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RESEARCH ARTICLE Open Access

Optimal tumor sampling for immunostaining
of biomarkers in breast carcinoma
Juliana Tolles1, Yalai Bai2, Maria Baquero2, Lyndsay N Harris3, David L Rimm2 and Annette M Molinaro1*

Abstract

Introduction: Biomarkers, such as Estrogen Receptor, are used to determine therapy and prognosis in breast
carcinoma. Immunostaining assays of biomarker expression have a high rate of inaccuracy; for example, estimates
are as high as 20% for Estrogen Receptor. Biomarkers have been shown to be heterogeneously expressed in breast
tumors and this heterogeneity may contribute to the inaccuracy of immunostaining assays. Currently, no evidence-
based standards exist for the amount of tumor that must be sampled in order to correct for biomarker
heterogeneity. The aim of this study was to determine the optimal number of 20X fields that are necessary to
estimate a representative measurement of expression in a whole tissue section for selected biomarkers: ER, HER-2,
AKT, ERK, S6K1, GAPDH, Cytokeratin, and MAP-Tau.

Methods: Two collections of whole tissue sections of breast carcinoma were immunostained for biomarkers.
Expression was quantified using the Automated Quantitative Analysis (AQUA) method of quantitative
immunofluorescence. Simulated sampling of various numbers of fields (ranging from one to thirty five) was
performed for each marker. The optimal number was selected for each marker via resampling techniques and
minimization of prediction error over an independent test set.

Results: The optimal number of 20X fields varied by biomarker, ranging between three to fourteen fields. More
heterogeneous markers, such as MAP-Tau protein, required a larger sample of 20X fields to produce representative
measurement.

Conclusions: The optimal number of 20X fields that must be sampled to produce a representative measurement
of biomarker expression varies by marker with more heterogeneous markers requiring a larger number. The clinical
implication of these findings is that breast biopsies consisting of a small number of fields may be inadequate to
represent whole tumor biomarker expression for many markers. Additionally, for biomarkers newly introduced into
clinical use, especially if therapeutic response is dictated by level of expression, the optimal size of tissue sample
must be determined on a marker-by-marker basis.

Introduction
Biomarkers have become essential for therapeutic
decision-making and prognostication in breast carci-
noma. Testing for Estrogen Receptor (ER), Progesterone
Receptor (PR), and HER-2 is the standard of care; many
other markers are also widely used [1]. However, conven-
tional assays for biomarkers suffer from lack of objective
methods of measurement. The most recent ASCO/CAP
review of immunohistochemical assays for breast carci-
noma found that ‘up to 20% of ER and PR determinations

worldwide may be inaccurate’ [2]. The ASCO/CAP com-
mittee hypothesized that most misclassifications of ER
and PR status are due to ‘pre-analytical variables,’ which
are variations in tissue processing prior to immunostain-
ing. However, an additional likely cause of the high rate
of assay inaccuracy is biomarker heterogeneity [3].
Biomarkers are known to be heterogeneously expressed
in breast carcinoma. Several investigations have demon-
strated statistically significant differences in Estrogen
Receptor expression between samples from the same
tumor [4-6]. In addition, PR, HER-2, p53, and MIB-1
have been shown to have statistically significant differ-
ences in intra-tumor expression [5-8]. The heterogeneity
of MAP-Tau epitope can be visualized in immunostained
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whole tissue sections (Figure 1). In the case of heteroge-
neous biomarkers, insufficient tumor sampling may lead
to misclassification of biomarker status and inappropriate
treatment. The phenomenon of biomarker heterogeneity
in breast carcinoma has been well described, but no evi-
dence-based standards have been developed for the size
of tissue sample necessary to correct for heterogeneity in
assays of biomarker status. The most recent set of
ASCO/CAP guidelines states, ‘large, preferably multiple
core biopsies of tumor are preferred for testing if they are
representative of the tumor (grade and type) at resection’
[2]. To our knowledge, no prior investigations point to a
more precise standard for the minimum number of cores

