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Abstract

Working memory is widely assumed to underlie multi-step
planning, where representations of possible future actions and
rewards are iteratively updated before determining a choice.
But most working memory research focuses on a context
where stimuli are presented simultaneously and the value of
encoding each stimulus is independent of others. It is unclear
how working memory functions in planning scenarios where
the rewards of future actions unfold over time, are retained in
working memory, and must be integrated for plan selection.
To bridge this gap, we adapted a version of the “mouselab
task” in which participants sequentially observe the reward at
each node in a decision tree before selecting a plan that max-
imizes cumulative rewards. We specified a theoretical model
to characterize the optimal encoding and maintenance strategy
for this task, given working memory constraints, which trades
off the cost of storing information with the potential benefit
of informing later choices. The model encoded rewards in
choice-relevant plans more often, in particular, rewards on the
best and (to a lesser extent) worst plans. We then tested human
participants, who showed the same pattern in the accuracy of
their explicit recall. Our study thus establishes an empirical
and theoretical foundation for models of how people encode
and maintain information during planning.

Keywords: working memory; planning; information theory;
reinforcement learning

Introduction
Imagine that you’re at a music festival, trying to plan your
day. There are two stages, and it takes a while to walk be-
tween them, so you want to avoid switching too much, while
also seeing the best music. (This example will work best if
you try to follow along!) For the first set, you can see Post
Animal at Stage 1 or Polo & Pan at Stage 2. You definitely
want to see Polo & Pan, so you’ll start at Stage 2. If you stay
there for the second set, you can see Bonobo; they’re pretty
good, sure. But the third set is The 1975? Ugh—no thanks...

This example illustrates how quickly working memory
(WM) resources can become overloaded while planning, and
also how people can strategically allocate those resources.
Without looking back, do you remember all the bands who
played at Stage 2? If the example worked, you would remem-
ber that Polo & Pan played first and that The 1975 played
third, but maybe not that Bonobo played second. Polo & Pan
you remember because you chose to start at Stage 2 to see
them. On the other hand, you remember The 1975 because
you specifically tried to avoid seeing them.

A critical role for WM in planning has long been acknowl-
edged (Pribram et al., 1960). For example, Miller et al. (2017)
and Owen (2004) posit that both the construction and evalu-
ation of plans occur in WM, and neural data show that man-
ual action plans are integrated into WM concurrently with the
initial encoding of visual stimuli (Boettcher et al., 2021). Fur-
thermore, planning is often modeled as the construction of a
decision tree (Huys et al., 2012; van Opheusden et al., 2023),
a structure which intuitively would have to be stored in WM,
since it has to be continually and rapidly updated. Surpris-
ingly however, although the time costs of constructing deci-
sion trees have motivated many heuristic and normative mod-
els of approximate planning (Callaway et al., 2022; Keramati
et al., 2011; Sezener et al., 2019), WM constraints are only
rarely integrated into computational models of planning (al-
though see MacGregor et al., 2001), and to our knowledge
there are no normative models of how an optimal planner
would navigate these constraints.

On the other hand, outside of a planning context, there is
an immense body of theoretical work formally characterizing
WM capacity and optimal strategies for deploying it (e.g.,
Barlow, 1961; Stocker and Simoncelli, 2006; Sims, 2016).
Many of these models rely on the mathematics of information
theory. The key idea is to view WM as a capacity-limited in-
formation channel or “bottleneck”, which restricts the amount
of information that can pass from sensory input into inter-
nal representations, and ultimately actions. Although much
of this work focuses on our ability to veridically reconstruct
stimuli (van den Berg and Ma, 2018; Sims et al., 2012), these
formal tools have also been applied to understand reward-
driven choice, where the goal is not to simply remember what
you have seen, but to instead apply the information to se-
lect reward-maximizing actions (Sims, 1998; Bhui and Ger-
shman, 2018; Matêjka and McKay, 2015).

However, while these models have occasionally been ap-
plied in sequential decision making contexts (e.g., Ortega and
Braun, 2013), they have not been applied to the problem of
planning itself, specifically the sequential evaluation of differ-
ent possible courses of action. Most planning models assume
that the outcomes of action evaluations are encoded perfectly
during planning and are not influenced by the order of action
evaluation or the precision of other encoded action values.
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This assumption likely overestimates the information avail-
able to humans during planning.

