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ABSTRACT OF THE DISSERTATION

Cross-Layer Prioritized Video Transmission: Adaptive Packetization,
FEC Protection and Scheduling Methods

by

Kashyap Kodanda Ram Kambhatla

Doctor of Philosophy in Engineering Science (Electrical and Computer Engineering)

University of California, San Diego, 2014
San Diego State University, 2014

Professor Pamela Cosman, Chair
Professor Sunil Kumar, Co-Chair

The quality of H.264/AVC compressed video delivery over time-varying and

error-prone wireless channels is affected by packet losses. To support quality of ser-

vice (QoS) for video delivery over wireless networks cross-layer schemes have been

discussed in the literature. We introduce a cross-layer priority-aware packet frag-

mentation scheme at the medium access control (MAC) layer to enhance the quality

of pre-encoded H.264/AVC compressed bitstreams over bit-rate limited error-prone

links in wireless networks. Larger fragments are more likely to be in error but smaller

fragments require more overhead. The H.264 slices are classified in four priorities

at the encoder based on their cumulative mean square error (CMSE) contribution

towards the received video quality. The slices of a priority class in each frame are

aggregated into video packets of corresponding priority at the application (APP)

layer. We derive the optimal fragment size for each priority class which achieves the

maximum expected weighted goodput at different encoded video bit rates, slice sizes

and bit error rates. Priority-aware packet fragmentation invokes slice discard in the

xvi



buffer due to channel bit rate constraints on allocating fragment header bits. We

propose a slice discard scheme using frame importance and slice CMSE contribution

to control error propagation effects. Packet fragmentation is then extended to slice

fragmentation by modifying the conventional H.264 decoder to handle partial slice de-

coding. Priority-aware slice fragmentation combined with the proposed slice discard

scheme provides considerable peak signal-to-noise ratio (PSNR) and video quality

metric gains as compared to priority-agnostic fragmentation.

Distortion due to channel errors can be alleviated by assigning stronger chan-

nel code rates, at the cost of reduced rate for source coding. Besides MAC layer

fragmentation, aggregating H.264/AVC slices at the APP layer to form video packets

with sizes adapted to their importance can also improve transmission reliability. We

present a cross-layer dynamic programming (DP) approach to minimize the expected

received video distortion by jointly addressing the priority-adaptive packet formation

at the APP layer and rate compatible punctured convolutional (RCPC) code rate allo-

cation at the physical layer for pre-encoded prioritized slices of each group of pictures

(GOP). Our scheme discards some low priority slices in order to improve protection to

more important slices and meet the channel bit-rate limitations, whenever necessary.

Simulation results show that our proposed approach significantly improves received

video quality compared to other error protection schemes. Further, we extend our

cross-layer DP-based scheme to slices of each frame by predicting the expected chan-

nel bit budget per frame for real-time transmission. The prediction uses a generalized

linear model developed over the parameters - CMSE per frame, channel SNR, and

normalized compressed frame bit budget - determined over a video dataset that spans

high, medium and low motion complexity. This predicted frame bit budget is used

to derive the packet sizes and their corresponding RCPC code rates for transmission

using our DP-based approach. Simulation results show good correlation with the

results of our DP-based scheme applied over the GOP.

Unique characteristics of video traffic, such as the temporal and spatial depen-

dencies between different video frames and their deadline constraints, pose a challenge

in supporting the video quality rendered to the clients over time-varying, bandwidth-

limited channels. Scalable Video Coding (H.264/SVC) enables the transmission and

decoding of partial bit streams to provide video services with lower temporal or spa-

xvii



tial resolutions or reduced fidelity while retaining a reconstruction quality that is high

relative to the rate of the partial bit streams. We propose a sliding-window based flow

control for scheduling the network abstraction layer (NAL) units in the post-encoding

buffer of the streaming server for a real-time scalable video transmission scenario over

a fast time-varying channel. Our scheduling scheme considers the importance of the

NAL unit in terms of (i) its CMSE distortion contributed to the received video qual-

ity, (ii) its size in bits, and (iii) its time-to-expiry in seconds. The scheduling problem

of determining the appropriate order of transmission is formulated as a 0-1 knapsack

problem and a DP solution is proposed which runs in polynomial time. Our schedul-

ing approach significantly reduces the number of whole frames discarded as compared

to (a) a CMSE-based scheme which considers the importance of the NAL units only

in terms of their CMSE contribution, and (b) the earliest deadline first scheme which

minimizes the dwelling time of the NAL units in the post-encoding buffer. Simulation

results show significant PSNR gains for different video sequences at different pre-roll

delays.
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Chapter 1

Introduction

Video streaming over wireless networks invokes a strong interest for many

delay sensitive and bandwidth-intensive applications, and an increasing number of

systems are being deployed. The gaming applications involving real-time multimedia

transmission among various players are growing rapidly. Video streaming and sharing

of news, TV, movies, and sports clips to mobile phones is now widely available on

popular applications such as YouTube, Netflix, and Hulu. Video conferencing ap-

plications, such as Cisco telepresence, and Google Hangout, are slowly replacing the

need for business travel. For surveillance applications, cameras can be flexibly and

cheaply installed, if a wireless network provides connectivity. A wireless local area

network (WLAN) now connects various audiovisual entertainment devices in a home

and allows them to interact with one another. Also in search-and-rescue operations,

real-time audiovisual communication over wireless ad-hoc networks can save lives.

