantly improve the performance of DC.

The impact of re-optimization for a problem with general holding and penalty costs is
difficult to analyze, primarily due to the non-differentiability of the function (·)+ = max(·, 0).
Moreover, the optimal solution of JDt (It) may not be unique. This makes the task of analyzing
the evolution of the re-optimized solution analytically intractable (see also Remark 2.5.1 at
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the end of this subsection). However, we show that it is possible to theoretically characterize
the benefit of re-optimization under a particular sequence of optimal solutions n∗11 , n

∗2
2 , ..., n

∗T
T

when either these solutions satisfy a certain condition (see Theorem 2.5.2) or all retailers
are homogeneous with identical cost structure and i.i.d demands (see Theorem 2.5.3). In
Section 4.3, we will argue that CEC can in fact be interpreted as a form of inventory-
balancing control. This observation is useful and can be used to motivate the development
of optimal inventory-balancing controls in other inventory control problems. Let D1:T denote
the vector of all realized demands in T periods. Define the hindsight total costs JH(D1:T )
as follows:

JH = min
n

T∑
t=1

[
czDt B +

m∑
i=1

pi(Dt,i − xt,i − nt,i)+ +
m∑
i=1

hi(xt,i + nt,i −Dt,i)
+

]
(2.20)

s.t.
m∑
i=1

nt,i = zDt B, nt,i ∈ R+ ∀t, i (2.21)

xt+1,i = xt,i + nt,i −Dt,i ∀t, i (2.22)

x1,i = I1,i ∀i (2.23)

JH is thus the optimal total cost incurred if the firm has perfect knowledge of all future
demands. Since we obviously cannot do better than the perfect hindsight policy, we imme-
diately have E[JH ] ≤ J∗. The result below gives us a sense of the level of improvement that
may result from periodic re-optimizations.

Theorem 2.5.2. Let σ = maxi E[(D1,i − µi)2]1/2. Suppose that I1 = 0 and there exists an
optimal solution n∗1 and a constant ϕ > 0 such that n∗1t,i ≥ ϕ and

∣∣∑t
s=1 n

∗1
s,i − tµi

∣∣ ≥ tϕ for
all t and i. Let JDC and JCEC be the expected total costs under DC and CEC, respectively,
and define A = {

∑m
i=1 |∆t,i| < ϕ/2, ∀ t}. Then,

E[(JDC − JH) 1{A}] ≤ 2σ(T + 1)3/2

[
m∑
i=1

(pi + hi)

]
.

Moreover, there exists a sequence of optimal solutions n∗22 , ..., n
∗T
T such that

E[(JCEC − JH) 1{A}] ≤ 2σT

[
m∑
i=1

(pi + hi)

]
.

The proof of Theorem 2.5.2 can be found in Appendix A.1.4. Note that, under DC, we
simply apply allocation control nDt during period t as in Theorem 1. Thus, the fact that
the bound for DC is of order T 3/2σ is not surprising. In contrast, the bound for CEC is
only of order Tσ, which means that re-optimizations improve the performance guarantee of
DC by reducing the effect of the length of planning horizon on regret from T 3/2 to T , at
least in the set A where the size of total demand variation during each period is relatively
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small compared to the number of allocated units. If σ is small compared to ϕ, then A
happens with high probability. In this case, we can properly say that periodic re-optimization
improves the performance of DC with a high probability. The conditions n∗1t,i ≥ ϕ and∣∣∑t

s=1 n
∗1
s,i − tµi

∣∣ ≥ tϕ in Theorem 2.5.2 simply mean that in a deterministic world, we always
allocate a positive number of products to each retailer at every period, and that the starting
inventory level at each retailer at the beginning of period t > 1 (i.e.,

∑t−1
s=1 n

∗1
s,i − (t − 1)µi)

is always either strictly positive or strictly negative. These conditions are not as strong as
they appear; they can be easily satisfied, for example, in the case where there is a mismatch
between the number of units per batch (or the number of units in an integer multiple of a
batch) and the total expected demands at all retailers. (To illustrate, suppose that we have
two identical retailers with p1 = p2, h1 = h2, µ1 = µ2 = 980, B = 2000 and T = 10. For
simplicity, suppose that c = 0 (or any sufficiently small number). If the penalty cost for
lost sales is sufficiently large, which is uncommon in the context of our biopharmaceutical
problem, it is not difficult to show that it is optimal to produce exactly one batch in every
period. Moreover, an optimal allocation is given by n∗1t,1 = n∗1t,2 = 1000 for all t, which yields
the starting inventory levels It,1 = It,2 = 20 · (t − 1) for all t ≤ 10.) Finally, note that the
probability of event A is a function of T . Without further assumptions on the cost structure
and demand distribution, it is not immediately clear from Theorem 2.5.2 alone how long the
planning horizon can be before the benefit of re-optimizations start to diminish due to the
cumulative impact of demand randomness. Per our discussions in Section 2.4, T must be
much smaller than µ∗ for DC to perform sufficiently well. The next result shows that CEC
clearly outperforms DC for a wide range of T values.

Theorem 2.5.3. Suppose that the following conditions hold: I1 = 0, pi = p∗ and hi = h∗

for all i, demands are i.i.d with mean µ∗ and standard deviation σ∗, and zDt > 0 for all
t. Define Â := {

∑m
i=1 |∆t,i| ≤ B/(2m) ∀ t}. There exists a sequence of optimal solutions

n∗11 , n
∗2
2 , ..., n

∗T
T such that

E[(JDC − JH)1{Â}] ≤ 2m(p∗ + h∗)(T + 1)3/2σ∗ and

E[(JCEC − JH)1{Â}] ≤ 2m(p∗ + h∗)Tσ∗.

Moreover, if demands are Poisson, B ≥
√
µ∗, and T = o(emin{µ∗/5, B2/(80m4µ∗)}), there

exists a constant M > 0 independent of T , B and µ∗ such that, for all large B2/µ∗ and µ∗,

E[JDC ]− J∗

J∗
≤ M

√
T

√
µ∗ +

√
T

and
E[JCEC ]− J∗

J∗
≤ M
√
µ∗ +

√
T
.

The proof of Theorem 2.5.3 can be found in Appendix A.1.5. Some comments are in order.
First, the setting in Theorem 2.5.3 is not a special case of the setting in Theorem 2.5.2.
(In Theorem 2.5.3, we do not require |

∑t
s=1 n

∗1
s,i − tµi| ≥ tϕ for some ϕ > 0 for all t

and i; in fact, it is possible that |
∑t

s=1 n
∗1
s,i − tµi| = 0 for all t and i. Mathematically,

we do not need this condition because we assume that all retailers are homogeneous and
demands are i.i.d.) Thus, the result of Theorem 2.5.3 cannot be seen as a corollary of
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Theorem 2.5.2. Second, the bound for DC in Theorem 2.5.3 is similar to the bound for DC
in Corollary 2.4.2. Although the bound holds for T = o(emin{µ∗/5, B2/(80m4µ∗)}) (i.e., T can be
very large, especially when B is proportional to µ∗, as in the case of our biopharmaceutical
problem), T must be much smaller than µ∗ to guarantee the effectiveness of DC. In contrast,
the bound for CEC is almost independent of T— as long as T = o(emin{µ∗/5, B2/(80m4µ∗)}),
which can be much larger than µ∗, the relative regret of CEC decreases to 0 at a rate that
is (roughly speaking) proportional to 1/

√
µ∗ as µ∗ → ∞. In contrast to DC, in the case of

CEC, the additional
√
T in the bound also helps speed up the convergence. However, since a

typical planning horizon extends about 2 to 5 years, if one period is one month (i.e., T = 24
to 60) and µ∗ is, at least, on the order of hundreds or thousands, the greatest impact on
performance comes from

√
µ∗ instead of

√
T . Practically, this means that re-optimization

not only yields a stronger performance guarantee, but also allows for a much longer planning
horizon. If T is larger than o(emin{µ∗/5, B2/(80m4µ∗)}), however, it becomes necessary to also
re-optimize the production decision zt in addition to the allocation decisions {nt,i} for good
performance. This alternative re-optimization control, which essentially re-optimizes the
whole integer program instead of a linear program, can also be used to address the case
where demand variation is relatively large compared to its mean (in contrast to Poisson
demand in Theorem 2.5.3). We computationally test the performance of this approach in
Section 6.

Finally, the relative bounds in Theorem 2.5.3 hold for sufficiently large batch sizes. In
particular, B must have at least the same order of magnitude as the standard deviation
of Poisson demand for one retailer,

√
µ∗. To see why this is necessary in general, note

that if B <<
√
µ∗ and zDt = 1 for all t, then Â is unlikely to occur, and the benefit of

re-optimizations are limited to a small set of demand realizations. In the context of our
biopharmaceutical problem, the conditions of large B2/µ∗ and µ∗ are easily satisfied since
B is typically much larger than µ∗ (i.e., the size of a batch is much larger than the expected
demand at any one retailer) and µ∗ ranges from about hundreds to thousands.

Remark 2.5.1. (On the Non-uniqueness of the Optimal Solution). Although we
only prove the results in Theorems 2.5.2 and 2.5.3 for a particular choice of optimal solution,
we conjecture that the non-uniqueness of the optimal solution is not detrimental to the
performance of this approach (as in the context of revenue management; see Jasin and Kumar
(2013)[36]). Indeed, if we use a differentiable convex cost functions for period holding and
penalty costs instead of a linear holding and penalty cost function, the resulting deterministic
problem is differentiable and its optimal solution is unique. In this setting, it can be shown
that the bounds in Theorems 2.5.2 and 2.5.3 still hold. This suggests that the bounds in
Theorems 2.5.2 and 2.5.3 are not simply an artifact of a particular choice of optimal solution.

Remark 2.5.2. (On the Use of Poisson Demand in Theorem 2.5.3). Instead of
using Poisson demand in Theorem 2.5.3, it is also possible to use Normal demand to better
highlight the impact of B, σ, and µ on performance. If demands are all Normal with mean
µ∗ and standard deviation σ∗. If σ∗ = o(B) and T = o(emin{Θ(µ∗),Θ((B/σ∗)2)}), it can be
shown using arguments similar to those used in the proof of Theorem 2.5.3 that there exists

a constant M > 0 independent of T , µ∗, σ∗, and B such that E[JCEC−J∗]
J∗

≤ Mσ∗

µ∗+σ∗
√
T

for all
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large µ∗ and B/σ∗.

2.5.3 Key Ideas in the Proof of Theorems 2.5.2 and 2.5.3

We now briefly discuss the key ideas behind the proofs of Theorems 2.5.2 and 2.5.3. We
focus only on CEC, since the arguments for DC are similar. In addition, we will also draw a
connection between the optimal allocation control derived in Theorem 2.5.1 and the proposed
solution in Theorems 2.5.2 and 2.5.3.

The proof of Theorem 2.5.2 has roughly two major parts. In the first part, we show that
the sequence {nHt,i} defined as nHt,i = n∗1t,i + ∆t,i − 1

m

∑m
j=1 ∆t,j for all t and i is optimal for

the hindsight problem on A. Let IHt,i denote the starting inventory level for retailer i at the
beginning of period t under hindsight policy. Simple algebra yields:

IHt,i =
t−1∑
s=1

n∗1s,i − (t− 1)µi −
1

m

t−1∑
s=1

m∑
j=1

∆s,j for all t and i.

In the second part of the proof, we study an optimal solution of JDt (It) on A. Define n∗t

for t > 1 as follows:

n∗tt,i = n∗1t,i + ∆t−1,i −
1

m

m∑
j=1

∆t−1,j and n∗ts,i = n∗1s,i for s > t.

We claim that if ns = n∗ss for all s ≤ t− 1, then:

(i) The starting inventory level for retailer i at the beginning of period t > 1 is given by

ICECt,i =
t−1∑
s=1

n∗1s,i − (t− 1)µi −∆t−1,i −
1

m

t−2∑
s=1

m∑
j=1

∆s,j

(ii) n∗t is an optimal solution for JDt (It).

In the detailed proof in the Appendix, we prove this claim by induction. In the proof, we
show that the proposed allocation is optimal by a duality argument. Specifically, we first
re-write JDt (It) as a linear program and then show that there exists a set of feasible dual
and primal variables (that correspond to the proposed allocation) such that all the Karush-
Kuhn-Tucker (KKT) conditions are satisfied. Since KKT conditions are both necessary
and sufficient for optimality in linear program, we conclude that the proposed allocation is
optimal.

Combining the results from both parts of the proof, we can write: ICECt+1,i = IHt+1,i −∆t,i +
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1
m

∑m
j=1 ∆t,j for all t and i. This allows us to bound JCEC − JH on A as follows:

JCEC − JH =
T∑
t=1

m∑
i=1

[
pi(−ICECt+1,i )

+ + hi(I
CEC
t+1,i )

+
]
−

T∑
t=1

m∑
i=1

[
pi(−IHt+1,i)

+ + hi(I
H
t+1,i)

+
]

≤
T∑
t=1

m∑
i=1

(pi + hi)

∣∣∣∣∣∆t,i −
1

m

m∑
j=1

∆t,j

∣∣∣∣∣ .
The result of Theorem 2.5.2 follows because E[|∆t,i − 1

m

∑m
j=1 ∆t,j| · 1{A}] ≤ E[|∆t,i −

1
m

∑m
j=1 ∆t,j|] ≤ E[|∆t,i|] + 1

m

∑m
j=1 E[|∆t,j|] ≤ 2σ.

The proof of Theorem 2.5.3 is more involved than the proof of Theorem 3 and can be
broken down into four parts. In the first part, we again argue that the sequence {nHt,i} defined

as above is optimal for the hindsight problem on Â. In the second part, we prove by induction
that n∗t defined as above is also optimal for JDt (It) (provided that we use ns = n∗ss for all
s ≤ t−1). However, there is one key difference. In the proof of Theorem 2.5.2, the induction
uses a duality argument and constructs a set of feasible dual and primal variables that satisfy
KKT conditions. In the proof of Theorem 2.5.3, this argument no longer works because we
do not assume, as in Theorem 2.5.2, that n∗1t,i ≥ ϕ and

∣∣∑t
s=1 n

∗1
s,i − tµi

∣∣ ≥ tϕ for all t and i,
for some ϕ > 0; instead, we use a convexity argument (i.e.,

∑m
i=1 g(xi) ≥

∑m
i=1 g( 1

m

∑m
j=1 xj)

for any convex function g(·)) to prove the optimality of n∗t for JDt (It). This works because we
assume that pi = p∗ and hi = h∗ for all i. For the first half of Theorem 2.5.3, the condition
that demands are stationary over time and identically distributed among all retailers are not
necessary. Since the same allocation is optimal in Theorem 2.5.3 as in Theorem 2.5.2, we
still have:

JCEC − JH ≤
T∑
t=1

m∑
i=1

(pi + hi)

∣∣∣∣∣∆t,i −
1

m

m∑
j=1

∆t,j

∣∣∣∣∣ .
Thus, E[(JCEC − JH) · 1(Â)] ≤ 2mT (p∗ + h∗)σ∗. To complete the proof for the relative

bounds with Poisson demands, we need two additional steps: we need to compute a bound
for P (Â) (this is the third part) and we need to compute a lower bound for J∗ (this is the
last part). We show in the electronic companion that P (Â) ≥ 1− 2mTe−min{µ∗, B2/(16m4µ∗)}.
(This can be shown using a standard exponential tail argument via a moment generating
function of a Poisson random variable.) Note that if both µ∗ and B2/µ∗ are large, Â occurs
with high probability, so E[JCEC − JH ] approximately equals E[(JCEC − JH) · 1{Â}] and
we can (roughly) ignore E[(JCEC − JH) · 1{Âc}] when bounding E[JCEC − JH ]. As for a
lower bound for J∗, we show in the electronic companion that there exists a constant M ′ > 0
independent of T > 0 such that, for all large µ∗, we have

J∗ ≥ cTµ∗ +M ′√µ∗ T 3/2.
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The proof of this bound utilizes a well-known Central Limit Theorem (CLT) result – the
fact that E [|nθ −

∑n
i=1Xi|] = Θ(σ

√
n) for large n and i.i.d Xi’s with mean θ and standard

deviation σ. Combining these observations, we finally have:

E[JCEC ]− J∗

J∗
≤ E[JCEC − JH ]

J∗
≈ E[(JCEC − JH) · 1(Â)]

J∗

≤ 2mT (p∗ + h∗)
√
µ∗

cTµ∗ +M ′√µ∗ T 3/2
≤ M
√
µ∗ +

√
T

for some M > 0. This completes the proof.

There is a relationship between the optimal allocation control derived in Theorem 2.5.1
and the proposed solution used in Theorems 2.5.2 and 2.5.3. In both Theorems 2.5.2 and
2.5.3, the proposed optimal solution is of the form n∗tt,i = n∗1t,i + ∆t−1,i− 1

m

∑m
j=1 ∆t−1,j for all

t and i. It is not difficult to check that this solution corresponds to a particular inventory-
balancing policy. Let IDt,i :=

∑t−1
s=1 n

∗1
s,i − (t − 1)µ denote the starting inventory level for

retailer i at the beginning of period t under the deterministic system with I1,i = 0. Also,

let ÎDt,i := IDt,i + n∗1t,i where ÎDt,i can be interpreted as the after-allocation target inventory level

for retailer i in period t. Under CEC, we can write ICECt,i =
∑t−1

s=1 n
∗s
s,i −

∑t−1
s=1Ds,i = IDt,i −

1
m

∑m
j=1

∑t−2
s=1 ∆s,j−∆t−1,i. So, allocating n∗tt,i units to retailer i at period t immediately brings

the inventory level to ICECt,i +n∗tt,i = IDt,i +n∗1t,i− 1
m

∑m
j=1

∑t−1
s=1 ∆s,j = ÎDt,i− 1

m

∑m
j=1

∑t−1
s=1 ∆s,j.

This means that our proposed solution balances the inventory level at all retailers by the
same offset relative to the deterministic target level. In the case of Theorem 2.5.1, since all
retailers are homogeneous, there are uniform target levels; so, this is equivalent to bringing
the inventory level at each retailer to the same value.

2.6 Beyond the Deterministic and Certainty

Equivalent Controls

Erring on the side of simplicity, DC deliberately ignores two key elements of the original
stochastic problem: (1) demand variation and (2) decision dynamics (adaptive decisions
contingent on realized demands observations). The combined impact of these two elements
shows up in the bound; the regret of DC scales linearly with σ and polynomially with T . In
Section 2.5, we proved that simple periodic re-optimizations of DC (i.e., CEC) improve the
performance of DC by reducing the dependency of its regret on T from polynomial to linear.
This result highlights an important point that re-optimizations of a deterministic system
are useful for addressing the lack of decision dynamics in DC, at least for our setting, which
suggests several follow-up questions: Is it possible to further reduce the dependency of regret
on either σ or T from linear to sublinear? Moving beyond the use of expected values, is it
more useful to explicitly incorporate complete demand information and couple this with an
ad-hoc modeling of decision dynamics via re-optimizations, or is it more useful to use a little
bit more of demand distribution information beyond expected values and couple this with
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an explicit model of decision dynamics (via DP, for example)? That is, can we compensate
for the lack of demand distribution information with a more sophisticated model of decision
dynamics, and vice versa?

In this section, we analyze two approaches to improve the performance of CEC: (1)
Open-Loop Feedback Control (OLFC) and (2) Multi-Point Approximation Control (MPAC).
OLFC uses the complete demand distribution information but only partially incorporates
decision dynamics in an ad-hoc manner via re-optimizations. In contrast, MPAC directly
models the complete decision dynamics via a dynamic program, but approximates demand
distribution using a multi-point approximation of demand. We show, at least in some cases,
that an optimal solution under OLFC is also an optimal solution under CEC. (See also the
discussions after the statement of Lemma 2.6.1 in Section 2.6.1.) Although OLFC improves
the performance of CEC as shown by our numerical results in Section 6, in general its regret
may still scale linearly with both σ and T . In contrast, with a proper choice of demand
approximation in each period, the regret of MPAC scales sublinearly with T . This result
has an important implication: To significantly reduce the dependency of regret on T (or
potentially σ) from linear to sublinear in our setting, it appears to be necessary to include
a more sophisticated model of decision dynamics.

2.6.1 Open-Loop Feedback Control

We proceed in two stages as follows: In stage 1, we solve CD to calculate the number of
new batches to produce at the beginning of each period; in stage 2, instead of re-optimizing
JDt (It) as in the case of CEC, we re-optimize JSt (It) defined below:

JSt (It) = min
n

T∑
ξ=t

czDt B + E

 m∑
i=1

pi

(
ξ∑
s=t

Ds,i −
ξ∑
s=t

ns,i − It,i

)+

+
m∑
i=1

hi

(
It,i +

ξ∑
s=t

ns,i −
ξ∑
s=t

Ds,i

)+
 (2.24)

s.t.
m∑
i=1

ns,i = zDs B, ns,i ∈ R+ ∀s, i (2.25)

Observe that JSt (It) is similar to a single period newsvendor problem. If demands are
continuous and Fi(·) is differentiable and strictly positive on (0,∞] for all i, it is not difficult
to show that the objective function in (2.24) is convex on (0,∞]m. Let nSt = (nSts,i)s≥t, i≥1

denote the optimal solution of JSt (It). (We suppress the notational dependency of nSt on
It.) The complete description of OLFC is given below:

Open-Loop Feedback Control - OLFC
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1. At the beginning of period 1, solve CD

2. For t = 1, 2, ..., T , do:

(a) At the beginning of period t, produce exactly zDt new batches

(b) Solve JSt (It) and allocate exactly nStt,i units to retailer i

(c) Update It+1 = It + nStt −Dt

Although our numerical results in Section 2.7 show that OLFC consistently performs bet-
ter than CEC, it is challenging to analytically characterize this improvement. Interestingly,
it is possible to show that an optimal allocation under OLFC is sometimes also optimal
under CEC (see Lemma 2.6.1 below). This suggests that the benefit of simply expoliting
a complete demand distribution information without sufficient decision dynamics is already
captured (at least, partially) by periodic re-optimizations of a deterministic system with a
one-point demand approximation.

Lemma 2.6.1. Suppose that I1 = 0, pi = p∗ and hi = h∗ for all i, demands are i.i.d
with mean µ∗, standard deviation σ∗ and their common cdf is differentiable and strictly
positive on (0,∞], and zDt > 0 for all t. Let Â := {

∑m
i=1 |∆t,i| ≤ B/(2m) ∀ t}. Define

nStt,i =
zDt B

m
+ ∆t−1,i − 1

m

∑m
j=1 ∆t−1,j for all t and i. Then, {nStt,i} is an optimal allocation

under OLFC on Â.

The proof of Lemma 2.6.1 can be found in Appendix A.1.6. Recall from Section 2.5.3 that
zDt B

m
+∆t−1,i− 1

m

∑m
j=1 ∆t−1,j is the (constructed) optimal allocation under CEC for period t.

Thus, despite the fact that OLFC uses complete demand distribution information and CEC
only uses a one-point demand approximation, the regret associated with OLFC in general
may still be O(σ∗T ) (because the bounds in Theorem 2.5.3 also hold for OLFC). Indeed, for

the special case where
zDt B

m
− µ∗ > B

2m
for all t (which can happen if there is a mismatch

between the number of units in a batch, or an integer multiple of a batch, and total expected
demands in all retailers), it is not difficult to show that JSt (It) is strictly convex on Â under
the proposed solution. Since an interior optimal solution in a strongly convex problem is
also the unique optimal solution to the problem, the regret of OLFC on the set Â in this
special case is exactly the same as the regret of CEC on the same set under the proposed
solution in Theorem 2.5.3.

2.6.2 Multi-Point Approximation Control

In the previous subsection, we saw that explicitly modeling the complete demand distribution
and combining this with a simplified model decision dynamics is not sufficient to improve
significantly on CEC. We now consider explicitly incorporating complete decision dynamics.
The essence of MPAC is the use of a multi-point demand approximation to capture more

24



demand distribution information beyond that captured by expected value, and using this
multi-point approximation in a full DP to completely exploit decision dynamics. There are
potentially many ways of doing this; here, we will only discuss one such approach. For each
i, let Si denote the support of Dt,i and D̂t,i denote the approximation of Dt,i. We consider
an approximation of the following form: There exists a partition {Ωk

t,i} (i.e., ∪k Ωk
t,i = Si)

and a mapping mt,i : {Ωk
t,i} → {vkt,i} such that Dt,i ∈ Ωk

t,i is approximated (or represented)

by D̂t,i = vkt,i. Note that, by construction, P(D̂t,i = vkt,i) = P(Dt,i ∈ Ωk
t,i). For example, if

vkt,i = µi = E[Dt,i] for all k, t, and i, then we have the one-point approximation used in DC
and CEC.

Now, consider the following optimization problem:

Ĉ∗ = inf
π∈Π

T∑
t=1

E

[
cZπ

t B +
m∑
i=1

pi(D̂t,i −Nπ
t,i − Iπt,i)+ +

m∑
i=1

hi(I
π
t,i +Nπ

t,i − D̂t,i)
+

]
(2.26)

s.t.
m∑
i=1

Nπ
t,i = Zπ

t B, Z
π
t ∈ Z+, Nπ

t,i ∈ R+ ∀t, i (2.27)

Iπt+1,i = Iπt,i +Nπ
t,i − D̂t,i ∀t, i (2.28)

Iπ1,i = I1,i ∀i (2.29)

where the expectation is taken with respect to the induced probability distribution for {D̂t,i}.
Let π̂∗ = (π̂∗1, · · · , π̂∗T ) denote the optimal control of Ĉ∗. Since π̂∗ is a control defined in a
“virtual” world where demands are realized according to D̂ instead ofD, it is not immediately
clear how to translate π̂∗ into a control πR = (πR1 , · · · , πRT ) to be implemented in a ”real-
world” setting where demands are realized according to D. (The superscript “R” stands for
“real”.) Here, we will focus on the following control translation scheme:

πR1 = π̂∗1 and πRt (D1, ..., Dt−1) = π̂∗t (I
π̂∗

t ) ∀ t > 1

where I π̂
∗

t+1,i = I π̂
∗

t,i +N π̂∗
t,i −D̂t,i (i.e., I π̂

∗
t is the virtual starting inventory level at the beginning

of period t under control π̂∗ and demand realizations D̂1, ... , D̂t−1). Under control π, at the
beginning of period t, we first calculate the virtual inventory level at each retailer; next, we
produce exactly Z π̂∗

t new batches and allocate exactly N π̂∗
t,i units to retailer i. So, we respond

as if demands are generated according to D̂ instead of D. We state our result below.

Theorem 2.6.2. Let θt,i := E[(Dt,i − D̂t,i)
2]1/2. Then,

E
[
CπR

]
− C∗ ≤ 2

m∑
i=1

(pi + hi)

 T∑
t=1

(
t∑

s=1

θ2
s,i

)1/2
 .

The proof of Theorem 2.6.2 can be found in Appendix A.1.7. Theorem 2.6.2 is the
generalization of Theorem 2.4.1. (If D̂t,i = µi, then θt,i ≤ σ, and we completely recover the
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bound in Theorem 2.4.1.) It highlights the value of information in a multi-period inventory
control problem; in particular, it shows that it is most beneficial to use a more granular
demand approximation during earlier instead of later periods. To illustrate this, suppose that
Dt,i is uniformly distributed on [Li, Ui]. If we use a (T − t+ 1)1/2+α−demand approximation

for Dt,i for some α > 0 (i.e., by using (T − t+ 1)1/2+α points in [Li, Ui]), then E[CπR
]−C∗ =

O(σT 1−α). Note that, as α becomes large, the regret decreases to 0.

Remark 2.6.1. (Computational Complexity of MPAC). Despite the promising bound
in Theorem 2.6.2, MPAC solves a full DP. Thus, it is computationally much more intensive
than either CEC or OLFC. One potential way to mitigate this computational burden is to
use a form of rollout algorithm with limited lookahead (Bertsekas (2013)[8], Goodson et al.
(2015)[30]). The analysis of a rollout algorithm for an undiscounted finite-horizon stochastic
inventory problem is an open research problem. As it is possibly a very challenging task, we
leave this for future research pursuit. Our purpose in this chapter is simply to highlight the
potential benefit of including more decision dynamics in designing a heuristic control.

2.7 Computational Experiments

In this section, we test the performance of the heuristic controls discussed in previous sections
(DC, CEC, OLFC, and MPAC) along with two others, CEC-IP and OLFC-IP, where CEC
and OLFC respectively are modified so that both the production and allocation decisions are
re-optimized at each iteration (see Table 2.1 for a summary). We run two sets of experiments.
In the first set, we consider two non-homogeneous retailers and compare the performance
all heuristic controls (as well as the optimal control from explicitly solving the DP). In
the second set, we consider eight non-homogeneous retailers with industrial-scale demands.
These problems are much larger, so we exclude MPAC and the optimal DP for computational
reasons.

To assess the performance of our heuristic controls, we use the following performance
benchmark (especially in the second set of experiments where we are not able to compute
the optimal control):

CH(D) = min
n

T∑
t=1

[
cZtB +

m∑
i=1

pi(Dt,i − xt,i − nt,i)+ +
m∑
i=1

hi(xt,i + nt,i −Dt,i)
+

]

s.t.
m∑
i=1

nt,i = ZtB, Z
π
t ∈ Z+, nt,i ∈ R+ ∀t, i

xt+1,i = xt,i + nt,i −Dt,i ∀t, i
x1,i = I1,i ∀i

As with JH , CH is the hindsight control for a given demand vector instance D, where the
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number of batch production in each period is also a decision variable. Clearly, E[CH ] ≤ C∗,
so E[CH ] is a lower bound on the optimal expected total costs (as well as a lower bound on
each of our heuristic controls). Let Cπ denote the total costs under heuristic control π. We
use three measures to evaluate the performance of each heuristic control:

1. Expected relative regret with respect to the hindsight lower bound

E[Rπ] =
E[Cπ − CH ]

E[CH ]

2. Coefficient of variation of the regret

cv(Rπ) =

√
Var(Cπ − CH)

E[Cπ]− E[CH ]

3. Running time to complete one instance

We estimate the first two measures using Monte-Carlo simulation; we generate a number
of demand instances Ds ∈ S according to the relevant demand distribution F , and E[Cπ]
and E[CH ] are estimated using sample mean and sample variance respectively.

All experiments are run using MATLAB R2016a with Intel Core i7-5820K CPU and 16GB
RAM. The Linear programs and mixed integer linear programs in DC, CEC, and CEC-IP
are solved using CPLEX 12.6. The stochastic programs in OLFC and OLFC-IP are solved
by interior-point method using the Optimization Toolbox in MATLAB 2016a.

Control Demand Information Decision Dynamics

DC Use a single point estimate of demand Solve production and allocation once

CEC Use a single point estimate of demand Solve production once, re-optimize

allocation in every period

CEC-IP Use a single point estimate of demand Re-optimize production and

allocation in every period

OLFC Use complete demand distribution Solve production once, re-optimize

allocation in every period

OLFC-IP Use complete demand distribution Re-optimize production and

allocation in every period

MPAC Use multiple points estimate of demand Solve an entire DP once

Table 2.1: Summary of all heuristic controls
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2.7.1 Two Retailers

In this section we compare the performance of all heuristic controls (and also the optimal
control, denoted as OPT) on a small example with two non-homogeneous retailers with
mean demand µ = [10, 6], holding cost h = [2, 3], penalty cost p = [8, 5], and batch size
B = 10. We run two different sets of experiments: In the first, demands are Binomial,
modeling the case of “small” demand variation, and in the second, demands are Uniform,
which represent the case of “large” demand variation. For each set of experiments, we
generate 500 demand instances to estimate our three performance measures. The results are
summarized in Tables 2.2-2.4.

Based on these experiments, the relative regret of the heuristic controls can be ordered
from greatest to smallest as follows: DC > CEC > OLFC > CEC-IP > OLFC-IP > MPAC.
As suggested by Theorems 2.4.1 and 2.5.3, despite the simplicity of DC, the regret associated
with it gets worse rapidly as the length of planning horizon increases, e.g. the regret of DC
over 10 periods is about 3 times worse than the regret associated with OPT. The performance
of both CEC and OLFC is consistently better than DC as expected. Notice although OLFC
consistently outperforms CEC by using complete demand information, it is only better by
a small margin. This confirms the implication of Lemma 2.6.1 – OLFC leads to limited
improvement over CEC. On the other hand, exploring more decision dynamics, such as
re-optimizing the production decision in addition to the allocation decision (i.e., CEC-IP
and OLFC-IP) significantly reduce the regret, especially as the length of planning horizon
increases. In terms of relative regret, MPAC outperforms all other heuristic controls in both
sets of experiments. Note that here, we only use a two-point approximation of the demand
distribution. This suggests that, in many cases, we can achieve a small regret by slightly
increasing the amount of demand information that we use, as long as we completely exploit
the decision dynamics by solving a full DP. For practical implications, this means company
should focus more on including decision dynamics in its production planning rather than
estimating demand more precisely, given the estimation of the whole demand distribution is
challenging in reality.

The coefficient of variation of the regret of the heuristic controls can be ranked as fol-
lows: OLFC > DC ≈ CEC > CEC-IP ≈ OLFC-IP ≈ MPAC. Note that re-optimizing both
production and allocation decisions reduces the variability of regret. Interestingly, although
OLFC consistently outperforms CEC on expected relative regret, it has the largest regret
variability among all heuristic controls. In Table 2.4, we report the average running time on
all instances with 10-period for each heuristic control and the optimal control for the case
with Binomial demand – it can be ranked as follows: OPT > MPAC > OLFC-IP > CEC-IP
> CEC > OLFC ≈ DC. Note that all heuristic controls run significantly faster than the the
optimal control, but OLFC-IP and CEC-IP are particularly effective in terms of balancing
the running time and the expected percentage regret.

Finally, note that in this case, since we are optimally solving the problem, we could have
computed the relative regret with respect to the optimal solution. We chose not to do this
to highlight the performance of our lower bound, since in the next section we are unable to
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solve the problem optimally. In particular, observe that in some cases, the relative regret of
the heuristic control is largely due to the weakness of this bound. That said, our definition
of regret with respect to hindsight control is still useful to highlight how different heuristic
controls fare against each other.

Percentage regret

T DC CEC CEC-IP OLFC OLFC-IP MPAC OPT

1 31.73% 31.73% 31.73% 25.77% 25.77% 25.77% 25.77%

2 44.01% 39.67% 32.78% 35.69% 28.51% 28.28% 27.61%

3 55.74% 47.53% 34.06% 43.92% 29.65% 29.63% 28.65%

4 69.63% 56.89% 34.82% 54.36% 30.65% 30.58% 29.43%

5 68.52% 52.09% 34.48% 48.76% 30.39% 30.45% 29.37%

6 76.93% 57.84% 34.59% 55.24% 30.72% 30.60% 29.13%

7 82.88% 60.50% 34.72% 58.02% 30.96% 30.96% 30.19%

8 91.08% 65.46% 34.71% 64.45% 31.03% 30.97% 30.02%

9 99.55% 70.56% 34.86% 70.58% 31.19% 31.11% 29.92%

10 101.79% 70.27% 34.67% 68.42% 31.00% 30.89% 29.69%

c.v. of regret

T DC CEC CEC-IP OLFC OLFC-IP MPAC OPT

1 106.33% 106.33% 106.33% 124.96% 124.96% 124.96% 124.96%

2 81.04% 82.26% 77.60% 87.89% 80.93% 82.20% 81.92%

3 74.39% 70.96% 61.33% 79.62% 64.55% 65.72% 67.51%

4 74.25% 76.24% 55.74% 87.59% 59.55% 60.43% 59.55%

5 67.68% 67.67% 50.04% 78.83% 53.10% 54.09% 51.72%

6 62.69% 63.54% 44.62% 72.81% 46.63% 47.96% 46.73%

7 65.55% 68.19% 40.87% 81.15% 42.43% 43.41% 43.48%

8 63.85% 66.68% 38.39% 77.13% 40.61% 41.73% 40.77%

9 65.48% 69.96% 36.28% 81.06% 37.93% 39.76% 38.42%

10 63.01% 67.54% 34.62% 80.19% 36.13% 38.23% 35.56%

Table 2.2: Binomial demand
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Percentage regret

T DC CEC CEC-IP OLFC OLFC-IP MPAC OPT

1 107.31% 107.31% 107.31% 107.31% 107.31% 107.31% 107.31%

2 142.71% 133.54% 111.15% 130.94% 108.61% 107.43% 107.41%

3 174.81% 155.31% 113.46% 151.41% 110.72% 103.62% 101.44%

4 203.96% 174.72% 112.91% 170.57% 110.33% 104.64% 102.10%

5 212.79% 175.37% 113.32% 169.76% 110.45% 103.79% 100.95%

6 230.66% 186.68% 113.55% 180.76% 111.60% 102.84% 99.96%

7 249.01% 197.99% 113.86% 192.11% 111.45% 102.73% 99.26%

8 266.54% 209.60% 114.69% 203.62% 111.79% 102.46% 99.52%

9 285.86% 222.49% 115.81% 217.01% 113.04% 102.53% 100.17%

10 293.73% 226.22% 115.32% 219.35% 112.64% 102.60% 99.66%

c.v. of regret

T DC CEC CEC-IP OLFC OLFC-IP MPAC OPT

1 61.02% 61.02% 61.02% 61.02% 61.02% 61.02% 61.02%

2 59.82% 55.71% 46.65% 46.76% 59.53% 45.46% 45.09%

3 59.92% 53.56% 39.18% 39.15% 60.00% 37.55% 37.86%

4 63.19% 58.70% 35.37% 33.86% 66.15% 31.91% 31.62%

5 59.89% 54.92% 31.83% 29.95% 61.32% 27.59% 28.97%

6 59.04% 54.07% 29.13% 27.64% 61.18% 24.90% 26.17%

7 60.43% 56.02% 26.65% 24.99% 63.03% 24.17% 24.38%

8 60.80% 55.41% 24.59% 23.14% 62.89% 22.06% 22.12%

9 61.35% 57.05% 24.27% 22.52% 64.57% 20.90% 20.79%

10 60.92% 56.62% 23.16% 21.48% 64.09% 19.58% 19.89%

Table 2.3: Uniform demand

Binomial

DC CEC CEC-IP OLFC OLFC-IP MPAC OPT

Solving time (sec) <0.01 0.0603 0.2240 <0.01 0.2417 24.4956 3425.3

Table 2.4: Average solution time for a 10-period instance

2.7.2 Eight Retailers

In this set of experiments, we compare DC, CEC, CEC-IP, OLFC and OLFC-IP on an
industrial-size example to better highlight the potential performance of our heuristic con-
trols. The test problem has eight non-homogeneous retailers with mean demand µ =
[5000, 3000, 2000, 1000, 500, 300, 200, 100], holding cost h = [1.8, 2.1, 2.3, 2.9, 3.1, 3.7, 4.3, 4.4],
penalty cost p = [8, 5.1, 9, 5.8, 9.6, 5.5, 11, 6.3], and batch size B = 10, 000. We run four
sets of experiments: In the first, demands are Poisson and, in the next three, demands are
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Normal with standard deviations equal to 5%, 15%, and 25% of their mean, respectively.
The first two sets of experiments represent the case of “small” demand variation and the
last two experiments capture “large” demand variation. For each of the four experiments,
we generate 50 demand instances to estimate our three performance measures. The results
are summarized in Tables 2.5 to 2.9.

The expected relative regret is similar to that in the smaller experiments discussed above,
with DC > CEC > OLFC > CEC-IP > OLFC-IP. However, as predicted in Corollary 2.4.2,
when the size of demand variation is relatively small compared to its mean, the performance
of the simple DC is much more satisfying, with only 13% to 25% regret compared to the
hindsight lower bound over 20 periods. The performance of CEC appears to be quite stable
for the case of Poisson and 5% Normal demands (i.e., the regret does not seem to be affected
by the length of planning horizon). As the size of demand variation becomes large (e.g., 15%
and 25% Normal), the regret of CEC slowly increases and the length of planning horizon
starts to have a more noticeable impact on performance; this is also as expected. (Per Re-
mark 2.6.1, as σ∗ increases, T = o(eB

2/(8m4(σ∗)2)) becomes smaller. So, it becomes necessary
to also re-optimize the production decision.) Similar behavior is also observed with OLFC.
Note that although OLFC consistently outperforms CEC, the regret reduction of OLFC over
CEC appears marginal compared to the regret reduction of CEC over DC. This observation
highlights our theoretical prediction in Section 5 that much of the benefit of using the com-
plete demand distribution is already captured by periodic re-optimizations of a deterministic
model with a one-point demand approximation. The same as in the smaller experiments in
Section 6.1, incorporating more decision dynamics by re-optimizing the production decision,
i.e. CEC-IP and OLFC-IP, reduces the regret of CEC and OLFC and also help stabilize the
performance over longer planning horizon.