or sections of resection tissue required to account for
biomarker heterogeneity.
In order to estimate the required number of fields for

accurate biomarker status assessment, we conducted a
study of eight biomarkers that represent varying degrees
of heterogeneity: ER, HER-2, AKT, ERK, S6K1, GAPDH,
Cytokeratin, and MAP-Tau. First, we quantified the
degree of heterogeneity for each marker using mixed-
effects modeling. We then simulated sampling different
amounts of tumor in order to determine the optimal
number of 20X fields required to give a measurement of
biomarker expression representative of the entire tissue
sample. We hypothesized that markers with greater

Figure 1 Heterogeneity of MAP-Tau expression in a whole tissue section of breast carcinoma. (a) H&E stain. (b) Immunofluorescence.
Nuclei are labeled with DAPI. Cytokeratin is labeled with Cy3. MAP-Tau is labeled with Cy5.
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heterogeneity would require a larger number of sampled
fields to produce a representative measurement.

Materials and methods
Cohorts
For this pilot study, two convenience samples were used,
one from the clinical trial TAX 307 and the other from
the tissue archives of the Pathology Department of Yale
University. The first collection of subjects was a cohort
(n = 122) from TAX 307, a prospectively collected, inde-
pendent phase III clinical trial comparing TAC versus
FAC. Patients were enrolled between January 1, 1998
and December 31, 1999, with a total of 484 patients ran-
domized to receive either 5-fluorouracil-doxorubicin-
cyclophosphamide (FACs; 75/50/500 mg/m2) or doce-
taxel-doxorubicin-cyclophosphamide (TAC; 500/50/500
mg/m2) as first line chemotherapy for metastatic breast
cancer. All patients provided clinical consent prior to
enrollment. Specimens and associated clinical informa-
tion were collected under the guidelines and approval of
the Dana Farber Human Investigation Committee under
protocol #8219 to L.H.
The second collection of subjects consisted of 14

tumor resection specimens from patients who under-
went surgery at Yale University/New Haven Hospital
between 2001 to 2005. Whole tissue sections of forma-
lin-fixed, paraffin-embedded primary invasive breast
cancer tumors were obtained from the archives of the
Pathology Department of Yale University. All the
patients were diagnosed with infiltrating ductal carci-
noma of the breast. All cases were judged to be ER-posi-
tive by pathologist-based scoring systems. None received
chemotherapy or radiation prior to resection. The study
was approved by the institutional review board for Yale
University.

Antibodies and quantitative immunofluorescence
MAP-Tau immunostaining was performed on the TAX
307 clinical trial cohort, which consisted of 122 whole
section slides. Five μm tissue sections from formalin-
fixed paraffin-embedded tumor blocks were mounted on
aminosilane glass slides (plus slides) and heated. Slides
were immunostained using MAP-Tau monoclonal anti-
body which recognizes all human MAP-Tau isoforms
independent of phosphorylation status (1:750; mouse
monoclonal, clone 2B2.100/T1029, US Biological,
Swampscott, MA). Slides were divided into six indivi-
dual batches, each including one Breast Cancer Cell
Line Control TMA slide. TAX 307 slides were incubated
for 24 hours at 60°C. Slides were deparaffinized by oven
incubation at 60°C for 20 minutes, followed by two 20
minute incubations in xylene. After slides were washed
twice in 100% ethanol, once in 70% ethanol, and rehy-
drated with tap water, antigen retrieval by pressure