Existing wireless networks, however, provide only limited and time-varying quality of

service (QoS) support for the above applications [1].

H.264 advanced video coding (AVC) [2] and scalable video coding (SVC) [3] are

the most widely used video compression standards jointly developed by the ITU and

ISO. Compressed video transmission is vulnerable to packet losses in wireless networks

due to network and channel impairments. Lost video packets induce different levels

of quality degradation due to temporal and spatial dependencies in the compressed

bitstream. An important problem which affects video quality is error propagation

where an error in a reference frame propagates to future reconstructed frames which

1
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are predicted from that reference frame. This problem has led to the design of error-

resiliency features such as flexible macroblock ordering (FMO), data partitioning, and

error concealment schemes in H.264 [2, 4, 5].

Though H.264 error-resiliency features reduce the distortion from packet losses,

they are still decoupled from various network-centric QoS provisions. QoS support

involves several areas, ranging from applications, terminals, and networking archi-

tectures to network management, business models, and finally the main target, end

users [6]. Enabling QoS in an environment involving mobile hosts under different

wireless access technologies is very challenging, since available resources (e.g., band-

width, battery life, etc.) in wireless networks are scarce and dynamically change over

time. Since the capacity of the channel in a wireless network varies randomly with

time, providing deterministic QoS (i.e., zero QoS violation probability) for video is

not only difficult but will also likely result in conservative guarantees and waste of

resources. Hence, statistical QoS guarantees in terms of received video quality, good-

put based on successfully received data, probability of packet loss, and packet delay

have gained importance. There are several fundamental challenges in supporting the

end-to-end QoS for video delivery over wireless networks [6–8]:

1. QoS support depends on a wide range of technological aspects, including video

coding, high-performance physical and link layer support, efficient packet de-

livery, congestion control, error control, and power control.

2. Different applications have diverse QoS requirements in terms of data rates,

delay bounds, and packet loss probabilities. For example, unlike non-real-time

data packets, video services are sensitive to packet delivery delay but can tol-

erate some transmission errors and even frame losses.

3. Different types of networks inherently have different characteristics, usually re-

ferred to as network heterogeneity. The internet is based on Internet Protocol

(IP) (designed for wireline environment), which basically only offers best-effort

services. The network conditions, such as bandwidth, packet loss ratio, de-

lay, and delay jitter, vary over time in a wireless environment. An important

characteristic of current wireless networks is that the heterogeneous wireless

access technologies co-exist, such as WLAN access, 3G/4G cellular access, and
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Bluetooth. Bit-error rate (BER) in a wireless network is much higher than in

the wireline network. Moreover, link layer error control schemes, such as au-

tomatic repeat request (ARQ), are widely used to overcome wireless channel

errors. This further increases the dramatic variation of bandwidth and delay in

wireless networks. To make things even more complicated, the packet loss in

wireless networks can be caused by either congestion leading to buffer overflow

or by a noisy channel leading to packet errors.

4. There is dramatic heterogeneity among end users in terms of latency require-

ments, video visual quality, processing capabilities, power, and bandwidth. It is

thus a challenge to design a delivery mechanism that not only achieves efficient

resource utilization but also meets the heterogeneous requirements of the end

users.

To address the above challenges, the QoS requirement should be supported

in all components of the video delivery system using a cross-layer perspective, which

include (a) QoS provisioning from networks, (b) scalable and/or prioritized video pre-

sentation from applications, and (c) network adaptive congestion/error/power con-

trol. To deliver the best end-to-end performance for such wireless systems, video

coding, reliable transport and wireless resource allocation must be considered jointly,

thus moving from the traditional layered system architecture to a cross-layer design.

Broadly, this dissertation addresses cross-layer QoS issues for video packet delivery

over wireless links through: (1) prioritized transmission control schemes that can

derive and adjust the bit-budget for prioritized video data, and (2) cross-layer QoS

adaptation that can optimally choose statistical QoS guarantees for each video pri-

ority class of a prioritized transmission system so as to provide better video quality.

Adaptation of packet size and forward error correction (FEC) are two well-

known techniques to combat packet loss due to channel impairments. In this disser-

tation, we use them as QoS adaptation techniques for prioritized video data. Packet

size adaptation can be carried out at different layers such as the application (APP),

transport, and medium access control (MAC) layers. FEC adaptation can be carried

out at the APP and physical (PHY) layers.

