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Bell's Theorem Without Hidden Variables* 

Henry P. Stapp 
Lawrence Berkeley National Laboratory 

University of California 

Berkeley, California 94 720 

Abstract 
Experiments motivated by Bell's theoremhave led some physicists 

to conclude that quantum theory' is nonlocal. However, the theoreti­
cal basis for such claims is usually taken to be Bell's Theorem, which 
shows only that if certain predictions of quantum theory are correct, 
and a strong hidden-variable assumption is valid, then a certain lo­
cality condition must fail. This locality condition expresses the idea 

that what an experimenter freely chooses to measure in one spacetime 
region can have no effect of any kind in a· second region situated space­
like relative to the fi,rst. The experimental results conform closely to 
the predictions of quantum theory in such cases, but the most rea­
sonable conclusion to draw is not that locality fails, but rather that 
the hidden-variable assumption is false. For this assumption conflicts 
with the quantum precept that unperformed experiments have no out­
comes. The present paper deduces the failure of this locality condition 
directly from the precepts of quantum theory themselves, in a way 
that generates no inconsistency or any conflict with the predictions of 
relativistic quantum field theory. 

*This work was supported in part by the Director, Office of Science, Office of High 
Energy and Nuclear Physics, of the U.S. Department of Energy under Contract DE-AC03-
76SF00098. 





1. Introduction. 

A recent issue of Physics Today[l] has a bulletin entitled "Nonlocality 
Get More Real". It reports experiments at three laboratories {Geneva [2], 
Innsbruck[3], and Los Alamos[4]) directed at closing loopholes in proofs that 
quantum phenomena cannot be reconciled with classical ideas about the local 
character of the physical world. 

The experiment reported in the first of these papers (2] confirms the exis­
tence of a classically unexplainable connection between phenomena appearing 
at essentially the same time in two villages separated by a distance of more 
than lOkm, and the paper begins with the provocative statement "Quantum 
theory is nonlocal." The longer version (5] says "Today, most physicists are 
convinced that a future loophole-free test will definitely demonstrate that 
nature is indeed nonlocal." 

The theoretical basis for such claims is usually taken to be Bell's The­
orem, which, however, shows only that if certain predictions of quantum 
theory are correct, and if a certain hidden-variable assumption is valid, then 
a locality condition must fail. This locality condition expresses the physical 
idea, suggested by the theory of relativity, that what an experimenter freely 
chooses to measure in one spacetime region can have no effect of any kind in 
a second region situated spacelike relative to the first. 

The experimental results conform closely to the predictions of quantum 
theory in such cases, but the most natural conclusion to draw is not that lo­
cality fails, but rather that the hidden-variable assumption is false. For the 
"hidden-variable assumption" of Bell's original theorem(6] is basically the 
assumption that a set of possible outcomes can be simultaneously defined 
for each of the alternative mutually incompatible experiments that the ex­
perimenters might choose to perform. This assumption violates the precepts 
of quantum philosophy by assigning definite, albeit unknown, values to the 
outcomes of mutually incompatible measurements. 

Bell[7] later introduced a seemingly weaker local hidden-variable assump­
tion, but it can be shown[8,9] that this later form entails the original one, 
apart from errors that tend to zero as the number of experiments tends to 
infinity. Thus both forms of the hidden-variable assumption contradict the 
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basic quantum precept that one cannot, in general, consistently assign pos­
sible outcomes to unperformed measurements. Hence, from the viewpoint of 
orthodox quantum theory, Bell's hidden-variable assumption, in either form, 
is more likely to fail than the locality condition. Consequently, these hidden­
variable theorems provides no adequate basis for the claim that "Quantum 
theory is nonlocal", or that "nature is indeed nonlocal." 

The present paper describes a fundamentally different kind of proof. It 
shows that a violation of the locality condition described above follows logi­
cally from assumptions that formalize the precepts of orthodox of quantum 
theory itself. This proof is logically rigorous. But like all proofs and the­
orems of this general kind it is based essentially on· the use of statements 
about contrary-to-fact situations. 