cooking was performed in 6.5 mM sodium citrate buffer
(pH 6.0) for 10 minutes. Endogenous peroxidase activity
was quenched in methanol and 3% hydrogen peroxide
for 30 minutes followed by rinsing in tap water and
placement in 1× trisethanolamine-buffered saline (TBS;
pH 8.0). Non-specific binding was reduced using a 30
minute preincubation in 0.3% bovine serum albumin
(BSA) in 0.1 M tris-buffered saline (TBS, pH = 8) with
0.05% Tween (TBS-T). Slides were prepared for 4°C
overnight incubation (12 hours) by adding a cocktail of
MAP-Tau primary antibody (1:750) plus a wide-spec-
trum rabbit anti-cow cytokeratin antibody (Z0622;
DAKO, Carpinteria, CA) diluted 1:100 in BSA/1X TBS-
T. Following overnight incubation, slides were washed
twice in 1× TBS with 0.05% Tween for 10 minutes and
once in 1× TBS. Secondary antibody was then applied
for one hour at room temperature. Goat antirabbit
Alexa 488 (Molecular Probes, Eugene OR) was diluted
1:100 in horseradish peroxidase-conjugated EnVision
antimouse secondary antibody (DAKO). Following incu-
bation with secondary antibodies, slides were washed
twice (ten minutes, then five minutes) in 1×TBS-T and
once (five minutes) in 1×TBS. Cyanine-5 (Cy5) directly
conjugated to tyramide (FP1117, Perkin-Elmer, Boston
MA), diluted 1:50 in amplification diluent (Perkin-
Elmer) was used as the fluorescent chromogen for target
detection and was added to all slides for ten minutes at
room temperature. Two final washes (ten minutes, then
five minutes) in 1× TBS-T and one five minute wash in
1× TBS were performed. Slides were stained for double-
stranded DNA using Prolong Gold mounting medium
with anti-fade reagent 4’,6-diamidino-2-phenylindole
(’DAPI’, Molecular Probes, Eugene OR). Normal breast
epithelium served as internal positive controls while
omission of the primary antibody served as the negative
control for each immunostaining event.
For all epitopes other than MAP-Tau, immunostaining

was performed on sets of serial slides from the second
collection of subjects (n = 14) and the following proto-
col was used. Whole tissue sections were incubated at
60°C for 20 minutes before being deparaffinized with
xylene, rehydrated, endogenous peroxidase blocked, and
antigen-retrieved by pressure cooking for 15 minutes in
citrate buffer (pH = 6). Slides were pre-incubated with
0.3% bovine serum albumin in 0.1 mol/L TBS (pH = 8)
for 30 minutes at room temperature. The procedure for
ERK staining was a follows: slides were incubated with a
cocktail of ERK1/2 antibody diluted at 1:1,000 (Mouse
monoclonal, clone L34F12; Cell Signaling Technology,
Danvers, MA) and a wide-spectrum rabbit anti-cow
cytokeratin antibody (Z0622; Dako Corp, Carpinteria,
CA), diluted 1:100 in bovine serum albumin/TBS over-
night at 4°C. This was followed by a 1-hour incubation
at room temperature with Alexa 546-conjugated goat
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anti-rabbit secondary antibody (A11010; Molecular
Probes, Eugene, OR) diluted 1:100 in mouse EnVision
reagent (K4001, Dako Corp, Carpinteria, CA). Cyanine 5
(Cy5) directly conjugated to tyramide (FP1117; Perkin-
Elmer, Boston, MA) at a 1:50 dilution was used as the
fluorescent chromogen for ERK detection. Prolong
mounting medium (Prolong Gold, P36931; Molecular
Probes, Eugene, OR) containing 4’,6-diamidino-2-pheny-
lindole was used to identify tissue nuclei. Immunostain-
ing for all remaining epitopes was done in a similar
manner with antibodies as follows outlined in Table 1.