The coefficient of variation of regret also behaves similarly to the smaller experiments
detailed above, with OLFC > DC ≈ CEC > OLFC-IP ≈ CEC-IP. We also report the
average running time on a 20-period instance for each heuristic control in Table 2.9. Notice
as the problem size increases, solving stochastic program in OLFC and OLFC-IP becomes
increasingly more difficult than solving CEC and CEC-IP. Nevertheless the running time
is by no means unreasonable for practical purpose. This highlights the efficiency of our
heuristics and their potential for real-world application.

Managerial Insight: DC controls work well with small demand variation and a short
planning horizon. In addition, incorporating more decision dynamics (e.g. in CEC-IP,
MPAC) is more effective than using complete demand information (e.g. OLFC). Given that
the estimation of full demand distribution is challenging and expensive in reality, this suggest
that biopharmaceutical firms should focus on integrating more decision dynamics into their
production planning.
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Percentage regret c.v. of regret

T DC CEC CEC-IP OLFC OLFC-IP DC CEC CEC-IP OLFC OLFC-IP

1 5.03% 5.03% 5.03% 3.85% 3.85% 48.32% 48.32% 48.32% 45.52% 45.52%

2 4.41% 3.64% 3.56% 2.41% 2.50% 37.96% 40.07% 37.80% 38.89% 42.80%

3 5.08% 3.67% 3.67% 2.13% 2.13% 41.47% 31.70% 31.70% 26.98% 26.98%

4 6.02% 3.90% 3.90% 2.18% 2.18% 44.43% 26.13% 26.13% 23.21% 23.21%

5 7.37% 4.28% 4.28% 2.57% 2.57% 34.36% 22.19% 22.19% 17.90% 17.90%

6 7.87% 4.21% 4.21% 2.61% 2.61% 30.55% 20.29% 20.29% 17.65% 17.65%

7 8.21% 4.49% 3.96% 2.90% 2.27% 31.21% 22.80% 18.43% 28.91% 19.59%

8 8.61% 4.45% 3.97% 2.80% 2.23% 32.69% 20.56% 16.87% 26.35% 15.96%

9 9.26% 4.62% 4.17% 2.77% 2.24% 34.16% 18.31% 15.86% 24.82% 15.11%

10 10.10% 4.71% 4.30% 2.90% 2.41% 29.44% 17.50% 15.58% 21.56% 13.61%

11 10.34% 4.58% 4.21% 2.89% 2.44% 27.54% 16.56% 13.54% 21.19% 12.73%

12 10.05% 4.41% 4.02% 2.63% 2.19% 31.75% 17.16% 15.76% 22.95% 14.48%

13 10.47% 4.42% 4.06% 2.60% 2.19% 32.82% 16.91% 15.40% 21.90% 13.77%

14 11.01% 4.55% 4.20% 2.63% 2.23% 32.91% 15.50% 13.47% 20.96% 12.66%

15 11.63% 4.56% 4.24% 2.70% 2.33% 29.51% 14.16% 12.22% 19.13% 12.09%

16 11.85% 4.51% 4.14% 2.74% 2.33% 28.37% 16.13% 11.41% 23.89% 12.01%

17 11.65% 4.39% 4.10% 2.51% 2.19% 31.15% 12.34% 10.54% 18.18% 11.94%

18 12.09% 4.46% 4.19% 2.49% 2.19% 31.95% 12.49% 11.12% 17.16% 11.39%

19 12.56% 4.54% 4.28% 2.56% 2.26% 31.41% 11.83% 10.58% 15.93% 10.68%

20 12.95% 4.52% 4.27% 2.60% 2.32% 29.25% 11.80% 10.32% 15.67% 10.64%

Table 2.5: Poisson demand
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Percentage regret c.v. of regret

T DC CEC CEC-IP OLFC OLFC-IP DC CEC CEC-IP OLFC OLFC-IP

1 8.87% 8.87% 8.87% 7.76% 7.76% 50.20% 50.20% 50.20% 42.94% 42.94%

2 8.53% 7.70% 7.14% 5.36% 5.21% 42.11% 51.20% 37.00% 57.54% 46.17%

3 9.04% 6.97% 6.97% 3.75% 3.75% 43.93% 32.89% 32.89% 34.59% 34.59%

4 10.96% 7.41% 7.41% 3.71% 3.71% 46.95% 30.60% 30.60% 30.65% 30.65%

5 13.99% 8.24% 8.24% 4.85% 4.85% 39.50% 29.36% 29.36% 28.86% 28.86%

6 15.35% 8.20% 8.16% 5.22% 5.15% 37.42% 27.14% 27.06% 24.57% 24.88%

7 16.62% 9.28% 7.68% 6.20% 4.56% 35.38% 28.70% 26.36% 40.41% 25.54%

8 17.14% 9.00% 7.68% 5.68% 4.21% 36.75% 27.26% 24.89% 41.20% 24.85%

9 18.40% 9.15% 7.93% 5.64% 4.27% 37.67% 26.35% 23.57% 41.60% 24.82%

10 19.60% 9.34% 8.21% 5.94% 4.69% 36.47% 23.68% 20.26% 36.61% 21.00%

11 20.22% 9.23% 7.96% 6.12% 4.71% 35.23% 25.34% 19.06% 39.56% 19.07%

12 19.88% 8.97% 7.68% 5.54% 4.34% 35.08% 20.74% 17.76% 31.40% 20.82%

13 20.53% 8.86% 7.71% 5.31% 4.18% 35.71% 19.16% 17.08% 29.97% 18.93%

14 21.55% 8.94% 7.84% 5.35% 4.27% 35.43% 18.99% 15.76% 29.75% 17.96%

15 22.64% 8.91% 7.88% 5.51% 4.50% 33.76% 18.60% 15.52% 27.52% 15.77%

16 24.44% 9.96% 7.78% 6.78% 4.46% 34.74% 33.59% 15.73% 50.06% 15.68%

17 23.15% 8.90% 7.60% 5.50% 4.20% 34.22% 22.46% 15.72% 34.32% 17.60%

18 23.63% 8.81% 7.60% 5.37% 4.15% 35.16% 21.15% 14.53% 33.67% 16.04%

19 24.47% 8.94% 7.78% 5.48% 4.31% 35.16% 20.45% 13.89% 32.82% 15.10%

20 25.70% 9.17% 7.81% 5.80% 4.44% 33.90% 23.91% 13.29% 37.75% 14.15%

Table 2.6: 5% Normal demand
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Percentage regret c.v. of regret

T DC CEC CEC-IP OLFC OLFC-IP DC CEC CEC-IP OLFC OLFC-IP

1 26.14% 26.14% 26.14% 21.18% 21.18% 47.06% 47.06% 47.06% 42.64% 42.64%

2 33.50% 29.37% 25.93% 21.11% 19.50% 42.97% 51.23% 43.97% 62.03% 50.88%

3 32.83% 25.10% 24.52% 14.75% 14.09% 38.37% 40.87% 35.08% 67.51% 57.79%

4 36.55% 24.57% 24.50% 14.44% 14.31% 37.92% 31.85% 31.31% 53.55% 51.56%

5 39.76% 24.81% 24.57% 15.85% 15.53% 35.29% 32.61% 30.48% 49.88% 45.97%

6 47.72% 28.65% 25.70% 20.96% 17.01% 39.46% 45.40% 30.16% 70.57% 40.64%

7 53.55% 32.24% 25.26% 23.68% 16.03% 39.25% 39.23% 27.39% 60.71% 42.24%

8 53.80% 29.93% 24.91% 21.04% 15.16% 39.25% 38.00% 25.39% 62.24% 39.18%

9 56.07% 29.48% 24.82% 20.77% 15.14% 39.29% 38.90% 21.83% 65.31% 33.49%

10 59.72% 30.32% 24.57% 22.28% 15.32% 41.18% 45.86% 19.95% 73.63% 27.60%

11 64.90% 33.34% 24.52% 26.20% 15.45% 43.40% 53.41% 18.05% 82.43% 25.73%

12 66.50% 32.37% 24.25% 23.95% 15.08% 40.14% 37.74% 16.96% 60.52% 26.36%

13 66.86% 30.93% 23.96% 22.48% 14.74% 39.79% 36.13% 14.85% 60.65% 23.80%

14 69.05% 31.01% 23.75% 22.79% 14.55% 40.70% 40.79% 14.41% 67.58% 21.26%

15 72.62% 32.44% 23.90% 24.73% 14.89% 41.78% 47.89% 13.84% 75.98% 21.98%

16 77.92% 35.57% 23.67% 28.87% 14.88% 42.20% 52.70% 13.25% 81.16% 19.89%

17 78.39% 34.34% 23.69% 26.37% 14.76% 39.09% 40.88% 12.64% 66.08% 20.00%

18 79.08% 33.72% 23.55% 25.88% 14.75% 39.63% 44.30% 11.92% 70.98% 20.37%

19 81.60% 34.41% 23.48% 26.79% 14.61% 40.85% 49.12% 11.15% 78.44% 18.61%

20 85.52% 36.23% 23.63% 29.35% 14.84% 41.99% 53.97% 10.40% 84.84% 17.53%

Table 2.7: 15% Normal demand
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Percentage regret c.v. of regret

T DC CEC CEC-IP OLFC OLFC-IP DC CEC CEC-IP OLFC OLFC-IP

1 44.68% 44.68% 44.68% 38.47% 38.47% 62.29% 62.29% 62.29% 77.57% 77.57%

2 63.36% 54.09% 48.91% 41.77% 39.58% 44.59% 45.70% 42.11% 56.86% 53.84%

3 58.77% 44.65% 42.78% 32.58% 31.98% 50.54% 48.59% 41.19% 63.90% 58.95%

4 63.60% 45.77% 44.12% 34.06% 33.45% 42.89% 41.53% 35.66% 53.78% 49.80%

5 69.90% 46.44% 43.50% 36.05% 32.37% 39.12% 39.76% 33.77% 52.60% 45.06%

6 83.18% 53.87% 43.73% 44.66% 31.45% 39.09% 44.16% 28.01% 62.70% 39.22%

7 95.51% 60.96% 43.68% 50.68% 30.70% 35.20% 34.98% 27.56% 48.78% 35.11%

8 96.48% 58.80% 43.21% 48.26% 30.57% 37.45% 36.89% 24.01% 52.61% 28.04%

9 99.71% 58.46% 43.06% 47.53% 29.77% 37.44% 40.26% 22.71% 57.79% 27.60%

10 105.98% 59.91% 42.05% 50.12% 29.11% 39.45% 45.18% 21.04% 64.68% 25.38%

11 115.99% 65.03% 42.42% 56.93% 29.25% 40.30% 48.07% 20.57% 68.93% 25.03%

12 116.85% 63.32% 42.98% 52.92% 30.17% 37.83% 37.86% 21.54% 53.59% 25.89%

13 120.85% 63.69% 43.21% 53.19% 30.01% 38.79% 39.71% 20.50% 56.42% 26.00%

14 125.84% 65.08% 43.40% 54.87% 30.24% 40.01% 42.26% 19.49% 61.33% 25.62%

15 133.13% 67.94% 43.31% 59.14% 29.89% 40.83% 46.31% 19.10% 66.58% 24.58%

16 142.33% 73.24% 43.18% 65.90% 30.03% 41.02% 49.37% 18.85% 69.49% 24.36%

17 142.75% 71.56% 43.24% 62.38% 29.84% 39.86% 44.62% 19.17% 64.00% 24.19%

18 147.14% 72.96% 43.59% 63.55% 29.99% 40.25% 46.93% 19.15% 67.30% 24.00%

19 151.73% 73.88% 43.31% 65.10% 29.97% 40.15% 49.25% 18.83% 70.80% 23.72%

20 157.22% 76.28% 43.29% 68.20% 29.70% 40.90% 52.71% 17.52% 75.06% 21.64%

Table 2.8: 25% Normal demand

5% Normal

DC CEC CEC-IP OLFC OLFC-IP

Solving time (sec) 0.0146 0.3418 2.5976 41.9133 46.8846

Table 2.9: Average solution time for a 20-period instance

2.8 Conclusion

In practice, firms often solve planning problems by replacing random variables representing
future demand with deterministic demand estimates and firms often use a rolling horizon
approach to implement these solutions. In this chapter, we considered an inventory planning
problem in a biopharmaceutical industry involving batch production and allocation, and
analyzed a variety of heuristic controls that solve the deterministic version of this planning
problem, both one time and in a rolling horizon setting. We characterized the performance of
these heuristic controls, and found that the performance of this deterministic approximation
deteriorates with coefficient of variation and horizon length, but that implementation of a
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rolling horizon re-optimization approach can significantly increase performance, at least in
some cases (as described in the statement of Theorems 2.5.2 and 2.5.3).

We also explored the trade-off between (i) more demand information with less decision dy-
namics and (ii) more decision dynamics with less demand information. We found that using
complete demand distribution information with limited decision dynamic (e.g. OLFC) has
less value, while incorporating more decision dynamic via re-optimizing production decisions
(e.g. CEC-IP) or using full decision dynamics with a slightly granular demand approxima-
tion beyond expected value (e.g. MPAC) potentially leads to a greater improvement. Given
the estimation of the whole demand distribution is usually challenging in reality, this implies
company should focus on including more decision dynamics into their production planning
rather than estimating demand distribution more precisely. However, the benefit of using
full decision dynamics (e.g. MPAC) comes at the expense of longer computational time.

36



Chapter 3

Outsourcing Strategy for
Intermediate Production steps

3.1 Introduction

We consider an inventory control problem faced by a manufacturer that outsources the
final step of its manufacturing process. This is motivated by our work with relatively small
biopharmaceutical firms, which we observed often outsource their filling, labeling and packing
of their final products to a third party contractor (which we refer to as the outsourcer in this
chapter) to avoid the large capital investment associated with the equipment necessary for
these operations. This requires the manufacturer to send intermediate products (which we
refer to as an order) to the outsourcer for processing and wait for a certain amount of time
until the outsourcer sends the order with finished product back. The time from the order
placement until the items are delivered back to the manufacturer is called the lead time of an
order. The manufacturer maintains inventory of finished product to meet demand from the
end customer thus it is make-to-stock. On the other hand the outsourcer does not maintain
any inventory and can only begin to process an order if one is initiated by the manufacturer,
and therefore the outsourcer can be viewed as make-to-order.

In this chapter we compare the effectiveness of two inventory control policies at the
manufacturer, both of which are widely adopted in industry. We explore the advantages of
each policy, and consider coordination between the manufacturer and the outsourcer. The
first policy (referred to as a type (i) policy in this chapter) is the classical (r, q) policy: the
manufacturer continuously reviews the inventory of finished product, and when the inventory
position (on-hand inventory - backorder + outstanding order) falls to a threshold r, an order
of fixed size q is placed. Since order placement is driven by stochastic demand, the time
between consecutive order placements is random. In addition, the outsourcer is in general
shared by many other manufacturers, so orders placed via a type (i) policy need to join a
queue at the outsourcer and wait for the outsourcer to finish processing orders for other
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manufacturers. This leads to intrinsically random order lead times, and biopharmaceutical
manufacturers that adopt a type (i) policy indeed experience large uncertainty in lead times
(Bu (2015)[10]).

To address this issue, some manufacturers turn to a capacity reservation (s, τ, u) policy
(which we subsequently refer to as type (ii) policy in this chapter). In this policy, the
manufacturer places an order every τ units of time that raises the inventory position as close
to s as possible, given that the order size can not exceed u. Observe that order placement
in a type (ii) policy is triggered by time, so even when the manufacturer is facing stochastic
demand, the time between consecutive order placements is always deterministic at τ . In this
setting, the manufacturer signs a contract with the outsourcer that reserves a capacity of u
at the outsourcer every τ time units. Under a type (ii) policy, most of the uncertainty in the
lead time is eliminated since the outsourcer is always immediately available when an order
is placed. However this benefit comes with cost: (1) the manufacturer loses the flexibility to
place an order at any time; (2) the order size is restricted by an upper limit; and (3) by the
nature of capacity reservation contracts, the manufacturer needs to pay for the full capacity
reserved, regardless of the actual order size.

To better analyze the trade-offs between type (i) and (ii) policies, we combine traditional
inventory control models with a queuing approach to model the make-to-order outsourcer,
and compare both policies both analytically and computationally. To better position our
work in the existing literature, we briefly review the related topics in Section 3.2.

3.2 Literature Review

The type (i) policy has been extensively investigated in the literature. The use of an (r, q)
policy in a continuous time model with Poisson demand dates back to the work of Galliher,
Morse and Simond (1959)[29] and Hadley and Whitin (1963)[32], while the optimality of the
(r, q) policy under a deterministic lead time is shown by Veinott (1965)[64], the convexity of
the long-run average cost in both q and r is shown in Zipkin (1986)[66], and a distribution
free upper bound on the long-run average cost is proposed by Gallego (1998)[27]. All of these
models assume constant lead time. Zipkin (1986)[67] extends the continuous time model to
allow random lead time. A key assumption in the model is that orders never cross in time,
so the sequence of order placement is the same as the sequence of order delivery. Under this
assumption, Zipkin shows that most results for the deterministic lead time case apply to
the random lead time case with little modification. Later, Song (1994)[56] and Song et al.
(2010)[57] study how randomness in the lead time affects long-run average cost and optimal
r and q. They show that a stochastically larger lead time always results in higher long-run
average cost.

In contrast, inventory control policies under which order placement is triggered by time
received significantly less attention in the literature until early the 2000’s. Rao (2003)[48]
analyzes the (s, τ) policy which is a special case of the type (ii) policy when the capacity
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u infinite. Under the (s, τ) policy, an order is placed every τ time to raise the inventory
position back to s. Rao shows that the long-run average cost of the (s, τ) policy is always
worse than that of the (r, q) policy, which demonstrates the benefit of (r, q) policy when the
lead time is deterministic.

However, we are not aware of any work that addresses the core benefit of a type (ii) policy
– the reduction in lead time variability, and the implication of this reduction for coordination
of a make-to-order outsourcer and make-to-stock manufactures. In our model, we are able
to show that when the lead time faced by a type (i) manufacturer is highly variable, the
adoption of type (ii) policy can not only reduce the inventory cost of the manufacturer, but
also increase the profit of the outsourcer.

3.3 Model and Assumptions

We consider a setting where a single make-to-order outsourcer processes orders from n make-
to-stock manufacturers. Each manufacturer faces stochastic demand with arrival rate λi (see
a discussion of the demand process in the next paragraph). The outsourcer manages a general
queue to handle all orders placed by manufacturers. The aggregate arrival rate of orders from
all manufacturers seen by the outsourcer is denoted by λ0 and the outsourcer processes orders
with service rate µ0 > λ0. There are two types of manufacturers, distinguished by whether
they use a type (i) or a type (ii) inventory control policy. An illustration of this structure is
shown in Figure 3.1.
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Figure 3.1: Structure of the outsourcer and manufacturers

We introduce the detailed model and assumptions below:

Demand process: By convention, we assume that demand processes faced by all man-
ufacturers are independent stochastic processes and each process has independent and sta-
tionary increments. Let D(t) be the cumulative demand occurring during a fixed period of
time t, with p.d.f. fD(d, t) and c.d.f. FD(d, t). In this chapter, we restrict our consideration
to two types of demand processes:

D1. D(t) is a Poisson process with rate λt:

fD(d, t) =
(λt)de−λt

d!

D2. D(t) is a Brownian motion with drift with mean λt and variance σ2
Dt:

fD(d, t) = φ

(
d− λt
σD
√
t

)
where φ(·) is the p.d.f. of the standard normal distribution.

Though the demand processes D2 does not guarantee that D(t) increases, when the time
between consecutive order placements is sufficiently large, or demand rate λ is sufficiently
larger than σD, D2 is non-decreasing with high probability (see Rao (2003)[48] for a discus-
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sion). In our analysis we primarily focus on demand process D1, but some of our results are
applicable to D2 as well.

Manufacturer’s policy: Under a continuous time demand process, type (i) manufac-
turers adopts the classical (r, q) policy: the manufacturer places an order of size q whenever
the inventory position of the finished product at the manufacturer drops to r. Type (ii)
manufacturers adopts the (s, τ, u) policy: the manufacturer places an order every τ units
of time to raise the inventory position of finished product as close to s as possible, subject
to a capacity constraint that the order size cannot exceed u. This type of policy is easy-
to-implement and widely used in industry. Under both policies, we assume that unsatisfied
demand is fully back-ordered.

Outsourcer’s policy: We assume the outsourcer manages a queue under steady state
and enforce a special property such that orders never cross in time. By this we mean that
for a particular manufacturer the sequence of order placement is exactly the same as the
sequence of order delivery. An order placed later in time never arrives before an earlier
order. The majority of outsourcing activities in industry satisfy this property, which allows
tractable analysis for type (i) policies (see Zipkin (1986)[67]).

Lead time process: The lead time of an order placed by a type (i) manufacturer is the
order sojourn time (waiting time in the queue + processing time) at the outsourcer’s facility.
The lead time for type (i) manufacturers is intrinsically a random variable, denoted by L
with mean µL, variance σ2

L and distribution FL(l). We assume the manufacturer can always
estimate µL and σ2

L from historical data, but we in general assume the exact distribution
of FL(l) is unknown. For type (ii) manufacturers, the lead time of an order is only the
processing time at the outsourcer’s facility since no order is ever waiting in the queue. In
this chapter we assume the lead time faced by type (ii) manufacturers, denoted as l, is
deterministic, which is a linear function of the reserved capacity u. It is equivalent to have
an outsourcer with constant processing rate µ0, so the lead time is l = u/µ0. Notice the lead
time l must be less than or equal to the order cycle τ to have the type (ii) policy feasible.

Manufacturers’ profit function: Both type (i) and (ii) manufacturers earn revenue
from selling finished product at a fixed price γ per unit. Type (i) manufacturers cost has three
components: (1) fixed cost k of placing an order regardless of the order size; (2) variable cost
c per unit of an order; and (3) holding costs h per unit per unit time for on hand inventory
and penalty cost p per unit per unit time for backorder. Type (ii) manufacturer’s cost is
similar, except the the variable cost c depends on the capacity reserved u, not the actual
order size.

Outsourcer’s profit function: The outsourcer’s revenue comes from the k and c getting
paid by the manufacturers, and the outsourcer is subject to three types of cost: (1) fixed
cost k0 of processing an order regardless of the order size; (2) variable cost c0 per unit for
an order; (3) waiting cost h0 per unit per unit time for orders waiting to be processed. The
waiting cost captures the cost of holding work-in-progress material at the outsourcer. By
the nature of the type (ii) policy, the outsourcer does not incur any waiting cost.
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Goal: Both the manufacturers and outsourcer focus on maximizing long-run average
profit. We consider three scenarios in subsequent sections depending on the level of infor-
mation sharing between the outsourcer and manufacturers:

• The Decentralized System (Sections 3.4 and 3.5)

To reflect the situation faced by biopharmaceutical manufacturers, where other man-
ufacturers that utilize the same outsourcer may come from completely different indus-
tries, in this setting we assume that the system is decentralized in a sense that the
manufacturer manages its inventory without exact knowledge of the outsourcer and
other manufacturers’ control decisions. In addition, we assume the inventory control
decisions made by a single manufacturer do not affect the steady state performance of
the outsourcer’s queue. Therefore, we focus solely on profit maximization at a single
manufacturer. In Section 3.4, we assume there is no penalty cost associated with back-
order, but instead a service level constraint is imposed. In Section 3.5, we remove the
service level constraint and instead a penalty cost is incurred when backorder arises.

• The Centralized System (Section 3.6)

In this setting, we assume that the outsourcer and all manufacturers belong to the
same organization, so all information is shared. This scenario broadens the applica-
tion of our model to a manufacturer that has a machine or special facility that serves
as an “internal outsourcer”, which is a shared resource for other manufacturing pro-
cesses. The goal here is to maximize the long-run average profit of the entire system.
Additional assumptions are discussed in detail in Section 3.6.

• The Semi-centralized System (Section 3.7)

In this scenario, all manufacturers belong to the same organization, but no informa-
tion is shared between this organization and the outsourcer. This setting models a
manufacturer who has multiple plants that use the same outsourcer. In this setting,
we assume that the outsourcer makes its control decisions first, and then each man-
ufacturer follows and makes the corresponding optimal inventory control decisions.
Additional assumptions are discussed in detail in Section 3.7.

3.4 The Decentralized System With Service Level

Constraint

We first consider the decisions faced by the manufacturer in the decentralized setting. In
this section, we assume no penalty cost is incurred for backorder, but instead an α-service
level constraint is enforced, so that in the long-run only 1 − α percent of the order cycles
have backorder. To facilitate analysis, we also assume the inventory cost h is incurred even if
the inventory level is negative (or equivalently, manufacturers earns revenue with stock-out).
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This is a commonly used simplification that can greatly simplify the analysis and is known
to be accurate if the service level α is close to one. In the next two subsections, we analyze
the manufacturer’s long-run average profit for each of the two policy types in this setting.

3.4.1 Type (i) Policy

The manufacturer implements a continuous time (r, q) policy inventory model for a setting
with random lead time, were r is the re-order point and q is the order quantity. We adopt
the following notation:

Notations:

γ Selling price.
λ Demand rate.
h Holding cost.
α Service level.
k Fixed cost of an order.
c Variable cost of an order.
L Lead time.

This is a random variable with c.d.ff FL, mean µL and variance σ2
L <∞.

D(t) Demand during an interval of fixed length t.
This is a random variable with c.d.f. FD(d, t).

D(T ) Demand during an interval of random length T .
This is a random variable with c.d.f. FD(d, T ).

y(1) Long-run average cost of the type (i) policy.
z(1) Long-run average profit of the type (i) policy.

Decision variables:

r Reorder point.
q Order quantity.

Given this notation, the long-run average profit of the service level model can be written
as an optimization problem:

max z(1)(r, q) = λγ − kλ

q
− λc− h

(
r − λµL +

q

2

)
(3.1)

s.t. FD(r, L) ≥ α (3.2)

where the first term λγ is the revenue from selling finished product at price γ. The second
and third terms kλ

q
+ λc are the fixed and variable cost of an order, respectively. The fourth

term h(r−λµL+ q
2
) is the average inventory holding cost. FD(r, L) is the distribution of lead

time demand, the demand that occurs during a time of random length L. The constraint
FD(r, L) ≥ α is the service-level constraint, which ensures that the probability of stock-out
in an order cycle is less than 1− α. It is easy to see that this profit maximization model is
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equivalent to a cost minimization model without the revenue λγ and variable cost λc terms,
so that the service level model can be written as an minimization problem with long-run
average cost y(1)(r, q)

min y(1)(r, q) = h
(
r − λµL +

q

2

)
+
kλ

q
(3.3)

s.t. FD(r, L) ≥ α (3.4)

Since the long-run average cost y(1)(r, q) is monotonically increasing in r, the optimal r
is attained at r∗ = F−1

D (α). Rewriting t = q/λ, we have

min y(1)(t) = h(r∗ − λµL) +
hλ

2
t+

k

t
. (3.5)

Since r∗ is independent of t, we have

r∗ = F−1
D (α) (3.6)

t∗ =

√
2k

hλ
(3.7)

y(1)
∗ = h(r∗ − λµL) +

√
2khλ (3.8)

To determine the optimal r∗, we need to analyze the lead time demand distribution
FD(r, L). We next consider FD(r, L) in three cases.

Case 1: The outsourcer is modeled by a G/D/∞ queue
Though this case ignores many practical issues, the simplest model assumes the outsourcer
side is G/D/∞ queue with service rate µ0 = 1/µL. From the manufacturer’s perspective,
this equivalent to a deterministic lead time µL, so lead time demand is simply D(µL). The
long-run average cost in this case, denoted by y(1)(r, q), serves as a lower bound on y(1)(r, q)
when the lead time is random.

If the demand process D(t) is Poisson process D1, we can approximate the demand process
with a normal distribution, then the optimal reorder point r∗ and cost y(1)

∗ is

r∗ = λµL + ζα
√
λµL (3.9)

y(1)

∗ = ζαh
√
λµL +

√
2khλ. (3.10)

If the demand process D(t) is the drifted Brownian motion D2 with variance σ2
Dt then

r∗ = λµL + ζασD
√
µL (3.11)

y(1)

∗ = ζαhσD
√
µL +

√
2khλ (3.12)

where ζα = Φ−1(α) and Φ(·) is the c.d.f. of the standard Normal distribution.
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Case 2: The outsourcer is modeled by an M/G/1 queue
In this special case, the exact distribution of the lead time demand can be obtained. To
understand the relevance of this case, suppose that outsourcer signs contracts with n man-
ufacturers. Each manufacturer faces Poisson demand, and manages inventory using (poten-
tially different) (r, q) policies, so order arrivals from a single manufacturer form a renewal
process with an inter-arrival time that follows the Erlang distribution. When n is large, the
arrival process seen by the outsourcer is approximately a Poisson process (Palm–Khintchine
theorem, see Khintchine (1969)[40]). If we assume the service time has a general distribution
with mean 1/µ0, then the outsourcer manages an M/G/1 queue and the lead time faced by
a manufacturer is the sojourn time of the corresponding order in an M/G/1 queuing system.

In the special case of an M/M/1 queue, where the processing time at the outsourcer is
exponentially distributed, the sojourn time is known to be exponentially distributed as well
with rate β = 1/µL. If the demand process faced by the manufacturer is the Poisson process
D1, then the distribution of the lead time demand can be computed exactly as:

P(D(L) = d) =

∫
P(D(l) = d|L = l)fL(l) dl (3.13)

=

∫ ∞
0

(λl)de−λl

d!
βe−βl dl (3.14)

=

(
λ

λ+ β

)d(
β

λ+ β

)
(3.15)

which is the geometric distribution with parameter β/(λ+ β). Then

FD(r, L) = P(D(L) ≤ r) = 1−
(

λ

λ+ β

)r+1

= 1−
(

λµL
1 + λµL

)r+1

(3.16)

Solving for r∗ yields

r∗ =

⌊
log(1− α)

log( λµL
1+λµL

)

⌋
(3.17)

In Section 3.6 and 3.7, we examine another special case, where the outsourcer is modeled
by an M/D/1 queue, implying that each order has a deterministic processing time of 1/µ0

at the outsourcer. The mean sojourn time of an M/D/1 queue is:

µL =
2µ0 − λ0

2µ0(µ0 − λ0)
. (3.18)

The distribution of the waiting time of an order in the M/D/1 queue, P(W < t), is given
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by Oliver (1968)[45] as

P(W < t) = (1− ρ)

btµ0c∑
j=0

(ρj − λ0t)
j

j!
e−(ρj−λ0t) t ≥ 0 (3.19)

(3.20)

where ρ = λ0/µ0. Then, the distribution of the sojourn time P(L < l) is

P(L < l) =

(1− ρ)
blµ0−1c∑
j=0

(ρj−λ0l+ρ)j

j!
e−(ρj−λ0l+ρ) l ≥ 1

µ0

0 l < 1
µ0
.

(3.21)

The distribution of the lead time demand P(D(L) = d) can be computed numerically, then
the optimal r∗ can be found accordingly. However unlike the M/M/1 queue, the distribution
of lead time demand explicitly requires the knowledge of µ0 and λ0, which is not available
in our decentralized setting. We explore this M/D/1 queue more closely in conjunction with
our centralized and semi-centralized settings in Sections 3.6 and 3.7.

Remark 3.4.1. (On the computation of the distribution of W ) Computation of
the distribution P(W < t) is not numerically stable due to possible overflow of j! and
eλ0t terms. Oliver (1968)[45] proposed a numerically stable algorithm, but there appear
to be typographical errors in that presentation, so for completeness we present the correct
algorithm here: we have

P(W < t) = (1− ρ)

btµ0c∑
j=0

(ρj − λ0t)
j

j!
e−(ρj−λ0t) t ≥ 0. (3.22)

Let k = btµ0c and ε = tµ0−btµ0c. Then, t = k/µ0 +ε/µ0 and if we let Wk(ε) = P(W < t)
we have

Wk(ε) = (1− ρ)eλ0k/µ0+λ0ε/µ0

k∑
j=0

(ρj − λ0k/µ0 − λ0ε/µ0)j

j!
e−ρj (3.23)

= (1− ρ)eρk+ρε

k∑
j=0

(ρj − ρk − ρε)j

j!
e−ρj (3.24)

= (1− ρ)eρ(k+ε)

k∑
j=0

(ρe−ρ(j − k − ε))j

j!
(3.25)
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With a binomial expansion,we can write e−εWk(ε) as a polynomial in ε, so

Wk(ε) = eρε
k∑
j=0

αk,j(ρε)
j (3.26)

where αk,j are the polynomial coefficients that can be computed iteratively as

α0,0 = (1− ρ) (3.27)

αk+1,j = −1

j
αk,j−1 (3.28)

αk+1,0 = eρ
k∑
j=0

αk,jρ
j. (3.29)

Case 3: The outsourcer is modeled by a general queuing system
If the queue managed by the outsourcer is far from an M/G/1 queue, the exact distribution
of lead time FL faced by the manufacturer typically depends on the queuing control policy
at the outsourcer as well as the inventory control decisions of all of other manufacturers,
which are impossible for an individual manufacturer to know under our assumption of a
decentralized system. This models settings may happen if, for example, the total number of
manufacturers n is small, or where the service time is not exponential or deterministic, if the
outsourcer is served by a single queue with multi-class arrival and class dependent service
time, or if the outsourcer manages the queue using other disciplines, such as a multi-queue
polling system, or if the outsourcer has both type (i) and type (ii) manufacturers. If this
is the case, our goal is to bound the long-run average cost y(1)(r, q) using only the first two
moments of the lead time, which can be easily estimated using historical data.

W.l.o.g suppose that the lead time L has finite support on 1, . . . ,m with P(L = l) = xl
for l = 1, . . . ,m such that

E[L] =
m∑
l=1

lxl = µL (3.30)

Var(L) =
m∑
l=1

l2xl − (
m∑
l=1

lxl)
2 = σ2

L <∞ (3.31)

The c.d.f. of the lead time demand conditioning on L = l is

P(D(l) ≤ d |L = l) ∼ FD(d, l) (3.32)

and then the unconditional probability

P(D(L) ≤ d) =
m∑
l=1

FD(d, l)xl. (3.33)
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Given a δ ≥ 0, we try to minimize P(D(L) ≤ λµL+δ) by solving the following parametric
(in δ) linear program:

min
m∑
l=1

xlFD(λµL + δ, l) (3.34)

s.t.
m∑
l=0

lxl = µL (3.35)

m∑
l=0

l2xl = σ2
L + µ2

L (3.36)

m∑
l=0

xl = 1 (3.37)

xl ≥ 0 ∀l = 0, 1, . . . ,m (3.38)

The optimal xl represents the worst lead time distribution that minimizes the service level.
Next, we want to find the smallest δ∗ such that P(D(L) ≤ λµL+δ∗) = α. Since FD(λµL+δ, l)
is monotonic in δ, the optimal δ∗ that achieves the α-service level can be found very quickly
via bisection search. Then r̄ = λµL + δ∗ is the upper bound of the re-order point and the
upper bound on the long-run average cost ȳ(1) is ȳ(1) = h(r̄ − λµL) +

√
2khλ.

Remark 3.4.2. (On the tightness of ȳ(1)) Several remarks on the upper bound ȳ(1): (1)
The bound is tight. When σL = 0, ȳ(1) reduces to the long-run average cost y(1)(r, q) in
Case 1 where the lead time is deterministic. When σL > 0, there always exists a lead time
distribution such that the bound is achieved; (2) The bound does not require the demand
process to be a Poisson process. Since only the conditional distribution FD(d, l) is required
in the parametric linear program, this bound also applies to the demand process D2; (3) We
can obtain another upper bound by using Chebyshev’s inequality. To do so, observe that we
can compute the mean and variance of the lead time demand D(L) as

E[D(L)] = E[E[D|L]] = λµL (3.39)

Var(D(L)) = E[Var[D|L]] + Var[E[D|L]] = E[Var[D|L]] + λ2σ2
L (3.40)

and the long-run average cost can be roughly bounded using the one-sided Chebyshev’s
inequality

P(D(L) ≥ r) = P(D(L) ≥ λµL + δ) ≤ Var(D(L))

Var(D(L)) + δ2
≤ 1− α (3.41)

which implies

r = λµL + δ = λµL +
√

Var(D(L))

√
α

1− α
. (3.42)
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For a Poisson demand process Var(D(L)) = λµL + λ2σ2
L, then plug it in we have

r̄ = λµL +
√
λµL + λ2σ2

L

√
α

1− α
(3.43)

ȳ(1) = h
√
λµL + λ2σ2

L

√
α

1− α
+
√

2khλ. (3.44)

This bound is in general very loose, but it has a closed form for both r̄ and ȳ(1).

Example 3.4.1. Assume that the demand process is a Poisson process and let λ = 10, µL =
5, and σL = 5. With α = 0.98, the bound obtained via the parametric linear program (3.34)
is δ∗ = 307.2 while the Chebyshev bound is

δ =
√

50 + 100 · 25
√

0.98/0.02 = 353.48.

Our proposed bound is tighter.

�

3.4.2 Type (ii) Policy

In this section we consider the type (ii) policy capacity reservation policy. As with the type
(i) policy, holding and penalty cost is incurred continuously in time.We adopt the following
notation:

Notations:

γ Selling revenue.
λ Demand rate.
h Holding cost.
α: Service level.
k Fixed cost.
c Variable cost.
l Lead time.
D(t) Demand during an interval of fixed length t.

This is a random variable.
y(2) Long-run average cost.
z(2) Long-run average profit.

Decision variables:

s Order-up-to level.
τ Cycle time.
u Reserved capacity.
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Recall that the type (ii) manufacturer manages inventory using a (s, τ, u) policy: place an
order every τ time units that raises the inventory position as close to s as possible, subject
to a constraint u on maximum order size. Mean demand during a cycle of length τ is λτ .
An illustration of type (ii) policy with a sample path of inventory position and inventory
level are shown in Figure 3.2

Figure 3.2: A sample path of type (ii) policy

In Figure 3.2 we assume the inventory position at the beginning of the cycle is s, and the
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inventory position at the end of the cycle just before placing an order is s − D(τ). Then
the inventory position at the beginning of the next cycle is min{s, s −D(τ) + u} since the
order size can not exceed the capacity u. Recall that we assume no lead time for the order to
begin processing (since capacity is reserved), and a fixed, deterministic lead time l after the
order is placed until it arrives, independent of order size. On the other hand, inventory level
at the beginning of the cycle is s−D(l), and the inventory level at the end of the cycle just
before the next order arrives is s−D(l)−D(τ). Then the average inventory level within the
cycle is s−D(l)− 1

2
D(τ) so the inventory holding cost can be computed. Next we consider

two cases depending on the variable cost c.

Case 1: c = 0
First consider a special case where the variable cost c is 0, so given the specifications of
our model, the manufacturer will reserve u = ∞ capacity under a (s, τ, u) policy. As a
consequence the inventory position at the beginning of each ordering cycle will always be
s. The long-run average profit can be expressed as the following constrained optimization
problem:

max z(2)(s, τ,∞) = λγ − k

τ
− h

(
s− λl − 1

2
λτ

)
(3.45)

s.t. P(D(l + τ) ≤ s) > α (3.46)

Here the first term λγ is the revenue, the second term k
τ

is the fixed cost, the third term
h(s − λl − 1

2
λτ) is the average holding cost and the constraint P(D(l + τ) ≤ s) > α is the

service level constraint. This profit maximization model is equivalent to a cost minimization
model without the revenue term, which can be written as follows:

min y(2)(s, τ,∞) =
k

τ
+ h

(
s− λl − 1

2
λτ

)
(3.47)

s.t. P(D(l + τ) ≤ s) > α (3.48)

The optimal order-up-to level s is determined uniquely by D(l + τ). Approximating the
Poisson demand using Normal distribution, we get s∗ = λ(l+τ)+ζα

√
λ(l + τ). Substituting

back into the objective function, we get

y(2)(τ) =
1

2
hλτ + hζα

√
λ
√
l + τ +

k

τ
(3.49)

so then

τ∗ = arg min y(2)(τ) (3.50)

s∗ = λ(l + τ∗) + ζα
√
λ
√
l + τ∗ (3.51)

y(2)
∗ =

1

2
hλτ∗ + hζα

√
λ
√
l + τ∗ +

k

τ∗
(3.52)
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Unfortunately, the closed form expression for τ∗ is complex. A simple lower bound on
y(2)(τ) can be obtained by setting the lead time l = 0, so y(2)(τ) = 1

2
hλτ∗ + hζα

√
λ
√
τ∗ + k

τ∗
.