Packet segmentation and reassembly, carried out at the transport layer of the
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source and gateway nodes to comply with the maximum packet size requirements of

intermediate networks [9, 10], cannot efficiently adapt to the varying channel condi-

tions at the intermediate nodes. Furthermore, video streaming uses real-time trans-

port protocol (RTP) and user datagram protocol (UDP), where the transport layer is

less important for error protection and bandwidth adaptation [1]. Packet fragmenta-

tion at the MAC layer is primarily done to adapt the packet size to the channel error

characteristics, in order to improve the successful packet transmission probability and

reduce the cost of packet retransmissions. MAC layer fragmentation and retransmis-

sion also avoid costly transport layer retransmissions [11–16]. Fragmentation calls

for a trade-off between reducing the total number of overhead bits by using large

fragments and reducing the transmission error rate by using small fragments. How-

ever, maximum throughput does not guarantee the minimum video distortion at the

receiver due to the following reasons - First, unlike data packets, loss of H.264 com-

pressed video packets induces different amounts of distortion in the received video.

Therefore the fragment size should be adaptive to the packet priority. However, ex-

isting payload (i.e., packet size) adaptation schemes in the literature do not consider

the distortion contribution of the packet. Second, conventional packet fragmentation

schemes discard a packet unless all its fragments are received correctly. However,

video data is loss tolerant and a packet can be partially decoded even when some

of its fragments are lost. Also real-time video transmission is delay-sensitive and re-

transmission of corrupted fragments may not be feasible. Packet size adaptation can

be carried out at the APP layer by aggregating the smaller-sized network abstraction

layer (NAL) units belonging to the different priority classes into packets of different

sizes. However, there is an upper bound on the size of the APP layer packets known

as maximum transmission unit (MTU) size for wireless networks.

The PHY layer applies FEC to video packets to combat low channel signal-

to-noise ratio (SNR). Past research in the literature proposed optimizing joint source

channel coding for video transmission at the APP layer [17–20]. However, FEC code

rates have to be derived from channel characteristics such as noise level variation

and channel bit rate limitation. Recent research has demonstrated the promise of

cross-layer protocols for supporting the QoS demands of multimedia applications

over wireless networks [21–23]. Van der Schaar et al. [22] discuss different cross layer
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solutions and extend the MAC-centric approach to demonstrate that the joint APP-

MAC-PHY approach is best suited for transmitting multimedia (e.g., video streaming)

over wireless networks. The joint APP-MAC-PHY cross-layer interface is desirable

to achieve our objective of QoS adaptation by using the channel noise information,

bit rate constraints, and network packet size limitation.

1.1 Background on Payload Adaptation

MAC frame length control has been studied in the past for different purposes

such as (i) maximizing wireless network or user or link throughput [24–27], (ii) opti-

mizing energy efficiency and transmission range [11, 28, 29], (iii) dynamic multi-rate

link adaptation [30], and (iv) goodput enhancement, delay and retransmission con-

trol [31]. Yin et al. [24] determine the feasible packet size which achieves maximum

network saturation throughput for a WLAN operating in the IEEE 802.11 distributed

coordination function mode. The channel conditions are assumed to be constant

throughout the network and the overhead due to retransmission bounds at the MAC

layer is taken into consideration. The derived packet size is fixed for every user in

the network. Throughput enhancement over time-varying Ricean fading channels in

WLANs is studied in [25]. The authors dynamically vary the MAC fragmentation

threshold based on the ratio of transmission rate allowed by the receiver (based on

its channel conditions) to the sender’s packet generation rate. Though a lower frag-

mentation threshold provides better throughput, this scheme does not consider the

effect of additional overhead bits and the back-off time on packet delay. A cross-layer

design between the MAC and PHY layers in WLANs is studied in [26]. The optimal

packet size is derived for direct sequence spread spectrum and frequency hopping

spread spectrum systems by using the channel BER as an interface parameter. The

performance of ARQ combined with dynamic packet fragmentation is studied dur-

ing wireless channel failures (i.e., unavailability of channel) for highly concentrated

Gaussian or exponentially distributed data transmitted over distributed computing

systems [27]. The authors show that MAC retransmissions of packets of different

sizes result in power-law delays and poor utilization of network resources. They pro-

pose aggregating small packets into larger ones and using dynamic fragmentation
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depending on the channel availability period to improve network throughput.

The throughput enhancement in the above schemes [24–27] is observed for poor

channel conditions at the cost of longer packet delay. Adaptive MAC frame length

control has also been used for increasing energy efficiency in [28] and latency control

for meeting packet delay requirements in real-time environments on test beds in [11,

29]. Goodput analysis combined with link rate adaptation for IEEE 802.11a is carried

out as a function of the payload size in [30]. This scheme uses an auto rate fallback

mechanism which alternates between 1 Mbps and 2 Mbps PHY rates depending on the

result of the timeout function and the missed ACK frames. The goodput is computed

as the ratio of the payload transmission time to the total time needed to transmit

a data packet. Another dynamic fragmentation scheme for goodput enhancement is

discussed in [31]. In the above schemes, a successful data packet reception requires

the successful transmission/retransmission of each packet fragment. This introduces

considerable delay which may not be suitable for real-time multimedia applications

[19].