I have just mentioned that the basic principles of quantum philosophy 
forbid the unrestricted use of contrary-to-fact, or counterfactual notions. So 
it might be thought that the new proof is basically no better than the ones 
employing hidden-variables. However, there is· an essential logical difference 
between the two proofs: Bell's hidden-variable assumption was an ad hoc 
assumption that had no foundation in the quantum precepts. Indeed, it di­
rectly contradicted the quantum precepts. Moreover, it led, when combined 
with the predictions of quantum theory, to logical inconsistencies. This latter 
fact vindicates the quantum precept that bans the hidden-variable assump­
tion, and thus undermines the significance of any conclusions derived from 
that assumption. 

The proof to be presented here differs from the hidden-variable theorems 
in two crucial ways. First, as just mentioned, the assumptions are direct 
expressions of the precepts of orthodox quantum precepts themselves, rather 
than being, as regards the hidden-variable aspect, a direct violation of those 
precepts. Second, the assumptions used in the present proof, lead only to 
a very restricted set of true counterfactual statements, and these lead nei­
ther to any logical contradiction, nor to any conflict with the predictions 
of relativistic quantum field theory. Thus the proof to be presented here 
lies on a logical level different from that of the proofs that follows Bell's 
hidden-variable approach. 
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What assumptions are used in the present approach? 
The first assumption is that, for the purposes of understanding and ap­

plying quantum theory, the choice of which experiment is to be performed 
can be treated as a free variable. Bohr repeatedly stressed this point, which 
is closely co:imected to his "complementafity" idea that the quantum state 
contains complementary kinds of information pertaining to the various alter­
native mutually exclusive experiments that might be chosen. Of course, only 
one or the other of two mutually incompatible measurements can be actually 
performed, not both, and only a measurement that is actually performed can 
be assumed to have a definite outcome. 

It is worth recalling in this connection that Bohr did not reject the ar­
gument of Einstein, Podolsky, and Rosen out of hand, simply because it 
involves considering two mutually incompatible experiments. Bohr accepted 
that feature of the argument, and was therefore forced to find another, much 
more subtle, ground for rejecting the argument of those authors, which, like 
the one to be presented here, but unlike those of Bell, scrupulously avoids any 
direct assumption that an unperformed experiment has a definite outcome. 

The second assumption of the present work is that an outcome that has 
appeared to observers in one spacetime region, and has been recorded there, 
can be considered to be fixed and settled by the time the observations and 
recordings are completed: this outcome is treated as being independent of 
which experiment will be freely chosen and performed by another experi­
menter acting in a spacetime region lying later than the first region. This 
no-backward-in-time-influence property is assumed to hold in at least one 
Lorentz frame, which I shall call LF. 

These two assumptions immediately entail the truth of a very limited class 
of counterfactual statements. These are statements of the form: If experi­
ments E and Fare freely chosen and performed in earlier and later regions, 
respectively, and the outcome in the earlier region is E+, then the outcome 
in the earlier region would (still) beE+ if everything in nature were the same 
except for (1), a different free choice made in the later region, and (2), the 

possible consequences of making that alternate later free choice instead of the 
actual free choice. The no-backward-in-time-influence condition asserts that 
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the possible consequences of the experimenter's making the alternate (i.e., 
counterfactual) later free choice do not include any change of an outcome 
that has already appeared to observers in the earlier spacetime region, and 
has been recorded there. 

This assumption of no backward-in-time action is the expression of a 
theoretical idea: it can never be empirically confirmed. On the other hand, 
it is completely compatible with all the predictions of quantum theory, and 
with all the properties of relativistic quantum field theory. This will be 
shown later. Thus it provides for an enlargement of the quantum-theoretical 
framework that allows one to consistently consider alternative possible "free 
choices." 

Any physicist is certainly free to deny this assumption that a later free 
choice cannot affect an already-observed-and-recorded outcome. Hence my 
proof must be regarded as an exploration of the logical consequences of mak­
ing this foray into the realm of counterfactuals. This excursion is needed in 
order to formulate the concept of "no influence" that is under consideration, 
and to give some effective meaning to the notion of a "free choice." 