Case 2: c > 0
When the variable cost c is positive, reserved capacity u will be finite. Let St be the starting
inventory position at the beginning of the tth order cycle. The sequence of {St} forms
a discrete time Markov chain on discrete state s, s − 1, . . . with state transition St+1 =
min{s, St −Dt(τ) + u}, as the demand during an order cycle is D(τ) so inventory position
in the (t+ 1)th order cycle is the minimum between s and St−Dt(τ) +u given the order size
cannot exceed u. The transition probability matrix is

P(D(τ) ≤ u) P(D(τ) = u+ 1) P(D(τ) = u+ 2) P(D(τ) = u+ 3) · · ·
P(D(τ) ≤ u− 1) P(D(τ) = u) P(D(τ) = u+ 1) P(D(τ) = u+ 2) · · ·
P(D(τ) ≤ u− 2) P(D(τ) = u− 1) P(D(τ) = u) P(D(τ) = u+ 1) · · ·

...
...

...
...

. . .

(3.53)

If u > λτ , the Markov chain is recurrent so the stationary distribution of St exists. Let
S∞ be a random variable denoting the stationary inventory position at the beginning of an
order cycle. Observe that the distribution of S∞ is a function of s, τ and u. To ensure the
α-service level, we need

P (D(l + τ) ≤ S∞) > α. (3.54)

Given a particular cycle τ and capacity u, the minimum order-up-to level s∗ which en-
sures that the corresponding S∞ satisfies this service level constraint can be obtained. Let
ψ(s∗, τ, u) be the expected value of S∞, and then the long-run average profit z(2) is

z(2)(s∗, τ, u) = λγ − k

τ
− cu

τ
− h

(
ψ(s∗, τ, u)− λl − 1

2
λτ

)
(3.55)

which is equivalent to minimizing

y(2)(s∗, τ, u) =
k

τ
+
cu

τ
+ h

(
ψ(s∗, τ, u)− λl − 1

2
λτ

)
. (3.56)

Clearly y(2)(s, τ,∞) from Case 1 above when u =∞ serves as a lower bound on y(2)(s∗, τ, u <
∞).

3.4.3 Comparison Between Two Policies

In this section we compare the performance of type (i) and (ii) policies computationally by
comparing the expected long-run cost y and profit z. Our goal is to highlight the performance
of type (ii) policy when there is a large lead time uncertainty under type (i) policy. To do
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so, we consider a test problem with parameters k = 500, λ = 10, α = 0.98, h = 1, γ = 25, c =
5, as we found in preliminary computation that other choices of these parameters do not
materially impact our conclusions. Then, we fix the expected lead time of the type (i) policy
at µL = 5 (we will study the effect of changing in expected lead time in the centralized system
in Section 3.6) and change the lead time variability σL, and compare the performance to the
type (ii) policy with various lead time l and decision controls τ and u. The results are shown
in Table 3.1.

Policy Cases Lead time Parameters Cost Profit

Changing σL
(i) Exact σL = 0 r∗ = 64.52 t∗ = 10 114.52 85.48

(i) Upper bound σL = 0.25 r∗ = 65.72 t∗ = 10 115.72 84.28

(i) Upper bound σL = 0.5 r∗ = 71.08 t∗ = 10 121.08 78.92

(i) Upper bound σL = 0.75 r∗ = 84.72 t∗ = 10 134.72 65.28

(i) Upper bound σL = 1 r∗ = 99.58 t∗ = 10 149.58 50.42

(i) Upper bound σL = 2 r∗ = 162.02 t∗ = 10 212.02 -12.02

(i) Upper bound σL = 3 r∗ = 226.28 t∗ = 10 276.28 -76.28

(i) Upper bound σL = 4 r∗ = 291.50 t∗ = 10 341.50 -141.50

(i) M/D/1 λ0 = 0.5 σL = 4.8 r∗ = 166 t∗ = 10 216.00 -16.00

(i) M/M/1 σL = 5 r∗ = 196.55 t∗ = 10 246.55 -46.55

(i) Upper bound σL = 5 r∗ = 357.20 t∗ = 10 407.20 -207.20

(i) M/D/1 λ0 = 1 σL = 5.5 r∗ = 180 t∗ = 10 230.00 -30.00

Changing l

(ii) Exact l = 0 s∗ = 110.26 τ∗ = 9.07 u =∞ 120.04 -

(ii) Exact l = 1 s∗ = 121.78 τ∗ = 9.11 u =∞ 121.08 -

(ii) Exact l = 2 s∗ = 133.18 τ∗ = 9.15 u =∞ 122.08 -

(ii) Exact l = 3 s∗ = 144.49 τ∗ = 9.18 u =∞ 123.03 -

(ii) Exact l = 4 s∗ = 155.71 τ∗ = 9.21 u =∞ 123.94 -

(ii) Exact l = 5 s∗ = 166.87 τ∗ = 9.24 u =∞ 124.82 -

Changing τ

(ii) Exact l = 5 s∗ = 175.15 τ = 10 u =∞ 125.15 -

(ii) Exact l = 5 s∗ = 229.04 τ = 15 u =∞ 137.37 -

(ii) Exact l = 5 s∗ = 282.47 τ = 20 u =∞ 157.47 -

(ii) Exact l = 5 s∗ = 335.57 τ = 25 u =∞ 180.57 -

(ii) Exact l = 5 s∗ = 388.42 τ = 30 u =∞ 205.09 -

Changing u

(ii) Exact l = 5 s∗ = 176 τ = 10 u = 115 125.61 66.89

(ii) Exact l = 5 s∗ = 179 τ = 10 u = 110 127.66 67.34

(ii) Exact l = 5 s∗ = 192 τ = 10 u = 105 136.57 60.93

(ii) Exact l = 5 s∗ = 246 τ = 10 u = 102 176.20 22.80

Table 3.1: Comparison of type (i) and (ii) for service level model policy

In the first section of the table, which explores the performance of the type (i) policy,
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when σL = 0, i.e. the lead time is deterministic, the optimal controls r∗ and t∗ can be
computed exactly as in Case 1 in Section 3.4.1 when the outsourcer is modeled as a G/D/∞
queue and the corresponding cost/profit serves as a lower/upper bound. When σL > 0, when
the exact distribution of the lead time can be obtained (M/M/1 and M/D/1 with known
λ0), the optimal controls r∗ and t∗ as well as the cost/profit are computed as in Case 2 in
Section 3.4.1 where the outsourcer is modeled as an M/G/1 queue. In other instances where
the exact distribution of the lead time is impossible to obtain, as in Case 3 in Section 3.4.1,
the outsourcer is modeled as a general queue and the upper/lower bound of the cost/profit
are computed. In the second section of the table, which explores the performance of the
type (ii) policy, we study the performance by varying the type (ii) policy lead time l, the
order cycle τ and the reserved capacity u. When u = ∞, the cost are computed according
to Case 1 in Section 3.4.2. When u <∞, the cost/profit are computed according to Case 2
in Section 3.4.2.

From Table 3.1, we can see that when the lead time is deterministic, type (i) policy has
the lowest cost of 114.52 which outperforms the cost of type (ii) policy, even for the case
of the lower bound with zero lead time l = 0 and infinite reserved capacity u = ∞. This
phenomenon holds true as long as the optimal order cycle of the type (ii) policy τ∗ is larger
than the expected lead time of the type (i) policy µL, as shown in Theorem 3.4.1:

Theorem 3.4.1. If τ∗ ≥ µL, the lower bound of type (ii) policy long-run average cost y(2) is

strictly larger than the type (i) policy long-run average cost with deterministic lead time y(1).

The proof of Theorem 3.4.1 can be found in Appendix A.2.1. Theorem 3.4.1 shows the
superiority of the type (i) policy when the lead time is deterministic. However, for more
realistic cases described in Case 2 and Case 3 in Section 3.4.1 when the lead time is random,
type (ii) (s, τ, u) policy can dominate. As σL increases, the long-run average cost of the type
(i) policy increases rapidly. For example in the instance which the outsourcer is modeled as
an M/M/1 queue, the optimal long-run average cost of type (i) policy is 247.55, which is
significantly larger than the type (ii) policy, even with suboptimal τ = 30 ≈ 3τ∗ which leads
to a long-run average cost of 205.09, or extremely constrained capacity u = 102 = λτ + 2,
which leads to a long-run average cost of only 176.20. The intuition is that for type (i)
manufacture, the reorder point r∗ that ensures the α service level is mainly determined by
the unlucky long lead time when the lead time variability is high. Higher lead time variability
leads to higher r∗, which increases the long-run average cost. On the other hand, under type
(ii) policy the lead time variability is eliminated so the cost is much stabler: the cost does
not change much with different lead time from l = 0 to l = 5. In addition the long-run
average cost when u <∞ is close to the cost with infinite capacity as long as the capacity u
is slightly larger than the mean demand in a cycle. This is because the probability of starting
inventory position smaller than the order-up-to level s, P(S∞ < s) decreases exponentially
fast as u increases, which is shown in Theorem 3.4.2.

Theorem 3.4.2. The probability of the inventory position at the beginning of an order cycle
less than the order-up-to level, P(S∞ < s) decreases exponentially as capacity u increases.
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The proof of Theorem 3.4.2 can be found in Appendix A.2.2. Theorem 3.4.2 suggests
that the capacity constraint in the type (ii) policy is not very restrictive. If a manufacturer
reserves capacity u that is slightly larger than the mean demand during a cycle λτ , the cost
is close the case of infinite capacity.

Managerial Insight: The comparison between the type (i) and (ii) policies crucially
depends on the lead time process at the outsourcer. When the lead time experienced by a
type (i) manufacturer is deterministic or has very small variance, which is common if the
outsourcer primarily works for the manufacturer (or even is dedicated to the manufacturer)
so that no other manufacturers compete for the same outsourcer, then the type (i) policy
yields lower cost. When the lead time experienced by a type (i) manufacturer is highly
variable, which is common if the manufacturer is only a small customer of the outsourcer
(e.g. the biopharmaceutical industry) so that most of the lead time is due to the waiting
for the availability of the outsourcer, then it is better to switch to a type (ii) policy that
reserves the outsourcer capacity in advance, which eliminates the variability in the lead time
and therefore results in lower cost. In addition, under type (ii) policy, the capacity constraint
is not restrictive as long as the reserved capacity u is slightly larger than the mean demand
during a cycle λτ .

3.5 Decentralized System With Penalty Cost

In this section, we briefly analyze the same setting as in the previous section, except with a
penalty cost rather than a service level constraint. Specifically, a penalty cost p per unit of
time is incurred for each unit of backorder. We analyze both type (i) and type (ii) policies,
and show that the same conclusion can be drawn as in the service level model.

3.5.1 Type (i) Policy

We adopt the following notation:

Notations:
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γ Selling price.
λ Demand rate.
h Holding cost.
p Penalty cost.
k Fixed cost of an order.
c Variable cost of an order.
q Order size.
L Lead time.

This is a random variable with c.d.f. FL, mean µL and variance σ2
L <∞.

D(t) Demand during an interval of constant length t.
This is a random variable with c.d.f. FD(d, t).

D(T ) demand during an interval of random length T . Random variable with c.d.f. FD(d, T ).
z(1)(r, q) Long-run average profit.
g(y) = hE[(y −D(L))+] + pE[(D(L)− y)+]

= (h+ p)
∑y−1

j=0 FD(j, L) + pλµL − py

Decision variables:

r Re-order level.
q Order quantity.

If FD(d, L) and µL are known, the long-run average profit of the manufacturer is

z(1)(r, q) = λγ − kλ

q
− λc− 1

q

r+q∑
y=r+1

g(y) (3.57)

under the Poisson demand process D1, and minimizing this is equivalent to minimizing cost:

y(1)(r, q) =
kλ

q
+

1

q

r+q∑
y=r+1

g(y). (3.58)

To compute y(1)(r, q) we need the exact distribution of lead time demand FD, which in
general is difficult to obtain. As in Section 3.4, we consider three cases:

Case 1: The outsourcer is modeled by a G/D/∞ queue
In this case the lead time is deterministic, so this serves as a general lower bound on the
long-run average cost y(1). The optimal r and q can be computed efficiently but in general
there is no closed form solution for the optimal r∗, q∗ and y(1)(r∗, q∗). (see Federgruen and
Zheng (1992)[23]).

Case 2: The outsourcer is modeled by an M/M/1 queue
As we have discussed in Section 3.4.1, when the outsourcer manages an M/M/1 queue, the
lead time demand faced by the manufacturers FD(d, L) follows a geometric distribution with
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parameter λ/(λ+ β):

FD(j, L) = P(D ≤ j) = 1−
(

λ

λ+ β

)j+1

(3.59)

where β = 1/µL, so

g(y) = (h+ p)

y−1∑
j=0

(
1−

(
λ

λ+ β

)j+1
)

+
pλ

β
− py (3.60)

= hy − (h+ p)

y∑
j=1

(
λ

λ+ β

)j
+
pλ

β
(3.61)

= hy − (h+ p)
λ

β

(
1−

(
λ

λ+ β

)y)
+
pλ

β
(3.62)

= hy + (h+ p)
λ

β

(
λ

λ+ β

)y
− hλ

β
(3.63)

Then,

y=r+q∑
y=r+1

g(y) =
hq(2r + q + 1)

2
+ (h+ p)

(
λ

β

)2(
λ

λ+ β

)r (
1−

(
λ

λ+ β

)q)
− λhq

β

so for a given r and q, we have the explicit formula for y(1)(r, q):

y(1)(r, q) =
kλ

q
+
h(2r + q + 1)

2
+
h+ p

q

(
λ

β

)2(
λ

λ+ β

)r (
1−

(
λ

λ+ β

)q)
− λh

β
.

Case 3: The outsourcer side is modeled by a general queuing system
As in Section 3.4.1, an upper bound on the long-run average cost y(1)(r, q) can be found
using only the first two moments of the lead time µL, σ

2
L. We follow the approach in Gallego

(1998)[27]. We first bound
∑r+q

y=r+1 g(y) as

r+q∑
y=r+1

g(y) ≤
∫ r+q

r

g(y)dy (3.64)

=

∫ r+q

r

∫ ∞
0

[
h(y − x)+ + p(x− y)+

]
dFD(x, L) dy (3.65)

=

∫ ∞
0

∫ r+q

r

[
h(y − x)+ + p(x− y)+

]
dy dFD(x, L) (3.66)

(3.67)

Let s(x; q, r) =
∫ r+q
r

[h(y − x)+ + p(x− y)+] dy; then to compute s(x; q, r) we have three
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cases:

• if x ≤ r ∫ r+q

r

[
h(y − x)+ + p(x− y)+

]
dy = h

∫ r+q

r

(y − x)dy (3.68)

= −hq(x− r − 1

2
q) (3.69)

• if x ≥ r + q ∫ r+q

r

[
h(y − x)+ + p(x− y)+

]
dy = p

∫ r+q

r

(x− y)dy (3.70)

= pq(x− r − 1

2
q) (3.71)

• if r + 1 ≤ x ≤ r + q − 1∫ r+q

r

[
h(y − x)+ + p(x− y)+

]
dy = p

∫ x

r

(x− y)dy + h

∫ r+q

x

(x− y)dy (3.72)

=
1

2
p(x− r)2 +

1

2
h(x− r − q)2 (3.73)

Combining these three cases, we see that

s(x; q, r) ≤ 1

2
h(x− r − q)2 +

1

2
p(x− r)2 (3.74)

E[s(x; q, r)] ≤ 1

2
(h+ p)σ2

D +
1

2
h(µD − r − q)2 +

1

2
p(µD − r)2 (3.75)

where

µD = λµL (3.76)

σ2
D = λµL + λ2σ2

L (3.77)

are the first two moments of the lead time demand as derived in the remark in Section 3.4.
If we let s(q, r) = E[s(x; q, r)], we have

s(q, r) =
1

2
(h+ p)(λµL + λ2σ2

L) +
1

2
h(λµL − r − q)2 +

1

2
p(λµL − r)2 (3.78)

ȳ(1)(q, r) =
1

q
λk +

1

q
s(q, r). (3.79)
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3.5.2 Type (ii) Policy

We adopt the same notation as in Section 3.4.2 except that a penalty cost p is incurred for
each backorder per unit of time.

Notations:

γ Selling price.
l Lead time.
λ Demand rate.
h Holding cost.
p Penalty cost.
k Fixed cost of an order.
c Variable cost of an order.
D(t) Demand during an interval of fixed length t.

This is a random variable with c.d.f. FD(d, t).
z(2)(s, τ, u) Long-run average profit.
g(s, t) = hE[(s−D(t))+] + pE[(D(t)− s)+]

(h+ p)
∑s

j=0 FD(j, t) + pλt− ps

Decision variables:

s order-up-to level.
τ cycle time.
u reserved capacity.

Case 1: c = 0
Under the assumption of zero variable cost, or equivalently infinite capacity, the model
reduces to the (s, t) policy as described in Rao (2003)[48]. The long-run average profit can
be written as

z(2)(s, τ,∞) = λγ − k

τ
− 1

τ

∫ l+τ

l

g(s, t)dt (3.80)

or in cost minimization form

y(2)(s, τ,∞) =
k

τ
+

1

τ

∫ l+τ

l

g(s, t)dt (3.81)

Rao has shown that y(2)(s, τ) is jointly convex in s and τ .

Case 2: u <∞
As with the service level model, consider St to be the starting inventory position of the tth

cycle. Given St, the cycle average profit is

z(2)(s, τ, u|St) = λγ − k

τ
− cu

τ
− 1

τ

∫ l+τ

l

g(St, t)dt (3.82)
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then

z(2)(s, τ, u) = λγ − k

τ
− cu

τ
− 1

τ

∫ l+τ

l

E[g(S∞, t)]dt (3.83)

where S∞ is the stationary inventory position and the equality holds since g(S∞, t) > 0 thus
Tonelli’s theorem applies. For both cases, the closed form solutions for s, τ, u and long-run
average profit z(2) generally do not exist so numerical analysis is necessary.

3.5.3 Comparison Between Two Policies

We computationally compare the performance of the two policies using the same test problem
as in Section 3.4 with the service level model, except we replace the service level constraint
α = 0.98, with a penalty cost p = 9. The results are shown in Table 3.2:

60



Policy Cases Lead time Parameters Cost Profit

Changing σL
(i) Exact σL = 0 r∗ = 39 q∗ = 108 97.1634 102.8366

(i) Upper bound σL = 0.25 r∗ = 39 q∗ = 109 97.5023 102.4977

(i) Upper bound σL = 0.5 r∗ = 39 q∗ = 109 98.3624 101.6376

(i) Upper bound σL = 0.75 r∗ = 39 q∗ = 111 99.7815 100.2185

(i) Upper bound σL = 1 r∗ = 39 q∗ = 113 101.7389 98.2611

(i) Upper bound σL = 2 r∗ = 37 q∗ = 127 114.2402 85.7598

(i) Upper bound σL = 3 r∗ = 35 q∗ = 146 132.4863 67.5137

(i) Upper bound σL = 4 r∗ = 33 q∗ = 171 154.4357 45.5643

(i) M/M/1 Exact σL = 5 r∗ = 57 q∗ = 151 166.9695 33.0305

(i) M/M/1 Exact σL = 5 r = 30 q = 199 173.1334 26.8666

(i) Upper bound σL = 5 r∗ = 30 q∗ = 199 178.7462 21.2538

Changing l

(ii) Exact l = 0 s∗ = 95 τ∗ = 10.5 u =∞ 108.0585 -

(ii) Exact l = 1 s∗ = 105 τ∗ = 10.5 u =∞ 108.4389 -

(ii) Exact l = 2 s∗ = 116 τ∗ = 10.6 u =∞ 108.8200 -

(ii) Exact l = 3 s∗ = 126 τ∗ = 10.6 u =∞ 109.1871 -

(ii) Exact l = 4 s∗ = 137 τ∗ = 10.7 u =∞ 109.5574 -

(ii) Exact l = 5 s∗ = 146 τ∗ = 10.7 u =∞ 109.9128 -

Changing τ

(ii) Exact l = 5 s∗ = 149 τ = 11 u =∞ 109.9536 -

(ii) Exact l = 5 s∗ = 185 τ = 15 u =∞ 115.5574 -

(ii) Exact l = 5 s∗ = 229 τ = 20 u =∞ 129.5029 -

(ii) Exact l = 5 s∗ = 274 τ = 25 u =∞ 146.8500 -

(ii) Exact l = 5 s∗ = 319 τ = 30 u =∞ 165.9054 -

Changing u

(ii) Exact l = 5 s = 149 τ = 11 u = 125 110.2885 82.8933

(ii) Exact l = 5 s = 149 τ = 11 u = 120 110.9347 84.5198

(ii) Exact l = 5 s = 149 τ = 11 u = 115 116.1427 81.5846

(ii) Exact l = 5 s = 149 τ = 11 u = 112 162.1651 36.9258

Table 3.2: Comparison of type (i) and (ii) for penalty cost model policy

Table 3.2 leads to conclusions similar to those drawn in Section 3.4. When the lead time
variability is small, the long-run average cost of the type (i) policy outperforms the type
(ii) policy. As lead time variability increases, the performance of type (i) policy deteriorates
rapidly. The performance of the type (ii) policy is much more stable. Even under suboptimal
τ = 30 ≈ 3τ∗ or extremely constrained capacity u = 112 = λτ + 2, the long-run average cost
of the type (ii) policy is still better than that of the type (i) policy.

Managerial Insight: Our conclusion in Section 3.4 is not an artifact of the choice of the
service level constraint. The penalty cost model leads to the same conclusion as the service
level model: the type (ii) policy outperforms when the lead time variability is high.

61



3.6 Centralized System

We now turn to the analysis of a centralized system in which both the manufacturers and the
outsourcer belong to the same organization and the goal is to maximize the total profit of
the entire system. This setting may apply to, for example, a firm who manufactures several
similar products that share a single machine. Such a machine may serve as an “outsourcer”
as in the decentralized system. If the system is operated under type (i) policy, the demand
for a product is accumulated until a pre-determined batch size is reached (which is analogous
to an order with size q in (r, q) policy), and then the entire batch is sent to the machine;
the batch joins a queue and waits for processing. If the system is operated under type (ii)
policy, then the schedule of the machine is divided into several time slots, one slot dedicated
to each type of product (which is analogous to the reserved capacity u in a type (ii) policy).
Given these sets, we explore which policy can lead to higher profit for the firm. Moreover,
this centralized system also serves as a baseline for the decentralized system, which allows us
to compare the performance of type (i) and (ii) policies in a fair setting that avoids explicit
assumptions about the lead time distribution. To be consistent through out the chapter, we
still refer to the machine as the “outsourcer” even though the outsourcer and manufacturers
are part of the same organization. To study how type (i) and (ii) policies affect the profit of
the entire system, we consider two cases in the next two subsections: (1) all manufacturers
are type (i); and (2) all manufacturers are type (ii).

3.6.1 Case 1: All Manufacturers Are Type (i)

We first consider the setting where all manufacturers are type (i), who manage their inventory
using an (r, q) policy. We adopt the following notation in this section:

Notations:
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Manufacturer
n Total number of manufacturers.
γ Selling revenue.
λ Arrival rate.
h Holding cost.
k Fixed cost of placing an order.
c Variable cost of an order.
α Service level.
L Stationary lead time of an order.
(r, q) Inventory control decisions.
y(1)(q, n) Stationary cost rate for type (i) manufacturer.
z(1)(q, n) Stationary profit rate for type (i) manufacturer.

Outsourcer
µ Service rate (in demand units).
λ0 Arrival rate.
µ0 Service rate (in order units), µ0 = µ/q.
k0 Fixed cost of processing an order.
k Fixed revenue of processing an order.
c0 Variable cost of processing an unit.
c Variable revenue of processing an unit.
h0 Waiting cost per unit per unit of time.
W Stationary waiting time of an order.

z
(1)
0 (k, c, q, n) Stationary profit rate when all manufacturers are type (i).

System:

y
(1)
c (q, n) Stationary cost rate for the type (i) centralized system.

z
(1)
c (q, n) Stationary profit rate for the type (i) centralized system.

We model the system using the queuing setting shown in Figure 3.3: all incoming demand
at manufacturers is Poisson with rate λ. All manufacturers manage inventory using an (r, q)
policy and all orders joins a single queue at the outsourcer with FIFO service discipline. The
outsourcer has a deterministic processing time 1/µ0 and the arrival rate of incoming orders
seen by the outsourcer is λ0. Next we discuss the underlying assumptions of our model:
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Figure 3.3: A centralized system with all type (i) manufacturers

Assumptions:

A1. The outsourcer manages a single queue with a first-in-first-out (FIFO) service discipline

A1 may not accurately capture real world settings; for example, the outsourcer may
use other disciplines such as a polling model to manage all incoming orders (see Takagi
(1986)[59]). Since our goal is to compare the effectiveness of two types of outsourcing
polices, rather than the impact of advanced queue scheduling, we adopt this concise
model to simplify analysis. Relaxing A1 would mostly like require simulation-based
analysis.

A2. The service time is deterministic 1/µ0 where 1/µ0 is a linear function of order size q
such that 1/µ0 = q/µ

A2 enables us to fairly compare type (i) and type (ii) policies, since for the latter we
assume that processing time during a reservation is deterministic.

A3. µ0 > λ0

A3 ensures that all manufacturers and the outsourcer have finite long-run average
profit.

A4. The total number of manufacturers n is large
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As we discussed in Section 3.4, since an order from a manufacturer arrives at the
outsourcer according to a renewal process with rate λ/q, A4 allows us to aggregate all
of the renewal processes approximately into a Poisson process with rate nλ/q. Together
with the A2, this means that the outsourcer manages an M/D/1 queue with arrival
rate λ0 = nλ/q and service rate µ0 = µ/q.

A5. All manufacturers are homogeneous, i.e. with identical

• Poisson demand process with rate λ

• inventory control policy (r, q)

• service level α

• holding cost h, fixed cost k and variable cost c

A5 may fail to capture certain real-world settings, but otherwise the model is in-
tractable for theoretical analysis. In addition, we assume the demand process for each
manufacturer is Poisson process D1. This assumption can be relaxed to allow for other
demand processes.

A6. The manufacturer faces a service level constraint as described in Section 3.4

We make this assumption, but our analysis applies equally to the penalty cost model
described in Section 3.5.

A7. The system is incurred a waiting cost h0 per unit per unit time for each order waiting
in the queue.

In A7 we assume a linear waiting cost, which captures the notion that the system must
pay the inventory holding cost for work-in-progress inventory. Our analysis generalizes
to non-linear waiting cost. Just for convenience, we include this cost in the profit
calculation of the outsourcer z

(1)
0 .

The total profit of the entire system, denoted by z
(1)
c (c stands for centralized), consists

of the profit of the outsourcer z
(1)
0 and the profit of the manufactures z(1). The long-run

average profit rate of the outsourcer is

z
(1)
0 (k, c, q, n) = λ0 (k + cq)− λ0 (k0 + c0q)− h0λ0qE[W ] (3.84)

= nλ

(
k

q
+ c

)
− nλ

(
k0

q
+ c0

)
− h0nλE[W ] (3.85)

where the first term is the revenue from processing orders, the second term is the cost of
processing orders, and the third term is the waiting cost. For an M/D/1 queue, the expected
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waiting time of an order is

E[W ] =
1

2µ0

λ0

µ0 − λ0

(3.86)

=
nλ

2µ

q

µ− nλ
(3.87)

so z0(k, c, q, n) can be written as

z0(k, c, q, n) = nλ

(
k

q
+ c

)
− nλ

(
k0

q
+ c0

)
− h0n

2λ2

2µ(µ− nλ)
q. (3.88)

The long-run average profit rate of a single manufacturer can be written as

z(1)(q, r) = λγ − λ
(
k

q
+ c

)
− h(r − λE[L] +

q

2
) (3.89)

where the first term is the revenue from selling finished product. The second term is the
cost of placing orders. The third term is the inventory holding cost. For an M/D/1 queue
the expected sojourn time of an order is

E[L] = E[W ] +
1

µ0

=
2µ− nλ

2µ(µ− nλ)
q. (3.90)

Notice the expected lead time is proportional to the order size q. The re-order point r equals
F−1
L (α), and so it is determined by the lead time distribution FL, which is a function of order

quantity q and the total number of manufacturers n. We let r(q, n) denote the smallest re-
order point that satisfies the service-level constraints given q and n, so z(q, r) can be written
as

z(1)(q, n) = λγ − λ
(
k

q
+ c

)
− h

(
r(q, n)− λ(2µ− nλ)

2µ(µ− nλ)
q +

q

2

)
. (3.91)

Then the total profit of the system is

z(1)
c (k, c, q, n) (3.92)

= z
(1)
0 (k, c, q, n) + nz(1)(q, n) (3.93)

= nλγ − hn
(
r(q, n)− λ(2µ− nλ)

2µ(µ− nλ)
q +

q

2

)
− k0nλ

q
− nλc0 − h0

n2λ2

2µ(µ− nλ)
q.(3.94)

Observe that the prices offered by the outsourcer k and c do not affect the total profit in
a centralized system, so we can omit k and c in z

(1)
c (k, c, q, n) and so we have z

(1)
c (q, n).

Maximizing the total profit z
(1)
c (q, n) is equivalent to minimizing the cost:

y(1)
c (q, n) =

k0λ

q
+ h

(
r(q, n)− λ(2µ− nλ)

2µ(µ− nλ)
q +

q

2

)
+
nλ

2µ

h0λ

µ− nλ
q (3.95)

66



Let qc be the global minimizer of y
(1)
c (q, n), then the total profit of the centralized system

with all type (i) manufacturers is z
(1)
c (qc, n).

The difficulty of optimizing y
(1)
c (q, n) is mainly due to the implicit function r(q, n). A

change in the order quantity q or total number of manufacturers n will change the distribution
of the lead time, which will further affect the re-order point for all manufacturers. Since we
assume the demand process at each manufacturer is a Poisson process, r(q, n) is naturally

discrete on integral values, so the function y
(1)
c (q, n) is not a continuous function. However

even with a continuous demand process such as a Brownian motion with drift, since the
lead time distribution FL must be discretized computationally, the resulting y

(1)
c (q, n) is still

discontinuous. Next we show an example of computing the profit of a centralized system
with all type (i) manufactures.

Example 3.6.1. Consider an example with n = 95 manufacturers with the following pa-
rameters:

Manufacturer:

λ = 10
γ = 25
h = 1
α = 0.98

Outsourcer:

µ = 1000
k0 = 800
c0 = 5
h0 = 1

The traffic density at the outsourcer is ρ = nλ/µ = 95%. The optimal centralized order

quantity qc can be found by minimizing the centralized cost function y
(1)
c (q, n). A plot of

the function versus order quantity q is shown in Figure 3.4. The horizontal axis is the order
quantity q from 75 to 130 in 0.1 increment and the vertical axis is the cost y(1)(q, n). The
cost function is discontinuous as expected.
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Figure 3.4: Cost function y(1)(q, n) versus q

In this example, the optimal order quantity is qc = 94.4 and the corresponding re-order
point r(qc, n) is 38.

Under this order quantity, the arrival and service rates seen by the outsourcer are

λ0 =
nλ

q
= 10.0636 (3.96)

µ0 =
µ

q
= 10.5932 (3.97)

and thus the expected waiting time and the expected lead time of an order in the corre-
sponding M/D/1 queue are

E[W ] =
1

2µ0

λ0

µ0 − λ0

= 0.8968 (3.98)

E[L] =
1

µ0

+ E[W ] = 0.9912. (3.99)

Assuming the outsourcer offers price k = 500, c = 10, the profit of each manufacturer is

z(1)(qc, n) = λγ − λ
(
k

qc
+ c

)
− h

(
r(qc, n)− λE[L] +

qc
2

)
= 21.7459 (3.100)
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and the profit of the outsourcer is

z
(1)
0 (k, c, qc, n) = λ0 (k + cqc)− λ0 (k0 + c0qc)− h0λ0qcE[W ] = 878.9722. (3.101)

Thus, the profit of the entire system is

z(1)
c = z0(k, c, qc, n) + nz(qc, n) = 2944.80. (3.102)

�

3.6.2 Case 2: All Manufacturers Are Type (ii)

In this subsection we analyze the case where all manufacturers are type (ii). We adopt the
following notation in this subsection:

Notations:

Manufacturer:
n Total number of manufacturers.
γ Selling revenue.
λ Arrival rate.
h Holding cost.
k Fixed cost of placing an order.
c Variable cost of an order.
α Service level.
(s, τ, u) Inventory control parameters.
z(2)(s, τ, u) Stationary profit rate for type (ii) manufacturer.

Outsourcer:
µ Service rate (in the unit of a demand).
k0 Fixed cost of processing an order.
k Fixed revenue of processing an order.
c0 Variable cost of processing an unit.
c Variable revenue of processing an unit.

z
(2)
0 (k, c, u) Stationary profit rate.

System:

y
(2)
c (s, τ, u) Stationary cost rate for the all type (ii) centralized system.

z
(2)
c (s, τ, u) Stationary profit rate for the all type (ii) centralized system.

We make the same set of assumptions A1 - A7, except now all manufacturers are type
(ii). In this setting, even with µ > nλ, the system may not be stable. The stability condition
depends on the reserved capacity u for each manufacturer. For a manufacturer to have finite
long-run average revenue we need u > λτ . For the outsourcer to be able to accommodate all
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capacity reservations from all n manufacturers, µτ > nu is required. This suggests that the
outsourcer may not have the capacity for all manufacturers if the reserved capacity u is larger
than a threshold. To simplify the analysis we make the following additional assumption:

Assumptions:

A8. The outsourcer allocates an equal amount of capacity to each manufacturer, with
u = µτ

n
.

Under this assumption, a simple non-idle cyclic schedule can be adopted at the out-
sourcer: capacity is reserved by each manufacturer cyclically in sequence 1, 2, ..., n, 1, ...
where each reservation lasts for τ/n long. Such a schedule and a resulting sample path
of inventory position of one manufacturer is shown in Figure 3.5. In addition, with
this assumption, the capacity reserved u is no longer a decision variable for the manu-
facturer.

Figure 3.5: Outsourcer adopts a non-idle cyclic schedule with all type (ii) manufacturers

With the assumption A8 the profit of the outsourcer is:

z
(2)
0 (k, c, n) =

n

τ
(k + cu)− n

τ
(k0 + c0u). (3.103)

Since no manufacturer is ever waiting for an order to be processed, there is no waiting cost
incurred for the system. Given a fixed service level α and capacity u, the manufacturer finds
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the smallest order-up-to level s∗ that satisfies the service level constraint and the profit is

z(2)(s∗, τ, n) = λγ − y(2)(s∗, τ, u) (3.104)

= λγ − h
(
ψ(s∗, τ, u)− λl − 1

2
λτ

)
− k

τ
− cu

τ
. (3.105)

The total profit of the entire system is

z(2)
c (k, c, s∗, τ, n) = z

(2)
0 (k, c, u) + nz(2)(s∗, τ, u) (3.106)

= nλγ − n

τ
(k0 + c0u)− nh

(
ψ(s∗, τ, u)− λl − 1

2
λτ

)
(3.107)

which is equivalent to minimizing the cost y
(2)
c

y(2)
c (τ, s∗, n) =

n

τ
(k0 + c0u) + nh

(
ψ(s∗, τ, u)− λl − 1

2
λτ

)
. (3.108)

Notice with the assumption A8 the system ends up paying variable cost for all of its
processing capacity c0

nu
τ

= c0µ, instead of the variable cost c0nλ as in the type (i) policy. If
µ� nλ, then the choice of u under the assumption A8 may be suboptimal. This means that
our computation of the system profit is conservative compared to the optimal type (ii) system

with capacity u as a decision variable. As with the cost function y
(1)
c in Case 1, once again

the prices k and c do not affect the total profit of the system. To minimize y
(2)
c , it is crucial

to understand the implicit function ψ(s∗, τ, u), which is the expected inventory position at
the beginning of an order cycle given τ, s∗ and u, where s∗ is the minimum order-up-to level
at which the service level constraint is satisfied. Unfortunately, function ψ(s∗, τ, u) has to
be evaluated numerically and is naturally discontinuous due to demand process D1. We will
let τc denote the optimal τ that minimize y

(2)
c .

Example 3.6.2. Consider the the example shown in Case 1 in Section 3.6.1 with the same
parameters, except that all n = 95 manufacturers are now type (ii) manufactures. As-
sume the order cycle for all manufacturers is τ = 12, then the allocated capacity for each
manufacturer u is

u =
µτ

n
= 126.32. (3.109)

which is larger than the expected cycle demand λτ = 120. The lead time of each order is

l =
u

µ
= 0.1263. (3.110)

As we can see, the lead time is deterministic and is much shorter than the expected lead
time in Case 1 with E[L] = 0.9912.

Using the same k = 500, c = 10 as in Case 1, with given τ and u, the smallest order-up-to
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level s∗ that ensures the α-service level can be found numerically as described in Section 3.4
which gives s∗ = 161, and then the profit of each manufacturer is

z(2)(s∗, τ, u) = λγ − y(2)(s∗, τ, u)− cu

τ
= 8.43 (3.111)

and the profit of the outsourcer is

z
(2)
0 (k, c, u) =

n

τ
(k + cu)− n

τ
(k0 + c0u) = 2625.00. (3.112)

The total profit of the entire system is

z(2)
c = z

(2)
0 (k, c, u) + nz(2)(s∗, τ, u) = 3425.40. (3.113)

Thus, the total profit of Case 2 with all type (ii) manufacturers is about 16.32% higher than
that of Case 1 with all type (i) manufacturers.

�

3.6.3 Computational Results

In this section, we extend the example shown in Case 1 in Section 3.6.1 and Case 2 in Section
3.6.2 to explore how changes in parameter values affects total profit of the centralized system.
We adopt the following parameters:

Manufacturer:

λ = 10
γ = 25
h = 1
α = 0.98

Outsourcer:

µ = 1000
k0 = 800
c0 = 5
h0 = 1

First we show how fixed cost k and variable cost c affect the profit of each party and the
system. If all manufacturers are type (i), results are summarized in Table 3.3.
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Changing k and c

k c qc r E[L] z(1) z
(1)
0 z

(1)
c

600 5 94.4 38 0.9912 61.15 -2864.70 2944.80

600 10 94.4 38 0.9912 11.15 1885.30 2944.80

600 15 94.4 38 0.9912 -38.85 6635.30 2944.80

800 5 94.4 38 0.9912 39.97 -851.96 2944.80

800 10 94.4 38 0.9912 -10.03 3898.00 2944.80

800 15 94.4 38 0.9912 -60.03 8648.00 2944.80

1000 5 94.4 38 0.9912 18.78 1160.80 2944.80

1000 10 94.4 38 0.9912 -31.22 5910.80 2944.80

1000 15 94.4 38 0.9912 -81.22 10661.00 2944.80

Table 3.3: Centralized with all type (i) manufacturers

The first two columns are the fixed cost k and variable cost c. The third and fourth
columns are the optimal inventory control parameter qc and r. The fifth column is the
expected lead time of an order. The last three columns are the profit of manufacturer z(1),
profit of the outsourcer z

(1)
0 and the total profit of the system z

(1)
c . As we can see from

the table, k and c only affect the profit of each party, but not the profit of the system
which is always 2944.80. Similar conclusions can be drawn for the Case 2 with all type (ii)
manufacturers.

Managerial Insight: In a centralized system, the fixed cost k and variable cost c control
the allocation of profit between the outsourcer and the manufacturers, but not the total
system profit.

Next we focus on the type (ii) policy and study impact of the order cycle τ on the total
profit. We fix k = 500 and c = 10, and the results are shown in Table 3.4.