Here, we seek to develop an optimal information-theoretic
model of planning under WM constraints. This goal faces
two key challenges. First, information-theoretic models are
almost always one-shot, in the sense that a single set of stim-
uli is presented all at once, jointly encoded, and then decoded
into an action (see Woodford, 2016 for a notable exception).
In contrast, planning involves iteratively considering differ-
ent pieces of information and integrating them into a dynamic
representation (for example, adding nodes to a decision tree).
Second, these models often assume that the importance of
each stimulus is independent of the other stimuli (or depen-
dent in a simple way, for example if you only need to remem-
ber the most rewarding action in a set). In contrast, plan-
ning involves recursive maximization over multiple actions;
this introduces complex dependencies, such that the relevance
of one action depends critically on the actions that could be
taken before or after it.

To address these challenges, we draw on two recently
developed formal tools. First, we model planning within
the metalevel Markov decision process framework (metalevel
MDPs; Callaway et al., 2022). This allows us to develop an
optimal model that respects the sequential nature of planning.
Second, we draw on work in artificial intelligence that formal-
izes information-theoretic bounds (and optimal solutions) for
problems where an agent receives information sequentially
(Fox and Tishby, 2012). Combining these two formalisms,
we can formalize the problem of planning under WM con-
straints, and characterize its optimal solution.

Planning with limited working memory
Here, we formalize the problem of decision-tree search un-
der information-theoretic WM bounds. In particular, we aim
to characterize the optimal strategy for encoding and main-
taining information about rewards in a decision tree. For
simplicity and tractability, we focus exclusively on this as-
pect of the problem. That is, we do not consider the prob-
lem of which future states to consider, nor the problem of
when to stop planning and make a choice (the optimal solu-
tion to these problems has been characterized by prior work;
Callaway et al., 2022). We thus assume an exhaustive search
strategy in which future states are considered one by one in
a depth-first manner.1 Extending the model to account for
how WM constraints interact with the search strategy is an
important (and challenging) direction for future work.

We begin with an intuitive summary of the model, provid-
ing details of the formalization and solution strategy below.
On each trial or episode, the agent is presented with a deci-
sion tree of known size but unknown rewards (intuitively, a
stable spatial environment but variable goals). The goal is
to select a sequence of actions that maximizes total reward.
Before taking action, the agent systematically considers ev-

1That is, all future states along one plan are considered before
future states in another plan are evaluated.

Figure 1: Binary decision tree reward representation. The
white panel shows the current information available at
timestep 2. The light grey panel shows two possible encod-
ing strategies at timestep 2. The dark grey panel shows the
reward representation outcome at timestep 3, based on the
encoding strategies from timestep 2. Dotted lines indicate
encoding strategies at timestep 2, while dashed lines indicate
possible rewards revealed at timestep 3. Reward values are
color-coded: +1 in green, -1 in orange. Optimal plans are
marked in blue.

ery state, taking note of the reward there and storing it in a
decision tree. Absent WM constraints, the agent could then
trivially identify the optimal plan and perfectly maximize re-
ward. However, the agent has limited WM, and thus pays a
cost associated with storing information about the rewards.
Therefore, after considering each reward, the agent makes a
choice about how precisely they will maintain the rewards
into the next time step. This choice applies to the full set of
rewards considered thus far; that is, the agent could initially
pay the cost to maintain a reward with high precision, but de-
cide to forget about it several timesteps later. This decision
is permanent, in the sense that once information about a re-
ward is lost, it cannot be recovered. Once all the rewards have
been considered, the agent selects an action sequence based
on their final mental state.

Despite its apparent simplicity, this task poses a non-trivial
sequential decision problem. For example, consider the ex-
ample shown in Figure 1, a simple binary decision tree with
binary rewards, in which the agent has discovered a mediocre
plan with rewards +1 and -1. If the agent were to only receive
the information available at timestep 2 in the white panel,
plan A would be valued at zero, and plan B at +1. In this
scenario, the agent should remember the +1 to ensure selec-
tion of a plan in the right branch, and also remember the -1
to choose plan B over plan A (i.e., encoding strategy 1 in the
light grey panel). However, this approach may not be optimal
when considering the reward that will be revealed at t = 3
in the dark grey panel. If a reward of +1 is revealed (i.e.,
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outcomes 1 and 3), plan B becomes the optimal choice, sug-
gesting that only the nodes on plan B need to be encoded.
Conversely, if the reward at t = 3 is -1 (i.e., outcomes 2 and
4), plans 1 and 2 would have equivalent values, making it un-
necessary to remember that both nodes have a value of -1.
Therefore, when future information is taken into account, the
optimal strategy would be to encode only the +1 value (i.e.,
encoding strategy 2), as this decision accounts for all the po-
tential rewards to be revealed at the next timestep. This ex-
ample thus illustrates how accounting for future information
can change what is worth storing in WM.