Lately, some cross-layer packet aggregation and fragmentation schemes have

been proposed for enhancing H.264 compressed video transmission over wireless net-

works [32–35]. Fallah et al. [32] proposed the fragmentation and aggregation of H.264

NAL units in order to enhance the quality of the decoded video stream over IEEE

802.11 WLAN. They showed that the video quality is increased when the fragmen-

tation is done at the APP layer through slicing the video compared to when frag-

mentation is done at the MAC layer. However, they did not combine the APP layer

slicing and aggregation with MAC layer fragmentation and also did not consider the

packet priorities. Connie et al. [33] extended the idea of APP layer fragmentation pro-

posed in [32] to 3G UMTS networks in both uplink and downlink transmissions. The

extended profile of H.264 divides the video data into three partitions with different

levels of importance. In order to support the QoS requirements of a H.264 bitstream,

Ksentini et al. [34] mapped the IEEE 802.11e MAC access categories to these different

data partitions. Fallah et al. [35] extended the idea in [34] and employed a controlled

access phase scheduling in the IEEE 802.11e hybrid coordination function controlled

channel access mode.

Packet headers and protocol layer overhead reduce the effective throughput.
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The need for adapting the payload length and data rate are discussed in [36]. To

address the variation in network conditions, solutions for adaptive packet size adjust-

ments at the APP layer have been discussed in [12,14,16,37–42]. The effect of packet

size on the loss rate and delay characteristics in a wireless real-time application was

studied in [14]. It was shown that APP level packet size optimization could facilitate

efficient usage of wireless network resources, improving the service provided to all end

users sharing the network.

Choi et al. [37] designed cross-layer schemes to study the effect of optimal

packet size, MAC layer retransmissions, and APP layer FEC on multimedia delivery

over wireless networks. They noted that the packet size is tightly related to the

packet delay and channel conditions. An algorithm that allows an ARQ protocol to

dynamically optimize the packet size based on the wireless channel bit error rates

was proposed in [12]. Lee et al. [16, 38] developed an analytic model to evaluate

the impact of channel BER on the quality of streaming a MPEG-4 video with fine

granular scalability. They proposed a video transmission scheme, which combines the

adaptive assignment of packet size with unequal error protection (UEP) to increase

the end-to-end video quality.

Shih [39,42] proposed a scheme which integrated the packet size control mecha-

nism with the optimal packet-level FEC in order to enhance the efficiency of FEC over

wireless networks. Both the degree of FEC redundancy and the transport packet size

were adjusted simultaneously in accordance with a minimum bandwidth consumption

strategy to transmit video frames with delay bound and target frame error rate con-

straint. Lin et al. [40] formulated an optimization problem to minimize the required

resource units for a single user by adjusting payload length, modulation, block size,

and code rate for wireless channels. An adaptive packet and block length FEC con-

trol mechanism is discussed in [41]. Lin and Cosman [43] studied code rate allocation

with slice discarding for pre-encoded H.264 video slices of a group of pictures (GOP).

Each slice consisted of a horizontal row of macroblocks and was considered to be an

independent packet.

In [36], authors present a mathematical framework to maximize a single user

throughput by using the symbol rate, the packet length, and the constellation size

of the modulation. In [44, 45], authors provide a theoretical framework without re-
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transmission to optimize single user throughput by adjusting the source bit rate and

payload length as a function of channel conditions. However, the maximal throughput

transmission does not ensure the packet error rate (PER) requirement. A cross-layer

design considering retransmission is shown in [46]. Authors optimize the length of

payload and suggest the associated physical transmission modes, which include mod-

ulation and coding scheme, for a given channel SNR.

1.2 Thesis outline

Chapter 2 of this dissertation contains material that appears in publications

[47] and [1]. We address the problem of assigning optimal fragment sizes to the indi-

vidual priority packets at the MAC layer maximizing the expected weighted goodput

within the channel bit-rate limitations and under known link conditions. The pro-

posed cross-layer approach considers real-time streaming of pre-encoded H.264 video

streams. The video slices are classified into four priority classes based on the distor-

tion contributed by their loss to the received video quality. The slices of a priority

class in each frame are aggregated into corresponding video packets whose size is

bounded by the network MTU.

The scheme provides higher transmission reliability to the high priority packets

by using smaller fragments, at the expense of (i) allowing larger fragment sizes for

the low priority packets, and (ii) discarding some low priority packets to meet the

channel bit-rate limitations, when necessary. We also propose a slice discard scheme

at the MAC layer based on the frame importance and the CMSE contribution of

the slice. Packet fragmentation is extended to slice fragmentation by modifying the

conventional H.264 decoder to handle partial slice decoding, and use of various slice

sizes. We show that adapting fragment sizes to the packet priority classes reduces

the overall expected video distortion at the receiver. Our scheme does not assume

retransmission of lost fragments and packets.