Changing τ

τ u s∗ l y
(2)
c z(2) z

(2)
0 z

(2)
c

8 84.21 120 0.0842 135.83 8.91 1437.50 2284.10

9 94.74 134 0.0947 136.84 7.90 1833.30 2584.00

10 105.26 140 0.1053 133.51 11.22 2150.00 3216.20

11 115.79 154 0.1158 137.14 7.60 2409.10 3130.80

12 126.32 161 0.1263 136.31 8.43 2625.00 3425.40

13 136.84 174 0.1368 140.42 4.32 2807.70 3217.70

14 147.37 182 0.1474 141.45 3.29 2964.30 3276.60

15 157.89 194 0.1579 145.48 -0.75 3100.00 3029.10

16 168.42 203 0.1684 148.04 -3.30 3218.80 2904.80

Table 3.4: Centralized with all type (ii) manufacturers
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In Table 3.4 the first three columns are inventory control decisions τ, u and s∗. The
capacity u is first computed with a given τ then the smallest order-up-to level s∗ is computed
for a given τ and u. The fourth column is the lead time of an order. Keep in mind that
under an type (ii) policy, this lead time is deterministic. The fifth column is the optimal

cost function y
(2)
c and the last three columns are the profit of the manufacturer z(2), profit

of the outsourcer z
(2)
0 and profit of the system z

(2)
c . As we can see, the optimal order cycle

is around τ = 12 with profit 3425.40, which is 16.32% better than the profit of Case 1 with
all type (i) manufacturers. This shows that type the (ii) policy can outperforms the type (i)
policy under some choices of the order cycles τ .

Next we study how the traffic density at the outsourcer affects the performance of two
policies. To do so, we vary the number of manufactures from n = 98 to n = 80. When n is
large, the outsourcer has a higher traffic density thus is busier and vice versa. The results
are shown in Table 3.5.

Changing n

Type (i) policy Type (ii) policy

n qc r E[L] z
(1)
c τ u s∗ l z

(2)
c

98 73.4 77 1.8717 -2151.90 12 122.45 235 0.1224 -1687.30

97 82.7 55 1.4197 750.96 12 123.71 197 0.1237 1017.70

96 89.8 45 1.1674 2103.50 12 125.00 168 0.1250 3013.50

95 94.4 38 0.9912 2944.80 12 126.32 161 0.1263 3425.40

92 106.0 27 0.7155 4194.10 12 130.43 150 0.1304 3874.30

89 112.0 21 0.5651 4689.50 12 134.83 146 0.1348 3847.60

86 114.0 17 0.4641 4899.00 12 139.53 145 0.1395 3596.90

83 112.3 14 0.3864 4958.00 12 144.58 145 0.1446 3287.60

80 111.7 12 0.3351 4931.70 12 150.00 145 0.1500 2987.90

Table 3.5: Comparison between type (i) and (ii) policies with varying n

From Table 3.5 we can see as the number of manufacturers n increases, the expected lead
time of type (i) policy increases, and the reserved capacity u of type (ii) policy decreases.
As a results, type (i) policy requires a higher re-order point r and type (ii) policy requires
a higher order-up-to level s∗ to guarantee the service level constraint. Observe that as n
becomes larger and larger, the performance of type (ii) policy begins to outperform the type
(i) policy. This is because when n is large, type (i) manufacture suffers from the long and
highly variable lead time so large waiting cost is incurred along with the expensive inventory
cost. On the other hand when n is small, the lead time faced by the type (i) manufactures is
short and less variable, therefore type (i) policy generate a higher total profit for the system.

Managerial Insight: The results for the centralized system confirm the conclusion
drawn from the computational results in Section 3.4 and 3.5: when the lead time is highly
variable, the type (ii) policy can generate higher profit than the type (i) policy for the entire
system.
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3.7 Semi-centralized System

In this section, we briefly analyze the setting where all manufacturers belong to a single
organization, but the outsourcer does not. All the inventory control decisions are transparent
across all manufacturers. The organization tries to maximize its total profit instead of the
maximizing the total profit of the entire system. We call such a system as a “semi-centralized”
system. This setting may apply to, for example, a firm with multiple plants which share the
same outside outsourcer. Under type (i) policy, each plant is operated independently and
places order that joins a queue at the outsourcer. Under type (ii) policy, the firm proposes
a fixed capacity reservation scheme that all plants follow such that no order is ever waiting
at the outsourcer. We again consider two case: (1) all manufacturers are type (i); (2) all
manufacturers are type (ii) and we show that the semi-centralized system can be coordinated
such that the total profit of the system equals to the centralized system.

3.7.1 Case 1: All Manufacturers Are Type (i)

We continue making the same set of assumptions A1-A8 as discussed in the centralized
system in Section 3.6, except that in the semi-centralized system we assume the outsourcer
has larger power, and so first selects the fixed charge k and variable charge c, and then each
manufacturer picks the optimal (r, q) to maximize profit:

z(1)(q, n) = λγ − λ
(
k

q
+ c

)
− h

(
r(q, n)− λ(2µ− nλ)

2µ(µ− nλ)
q +

q

2

)
(3.114)

which is equivalent to minimizing

y(1)
s (q, n) =

λk

q
+ h

(
r(q, n)− λ(2µ− nλ)

2µ(µ− nλ)
q +

1

2
q

)
. (3.115)

Let qs(k) be the minimizer of y(1)(q, n) for a given k where subscript s stands for “semi-
centralized”. Since by the assumption A5 all manufacturers are homogeneous, nz(1)(qs(k), n)
is the maximum profit of all manufacturers. Then, the total profit of the system is:

z(1)
s (k, c, n) = z

(1)
0 (k, c, qs(k), n) + nz(1)

s (qs(k), n). (3.116)

If there exists a price ks such that the optimal order quantity of each manufacture in a
semi-centralized system qs(ks) equals the optimal order quantity in a centralized system qc
(defined in Section 3.6.1), then the system is coordinated. In other words, if the outsourcer
charges a fixed cost ks, the manufacturer will order qs = qc, and then the total profit of
the system is the same as the centralized system. Notice that the cost function of the semi-
centralized system y

(1)
s has the same term r(q, n) as in the cost function of the centralized
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system y
(1)
c (defined in Section 3.6.1), and thus y

(1)
s has the same discontinuous property as

well. The existence of such ks is difficult to show due to this discontinuity. Instead, we’ll
show the existence of ks under demand process D2: Brownian motion with drift, in which
both y

(1)
s and y

(1)
c are continuous:

Theorem 3.7.1. If the demand process faced by each manufacture is the D2 Brownian
motion with drift, then the semi-centralized system with all type (i) manufacturers can be

coordinated, i.e. there exists a fixed cost ks such that qs(ks) = qc with total profit z
(1)
s = z

(1)
c ,

and there exists a variable cost cs such that for any k 6= ks and c,

z
(1)
0 (ks, cs) ≥ z

(1)
0 (k, c) and z(1)(ks, cs) ≥ z(1)(k, c).

The proof of Theorem 3.7.1 can be found in Appendix A.2.3. Theorem 3.7.1 states that
there is a special fixed cost ks and variable cost cs, such that the total profit of the semi-
centralized system equals to the centralized system and the profit for each party is at least
as good as any other choices of k 6= ks and c. This gives incentive to the outsourcer to choose
such a ks. The variable cost c serves as a lever that controls the proportion of the profit
that each party earns. There exists a c = c̄ such that the outsourcer earns all the profit, and
there exists a c = c such that the manufacturer earns all the profit.

Example 3.7.1. Consider an example with the same parameter as in the Example 3.6.1
in Case 1 Section 3.6.1. Though the existence of ks is not shown under a Poisson demand
process, we can still numerically find one of the possible ks = 700, and then the optimal
order quantity of each manufacturer qs = 94.4 = qc and the total profit z

(1)
s = 2944.8 = z

(1)
c .

Notice that ks is smaller than k0, so to earn a positive profit the outsourcer must charge
c > c0. For this example, the smallest c such that the outsourcer earns a positive profit is
c = 6.96. The largest c̄ such that the manufacturer to earn a positive profit is c̄ = 10.05.
In other words, if the outsourcer charges fixed cost k = ks = 700 and variable cost c ∈
(c, c̄) = (6.96, 10.05) then both parties earn positive profit with the total profit equals to the
centralized system profit so the system is coordinated.

�

3.7.2 Case 2: All Manufacturers Are Type (ii)

With a fixed charge k and variable charge c offered by the outsourcer, each manufacturer
chooses the optimal order cycle τs (s stands for semi-centralized) that minimizes the cost
function

y(2)
s (s∗, τ, n) =

1

τ
(k + cu) + h

(
ψ(s∗, τ, u)− λl − 1

2
λτ

)
. (3.117)
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Similar to the case where all manufacturers are type (i), the system with all type (ii)
manufacturers can also be coordinated if there exists a special fixed cost ks such that each
manufacturer selects the optimal order cycle τs(ks) that equals the optimal order cycle in
a centralized system τc (defined in Section 3.6.2). As a consequence, the total profit of the
semi-centralized system equals to the profit of the centralized system. Due to the same
discontinuous property of ψ(s∗, τ, u) in the cost function y

(2)
s and y

(2)
c , we show such ks exists

under demand process D2: Brownian motion with drift.

Theorem 3.7.2. If the demand process faced by each manufacture is the D2 Brownian
motion with drift, then the semi-centralized system with all type (ii) manufacturers can be

coordinated, i.e. there exists a fixed cost ks such that τs(ks) = τc with total profit z
(2)
s = z

(2)
c ,

and there exists a variable cost cs such that for any k 6= ks and c,

z
(2)
0 (ks, cs) ≥ z

(2)
0 (k, c) and z(2)(ks, cs) ≥ z(2)(k, c).

The proof is similar to the proof of Theorem 3.7.1 and can be found in Appendix A.2.3.

3.7.3 Computational Results

We again use the same example from the centralized system in Section 3.6.3 to explore how
changes in k impact the profit of the semi-centralized system as a whole, as well as the profit
of each party in the chain. For brevity, we only show the results for the case with all type
(i) manufacturers in Section 3.7.1. The results are summarized in Table 3.6.

Changing k

k c qs(k) r E[L] y
(1)
s z

(1)
s z

(1)
0 z

(1)
s % change

500 10 79.0 32 0.8295 126.4961 23.5039 429.43 2662.30 -9.59%

550 10 84.1 34 0.8830 132.6178 17.3822 1167.00 2818.30 -4.30%

600 10 86.7 35 0.9103 138.4507 11.5493 1776.10 2873.30 -2.43%

650 10 89.3 36 0.9376 144.0619 5.9381 2348.30 2912.40 -1.10%

700 10 94.4 38 0.9912 149.4405 0.5595 2891.70 2944.80 0.00%

750 10 96.9 39 1.0175 154.6749 -4.6749 3385.30 2941.20 -0.12%

800 10 99.5 40 1.0447 159.7045 -9.7045 3852.00 2930.10 -0.50%

850 10 104.6 42 1.0983 164.5790 -14.5790 4260.10 2875.10 -2.37%

900 10 107.1 43 1.1245 169.3381 -19.3381 4670.40 2833.30 -3.79%

700 7.5 94.4 38 0.9912 149.4405 25.5595 516.68 2944.80 0.00%

Table 3.6: Semi-centralized with all type (i) manufacturers

In Table 3.6, in the last column we record the percentage gap compare to the total profit
of the centralized system z

(1)
c . Under the semi-centralized system, the total profit z

(1)
s varies
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with different fixed costs k. When k = 700 the optimal order quantity qs(k) equals the

centralized order quantity qc = 94.4 with the total profit z
(1)
s = z

(1)
c so ks = 700. To show

how the variable cost c affects the profit earned by each party, in the last row of Table 3.6, we
propose a special cs = 7.5 and compare the profit of each party to the first row where k = 500
and c = 10. As we can see, with k = ks = 700 and cs = 7.5, the profit of the manufacturer
is 25.5595 > 23.5039 in first row and profit of the outsourcer is 516.68 > 429.43 in the first
row so both parties earn larger profit with ks and cs. Thus, the outsourcer has incentive to
choose ks = 700 and the system is coordinated.

Managerial Insight: The semi-centralized system can be coordinated so that the total
profit equals that of the centralized system.

3.8 Conclusion

Small biopharmaceutical manufacturers often suffer from long and highly random lead times
when outsourcing some of their production steps. In this chapter, we analyzed a common
capacity reservation inventory control policy in industry that addresses this issue, and com-
pare its performance to that of a classical inventory control (r, q) policy. We show that when
the lead time in the (r, q) policy setting is long and variable, the capacity reservation policy
not only results in a higher profit for the manufacturer, but also increases the profit of the
entire system.
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Chapter 4

Process Flexibility with Inventory

4.1 Introduction

Given a fixed total amount of capacity, there are two levers that a manufacturer with mul-
tiple plants and multiple products can manipulate to minimize the cost of supply/demand
mismatch over time: inventory and process flexibility. Inventory is the traditional way for
a manufacturing system to deal with demand fluctuation. When demand for a product ex-
ceeds capacity, the system can still satisfy demand using inventory accrued in earlier periods.
Process flexibility, or the “the ability to produce different products within the same plant”
(Jordan and Graves (1995)[37]), provides another lever. When demand for one product is
high while demand for another product is low, a flexible plant can adjust the allocation of
its production capacity so that more demand can be satisfied.

Although both inventory and process flexibility can play a role in matching supply with
demand, they take effect in different dimensions and require different resources. Inventory
allows the utilization of excess capacity over time, and requires an investment in storage,
handling, and other inventory-related costs. Process flexibility, on the other hand, coordi-
nates unused capacity throughout the network of plants to quickly respond to demand spikes,
and requires upfront capital investment in flexible equipment. In this chapter, we explore
the trade-off between inventory and flexibility.

This work was motivated by our experience modeling the supply chain of a major bio-
pharmaceutical firm. In this industry, both the flexibility and inventory capabilities of a
manufacturing facility require significant capital investment and long lead time, whether in
manufacturing equipment or storage capacity. Thus, the decision of whether a new plant
should be flexible, or have significant inventory capability, or both, is a strategic decision
made during the drug approval process. Once the decision is made, in general it is difficult
to alter in the future, so the correct decision is crucial, and the trade-off between flexibility
and inventory is in particular interesting (Kaminsky and Wang (2015) [38]).
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At the time we worked with them, this firm’s supply chain consisted primarily of dedicated
(i.e. non-flexible) facilities, and as such it relied on inventory to cope with demand variation.
The firm was exploring the possibility of incorporating flexible manufacturing facilities into
its supply chain. By doing so, the firm could accrue a variety of benefits; not only increased
ability to meet demand, but increased flexibility to adapt the supply chain to make products
that share similar intermediates, or to new products with relatively small demand that
makes it difficult to justify new capacity. The management of this firm was hoping to better
understand the interplay between inventory and flexibility in their supply chain and to better
understand whether investments in process flexibility would be worthwhile.

These questions motivated us to explore a variety of related managerial questions:

• What are guidelines that might be useful in deciding whether a plant should
have flexibility or inventory capability, or both?

This broad question leads to a variety of more detailed questions relevant to the bio-
pharmaceutical firm mentioned above:

– If the firm wants to build a new plant while keeping the current production dedi-
cated as before, should the new plant be built with flexible manufacturing capac-
ity, or inventory capability, or both?

– If the firm wants to add flexible manufacturing capacity to several existing plants
in their current dedicated network, are there general guidelines that will give
insight into how many and which plants it would be most beneficial to add this
capacity to?

– Similarly, if a firm wants to add inventory capability to several existing plants in
a flexible network without inventory capability, are there general guidelines that
will give insight into how many and which plants it would be most beneficial to
add this inventory capability to?

• Are inventory capability and flexibility substitutes or complements?

When both inventory capability and flexibility capacity are present, do they comple-
ment each other, or does each one decrease the marginal benefit of the other? Is mixing
flexibility and inventory in general a good idea?

• Is it possible to use flexibility to eliminate inventory?

In settings such as in the biopharmaceutical industry where inventory storage can
be very costly, how does a supply chain that features flexible capacity rather than
inventory compare to a dedicated network?

To answer these questions, we extend the class of models most common in the process
flexibility literature (see Chou (2008)[18] for a survey of these models) to incorporate both
inventory and flexibility. We were motivated by a setting where both the capacity to hold
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inventory and manufacturing technology enabling flexibility are expensive. Clearly, the rela-
tive cost of these two options plays a role in determining which of these or what combination
of these two is most appropriate. As is typical in this literature, however, we do not explicitly
aim for cost minimization in this chapter. Instead, we focus on maximizing the demand that
can be satisfied, as we explain in detail in later section.

To better position our research in the context of existing research, we postpone the discus-
sion of relevant literature (in Section 4.3) until after we introduce notation and the topology
of our extended network, which we do in the next section (Section 4.2). In Section 4.4 we
introduce our model with the underlying assumptions. In Section 4.5 we analyze a special
type of network which a plant can either hold inventory or be flexible but not both. In Sec-
tion 4.6 we relax this constraint to allow a plant to be both flexible and can hold inventory.
In Section 4.7 we summarize our findings.

4.2 Network Topology and Notation

We begin by introducing a graph-based representation of the inventory and flexibility ca-
pabilities of a supply chain over time, extending traditional graph-based representations of
manufacturing network flexibility. We model a firm designing a set of (capacity-constrained)
plants that need to produce a set of products to meet demand over time. Plants can either
be dedicated to producing a single product, or can have some degree of flexibility, so that
they produce two or more products. In addition, plants may be designed to hold inventory,
so that production in earlier periods can be used meet demand in later periods.

Specifically, consider a multi-period, discrete time model of such a manufacturing network
with N plants (indexed by i), N products (indexed by j) and T periods (indexed by t). As is
typical for this literature, we assume a balanced network so that the number of plants equals
the number of products, and we assume that each plant has a primary product, so that if
plant i is dedicated then it only makes its primary product, so j = i. The manufacturing
capabilities of this network – which products can be made at which plants, which periods
they can be made, and what inventory can be carried at any time – can be represented by a
graph with NT plants nodes and NT product nodes. Let vit denote the node representing
plant i in period t, and wjs denote the node representing (demand for) product j in period
s. Although we postpone introducing assumptions and model details until Section 4.4, we
introduce the following notation now so we can present our literature in the context of our
notation: let cit be the total production capacity of plant i in period t, and let Djs be a
random variable representing the random demand for product j in period s. Also, let djs be
a particular realization of Djs and d = {djs,∀j, s} be an instance of a realized demand for
all products in all periods. Finally, let D denote the set of all possible demand realizations.

In our graph-based representation, an arc between a plant node and a product node
(vit, wjs) means plant i is capable of producing product j at time t, and this production
can be used to satisfy the demand for product j at time s. By definition, if t < s, so that
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product produced at time t is used to satisfy the demand in period s, then plant i can hold
inventory of that product. We always assume that there is an arc between (vit, wit) – a plant
i has the capability of manufacturing its primary product j = i in all periods. If there is an
arc (vit, wjt) where j 6= i, then plant i is flexible. Let A denote the set of all arcs between
plants and products, and thus A captures the inventory and flexibility configuration of the
manufacturing system.

Figure 4.1: An example with 3 plants, 3 products and 2 periods

An example with 3 plants, 3 products and 2 periods is shown in Figure 4.1. Plant 1 can
produce product 1 and can hold inventory. Plant 2 is flexible, able to produce both product
2 and 3, but plant 2 can not hold inventory. Plant 3 is neither flexible nor can hold inventory.
Observe that the graph represents the capability of the network in terms of production and
inventory – in later sections we specify models using the notation and topology described
in this section, and then characterize the performance of the network given these model
specifications.

Researchers have identified a variety of standard flexibility configurations (see Section 4.3
for a literature review), and we introduce additional inventory configurations. Note that in
all of these, we assume that the inventory and flexibility configurations are static over time.

In an open chain configuration, L1→k, plant 1 can produce product 1 and 2, plant 2 can
produce product 2 and 3 etc., up to plant k − 1, and plants k through n are not flexible.
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Using the notation defined above,

L1→k = {(vit, wit)|i = 1, . . . , N ∀t} ∪ {(vit, wi+1,t)|i = 1, . . . , k − 1,∀t}.

A closed chain configuration C is an open chain L1→N with one addition arc – plant N
can produce product N and 1. In our notation, a closed chain

C = L1→N ∪ {(vNt, w1t)| ∀t}.

In the full flexibility configuration F , each plant can produce all products, so

F = {(vit, wjt)|∀i,∀j,∀t}.

For any given set S ∈ {1, 2, ..., N}, inventory configuration IS indicates that plant i ∈ S
can hold inventory of the product i and plants not in S hold no inventory, so

IS = {(vit, wis)|i ∈ S ,∀s > t}.

In a slight abuse of notation, we will use S = l→ k to indicate plants l, l + 1, . . . , k.

We define a tuple (a, b,N, T ) to describe a general flexibility and inventory configuration
A where a and b represent the flexibility structure and inventory configuration respectively.
If a = ∅, then no plant is flexible (called the dedicated configuration). If b = ∅, then no
plant can hold inventory. N is the number of plant-product pair and T is the number of
time periods and when the context is clear we may omit N and T . Examples of flexibility
and inventory configurations are shown in Figure 4.2: (i) (F , ∅, 3, 2) (ii) (L1→3, I3, 3, 2) (iii)
(L1→2, I2→3, 3, 2) (iv) (C, ∅, 3, 2).
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Figure 4.2: Example of flexibility and inventory configurations

Indices:

i ∈ {1, 2, . . . , N} The index of plants

j ∈ {1, 2, . . . , N} The index of products

t ∈ {1, 2, . . . , T} The index of time periods

Notations:

{vit} The set of plant nodes

{wjt} The set of product nodes

c Capacity of plant

D Discrete random variable for demand

pk Probability of demand equals to k, i.e. P(D = k)

djt Demand for product j in period t in the demand instance d

d An instance of demand realization for all products in all periods. d = {djt}
D: The set of all possible demand instances

Classes of flexibility and inventory configurations:

C Closed chain (also called closed chain)

Lk Open chain from plant 1 to k

F Full flexibility

IS Inventory can be hold at plant i ∈ S.

A A general flexibility and inventory configuration

Table 4.1: Summary of notation

84



4.3 Literature Review

We first review the process flexibility literature that focuses on a single period, and for
brevity, notation related to time t and inventory I is dropped. When no inventory can be
held, full flexibility F clearly maximizes the amount of demand that can be met. However,
full flexibility is typically expensive and impractical to implement, so we are interested in
exploring so-called sparse designs. A design is sparse if each plant can produce just a few
different types of product, typically two or three, so that in sparse design A, the number
of arcs is significantly less than that of a fully flexible design, while ideally most of the
benefits of full flexibility are maintained. Among the many possible sparse flexibility designs,
Jordan and Graves (1995)[37] first noticed the power of the closed chain C. Specifically, they
assumed that the decision maker observes demand before making production decisions. Let
Φ(A, N ; d) be the maximum demand that can be satisfied using network A given observed
demand d = {dj,∀j}. Φ(A, N ; d) can be modeled easily as a maximum flow problem:

Φ(A, N ; d) = max
∑

i,j|(i,j)∈A

Xij (4.1)

s.t.
∑

i|(i,j)∈A

Xij ≤ dj ∀j (4.2)

∑
j|(i,j)∈A

Xij ≤ ci ∀i (4.3)

Xij ≥ 0 ∀i, j (4.4)

where Xij is the flow on arc (i, j). To measure the effectiveness of a network A, they use
the expected maximum flow E[Φ(A, N)] where the expectation is taken over the set of all
possible demand realizations D. For a balanced (N plants N products) and symmetric
(identical capacity c and i.i.d. demand) manufacturing system, Jordan and Graves find via
simulation that the closed chain C can achieve almost the same benefit as the full flexibility
design, i.e. E[Φ(C, N)] is close to E[Φ(F , N)]. Although they don’t not give an explicit
closed-form expression for the performance of a closed chain, they demonstrate that given a
realized demand, the probability that the performance of closed chain is worse than that of
full flexibility is small.

In the decades after the innovative work of Jordan and Graves, researchers have attempted
to fully understand the power of the closed chain. Chou et al. (2010)[16] demonstrated the
superiority of a closed chain by comparing the expected performance of a closed chain and
a fully flexible chain as system size goes to infinity:

lim
N→∞

E[Φ(C, N)]

E[Φ(F , N)]
. (4.5)

The closed chain performs worse as N increases, but in the worst case a closed chain can still
achieve 89.6% of the performance of full flexibility if the demand is a two point distribution,
taking the values 0 and 2c with equal probability. On the other hand, a closed chain performs
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better if the demand variance is small. To obtain the asymptotic average performance of
a closed chain, Chou et al. (2010)[16] first observed that a closed chain is equivalent to an
open chain if N =∞:

lim
N→∞

E[Φ(C, N)] = lim
N→∞

E[Φ(L1→N , N)] (4.6)

The performance of an open chain can be easily calculated using a greedy algorithm. The
authors modeled the flow on flexible arcs as a generalized random walk with boundaries 0
and c, and this makes it relatively straightforward to calculate limN→∞E[Φ(C, N)] for any
discrete distribution that is symmetric around the mean.

Later, Chou et al. (2011)[17] studied the worse-case performance of a closed chain. For
the balanced and symmetric case, they employed the concept of graph expander to show that
there always exists a sparse design with only O(N) arcs that is within the ε-optimality of
full flexibility for all demand scenarios if demand is bounded around its mean. Specifically,

Φ(C, N ; d) ≥ (1− ε)Φ(F , N ; d) ∀d ∈ D (4.7)

if D ≤ λE[D] almost surely. Surprisingly, for the case in which each plant can produce
more than two products, the best sparse design is no longer a chain structure. Chou also
extended the graph expander concept to a more general unbalanced and non-symmetric case
in which the number of plants and products as well as the capacity and demand distribution
may differ. They provided a heuristic and guidelines to find good sparse design for non-
symmetric cases.

Simchi-Levi and Wei (2012)[55] were able to characterize the performance of closed chain
of any size N . They utilized the concept of supermodularity to show that the flexible arcs in
closed chain are complements. The existence of a flexible arc increases the benefit of other
flexible arcs, and thus each flexible arc added in the closed chain has increasing marginal
benefit:

E[Φ(L1→2, N)]− E[Φ(∅, N)] ≤ . . . ≤ E[Φ(C, N)]− E[Φ(L1→N , N)]. (4.8)

To compute the average performance of a closed chain, Simchi-Levi and Wei first showed
that E[Φ(C, N)] can be decomposed into parts:

E[Φ(C, N)] = N(E[Φ(L1→N , N)]− E[Φ(L1→N−1, N − 1)]). (4.9)

Based on this, they developed a matrix multiplication algorithm that runs in O(nN2) to
calculate E[Φ(C, N)]. They also revealed several insights into closed chains. They showed
that the per node performance of a closed chain is non-decreasing as system size increases:

E[Φ(C, N)]

N
≤ E[Φ(C, N + 1)]

N + 1
. (4.10)
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However, the benefit decreases exponentially fast:

E[Φ(C, N + 1)]

N + 1
− E[Φ(C, N)]

N
≤ Ke−cN (4.11)

which implies that several smaller closed chains performs as well a single closed chain if N
is large. In addition, they showed the difference between the fill rate of full flexibility and
that of closed chain is non-decreasing:

E[Φ(F , N)]

N
− E[Φ(C, N)]

N
≤ E[Φ(F , N + 1)]

N + 1
− E[Φ(C, N + 1)]

N + 1
(4.12)

which means as the system size increases, a closed chain is increasingly less effective than a
fully flexible system.

Mak and Shen (2009)[43] and Deng and Shen (2012)[21] relax the assumption of a balanced
and symmetric system. Mak and Shen formulated the problem as a two-stage stochastic pro-
gram where (1)the first stage selects a flexibility configuration A and (2)the second stage
observes the demand and then assigns capacity to maximize the profit under the flexibility
configuration chosen in the first stage. Their formulation allows distinct demand distribu-
tions, and non-identical selling prices, and flexibility investment cost and production cost
are incorporated. They solved the problem heuristically using Lagrangian relaxation with
state-independent multipliers. They find that if the demand variation is very low or large,
their stochastic programming approach can find a better flexibility structure than the closed
chain. Deng and Shen focused on the analysis of the symmetric but unbalanced system (N
plants M products, M > N) with 2M edges. They converted the classical bipartite repre-
sentation to a circular representation and proposed several new flexibility design guidelines
for unbalanced system.

All of papers mentioned above contain fundamental models and results for studying pro-
cess flexibility, but are restricted to single period setting. Graves and Tomlin (2003)[31]
extended the notion of process flexibility to a multi-stage setting. In their model, each
product must be processed through all stages before satisfying the demand. They showed
that even reasonable flexibility designs can result in inefficiencies such that the multistage
supply chain performs worse than the bottleneck stage. Francas et at. (2009)[25] studied
multi-period process flexibility under non-stationary demand. The problem is formulated as
two-stage stochastic program similar to that of Mak and Shen (2009)[43]. The first stage
selects the flexibility configuration A and the second stage determines operational decisions
given the realization of demand in all periods. They found that chaining principles still
remain superior to other flexible configurations. In these two papers, flexibility in different
stages or time periods is “independent” in the sense that neither inventory nor backorder is
incorporated into the model.

As far as we are aware, only one recent paper, by Cong, Wei and Zhong (2015) [54] consid-
ers a multi-period process flexibility model while different periods are related via backorder.
In their stochastic make-to-order model, in each period the demand for that period is ob-
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served first, and then production decisions are made based on the process flexibility structure.
Unsatisfied demand is backlogged into the next period but no inventory is allowed in the
model. Their work tries to answer two questions: First, should a sparse structure be designed
(such as the closed chain in single-period model) in order to satisfy most of the demand?
Second, how should the production policy be designed so the actual production plan can
be implemented? To answer the first question, they come up with a Generalized Chaining
Condition(GCC) structure. Any structure that is GCC will perform close to full flexibility.
For the second question, they propose a maximum weight policy, which solves a weighted
maximum flow problem in each period that prioritizes the products with higher backorders.
However in their model, all products can be back-ordered by default. This means backorder
is not part of the network structure, while in our problem, inventory capability affects the
network structure, i.e. whether a plant can hold inventory or not is part of the ”strategic
decision”.

To our best knowledge, this is the first attempt to combine process flexibility modeling
with traditional inventory based supply chain modeling to develop insight into the relation-
ship between flexibility and inventory. In the next section we will officially introduce our
model with the underlying assumptions.

4.4 The Model and Assumptions

In this section, we build on the network representation in Section 4.2 to develop a model
that extends models of single period flexibility in the literature to incorporate inventory. We
first review the implicit and explicit assumptions built into our model, and then present the
performance measure we focus on for the remainder of this chapter.

The network structure introduced in Section 4.2 can capture many possible inventory,
flexibility, capacity, and demand scenarios. In that section, we introduced several restrictions
on network structure. In particular, we have already restricted the model to reflect the
following restrictions on network topology:

A1. There are an equal number of plants and products.

A2. Plant i is always capable of producing product j = i.

A3. If plant i is capable of producing product j, then plant i can produce j in any period
t.

A4. If plant i can carry the inventory of product j, then plant i can carry the inventory of
product j to any period t after the current period.

These assumptions imply that the manufacturing system is balanced, symmetric, and
time invariant. Recall from Section 4.3 that starting with Jordan and Graves (1995)[37], the
performance of a flexible network has been measured by determining expected maximum
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flow on the appropriate graph. In our setting, if we further assume that:

A5. Capacity is invariant in time and between plants, i.e. cit = c.

A6. Demand for all products in all periods Djs is observed before making production.

then to extend the formulation (4.2) defined by Jordan and Graves (1995)[37], given any
set of demand realizations d across products and the time horizon for network configuration
(A, N, T ), we can define Φ(A, N, T ; d) to be the maximum demand that can be satisfied.
Φ(A, N, T ; d) can be formulated as a maximum flow problem as shown in Figure 4.3.

Figure 4.3: Maximum flow formulation of Φ(A, N, T ; d)

Arcs (S0, vit) have capacity c, arcs (wjt, S∞) have capacity djt, and all other arcs have
infinite capacity. There is a Φ(A, N, T ; d) associated with each demand instance d ∈ D.
Therefore Φ(A, N, T ) is a random variable on a natural probability space. We define the
performance of a inventory and flexibility configuration A as the expected maximum demand
that can be satisfied over the set of all demand scenarios E [Φ(A, N, T )].

For the remainder of the chapter, we assume:

A7. Demand D is an i.i.d. discrete random variable on support {0, 1, 2, . . . , 2c} with prob-
ability p0, p1, . . . , p2c and E[D] = c.
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Given this characterization of demand, the performance of a particular inventory and flexibil-
ity configuration E[Φ(A, N, T )] can naively be evaluated by averaging the optimal objective
function value of (2c + 1)NT deterministic linear programs Φ(A, N, T ; d). Despite the fact
that there are an exponential number of demand scenarios, later, in Section 4.5 and 4.6, we
show that E[Φ(A, N, T )] can be calculated in polynomial time for certain types of configura-
tions. Ultimately, our goal is to analyze and compare E[Φ(A, N, T )] for different flexibility
and inventory configurations A.

We note that this approach implicitly incorporates the assumptions that:

A8. There is no obligation to satisfy all demand. Unsatisfied demand is lost.

A9. The effectiveness of the network can be characterized by the maximum amount of
demand that can be met. No capital, holding, penalty or production costs are explicitly
considered.

Assumptions A1–A5 describe a manufacturing system that is balanced and symmetric.
These are standard assumption in much of the flexibility literature, facilitating tractable
analysis. Assumption A6 is also a standard assumption in the literature, but for our multi-
period problem, A6 means that the decision maker has a perfect demand forecast over T
periods. In many cases (at least in the settings that motivate us), this assumption is not
as restrictive as it initially appears. First, in the biopharmaceutical industry, demand over
the relatively short term can be estimated based on a deep understanding of the patient
population. In addition, demand is often met by regional distributors, who commit to orders
several periods ahead of time. Assumptions A8 and A9 are also standard in this literature
– in the conclusion to this chapter we discuss the potential cost implications of our analysis.

In order to develop guidelines for designing flexibility and inventory configurations A,
we develop algorithms for computing and analyzing E [Φ(A, N, T )] for a variety of special
cases and settings. In Section 4.5 we study the trade-off between inventory and flexibility by
comparing the performance of a series of networks A0,A1,A2 . . ., with an increasing number
of inventory arcs but a decreasing number of flexibility arcs, under the constraint that each
plant has either flexibility or inventory capability, but not both. In Section 4.6 we relax this
constraint and allow a plant to be both flexible and carry inventory.

4.5 Plant with Either Flexibility or Inventory

In this section, we explore the performance of configurations when both flexibility and inven-
tory are present, but with a special constraint: a plant is either capable of holding inventory,
or has the capability to be flexible, but not both.

Consider a sequence of inventory and flexibility configurations A = {A0,A1,A2, . . .AN}
constructed as follows; each has N plants, N products and T periods. A starts with a closed
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chain without inventory A0 = (C, ∅, N, T ). Then, in each subsequent configuration, Ak,
the flexibility arc at the last flexible plant i = N − k + 1 is removed and an inventory arc
at that plant is added. After N configurations are constructed, a dedicated configuration
with inventory AN = (∅, I1→N , N, T ) is obtained. For a case of N = 3, T = 2, the set of
configurations A is shown in Figure 4.4:

Figure 4.4: The sequence of configurations in A

We are interested in comparing the expected maximum flow in each of the configuration in
A, to develop insight into how substituting inventory for flexibility impacts the performance
of the system. Specifically, we compare the following:

E[Φ(C, ∅, N, T )],E[Φ(L1→N , IN , N, T )],E[Φ(L1→N−1, IN−1→N , N, T )], ...,E[Φ(∅, I1→N , N, T )]

Notice that in A, whenever an inventory arc is added, a flexibility arc is removed. Thus,
our goal is to study how changing the quantity of inventory and flexibility arcs affects the
performance of a network. In a setting where a firm has a limited budget and is forced to
choose between flexibility and inventory at a particular plant, it is useful to understand the
impact of this choice on the performance of the network.

Performance of all configuration in A can be analyzed using a relatively straightforward
extension to the methodology introduced by Simchi-levi and Wei [55], but the analysis re-
quires several building blocks. In Section 4.5.1 we analyze the performance of the dedicated
configuration E[Φ(∅, I1→N , N, T ). In Section 4.5.2 we analyze the performance of a modified
dedicated configuration E[Φ̃(∅, I1→N , N, T ) which serves as an important subproblem in the
next Section 4.5.3, which we analyze the performance of an open chain with only the last
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plants can hold inventory E[Φ(L1→N , IN , N, T )]. Finally in Section 4.5.4 we show how all
of these building blocks can be used to analyze the performance of any configuration in
A. The results of a computational analysis are presented in Section 4.5.5 and other related
configurations that can be analyzed in the same way are shown in Section 4.5.6.

4.5.1 A Dedicated Configuration with Inventory

This section focuses on evaluating the performance of a dedicated configuration with inven-
tory E[Φ(∅, I1→N , N, T )]. With the assumption of i.i.d. demand, we have

E[Φ(∅, I1→N , N, T )] = N E[Φ(∅, I1, 1, T )] (4.13)

From now on we will focus on a single plant-product pair with inventory. For brevity,
we use E[Φ(I, 1, T )] to denote E[Φ(∅, I1, 1, T )]. Let Φ(I, 1, T ; d) denote the performance
given a particular demand realization d ∈ D. Finding Φ(I, 1, T ; d) is equivalent to solving
a maximum flow problem on a simpler graph as shown in Figure 4.5: one node per period
from 1 to T plus a source s0 and a sink s∞. In the figure, the number next to an arc is the
arc capacity.

Figure 4.5: Maximum flow formulation of Φ(I, 1, T )

For the network shown in Figure 4.5, let Xt represent flow on arc (s0, t), Yt represent
the flow on arc (t, s∞), and It represent the flow on arc (t, t+ 1). Then Φ(I, 1, T ; d) can be
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written as a linear program:

Φ(I, 1, T ; d) = max
T∑
t=1

Yt (4.14)

s.t. Xt ≤ c ∀t (4.15)

Yt ≤ dt ∀t (4.16)

It−1 +Xt = Yt + It ∀t (4.17)

Xt, Yt, It ≥ 0 ∀t (4.18)

Since Φ(I, 1, T ; d) has a simple structure, the optimal solution can be obtained by a
greedy algorithm in O(T ) described in the following lemma.

Lemma 4.5.1. .
The maximum flow Φ(I, 1, T ; d) can be obtained through the following procedure:
For t = 1, . . . , T , assign the production capacity at time t to satisfy the first unmet demand
from period t to T .

Proof: If we apply the procedure given in Lemma 4.5.1 to find a feasible flow from t = 1 to
T , we reach one of three cases: (1) capacity in all periods is fully utilized, or (2) demand in
all periods are satisfied, or (3) there is unused capacity in some periods and unmet demand
in some periods, but the first unused capacity occurs later than the last unmet demand.

If (1) and/or (2) apply, clearly the feasible flow is the maximum flow. If (3) applies,
W.l.o.g. suppose we have a unused capacity c′ in period t and an unmet demand d′ in period
s where s < t. If we are forced to satisfy the demand in period s, then we must borrow the
capacity in period k such that k < s because there is no unused capacity before period s,
which creates an unmet demand in period k. This can be repeated until the unmet demand
happens in period k = 1, which cannot be met by any feasible flow. Therefore we cannot
increase the flow, so the feasible flow found by applying Lemma 4.5.1 is the maximum flow.

�

The computation of E[Φ(I, 1, T )] can be done recursively based on Lemma 4.5.1. Let
Qt be the total unmet demand for Φ(I, 1, t). Clearly Qt is a random variable on support
(0, 1, 2, . . . , tc − 1, tc). Because the demand is i.i.d., we can add one more time period at
the very beginning, which leads to two cases: (1) if the demand in the first period D > c,
then by Lemma 4.5.1 X1 = c, Y1 = c, and everything from period 2 to t + 1 is isomorphic
to Φ(I, 1, t), or (2) if the demand in the first period D ≤ c, then there is unused capacity
c−D in the first period. By Lemma 4.5.1, X1 = min{c,Qt +D} and Qt+1 can be updated
as Qt+1 = (Qt +D − c)+. Therefore E[Φ(I, 1, T + 1)] can be calculated recursively as

E[Φ(I, 1, t+ 1)] = E[Φ(I, 1, t)] + E[(min{c,Qt +D})] (4.19)

93



A sketch of the algorithm follows:

Algorithm 4.5.1: Computation E[Φ(I, 1, T )]

Step 1: Initialization

q1 =

[
c∑
i=0

pi pc+1 pc+2 . . . p2c

]>
(4.20)

P1 =



c∑
i=0

pi
c−1∑
i=0

pi
c−2∑
i=0

pi · · · p0

pc+1 pc pc−1 · · · p1

pc+2 pc+1 pc · · · p2
...