Problem formulation
Following Callaway et al. (2022), we specify the model as a
metalevel Markov decision process. We thus formalize the
problem of WM-bounded planning in terms of an agent se-
lecting mental operations to update their mental state in order
to balance cognitive cost with external reward. However, in
contrast to Callaway et al., which focuses on the decision of
which rewards to consider, we instead consider the decision
of how precisely to maintain information about the rewards
that have already been considered. Similarly, we put aside
the cost associated with the initial evaluation of reward and
instead focus on the cost associated with maintaining infor-
mation about rewards over multiple time steps.

The model is defined by a set of possible world states, a
set of mental states (noisy representations of the world state),
and a set of mental actions that update the mental state. We
further define cost and value functions over mental states that
capture the cost of maintaining a representation in WM and
the expected reward associated with selecting actions using a
given mental state. We describe each component below.

World state The true state of the world specifies the actual
reward at each future state. It is represented by a vector W ,
where W (k) denotes the reward at state k. The world state is
constant across all time steps and is hidden from the agent.
However, the reward at each state is drawn from some distri-
bution p(W (k)) that is known to the agent, providing a prior
belief absent any specific information about a given reward.

Mental state At each time step t, the agent holds a mental
state Mt , a noisy representation of the rewards, W . For sim-
plicity, we assume that the represented rewards are corrupted
by Gaussian noise, so that M(k)

t ∼ N (w(k),σ
(k)
t )2. The degree

of noise for each reward σ
(k)
t is controlled by the agent, as de-

scribed below. Implicitly, the agent also tracks the precision
with which they have maintained each reward (the σ

(k)
t ).

Mental action At each time step, the agent executes a men-
tal action that controls the precision with which each reward
is represented. Concretely, a mental action sets σ

(k)
t with two

restrictions. First, rewards that have not been considered yet
have zero precision: σ

(k)
t = ∞ ∀ k > t (we assume that nodes

2Here w(k) and m(k) represent individual instances of the actual
and noisy representation of reward at state k, respectively

are considered in index order). Second, encoding precision
can never increase: σ

(k)
t ≥ σ

(k)
t−1 ∀ k < t. Thus, the agent can

encode the currently considered reward w(t) at any precision,
and can lower the precision of previously encoded rewards.

Mental cost function At each time step, the agent pays a
cost associated with the reward information maintained in
WM. We quantify this cost using mutual information, the
amount of information obtained about the world state W when
observing the mental state Mt . The cost of Mt is higher if Mt
more veridically represents the actual rewards and contains a
larger amount of information about W . For a given reward,
the mutual information is defined

I
(

M(k)
t ;W (k)

)
=

∫
w(k)

∫
m(k)

t

p
(

m(k)
t ,w(k)

)
log

(
p(m(k)

t |w(k))

p(m(k)
t )

)
.

(1)
Because we assume independent and identically distributed
rewards in both Mt and W , the total mutual information and
thus the total cost is simply the sum across all the rewards.

Physical action After all rewards have been considered and
encoded, the agent constructs a plan. Because we limit our at-
tention to deterministic problems, the plan can be represented
as a sequence of nodes to visit, which we denote τ. The value
of a plan given a world state is simply V (τ,w) = ∑k∈τ w(k).
We assume that the agent chooses a plan that maximizes the
expected value given their mental state, that is

p(τ|m)∼ Uniform
(

argmax
τ

∑
w

p(w|m)V (τ,w)
)
, (2)

where p(w|m) is computed by Bayes rule. Intuitively, this
means that an imprecisely encoded reward will revert towards
the prior mean, assuming that the agent tracks the precision
with which they have maintained each reward.

Terminal reward function The terminal reward function
captures the expected reward attained from the executed ex-
ternal actions (when planning terminates), marginalizing over
both τ and w given the current mental state.

RT (m) = ∑
w

p(w|m)∑
τ

p(τ|m)V (τ,w) (3)

Optimal policy
Having specified the model, we now discuss our strategy
for approximating its optimal solution. We draw heavily on
the approach of Fox and Tishby (2012), using dynamic pro-
gramming to compute the optimal value function over men-
tal states, and the Blahut-Arimoto algorithm to determine the
transitional probability over mental states, which is used in
dynammic programming.