Image capture and analysis
The automated quantitative analysis (AQUA) method of
immunofluorescence allows exact measurement of pro-
tein concentration within subcellular compartments, as
described in detail elsewhere [9]. In brief, a series of
high-resolution monochromatic images were captured
by the PM-2000 microscope (HistoRx). For whole tissue
sections, multiple regions of interest (ROIs) containing
invasive tumor were circled on the AQUA system
screen based on the low-resolution cytokeratin (cyto-
plasm) image of the immunohistochemically stained
slide taken with the AQUA system. The selected ROIs
were automatically overlaid with a grid by the image
capturing program and each 20X field of view (FOV)
was defined automatically. For each FOV, in-focus and
out-of-focus images were obtained using the signal from
the 4’,6-diamidino-2-phenylindole, cytokeratin-Alexa
546 and target protein-Cy5 channel. Target protein anti-
genicity was measured using a channel with emission
maxima above 620 nm, in order to minimize tissue
autofluorescence. Tumor was distinguished from stro-
mal and non-stromal elements by creating an epithelial
tumor ‘mask’ from the cytokeratin signal. The binary
mask - in which each pixel is either ‘on’ or ‘off’ - is cre-
ated on the basis of an intensity threshold set by visual
inspection of FOVs.
The AQUA score of the target protein in each subcel-

lular compartment was calculated by dividing the target
protein compartment pixel intensities by the area of the
compartment within which they were measured. AQUA
scores were normalized to the exposure time and bit

depth at which the images were captured; thus, scores
collected at different exposure times are directly
comparable.

Statistical methods
Statistical analysis consisted of three steps: normaliza-
tion, mixed-effects modeling, and estimation of optimal
sampling via cross validation. ER and Tau data from
different AQUA analyses were normalized to the same
scale. Mixed-effects modeling was performed in order
to estimate the coefficient of intra-tumor variation for
each epitope. Mixed-effects models entail a rigorous
statistical method for quantifying variation between
repeated measurements from the same individual.
Lastly, cross-validation of linear models was used to
estimate the optimal number of FOVs necessary to pro-
duce a score representative of the whole tissue section
for each epitope.
Normalization
Similar to other methods for quantitative immunofluor-
escence, AQUA scores are subject to some variation
between analyses performed at different times. Potential
sources of variation, such as buffer lot and microscope
bulb hours, are numerous and impossible to completely
eliminate. We therefore normalized AQUA scores
between analyses performed at different times.
All epitopes with the exception of MAP-Tau and ER

were processed in a single AQUA run and therefore did
not require normalization. MAP-Tau and ER were run
with standardized index arrays, consisting of breast car-
cinoma tissue and cell lines. To normalize scores of the
experimental subjects for MAP-Tau and ER, quantile
normalization was first performed on the index arrays.
Next, a smoothing spline was fit to describe the trans-
formation between the original index array scores and
quantile-normalized index array scores. Lastly, the spline
transformation was applied to the subjects’ scores in
order to transform them to the scale of the run selected
as the baseline run. This normalization method has
been validated on several independent cohorts for differ-
ent carcinomas (Tolles et al., in preparation).
Mixed-effects modeling
Mixed effects model were fit for each epitope of interest.
The form of the model was:

yijk = β0 + b0i + b0j + ε,

where yijk is the AQUA score of the ith subject, in the
jth ROI, at the kth FOV. b0 is the intercept term and ε is
the residual. The model assumes b0i ∼ N(0, σ 2

1 ) ,

b0j ∼ N(0, σ 2
2 ) , and ε ∼ N(0, σ 2

3 ) . The assumptions of
normality for the random effects were verified with quan-
tile-quantile plots. For some epitopes, plots of residuals
against fitted values demonstrated heteroscedasticity,

Table 1 Antibodies, epitopes, sources, and dilutions

Protein Species Clone Dilutions Supplier

ER Mouse mAb 1D5 1:50 Dako

HER-2 Rabbit pAb A0485 1:2,000 Dako

AKT Rabbit mAb 11E7 1:1,000 CST

ERK1/2 Mouse mAb L34F12 1:1,000 CST

S6K1 Rabbit mAb 49D7 1:450 CST

GAPDH Rabbit mAb 14C10 1:500 CST

Cytokeratin Rabbit pAb Z0622 1:100 Dako
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with σ 2
3 ∝ β0 . In those cases, we adjusted the model