...
...

...
...

p2c p2c−1 p2c−2 · · · pc
0 p2c p2c−1 · · · pc+1

0 0 p2c · · · pc+2
...

...
...

...
...

0 0 0 · · · p2c


(4.21)

Step 2: Recursive Expression

E[Φ(I, 1, t+ 1)] = E[Φ(I, 1, t)] + c e>p + p>Cq̃t (4.22)

qt+1 = Ptqt (4.23)

(4.24)

where

Qt: Total unmet demand of Φ(I, 1, T ). Qt+1 = (Qt +D − c)+

qtk: Probability of Qt = k

qt: (tc+ 1)× 1 vector represents the p.m.f of Qt

=
[
qt0 q

t
1 q

t
2 . . . qttc−1 q

t
tc

]>
q̃t =

[
qt0 q

t
1 . . . qtc−1

tc∑
i=c

qti

]>
Pt: ((t+ 1)c+ 1)× (tc+ 1) constant matrix

p: (c+ 1)× 1 constant vector

p: c× 1 constant vector

e: c× 1 constant vector

C: (c+ 1)× (c+ 1) constant matrix
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Complexity: Complexity of computing E[Φ(I, 1, T )] is O(T 2c2).

The details of Algorithm 4.5.1 and the proof of correctness can be found in Appendix
A.3.1.

4.5.2 Residual Problem

Before analyzing more complex configurations, we consider an extension of the case discussed
in the previous section: a dedicated configuration with inventory where the capacity is no
longer a constant c, but is drawn randomly from an i.i.d. distribution correlated with demand.
This configuration, which we call the residual problem Φ̃ (for reasons that will become clear
in the next section), turns out to be an important subproblem for our later analysis of the
open chain configuration with inventory. Let C̃ be the random capacity (residual capacity)
and D̃ be the random demand (residual demand), and given a realization of capacity and
demand c̃t and d̃t, let Φ̃(∅, I1, 1, T ; c̃, d̃) be

Φ̃(∅, I1, 1, T ; c̃, d̃) = max
T∑
t=1

Yt (4.25)

s.t. Xt ≤ c̃t ∀t (4.26)

Yt ≤ d̃t ∀t (4.27)

It−1 +Xt = Yt + It ∀t (4.28)

Xt, Yt, It ≥ 0 ∀t (4.29)

The joint probability mass function of capacity and demand is

P(C̃ = c, D̃ = 0) = γc

P(C̃ = c− 1, D̃ = 0) = γc−1

...

P(C̃ = 1, D̃ = 0) = γ1

P(C̃ = 0, D̃ = 0) = γ0 + δ0 − 1 = ζ0

P(C̃ = 0, D̃ = 1) = δ1

...

P(C̃ = 0, D̃ = c) = δc

with

e>γ = 1 (4.30)

e>δ = 1 (4.31)
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where γ = [ γ0 γ1 . . . γc ]> , δ = [ δ0 δ1 . . . δc ]>. Notice that C̃ and D̃ can’t be strictly pos-
itive at the same time. As in the previous section, E[Φ̃(I, 1, t)] can be computed recursively
as

E[Φ̃(I, 1, t+ 1)] = E[Φ̃(I, 1, t)] + E[(min{C̃, Qt + D̃})] (4.32)

A sketch of the algorithm follows:

Algorithm 4.5.2: Computation E[Φ̃(I, 1, T )]

Step 1: Determine γ and δ (See Algorithm 4.5.3)

Step 2: Initialization

q1 = [ δ0 δ1 δ2 . . . δc ]> (4.33)

P̃1 =



δ0

c∑
i=1

γi
c∑
i=2

γi · · · γc

δ1 ζ0 γ1 · · · γc−1

δ2 δ1 ζ0 · · · γc−2
...

...
...

...
...

δc δc−1 δc−2 · · · ζ0

0 δc δc−1 · · · δ1

0 0 δc · · · δ2
...

...
...

...
...

0 0 0 · · · δc


(4.34)

Step 3: Recursive expression

E[Φ̃(I, 1, t+ 1)] = E[Φ̃(I, 1, t)] + γ>C̃q̃t (4.35)

qt+1 = P̃
>
t qt (4.36)

(4.37)

where

Qt: Total unmet demand of Φ̃(I, 1, T ). Qt+1 = (Qt + D̃ − C̃)+

qtk: Probability of Qt = k

qt: (tc× 1) vector represents the p.m.f. of Qt

=
[
qt0 q

t
1 q

t
2 . . . qttc−1 q

t
tc

]>
q̃t =

[
qt0 q

t
1 . . . qtc−1

tc∑
i=c

qti

]>
γ = [ γ0 γ1 . . . γc ]>

δ = [ δ0 δ1 . . . δc ]>
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P̃t: ((t+ 1)c+ 1)× (tc+ 1) constant matrix

C̃: (c+ 1)× (c+ 1) constant matrix

Complexity: The complexity of computing E[Φ̃(I, 1, T )] is O(T 2c2).

The details of Algorithm 4.5.2 and the proof of correctness can be found in Appendix
A.3.2.

4.5.3 Open Chain with Inventory

In this section we analyze the performance of the open chain configuration in which only the
last non-flexible plant can hold inventory: E[Φ(L1→N , IN , N, T )]. The idea is to decompose
the computation of Φ(L1→N , IN , N, T ) in two steps: step 1 solves a problem with only open
chain flexibility which is an extension of the approach developed in Simchi-Levi and Wei
(2012)[55], and step 2 solves a residual problem which only involves inventory as in Section
4.5.2.

To be more specific, consider a single period open chain without inventory Φ(L1→N , ∅, N, 1).
Let C̃N be the unused capacity at plant N . C̃N is a random variable on support [ 0 1 2 . . . c]>

and let γN = [ γN0 γN1 . . . γNc ]> be the vector representing its probability mass function.
Similarly, let D̃N be the unmet demand for product N . Since demand D is at most 2c, D̃N

also lies on support [ 0 1 2 . . . c]>. Let δN = [ δN0 δN1 . . . δNc ]> be the vector representing
its probability mass function. Now consider the open chain configuration with inventory
Φ(L1→N , IN , N, T ), which can be viewed as T copies of single period open chain without
inventory Φ(L1→N , ∅, N, 1) plus the inventory capability at plant N . Then, we immediately
know

E[Φ(L1→N , IN , N, T )] > E[Φ(L1→N , ∅, N, T )] (4.38)

because whenever there is unused capacity C̃N > 0 in some period t and unmet demand D̃N

in some other periods s for s > t, the inventory capacity in Φ(L1→N , IN , N, T ) can satisfy
more demand by utilizing the unused capacity in period s and unmet demand in period t.
Define residual performance of a configuration (L1→N , IN , N, T ) as the difference

E[Φ̃(L1→N , IN , N, T )] = E[Φ(L1→N , IN , N, T )]− E[Φ(L1→N , ∅, N, T )] (4.39)

so residual performance is just the marginal benefit of adding the extra inventory arc. If
residual performance can be analyzed, then immediately we know E[Φ(L1→N , IN , N, T )].
Later, in the proof of Algorithm 4.5.3, we show that the residual performance is exactly equal
to Φ̃ discussed in Section 4.5.2 with γ = γN , δ = δN (see Figure 4.6 for an illustration).
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Figure 4.6: Definition of the residual performance Φ̃(L1→N , IN , N, T )

Sketch of the algorithm for computing E[Φ(L1→N , IN , N, T )] is shown below. Since
Simchi-Levi and Wei (2012) did not explicitly explain how to compute E[Φ(L1→N , ∅, N, 1)],
we show the computation of this quantity as well.

Algorithm 4.5.3: Computation of E[Φ(L1→N , IN , N, T )]

Initialization:

γ0 = [ 1 0 0 . . . 0 ]> (4.40)

Step 1: Compute the probability of unused capacity at plant N and unmet demand of product
N : γN , δN recursively as

γN = AγN−1 (4.41)

δN = BγN−1 (4.42)

where

A: (c+ 1)× (c+ 1) constant matrix
B: (c+ 1)× (c+ 1) constant matrix

Step 2: Compute the performance of open chain without inventory E[Φ(LN , ∅, N, T )] recursively
as

E[Φ(LN , ∅, N, 1)] = E[Φ(LN−1, ∅, N − 1, 1)] + E[min{c+ C̃N−1, D}] (4.43)

= E[Φ(LN−1, ∅, N − 1, 1)] + γ>N−1Kp (4.44)
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where

K: (c+ 1)× (2c+ 1) constant matrix

p = [ p0 p1 . . . p2c ]>

Step 3: Compute residual performance E[Φ̃(LN , IN , N, T )] with γ = γN , δ = δN using
Algorithm 4.5.2.

Step 4: E[Φ(L1→N , IN , N, T )] = E[Φ(L1→N , ∅, N, T )] + E[Φ̃(L1→N , IN , 1, T )]

Complexity: The complexity of computing E[Φ(L1→N , IN , N, T )] is O(Nc2 + T 2c2)

Details of Algorithm 4.5.3 and a proof of correctness can be found in Appendix A.3.3.

4.5.4 Performance of Configurations in P

Recall that the goal of this section is to compare the performance of the sequence of config-
urations A = {A0, . . . ,AN} presented at the beginning of Section 4.5:

E[Φ(C, ∅, N, T )],E[Φ(L1→N , IN , N, T )],E[Φ(L1→N−1, IN−1→N , N, T )], . . . ,E[Φ(∅, I1→N , N, T )]

Using the building blocks from Sections 4.5.1 to 4.5.3, we complete the comparison between
flexibility and inventory in this section. Under the assumption of i.i.d. demand, observe
that:

E[Φ(L1→k, Ik→N , N, T )] = E[Φ(L1→k, Ik, k, T )] + (N − k)E[Φ(∅, I1, 1, T )] (4.45)

which means E[Φ(L1→k, Ik→N , N, T )] can be decomposed into two parts: (1) (N − k) copies
of a dedicated configuration with inventory as in Section 4.5.1, and (2) the open chain
configuration with inventory at the last non-flexible plant as in Section 4.5.3. An example
for N = 3, T = 2, k = 2 is shown in Figure 4.7:
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Figure 4.7: The decomposition of E[Φ(L1→2, I2→3, 3, 2)]

The algorithm of computing E[Φ(L1→k, Ik→N , N, T )] is summarized as following:

Algorithm 4.5.4: Computation of E[Φ(L1→k, Ik→N , N, T )]

Step 1: Compute E[Φ(∅, I1, 1, T )] using Algorithm 4.5.1.

Step 2: Compute E[Φ(L1→k, Ik, k, T )] using Algorithm 4.5.3.

Step 3: Compute E[Φ(L1→k, Ik→N , N, T )] as

E[Φ(L1→k, Ik→N , N, T )] = E[Φ(L1→k, Ik, k, T )] + (N − k)E[Φ(∅, I1, 1, T )] (4.46)

Complexity: The complexity of computing E[Φ(L1→k, Ik→N , N, T )] is O(Nc2 + T 2c2)

4.5.5 Computational Analysis

In this section we numerically test our algorithm developed in previous sections to give
insight into one of the questions posed in the introduction to this chapter: If a firm wants
to build a new plant while keeping the current production network dedicated as before, should
the new plant be flexible?
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Specifically, we consider a setting with N = 4 plants and products with plant capacity
c = 5 and product demand E[D] = c = 5. We vary the planning horizon from T = 2
to T = 12. We set parameters to capture the current situation of the firm with which we
worked: few products and a 12 month forecast horizon. We consider three types of demand:
Bernoulli, Uniform, Binomial which has decreasing variability. For brevity, with fixed N and
T we replace the notation E[Φ(L1→k, Ik→N , N, T )] with E[Φ(L1→k, Ik→N)]. The detailed
results are shown in Tables 4.2 to 4.4.

Bernoulli

T E[Φ(C, ∅)] E[Φ(L1→4, I4)] E[Φ(L1→3, I3→4)] E[Φ(L1→2, I2→4)] E[Φ(∅, I1→4)]

2 30.00 28.13 26.88 25.63 25.00

3 45.00 42.66 41.41 40.16 40.00

4 60.00 57.30 56.37 55.43 56.25

5 75.00 72.02 71.40 70.77 72.50

6 90.00 86.79 86.63 86.48 89.38

7 105.00 101.59 101.91 102.22 106.25

8 120.00 116.43 117.31 118.19 123.52

9 135.00 131.29 132.73 134.18 140.78

10 150.00 146.16 148.24 150.32 158.32

11 165.00 161.05 163.77 166.48 175.86

12 180.00 175.96 179.36 182.76 193.60

Table 4.2: E[Φ(L1→k, Ik→N , N, T )] with Bernoulli demand

Uniform

T E[Φ(C, ∅)] E[Φ(L1→4, I4)] E[Φ(L1→3, I3→4)] E[Φ(L1→2, I2→4)] E[Φ(∅, I1→4)]

2 34.69 33.01 32.09 31.33 30.91

3 52.04 49.82 48.86 48.16 47.95

4 69.39 66.70 65.80 65.27 65.40

5 86.74 83.60 82.85 82.57 83.12

6 104.08 100.54 99.98 100.02 101.05

7 121.43 117.48 117.16 117.57 119.13

8 138.78 134.44 134.39 135.20 137.33

9 156.12 151.40 151.66 152.90 155.64

10 173.47 168.37 168.96 170.66 174.04

11 190.82 185.34 186.28 188.46 192.51

12 208.17 202.32 203.62 206.31 211.05

Table 4.3: E[Φ(L1→k, Ik→N , N, T )] with Uniform demand
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Binomial

T E[Φ(C, ∅)] E[Φ(L1→4, I4)] E[Φ(L1→3, I3→4)] E[Φ(L1→2, I2→4)] E[Φ(∅, I1→4)]

2 37.49 36.71 36.29 35.96 35.78

3 56.24 55.22 54.76 54.45 54.33

4 74.98 73.75 73.32 73.07 73.08

5 93.73 92.31 91.93 91.79 91.96

6 112.48 110.87 110.58 110.58 110.93

7 131.22 129.44 129.26 129.42 129.98

8 149.97 148.01 147.96 148.30 149.09

9 168.72 166.59 166.68 167.22 168.25

10 187.46 185.17 185.41 186.16 187.46

11 206.21 203.75 204.16 205.13 206.70

12 224.95 222.33 222.91 224.12 225.97

Table 4.4: E[Φ(L1→k, Ik→N , N, T )] with Binomial demand

Tables 4.2 to 4.4 answer the question raised by the firm: if the firm want to build a new
plant for a new drug while keep the current plants as dedicated before, should the new plant
has flexibility? This question is depicted in Figure 4.8 for a case of N = 3, T = 2 and plant
product 1 is treated as the new plant product pair (represented by the outlined node with
dashed arcs).

Figure 4.8: Should the new plant has inventory or flexibility?

Then the question above translates to comparing E[Φ(∅, I1→4)] and E[Φ(L1→2, I2→4)],
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and as shown in the Table 4.2-4.4 we see when T is small the new plant should be flexible,
while when T is large the new plant should feature inventory capability. This conclusion
generalizes to other configurations as well: in general, when T is small, the best configuration
features flexibility without inventory (C, ∅), while when T is large, the dedicated structure
with inventory (∅, I1→N) outperforms. The critical switching T increases as demand variation
decreases. Intermediate configurations featuring some plants with flexibility and the other
plants with inventory is never optimal.

Managerial Insight: These computational tests suggest that if the firm has a reliable
multi-period demand forecast (i.e. T is large), it should stick to a dedicated design employing
inventory rather than sacrificing inventory for flexibility. In other words, if each plant is
limited to flexibility or inventory, but not both, flexibility and inventory acts as substitutes.
The best configuration is either flexibility without inventory or inventory without flexibility
for all plants.

4.5.6 Other Related Configurations

Consider a case where the firm’s the current configuration is the closed chain without inven-
tory (C, ∅) and has reliable demand forecast. From our conclusion in previous section, under
this situation a dedicated network with inventory may have better performance so the firm
want to switch. However assume the firm only has limited budget so only a subset of plants
k < N is chosen, in which each plant adds inventory capability while removes its flexibility,
then which k plants should the firm choose? To answer this question, we consider another se-
quence of configurations A′ = {A1, . . . ,AN/2} starting with A1 = (L1→N−1, IN−1→N , N, T ),
then gradually shifting the inventory arc from plant N − 1 to plant N − 2, N − 3, . . . until
it reaches plant N/2. An example of A′ with N = 6 is shown in Figure 4.9.
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Figure 4.9: The sequence of configurations in A′

In contrast to the sequence A in the previous section which we study how changing the
quantity of inventory and flexibility arcs affects the performance, in this subsection we use
the sequence A′ to study how changing the position of inventory and flexibility arcs affects
performance. It is easy to see that each configuration in A′ can be decomposed into two parts,
both of which have been studied in previous sections. Specifically, we want to compare the
performance of

E[Φ(A1, N, T )] = E[Φ(L1→N−1, IN−1, N − 1, T )] + E[Φ(∅, I1, 1, T )]

E[Φ(A2, N, T )] = E[Φ(L1→N−2, IN−2, N − 2, T )] + E[Φ(L1→2, I2, 2, T )]

E[Φ(A3, N, T )] = E[Φ(L1→N−3, IN−3, N − 3, T )] + E[Φ(L1→3, I3, 3, T )]

· · ·
E[Φ(AN/2, N, T )] = E[Φ(L1→N/2, IN/2, N/2, T )] + E[Φ(L1→N/2, IN/2, N/2, T )]

We test the performance of the configurations in A′ using an instance with N = 12, T = 4
or T = 12. The results are summarized in Tables 4.5 and 4.6 and we see E[Φ(A1, N, T )]
always dominates.
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T = 4 Bernoulli Uniform Binomial

E[Φ(L1→11, I11, 11, 4)] + E[Φ(∅, I1, 1, 4) 176.37 205.96 225.34

E[Φ(L1→10, I10, 10, 4)] + E[Φ(L1→2, I2, 2, 4)] 174.61 204.58 224.42

E[Φ(L1→9, I9, 9, 4)] + E[Φ(L1→3, I3, 3, 4)] 174.61 203.86 223.78

E[Φ(L1→8, I8, 8, 4)] + E[Φ(L1→4, I4, 4, 4)] 174.61 203.51 223.37

E[Φ(L1→7, I7, 7, 4)] + E[Φ(L1→5, I5, 5, 4)] 174.61 203.36 223.13

E[Φ(L1→6, I6, 6, 4)] + E[Φ(L1→6, I6, 6, 4)] 174.61 203.32 223.05

Table 4.5: Comparison of configurations in A′ when T = 4

T = 12 Bernoulli Uniform Binomial

E[Φ(L1→11, I11, 11, 12)] + E[Φ(∅, I1, 1, 12) 539.36 623.60 678.29

E[Φ(L1→10, I10, 10, 12)] + E[Φ(L1→2, I2, 2, 12)] 531.92 618.82 675.42

E[Φ(L1→9, I9, 9, 12)] + E[Φ(L1→3, I3, 3, 12)] 531.92 616.09 673.26

E[Φ(L1→8, I8, 8, 12)] + E[Φ(L1→4, I4, 4, 12)] 531.92 614.77 671.86

E[Φ(L1→7, I7, 7, 12)] + E[Φ(L1→5, I5, 5, 12)] 531.92 614.20 671.06

E[Φ(L1→6, I6, 6, 12)] + E[Φ(L1→6, I6, 6, 12)] 531.92 614.04 670.80

Table 4.6: Comparison of configurations in A′ when T = 12

Managerial Insight: This implies if there is a budget constraint so that the firm can
only choose a subset of plants to replace flexibility with inventory capability, these plants
should be adjacent to each other so that the network can maintain a longer chain for the
flexibility part.

4.6 Plant with both Flexibility and Inventory

In previous sections, we consider a setting where each plant can have either inventory ca-
pability or flexible capacity, but not the both. Here, we study the performance of a more
general configuration: a closed chain with inventory when a plant can be both flexible and
hold inventory, i.e. E[Φ(C, IS, N, T )]. For brevity, we assume that flexible plant i can only
hold inventory for its primary product i, and we call this dedicated inventory capability.
Our analysis only requires minor modification to capture the more general flexible inventory
case.

To begin with, we consider a sequence of configurations B = {B0,B1, . . . ,BN}, with the
initial configuration B0 features a closed chain configuration without inventory capability
(C, ∅, N, T ). Subsequent configurations the inventory to plant 1, then plant 2, then plant 3
and so on until plant N are added. For the case where N = 3, T = 2, the set of configurations
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in B is shown in Figure 4.10. Our goal is compare the performance of

E[Φ(C, ∅, N, T )],E[Φ(C, I1, N, T )],E[Φ(C, I1→2, N, T )], . . . ,E[Φ(C, I1→N , N, T )]

Figure 4.10: The sequence of configurations in B

In contrast to the sequence of configurations in Section 4.5, in this section whenever
an inventory arc is added, the corresponding flexibility arc is not removed. This scenario
is in particular useful for a firm that currently has a flexibility dense network and want
to alter existing plants by adding inventory capabilities. Analyzing configurations in B
enables us to study the marginal benefit of adding inventory arcs. Unfortunately when a
plant can have both inventory and flexibility, the analysis seems to be significantly more
challenging. In Section 4.6.1 we focus on a special case when demand is i.i.d. Bernoulli
distributed with planning horizon T = 2, and we derive close form expression for computing
E[Φ(Ak, N, T = 2)]. In Section 4.6.2 we show indirect evidence that there may not have a
polynomial time algorithm for computing E[Φ(Ak, N, T )] for general demand or T > 2. In
Section 4.6.3 we turn to simulation based analysis for the general case.

4.6.1 A Special Case

In this section, we focus on the analysis of configurations in B under a special case: demand
for all products are i.i.d. Bernoulli between 0 and 2c and planning horizon T = 2. W.l.o.g.
assume c = 1. As in Section 4.5, we first define the residual performance of a configuration
as

E[Φ̃(C, I1→k, N, 2)] = E[Φ(C, I1→k, N, 2)]− E[Φ(C, ∅, N, 2)]

which is the marginal benefit of allowing plant 1 through k to hold inventory compared
to a closed chain without inventory. Next we show there is closed form expression for
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E[Φ̃(C, I1→k, N, 2)] under the special case:

Closed form expression for E[Φ̃(C, I1→k, N, 2)]

Assume demand for all products are i.i.d. Bernoulli (0 w.p. 1
2 , 2 w.p.

1
2). Assume N ≥ 3.

For k = 1, 2, . . . , N − 2,

E[Φ̃(C, I1→k, N, 2)] = − 1

72

(
1

4

)k
+

1

12
k +

1

72
(4.47)

For k = N − 1,

E[Φ̃(C, I1→N−1, N, 2)] = E[Φ̃(C, I1→N−1, N + 1, 2)]−
(

1

2

)2N+1

(4.48)
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For k = N ,

E[Φ̃(C, I1→N , N, 2)] = −N
3

(
1

4

)N
+

1

12
N (4.50)

The detailed derivation of this result can be found in the Appendix A.3.4. Here, we
sketch the derivation. Notice the residual performance E[Φ̃(Ak, N, 2)] is closely related to
the residual capacity in the first period and residual demand in the second period. To analyze
the residual capacity we first introduce some simplified notations. Let C̃i denote the residual
capacity of plant i in the first period when there is no inventory arcs, and let

PN


C̃1 = b1

C̃2 = b2
...

C̃k = bk

 (4.51)

denote the joint probability of C̃i = bi for all i from 1 to k given there are N plants in total.
Since demand is Bernoulli, clearly bi can only take on value 0 or 1 (b stands for binary). The
Bernoulli demand ensures that given an instance of demand (d11, . . . , dN1) in the first period,
there is a unique residual capacity vector (b1, . . . , bk). This means the probability measure
PN is well defined: PN is just the sum of the probabilities of all demand scenarios that yield
the residual capacity (b1, . . . , bk). Here PN says nothing about the inventory capability of
plant 1 to k. Plant i may or may not be able to hold inventory. An example illustrating
the concept of residual capacity given an instance of demand in the first period is shown in
Figure 4.11.
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Figure 4.11: Residual capacity given an instance of demand in the first period

In comparison the residual demand given an instance of demand in the second period is not
unique. For example, suppose the demand in the second period is (d12 = 0, d22 = 2, d32 = 2),
then the residual demand can be either (0, 1, 0) or (0, 0, 1), depending on the residual capacity
in the first period and the inventory capability of each plant. An illustration of this non-
uniqueness is shown in the Figure 4.12. Thus, in contrast to the case discussed in Section
4.5, analyzing the distribution of residual demand in the second period independently and
pairing it with the residual capacity in the first period does not help.
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Figure 4.12: Residual demand given an instance of demand in the second period

To address this issue, we define conditional residual performance π

πN


C̃1 = b1

C̃2 = b2
...

C̃k = bk

 (4.52)

as the residual performance on (C, I1→k, N, 2) given that the residual capacity in the first
period is (b1, . . . , bk), i.e. E[Φ̃(C, I1→k, N, 2) | (C̃1, . . . , C̃k) = (b1, . . . , bk)]. This conditional
residual performance can be treated as the difference between two closed chain networks C ′
and C :

πN


C̃1 = b1

C̃2 = b2
...

C̃k = bk

 = E[Φ(C ′, ∅, N, 2)]− E[Φ(C, ∅, N, 2)]

where C is the regular single-period closed chain of size N , and C ′ is a single-period modified
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closed chain where each plant has capacity ci defined as

ci =

{
1 + bi i = 1, . . . , k

1 i = k + 1, . . . , N
(4.53)

In other words, the capacity of plants in the modified closed chain C ′ is

• 1 + bi for plants 1 to k which have inventory capability

• 1 as before for plants k + 1 to N which do not have inventory capability

An illustration of C ′ with N = 6, k = 3 is shown in Figure 4.13.

Figure 4.13: Illustration of E[Φ̃(C, I1→3, 6, 2) | (C̃1, . . . , C̃3) = (b1, . . . , b3)]

The intuition behind the definition of C ′ is simple. The benefit of inventory shows up
only in the second period and it is equivalent to having additional capacity bi at plants with
inventory capability. If we could analyze the probability distribution bi and the performance
of the closed chain given additional capacity we could analyze the residual performance we
originally interested in E[Φ̃(C, I1→k, N, 2)].
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Given P and π, the unconditional residual performance of a network E[Φ̃(C, I1→k, N, 2)]
can be expressed as the sum of 2k terms:

E[Φ̃(C, I1→k, N, 2)] =
∑
b1

· · ·
∑
bk

PN


C̃1 = b1

C̃2 = b2
...

C̃k = bk

 πN


C̃1 = b1

C̃2 = b2
...

C̃k = bk


Despite the fact that there are an exponential number of terms in the expression, it turns

out that E[Φ̃(C, I1→k, N, 2)] follows a recurrence relation, and so only a polynomial number
of P and π need to be evaluated and a closed form expression can be obtained.

Now goes back to the closed form expression for the residual performance 4.6.1. Define av-
erage residual performance as the residual performance per inventory arc 1

k
E[Φ̃(C, I1→k, N, 2)].

Given a fixed N , we can see the average residual performance decreases as the number of
inventory arcs k increase, especially for the last two inventory arcs k = N − 1 and k = N .
The intuition is that the benefit of adding an inventory arc for plant i comes from occasion-
ally high demand for product i and i+ 1 in the second period, so the benefit of two adjacent
inventory arcs overlaps with each other. This phenomenon holds not only for this special
case, but also can be generalized to other cases where T > 2 and demand is not Bernoulli,
as shown in the following lemma:

Lemma 4.6.1. Adding inventory arcs in closed chain with inventory (C, I1→k, N, T ) has
diminishing marginal benefit, i.e.

E[(C, I1→k+1, N, T )]− E[(C, I1→k, N, T )] ≤ E[(C, I1→k, N, T )]− E[(C, I1→k−1, N, T )]

for k = 2, . . . , N − 1

Proof: Using similar argument as in Simchi-Levi and Wei (2012)[55], it can be easily checked
that any pair of inventory arcs are in parallel as defined in Gale and Politof (1981)[26],
therefore two inventory arcs are substitutes thus have diminishing benefit.

�

Managerial Insight: This suggests that it is unnecessary to incorporate inventory ca-
pability at every plant if the current network is already a closed chain. When only a few
inventory arcs are added, the guideline is discussed in Section 4.6.4.

On the other hand, given fixed number of inventory arcs k, the average residual perfor-
mance is exactly the same for all N if N ≥ k + 2. In other words, the benefit of adding
inventory arcs is independent of the network size. However this fact is only true for Bernoulli
demand.
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4.6.2 The General Case

The approach we used to derive E[Φ̃(C, I1→k, N, 2)] for the special case relies on two major
assumptions: i.i.d. Bernoulli demand and planning horizon T = 2. When the planning
horizon T > 2 or demand is more general than Bernoulli, the expected maximum flow is
much more difficult to calculate. The following two examples that illustrate the difficulty:

Example 1: T = 2 but demand is general
When demand is general, the probability that the residual capacity equals b defined in the
previous subsection P(C̃ = b) also depends on the demand in the second period. To see
this, assume c = 1, N = 3 and demand is discrete uniformly distributed between 0,1 and
2. Let demand in the first period be (d11 = 0, d21 = 1, d31 = 0), then the residual capacity
vector b can be either (1, 0, 1) or (0, 1, 1). Which of these is the actual residual capacity in
the optimal solution depends on the demand realization in the second period. This precludes
the possibility of extending the methodology in the previous section to this case.

Example 2: Demand is Bernoulli but T > 2
When planning horizon T > 2, consider an example with T = 3 shown in Figure 4.14.
Demand is shown adjacent to product nodes wij. An optimal flow is shown with solid arcs
(with flow 1) and dashed arcs (with flow 0). Observe that without inventory arcs, the flow
on the closed chain in period 2 is not optimal for the closed chain. It is easy to verify that
this remains true for other optimal flows, which means analyzing the residual capacity and
demand without inventory arcs may provide little insight.

Figure 4.14: An example of T > 2
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Our problem is closely related to the network reliability problem in the literature given
a capacitated network subjected to random arc failure (equivalent to Bernoulli demand in
our problem). There are two possible measures of the reliability of a network from source s
to sink t: #1 expected maximum flow from s to t (the same as our performance measure)
, or #2 the probability that s and t are connected. It is easy to see that measure #2 is a
special case of the measure #1. Ball (1986)[6] showed that #2 on a general graph is NP-hard
by showing the relationship between #2 and counting the number of minimum cardinality
cutset, which is a known NP-hard problem (see Valiant (1979)[62]). Carey and Hendrickson
(1984)[13] provide lower and upper bound on the measure #1 and Nagamochi and Ibaraki
(1991)[44] shows the necessary and sufficient condition on when the lower bound is tight.
Roughly speaking, the lower bound of #1 is the maximum expected flow which means no
re-routing the flow is allowed and flows on path with failed arcs are lost. The upper bound
of #1 is maximum flow on expected network which the capacity of all arcs are replaced with
its mean. It can be easily checked both bounds are not tight in our problem (even in simpler
open chain or closed chain without inventory). There are efficient algorithms to compute
#1 and #2 on graphs with special structure such as bipartite or series-parallel graph (see
Carey and Hendrickson (1984)[13], Satyanarayana and Wood (1985)[51]) but our problem
lies in neither of the categories. In addition, measure #2 remains NP-hard on planar graph
and directed acyclic graph (Provan and Ball (1983)[47]).

We conjecture that the computation of expected maximum flow E[Φ] when either T > 2
or demand in general is NP-hard. When the computation of E[Φ] can be done in polyno-
mial time, the topology of the graph, capacity and demand process must preserve strong
symmetry. To summarize, E[Φ] can be computed in polynomial time when

• the network topology is a closed chain without inventory (C, ∅, N, T ), the polynomial
time computation of E[Φ] requires (1) equal number of plants and products; (2) Iden-
tical capacity; (3) Exchangeable demand. (see Simchi-Levi and Wei (2012)[55]).

• the network topology is an open chain with inventory (L1→N , IN , N, T ), the polyno-
mial time computation of E[Φ] requires (1) equal number of plants and products; (2)
Identical capacity; (3) i.i.d. demand. (see Section 4.5).

• the network topology is closed chain with inventory (C, I1→k, N, T ), the polynomial
time computation of E[Φ] requires (1) equal number of plants and products; (2) Iden-
tical capacity; (3) i.i.d. Bernoulli demand; (4) T = 2 (see Section 4.6).

Observe that assumptions become more restrictive as the symmetry of the network de-
creases. Whether or not E[Φ] can be computed in polynomial time when any of these three
conditions are violated remains an open question. However, since Φ(·; d) is the maximum
flow of a graph given arc capacity vector d, which has the Lipschitz property in term of d, i.e.
a small change in d results in a small change in the maximum flow. This suggests that Monte
Carlo simulation may perform well to estimate E[Φ] because Φ is concentrated around its
mean (by McDiarmid’s inequality). Therefore, we turn to simulation-based analysis for the
general case. See Alexopoulos and Fishman (1991)[1] for a discussion of using Monte Carlo
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simulation to compute network reliability.

4.6.3 Computational Analysis

In this section, we numerically analyze the performance of a closed chain with inventory
configuration. For the special case mentioned in Section 4.6.1 we’ll use the derived closed
form solution. For general cases we estimate the performance via Monte Carlo simulation.
To do this, we generate large number of instances which in each instance the demand djt
is sampled from a demand distribution. Next we solve each instance as a maximum flow
problem. Then, the performance of a network E[Φ(A)] can be estimated using the average
optimal objective value of all instances.

For the first set of tests, we fix the planning horizon T = 2 and study the effect of changing
the number of inventory arcs for various N with three demand distributions: Bernoulli,
Discrete Uniform and Binomial. The average residual performance 1

k
E[Φ̃(C, I1→k, N, 2)] is

shown in the Table 4.7.
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Bernoulli

k N = 4 N = 5 N = 6 N = 7 N = 8

1 0.4688 0.4688 0.4688 0.4688 0.4688

2 0.4492 0.4492 0.4492 0.4492 0.4492

3 0.4362 0.4395 0.4395 0.4395 0.4395

4 0.4102 0.4333 0.4340 0.4340 0.4340

5 0.4150 0.4304 0.4305 0.4305

6 0.4163 0.4282 0.4282

7 0.4166 0.4266

8 0.4166

Uniform

k N = 4 N = 5 N = 6 N = 7 N = 8

1 0.3515 0.6528 0.1433 0.2705 0.5155

2 0.3289 0.4381 0.4494 0.4137 0.2889

3 0.2574 0.2798 0.3681 0.4251 0.2802

4 0.2280 0.2636 0.2532 0.2834 0.2655

5 0.1859 0.2242 0.2845 0.2309

6 0.2827 0.2537 0.2697

7 0.1423 0.2321

8 0.2096

Binomial

k N = 4 N = 5 N = 6 N = 7 N = 8

1 0.5015 0.2777 0.4403 0.3536 0.4585

2 0.1841 0.1730 0.1528 0.2407 0.2414

3 0.0824 0.1226 0.1778 0.1461 0.1582

4 0.1066 0.1319 0.1444 0.1010 0.1331

5 0.1299 0.0786 0.0856 0.1055

6 0.0532 0.0795 0.0958

7 0.0742 0.0724

8 0.0562

Table 4.7: Average residual performance 1
k
E[Φ̃(C, I1→k, N, 2)]

As we see in Table 4.7, given a fixed N the benefit of adding inventory capability decreases
as the number of inventory arcs k increases, which confirms Lemma 4.6.1. In addition, the
benefit further decreases as the demand variation decreases.

Managerial Insight: This suggests that if demand variation is small, a closed chain
without inventory itself can already satisfy most of the demand, so unless the capital invest-
ment of inventory capability is inexpensive there is no need to incorporate inventory.

For the second set of tests we fix the number of plants product pairs N = 4 and
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vary the planning horizon from T = 2 to T = 6. The average residual performance
1

k(T−1)
E[Φ̃(C, I1→k, N, 2)] is shown in Table 4.8

Bernoulli

k T = 2 T = 3 T = 4 T = 5 T = 6

1 0.4688 0.6372 0.6753 0.5208 0.8076

2 0.4492 0.6146 0.6289 0.6622 0.7203

3 0.4362 0.4740 0.6539 0.6668 0.7495

4 0.4102 0.5586 0.5790 0.5979 0.6560

Uniform

k T = 2 T = 3 T = 4 T = 5 T = 6

1 0.3515 0.6532 0.7527 0.7197 0.7704

2 0.3289 0.4118 0.4576 0.4810 0.4917

3 0.2574 0.2876 0.3816 0.3938 0.4212

4 0.2280 0.2651 0.2632 0.2991 0.3233

Binomial

k T = 2 T = 3 T = 4 T = 5 T = 6

1 0.5015 0.4485 0.5053 0.4878 0.5834

2 0.1841 0.2223 0.2513 0.2779 0.2885

3 0.0824 0.1694 0.1698 0.1862 0.2102

4 0.1066 0.1126 0.1257 0.1381 0.1475

Table 4.8: Average residual performance 1
k(T−1)

E[Φ̃(C, I1→k, N, 2)]

As in Section 4.5, from Table 4.8 the average residual performance on inventory arcs
increases as the planning horizon T increases.

Managerial Insight: Inventory capability is most useful when there is a reliable, long
horizon forecast.

4.6.4 Other Related Configurations

In previous subsections, for configurations in B we gradually add inventory arcs to a closed
chain to analyze the marginal benefit of inventory capability. In other words, we study
how changing the quantity of inventory arcs affects the performance. Similar to Section
4.5.6, we can also fix the number inventory arcs and study how changing the position of
inventory arcs influences the performance. Consider another sequence of configurations B′ =
{B1,B2, . . . ,BN/2}, each configuration has 2 inventory arcs. In the initial configuration A1 =
(C, I1,2), which plant 1 and 2 are able to hold inventory, and in subsequent configurations, the
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inventory arc at the second plant is moved to the next plant in each step, so Bk = (C, I1,k+1)
until k + 1 ≥ N/2. An example of B′ with N = 6 is shown in Figure 4.15.

Figure 4.15: The sequence of configurations in B′

Our approach that derives the closed form solution for the special case in Section 4.6.1
still applies to B′ if demand is Bernoulli and planning horizon T = 2. For general cases we
again use Monte Carlo simulation to estimate the performance. It turns out the residual
performance follows the relation

E[Φ̃(C, I{1,2}, N, 2)] < E[Φ̃(C, I{1,3}, N, 2)] ≤ · · · ≤ E[Φ̃(C, I{1,N/2}, N, 2)] (4.54)

where the equality holds for the special case. In other words, the marginal benefit of inventory
arcs increases if we spread them further apart. This is intuitive as we discussed at the end of
Section 4.6.1: the benefit of an inventory arc may overlap with another inventory arc so by
spreading out inventory arcs the overlap is minimized. This again confirms the conclusion
in Lemma 4.6.1 that inventory capability on a closed chain network are substitutes.

Managerial Insight: If a firm currently has a flexible network without inventory and
wants to add inventory capability for some plants while keeping flexibility, then these inventory-
capable plants should be spread as far as possible to maximize the benefit.
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4.7 Conclusion

Motivated by a biopharmaceutical firm whose managers wanted to incorporate process flex-
ibility into their dedicated supply chain network, we have extended the flexibility literature
to model inventory capability at individual plants in the network. Following the standard
approach in the flexibility literature, we defined the performance of a network to be the ex-
pected maximum demand that can be satisfied and compare this performance among various
types of networks.

We have developed the following managerial guidelines to help with effective network
design in this setting:

• Inventory capability is most useful when there is a reliable demand forecast. In other
situations, flexibility is more valuable.

• If a firm currently has a dedicated network with inventory, the length of its reliable
forecast horizon dictates whether or not is worth sacrificing some inventory capability
for flexibility in this network.

• If a firm currently has a flexible network with a chain configuration but without inven-
tory, and wants to replace flexibility with inventory capability for some plants, then
these converted plants should be adjacent to each other in the chain configuration so
that the network can maintain a longer chain.

• If a firm currently has a flexible network with a closed chain configuration but without
inventory, and wants to add inventory capability to some plants while maintaining the
flexibility configuration, then these plants should be separated as much as possible in
the chain.