Notice that there is no direct assumption that some unperformed experi­
ment has an outcome. In the first place, the effective replacement assumption 
is that there is no influence backward in time. This assertion is part of the 
very assumption that is under examination, rather than a direct negation 
of a basic quantum precept. In the second place, the measurement whose 
outcome is counterfactually specified to be E+ is exactly the locally defined 
experiment E that is assumed to be the experiment that is actually per­
formed at the earlier time. This earlier experiment and its outcome is "un­
performed" or "counterfactual" only in a theoretical nonlocal and atemporal 
sense, when it is considered in combination with a never-to-be-performed 
later experiment. The no-backward-in-time-influence assumption is essen­
tially the assumption that this earlier locally characterized measurement E 
is one and the same measurement no matter which free choice is made later 
on. In this local sense there is no assumption about the outcome of any un­
performed measurement: the single locally defined earlier measurement has 
one single outcome no matter which free choice is made later on. 
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Logicians have developed rigorous logical frameworks for consistent and 
unambiguous reasoning with statements involving counterfactual conditions. 
Those frameworks incorporate certain ideas about the world that are concor­
dant with a deterministic classical-physics conception of nature. The present 
proof can be carried out within such a classical framework. However, the 
indeterminism of quantum physics leads naturally to a quantum logic for 
counterfactual reasoning. I shall, in Appendix A, present a rigorous for­
mal proof within this quantum counterfactual logic, which is described in 
Appendix B. 

This proof shows that in a certain (Hardy) experimental setup a statement 
can be constructed whose truth value (true or false) is defined in terms of the. 
truth values of some statements pertaining to possible outcomes of possible 
experiments confined to a certain spacetime region R, but that this statement 
is, by virtue of certain predictions of quantum theory, true if one experiment 
is chosen and performed by an experimenter in an earlier (in LF) region L 
that is spacelike separated from region R, but is false if a different experiment 
is chosen and performed in that earlier region L. This non-trivial dependence 
upon a free choice made in one region of the truth of a statement specified by 
the truth or falsity of statements pertaining to possible events in a spacelike 
separated region, constitutes, within this logical framework, some kind kind 
of faster-than-light influence, as will be discussed. 

The quantum counterfactual logic described in appendix B is, I believe, 
interesting in itself, as is the formal proof given in Appendix A. They give 
precision and rigor to the argument. However, the argument is so intu­
itively obvious that I believe it is sufficient to state it in plain words. This 
is done in the next section. Then in section 3 it is shown, by referring 
to the Tomonaga-Schwinger formulation of quantum field theory, that the 
assumptions and conclusions of the proof are logically compatible with the 
predictions of relativistic quantum field theory. In section 4 I discuss the fact 
that the proved result is incompatible with the notion that the free choice 
made in one region can have no influence of any kind in a second region that 
is spacelike separated from the first. 
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2. The Informal Proof. 

The argument is based on a Hardy-type [10] experimental set-up. 
There are two experimental spacetime regions Rand L, which are space­

like separated. In region R there are two alternative possible measurements, 
R1 and R2. In region L there are two alternative possible measurements, L1 
and L2. Each local experiment has two alternative possible outcomes, la­
belled by + and - . The symbol R1 appearing in a logical statement stands 
for the statement "Experiment R1 is chosen and performed in region R." The 
symbol R1 + stands for the statement that "The outcome '+' of experiment 
R1 appears in region R." Analogous statements with other variables have the 
analogous meanings. 

The detectors are assumed to be 100% efficient, so that for each possible 
world some outcome, either + or -, will, according to quantum mechanics, 
appear in R, and some outcome, either + or -, will appear in L. 

Suppose Robert acts in region R, and Lois acts in region L. Then the 
first two predictions of QT for this Hardy setup are these: 

(2.1): If Robert perform R2 and gets outcome R2+ and Lois performs 
L2, then Lois gets outcome L2+ . 

(2.2): If Lois performs £2 and gets outcome L2+, and Robert performs 
R1 , then Robert gets outcome R1-. 

Combining these two conditions with the no-backward-in-time-influence 
condition, which says that what Robert freely chooses to do in the later 
region R cannot disturb Lois's earlier outcome, one immediately obtains the 
conclusion that: 

If Lois performs £2 then 
"If Robert performs R2 and gets R2+ then if his choice had gone the other 
way he would have gotten outcome R1-." 

This conclusion is expressed by Line 5 of the formal proof. 
The second two predictions of QT for this Hardy setup are: 
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(2.3): If Lois performs Ll and get outcome Ll-, and Robert performs 
R2, then Robert gets outcome R2+. 

(2.4): It is not true that If Lois perform Ll and gets outcome Ll-, and 
Robert performs Rl then Robert gets outcome Rl-. 