Chapter 3 of this dissertation contains material that appears in publications

[48] and [49]. Our objective here is minimizing the expected received video distortion

by jointly optimizing the packet sizes at the APP layer and estimating their FEC code

rates to be allocated at the PHY layer for noisy channels. Some low priority slices are
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also discarded in order to increase the protection to more important slices and meet

the channel bit-rate limitations. The proposed scheme ensures that higher priority

slices which contribute more distortion are sent in smaller packets with stronger FEC

coding. At the same time, it also efficiently controls the overhead incurred from the

total protocol header bits associated with the formed packets. The simulation results

show that the proposed scheme efficiently transmits video over noisy channels.

To avoid the delays associated with optimizing the packet sizes and their as-

sociated FEC code rates for entire slices of a GOP, we extend the proposed scheme

to work on each frame independently by predicting its expected channel bit budget

using a generalized linear model (GLM). The GLM is developed over the factors (a)

normalized CMSE per frame, (b) channel SNR, and (c) normalized compressed frame

bit budget allocated by the H.264 encoder. The three factors are determined from

a video dataset that spans high, medium and low motion complexity. Further, to

avoid the complexity associated with computing the CMSE distortion contributed

by a video slice, we use our low-complexity GLM scheme for predicting the slice

CMSE [50].

In Chapter 4, we propose a slice CMSE and deadline aware scheduling algo-

rithm which exploits the temporal scalability (frame rate control) and SNR scalability

(i.e., quality control) of a H.264/SVC compressed bit stream, and derives a subset

(i.e., scalable) bit stream for transmission over a wireless link with time-varying bit

rate. The subset bit stream provides graceful degradation in bad channel conditions.

Our proposed scheduling algorithm tries to prevent whole frame losses by taking into

consideration the relative importance and time-to-expiry (TTE) of the NAL units of

different temporal and SNR quality layers.

We propose a sliding window based flow control at the post-encoding buffer

of the streaming server. The flow control determines how many and which particular

NAL units, from a window of temporal and quality layers, are to be scheduled for

transmission during every transmission time interval (TTI). The set of scheduled NAL

units improve the received video quality for the available channel resources. The

optimization problem of maximizing the expected received video quality is reduced

to maximizing the product of the normalized CMSE value with the inverse of the

TTE value. The TTE value of a NAL unit varies with the channel conditions, and
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the number and sizes of the NAL units scheduled to be transmitted before it. Our

proposed algorithm effectively trades off the importance of the NAL units with their

deadlines and determines a good transmission order for the NAL units in the sliding

window.

We study the effect of the scheduled NAL units on the received video quality

through simulations. We compare the performance of our proposed approach to (i)

an earliest deadline first (EDF) [51] motivated scheduling scheme, which has been

used in the recent related literature [52–55], and (ii) a scheme where the NAL units

in the sliding window are scheduled based only on their CMSE contribution.

In Chapter 5, we summarize the contribution of this dissertation, discuss the

various open problems and potential future work in this direction.



Chapter 2

Video Quality Enhancement

through Prioritized Packet

Fragmentation

2.1 Introduction

In this chapter, we propose a cross-layer approach for real-time streaming of

the pre-encoded H.264 video streams. Under known link conditions, we address the

problem of finding the optimal fragment sizes for the individual priority packets at

the MAC layer to maximize the expected weighted goodput within the channel bit-

rate limitations. The video slices are classified into four priority classes based on

the distortion contributed by their loss to the received video quality. The slices of a

priority class in each frame are aggregated into corresponding video packets whose size

is bounded by the network MTU. The proposed scheme provides higher transmission

reliability to the high priority packets by using smaller fragments, at the expense of

(i) allowing larger fragment sizes for the low priority packets, and (ii) discarding some

low priority packets to meet the channel bit-rate limitations, whenever necessary. The

Branch and Bound (BnB) algorithm along with an interval arithmetic method [56–58]

is used to find the maximum expected weighted goodput and derive the optimal

fragment sizes. Other features include a slice discard scheme based on the frame

importance and the cumulative mean square error (CMSE) contribution of the slice,

11
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a slice fragmentation approach by modifying the conventional H.264 decoder to handle

partial slice decoding, and use of various slice sizes. We show that adapting fragment

sizes to the packet priority classes reduces the overall expected video distortion at the

receiver. Our scheme does not assume retransmission of lost fragments and packets

since real-time video transmission is delay-sensitive.

Section 2.2 formulates the expected weighted goodput maximization problem

and presents the interval arithmetic analysis for determining the fragment sizes. The

comparison between the performance of priority-aware and priority-agnostic fragmen-

tation is discussed in Section 2.3. Experimental results for different combinations of

video bit rates, slice sizes, and varying channel conditions are discussed in Section

2.4.

2.2 Proposed Cross-Layer Fragmentation

Scheme

2.2.1 H.264 Slice and Video Packet Formation

We consider videos which are pre-encoded using H.264/AVC with fixed slice

size configuration. In this configuration, macroblocks (MBs) are aggregated into

a slice such that their accumulated size does not exceed the pre-defined slice size.