• For a firm that has a flexible network, adding inventory capability to a few plants
can capture most of the benefit of supply chain inventory, because adding inventory
capability to additional plants in a closed chain configuration has diminishing marginal
benefit.

Although we followed the standard approach in the flexibility literature and thus did
not incorporate cost directly into our model, we believe the conclusions and insights in this
work can help guide firms as the make strategic decisions related to flexibility and inventory
capability, as our performance measure can be easily translated (at least approximately) to
revenue gain.
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Chapter 5

Closing Remarks

Motivated by the many supply chain management challenges faced by biopharmaceutical
firms with which we worked, in this thesis we presented three inventory models that can
help these firms make various crucial decisions.

In the first model, we studied inventory planning with batch differentiation. We char-
acterized the performance of deterministic control and its extensions, approaches that are
widely applied in industry already for managing batch production and differentiation. We
showed that the regret of such control can be reduced to O(T ) via re-optimization in each
period. We also explored the trade-off between (1) more accurate demand information and
(2) more decision dynamics. We found that decision dynamics plays a more important role in
reducing the regret. However the benefit of using full decision dynamics comes at the expense
of larger computational burden. A natural way to mitigate this is to implement a roll-out
algorithm with limited look ahead (see Bertesakes (2013)[8], Goodson et al. (2015)[30]). For
example, we can solve a single deterministic control from period 2 to T to quickly estimate
the cost of meeting future demand and then solve a single period dynamic program for the
current period to capture the decision dynamics. We are not aware of previous results in
the literature that focus on the theoretical performance of this type of algorithm, and this
is one direction for future research.

In the second model, we addressed the issue of highly variable lead time faced firms that
outsource their final production step to a third party contractor. We showed that a capacity
reservation contract can not only reduce the inventory cost of the firm, but also increase the
total profit of the entire system. We envision three possible tracks for future research on
this topic if some assumptions in the analysis are relaxed: (1) Extend the study to a discrete
time model. Under a discrete-time model, we need to compare the capacity reservation
policy to an (s, S) policy with random lead time (see Kapalan (1970)[39], Sahin (1983)[50],
Bashyam and Fu (1998)[7] for a discussion of the (s, S) policy with random lead time). Our
preliminary simulation analysis leads to similar observations to those we have made for the
continuous time model; (2) Allow the outsourcer to serve a mixture of type (i) and (ii)
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manufacturers. When both types of manufacturer are present, the outsourcer may manage a
priority queue where the type (i) manufacturers are of low priority and join the queue based
on a FIFO service discipline, while type (ii) manufacturers who have reserved capacity are
of high priority and preempt any ongoing processing of type (i) manufacturer orders. The
theoretical analysis of such a priority queue seems to be difficult. Our preliminary simulation
analysis reveals that the mixture of type (i) and type (ii) may be worse than all type (i)
manufacturers or all type (ii) manufacturers, depending on the traffic density of the system;
(3) Allow the outsourcer to use other more sophisticated control schemes, such as a polling
model (see Takagi (1986, 2000)[59, 60], Levy and Sidi (1990)[41], Boon et al. (2011)[9]) or a
multi-class priority queue (see Maglaras (2006)[42]). The analysis of both type (i) and (ii)
policies at the manufacturer is likely to be challenging in such settings.

In the third model, we explored a firm’s strategic decisions around building new plants
and adding process flexibility to existing plants. We defined the performance of a plant-
product network as the expected maximum demand that can be satisfied, and proposed
algorithms to evaluate the performance for some specific network structures. There are two
ways that this model can be further extended to reveal more insight: (1) Incorporate cost
into the model. This will change the underlying maximum flow problem to minimum cost
network flow problem. The performance on a general network is expected to be difficult to
obtain, but results for some particular networks may be a plausible direction. (2) Restrict the
firm to make production plans before observing the demand. This will completely change
the nature of the problem to a stochastic dynamic setting as in the batch differentiation
problem in Chapter 2. The production policy is likely to be difficult to characterize (see
Shaoxiang (2004)[53], Janakiraman et al. (2009)[33] for similar settings), and the nature of
effective supply chain network design guidelines is an interesting open problem.

This thesis addresses several key challenges faced by biopharmaceutical firms, but it by
no means comprehensively covers all the challenges in the industry. For example Yuen
(2012)[65] focuses on the capacity planning problem, and Bu (2015)[10] studies production
inventory control under uncertain yield – both of which are problems we outlined in Chapter
1. There are many remaining challenges in the industry that could benefit from the attention
of academia.

120



Chapter 6

Bibliography

[1] C. Alexopoulos and G. S. Fishman. Characterizing stochastic flow networks using the
monte carlo method. Networks, 21(7):775–798, 1991.
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Appendix A

Proofs and Analysis

A.1 Proofs of Results Appearing in Chapter 2

A.1.1 Proof of Theorem 2.4.1

For any feasible policy π ∈ Π, define a sequence {W π
t,i} where W π

t+1,i = W π
t,i + Nπ

t,i − µi for

t ≥ 1 and W π
1 = Iπ1 = I1. Observe that W π

t,i = I1,i +
∑t−1

s=1N
π
s,i −

∑t−1
s=1 µi for t ≥ 2. Since

Iπt,i = I1,i +
∑t−1

s=1N
π
s,i −

∑t−1
s=1Ds,i, we can write: Iπt,i = W π

t,i −
∑t−1

s=1 ∆s,i, where ∆s,i = Ds,i − µi.
We now proceed to prove Theorem 1 in three steps: in Step 1, we compute an upper bound for
CD − C∗; in Step 2, we compute an upper bound for E[CDC ] − CD; and, in Step 3, we put
together the bounds from Steps 1 and 2 to get a bound for E[CDC ]−C∗ (note that E[CDC ]−C∗ =
E[CDC ]− CD + CD − C∗).

Step 1

We first compute an upper bound for CD − C∗. We claim that:

C∗ ≥ CD −E

 T∑
t=1

m∑
i=1

(pi + hi)

(
t∑

s=1

∆s,i

)+
 (A.1)
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This is not difficult to show. For any policy π ∈ Π, we can bound:

T∑
t=1

[
cZπt B +

m∑
i=1

pi(Dt,i −Nπ
t,i − Iπt,i)+ +

m∑
i=1

hi(N
π
t,i + Iπt,i −Dt,i)

+

]

=

T∑
t=1

[
cZπt B +

m∑
i=1

(pi + hi)(I
π
t,i +Nπ

t,i −Dt,i)
+ −

m∑
i=1

pi(I
π
t,i +Nπ

t,i −Dt,i)

]

=
T∑
t=1

[
cZπt B +

m∑
i=1

(pi + hi)(I
π
t+1,i)

+ −
m∑
i=1

piI
π
t+1,i

]

≥
T∑
t=1

[
cZπt B +

m∑
i=1

(pi + hi)(W
π
t+1,i)

+ −
m∑
i=1

piW
π
t+1,i

]

−
T∑
t=1

m∑
i=1

(pi + hi)

(
t∑

s=1

∆s,i

)+

+
T∑
t=1

m∑
i=1

t∑
s=1

pi∆s,i

≥ CD −
T∑
t=1

m∑
i=1

(pi + hi)

(
t∑

s=1

∆s,i

)+

+

T∑
t=1

m∑
i=1

t∑
s=1

pi∆s,i (A.2)

where the first inequality holds because the identity Iπt,i = W π
t,i −

∑t−1
s=1 ∆s,i implies (Iπt,i)

+ ≥
(W π

t,i)
+ − (

∑t−1
s=1 ∆s,i)

+ and the second inequality follows by the definition of CD. Taking expec-
tation on both sides of (A.2) and minimizing the sum in the left side of the inequality over π ∈ Π
yields (A.1).

Step 2

We now compute an upper bound for E[CDC ]− CD. We claim that:

E[CDC ]− CD ≤ E

 T∑
t=1

m∑
i=1

(pi + hi)

(
−

t∑
s=1

∆s,i

)+
 (A.3)

This can be shown using similar arguments as in Step 1. Define two sequences {It,i} and {xt,i}
as follows: It+1,i = It,i +nDt,i−Dt,i and xt+1,i = xt,i +nDt,i−µi for t ≥ 1, where x1 = I1. (Note that
It,i is simply the starting inventory for retailer i at the beginning of period t under DC control.)
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Since It,i = xt,i −
∑t−1

s=1 ∆s,i for t ≥ 2, we can bound:

E[CDC ] =
T∑
t=1

E

[
c zDt B +

m∑
i=1

hi(It+1,i)
+ +

m∑
i=1

pi(−It+1,i)
+

]

=
T∑
t=1

E

[
c zDt B +

m∑
i=1

(pi + hi)(It+1,i)
+ −

m∑
i=1

piIt+1,i

]

≤
T∑
t=1

E

[
c zDt B +

m∑
i=1

(pi + hi)(xt+1,i)
+ −

m∑
i=1

pixt+1,i

]

+ E

 T∑
t=1

m∑
i=1

(pi + hi)

(
−

t∑
s=1

∆s,i

)+
+ E

[
T∑
t=1

m∑
i=1

t∑
s=1

pi∆s,i

]

= CD + E

 T∑
t=1

m∑
i=1

(pi + hi)

(
−

t∑
s=1

∆s,i

)+


The inequality follows because It,i = xt,i−
∑t−1

s=1 ∆s,i implies (It,i)
+ ≤ (xt,i)

+ + (−
∑t−1

s=1 ∆s,i)
+.

Step 3

Putting the bounds from Steps 1 and 2 together, we conclude that

E[CDC ]− C∗ = E[CDC ]− CD + CD − C∗

≤ E

 T∑
t=1

m∑
i=1

(pi + hi)

(
−

t∑
s=1

∆s,i

)+
 + E

 T∑
t=1

m∑
i=1

(pi + hi)

(
t∑

s=1

∆s,i

)+


≤ 2
T∑
t=1

m∑
i=1

(pi + hi) E

( t∑
s=1

∆s,i

)2
1/2

= 2
T∑
t=1

m∑
i=1

(pi + hi)σi
√
t

≤ 2 (T + 1)3/2

[
m∑
i=1

(pi + hi)σi

]

where the second equality follows from E[∆2
t,i] = σ2

i for all t ≥ 1 (since demands on different periods
are independent, E[∆t,i∆s,i] = 0 for all s 6= t and i) and the last inequality follows from integral

comparison
∑T

t=1

√
t ≤

∫ T+1
1

√
x · dx ≤ (T + 1)3/2.

�
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A.1.2 Proof of Corollary 2.4.2

The key is to note that each fulfilled demand incurs at least an ordering cost and each unfulfilled
demand incurs at least a penalty cost; so, we can roughly bound C∗ from below as follows: C∗ ≥
E[
∑T

t=1

∑m
i=1 min{c, pi} Dt,i] = T

∑m
i=1 min{c, pi}µi. Putting this together with the bound in

Theorem 1 and the fact that σi =
√
µ∗ for all i (because demand is Poisson), we get:

E[CDC ]− C∗

C∗
≤

2(T + 1)3/2 [
∑m

i=1(pi + hi)]
√
µ∗

T [
∑m

i=1 min{c, pi}]µ∗
= O

((
T

µ∗

)1/2
)

�

A.1.3 Proof of Theorem 2.5.1

The proof proceeds in two steps. The first step shows the general structure of the allocation policy:
raise the inventory for a subset of retailers to the same level and allocate nothing to the rest of
them. The second step shows the retailers we raise to the same level are the retailers with lowest
inventory.

Step 1

Since the ordering cost czDt B is just a constant, we’ll ignore the ordering cost in Jt(It). Let g(y) =
ED [(h∗(y −D)+ + p∗(y −D)−)] be the single retailer inventory cost function so G(It + Nt) =∑m

i=1 g(It,i + Nt,i). Notice the objective function in Bellman’s equation (15) can be separated by
retailers as G(It +Nt) + E[Jt+1(It +Nt−Dt)] =

∑m
i=1 γt(It,i +Nt,i). This can be seen using simple

induction since JT+1 = 0 and JT =
∑m

i=1 g(IT,i +NT,i) so γT (IT,i +NT,i) = g(IT,i +NT,i). Since

Jt(It) = min
Nt,i∈Ωt

m∑
i=1

g(It,i +Nt,i) + ED

[
min

Nt+1,i∈Ωt+1

m∑
i=1

γt+1(It,i +Nt,i −Dt,i +Nt+1,i)

]

= min
Nt,i∈Ωt

m∑
i=1

g(It,i +Nt,i) +

m∑
i=1

ED

[
γt+1(It,i +Nt,i −Dt,i +Nπ∗

t+1,i)
]

where Nπ∗
t+1,i is the optimal allocation in period t+1 which is a function of Dt, then γt(It,i+Nt,i) =

g(It,i + Nt,i) + ED

[
γt+1(It,i +Nt,i −Dt,i +Nπ∗

t+1,i)
]
. Notice γt is independent of index i since all

retailers are homogeneous and demand is i.i.d. by assumption. In a word,
∑m

i=1 γt(It,i+Nt,i) is the
cost if the allocation decision in period t is {Nt,i} and the allocation decisions in period t+ 1 to T
are the optimal allocation given {Nt,i}. Let Yt,i = It,i + Nt,i, given It and zDt , to find the optimal
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allocation in period t we need to solve

min
Yt,i

m∑
i=1

γt(Yt,i)

s.t.
m∑
i=1

(Yt,i − It,i) = zDt B

Yt,i − It,i ≥ 0 ∀i

Since JT+1 = 0 and γt is just sum of strictly convex functions g and the expectation preserves
convexity, γt is strictly convex in Yt,i, and in Ω the equality constraint is affine and inequality
constraints are convex as well, therefore the first-order conditions are sufficient for optimality:
there exists λ, µi satisfies

γ′t(Yt,i) + λ− µi = 0 ∀i (A.4)

(Yt,i − It,i)µi = 0 ∀i (A.5)

µi ≥ 0 ∀i (A.6)
m∑
i=1

(Yt,i − It,i) = zDt B (A.7)

Yt,i − It,i ≥ 0 ∀i (A.8)

To characterize the structure of the optimal solution, we divide the retailers be into two subsets:
those with Yt,i > It,i and those with Yt,i = It,i. Let A = {i |Yt,i > It,i} and k = |A|.

Case 1: For retailers i ∈ Ac with Yt,i = It,i
Allocate nothing for those retailers.

Case 2: For retailers i ∈ A with Yt,i > It,i
By (A.5) immediately we have µi = 0, then (A.4) - (A.8) for i ∈ A reduce to:

γ′t(Yt,i) + λ = 0 ∀i ∈ A (A.9)∑
i∈A

(Yt,i − It,i) = zDt B (A.10)

Yt,i − It,i ≥ 0 ∀i ∈ A (A.11)

By (A.9) we have γ′t(Yt,i) = γ′t(Yt,j) for any i, j ∈ A. Since γt is strictly convex, γ′t is strictly
increasing, which implies Yt,i = Yt,j , i.e. raising inventory of all retailers in A to the same level.

Step 2

Next, we’ll show that the set of retailers in A is indeed the θ retailers with lowest starting inventory
level, i.e. A = {i | i ≤ θ} and k = θ. From now on, we will drop the subscript t if it is not
ambiguous. Assume retailers have pre-allocation inventory level {I1, I2, . . . , Im} and remember
these levels are sorted from smallest to largest. Let Y ∗ denote the order-up-to level in Theorem 2:

Y ∗ = 1
θ

(
θ∑
i=1

Ii + zB

)
∀i ≤ θ and let the cost of the policy that raise {I1, I2, . . . , Iθ} to the same

level Y ∗ to be P ∗. Now consider two cases:
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Case 1: Raise θ
′ 6= θ retailers with the lowest starting inventory to the same level.

If θ
′
> θ then (A.7) is infeasible. Now, without loss of generality, assume θ − 1 retailers with

inventory {I1, I2, . . . , Iθ−1} are raised to the same level Ȳ . Let the cost of this policy to be P
′
.

P
′

= (θ − 1)γ(Ȳ ) + γ(Iθ) +
∑
i>θ

γ(Ii)

≥ θ γ(Y ∗) +
∑
i>θ

γ(Ii)

= P ∗

where the inequality holds because of the convexity of γ(·). So P ∗ dominates P
′
.

Case 2: Raise inventory for θ arbitrarily selected retailers to the same level,
Without loss of generality, suppose we skip retailer j and raise the retailers with inventory
{I1, I2, . . . , Ij−1, Ij+1, . . . , Iθ, Iθ+1} to the same level Ȳ . It is easy to check we have Ȳ ≥ Iθ+1 ≥
Y ∗ ≥ Ij . Let the cost of this policy to be P

′
. By the convexity γ(·), we have

P
′

= θγ(Ȳ ) + γ(Ij) +
∑
i>θ+1

γ(Ii)

≥ θγ(Y ∗) + γ(Iθ+1) +
∑
i>θ+1

γ(Ii)

= P ∗

So, P ∗ dominates P
′
. Thus, raising θ retailers with the lowest inventory level to the same level

dominates any other possible set of retailers, so we have A = {i | i ≤ θ}. By (A.8), this level is

Nt,i + It,i =
1

k

(∑
i∈A

It,i + zDt B

)
∀i ∈ A

Since there is no other allocation outperforms the one in Theorem 2, the expected total costs
under the allocation policy in Theorem 2 must be J∗.

�

A.1.4 Proof of Theorem 2.5.2

We proceed in several steps. In Step 1, we characterize an optimal solution of JH(D1:T ); in Step 2,
we use the result in Step 1 to prove E[(JDC − JH) 1{A}] ≤ 2σ(T + 1)3/2 [

∑m
i=1(pi + hi)]; in Step

3, we characterize an optimal solution of JDt (It); finally, in Step 4, we use the results from previous
Steps to prove E[(JCEC − JH) 1{A}] ≤ 2σT [

∑m
i=1(pi + hi)].

Step 1

Define a sequence {nHt,i} as follows: nHt,i = n∗1t,i + ∆t,i − 1
m

∑m
j=1 ∆t,j . We claim that if D1:T ∈ A,
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then nH is an optimal allocation for the hindsight problem. First note that, since xt+1,i = I1,i +∑t
s=1 ns,i − tµi (because xs+1,i = xs,i + ns,i − µi), optimization JD1 (I1) can be written as follows:

JD1 (I1) = min
n,y,θ

T∑
t=1

[
c zDt B +

m∑
i=1

pi yt,i +

m∑
i=1

hiθt,i

]
(A.12)

s.t. yt,i ≥ tµi −
t∑

s=1

ns,i − I1,i ∀t, i (A.13)

yt,i ≥ 0 ∀t, i (A.14)

θt,i ≥ I1,i +
t∑

s=1

ns,i − tµi ∀t, i (A.15)

θt,i ≥ 0 ∀t, i (A.16)
m∑
i=1

nt,i = zDt B ∀t (A.17)

nt,i ≥ 0 ∀t, i (A.18)

By Karush-Kuhn-Tucker (KKT) conditions, there exist dual variables λ1
t,i, λ

2
t,i, λ

3
t,i, λ

4
t,i, ξt, and

Ωt,i corresponding to constraints (A.13)-(A.18) respectively such that the following hold:

pi = λ1
t,i + λ2

t,i ∀t, i (A.19)

hi = λ3
t,i + λ4

t,i ∀t, i (A.20)

0 = −
T∑
s=t

λ1
t,i +

T∑
s=t

λ3
t,i + ξt − Ωt,i ∀t, i (A.21)

0 = λ1
t,i

[
yt,i − tµi +

t∑
s=1

ns,i + I1,i

]
∀t, i (A.22)

0 = λ2
t,i yt,i ∀t, i (A.23)

0 = λ3
t,i

[
θt,i − I1,i −

t∑
s=1

ns,i + tµi

]
∀t, i (A.24)

0 = λ4
t,i θt,i ∀t, i (A.25)

0 = Ωt,i nt,i ∀t, i (A.26)

λ1
t,i ≥ 0, λ2

t,i ≥ 0, λ3
t,i ≥ 0, λ4

t,i ≥ 0 ∀t, i. (A.27)

The last five equalities represent complementary slackness conditions. (Since we assume that
n∗1t,i > ϕ > 0, by Ωt,i nt,i = 0, we immediately have Ωt,i = 0 for all t and i.) To show that nH is

optimal for the hindsight problem on A, it is sufficient that we show: (C1) nHt,i ≥ 0 for all t and i,

(C2)
∑m

i=1 n
H
t,i = zDt B for all t, and (C3) I1,i +

∑t
s=1 n

H
s,i−

∑t
s=1Ds,i has the same sign (i.e., either

strictly positive or strictly negative) as I1,i +
∑t

s=1 n
∗1
s,i − tµi for all t and i. If these conditions

are satisfied, then we can use the dual variables for JD1 (I1) as dual variables for the hindsight
problem. Indeed, it is not difficult to check that the combination of nH and these dual variables
satisfy the KKT conditions for the hindsight problem. (The KKT conditions for hindsight problem
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are exactly the same as the KKT conditions above, with two exceptions: (A.22) becomes 0 =
λ1
t,i [yt,i−

∑t
s=1Ds,i+

∑t
s=1 ns,i+I1,i] and (A.24) becomes 0 = λ3

t,i [θt,i−I1,i−
∑t

s=1 ns,i+
∑t

s=1Ds,i].

If condition (C3) is satisfied, then we can use the same λ1
t,i, λ

3
t,i and θt,i as in above, and both (A.21)

and (A.24) are satisfied for the hindsight problem at nt,i = nHt,i.) Since KKT conditions are both

necessary and sufficient for optimality in linear program, we can then conclude that nH is optimal
for JH(D1:T ) on A. But, conditions (C1)-(C3) immediately follow from the definition of nH and
A, together with the assumptions that I1,i = 0 and |

∑t
s=1 n

∗1
s,i − tµi| ≥ tϕ for all t ≥ 1 and i. This

completes the proof.

Step 2

We now prove that E[(JDC − JH) 1{A}] ≤ 2σ(T + 1)3/2 [
∑m

i=1(pi + hi)]. This is not difficult to
show. Using nH (defined in Step 1) as our optimal solution for the hindsight problem, the starting
inventory level for retailer i at the beginning of period t is given by IHt+1,i =

∑t
s=1 n

H
t,i−

∑t
s=1Ds,i =∑t

s=1 n
∗1
s,i+

∑t
s=1 ∆s,i− 1

m

∑t
s=1

∑m
j=1 ∆s,j−

∑t
s=1Ds,i. Moreover, the starting inventory level under

DC is IDCt+1,i =
∑t

s=1 n
∗1
s,i −

∑t
s=1Ds,i. So, on A, we can bound JDC − JH as follows:

JDC − JH

=
T∑
t=1

m∑
i=1

[
pi(−IDCt+1,i)

+ + hi(I
DC
t+1,i)

+
]
−

T∑
t=1

m∑
i=1

[
pi(−IHt+1,i)

+ + hi(I
H
t+1,i)

+
]

=
T∑
t=1

m∑
i=1

pi
[
(−IDCt+1,i)

+ − (−IHt+1,i)
+
]

+
T∑
t=1

m∑
i=1

hi
[
(IDCt+1,i)

+ − (IHt+1,i)
+
]

=

T∑
t=1

m∑
i=1

pi

( t∑
s=1

Ds,i −
t∑

s=1

n∗1s,i

)+

−

 t∑
s=1

Ds,i −
t∑

s=1

n∗1s,i −
t∑

s=1

∆s,i +
1

m

t∑
s=1

m∑
j=1

∆s,j

+
+

T∑
t=1

m∑
i=1

hi

( t∑
s=1

n∗1s,i −
t∑

s=1

Ds,i

)+

−

 t∑
s=1

n∗1s,i +
t∑

s=1

∆s,i −
1

m

t∑
s=1

m∑
j=1

∆s,j −
t∑

s=1

Ds,i

+
≤

T∑
t=1

m∑
i=1

(pi + hi)

∣∣∣∣∣∣
t∑

s=1

∆s,i −
1

m

t∑
s=1

m∑
j=1

∆s,j

∣∣∣∣∣∣
where the inequality holds since a+− (a− b)+ ≤ |b| for all a and b. The result immediately follows
because E[|∆t,i|1{A}] ≤ E[|∆t,i|] ≤ σi ≤ σ for all t and i, and

E

∣∣∣∣∣∣
t∑

s=1

∆s,i −
1

m

t∑
s=1

m∑
j=1

∆s,j

∣∣∣∣∣∣
 ≤ E

[∣∣∣∣∣
t∑

s=1

∆s,i

∣∣∣∣∣
]

+ E

∣∣∣∣∣∣ 1

m

t∑
s=1

m∑
j=1

∆s,j

∣∣∣∣∣∣
 ≤ 2σ

√
t

Step 3

We now characterize an optimal solution of JDt (It). Since it may not be unique, we will only
focus on a particular sequence of optimal solution {n∗tt }. Define n∗t for t > 1 as follows: n∗tt,i =

n∗1t,i + ∆t−1,i − 1
m

∑m
j=1 ∆t−1,j and n∗ts,i = n∗1s,i for s > t. Suppose that D1:T ∈ A. In this step, we
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will prove the following statement: If we use ns = n∗ss for all s ≤ t− 1, then

(i) The starting inventory level for retailer i at the beginning of period t > 1 is given by

It,i =

t−1∑
s=1

n∗1s,i − (t− 1)µi −∆t−1,i −
1

m

t−2∑
s=1

m∑
j=1

∆s,j

(ii) n∗t is an optimal solution for JDt (It).

Both (i) and (ii) can be proved by induction. We start with t = 2 as our base case. (The case
t = 1 is trivially true.) The starting inventory level for retailer i at the beginning of period 2 is
I2,i = I1,i + n∗11,i − D1,i = n∗11,i − µi − ∆1,i. So, (i) holds. We now check (ii). At the beginning of
period 2, we have to solve the following linear program:

JD2 (I2) = min
n,y,θ

T∑
t=2

[
c zDt B +

m∑
i=1

pi yt,i +
m∑
i=1

hiθt,i

]
(A.28)

s.t. yt,i ≥ (t− 1)µi −
t∑

s=2

ns,i − I2,i ∀t ≥ 2, i (A.29)

yt,i ≥ 0 ∀t ≥ 2, i (A.30)

θt,i ≥ I2,i +

t∑
s=2

ns,i − (t− 1)µi ∀t ≥ 2, i (A.31)

θt,i ≥ 0 ∀t ≥ 2, i (A.32)
m∑
i=1

nt,i = zDt B ∀t ≥ 2 (A.33)

nt,i ≥ 0 ∀t ≥ 2, i (A.34)

By Karush-Kuhn-Tucker (KKT) conditions, there exist dual variables λ̂1
t,i, λ̂

2
t,i, λ̂

3
t,i, λ̂

4
t,i, ξ̂t, and
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Ω̂t,i corresponding to constraints (A.29)-(A.34) respectively such that the following hold:

pi = λ̂1
t,i + λ̂2

t,i ∀t ≥ 2, i (A.35)

hi = λ̂3
t,i + λ̂4

t,i ∀t ≥ 2, i (A.36)

0 = −
T∑
s=t

λ̂1
t,i +

T∑
s=t

λ̂3
t,i + ξ̂t − Ω̂t,i ∀t ≥ 2, i (A.37)

0 = λ̂1
t,i

[
yt,i − tµi +

t∑
s=1

ns,i + I1,i

]
∀t ≥ 2, i (A.38)

0 = λ̂2
t,i yt,i ∀t ≥ 2, i (A.39)

0 = λ̂3
t,i

[
θ̂t,i − I1,i −

t∑
s=1

ns,i + tµi

]
∀t ≥ 2, i (A.40)

0 = λ̂4
t,i θ̂t,i ∀t ≥ 2, i (A.41)

0 = Ω̂t,i nt,i ∀t ≥ 2, i (A.42)

λ̂1
t,i ≥ 0, λ̂2

t,i ≥ 0, λ̂3
t,i ≥ 0, λ̂4

t,i ≥ 0 ∀t ≥ 2, i. (A.43)

The last five equalities represent complementary slackness conditions. To show that n∗2 is an
optimal solution for JD2 (I2), we use similar arguments as in Step 1. We claim that, on A, all the
three conditions listed in the last paragraph in Step 1 still hold: (C1) n∗2t,i ≥ 0 for all t ≥ 2 and i,

(C2)
∑m

i=1 n
∗2
t,i = zDt B for all t ≥ 2, and (C3)

∑t
s=2 n

∗2
s,i − (t − 1)µi has the same sign (i.e., either

strictly positive or strictly negative) as
∑t

s=2 n
∗1
s,i − (t − 1)µi for all t ≥ 2 and i. The first two

conditions are straight-forward to check; the last condition holds because |
∑t

s=2 n
∗2
s,i−

∑t
s=2 n

∗1
s,i| =

|n∗22,i−n∗12,i| = |∆1,i− 1
m

∑m
j=1 ∆1,j | ≤ 2

∑m
j=1 |∆1,i| < ϕ and |

∑t
s=2 n

∗1
s,i− (t−1)µi| ≥ (t−1)ϕ on A.

As in Step 1, these three conditions allow us to use the same dual variables for the corresponding
constraints in both JD2 (I1 + n∗11 − µ) and JD2 (I2). To be precise, first, note that the constraints
indexed with t ≥ 2 in JD1 (I1) are exactly identical with the constraints indexed with t ≥ 2 in
JD2 (I1 +n∗11 −µ). Since JD2 (I1 +n∗11 −µ) is a sub-problem of JD1 (I1) and n∗11 is optimal for JD1 (I1),
the optimal dual variables for the constraints indexed with t ≥ 2 in JD1 (I1) are also optimal dual
variables for the corresponding constraints in JD2 (I1 + n∗11 − µ). Since conditions (C1)-(C3) hold
on A, we can use λ̂1

t,i = λ1
t,i, λ̂

2
t,i = λ2

t,i, λ̂
3
t,i = λ3

t,i, λ̂
4
t,i = λ4

t,i, ξ̂t = ξt, and Ω̂t,i = Ωt,i for t ≥ 2

(note: λ1
t,i, λ

2
t,i, λ

3
t,i, λ

4
t,i, ξt, and Ωt,i are the dual variables for JD1 (I1) in Step 1) and the KKT

conditions (A.35)-(A.43) are all satisfied at nt,i = n∗2t,i. Thus, by the sufficiency of KKT conditions

for optimality in linear program, we conclude that n∗2 is optimal for JD2 (I2). This is our base case.

Now, suppose that both (i) and (ii) hold for all s ≤ t− 1. We want to show that they still hold
for s = t. By induction hypothesis, we can write: It,i = It−1,i + n∗ t−1

t−1,i −Dt−1,i = (
∑t−2

s=1 n
∗1
s,i − (t−

2)µi−∆t−2,i− 1
m

∑t−3
s=1

∑m
j=1 ∆s,j) + (n∗1t−1,i + ∆t−2,i− 1

m

∑m
j=1 ∆t−2,j)−Dt−1,i =

∑t−1
s=1 n

∗1
s,i− (t−

1)µi −∆t−1,i − 1
m

∑t−2
s=1

∑m
j=1 ∆s,j . So, (i) holds. We now check (ii). At the beginning of period t,
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we have to solve the following linear program:

JDt (It) = min
n,y,θ

T∑
s=t

[
c zDs B +

m∑
i=1

pi ys,i +
m∑
i=1

hiθs,i

]

s.t. yt′,i ≥ (t′ − t+ 1)µi −
t′∑
s=t

ns,i − It,i ∀t′ ≥ t, i

yt′,i ≥ 0 ∀t′ ≥ t, i

θt′,i ≥ It,i +
t′∑
s=t

ns,i − (t′ − t+ 1)µi ∀t′ ≥ t, i

θt′,i ≥ 0 ∀t′ ≥ t, i
m∑
i=1

ns,i = zDs B ∀s ≥ t

ns,i ≥ 0 ∀s ≥ t, i

By similar arguments as before, it is not difficult to check that, on A, we have: (C1) n∗ts,i ≥ 0 for

all s ≥ t and i, (C2)
∑m

i=1 n
∗t
s,i = zDs B for all s ≥ t, and (C3)

∑t′

s=t n
∗t
s,i− (t′− t+ 1)µi has the same

sign (i.e., either strictly positive or strictly negative) as
∑t′

s=t n
∗1
s,i− (t′− t+ 1)µi for all t′ ≥ t and i.

(The last condition holds because |
∑t′

s=t n
∗t
s,i−

∑t′

s=t n
∗1
s,i| = |n∗tt,i−n∗1t,i| = |∆t−1,i− 1

m

∑m
j=1 ∆t−1,j | ≤

2
∑m

j=1 |∆t−1,i| < ϕ and |
∑t′

s=t n
∗1
s,i− (t′− t+ 1)µi| ≥ ϕ on A.) These allow us to use the same dual

variables for the corresponding constraints in both JDt (I1 +
∑t−1

s=1 n
∗1
s − (t− 1)µ) for JDt (It); hence,

by the sufficiency of KKT conditions, we conclude that n∗t is optimal for JDt (It). This completes
the induction.

Step 4

We now make two important observations: under CEC (i.e., using ns = n∗ss for s ≤ t), the starting
inventory level for retailer i at the beginning of period t is given by ICECt+1,i =

∑t
s=1 n

∗1
s,i− tµi−∆t,i−

1
m

∑t−1
s=1

∑m
j=1 ∆s,j . In contrast, under the perfect hindsight policy discussed in Step 1, it is not

difficult to check that the starting inventory level for retailer i at the beginning of period t is given
by IHt+1,i =

∑t
s=1 n

∗1
s,i − tµi − 1

m

∑t
s=1

∑m
j=1 ∆s,j (because nHt,i = n∗1t,i + ∆t,i − 1

m

∑m
j=1 ∆t,j and

IHt+1,i =
∑t

s=1 n
H
s,i −

∑t
s=1Ds,i). So, ICECt+1,i = IHt+1,i −∆t,i + 1

m

∑m
j=1 ∆t,j , which implies:

JCEC − JH ≤
T∑
t=1

m∑
i=1

(pi + hi)

∣∣∣∣∣∣∆t,i −
1

m

m∑
j=1

∆t,j

∣∣∣∣∣∣
The result follows because E[|∆t,i|1{A}] ≤ E[|∆t,i|] ≤ σi ≤ σ for all t and i.

�
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A.1.5 Proof of Theorem 2.5.3

We proceed in several steps. In Step 1, we prove E[(JDC −JH) 1{Â}] ≤ 2m(p∗+h∗)(T + 1)3/2σ∗;
in Step 2, we prove E[(JCEC − JH) 1{Â}] ≤ 2m(p∗ + h∗)Tσ∗. The arguments in Steps 1 and 2
are similar to those in the proof of Theorem 3; however, instead of using duality arguments, we
will use convexity arguments. In Step 3, we compute a bound for P (Â); in Step 4, we put all the

results from Steps 1-3 together to get a bound for each E[JDC ]−J∗
J∗ and E[JCEC ]−J∗

J∗ .

Step 1

Define a sequence {nHt,i} as follows: nHt,i =
zDt B
m + ∆t,i − 1

m

∑m
j=1 ∆t,j . We claim that if D1:T ∈ Â,

then nH is an optimal allocation for the hindsight problem. To see this, simply note that, under
any feasible allocation {nt,i}, we must have:

T∑
t=1

[
c zDt B +

m∑
i=1

p∗ (Dt,i − xt,i − nt,i)+ +
m∑
i=1

h∗(xt,i + nt,i −Dt,i)
+

]

=
T∑
t=1

c zDt B +
m∑
i=1

p∗

(
t∑

s=1

Ds,i −
t∑

s=1

ns,i

)+

+
m∑
i=1

h∗

(
t∑

s=1

ns,i −
t∑

s=1

Ds,i

)+


≥
T∑
t=1

c zDt B +
m∑
i=1

p∗

 1

m

t∑
s=1

m∑
j=1

Ds,j −
1

m

t∑
s=1

m∑
j=1

ns,j

+

+
m∑
i=1

h∗

 1

m

t∑
s=1

m∑
j=1

ns,j −
1

m

t∑
s=1

m∑
j=1

Ds,j

+
=

T∑
t=1

c zDt B +
m∑
i=1

p∗

 1

m

t∑
s=1

m∑
j=1

Ds,j −
1

m

t∑
s=1

zDs B

+

+

m∑
i=1

h∗

 1

m

t∑
s=1

zDs B −
1

m

t∑
s=1

m∑
j=1

Ds,j

+
where the first equality holds because xt+1 = xt + nt −Dt for all t ≥ 1, the first inequality follows
by the convexity of (·)+, and the last inequality follows from

∑m
i=1 nt,i = zDt B. Since the initial

inventory level for retailer i at the beginning of period t+1 is given by It+1,i =
∑t

s=1 ns,i−
∑t

s=1Ds,i,
it is not difficult to check that the above lower bound (the mathematical expression after the last
equality) is achieved by setting nt = nHt . Moreover, on Â, we have nHt > 0 for all t. So, nH is an
optimal feasible solution for JH(D1:T ).

We will now prove that E[(JDC − JH) 1{Â}] ≤ 2m(p∗ + h∗)(T + 1)3/2σ∗. This is not difficult
to show. Note that, by similar convexity arguments as above, it can be shown that nDt,i = zDt B/m

for all i is an optimal solution of JD1 (I1). The initial inventory level for retailer i at the beginning
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of period t+ 1 under DC is thus given by IDCt+1 =
∑t

s=1 n
D
s −

∑t
s=1Ds, which implies:

JDC =
T∑
t=1

c zDt B +
m∑
i=1

p∗

(
t∑

s=1

Ds,i −
1

m

t∑
s=1

zDs B

)+

+
m∑
i=1

h∗

(
1

m

t∑
s=1

zDs B −
t∑

s=1

Ds,i

)+


So, on Â, we can bound JDC − JH as follows:

JDC − JH =

T∑
t=1

m∑
i=1

p∗

( t∑
s=1

Ds,i −
1

m

t∑
s=1

zDs B

)+

−

 1

m

t∑
s=1

m∑
j=1

Ds,j −
1

m

t∑
s=1

zDs B

+
+

T∑
t=1

m∑
i=1

h∗

( 1

m

t∑
s=1

zDs B −
t∑

s=1

Ds,i

)+

−

 1

m

t∑
s=1

zDs B −
1

m

t∑
s=1

m∑
j=1

Ds,j

+
≤

T∑
t=1

m∑
i=1

(p∗ + h∗)

∣∣∣∣∣
t∑

s=1

∆s,i

∣∣∣∣∣+

∣∣∣∣∣∣ 1

m

t∑
s=1

m∑
j=1

∆s,j

∣∣∣∣∣∣


where the inequality follows because µi = µ∗ for all i and (a− c)+− (b− c)+ ≤ |a|+ |b| for all a, b,
and c (note that

∑t
s=1Ds,i = tµ∗+

∑t
s=1 ∆s,i and 1

m

∑t
s=1

∑m
j=1Ds,j = tµ∗+ 1

m

∑t
s=1

∑m
j=1 ∆s,j).

The bound E[(JDC − JH) 1{Â}] ≤ 2m(p∗ + h∗)(T + 1)3/2σ∗ follows because E[|∆t,i|1{Â}] ≤
E[|∆t,i|] ≤ σ∗ for all t and i.

Step 2

We now argue that E[(JCEC−JH) 1{Â}] ≤ 2m(p∗+h∗)Tσ∗. Define n∗t as follows: n∗1t,i =
zDt B
m for

all t, n∗tt,i =
zDt B
m + ∆t−1,i − 1

m

∑m
j=1 ∆t−1,j , and n∗ts,i = zDs B

m for all s > t. Suppose that D1:T ∈ Â.
We will prove the following statement: If we use ns = n∗ss or all s ≤ t− 1, then

(i) The starting inventory level for retailer i at the beginning of period t is given by

It,i =
1

m

t−1∑
s=1

zDs B − (t− 1)µ∗ −∆t−1,i −
1

m

t−2∑
s=1

m∑
j=1

∆s,j

(ii) n∗t is an optimal solution of JDt (It).