To deduce the desired conclusion one uses the fact that if Lois performs 
Ll then quantum theory predicts that she gets Ll- roughly half the time. 
Thus there are physically possible worlds in which Lois performs Ll and gets 
outcome Ll-. In any such world if Robert chooses R2, then, according to 
(2.3), he will obtain outcome R2+. According to our no-backward-in-time­
influence condition, the outcome Ll- observed earlier by Lois would be left 
unchanged if Robert had, later in R, made the other chioce,. and performed 
Rl. But then prediction (2.4) of quantum theory ensures that there are 
possible worlds in which Lois performs ~1 and Robert performs R2 and gets 
outcome R2+, but in which Robert would not have obtained outcome Rl­
of he had freely chosen to perform Rl instead of R2. This means that 

If Lois performs Ll then It is not true that 
"If Robert performs R2 and gets R2+ then if his choice had gone the other 
way he would have gotten outcome Rl-." 

This is exactly what the rigorous formal proof shows. 
Notice that this second conclusion, like the earlier one, contains the state­

ment SR: 

"If Robert performs R2 and gets R2+ then if his choice had gone the 
other way he would have gotten outcome Rl-." 

This statement SR, whose truth or falsity is defined in terms o~ the truth 
or falsity of statements pertaining to possible events in region R, is true 
if Lois's free choice in region L is to perform £2, but is not true if Lois's 
free choice in region L is to perform Ll. Thus the truth of this statement 
SR pertaining to region R depends upon what Lois freely chooses to do in 
a region L that is situated spacelike relative to region R. This dependence 
constitutes some kind of effect in region R of Lois's free choice made in region 
L. This is discussed in Section 4. 
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3. Logical Consistency and Compatibility with Relativity. 

The assumptions in this argument, unlike those of approaches based on 
hidden variables, are in line with the precepts of orthodox quantum theory, 
and when combined with the predictions of relativistic quantum field the­
ory they lead to no logical inconsistencies. One can confirm this by simply 
noting that the no-backward-in-time-influence condition is satisfied in the 
formulation of relativistic quantum field theory given by Tomonaga(ll] and 
by Schwinger[12], with their spacelike surfaces a taken to be the constant­
time surfaces in the special frame LF. This frame then defines the meaning 
of the evolving state w(t), which can be assumed to collapse to a new state 
when a measurement is completed, and new information is thus considered 
to have become specified. 

There is, of course, no suggestion in the works of Tom onaga and Schwinger 
that some particular set of surfaces should be singled out as the "true" or 
"real" surfaces that define the real evolving state of the universe W(t) that 
is suddenly reduced to a new form when new information becomes avail­
able. Quite the opposite: they show that it does not matter which of the 
infinite collection of advancing sets of spacelike surfaces a one uses to de­
fine the forward-evolving state of the system. They effectively show that the 
predictions of the theory will be independent of which such set of advanc­
ing spacel~ke surfaces a one uses. This feature of their theory is, of course, 
completely concordant with the ideas of the theory of relativity. 

My use of Tomonaga-Schwinger theory is a logical, not ontological, one. I 
merely claim that my no-backward-in-time-influence assumption is logically 

compatible with the predictions of relativistic quantum field theory: I make 
no claim that this causality assumption has any ontological significance, or 
that the particular frame LF is unique. On the other hand, I could not 
demonstrate compatibility with the predictions of relativistic quantum field 
theory if I tried to assert that the no-backward-in-time-influence condition 
held simultaneously in several frames: Tomonaga-Schwinger theory does not 
ensure the compatibility of that stronger condition with the predictions of 
relativistic quantum field theory. 
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4. Conclusion. 

The two conclusions proved from our premises both involve the same 
assertion S R: 

"If Robert performs RA and gets RA+ then if his free choice in R had 
gone the other way he would have gotten outcome RC-." 

Here A stands for actual, and takes the value 2, and C stands for coun­
terfactual, and takes the value 1. 

What was proved is that this statement SR about the connections, in R 
of the consequences of making alternative possible free choices in R is, by 
virtue of our explicity stated assumptions, true or false according to whether 
L2 or Ll is freely chosen in L. 