However, the chosen slice size represents the upper limit and some slices may be

smaller [59].

The network limits the number of bytes that can be transmitted in a single

packet based on the MTU bound. The slices formed at the encoder are aggregated into

a video packet for transport over IP networks and each of these packets is appended

with RTP/UDP/IP headers of 40 bytes [60] as shown in Figure 2.1. This aggregation

of slices helps to control the amount of network overhead added to the video data. If

the video slices are classified in two or more priority classes as explained in Section

2.2.2, the priority slices of each frame are separately aggregated to form packets. The

video packets are fragmented at the data link layer and each fragment is attached

with 50 byte MAC and PHY layer headers. Figure 2.1 illustrates the cross-layer

fragmentation approach.
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Figure 2.1: Cross-layer prioritized packet fragmentation approach for RTP, UDP, IP
based transmission.

We use a binary symmetric channel BSC(pb) where pb is the BER. The data

link layer fragments the packets using channel BER information from the PHY layer

and slice priority information from the APP layer. Here we assume that the data link

layer is continuously updated with the channel BER from the PHY layer.

2.2.2 Slice Priority

H.264 slices are prioritized based on their distortion contribution to the re-

ceived video quality. The loss of a slice introduces error in the current reference

frame and could propagate to other frames in the GOP. We compute the total distor-

tion by using the CMSE introduced by a slice loss, since it takes into consideration

the error propagation within the entire GOP. Suppose the video resolution is H×W ,

represented in terms of the number of pixels along the height (H) and width (W ) of

a video frame. Let P̂ eli,j,k represent the pixel intensity value at location (j, k) in the

reconstructed frame i at the encoder without the slice loss and P̃ eli,j,k represent the

corresponding pixel intensity value in the same frame decoded at the receiver with
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the slice loss. The CMSE contributed by the loss of the slice is computed in Equation

2.1 as the sum of MSE over the current and all the other frames in the GOP.

CMSE =

last frame of GOP∑

i=current frame with slice loss−t

{
1

H ×W

H∑

j=1

W∑

k=1

(
P̂ eli,j,k − P̃ eli,j,k

)2
}

(2.1)

Here, t is the temporal duration of a reference frame in the backward direction. The

bi-directionally predicted (B) frames in the backward temporal direction are also

covered by Equation 2.1.

All slices in a GOP are equally distributed into four priority classes based

on their pre-computed CMSE values. Priority 1 slices induce the highest distortion

whereas priority 4 slices induce the least distortion to the received video quality.

The slice priority value is stored in the 2-bit nal ref idc field of the slice header [61].

We combine priority 1 and priority 2 slices into a ‘high priority’ class and priority

3 and priority 4 slices into a ‘low priority’ class to reduce the complexity of the

optimization algorithm discussed in Section 2.2.5. However, the original four-level

priority information can still be accessed from the nal ref idc field of each slice and

will be used in our proposed slice discard scheme.

2.2.3 Video Packet Fragmentation

Optimal fragment size is determined to maximize the expected weighted good-

put which will be explained in Section 2.2.4. We design two types of packet fragmen-

tation schemes - video packet priority-agnostic and priority-aware. Each of these

schemes has two types, slice fragmentation disabled and slice fragmentation enabled.

When slice fragmentation is disabled, the fragment size cannot be smaller than the

target slice size and each fragment contains one or more slices in their entirety. This

restriction on the fragment size is not needed when slice fragmentation is enabled. As

a result, a fragment can contain partial slice data, including the cases of less than one

slice and more than one slice. In Figure 2.2, we illustrate an example where the com-

puted optimal fragment size is larger than the target slice size but smaller than twice

the target slice size. In the slice fragmentation disabled case, Fragment 1 contains

only slice 1 since slice 2 is too large to fit entirely in it. Similarly, Fragment 2 and
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Figure 2.2: Illustration of video packet fragmentation with and without slice
fragmentation.

Fragment 3 contain only slice 2 and slice 3, respectively, since the next slice cannot

fit in them. Slices 4 and 5 are small enough to be aggregated in Fragment 4. For the

slice fragmentation enabled case, Fragment 1 contains slice 1 and the initial portion

of slice 2, Fragment 2 contains the remaining portion of slice 2 and the complete slice

3, and Fragment 3 contains slices 4 and 5.

To enable slice fragmentation, the H.264 decoder is modified to perform partial

slice decoding [62, 63]. If the first fragment of a slice containing the slice header is

lost, the entire slice is discarded. When an intermediate fragment is in error, the MB

data contained in fragments before the corrupted fragment is successfully decoded,

and the remaining MB data is concealed at the decoder. We use the concealment

implemented in JM 14.2 [59].