assumptions to account for this dependence. The coeffi-

cient of variation was calculated as σ̂2
β0
. The R Language

and Environment for Statistical Computing and NLME
package were used for all computations [10].
Sampling simulation: model selection and cross-validation
Due to the inherent differences in the two cohorts, the
analyses of the biomarkers differed slightly. However, in
both, to choose the optimal number of fields (that is
model selection) and estimate the corresponding predic-
tion error we used two layers of resampling [11,12]. The
first, or outer, layer was for estimating prediction error
and the second, or inner, layer for model selection (see
Figure 2).
For the MAP-Tau cohort, we employed 10-fold cross-

validation for the first layer and Monte-Carlo cross-

validation for the second. In the first layer the cohort was
divided equally into ten groups. For each iteration, one of
the groups served as an independent test set for calculation
of prediction error while the other nine groups (that is 90%
of the subjects) constituted the training set. In the second
layer, this training set was subdivided into a learning set
(90% of training set) and an evaluation set (10% of training
set), for the purposes of selecting the optimal number of
20X FOVs. For each of the total 10 training sets, the learn-
ing and evaluation sets were both reconstituted 1,000
times. A linear regression model was fit to the subjects in
the learning set. The corresponding independent variable
was the average AQUA score of a subset of 20X FOVs
sampled from each whole tissue slide, and the dependent
variable was the overall average score for all FOVs on that
slide. A separate regression was calculated for each poten-
tial number of FOVs (one to thirty five). Using the

10%

90%

Evaluation Learning

10%

90%

Test Training

x 1000

Number of Fields Sampled (FOVs)

Av
er

ag
e 

PE

x 10

Av
er

ag
e 

PE

Number of Fields Sampled (FOVs)
Figure 2 Cross validation design. (1) Division of cohort into test set and training set. Repeated 10 times. (2) Division of training set into
learning set and evaluation set. Repeated 1,000 times. (3) Fitting of linear regression over learning set. Performed for sample sizes of one to
thirty five field of views (FOVs). Calculation of average prediction error over evaluation set. Red arrow indicates first local minimum. (4)
Calculation of average prediction error over the test set. Gray arrow indicates over local minimum over 10 training sets. Black arrow indicates
smallest value within one standard error of average first local minimum.
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coefficients estimated from the regression model developed
on the learning set, a predicted score was calculated for
each subject in the evaluation set for every number of
FOVs. The prediction error (PE) was calculated as follows
for each number of FOVs and then averaged over the
1,000 evaluation sets:

PE =
1
N

N∑
i=1

(x̂i − x̄i)
2, (1)

where N= # of subjects, x̄i = 1
K

∑K
j=1 xj , and K = # of

fields in subject i. The first local minimum of the aver-
age prediction error was recorded.
Lastly, the mean PE for the independent test sets was

calculated by averaging the PE over the 10 independent
test sets for each potential number of FOVs (one to
thirty five). The average first local minimum and stan-
dard error for the test set PE was recorded. In accor-
dance with rules of parsimonious model selection [13],
if there existed a model (here, a model is the number of
FOVs) with mean PE within one standard error of that
of the minimum model, the smaller model was selected
as optimal. The entire process was repeated 100 times
and the result averaged to produce a stabile estimate of
the optimal number of FOVs. The standard deviation
over the 100 repetitions was also calculated.
For all epitopes of interest other than MAP-Tau, the

small number of FOVs measured for each subject
required an alternative to the method of direct sampling
used for MAP-Tau. Direct sampling would have intro-
duced bias into the analysis, because of the relatively
small number of FOVs available for each subject. For
example, given a subject with only 10 FOVs, a sample of
size of 10 would have consisted of all available FOVs
from that subject’s whole tissue section. Therefore, the
average and standard deviation from each subject was
used to describe a normal distribution. Then, randomly
generated observations from that normal distribution
were sampled as above.
For epitopes other than MAP-Tau, in the first layer,