This conclusion entails that information about which choice is freely made 
in region L must get to region R. This is because the truth value (true or 
false) of SR is defined in terms of the truth values of the elements of the 
quadruple of statement (RA, RA+; RC, RC- ): SR, with A= 2 and C = 1, 
is false if and only the set of truth values of that quadruple is (t, t; t, !). 
For every other quadruple of truth values the statement S R is true. Thus 
the nontrivial dependence of the truth of SR on the free choice between Ll 
and L2 made in region L means that the truth or falsity of some statements 
about possible events in region R must, as a consequence of our assumptions, 
depend upon whether the free choice made in region L is to perform Ll or 
L2. 

This result places a strong condition on theoretical models that reproduce 
the predictions of quantum theory. This condition is similar to the failure 
of locality associated with Bell's theorem. But here it is derived from the 
premises of "free choice" and "no backward in time influence" that are in 
line with the precepts of quantum theory, and that lead to no logical con­
tradictions, and to no conflicts with the predictions of relativistic quantum 
field theory. 
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APPENDIX A: The Formal Proof. 
Each line of the following proof is a strict consequence of the. predictions 

of quantum mechanics, (2.I)-(2.4), the general property that there are pos­
sible worlds Win which LI is performed the outcome is LI-, the assumed 
property LOCl, and the properties of the rudimentary logical symbols. Line 
6 is the one exception: it is just the same as line 5, but with L2 replaced by 
Ll. The part of the proof from line 7 to line I4 shows that the statement 
on line 6 is false. Thus the proof shows that mentioned premises lead to the 
conclusion that line 5 is true, but that line 6 is false. 
Proof: 

1. (£2 1\ R2 1\ L2+) =* [RlD --t (L21\ RII\ L2+ )] 
2. (£2 1\ R21\ R2+) =* (£2 1\ R2 1\ L2+) 
3. (£2/\ RII\ L2+) =* (£2/\ R1/\ RI-)] 
4. (£2/\ R2/\ R2+) =*[RID --t (£2/\ RII\ RI- )] 
5. £2 =* [(R2/\ R2+) --t (RID --t RII\ RI-)] 
6. LI =* [(R21\R2+) --t (RID --t RII\RI-)] 
7. (LII\ R21\ R2+) =*(RID --t RII\ RI-)] 
8. (LII\ R21\ LI-) =* (LII\ R21\ R2+) 
9. (LI/\ R2/\ LI-) =*(RID --t Rll\ RI-) 
IO. (LII\ R2) =* [£1- --t (RID --t RII\ RI-)] 
11. (LII\ R2) =*[RID --t (LI---t RII\ RI- )] 
I2. (£1/\ RI) =* •(LI- --t RII\ RI-) 
13. Ll =* [RI --t •(LI- --t RII\ RI-)] 
I4. (LII\ R2) =*[RID --t •(LI- --t RII\ RI-)] 

[(B.6)] 
((2.I)] 
((2.2)] 

[1, 2, 3, (B.7)] 
(4, LOCI, (A.5)] 

(6, (A.5)] 
((2.3)] 

(7, 8, (B.5)] 
(9, (A.5)] 

(IO, LOCI] 
((3.4)] 

(I2, (A.5)] 
(I3, DEF.] 

But the conjunction of 11 and I4 contradicts the assumption that the 
experimenters in regions R and L are free to choose which experiments they 
will perform, and that outcome LI- sometimes occurs under the conditions 
that LI and RI are performed. Quantum theory predicts that if LI and RI 
are performed then outcome LI- occurs half the time. Thus the falseness of 
the statement in line 6 is proved. 

(Note that there is only one strict conditional (=*] in each line. In an 
earlier brief description(I3] of a theorem similar to the one proved above, 
but based on orthodox modal logic rather than the quantum logic developed 
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above, some material conditionals standing to the right of this strict condi­
tional were mistakenly represented by the double arrow =?-, rather than by 
---+. I thank Abner Shimomy and Howard Stein [14] for alerting me to this 
notational error.] 

The logical structure can be expressed in terms of sets.· This provides a 
compact method, accessible to interested physicists, for validating the various 
lines of the proof. 