Note that we make one key approximation. In the complete
model, noise in the representation influences the selection of
both physical and mental actions. However, for tractability,
we apply a mean field approximation with respect to the latter.
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This allows us to convert the problem of selecting encoding
precisions σ

(k)
t given a specific noisy representation mt into

the much easier problem of directly identifying the optimal
feasible mental state distribution given the current one and
the observation: p(Mt |Mt−1,w(t)). Due to space constraints,
we refer the reader to Fox and Tishby (2012) for details. We
give a brief summary below.

The solution is identified with dynamic programming, us-
ing a Bellman equation defined over mental states,

V (Mt) = R(Mt)+ γ ∑
Mt+1|Mt

p(Mt+1|Mt)V (Mt+1), (4)

where γ is a discount factor and the reward function is defined

R(Mt) = 1(t = T )RT (Mt)−λ ∑
w|Mt

p(w) I(Mt ;w), (5)

with λ defining the tradeoff between value and information.3

That is, the agent pays an information cost at every time step
and receives the termination reward at the final time step.

The policy soft-maximizes value V (Mt), selecting from the
set of possible mental states. Given Mt−1 and w(t), the pos-
sible mental states are the ones where the mean of M(k)

t is
w(k) (for all k ≤ t, zero otherwise) and the standard deviations
follow the constraints defined above under “Mental action”.
Note that the means are fixed to the true reward because of
the mean-field approximation discussed above.

Finally, we can define a transition function directly over
mental states by marginalizing over w(t):

p(Mt |Mt−1) = ∑
w(t)

p(Mt |Mt−1,w(t))p(w(t)). (6)

Note that the policy depends on the value function, which
in turn depends on the transition function p(Mt |Mt−1), which
itself depends on the policy. Fortunately, this cyclic de-
pendence can be resolved by the Blahut-Arimoto algo-
rithm, which alternates between updating the policy and the
marginal until convergence.

Experiment
To empirically test how well our model characterizes human
encoding strategies, we designed an experiment that mirrors
the complexities of real-world planning. In this experiment,
participants were presented with a sequence of choices, each
with associated rewards, simulating the sequential decision-
making process.

For tractability, we used a minimalistic version of the task:
a two-step binary decision tree and a binary reward distri-
bution (−4 and +4 with equal probability.) The experiment
was structured as follows: The decision tree was depicted as
a game board, the reward at each node was represented by a
radial frequency pattern, and plans were represented by paths

3A smaller λ indicates that the mental cost is downweighted
when evaluating the mental states.

starting at the central node and ending at a leaf node. Par-
ticipants were required to sequentially observe the reward at
each node and then navigate a plane from the central node
to a leaf node, aiming to collect the highest possible cumula-
tive rewards across the visited nodes. Participants were then
asked to recall the reward at each node.

Methods
Participants We recruited 70 participants with normal or
corrected-to-normal vision through UCSD’s Sona system.

Stimuli The primary stimulus in this experiment was a
game board designed as a 7-node decision tree (Figure 2.b).
The reward at the central node of this board was always set
to 0. The rewards at other nodes were visually represented as
radial frequency patterns, and each had a value of either −4
or +4 with equal probability (Figure 2.a). Participants were
trained to associate these patterns with their corresponding
reward values before starting the main experiment.

Procedure Each participant completed one practice trial
followed by 39 actual trials. To ensure consistency, the se-
quence of trials and the order of nodes probed during reward
recall in each trial were standardized across all participants.
After each trial, we revealed the actual decision tree and the
assigned rewards to provide feedback on their performance.

Task Each trial consisted of three phases: reward presenta-
tion, path selection, and reward recall (shown in Figure 2.c).
During reward presentation, participants observed the reward
at each node on the board sequentially for 1.5 seconds each
without inter-stimulus intervals, following a depth-first man-
ner. Subsequently, during path selection, they were asked to
control a plane to travel from the central node to one of the
leaf nodes, aiming to accumulate the maximum possible re-
wards in the nodes they have visited. Once the plane moved,
it could not return to a visited node. We incentivized partici-
pants’ performance in path selection by informing them that
the experiment concludes when 200 points of reward have
been accumulated across all trials, which corresponded to the
maximum number of points possible across all 40 trials. Af-
ter completing the route, we asked participants to recall the
reward at each node. Specifically, they were prompted to
match the pattern on a probed node with the corresponding
pattern from their memory by adjusting a slider to alter the
pattern until it matched their recollection. We probed the par-
ticipants’s recall of the reward at each node in random order.
The participants were required to complete the path selection
and reward recall phases in the practice trial without errors to
proceed to the actual experiment.