leave-one-out cross-validation was used in place of
10-fold cross-validation. That is, in each iteration of the
cross-validation, the test set consisted of one subject
and the remaining subjects constituted the training set.
Again, in the second layer, the training set was subdi-
vided into learning and evaluation sets. However due to
the small sample sizes, instead of Monte-Carlo cross-
validation, we employed bootstrap sampling, in which a
training set of size n was sampled with replacement to
create a learning set of size n. Subjects not selected for
the learning set made up the evaluation set. A linear
model was used in a similar manner as for MAP-Tau
and an optimal number of FOVs was selected by

averaging the prediction error in the evaluation set over
1,000 iterations of the training set splitting procedure.
Test set error was calculated in the same manner as for
MAP-Tau and the one-standard-error parsimony rule
again applied to select the final ‘optimal’ number of
FOVs. As in the MAP-Tau cohort, the entire process
was repeated 100 times and the average and standard
deviation calculated.
In order to test the validity the simulated sampling

method used for these epitopes, an additional analysis
was performed on the MAP-Tau data. For each of the
122 subjects, a subset of 20 FOVs was randomly
sampled from all FOVs available. Randomly generated
values from a normal distribution described by the
mean and variance of the 20 FOV subset was then used
for selection of optimal number of FOVs and calculation
of prediction error was then performed.
For all epitopes, to assess how close the predicted value

was to the overall average AQUA score, we computed
the absolute distance of the two values divided by the
standard deviation of AQUA scores for each person as:

1
N

N∑
i=1

∣∣x̂i − x̄i
∣∣

sxi

, (2)

where N, x̄i , and K are defined in Equation 1 and

sxi = 1
K

∑K

j=1
(xj − x̄i)

2 . This value was then averaged

over the layers of cross-validation resulting in an aver-
age absolute standardized score. The R Language and
Environment for Statistical Computing was used for all
computations.

Results
Mixed-effects analysis of intra-tumor heterogeneity
We calculated an average intra-tumor coefficient of
variation by epitope via a mixed-effects model fit to the
AQUA scores from the 20X FOVs. Results appear in
Figure 3 and are expressed as percentages with 95%
confidence intervals. Overlapping intervals indicate that
there is no significant difference between the coefficients
of variation. Information about the location of FOVs in
ROIs on the whole tissue slide was not collected for MAP-
Tau and cytokeratin proteins; it therefore was not possible
to calculate a coefficient of variation for these epitopes.
The only significant difference is between the coefficients
for ERK and ER. Of note, the ‘housekeeping’ protein
GAPDH, which we expected to show relatively homoge-
neous expression, has a coefficient of variation that is not
statistically significantly different from that of ER or
HER-2. Only cases judged to be ER-positive by patholo-
gist-based scoring systems were included in the analysis;
models based on a heterogeneous population of ER-nega-
tive and ER-positive cases might have overestimated

Tolles et al. Breast Cancer Research 2011, 13:R51
http://breast-cancer-research.com/content/13/3/R51

Page 6 of 10



inter-tumor variation or underestimated intra-tumor var-
iation for ER-positive cases.

Cross-validated optimal number of FOVs
For each epitope of interest, we simulated taking one to
thirty five FOVs for a subset of subjects (the learning
set). We then used the average AQUA score of the
sampled FOVs to develop a linear model. The model
was used to the predict scores for a distinct group of
subjects, the test set, from which the same number of
FOVs were sampled. Next, we calculated the PE, which
is the average squared error from each set of predictions
over the test set. We repeated this simulation with dif-
ferent learning and test sets, as described in the meth-
ods. Lastly, we located the average first local minimum
of the PE and recorded the smallest number of FOVs
within one standard error of this minimum. The result
appears in the first column of Table 2. Also shown are
the standard error of the estimate and the correspond-
ing average absolute standardized score (Equation 2).
The optimal number of fields for epitopes ranged

from three to fourteen. Standard error of the estimate
ranging from 1.1 to 4.2, demonstrating that the