As in Step 3 in the proof of Theorem 3, both (i) and (ii) can be proved by induction. We start
with t = 2. (The case t = 1 is trivial.) At the beginning of period 2, we have I2,i = I1,i+n

∗1
1,i−D1,i =

zD1 B
m − µ∗ −∆1,i. So, (i) holds. To show that n∗2 is optimal for JD2 (I2), by convexity of (·)+, for
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any feasible allocation {nt,i}, we can bound:

T∑
t=2

[
c zDt B +

m∑
i=1

p∗ (µ∗ − It,i − nt,i)+ +
m∑
i=1

h∗(It,i + nt,i − µ∗)+

]

=
T∑
t=2

c zDt B +
m∑
i=1

p∗

(
(t− 1)µ∗ −

t∑
s=2

ns,i − I2,i

)+

+
m∑
i=1

h∗

(
I2,i +

t∑
s=2

ns,i − (t− 1)µ∗

)+


≥
T∑
t=2

c zDt B +

m∑
i=1

p∗

(t− 1)µ∗ − 1

m

t∑
s=2

m∑
j=1

ns,j −
1

m

m∑
j=1

I2,j

+

+
m∑
i=1

h∗

 1

m

m∑
j=1

I2,j +
1

m

t∑
s=2

m∑
j=1

ns,j − (t− 1)µ∗

+
=

T∑
t=2

c zDt B +

m∑
i=1

p∗

(t− 1)µ∗ − 1

m

t∑
s=2

zDs B −
1

m

m∑
j=1

I2,j

+

+
m∑
i=1

h∗

 1

m

m∑
j=1

I2,j +
1

m

t∑
s=2

zDs B − (t− 1)µ∗

+
where the inequality holds because 1

m

∑m
i=1 x

+
i ≥ ( 1

m

∑m
i=1 xi)

+ for all xi’s, which implies
∑m

i=1 x
+
i ≥∑m

i=1( 1
m

∑m
j=1 xi)

+. Recursively solving (t− 1)µ∗ −
∑t

s=2 ns,i − I2,i = (t− 1)µ∗ − 1
m

∑t
s=2 z

D
s B −

1
m

∑m
j=1 I2,j yields ns,i = n∗2s,i for all s ≥ 2 and i. Since n∗2 exactly achieves the lower bound, it

must be optimal. Since zDt ≥ 1 for all t, we have n∗2 > 0 on Â, so it is a feasible optimal solution.
This is our base case.

Now, suppose that both (i) and (ii) hold for all s ≤ t− 1. We want to show that they also hold
for s = t. By induction hypothesis, we have:

It,i = It−1,i + n∗ t−1
t−1,i −Dt−1,i

=

 1

m

t−2∑
s=1

zDs B − (t− 2)µ∗ −∆t−2,i −
1

m

t−3∑
s=1

m∑
j=1

∆s,j


+

zDt−1B

m
+ ∆t−2,i −

1

m

m∑
j=1

∆t−2,j

−Dt−1,i

=
1

m

t−1∑
s=1

zDs B − (t− 1)µ∗ −∆t−1,i −
1

m

t−2∑
s=1

m∑
j=1

∆s,j

so, (i) holds. As for (ii), using similar convexity arguments as above, it is not difficult to check that
n∗t is optimal for JDt (It) on Â. This completes the induction.

Putting our results together, the starting inventory level for retailer i at the beginning of period
t under CEC is given by ICECt+1,i = 1

m

∑t
s=1 z

D
s B − tµ∗ −∆t,i − 1

m

∑t−1
s=1

∑m
j=1 ∆s,j and the starting

inventory level under hindsight policy (from Step 1) is given by IHt+1,i = 1
m

∑t
s=1 z

D
s B − tµ∗ −
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1
m

∑t
s=1

∑m
j=1 ∆s,j . So, ICECt+1,i = IHt+1,i −∆t,i + 1

m

∑m
j=1 ∆t,j . This implies:

JCEC − JH ≤
T∑
t=1

m∑
i=1

(p∗ + h∗)

∣∣∣∣∣∣∆t,i −
1

m

m∑
j=1

∆t,j

∣∣∣∣∣∣
Taking expectation yields E[(JCEC − JH) 1{Â}] ≤ 2m(p∗ + h∗)Tσ∗.

Step 3

We claim that P (Â) ≥ 1 − 2mTe−min{µ∗, B2/(16m4µ∗)} for all sufficiently large B2/µ∗ and µ∗. To
see this, first, note that we can bound P (Â) using sub-additive property of probability as follows:

P (Â) =
T∏
t=1

P

(
2m

m∑
i=1

|∆t,i| < B

)
≥

T∏
t=1

[
1−

m∑
i=1

P

(
|∆t,i| ≥

B

2m2

)]

By an exponential tail bound for Poisson random variable, it can be shown that P (|∆t,i| ≥
B/2m2) ≤ 2e−min{µ∗, B2/(16m4µ∗)} (see below for proof). Applying Bernoulli’s inequality, we get
P (Â) ≥ (1− 2m e−min{µ∗, B2/(16m4µ∗)})T ≥ 1− 2mTe−min{µ∗, B2/(16m4µ∗)} for all large B2/µ∗ and
µ∗. This proves our claim.

Proof of an exponential tail bound for Poisson random variable. By Markov’s inequality,
P (|∆t,i| > B/2m2) ≤ E[er|∆t,i|]/erB/2m

2
for r > 0. By moment generating function of Poisson

distribution, as long as r ≤ 1, E[er|∆t,i|] ≤ E[er∆t,i ] + E[e−r∆t,i ] = eµ
∗(er−1−r) + eµ

∗(e−r−1+r) ≤
2eµ

∗r2 . (The last inequality holds because er − 1 − r ≤ r2 for all 0 ≤ r ≤ 1.) This implies
P (|∆t,i| > B/2m2) ≤ 2eµ

∗(r2−(B/2µ∗m2)r) for all 0 ≤ r ≤ 1. Minimizing the bound over r > 0, yields
r = B/(4µ∗m2). If B/(4µ∗m2) ≤ 1, we can use the above bound and get P (|∆t,i| > B/2m2) ≤
2e−B

2/(16m4µ∗). If, on the other hand, B/(4µ∗m2) > 1, we can simply bound: P (|∆t,i| > B/2m2) ≤
E[er|∆t,i|]/erB/2m

2 ≤ (E[er∆t,i ] + E[e−r∆t,i ])/erB/2m
2

= (eµ
∗(er−1−r) + eµ

∗(e−r−1+r))/erB/2m
2

and
use r = 1, which yields P (|∆t,i| > B/2m2) ≤ 2eµ

∗−(B/2m2) ≤ 2e−µ
∗
. Putting the bounds for

the case B/(4µ∗m2) ≤ 1 and B/(4µ∗m2) > 1 together, we conclude that P (|∆t,i| > B/2m2) ≤
2e−min{µ∗, B2/(16m4µ∗)}.

Step 4

We now put the results in Steps 1-3 together. From Step 1, we have:

J∗ ≥ E[JH ]

≥
T∑
t=1

E

czDt B +
m∑
i=1

p∗

 1

m

t∑
s=1

m∑
j=1

Ds,j −
1

m

t∑
s=1

zDs B

+

+

m∑
i=1

h∗

 1

m

t∑
s=1

zDs B −
1

m

t∑
s=1

m∑
j=1

Ds,j

+
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Note that
∑T

t=1 z
D
t B ≥ TB ≥ Tµ∗ (because we assume zDt > 0). For each t, if

∑t
s=1 z

D
s B ≥

tmµ∗, we can bound: 1

m

t∑
s=1

m∑
j=1

Ds,j −
1

m

t∑
s=1

zDs B

+

≥ 0 and

 1

m

t∑
s=1

zDs B −
1

m

t∑
s=1

m∑
j=1

Ds,j

+

≥

tµ∗ − 1

m

t∑
s=1

m∑
j=1

Ds,j

+

If, on the other hand,
∑t

s=1 z
D
s B < tmµ∗, we can bound: 1

m

t∑
s=1

m∑
j=1

Ds,j −
1

m

t∑
s=1

zDs B

+

≥

 1

m

t∑
s=1

m∑
j=1

Ds,j − tµ∗
+

and

 1

m

t∑
s=1

zDs B −
1

m

t∑
s=1

m∑
j=1

Ds,j

+

≥ 0

In either case, we can further bound J∗ as follows:

J∗ ≥ cTµ∗ + h∗
T∑
t=1

min

E

 t∑
s=1

m∑
j=1

Ds,j − tmµ∗
+ ,E

tmµ∗ − t∑
s=1

m∑
j=1

Ds,j

+
Since E[

∑t
s=1

∑m
j=1Ds,j ] = tmµ∗, by Central Limit Theorem (CLT), the expectations inside

the min{·} operator are both of order
√
tmµ∗ (for large µ∗), i.e.,

E

 t∑
s=1

m∑
j=1

Ds,j − tmµ∗
+ = Θ(

√
tmµ∗ ) and

E

tmµ∗ − t∑
s=1

m∑
j=1

Ds,j

+ = Θ(
√
tmµ∗ )

where Θ(·) is the usual big-Θ notation. (Intuitively, the order magnitude of these two expectations
are of the same size as the order magnitude of the standard deviation of

∑t
s=1

∑m
j=1Ds,j .) This

means that there exists a constant M ′ > 0 independent of T > 0 such that, for all large µ∗, we
have

J∗ ≥ cTµ∗ +M ′
√
µ∗ T 3/2

where the inequality follows because
∑T

t=1

√
t is of order T 3/2.
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Now, for any feasible policy π, on Âc, we can loosely bound Jπ as follows:

Jπ ≤
T∑
t=1

czDt B +
T∑
t=1

m∑
i=1

T (p∗ + h∗)Dt,i

In the above, we simply assume that each unit of demand incurs both the holding and penalty
cost T times. This is the maximum possible total costs that can be incurred per unit inventory. Since
E[Dt,i1{Âc}] ≤ E[D2

t,i]
1/2 E[1{Âc}2]1/2 ≤ 2µ∗P (Âc)1/2 (because E[D2

t,i] = V ar(Dt,i) + E[Dt,i]
2 =

µ∗ + (µ∗)2 ≤ 4(µ∗)2 for µ∗ ≥ 1), using the exponential tail bound proved in Step 3, we can bound:

E[(Jπ − J∗) 1{Âc}] ≤ E

[
T∑
t=1

m∑
i=1

T (p∗ + h∗)Dt,i1{Âc}

]
≤ 2µ∗mT 2 (p∗ + h∗)P (Âc)1/2

≤ 2
√

2µ∗m3/2 T 5/2 (p∗ + h∗)e−min{µ∗/2, B2/(32m4µ∗)}

≤ M ′′

for some M ′′ > 0 independent of T , B, and µ∗, for all sufficiently large B2/µ∗ and µ∗, and T =
o(emin{µ∗/5, B2/(80m4µ∗)}). (The first inequality follows because, under both π and the optimal policy,
we always incur the purchasing costs

∑T
t=1 cz

D
t B (so, this term cancels out), and we simply ignore

the total holding and penalty costs under the optimal policy.) Putting this together with the bounds
in Steps 1 and 2, we conclude that, for all large B2/µ∗ and µ∗, and T = o(emin{µ∗/5, B2/(80m4µ∗)}),

E[JDC ]− J∗

J∗
≤ 2m(p∗ + h∗)(T + 1)3/2√µ∗ +M ′′

cTµ∗ +M ′
√
µ∗ T 3/2

≤ M
√
T

√
µ∗ +

√
T

and

E[JCEC ]− J∗

J∗
≤ 2m(p∗ + h∗)T

√
µ∗ +M ′′

cTµ∗ +M ′
√
µ∗ T 3/2

≤ M
√
µ∗ +

√
T

for some M > 0 independent of T , B, and µ∗.

�

A.1.6 Proof of Lemma 2.6.1

We prove Lemma 2.6.1 by induction. As in the proof of Theorem 2.5.3, the idea is again to
characterize a candidate optimal solution using KKT conditions. Let Ft,t′(·) denote the c.d.f. of∑t′

ξ=tDξ,i, defined on an extended space (−∞,∞) as follows:

Ft,t′(x) =

{
P
(∑t′

ξ=tDξ,i ≤ x
)

for x > 0

0 for x ≤ 0
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Also, define:

Gt(nt; It) :=
T∑
ξ=t

m∑
i=1

E

p∗( ξ∑
s=t

Ds,i −
ξ∑
s=t

ns,i − It,i

)+

+ h∗

(
It,i +

ξ∑
s=t

ns,i −
ξ∑
s=t

Ds,i

)+


The following expression of partial derivative of Gt is useful for the proof:

∂Gt
∂ns,i

=

T∑
k=s

(h∗ + p∗)Ft,k

 k∑
ξ=t

nξ,i + It,i

− p∗
 for all s ≥ t. (A.44)

We now proceed in two steps. In Step 1, we show that the lemma is true for t = 1 (this is our
induction base case); in Step 2, we show that the lemma is true for t > 1 by induction hypothesis.

Step 1

Consider JS1 (0). By (A.44) and KKT conditions, there exist dual variables v1
s,i ≥ 0 and w1

s corre-

sponding to constraints ns,i ≥ 0 and
∑m

i=1 nns,i = zDs B, respectively, such that:

∂G1

∂nT,i
= (h∗ + p∗)F1,T

 T∑
ξ=1

nξ,i

− p∗ = v1
T,i + w1

T (A.45)

∂G1

∂nT−1,i
=

T∑
k=T−1

(h∗ + p∗)F1,k

 k∑
ξ=1

nξ,i

− p∗
 = v1

T−1,i + w1
T−1 (A.46)

:

∂G1

∂n1,i
=

T∑
k=1

(h∗ + p∗)F1,k

 k∑
ξ=1

nξ,i

− p∗
 = v1

1,i + w1
1 (A.47)

v1
s,i · ns,i = 0 ∀ s ≥ 1 (A.48)

Equivalently, (A.45)-(A.47) can be written as:

(h∗ + p∗)F1,T

 T∑
ξ=1

nξ,i

− p∗ = v1
T,i + w1

T (A.49)

(h∗ + p∗)F1,T−1

T−1∑
ξ=1

nξ,i

− p∗ = v1
T−1,i + w1

T−1 − (v1
T,i + w1

T ) (A.50)

:

(h∗ + p∗)F1,1 (n1,i)− p∗ = v1
1,i + w1

1 − (v1
2,i + w1

2) (A.51)

v1
s,i · ns,i = 0 ∀ s ≥ 1 (A.52)

Let θ1
T,i = v1

T,i + w1
T and θ1

s,i := v1
s,i + w1

s − (v1
s+1,i + w1

s+1) for s ≤ T − 1. We claim that
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ns,i = zDs B/m is the unique optimal solution of JS1 (0). To prove this, note that, if we set v1
s,i = 0

for all s and i, the variables {θ1
s,i} are independent of i. By abuse of notation, let θ1

s,i = θ1
s

for all s and i. By (A.49),
∑T

ξ=1 nξ,i = F−1
1,T

(
p∗+θ1T
p∗+h∗

)
. Taking the sum over all i’s, and using∑m

i=1 nξ,i = zDξ B for all ξ ≥ 1, gives
∑T

ξ=1 z
D
ξ B = mF−1

1,T

(
p∗+θ1T
p∗+h∗

)
, which implies:

T∑
ξ=1

nξ,i =
T∑
ξ=1

zDξ B

m

Similarly, by (A.50) and (A.51), for s ≤ T − 1, we have
∑s

ξ=1 nξ,i = F−1
1,s

(
p∗+θ1s
p∗+h∗

)
. Taking the

sum over all i’s gives
∑s

ξ=1 z
D
ξ B = mF−1

1,s

(
p∗+θ1s
p∗+h∗

)
, which implies:

s∑
ξ=1

zDξ B = mF−1
1,s

(
p∗ + θ1

s

p∗ + h∗

)
and

s∑
ξ=1

nξ,i =
s∑
ξ=1

zDξ B

m
.

We conclude that:

ns,i =
zDs B

m
and θ1

s = (p∗ + h∗)F1,s

 s∑
ξ=1

zDξ B

m

− p∗ for all s

from which the constants w1
1, w

1
2, ..., w

1
T can be calculated properly. Note that, since p∗+θ1

s > 0 and

p∗+ θ1
s < p∗+h∗, the term F−1

1,s

(
p∗+θ1s
p∗+h∗

)
is well-defined. Thus, we have just shown that there exist

dual variables v1
s,i ≥ 0 and w1

s that not only satisfy KKT conditions but also yield ns,i = zDs B/m

for all s and i. Since the objective function in JS1 (0) is convex, our result for t = 1 follows by the
sufficiency of KKT conditions for optimality in convex optimization.

Step 2

Now, suppose that the the lemma holds for all t ≤ t′. We want to show that it also holds for
t = t′ + 1. Since the formula for nSt is exactly the same as the constructed optimal solution in
Theorem 4, by the same arguments as in the proof of Theorem 4, we have:

It′+1,i =
1

m

t′∑
s=1

zDs B − t′µ∗ −∆t′,i −
1

m

t′−1∑
s=1

m∑
j=1

∆s,j (A.53)

Consider JSt′+1(It′+1). By KKT conditions, there exist dual variables vt
′+1
s,i ≥ 0 and wt

′+1
s

corresponding to constraints ns,i ≥ 0 and
∑m

i=1 nns,i = zDs B, respectively, such that:
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(h∗ + p∗)Ft′+1,T

It′+1,i +

T∑
ξ=t′+1

nξ,i

− p∗ = vt
′+1
T,i + wt

′+1
T (A.54)

(h∗ + p∗)Ft′+1,T−1

It′+1,i +
T−1∑
ξ=t′+1

nξ,i

− p∗ = vt
′+1
T−1,i + wt

′+1
T−1 − (vt

′+1
T,i + wt

′+1
T )(A.55)

:

(h∗ + p∗)Ft′+1,t′+1

(
It′+1,i + nt′+1,i

)
− p∗ = vt

′+1
t′+1,i + wt

′+1
t′+1 − (vt

′+1
t′+2,i + wt

′+1
t′+2) (A.56)

vt
′+1
s,i · ns,i = 0 ∀ s (A.57)

Let θt
′+1
T,i = vt

′+1
T,i +wt

′+1
T and θt

′+1
s,i := vt

′+1
s,i +wt

′+1
s − (vt

′+1
s+1,i +wt

′+1
s+1 ) for s ≤ T − 1. Arguing as

in Step 1, set vt
′+1
s,i = 0 for all s ≥ t′ + 1 and i. So, {θt′+1

s,i } become independent of i. By abuse of

notation, we simply write: θt
′+1
s,i = θt

′+1
s . Now, by (A.54), It′+1,i+

∑T
ξ=t′+1 nξ,i = F−1

t′+1,T

(
p∗+θt

′+1
T

p∗+h∗

)
.

Taking the sum over all i’s gives
∑m

i=1 It′+1,i+
∑T

ξ=t′+1 z
D
ξ B = mF−1

t′+1,T

(
p∗+θt

′+1
T

p∗+h∗

)
, which implies:

It′+1,i +
T∑

ξ=t′+1

nξ,i =
m∑
j=1

It′+1,j

m
+

T∑
ξ=t′+1

zDξ B

m

Applying similar arguments to (A.55)-(A.56) yields:

It′+1,i +
s∑

ξ=t′+1

nξ,i =
m∑
j=1

It′+1,j

m
+

s∑
ξ=t′+1

zDξ B

m
for all s ≥ t′ + 1 and i

Solving for {ns,i}, a combination of simple algebra and (A.53) give:

nt′+1,i =
zDt′+1B

m
− It′+1,i +

m∑
j=1

It′+1,j

m
=

zDt′+1B

m
+ ∆t′,i −

1

m

m∑
j=1

∆t′,j and

ns,i =
zDs B

m
for all s > t′ + 1

Note that ns,i > 0 for all s ≥ t′ + 1 on Â; so, {ns,i} is feasible. Moreover, we also have:

θt
′+1
s = (p∗ + h∗)Ft′+1,s

 m∑
j=1

It′+1,j

m
+

s∑
ξ=t′+1

zDξ B

m

− p∗ for s ≥ t′ + 1

from which wt
′+1
t′+1, . . . , w

t′+1
T can be calculated properly. Since 0 < p∗ + θt

′+1
s < p∗ + h∗, the term

F−1
t′+1,T

(
p∗+θt

′+1
s

p∗+h∗

)
is well-defined on Â. Thus, we have just shown that there exist dual variables

and primal solution {ns,i} that satisfy KKT conditions.
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�

A.1.7 Proof of Theorem 2.6.2

The proof of Theorem 2.6.2 is similar to the proof of Theorem 2.4.1. For any policy π ∈ Π, define
a sequence {W π

t,i} where W π
t+1,i = W π

t,i + Nπ
t,i − D̂t,i for t ≥ 1 and W π

1 = Iπ1 = I1. Observe that

we can write: W π
t,i = I1,i +

∑t−1
s=1N

π
s,i −

∑t−1
s=1 D̂s,i and Iπt,i = I1,i +

∑t−1
s=1N

π
s,i −

∑t−1
s=1Ds,i. So,

Iπt,i = W π
t,i −

∑t−1
s=1 ∆̃s,i, where ∆̃s,i = Ds,i − D̂s,i. We now proceed in three steps. In Step 1, we

compute an upper bound for Ĉ∗ − C∗; in Step 2, we compute an upper bound for E[Cπ
R

] − Ĉ∗;
and, in Step 3, we put together the results from Steps 1 and 2 to get a bound for E[Cπ

R
]− C∗.

Step 1

We first compute an upper bound for Ĉ∗ − C∗. We claim that:

C∗ ≥ Ĉ∗ −E

 T∑
t=1

m∑
i=1

(pi + hi)

(
t∑

s=1

∆̃s,i

)+


For any policy π ∈ Π, we can bound:

T∑
t=1

[
cZπt B +

m∑
i=1

pi(Dt,i −Nπ
t,i − Iπt,i)+ +

m∑
i=1

hi(N
π
t,i + Iπt,i −Dt,i)

+

]

=
T∑
t=1

[
cZπt B +

m∑
i=1

(pi + hi)(I
π
t,i +Nπ

t,i −Dt,i)
+ −

m∑
i

pi(I
π
t,i +Nπ

t,i −Dt,i)

]

=
T∑
t=1

[
cZπt B +

m∑
i=1

(pi + hi)(I
π
t+1,i)

+ −
m∑
i=1

piI
π
t+1,i

]

≥
T∑
t=1

[
cZπt B +

m∑
i=1

(pi + hi)(W
π
t+1,i)

+ −
m∑
i=1

piW
π
t+1,i

]

−
T∑
t=1

m∑
i=1

(pi + hi)

(
t∑

s=1

∆̃s,i

)+

+

T∑
t=1

m∑
i=1

t∑
s=1

pi∆̃s,i

where the first inequality holds because the identity Iπt,i = W π
t,i −

∑t−1
s=1 ∆̃s,i implies (Iπt,i)

+ ≥
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(W π
t,i)

+ − (
∑t−1

s=1 ∆̃s,i)
+. Taking expectation on both sides of the inequality, we have:

T∑
t=1

E

[
cZπt B +

m∑
i=1

pi(Dt,i −Nπ
t,i − Iπt,i)+ +

m∑
i=1

hi(N
π
t,i + Iπt,i −Dt,i)

+

]

≥
T∑
t=1

E

[
cZπt B +

m∑
i=1

(pi + hi)(W
π
t+1,i)

+ −
m∑
i=1

piW
π
t+1,i

]
−E

 T∑
t=1

m∑
i=1

(pi + hi)

(
t∑

s=1

∆̃s,i

)+


≥ Ĉ∗ −E

 T∑
t=1

m∑
i=1

(pi + hi)

(
t∑

s=1

∆̃s,i

)+


The first inequality follows because, by definition, E[∆̃s,i] = 0 for all s and i, and the second
inequality follows from the definition of Ĉ∗ (by construction, W π

t,i is the starting inventory level for
retailer i at the beginning of period t under π in the virtual world, and the optimal policy is π̂∗,
which gives expected total costs Ĉ∗). Since the lower bound in the above inequality holds for all
π ∈ Π, minimizing the expectation in the left side of the inequality over π ∈ Π immediately yields
C∗ ≥ Ĉ∗−E[

∑T
t=1

∑m
i=1(pi + hi)(

∑t
s=1 ∆̃s,i)

+] (by construction, Iπt,i is the starting inventory level
for retailer i at the beginning of period t under π in the real world, and the corresponding optimal
policy and expected total costs are π∗ and C∗).

Step 2

We now compute an upper bound for E[Cπ
R

]− Ĉ∗. We claim that:

E[Cπ
R

]− Ĉ∗ ≤ E

 T∑
t=1

m∑
i=1

(pi + hi)

(
−

t∑
s=1

∆̃s,i

)+


This can be shown using similar arguments as in Step 1. Define a sequence {xt,i} where xt+1,i =

xt,i + NπR

t,i − D̂t,i for t ≥ 1 and x1 = I1. Since Iπ
R

t+1,i = Iπ
R

t,i + NπR

t,i − Dt,i and Iπ
R

1,i = I1,i, we can
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write Iπ
R

t,i = xt,i −
∑t−1

s=1 ∆̃s,i. We can then bound:

E[Cπ
R

] =
T∑
t=1

E

[
c zπ

R

t B +
m∑
i=1

hi(I
πR

t+1,i)
+ +

m∑
i

pi(−Iπ
R

t+1,i)
+

]

=

T∑
t=1

E

[
c zπ

R

t B +

m∑
i=1

(pi + hi)(I
πR

t+1,i)
+ −

m∑
i

piI
πR

t+1,i

]

≤
T∑
t=1

E

[
c zπ

R

t B +

m∑
i=1

(pi + hi)(xt+1,i)
+ −

m∑
i

pixt+1,i

]

+ E

 T∑
t=1

m∑
i=1

(pi + hi)

(
−

t∑
s=1

∆̃s,i

)+
+ E

[
T∑
t=1

m∑
i=1

t∑
s=1

pi∆̃s,i

]

= Ĉ∗ + E

 T∑
t=1

m∑
i=1

(pi + hi)

(
−

t∑
s=1

∆̃s,i

)+


The inequality follows since Iπ
R

t,i = xt,i −
∑t−1

s=1 ∆̃s,i implies (Iπ
R

t,i )+ ≤ (xt,i)
+ + (−

∑t−1
s=1 ∆̃s,i)

+

and the last equality follows from the definition of Ĉ∗ and the fact that zπ
R

t = zπ̂
∗

t .

Step 3

Putting together the bounds from Steps 1 and 2, we conclude that

E[Cπ
R

]− C∗ = E[Cπ
R

]− Ĉ∗ + Ĉ∗ − C∗

≤ E

 T∑
t=1

m∑
i=1

(pi + hi)

(
−

t∑
s=1

∆̃s,i

)+
 + E

 T∑
t=1

m∑
i=1

(pi + hi)

(
t∑

s=1

∆̃s,i

)+


≤ 2

T∑
t=1

m∑
i=1

(pi + hi)E

( t∑
s=1

∆̃s,i

)2
1/2

≤ 2
m∑
i=1

(pi + hi)

 T∑
t=1

(
t∑

s=1

θ2
s,i

)1/2


�
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A.2 Proofs of Results Appearing in Chapter 3

A.2.1 Proof of Theorem 3.4.1

Consider a general form of the cost function for the type (ii) policy

y(2)(τ) = aτ + b
√
τ +

c

τ
, τ > 0 (A.58)

where a, b, and c are constants. Taking the derivative, we have

d

dτ
y(2)(τ) = a+

1

2
bτ−

1
2 − c

τ2
. (A.59)

Solving for d
dτ y

(2)(τ) = 0 yields

aτ +
1

2
bτ

1
2 − c

τ
= 0. (A.60)

The left hand side is strictly increasing, when τ → 0 it goes to −∞, and when x → +∞ it goes
to +∞, so by Intermediate Value Theorem there is an unique τ∗ such that y′(τ∗) = 0. Since
y(0) = y(+∞) = +∞, τ∗ must be the unique minimizer of y(2)(τ).

Similarly, the lower bound of the cost function of type (i) policy can be written as

y(1)(t) = at+ b
√
µL +

c

t
, t > 0. (A.61)

Let t∗ be the minimizer of y(1)(t) which minimizes aτ + c/τ in y(2)(τ), then d
dτ y

(2)(t∗) =
1
2bt
−1/2
∗ > 0, therefore t∗ > τ∗. Then, by direct comparison of y(1) and y(2), we can see that if

τ∗ > µL, y(2) > y(1).

�

A.2.2 Proof of Theorem 3.4.2

Consider a Markov chain on two states: S = s and S < s where S is the starting inventory position
of an order cycle. The transition probability of this Markov chain is

P =

[
P(D(τ) ≤ u) P(D(τ) > u)

p(u) 1− p(u)

]
(A.62)

where p(u) is a function of u representing the probability of transiting from state S < s to S = s.
Conditioning on S = s− j, we have

p(u) =

∞∑
j=1

P(S = s− j)P(D(τ) ≤ u− j). (A.63)
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Clearly, p(u) is an increasing function of u.

Let π1, π2 denote the stationary probability of the Markov chain. After some straightforward
algebra, we can show

π2 =
P(D(τ) ≥ u)

p(u) + P(D(τ) ≥ u)
(A.64)

≤ P(D(τ) ≥ u)

p(λτ) + P(D(τ) ≥ λτ)
(A.65)

where the inequality holds since p(u) is increasing in u. Under demand process D1, a Poisson
process, or D2, a Brownian motion with drift, the numerator P(D(τ) ≥ u) has an exponential tail,
and the denominator p(λτ) + P(D(τ) ≥ λτ) is a constant. Therefore π2 decreases exponentially in
u, so the probability of the starting inventory position S∞ less than s decreases exponentially in u.

�

A.2.3 Proof of Theorem 3.7.1 and 3.7.2

W.l.o.g. we only prove the proposition for a fixed n so for brevity all function arguments with
respect to n are dropped. The optimal centralized order quantity qc is the minimizer of

yc(q) =
k0λ

q
+ h

(
r(q)− λ(2µ− nλ)

2µ(µ− nλ)
q +

q

2

)
+
nλ

2µ

h0λ

µ− nλ
q (A.66)

=
λk0

q
+ hr(q) + c1q (A.67)

where c1 is a constant.

Similarly, the optimal semi-centralized order quantity qs(k) is the minimizer of

ys(q) =
λk

q
+ h

(
r(q)− λ(2µ− nλ)

2µ(µ− nλ)
q +

q

2

)
(A.68)

=
λk

q
+ hr(q) + c2q (A.69)

for a given k and c2 is a constant with c2 < c1.

Our goal is to show there exists a special k = ks such that qs(ks) = qc. To proceed we’ll first
show several useful lemmas.

Lemma A.2.1. r(q) is continuous and strictly increasing in q under demand process D2 Brownian
motion with drift.

Proof:
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From the Remark 3.4.1, the waiting time W has the following distribution

FW (t) = (1− ρ)

btµ/qc∑
j=0

(ρj − nλt/q)j

j!
e−(ρj−nλt/q) t ≥ 0 (A.70)

For a fixed btµ/qc the distribution function FW (t) is strictly decreasing in q. In other word, larger
q results in stochastically larger waiting time.

From another form of FW (t) we have

Wk(ε) = (1− ρ)eρ(k+ε)
k∑
j=0

(ρe−ρ(j − k − ε))j

j!
(A.71)

where k = btµ0c and ε = tµ0−btµ0c = tµ/q−btµ/qc. Since Wk−1(1) = Wk(0), Wk(ε) is continuous
ε which implies the distribution of the waiting time FW (t) is continuous in q.

The lead time demand D(L) can be decomposed as the demand during waiting time D(W ) plus
the demand during deterministic process time D(q/µ). D(W ) has the distribution

FD(d,W ) =

∫ ∞
0

FD(d, l) dFW (l)

and D(q/µ) has the distribution FD(d, q/µ), which both are strictly decreasing in q. In other
words, larger q results in stochastically larger lead time demand. Under demand process D2,
demand during fixed interval D(l) is normally distributed thus FD(d, l) is continuous. Therefore
FD(d, L) is continuous and strictly decreasing in q. Then inverse function of the lead time demand
distribution r(q) = F−1

D (α) is a continuous and strictly increasing in q.

�
Lemma A.2.2. qs(0) = 0 and qs(k0) > qc

Proof: The derivative of the centralized cost function is

y′c(q) = −λk0

q2
+ hr′(q) + c1 (A.72)

The derivative of the semi-centralized cost function is

y′s(q) = −λk0

q2
+ hr′(q) + c2 (A.73)

If k = 0 then the optimal solution is qs(0) = 0. If k = k0 then by the fact that c2 < c1 and the
monotonicity of r(q) from the lemma A.2.1, we have qs(k0) > qc.

�

The cost function ys(q) can be viewed as a parametric optimization problem with parameter k.
By the lemma A.2.1 the parametric optimization problem satisfies the Berge Maximum Theorem
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and with the lemma A.2.2 the optimal semi-centralized order quantity qs(k) is a continuous function
in k on the interval [0, qs(k0)]. Then by the Intermediate Value Theorem there must exists a k = ks
such that qs(ks) = qc.

The proof of Theorem 3.7.2 is similar. The optimal centralized order cycle τc is the minimizer
of

y(2)
c (τ, s∗, n) =

1

τ
(k0 + c0u) + nh

(
ψ(s∗, τ, u)− λl − 1

2
λτ

)
(A.74)

and the optimal semi-centralized order cycle τs is the minimizer of

y(2)
s (τ, s∗, u) =

1

τ
(k + cu) + h

(
ψ(s∗, τ, u)− λl − 1

2
λτ

)
(A.75)

The key is to show the function ψ(s∗, τ, u) is continuous under demand process D2 Brownian
motion with drift. With demand process D2, the starting inventory position at the beginning of
an order cycle St forms a continuous state space Markov chain on (−∞, s], with state transition
the same as St+1 = min{s, St −D(τ) + u}. Under demand process D2, D(τ) is a normal random
variable with mean λτ and variance σ2

Dτ . It can be verified that if the reserved capacity u > λτ ,
the Markov chain is recurrent and the stationary distribution S∞ can be obtained, which is a
continuous random variable on (−∞, s]. In consequence, ψ(s∗, τ, u), the expectation of S∞, is a
continuous function in τ .

�

A.3 Proofs of Results Appearing in Chapter 4

A.3.1 Proof of Algorithm 4.5.1

Algorithm 4.5.1: Algorithm to compute E[Φ(I, 1, T )]
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Step 1: Initialization

q1 =

[
c∑
i=0

pi pc+1 pc+2 . . . p2c

]>
(A.76)

P1 =



c∑
i=0

pi
c−1∑
i=0

pi
c−2∑
i=0

pi · · · p0

pc+1 pc pc−1 · · · p1

pc+2 pc+1 pc · · · p2
...

...
...

...
...

p2c p2c−1 p2c−2 · · · pc
0 p2c p2c−1 · · · pc+1

0 0 p2c · · · pc+2
...

...
...

...
...

0 0 0 · · · p2c


(A.77)

Step 2: Recursive

E[Φ(I, 1, t+ 1)] = E[Φ(I, 1, t)] + c e>p + p>Cq̃t (A.78)

qt+1 = Ptqt (A.79)

(A.80)

where

Qt: Total unmet demand of Φ(I, 1, T ). Qt+1 = (Qt +D − c)+

qtk: Probability of Qt = k

qt: (tc+ 1)× 1 vector represents the p.m.f of Qt

=
[
qt0 q

t
1 q

t
2 . . . qttc−1 q

t
tc

]>

153



Pt ((t+ 1)c+ 1)× (tc+ 1) matrix

=



c∑
i=0

pi
c−1∑
i=0

pi
c−2∑
i=0

pi · · · p0 0 0 · · · 0 0 0 · · · 0 0 0

pc+1 pc pc−1 · · · p1 p0 0 · · · 0 0 0 · · · 0 0 0
pc+2 pc+1 pc · · · p2 p1 p0 · · · 0 0 0 · · · 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
p2c p2c−1 p2c−2 · · · pc pc−1 pc−1 · · · p0 0 0 · · · 0 0 0
0 p2c p2c−1 · · · pc+1 pc pc−1 · · · p1 p0 0 · · · 0 0 0
0 0 p2c · · · pc+2 pc+1 pc · · · p2 p1 p0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 · · · 0 0 0 · · · 0 0 0 · · · p2 p1 p0

0 0 0 · · · 0 0 0 · · · 0 0 0 · · · p3 p2 p1

0 0 0 · · · 0 0 0 · · · 0 0 0 · · · p4 p3 p2
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 · · · 0 0 0 · · · 0 0 0 · · · pc+2 pc+1 pc
0 0 0 · · · 0 0 0 · · · 0 0 0 · · · pc+3 pc+2 pc+1

0 0 0 · · · 0 0 0 · · · 0 0 0 · · · pc+4 pc+3 pc+2
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 · · · 0 0 0 · · · 0 0 0 · · · p2c p2c−1 p2c−2

0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 p2c p2c−1

0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 p2c


p = [ p0 p1 . . . pc ]>

p = [ pc+1 pc+2 . . . p2c ]>

e = [ 1 1 . . . 1 ]>

q̃ =

[
qt0 q

t
1 . . . qtc−1

tc∑
i=c

qti

]>

C =



0 1 · · · c− 2 c− 1 c
1 2 · · · c− 1 c c
2 3 · · · c c c
...

...
...

...
...

c− 1 c · · · c c c
c c · · · c c c


Complexity: Complexity of computing E[Φ(I, 1, T )] is O(T 2c2).

Consider t = 1, by the definition of Qt, clearly P(Q1 = 0) = P(D1 ≤ c) =
c∑
i=0

pi and P(Q1 =

k) = P(D1 = c+ k) = pc+k for k = 1, . . . , c, then we have q1 as defined in the algorithm.

Now consider the p.m.f. of Qt+1. By definition Qt+1 = (Qt +Dt − c)+. It can be easily verified
that qt+1 = Ptqt with Pt defined in the algorithm.

154



Given qt, to compute E[min{c,Qt +D}], if D > c we have min{c,Qt +D} = c therefore

E[min{c,Qt +D}|D > c] P(D > c) = ce>p

If D ≤ c, it is easy to check that

E[min{c,Qt +D}|D ≤ c] P(D ≤ c) = p>Cq̃t

The complexity of computing qt is O(Tc2) because Pt is sparse. The complexity of computing
p>Cq̃t is O(c2). Overall, recurring T times the complexity is O(T 2c2).

�

A.3.2 Proof of Algorithm 4.5.2

Algorithm 4.5.2: Algorithm to compute E[Φ̃(I, 1, T )]

Step 1: Determine γ and δ (See Algorithm 4.5.3)

Step 2: Initialization

q1 = [ δ0 δ1 δ2 . . . δc ]> (A.81)

P̃1 =



δ0

c∑
i=1

γi
c∑
i=2

γi · · · γc

δ1 ζ0 γ1 · · · γc−1

δ2 δ1 ζ0 · · · γc−2
...

...
...

...
...

δc δc−1 δc−2 · · · ζ0

0 δc δc−1 · · · δ1

0 0 δc · · · δ2
...

...
...

...
...

0 0 0 · · · δc


(A.82)

Step 3: Recursive

E[Φ̃(I, 1, t+ 1)] = E[Φ̃(I, 1, t)] + γ>C̃q̃t (A.83)

qt+1 = P̃
>
t qt (A.84)

(A.85)

where
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Qt: Total unmet demand of Φ̃(I, 1, T ). Qt+1 = (Qt + D̃ − C̃)+

qtk: Probability of Qt = k

qt: (tc× 1) vector represents the p.m.f. of Qt

=
[
qt0 q

t
1 q

t
2 . . . qttc−1 q

t
tc

]>
γ = [ γ0 γ1 . . . γc ]>

δ = [ δ0 δ1 . . . δc ]>

P̃t: ((t+ 1)c+ 1)× (tc+ 1) matrix

=



δ0

c∑
i=1

γi
c∑
i=2

γi · · · γc 0 0 · · · 0 0 0

δ1 ζ0 γ1 · · · γc−1 γc 0 · · · 0 0 0
δ2 δ1 ζ0 · · · γc−2 γc−1 γc · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
δc δc−1 δc−2 · · · ζ0 γ1 γ2 · · · 0 0 0
0 δc δc−1 · · · δ1 ζ0 γ1 · · · 0 0 0
0 0 δc · · · δ2 δ1 ζ0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 · · · δc δc−1 δc−2 · · · δ2 δ1 ζ0

0 0 0 · · · 0 δc δc−1 · · · δ3 δ2 δ1

0 0 0 · · · 0 0 δc · · · δ4 δ3 δ2
...

...
...

...
...

...
...

...
...

...
...

0 0 0 · · · 0 0 0 · · · δc δc−1 δc−2

0 0 0 · · · 0 0 0 · · · 0 δc δc−1

0 0 0 · · · 0 0 0 · · · 0 0 δc



C̃ =



0 0 0 · · · 0 0
0 1 1 · · · 1 1
0 1 2 · · · 2 2
...