For any statement S expressed in terms of the rudimentary logical con­
nections let {W : S} be the set of all (physically possible) worlds W such that 
statement S is true at W (i.e., S is true in world W). Sometimes {W : S} 
will be shortened to { S}. · 

A main set-theoretic definition is this: Suppose A and B are two state­
ments expressed in terms of the rudimentary logical connections. Then 
A =?- B is true if and only if the intersection of {A} and { ·B} is void: 

[A=>- B] =[{A} n {•B} = 0]. (A.l) 

Equivalently, {A} is a subset of {B}: 

[A=>- B] :=[{A} c {B}]. (A.2) 

Let ( S) w mean that the statement S is true at W. Then 

(A---+ B)w = [( •A)w or (B)w]. (A.3) 

This entails that 
{A---+ B} := ({•A} u {B}). (A.4) 

Proof of (A.5) 

Equation (A.5) reads: 

[A=>- (B---+ C)] [(An B) =>- C]. (A.5) 

This is equivalent to 

[{A} n {•(B---+ C)}= 0] =[{An B} n {•C} = 0]. (A.6) 
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But {•(B ~C)} is the complement of {B ~ C}. Using (A.4), and the fact 
that the complement of { -.B} U { C} is { B} n { -.C}, one obtains the needed 
result. 

Proof of line 5 

Line 4 has the condition L2 appearing to the right of the counterfactual 
condition Rl. The counterfactual condition R1 changes R2 to R1, but leaves 
L2 unchanged. Hence the L2 appearing on the right can be omitted, since it 
appears already on the left. But then application of (2.1) gives the line 5. 

Proof of line 12 

Statement (3.4), expressed in the set-theoretic form, says there is some world 
in { L1 1\ R1} n { £1-} that is not in { R2-}. This entails that, in { £1/\ R1 }, 
there some world in { L 1-} that is not in { R2-}. This is the form of (2.4) 
given in line 12. 

Proof of line 14 

By definition, the assertion that [CD ~ D] is true in world W is equiv­
alent to the assertion that D is true in every possible world W' that differs 
from W only by possible effects of imposing condition C rather than whatever 
condition in world W is directly contradicted by condition C. 

In line 14 the world W can be any world in which L1 and R2 hold. And 
W' can be any world that differs from W only by possible effects of changing 
R2 to Rl. But no matter what these possible changes are, the world W' must 
be a world in which L1 and R1 hold, and in any such world the statement 
( L 1- ~ R1 1\ R1-) is false, by virtue of line 13. Thus line 14 is true. 
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Appendix B. Quantum Logic for Counterfactuals 

Within orthodox quantum theory, with its notion of free choices on the 
part of the experimenters, and the notion of no-backward-in-time influence of 
these free choices, logical reasoning covers unambiguously some statements 
involving counterfactual conditions. The primary logical concept here is the 
notion of a "logically possible world." It will be enough to define it in the 
case under consideration. 

This case involves two spacelike-separated spacetime regions R and L, 
and in each region two alternative mutually exclusive experiments, Rl and 
R2, and Ll and L2, respectively. Each possible experiment has two possi­
ble outcomes, Rl+ and Rl-, etc. Thus there are in this situation sixteen 
"logically possible worlds", each one labelled by one of the four globally de­
fined experiments, (Rl, Ll), (Rl, £2), (R2, Ll), and (R2, L2), and by one 
of the four possible outcomes of that globally defined experiment, ( +, +), 
( +, -), (-, +), and (-, -). This set of sixteen logically possible worlds is the 
logical universe under consideration here. Each such "world" might better 
be called a "world history". 

A physically possible world is logically possible world that by virtue of 
the laws of nature (i.e., the predictions of quantum theory) has a non-null 
probability to occur. The physically possible worlds are called "possible 
worlds." Normally, I omit also the word "possible": unless otherwise stated 
a "world" will mean a "physically possible world". 

The rudimentary logical relationships involve the terms "and", "or", 
"equal" and "negation". A rudimentary statement S involving these rela­
tions is said to be true in world W if and only if S is true by virtue of the 
set of conditions that define W and the laws of nature. 

The concept of "implication" occurs, but it is important to distinguish 
between two different concepts. 

The rudimentary relationship of implication is the so-called "material 
conditional". It is defined in terms of the rudimentary logical relationships 
defined above, and it will be represented here by the single arrow ~- By 
definition: 
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"(A ----t B) is true in world W" is equivalent to 
" (A is false in W) or (B is true in W) " . (B.l) 
This rudimentary relationship is different from the logical relationship 

called the "strict conditional", which is represented here by the word "im­
plies", and a double arrow. The statement " 'A is true' implies 'B is true' 
" is sometimes shortened to "A implies B", and is represented symbolically 
here by 

A=;.B. (B.2) 

By definition, A =} B is true if and only if for every (physically possible) 
world W either "A is false in W" or ''B is true in W": i.e., for every (physically 
possible) world W, the rudimentary statement (A----t B) is true in W. 