estimates generated were stable. There are significant
differences in the optimal number of FOVs between
some of the epitopes. These differences roughly corre-
late with the results of the mixed-effects analysis of het-
erogeneity: the coefficients of variation for ER, HER-2,
AKT, S6K1 were not found to be significantly different
and, correspondingly, the optimal FOV results for these
epitopes are similar. Cytokeratin and MAP-Tau, for
which it was not possible to calculate coefficients of var-
iation, have optimal numbers of FOVs of three and
fourteen respectively. Given the qualitative heterogeneity
of MAP-Tau on visual analysis and contrastingly ubiqui-
tous expression of cytokeratin in breast carcinoma,
these results support the hypothesis that markers with
greater heterogeneity have a larger optimal number of
FOVs. However, the correspondence between biomarker
heterogeneity and optimal number of FOVs was not
perfect: ER and ERK had significantly different coeffi-
cients of variation and yet had optimal number of FOVs
of eight and six respectively. The average absolute stan-
dardized score at the optimal number of fields is
reported as an average distance in terms of a subjects’
AQUA score standard deviation. For example, for ER, a

Coefficient of Variation (%)

0 5 10 15 20 25 30 35

ER

AKT

ERK

S6K1

GADPH

HER2

Figure 3 Coefficient of variation (%) by epitope with 95% confidence intervals.
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subject’s predicted score, as calculated from the optimal
number of FOVs, will, on average, differ from the sub-
ject’s ‘true’ score by .31 standard deviations. The average
absolute distance at the optimal number of FOVs varies
slightly between epitopes but remains below one stan-
dard deviation for all but one epitope. Again, only ER-
positive cases were analyzed in order to avoid bias in
the estimate of the optimal number of FOVs for ER.
As described in the methods, due to the small sample

size and number of FOVs, the biomarkers besides MAP-
Tau were imputed by simulating from a normal distri-
bution based on the observed mean and standard devia-
tion of the each individual biomarkers. To test the
validity of this imputation, we performed the simulation
with MAP-Tau and the results were almost identical to
the results when we employed direct sampling of
observed data (Table 2).

Discussion
We investigated biomarker heterogeneity and the opti-
mal number of FOVs required for accurate immunos-
taining assessment of biomarker expression in breast
carcinoma. Our mixed-effects analysis showed that,
between the eight biomarkers we examined, there were
significant differences in heterogeneity, as quantified by
the intra-tumor coefficient of variation. Optimal number
of 20X FOVs, determined by the cross-validated average
prediction error, varied by epitope from three to four-
teen. The clinical significance of our findings is two-
fold. First, they suggest that biopsies consisting of very
few FOVs may be inadequate for use in diagnostic
immunostains, because they may not contain enough
FOVs to account for biomarker heterogeneity. Second,
they suggest that the optimal tissue sampling algorithm
required to account for biomarker heterogeneity must
be determined individually for each biomarker intro-
duced into clinical use. The optimal number of FOVs

trended with the results of the mixed-effects analysis of
heterogeneity. S6K1, ERK, and AKT had similar optimal
FOV sample sizes and a correspondingly large overlap
in the 95% confidence intervals for their coefficients of
variation. ER, which had the highest measured coeffi-
cient of heterogeneity, had a relatively large optimal
sample size. Although it was not possible to calculate a
coefficient of variation for MAP-Tau, its large optimal
FOV sample size is consistent with the qualitative het-
erogeneity observed in immunostains. The similarity of
the optimal number of FOVs between ER and ERK,
despite significant differences in their coefficients of
correlation, demonstrates imperfect correspondence
between mixed-effects modeling of heterogeneity and
the optimal number of FOVs. This suggests that optimal
sampling must be empirically calculated for each marker
rather than predicted from models of marker
heterogeneity.
Of note, we included only ER-positive cases, as judged

by pathologist-based scoring systems, in our analysis.
We predicted that ER-negative cases would likely have
an extremely low intra-tumor variability. Therefore, ana-
lysis of a mixed sample of ER-negative and ER-positive
cases might have underestimated both intra-tumor
variability and the optimal number of FOVs. We do not
believe that this limits the generalizability of our results,
as our goal was to estimate a minimum number of
FOVs required for accurate determination of ER status.
The differences between the optimal number of FOVs