Model
Although the theoretical model allows for arbitrary degrees
of precision, for tractability, we only considered two possible
levels. The agent could either choose to perfectly encode the
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Figure 2: a: Radial frequency patterns corresponding to re-
ward values. The possible reward values R = {−4,+4},
each with probability 0.5. The radial frequency pattern rep-
resenting the reward value −4 had 3 “bumps”, and the ra-
dial frequency pattern representing the reward value +4 had
5 “bumps”. b: Example of a decision tree presented to par-
ticipants, with the central node fixed at a reward of 0. Other
nodes displayed rewards from R = {−4,+4}. c: Overview
of the experimental trial process, with each participant com-
pleting 40 trials featuring randomly assigned rewards.

reward information or completely forget it. Furthermore, be-
cause the reward distribution was binary, the agent adopted a
discrete prior, assigning equal weight to the two possible val-
ues (−4 and +4). Therefore, if the actual reward is encoded,
M(k)

t is a delta distribution on the true reward. Otherwise it
reverts to the prior, −4 or +4 with equal probability.

Results

Both simulated and behavioral data revealed that better per-
formance in the path selection task is associated with a higher
number of nodes encoded in WM. Additionally, our model
that incorporated WM constraints was more effective in pre-
dicting the participants’ path selection than a variant of the
model without this constraint. Furthermore, we found that
both the model and human participants employed similar en-
coding strategies, encoding reward information at leaf nodes
in the most and least favorable paths more often than leaf
nodes in paths with the value 0. Detailed analyses of these
findings are presented in the sections below.

Tradeoff Between Value Maximization and Information
Minimization Our model explored the balance between
maximizing the value of the selected path and minimizing
WM load, regulated by the λ parameter. An increase in λ

leads to a lower average reward of selected path, as shown in

Figure 3.a. In our simulations, there was a significant negative
correlation between the average value of the chosen path and
the average number of forgotten nodes across different λ val-
ues (Pearson’s correlation coefficient r = −0.86, p < .001).
This significant negative correlation was also observed in our
behavioral data (r =−0.68, p < .001, shown in Figure 3.b).

This result indicated that human participants showed a
trade-off between the performance in planning and the
amount of information that was stored in WM. Note that al-
though the simulation results spanned a wide range of possi-
ble λ values, the number of forgotten nodes for humans con-
sistently remained at the lower end of this range. This obser-
vation may suggest that humans prioritize performance over
reducing WM load during this task.

Figure 3: a: Relation between 700 λ values (ranging from
1e− 20 to 10) with constant γ = 0.5 and the average reward
of selected path per agent across the 39 actual trials pre-
sented to the participants (smaller λ indicates the mental cost
is downweighted when evaluating mental actions). b: Aver-
age number of forgotten nodes per trial vs. average value of
the selected path for the model (purple) and human partici-
pants (green), one dot per agent/participant. Here, the path
selected by the model was the one with maximal expected
reward given the mental state (ties were broken randomly).
c: Simulation showing the proportion of encoded leaf nodes
in paths with reward values -8, 0 and 8, across 700 λ values
(from 1e− 20 to 10) at a constant γ = 0.5. d: Experimental
data showing the proportion of encoded leaf nodes in paths
with reward values -8, 0 and 8.

Path Selection Prediction We evaluated the performance
of our model by fitting the parameters λ and γ based on the
participants’ reward recall responses and using the fitted pa-
rameters to predict the participant’s path selection. We used
the BOBYQA algorithm (Powell et al., 2009) with maximum
likelihood estimation for paramter fitting. We used the first
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20 trials for parameter fitting and the last 19 trials for path
selection prediction. Spearman’s correlation confirmed a sig-
nificant positive correlation between the participants’ reward
recalls and the predicted reward representations (Spearman’s
ρ = 0.84, p < .001). Predictions of selected paths based on
these representations yielded an accuracy of 58.2%, which
exceeded the 25% accuracy expected by chance. These re-
sults showed that we were able to predict the participants’ se-
lection of paths from the amount of WM resources allocated
to reward information encoding during planning, which was
estimated by the parameter λ.