...
...

...
...

0 1 2 · · · c− 1 c− 1
0 1 2 · · · c− 1 c


Complexity: The complexity of computing E[Φ̃(I, 1, T )] is O(T 2c2).

The proof is very similar to the proof of Algorithm 4.5.1, with constant capacity c replaced by
C̃ and original random demand D replaced by D̃.

�
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A.3.3 Proof of Algorithm 4.5.3

Algorithm 4.5.3: Algorithm to compute E[Φ(L1→N , IN , N, T )]

Initialization:

γ0 = [ 1 0 0 . . . 0 ]> (A.86)

Step 1: Compute the probability of unused capacity at plant N and unmet demand of product
N : γN , δN recursively as

γN = AγN−1 (A.87)

δN = BγN−1 (A.88)

where

A =



2c∑
i=c

pi
2c∑

i=c+1
pi

2c∑
i=c+2

pi · · · p2c

pc−1 pc pc+1 · · · p2c−1

pc−2 pc−1 pc · · · p2c−2
...

...
...

...
...

p0

1∑
i=0

pi
2∑
i=0

pi · · ·
c∑
i=0

pi



B =



c∑
i=0

pi
c+1∑
i=0

pi · · ·
2c−2∑
i=0

pi
2c−1∑
i=0

pi 1

pc+1 pc+2 · · · p2c−1 p2c 0
pc+2 pc+3 · · · p2c 0 0
pc+3 pc+4 · · · 0 0 0

...
...

...
...

...
...

p2c 0 · · · 0 0 0


Step 2: Compute the performance of open chain without inventory E[Φ(LN , ∅, N, T )] recursively
as

E[Φ(LN , ∅, N, 1)] = E[Φ(LN−1, ∅, N − 1, 1)] + E[min{c+ C̃N−1, D}] (A.89)

= E[Φ(LN−1, ∅, N − 1, 1)] + γ>N−1Kp (A.90)

where

K =


0 1 · · · c c c · · · c
0 1 · · · c c+ 1 c+ 1 · · · c+ 1
0 1 · · · c c+ 1 c+ 2 · · · c+ 2
...

...
...

...
...

...
...

...
0 1 · · · c c+ 1 c+ 2 · · · 2c


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p = [ p0 p1 . . . p2c ]>

Step 3: Compute residual performance E[Φ̃(LN , IN , N, T )] with γ = γN , δ = δN using
Algorithm 4.5.2.

Step 4: E[Φ(L1→N , IN , N, T )] = E[Φ(L1→N , ∅, N, T )] + E[Φ̃(L1→N , IN , 1, T )]

Complexity: The complexity of computing E[Φ(L1→N , IN , N, T )] is O(Nc2 + T 2c2)

We first show the residual performance Φ̃ is exactly the one defined in Section 4.5.2.

Φ(L1→N , IN , N, T ; d) can be formulated as a maximum flow problem on graph G as shown in
Figure A.1. Arcs (s0, vit) have capacity c. Arcs (vit, wjs) have capacity ∞. Arcs (wjs, s∞) have
capacity djs. Given a realization of demand djs, Φ(L1→N , IN , N, T ; d) is the maximum flow from
s0 to s∞.

Figure A.1: Maximum flow formulation of Φ(LN , I1, N, T )

First find a maximum flow from s0 to s∞ without the red arcs. The solution must be optimal
to Φ(L1→N , ∅, N, T ; d), which can be viewed as T subproblems of Φ(L1→N , ∅, N, 1; dt) where dt =
{djt,∀j}. Let the optimal solution of each subproblem denote as z(L1→N , ∅, N, 1; dt), or in short
zt. Let c̃Nt be the unused capacity of plant N in subproblem t and let d̃Nt be the unmet demand
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of product N in subproblem t under demand scenario d. If there are multiple optimal solutions zt

for one subproblem, we focus on the solutions that maximize the unused capacity c̃Nt or maximize
the unmet demand d̃Nt. These two sub-objectives are not contradict against each other because in
any optimal solution zt, c̃Nt and d̃Nt can’t be both strictly positive.

Next, consider adding red arcs, which are the inventory arcs between plant N and product
N . Clearly the set of solutions z = {It, ∀t} is feasible on G. Now find augmenting path on the
residual graph Gz. Notice there is no augmenting path using arcs (wjt, s∞) for j 6= N , otherwise
zt cannot be optimal for subproblem Φ(L1→N , ∅, N, 1; dt). Also, there is no augmenting path using
arcs (vNt, wNt) or (wNt, vNt) because the particular zt we choose (i.e., maximize c̃Nt or d̃Nt). Since
vNt is only connected with wNs for s ≥ t, augmenting paths can only use arcs (s0, vNt), (wNt, s∞)
and (vNt1 , wNt2) for t1 < t2, which is equivalent of solving

max
∑
t1<t2

fvNt1
,wNt2

(A.91)

s.t.
∑
t2>t

fvNt,wNt2
≤ c̃Nt ∀t (A.92)∑

t1<t

fvNt1
,wNt ≤ d̃Nt ∀t (A.93)

fvNt1
,wNt2

≥ 0 (A.94)

By easy transformation, the above problem is equivalent to the residual problem Φ̃(∅,L1, 1, T ; c̃, d̃)
defined in Section 4.5.2 (See Figure A.2).

Figure A.2: Finding augmenting paths is equivalent to Φ̃(∅, I1, 1, T ; c̃, d̃)

Therefore we have

Φ(L1→N , IN , N, T ; d) = Φ(L1→N , ∅, N, T ; d) + Φ̃(∅, I1, 1, T ; c̃, d̃) (A.95)
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Since c̃ and d̃ is unique for a given d and A.95 holds for all d ∈ D, taking expectation on both
sides, we have

E[Φ(L1→N , IN , N, T )] = E[Φ(L1→N , ∅, N, T )] + E[Φ̃(∅, I1, 1, T )] (A.96)

Next we’ll show how to actually compute E[Φ(L1→N , IN , N, T )]. First we need to show γ =

γN , δ = δN as in Step 1. Consider N = 1, then clearly γ1 = [
2c∑
i=c

pi, pc−1, pc−2, . . . , p0] and δ1 =

[
c∑
i=0

pi, pc+1, pc+2, . . . , p2c], then immediately we have γ1 = Aγ0 and δ1 = Bγ0 as in the Step 1. To

compute γN and δN given γN−1, by Simchi-Levi and Wei (2012) we have C̃N = (C̃N−1 + c−D)+

and D̃N = (D−C̃N−1−c)+, it is easy to verify that γN = AγN−1, δN = BγN−1 and E[min{C̃N−1+
c,D}] = γ>N−1Kp with A, B and K given as in the Step 1 and 2.

The complexity of computing γN and δN isO(Nc2). The complexity of computing E[Φ(LN , ∅, N, 1)]
is O(c2). Overall the complexity of computing E[Φ(L1→N , IN , N, T )] is O(Nc2 + T 2c2).

�

A.3.4 Proof of Closed Form 4.5.4

Case 1: 1 ≤ k ≤ N − 2

Notice the residual performance Φ̃ is closely related to the residual capacity in the first period and
residual demand in the second period. To begin with, we introduce some simplified notations and
several important lemmas. First ignore inventory arcs and let C̃i denote the residual capacity of
plant i in the first period, and let

PN


C̃1 = b1
C̃2 = b2

...

C̃k = bk

 (A.97)

denote the joint probability of C̃i = bi for all i from 1 to k given there are N plants in total. Since
demand is Bernoulli, clearly bi can only take on value 0 or 1 (b stands for binary). The Bernoulli
demand gives us a very useful lemma

Lemma A.3.1. Given an instance of demand (d11, . . . , dN1) in the first period, there is a unique
residual capacity vector (b1, . . . , bk)

Proof: It can be easily checked that for a closed chain, bi can be determined in an unique way:
If di = 2 then bi = 0
If di = 0 and di+1 = 0, then bi = 1
If di = 0 and di+1 = 2, then bi = 0
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�

Lemma A.3.1 ensures the probability measure PN is well defined: PN is just the sum of the
probabilities of all demand scenarios that yield the residual capacity (b1, . . . , bk). Here PN says
nothing about the inventory capability of plant 1 to k. Plant i may or may not be able to hold
inventory.

In comparison the residual demand in the second period given an instance of demand is not
unique. For example, suppose the demand in the second period is (d12 = 0, d22 = 2, d32 = 2), then
the residual demand can be either (0, 1, 0) or (0, 0, 1). Therefore analyzing the residual demand in
the second period independent of the first period does not help. To circumvent this issue, we define
a conditional residual performance π

πN


C̃1 = b1
C̃2 = b2

...

C̃k = bk

 (A.98)

as the residual performance on (C, I1→k, N, 2) given the residual capacity in the first period is
(b1, . . . , bk), i.e. E[Φ̃(C, I1→k, N, 2) | (C̃1, . . . , C̃k) = (b1, . . . , bk)]. By the definition of Φ̃, π can be
treated as the difference between two parts:

πN


C̃1 = b1
C̃2 = b2

...

C̃k = bk

 = E[C′N ]−E[CN ]

where E[CN ] is the performance of a single-period closed chain of size N , and E[C′N ] is the perfor-
mance of a single-period modified closed chain with

• Plant i from 1 to k have capacity 1 + bi, and bi can only be used to satisfied the demand of
product i.

• Plants i from k + 1 to N have capacity 1.

Let C̃ be the vector of (C̃1, . . . , C̃k) and b be the vector of (b1, . . . , bk). For the case of k ≤ N−2,
we have the following lemma

Lemma A.3.2. For 1 ≤ k ≤ N − 1,

PN (C̃ = b) = PN+l(C̃ = b)

for l = 0, 1, 2, . . .

For 1 ≤ k ≤ N − 2,
πN (C̃ = b) = πN+l(C̃ = b)

for l = 0, 1, 2, . . .
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Proof: The first part is true by Lemma A.3.1 because given a demand instance in the second
period (d12, . . . , dN2), PN only depends on the demand from d12 up to dk+1,2.

In the second part, it can be easily verified that given a demand instance in the second period
(d12, . . . , dN2), whether the residual capacity bi is used only depends on the demand (di−1,2, di,2, di+1,2).
Then πN (b1, . . . , bk) can be purely determined by k + 2 demand: d1 to dk+1 and dN .

�

Lemma A.3.2 shows another merit of Bernoulli demand, which says the benefit of an inventory
arc at plant i only affects the product i − 1, i, and i + 1. Here the benefit means the residual
capacity bi is used to satisfy the demand which can not be met without bi. In other words, as long
as N − k ≥ 2, which it is the case in this subsection, PN and πN is independent of N , so we can
drop the superscript N .

In the next lemma, we will show several useful properties of P and π. In the lemma, if there is
no further clarification, we always require the subscript of C̃i is between 1 and N − 2.

Lemma A.3.3. Some useful properties of P and π:

(1) No single zero between two ones:

P

 C̃i−1 = 1

C̃i = 0

C̃i+1 = 1

 = 0

(2) Starting point invariant

P


C̃i = bi
C̃i+1 = bi+1

...

C̃i+k = bi+k

 = P


C̃j = bi
C̃j+1 = bi+1

...

C̃j+k = bi+k



(3) Add a row
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P


C̃i = bi
C̃i+1 = bi+1

...

C̃i+k = bi+k

 = P


C̃i = bi
C̃i+1 = bi+1

...

C̃i+k = bi+k
C̃i+k+1 = 0

+ P


C̃i = bi
C̃i+1 = bi+1

...

C̃i+k = bi+k
C̃i+k+1 = 1



= P


C̃i−1 = 0

C̃i = bi
C̃i+1 = bi+k+1

...

C̃i+k = bk

+ P


C̃i−1 = 1

C̃i = bi
C̃i+1 = bi+k+1

...

C̃i+k = bk



(4) Redundant zeros at two ends

π


C̃i = bi
C̃i+1 = bi+1

...

C̃i+k−1 = bi+k−1

C̃i+k = 0

 = π


C̃i = bi
C̃i+1 = bi+1

...

C̃i+k−1 = bi+k−1



(5) Split

π



C̃i = bi
C̃i+1 = bi+1

...

C̃i+j = 0

C̃i+j+1 = 0
...

C̃i+k = bi+k


= π


C̃i = bi
C̃i+1 = bi+1

...

C̃i+j−1 = bi+j−1

+ π

 C̃i+j+2 = bi+j+2
...

C̃i+k = bk



Proof:

(1) bi−1 = 1 requires di−1 = di = 0. bi+1 = 1 requires di+1 = di+2 = 0. Then since di = di+1 = 0,
bi must be 1 as well.

(2) This is true because the closed chain is rotational symmetric.

(3) This is true because of the definition of the marginal probability distribution
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(4) Residual capacity of plant i+ k is 0 is equivalent to delete the corresponding inventory arc
at plant i+ k.

(5) This is true by Lemma A.3.2. Since C̃i+j and C̃i+j+1 are both 0, we can treat there is not
inventory arc at plant i+ j and i+ j + 1. The benefit of inventory arcs at plant i to i+ j − 1 only
affect products i− 1 to i+ j. The benefit of inventory arcs at plant i+ j + 2 to i+ k only affects
products i+ j + 1 to i+ k + 1, which is independent of the products i− 1 to i+ j.

�

To simplify the notation of E[Φ̃(C, I1→k, N, 2)], define f(k) as the unconditional residual perfor-
mance of a network with k inventory arcs, then

f(k) =
∑
b1

· · ·
∑
bk

P


C̃1 = b1
C̃2 = b2

...

C̃k = bk

π


C̃1 = b1
C̃2 = b2

...

C̃k = bk



Now we show f(k) follows a linear recurrence relation.

Lemma A.3.4. Linear recurrence relation between f(k + 1), f(k) and f(k − 1)

f(k + 1)− 2f(k) + f(k − 1)

= P


C̃1 = 1

C̃2 = 1
...

C̃k+1 = 1


π


C̃1 = 1

C̃2 = 1
...

C̃k+1 = 1

− 2π


C̃1 = 1

C̃2 = 1
...

C̃k = 1

+ π


C̃1 = 1

C̃2 = 1
...

C̃k−1 = 1



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Proof: We first manipulate f(k)

f(k) =
∑
b1

· · ·
∑
bk

P


C̃1 = b1
C̃2 = b2

...

C̃k = bk

π


C̃1 = b1
C̃2 = b2

...

C̃k = bk



=
∑
b1

· · ·
∑
bk

P


C̃1 = 0

C̃2 = b1
...

C̃k+1 = bk

+ P


C̃1 = 1

C̃2 = b1
...

C̃k+1 = bk


π


C̃1 = b1
C̃2 = b2

...

C̃k = bk



=
∑
b2

· · ·
∑
bk+1

P


C̃1 = 0

C̃2 = b2
...

C̃k+1 = bk+1

π


C̃1 = b2
C̃2 = b3

...

C̃k = bk+1

+

∑
b2

· · ·
∑
bk+1

P


C̃1 = 1

C̃2 = b2
...

C̃k+1 = bk+1

π


C̃1 = b2
C̃2 = b3

...

C̃k = bk+1



where the first equality holds because of the Properties (3), the second equality holds because of
the Properties (4) and in the third equality we just change the name of b1, . . . , bk to b2, . . . , bk+1.
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For f(k + 1), expanding along b1 we have

f(k + 1) =
∑
b2

· · ·
∑
bk+1

P


C̃1 = 0

C̃2 = b2
...

C̃k+1 = bk+1

π


C̃1 = 0

C̃2 = b2
...

C̃k+1 = bk+1

+

∑
b2

· · ·
∑
bk+1

P


C̃1 = 1

C̃2 = b2
...

C̃k+1 = bk+1

π


C̃1 = 1

C̃2 = b2
...

C̃k+1 = bk+1



=
∑
b2

· · ·
∑
bk+1

P


C̃1 = 0

C̃2 = b2
...

C̃k+1 = bk+1

π


C̃2 = b2
C̃3 = b3

...

C̃k+1 = bk+1

+

∑
b2

· · ·
∑
bk+1

P


C̃1 = 1

C̃2 = b2
...

C̃k+1 = bk+1

π


C̃1 = 1

C̃2 = b2
...

C̃k+1 = bk+1


where Property (4) is used in the equality.

By Property (2) we can see the first term in f(k) and f(k + 1) can be canceled out, so we have

f(k + 1)− f(k)

=
∑
b2

· · ·
∑
bk+1

P


C̃1 = 1

C̃2 = b2
...

C̃k+1 = bk+1


π


C̃1 = 1

C̃2 = b2
...

C̃k+1 = bk+1

− π


C̃1 = b2
C̃2 = b3

...

C̃k = bk+1




Similarly we have

f(k)− f(k − 1)

=
∑
b2

· · ·
∑
bk

P


C̃1 = 1

C̃2 = b2
...

C̃k = bk


π


C̃1 = 1

C̃2 = b2
...

C̃k = bk

− π


C̃1 = b2
C̃2 = b3

...

C̃k−1 = bk




Now we try to compute f(k + 1) − 2f(k) + f(k − 1). We first manipulate f(k + 1) − f(k) by
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expanding along bk+1 such that

f(k + 1)− f(k) = g1 + g2 + g3

where g1 is defined as

g1 =
∑
b2

· · ·
∑
bk

P


C̃1 = 1

C̃2 = b2
...

C̃k+1 = 0


π


C̃1 = 1

C̃2 = b2
...

C̃k+1 = 0

− π


C̃1 = b2
C̃2 = b3

...

C̃k = 0




=
∑
b2

· · ·
∑
bk

P


C̃1 = 1

C̃2 = b2
...

C̃k+1 = 0


π


C̃1 = 1

C̃2 = b2
...

C̃k = bk

− π


C̃1 = b2
C̃2 = b3

...

C̃k−1 = bk−1




where the equality holds because the Property (4). So g1 represents the part that bk+1 = 0.

Then define g2 as

g2 =
∑
b2

· · ·
∑
bk

P



C̃1 = 1

C̃2 = b2
...

C̃j = 0

C̃j+1 = 0
...

C̃k+1 = 1




π



C̃1 = 1

C̃2 = b2
...

C̃j = 0

C̃j+1 = 0
...

C̃k+1 = 1


− π



C̃1 = b2
C̃2 = b3

...

C̃j−1 = 0

C̃j = 0
...

C̃k = 1




g2 represents the part that bk+1 = 1 and there are some bj = 0 for j = 2, . . . , k. By Property (1),
we can assume W.L.O.G that bj = bj+1 = 0 for some j = 2, . . . , k− 1. By the Property (5) the two
π terms in g2 can be split as

π



C̃1 = 1

C̃2 = b2
...

C̃j = 0

C̃j+1 = 0
...

C̃k+1 = 1


= π


C̃1 = 1

C̃2 = b2
...

C̃j−1 = bj−1

+ π


C̃j+2 = bj+2

C̃j+3 = bj+3
...

C̃k+1 = 1


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and

π



C̃1 = b2
C̃2 = b3

...

C̃j−1 = 0

C̃j = 0
...

C̃k = 1


= π


C̃1 = b2
C̃2 = b3

...

C̃j−2 = bj−1

+ π


C̃j+1 = bj+2

C̃j+2 = bj+3
...

C̃k = 1



= π


C̃1 = b2
C̃2 = b3

...

C̃j−2 = bj−1

+ π


C̃j+2 = bj+2

C̃j+3 = bj+3
...

C̃k = 1


where the Property (2) is applied. By canceling out the second term we have

g2 =
∑
b2

· · ·
∑
bk

P



C̃1 = 1

C̃2 = b2
...

C̃j = 0

C̃j+1 = 0
...

C̃k+1 = 1



π


C̃1 = 1

C̃2 = b2
...

C̃j−1 = bj−1

− π


C̃1 = b2
C̃2 = b3

...

C̃j−2 = bj−1




Finally define g3 as

g3 =


C̃1 = 1

C̃2 = 1
...

C̃k+1 = 1


π


C̃1 = 1

C̃2 = 1
...

C̃k+1 = 1

− π


C̃1 = 1

C̃2 = 1
...

C̃k = 1




g3 represents the part that all bi = 1 for i = 1, . . . , k + 1.

Similary, manipulate f(k)− f(k − 1) by applying the Property (3) such that

f(k)− f(k − 1) = h1 + h2 + h3

Define h1 as

h1 =
∑
b2

· · ·
∑
bk

P


C̃1 = 1

C̃2 = b2
...

C̃k = bk
C̃k+1 = 0


π


C̃1 = 1

C̃2 = b2
...

C̃k = bk

− π


C̃1 = b2
C̃2 = b3

...

C̃k−1 = bk



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so h1 represents the part that bk+1 = 0. Immediately we found g1 = h1.

Define h2 as

h2 =
∑
b2

· · ·
∑
bk

P



C̃1 = 1

C̃2 = b2
...

C̃j = 0

C̃j+1 = 0
...

C̃k = bk
C̃k+1 = 1




π



C̃1 = 1

C̃2 = b2
...

C̃j = 0

C̃j+1 = 0
...

C̃k = bk


− π



C̃1 = b2
C̃2 = b3

...

C̃j−1 = 0

C̃j = 0
...

C̃k−1 = bk−1




h2 represents the part that bk+1 = 1 with bj = bj+1 = 0. Similar to g2, we can split h2 and since
the tail with bj+2 to bk involved can be canceled out, we have

h2 =
∑
b2

· · ·
∑
bk

P



C̃1 = 1

C̃2 = b2
...

C̃j = 0

C̃j+1 = 0
...

C̃k = bk
C̃k+1 = 1



π


C̃1 = 1

C̃2 = b2
...

C̃j−1 = bj−1

− π


C̃1 = b2
C̃2 = b3

...

C̃j−2 = bj−1




and again we have g2 = h2.

Finally define h3 as

h3 = P


C̃1 = 1

C̃2 = 1
...

C̃k = 1

C̃k+1 = 1


π


C̃1 = 1

C̃2 = 1
...

C̃k = 1

− π


C̃1 = 1

C̃2 = 1
...

C̃k−1 = 1




h3 represents the part that all bi = 1 for i = 1, . . . , k. Since h3 and g3 are the only parts that
cannot be canceled out, we have

f(k + 1)− 2f(k) + f(k − 1)

= g3 − h3

= P


C̃1 = 1

C̃2 = 1
...

C̃k+1 = 1


π


C̃1 = 1

C̃2 = 1
...

C̃k+1 = 1

− 2π


C̃1 = 1

C̃2 = 1
...

C̃k = 1

+ π


C̃1 = 1

C̃2 = 1
...

C̃k−1 = 1



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�

From Lemma 5, notice the computation of f(k) only depends on a single type of P and π: when
all bi are 1. In the next Lemma we’ll show the explicit formula for P and π with all bi = 1.

Lemma A.3.5.

P


C̃1 = 1

C̃2 = 1
...

C̃k = 1

 =

(
1

2

)k+1

π


C̃1 = 1

C̃2 = 1
...

C̃k+1 = 1

− 2π


C̃1 = 1

C̃2 = 1
...

C̃k = 1

+ π


C̃1 = 1

C̃2 = 1
...

C̃k−1 = 1

 = −
(

1

2

)k+1

Proof:

P


C̃1 = 1

C̃2 = 1
...

C̃k = 1

 =

(
1

2

)k+1

is obvious.

To compute π, now consider a modified closed chain C′N and open chain L′N with the following
properties:

• Plant 1 and N have capacity 1.

• Plants i = 2, . . . , N − 1 has capacity 2. One of the capacity of plant i is flexible, i.e. can
be used to satisfy the demand of either product i or i + 1. The other capacity of plant i is
dedicated, i.e. can only be used to satisfy the demand of product i.

Let E[C′N ] and E[L′N ] denote the expected performance of this modified closed and open chain
respectively, then by the definition of π we have

π


C̃1 = 1

C̃2 = 1
...

C̃k = 1

 = E[C′k+2]−E[Ck+2]

170



By Algorithm 4.5.2 (extension to Simchi-Levi and Wei (2012)) E[C′k] can be computed as

E[C′k] = E[L′k] + P{D̃1 = 1}P{C̃k = 1} (A.99)

= E[L′k] +
1

4
(A.100)

The performance of the modified open chain E[L′k] can be computed recursively. Let D̃k denote
the residual demand of product k, then

E[L′k+1] = (E[L′k] + 1)P{D̃k = 0}+ (E[L′k] +
3

2
)P{D̃k = 1}

P{D̃k+1 = 1} =
1

2
P{D̃k = 1}

E[L′3] =
19

8

P{D̃3 = 1} =
1

8

Arrange the above terms we have

E[L′k+1]− 2E[L′k] + E[L′k−1] = −
(

1

2

)k+1

We have shown the performance of a regular open chain E[Lk] with Bernoulli demand is

E[Lk] =
3k − 1

4

and immediately we have

E[Lk+1]− 2E[Lk] + E[Lk−1] = 0

Combine above results we have the desired results in Lemma A.3.5.

�

Now the correctness of the closed form expression 4.6.1 can be proved using Lemma A.3.4 and
A.3.5:

Proof of the correctness of Algorithm 4.6.1

With Lemma A.3.4 and A.3.5 we have

f(k + 2)− 2f(k + 1) + f(k)

f(k + 1)− 2f(k) + f(k − 1)
=

1

4
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Given f(1) = 3
32 , f(2) = 23

128 , f(3) = 135
512 we can obtain the general formula of f(k):

f(k) =
1

72
− 1

72

(
1

4

)k
+

1

12
k

= E[Φ̃(C, I1→k, N, 2)]

�

Case 2: k = N − 1

Since the underlying flexibility structure is a closed chain, when k ≥ N − 1 the benefit of add
the (N − 1)th and N th inventory arc will overlap with the benefit of the first inventory arc, the
computation of E[Φ̃(C, I1→k, N, 2)] needs special treatment. For k = N − 1, by Lemma 3 we still
have P holds, but π now depends on N which is different from Case 1. As defined in Case 1, let

πN


C̃1 = b1
C̃2 = b2

...

C̃N−1 = bN−1

 (A.101)

denote expected residual demand can be satisfied given (b1, . . . , bN−1). The superscript N reminds
that there are N plants and products and πN is different from π. Then similarly we define fN (N−1)
as the unconditional expected residual demand satisfied with dedicated inventory from plant 1 to
N − 1, then we have

fN (N − 1) =
∑
b1

· · ·
∑
bN−1

P


C̃1 = b1
C̃2 = b2

...

C̃N−1 = bN−1

πN


C̃1 = b1
C̃2 = b2

...

C̃N−1 = bN−1



Then the correctness of closed form expression 4.6.1 can be proved by examining f(N − 1) −
fN (N − 1)

f(N − 1)− fN (N − 1) =
∑
b1

· · ·
∑
bN−1

P


C̃1 = b1
C̃2 = b2

...

C̃N−1 = bN−1

π


C̃1 = b1
C̃2 = b2

...

C̃N−1 = bN−1

−

∑
b1

· · ·
∑
bN−1

P


C̃1 = b1
C̃2 = b2

...

C̃N−1 = bN−1

πN


C̃1 = b1
C̃2 = b2

...

C̃N−1 = bN−1


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If there exists some i such that bi = bi+1 = 0, it is equivalent to think as if there is no inventory
arc for plant i and i+ 1, then by definition πN is reduced to π as in the Case 1:

πN


C̃1 = b1
C̃2 = b2

...

C̃N−1 = bN−1

 = π


C̃1 = b1
C̃2 = b2

...

C̃N−1 = bN−1



Therefore

f(N − 1)− fN (N − 1) = P


C̃1 = 1

C̃2 = 1
...

C̃N−1 = 1

π


C̃1 = 1

C̃2 = 1
...

C̃N−1 = 1

−

P


C̃1 = 1

C̃2 = 1
...

C̃N−1 = 1

πN


C̃1 = 1

C̃2 = 1
...

C̃N−1 = 1



By Lemma A.3.4 we have

E[L′k] = −
(

1

2

)k
+ k − 1

2

therefore

π


C̃1 = 1

C̃2 = 1
...

C̃k = 1

 = E[L′k+2]−E[Lk+2]

= −
(

1

2

)k+2

+
1

4
k +

1

4

To compute πN , similarly to L′k, we define a modified open chain L′′k and closed chain C′′k such
that plant k has capacity 1 and plant 1 to k − 1 has capacity 2. Then by the definition of πN we
have

πN


C̃1 = 1

C̃2 = 1
...

C̃N−1 = 1

 = E[C′′N ]−E[CN ]

E[C′′N ] can be computed using E[L′′N ] since we have E[C′′N ] = E[L′′N ]
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E[L′′N+1] = (E[L′′N ] + 1)P{D̃N = 0}+ (E[L′′N ] +
3

2
)P{D̃N = 1}

P{D̃N+1 = 1} =
1

2
P{D̃N = 1}

E[L′′2 ] =
23

8

P{D̃2 = 1} =
1

8

therefore

E[C′′N ] = −
(

1

2

)N
+N

Then

πN


C̃1 = 1

C̃2 = 1
...

C̃N−1 = 1

 = −
(

1

2

)N
+

1

4
N

Then

π


C̃1 = 1

C̃2 = 1
...

C̃k = 1

− πN


C̃1 = 1

C̃2 = 1
...

C̃N−1 = 1

 =

(
1

2

)N+1

since

P


C̃1 = 1

C̃2 = 1
...

C̃N−1 = 1

 =

(
1

2

)N

therefore

fN (N − 1) = f(N − 1)−
(

1

2

)2N+1

�
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Case 3: k = N

When k = N , now P also depends on N . Define

PN


C̃1 = b1
C̃2 = b2

...

C̃N = bN

 (A.102)

as the joint probability of C̃i = bi for all i from 1 to N , with N plants and products. Then fN (N)
can be expressed using PN and πN :

fN (N) =
∑
b1

· · ·
∑
bN

PN


C̃1 = b1
C̃2 = b2

...

C̃N = bN

πN


C̃1 = b1
C̃2 = b2

...

C̃N = bN



By definition fN (N) is the residual performance on all N inventory arcs. Since our problem is
homogeneous, the residual performance on each inventory arc must be the same. We can define
the residual performance on a single inventory arc as f̄N (N). Then immediately we have fN (N) =
N f̄N (N). W.l.o.g, we can assume f̄N (N) is the residual performance on the first inventory arc,
then f̄N (N) can be expressed as

f̄N (N) =
∑
b2

· · ·
∑
bN

PN


C̃1 = 1

C̃2 = b2
...

C̃N = bN

 π̄N


C̃1 = 1

C̃2 = b2
...

C̃N = bN


where π̄N is the residual performance on the first inventory arc given the residual capacity of plant
1 to N are (1, b2, . . . , bN ). Here are some properties of PN and π̄N

Lemma A.3.6. Some useful properties of PN and π̄N :

(1) No single zero between two ones

(2) Starting point invariant

(3) Add a row DOES NOT HOLD:

PN


C̃1 = b1
C̃2 = b2

...

C̃N = bN

 6= PN+1


C̃1 = b1
C̃2 = b2

...

C̃N = bN
C̃N+1 = 0

+ PN+1


C̃1 = b1
C̃2 = b2

...

C̃N = bN
C̃N+1 = 1


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(4) Relationship between PN and P:

P


C̃1 = b1
C̃2 = b2

...

C̃N = bN

 = PN+1


C̃1 = b1
C̃2 = b2

...

C̃N = bN
C̃N+1 = 0

+ PN+1


C̃1 = b1
C̃2 = b2

...

C̃N = bN
C̃N+1 = 1



(5) Rotational symmetry:

PN


C̃1 = b1
C̃2 = b2

...

C̃N−1 = bN−1

C̃N = bN

 = PN


C̃1 = b2
C̃2 = b3

...

C̃N−1 = bN
C̃N = b1



(6) Condition of PN = P:

PN



C̃1 = b1
...

C̃j−1 = bj−1

C̃j = 0

C̃j+1 = 0

C̃j+2 = 1
...

C̃N−2 = 1

C̃N−1 = 0

C̃N = 0



= P



C̃1 = b1
...

C̃j−1 = bj−1

C̃j = 0

C̃j+1 = 0

C̃j+2 = 1
...

C̃N−2 = 1

C̃N−1 = 0

C̃N = 0



(7) Relationship between π̄N , πN and π:
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If there are some i, j such that C̃j+1 = C̃j+2 = C̃N−i = C̃N−i−1 = 0 and N − i− 1 ≥ j + 1, then

π̄N



C̃1 = 1
...

C̃j = 1

C̃j+1 = 0

C̃j+2 = 0

C̃j+3 = bj+3
...

C̃N−i−2 = bi−3

C̃N−i−1 = 0

C̃N−i = 0

C̃N−i+1 = 1
...

C̃N = 1



=
1

i+ j
π


C̃1 = 1

C̃2 = 1
...

C̃i+j = 1



If C̃i = 1 for all i = 1, . . . , N , then

π̄N


C̃1 = 1

C̃2 = 1
...

C̃N = 1

 =
1

N
πN


C̃1 = 1

C̃2 = 1
...

C̃N = 1



Now we can prove the correctness of closed form expression 4.6.1 by examining f̄N (N) −
f̄N−1(N − 1). We have

f̄N (N) =
∑
b2

· · ·
∑
bN

PN


C̃1 = 1

C̃2 = b2
...

C̃N = bN

 π̄N


C̃1 = 1

C̃2 = b2
...

C̃N = bN



Now we classify all 2N−1 terms in f̄N (N) into N groups: each group q = 1, . . . , N − 1 contains
all terms with π̄N that can be reduced using Property (7) to

1

q
π


C̃1 = 1

C̃2 = 1
...

C̃q = 1


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and group N contains the term with π̄N that can be reduced using Property (7) to

1

N
πN


C̃1 = 1

C̃2 = 1
...

C̃N = 1



Define f̄Nq (N) as the sum of all terms in group q, for example, sum of all terms in group 1 is

f̄N1 (N) =
∑
b4

· · ·
∑
bN−2

PN



C̃1 = 1

C̃2 = 0

C̃3 = 0

C̃4 = b4
...

C̃N−2 = bN−2

C̃N−1 = 0

C̃N = 0


π̄N



C̃1 = 1

C̃2 = 0

C̃3 = 0

C̃4 = b4
...

C̃N−2 = bN−2

C̃N−1 = 0

C̃N = 0



=
∑
b4

· · ·
∑
bN−2

PN



C̃1 = 1

C̃2 = 0

C̃3 = 0

C̃4 = b4
...

C̃N−2 = bN−2

C̃N−1 = 0

C̃N = 0


π
(
C̃1 = 1

)

From Property (7) we can see

π̄N



C̃1 = 1

C̃2 = 0

C̃3 = 0

C̃4 = b4
...

C̃N−2 = bN−2

C̃N−1 = 0

C̃N = 0


= π

(
C̃1 = 1

)

therefore all terms above are indeed in group 1.
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Now we manipulate the terms in group 1. First we expand over b4 and use the Property (5)

f̄N1 (N) =



∑
b5

· · ·
∑
bN−2

PN



C̃1 = b5
...

C̃N−6 = bN−2

C̃N−5 = 0

C̃N−4 = 0

C̃N−3 = 1

C̃N−2 = 0

C̃N−1 = 0

C̃N = 0


+ PN



C̃1 = b5
...

C̃N−6 = bN−2

C̃N−5 = 0

C̃N−4 = 0

C̃N−3 = 1

C̃N−2 = 0

C̃N−1 = 0

C̃N = 1




π
(
C̃1 = 1

)

Using Property (4) we have

f̄N1 (N) =
∑
b5

· · ·
∑
bN−2

P



C̃1 = b5
...

C̃N−6 = bN−2

C̃N−5 = 0

C̃N−4 = 0

C̃N−3 = 1

C̃N−2 = 0

C̃N−1 = 0


π
(
C̃1 = 1

)

Using Property (5) again and rename b5 to bN−2 we can see

f̄N1 (N) =
∑
b4

· · ·
∑
bN−3

PN



C̃1 = 1

C̃2 = 0

C̃3 = 0

C̃4 = b4
...

C̃N−3 = bN−3

C̃N−2 = 0

C̃N−1 = 0


π
(
C̃1 = 1

)

= f̄N−1
1 (N − 1)

which is exactly the group 1 of f̄N−1(N − 1).

Now for group q from 2 to N −4, each group will have q terms. For example in group 2 we have
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2 terms

f̄N2 (N) =
1

2

∑
b5

· · ·
∑
bN−2

PN



C̃1 = 1

C̃2 = 1

C̃3 = 0

C̃4 = 0

C̃5 = b5
...

C̃N−2 = bN−2

C̃N−1 = 0

C̃N = 0


π

(
C̃1 = 1

C̃2 = 1

)
+

1

2

∑
b4

· · ·
∑
bN−3

PN



C̃1 = 1

C̃2 = 0

C̃3 = 0

C̃4 = b4
...

C̃N−3 = bN−3

C̃N−2 = 0

C̃N−1 = 0

C̃N = 1


π

(
C̃1 = 1

C̃2 = 1

)

By Property (5) these 2 terms are exactly the same. Similar argument can be made for all
groups from 3 to N − 4, therefore w.l.o.g. we can write

f̄Nq (N) =
∑
bq+3

· · ·
∑
bN−2

PN



C̃1 = 1
...

C̃q = 1

C̃q+1 = 0

C̃q+2 = 0

C̃q+3 = bq+3
...

C̃N−2 = bN−2

C̃N−1 = 0

C̃N = 0



π


C̃1 = 1

C̃2 = 1
...

C̃q = 1



For q from 2 to N − 4, similar manipulation can be made as we manipulate group 1, i.e. we
have

f̄Nq (N) = f̄N−1
q (N − 1)

for q = 1, . . . , N − 4.
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Now we will look at group N − 3 to N one by one. For group N , we have

f̄NN (N) =
1

N
PN


C̃1 = 1

C̃2 = 1
...

C̃N = 1

πN


C̃1 = 1

C̃2 = 1
...

C̃N = 1



For group N − 1, using Property (5) we can easily see

f̄NN−1(N) = PN


C̃1 = 1

...

C̃N−1 = 1

C̃N = 0

πN


C̃1 = 1

C̃2 = 1
...

C̃N−1 = 1



By Property (1) we have

f̄NN−1(N) = 0

For group N − 2, using Property (5) we have

f̄NN−2(N) = PN


C̃1 = 1

...

C̃N−2 = 1

C̃N−1 = 0

C̃N = 0

π


C̃1 = 1

C̃2 = 1
...

C̃N−2 = 1



For group N − 3, using Property (5) we have

f̄NN−3(N) = PN



C̃1 = 1
...

C̃N−3 = 1

C̃N−2 = 0

C̃N−1 = 0

C̃N = 0


π


C̃1 = 1

C̃2 = 1
...

C̃N−3 = 1



It can be easily checked that

PN

 C̃1 = 1
...

C̃N = 1

 = PN


C̃1 = 1

...

C̃N−2 = 1

C̃N−1 = 0

C̃N = 0

 = PN



C̃1 = 1
...

C̃N−3 = 1

C̃N−2 = 0

C̃N−1 = 0

C̃N = 0


=

(
1

2

)N
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To compute πN , similar to the previous case, we define a modified closed chain C′′′k such that all
plants from 1 to N has capacity 2. Then by the definition of πN we have

πN


C̃1 = 1

C̃2 = 1
...

C̃N = 1

 = E[C′′′N ]−E[CN ]

Since all demand can be satisfied under C′′′k , immediately we have E[C′′′k ] = N , therefore

πN


C̃1 = 1

C̃2 = 1
...

C̃N = 1

 =
1

4
N

Now we can compute the difference

f̄N (N)− f̄N−1(N − 1)

=
N∑
q=1

f̄Nq (N)−
N−1∑
q=1

f̄N−1
q (N − 1)

=
N∑

q=N−3

f̄Nq (N)−
N−1∑
q=N−3

f̄N−1
q (N − 1)

= −
(

1

2

)N
π


C̃1 = 1

C̃2 = 1
...

C̃N−3 = 1

+

(
1

2

)N
π


C̃2 = 1

C̃1 = 1
...

C̃N−2 = 1

− 1

4

(
1

2

)N

then combine the results and simplify the above expression we have

f̄N (N)− f̄N−1(N − 1) =

(
1

4

)N

Given the smallest instance f̄3(3) = 5
64 , we have the general form of f̄N (N) as

f̄N (N) = −1

3

(
1

4

)N
+

1

12

then using the fact that fN (N) = N f̄N (N) we have

fN (N) = −N
3

(
1

4

)N
+

1

12
N

�
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