2.2.4 Problem Formulation for Determining Optimal Frag-

ment Sizes

In conventional packet fragmentation schemes, the entire packet is discarded if

any one of its fragments is not received properly. In our case, the decoder reconstructs

the lost packets or fragments using error concealment. Video traffic can also toler-

ate some low priority slices being discarded to accommodate a higher fragmentation

overhead when the overall video bit rate exceeds the channel bit rate. In this section,

we discuss the priority-agnostic and priority-aware fragmentation schemes. Here the



16

priority-agnostic fragmentation scheme is based on [11, 32, 33].

Priority-agnostic fragmentation

A measure of the reliable transmission of packets over error-prone channels is

goodput. We define the goodput G as the expected number of successfully received

video bits per second (bps) normalized by the target video bit rate R bps. G depends

on the fragment success rate (fsr) which is a function of the fragment size (y) and

the channel BER (pb). We assume that each slice is x bits long in our theoretical

formulation. A fragment is successfully received iff all the bits of that fragment are

received without error. The fsr is expressed as

fsr = (1− pb)
y, y = nx+ h (2.2)

Here, the fragment size is y bits, containing nx bits of slice data (i.e., payload)

and h MAC and PHY header bits. For a given value of y, FTX is the corresponding

number of fragments transmitted every second and FRX is the corresponding expected

number of successfully received fragments. FRX is computed as FRX = (fsr)(FTX).

We assume that the channel bit rate is RCH bps, the average video bit rate is R

bps, and on average N = R/x slices are generated every second. The number of

payload bits in a fragment can vary from 1 to P bits, where P represents the MTU

size. Therefore, the feasible number of slices in each fragment varies as n ε [ 1
x

P
x
].

If slice fragmentation is disabled, n is an integer with minimum value of 1. The

expected goodput G is computed, after excluding the header bits associated with

each fragment, as

G =
FRX(y − h)

R
=

FTX(1− pb)
y(y − h)

R
(2.3)

Here, the objective is to find the optimal fragment size y such that G is max-
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imum:

y = argmax
y

G = argmax
y

FTX(1− pb)
y(y − h)

R
(2.4)

FTX =

{
(N
n
);
(
N
n

)
≤ RCH

y

RCH

y
;
(
N
n

)
> RCH

y

Condition
(
N
n

)
≤ RCH

y
in Equation 2.4 implies that sufficient bits are avail-

able to allocate headers to all the fragments generated in one second. The condition
(
N
n

)
> RCH

y
implies that for a fragment size of y bits, the requirement for the number

of overhead bits exceeds the channel bit rate. Therefore the corresponding num-

ber of application layer packets that would be discarded is

⌈(

(N
n )−

(

RCH
y

))

n

(P
x
)

⌉
. The

corresponding number of discarded slices (DS) is

DS =

⌈(
N −

(
RCH

y

)
n

)⌉
(2.5)

We use a quantized exhaustive search algorithm with a step size of 50 bytes for

30 possible fragment sizes between 50 and 1500 bytes to compute the optimal fragment

size in Equation 2.4. Figure 2.3(a) shows the variation in expected goodput G for

different fragment sizes and channel BERs for a video encoded at R = 960 Kbps with

150 byte slices. The channel bit rate RCH is set to 1 Mbps for all the cases discussed

in this chapter. The maximum video data in a fragment is limited by P = 1500 bytes.

For a fragment of 1500 bytes, the maximum value of G is 55% for pb = 5×10−5 which

increases to 98% for a lower channel BER pb = 10−6, because the fsr increases as the

channel BER decreases. The expected goodput also depends on the number of slices

discarded. Note that more slices are discarded as the fragment size decreases since

the requirement for header bits increases. Therefore, for a fragment size of 150 bytes,

though fsr is higher than that for larger fragment sizes, the corresponding G is lower.

We observe that the value of G for pb = 5× 10−5 is significantly lower than for lower

values of pb. The system achieves a higher value of G at this BER when the encoding

bit rate is lower, as shown in Fig. 2.3(b) for the 720 Kbps video bit rate. There lies

an optimal point in each case which trades off the losses due to channel errors with

the packet discards. For example, the maximum value of G is achieved at fragment
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sizes of 300 and 750 bytes for pb = 5× 10−5 and 10−5, respectively.

Figure 2.3(b) illustrates the variation inG for different fragment sizes and three

different encoded video bit rates at pb = 5 × 10−5. For R= 720 Kbps, sufficient bits

are available to allocate headers to each fragment. So every slice of the video packet

can be transmitted independently in a fragment with maximum G = 93%. However,

the maximum achievable G decreases as the encoded video bit rate increases and gets

close to RCH (i.e. R = 960 Kbps) or exceeds RCH (i.e. R = 1.08 Mbps). This is

because fewer bits are now available for allocating fragment headers. More header

bits can only be accommodated by discarding some slices. As a result, the maximum

value of G decreases to 77% and 69% for video bit rates of 960 Kbps and 1080 Kbps,

respectively, when each fragment contains two slices.