The proof to be presented here is based on a causality condition called 
LOCI. It expresses the condition that there is at least one Lorentz frame, 
LF, such that if an experiment is performed and the outcome is recorded 
prior to some timeT, as measured in LF, then this outcome can be regarded 
as fixed and settled, independently of which experiment will eventually be 
freely chosen and performed (faraway) at a time later than T. 

It is assumed that the regions L and R lie earlier and later that this time 
T, respectively. Then LOCl means that if Lois (acting in L) performs her 
experiment before Robert (acting in R), we can safely assume that her result 
does not depend on what Robert will do, but not vice-versa. 

Logicians deal with statements of this kind by employing a third kind 
of implication. It uses the concept "instead of". This concept is of central 
importance in classical counterfactual reasoning, and it has an unambiguous 
meaning within our quantum context. That meaning is now explained. 

Suppose that A represents some possible conditions that the experi­
menters could set up, and some conditions on the possible outcomes. [For 
example, A could be the condition that Lois and Robert perform £2 and R2, 
respectively, and that Lois gets outcome £2+] 

Suppose condition C represents some free choice (by some experimenter) 
that could conflict with A. [In the example, C could be "Robert performs 
Rl"]. 

Finally, suppose condition D represents some possible outcome that could 
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occur if C were to hold "instead of", whatever condition C contradicts. (In 
the example, D could be "Lois gets outcome £2+," or perhaps "Robertgets 
outcome Rl-."J 

Then consider a statement of the form: 

"A implies [If, instead, C then D]" (B.3) 

The phrase "If, instead; C then D" is traditionally represented symboli­
cally by [CD-+ D], and I shall use that symbolic form for the quantum ver­
sion defined here. Like all rudimentary statements the assertion (CD-+ D] it 
is a statement that is made in one world, say W. But it is a statement about 
about an entire set of worlds W', namely the set of all (physically possible) 
worlds that differ from W only by possible consequences of choosing the ex­
perimental condition C instead of whatever condition in world W conflicts 
with C. 

Given this definition of (CD -+ D] the statement 

A * [CD -t D] (BA) 

expresses the condition that, for all (physically possible) worlds W, if A is 
true in W then then D is true in every (physically possible) world W' that 
differs from W only by possible effects of choosing condition C instead of 
whatever condition in W conflicts with C. 

It is essential that this definition allows this statement to be combined 
with other logical statements in an unambiguous way. In particular, the usual 
laws of logic can be applied, without any change, to arguments involving 
statements of this kind. Suppose, or example, that one has, in addition to 
the truth of (B.4), also the truth of (B ::::} A), which asserts that, for all W, 
if B is true in W then A is true in W. Then one can immediately conclude 
from the meaning of ( B .4) that 

B ::::} (CD -+ D]. (B.5) 

The definition of [C D -+ D] is general. But in order to make use of it 
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one must have some condition on the "possible effects of choosing condition 
C instead of whatever condition in world W conflicts with C." 

This is where LOCI comes in. Suppose the region L, where Lois acts, 
lies earlier than the region R, where Robert acts. Then LOCI entails [with 
"and" represented by A] 

(£2 A R2 A L2+) =? [RID --t (L2 ARIA £2+ )] (B.6) 

This statement is true by virtue of the LOCI premise that the outcome 
that Lois gets, and also her free choice, do not depend on what Robert does 
later. 

Another example of the logical rules is this. Suppose that (B.5) is true. 
And suppose that F is a condition on the outcome under the alternative 
condition C, and that D =? F is true. This is the condition that, for every 
W', if D is true in W' then F is true in W'. Then the meaning of (B.5), 
as described above (B.4), with B in place of A, ensures that the following 
statement is true: 

B =? [CD --t F]. (B.7) 

This result is used to get line 4 of the proof given in Appendix A. 
All the other lines of the proof given in Appendix A can be strictly de­

duced, in a similar way, from just the meanings of the logical symbols, the 
predictions of quantum theory, and the property LOCI. 
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