for the biomarkers we tested suggests that there exists
no single, optimal sampling algorithm for all biomarkers
in breast carcinoma. Instead, the optimal number must
be determined on a marker-by-marker basis. Biomarkers
that are known to be more heterogeneous, such as
MAP-Tau, are likely to require more FOVs; however,
for the reasons stated above, precise sampling
algorithms must be empirically determined.
The observed heterogeneity likely arises from several

sources: intrinsic biological differences in epitope
expression, pre-analytic variables (such as variable cold
ischemic time and formalin penetration of tissue), and
technical variables of the AQUA method of quantitative
immunofluorescence. As it is impossible to know a
priori the relative contributions of the different sources
variability, we believe that blind adjustment of the assay
to reduce its dynamic range risks the loss of clinically
relevant information. Instead, we believe that the best
strategy is to first determine the degree of sampling
necessary to produce a representative score and then to
compare that score to cutoffs that have been validated
against clinical outcomes.
This study has several limitations. First, we used the

average AQUA score over all FOVs in a whole tissue
slide to model the ‘true’ representative score for each

Table 2 Optimal number of fields by epitope with
prediction error

Marker Optimal
number of 20X
field of views

SE of optimal
number(field
of views)

Average absolute
standardized score
(Equation 2)

ER 8 3.4 .31

HER-2 5 3.0 .56

AKT 4 1.5 .65

ERK 6 2.5 .31

S6K1 6 3.4 .21

GAPDH 12 4.1 .24

Cytokeratin 3 4.3 .41

MAP-Tau 14 4.2 .60

MAP-Tau
(direct
sampling)

14 4.2 .55
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subject when calculating prediction error. The variation
within a single whole tissue slide may be less than the
variation between histologic ‘blocks’ from different
regions of tumor. As a result, the number of FOVs
determined in this study may underestimate the amount
required to obtain a representative measure for each
biomarker’s expression. Our results may be conserva-
tively interpreted as a minimum required number for
clinical use.
A second limitation is the relatively small number of

subjects used for many of the biomarkers. For all bio-
markers other than MAP-Tau, we were required to
simulate sampling FOVs from a normal distribution
described by the measured mean and variation of
observed FOVs, in order to avoid introducing bias.
However, the validity of this analysis of the smaller
cohort (n = 14) is strongly supported by our dual analy-
sis of MAP-Tau, which was a large cohort (n = 122)
with a large number of FOVs measured per subject.
When MAP-Tau data was analyzed by both direct sam-
pling and simulation, the results for the optimal number
of fields and SE of the estimate were identical.
The third limitation is that AQUA is not currently

used in many clinical laboratories. AQUA uses fluor-
escence for visualization and optimal quantification
rather than DAB used in most conventional labs.
However, the underlying immunohistochemistry tech-
nique and biology is the same, so the results should
be generalizable to any method of visualization.
Furthermore, the most recent set of ASCO/CAP
guidelines states, ‘image analysis is a desirable method
of quantifying percentage of tumor cells that are
immunoreactive’ [2].
This pilot study offers guidance regarding the size of

tissue sample that is required to account for heterogene-
ity in the specific biomarkers studied. More broadly, it
suggests that further investigations are necessary in
order to describe optimal sampling for other biomarkers
in pre-clinical or clinical use, both in breast carcinoma
and other tissue types.

Conclusions
Our results demonstrate that appropriate tumor sam-
pling to account for biomarker heterogeneity varies by
marker and should be determined on an individual basis
for all new markers considered for clinical use. Further-
more, our results suggest that, for some markers, core
biopsies with only a few fields of tumor may represent
inadequate samples. The implication for clinical practice
is that number of fields assessed is a critical parameter
for companion diagnostic tests and should be optimized
prior to introduction of new biomarker assays.
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