We then used cross validation with 2 folds to compare be-
tween 3 models:

• our nornative model under WM constraints,

• a variation of our model without WM constraints (λ = 0
and only fitting γ),

• and a model that randomly chose to encode the reward in-
formation at each node or not.

Our model with WM constraints had a log likelihood of
−1546.25, the model without WM constraints had a log like-
lihood of −1588.45, and the random model had a log likeli-
hood of −1925.25.

The participants’ encoding strategies could be better char-
acterized by the model with WM contraints, compared with a
model without, or a model that randomly chose which nodes
to encode. This result indicated that human participants did
not encode the rewards at all nodes perfectly, and this lim-
itation influenced their path selection. However, the perfor-
mance of the model with and without WM constraints was
similar. One explanation might be that this task did not heav-
ily tax the participants’ WM, as evidenced by the small num-
ber of forgotten nodes for humans shown in Figure 3.b.

Reward Encoding Strategy We posited that the likelihood
of a node being encoded depends on its relevance in future
path selection. To test this hypothesis, we ran simulations
with 700 λ values ranging from 1e− 20 to 10 and constant
γ = 0.5. Consistent with this hypothesis, our simulations at
the final timestep revealed that leaf nodes in paths with the
most extreme values (-8 or 8) were encoded more frequently
than other leaf nodes. Specifically, Mann-Whitney U tests
showed that paths with the value 0 had a smaller proportion
of encoded leaf nodes (0.45, SD = 0.15) compared to paths
with the value −8 (0.64, SD = 0.27; p < .001) and paths with
the value 8 (0.70, SD = 0.22; p < .001). Paths with the value
−8 had a smaller proportion of encoded leaf nodes compared
to paths with the value 8 ( p < .001), as shown in Figure 3.c.

We observed a similar pattern in our behavioral experi-
ment4. Paths with the value 0 had a smaller proportion of
encoded leaf nodes (0.86, SD = 0.15) compared to paths with

4A node was considered remembered if its reported reward value
shared the same sign as the actual reward because there were only 2
possible reward values.

the value −8 (0.92, SD = 0.15; p < .001) and paths with the
value 8 (0.96, SD = 0.10; p < .001). Additionally, paths with
the value −8 had a smaller proportion of leaf nodes compared
to paths with the value 8 (p = 0.002), as shown in Figure 3.d.

Since the absolute values of the reward at each node were
consistent, this result implied that in our task, whether a par-
ticipant chose to encode a node or not was not dependent on
the nodes’ individual reward values. Instead, the participants
considered the importance of a piece of reward information
in the context of finding the optimal path multiple timesteps
after they observed this information. This indicated that dur-
ing planning, the potential of a node to aid in future decisions
was considered more critical than its immediate value.

Discussion
In this study, we presented a information-theoretic model that
encoded reward information strategically during planning to
maximize the value of future plans under WM constraints.
We hypothesized that reward information related to plan se-
lection will be encoded with higher probability. Our simula-
tion and behavioral data confirmed this hypothesis.

Both our model and the human participants encoded leaf
nodes in paths with extreme values more often compared to
leaf nodes in paths with the value 0, despite the constant ab-
solute value of node rewards. This implied that during reward
information encoding, whether a node can help in path selec-
tion was considered more important than its immediate value.
This finding aligned with prior research showing that WM
prioritizes goal-related items and encodes them with greater
precision (Hu et al., 2016; Ravizza et al., 2021). Our results
extended this finding to the context of two-step planning, in-
dicating that action-relevant information in goal-related plans
is encoded with higher precision in WM. However, this re-
sult could also be explained by varying cognitive demands:
paths valued at 0 contained stimuli with different shapes, re-
quiring participants to associate each shape with its position.
Conversely, paths with extreme rewards contained identical
stimuli, which may reduce cognitive load.

Our analysis was confined to a simple binary decision tree
with binary rewards, alongside a binary encoding decision –
either encoding a reward or not. This approach may limit the
generalizability of our model, as existing WM research indi-
cates that items in WM can be encoded with varying degrees
of precision (Sims et al., 2012). Future research could explore
encoding strategies for actions with continuous rewards and
might consider a model where precision levels are continuous
rather than binary.

In conclusion, this study showed that the value of future ac-
tions were not stored in WM with equal probability, and the
probability of encoding an action value is related to the rele-
vance of the action in plan selection. Future work should in-
vestigate how humans decide which future actions to evaluate
during planning, given the constraints of WM, and examine
how the combination of both action evaluation and encoding
strategies influence the planning outcome.
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