Figure 2.4 shows the amount of discarded data for different video encoding

rates at pb = 5 × 10−5. As the video encoding rate increases, more slices are gener-

ated every second. When the encoding rate is 720 Kbps, sufficient bits are available

to allocate fragment headers and hence no slice is discarded when fragment size ≥
150 bytes. When R increases to 960 Kbps, the amount of discarded data increases.

When the encoding rate (1080 Kbps) exceeds RCH , 14.1 Kbytes worth of slice data

is discarded every second even for a 1500 byte fragment size (i.e., no fragmentation).

Though one may be inclined to choose a large fragment size to reduce the number of

discarded slices, it also decreases the fragment success rate as explained in Figure 2.3

and shown in Equation 2.2.

Priority-aware fragmentation

We extend the fragmentation scheme to make it adaptive to individual packet

priority classes. We assign smaller fragment sizes to higher priority packets to in-

crease their transmission success probability. The video packets are divided in two

priorities and the link layer scheduler (shown in Figure 2.1) transmits all the high

priority fragments before low priority fragments during every second. We define a new

performance parameter called the expected weighted goodput GW , which is computed

as a linear combination of individual priority goodput :

GW = w1g1 + w2g2 (2.6)
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pb, and (b) pb = 5× 10−5 and different R.
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The weights w1 and w2 capture the relative distortion contribution per bit

from the individual slice priorities. w1 is computed as the ratio of the mean CMSE of

the high priority slices to the mean CMSE of all slices in the pre-encoded video, and

w2 = 1 − w1. We used the median of all slice CMSE values as the CMSE threshold

for assigning slice priority. The weights depend on this threshold, video content,

and encoding parameters such as target encoding rate R and slice size x. We define

n1, n2 ε [ 1
x

P
x
] as the number of slices that are aggregated into each fragment of the

high priority and low priority packets. The corresponding fragment sizes would be

y1 = n1x+ h, y2 = n2x+ h bits. Let N be the total number of slices generated in one

second, and l1 and l2 be the corresponding numbers of high priority and low priority

slices generated per second. During each second it is difficult to predict the number

of packets in each priority queue at the data link layer. If the video has high motion

activity for some period of time, it would have more slices with CMSE values greater

than the threshold. As a result, there will be more high priority packets. In any

given second, the number of high priority slices can vary from [0 N ] and the expected

number is N
2
. Hence, a truncated normal distribution, which is symmetric about N

2

and spanning from 0 to N is considered here:

p(l1 = k) =
K1√
2π

e−
(k−N

2 )2

2 for k = 0, 1, 2, 3, ..., N and l1 + l2 = N (2.7)

where K1 is a normalization constant to make this a proper probability mass function.
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Now, we find y = [y1 y2] which maximizes GW averaged over all possible queue lengths

from [0 N ],

max
y

GW = max
y

∑

l1

p(l1)(w1g1 + w2g2) (2.8)

Here, p(l1) is the probability of a given high priority queue length l1. The

individual priority goodputs g1 and g2 for a given high priority queue length l1 and

corresponding low priority queue length l2 are therefore computed using the expected

goodput formula expressed in Equation 2.4.

g1 =





(1− pb)
y1 ;

(
l1
n1

)
≤ RCH

y1
(a)

(

RCH
y1

)

(y1−h)(1−pb)
y1

R
;
(

l1
n1

)
> RCH

y1
(b)

(2.9)

g2 =





(1− pb)
y2 ;

(
l2
n2

)
≤

(

RCH−
(

l1
n1

)

y1

)

y2
(a)

[

(RCH−( l1
n1 )y1)

y2

]

(y2−h)(1−pb)
y2

l2x
;

(
l2
n2

)
>

(

RCH−
(

l1
n1

)

y1

)

y2
(b)

(2.10)

The low priority goodput g2 is computed from the bits remaining to be allo-

cated after all the high priority fragments have been transmitted during each second.

Condition (a) in Equations 2.9 and 2.10 implies that sufficient bits are available to

allocate fragment headers when high and low priority fragments are transmitted at

sizes y1 and y2. Condition (b) in Equation 2.9 implies that all the low and some high

priority slices should be discarded to accommodate the overhead demand and satisfy

the channel bit rate constraint while transmitting at a fragment size y1. The slice

discard scheme is discussed later in Section 2.4.3. Further, Condition (b) in Equation

2.10 implies that there are sufficient bits to transmit all high priority fragments at

size y1, but not for transmitting all low priority fragments at size y2. Therefore, some

low priority slices should be discarded. Combining Equations 2.8, 2.9 and 2.10 and
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substituting l2 = N − l1, we formulate the objective function to maximize GW as:

max
y

GW = max
y

∑

l1

p(l1)





w1n1x
y1R

RCH(1− pb)
y1 = f1(n1) ; C1 :

(
l1
n1

)
≥ RCH

y1

w1(1− pb)
y1 +

w2n2
y2

(

RCH−
(

l1
n1

)

y1

)

(1−pb)
y2

N−l1
= f2(n1, n2) ;

C2 :
(

l1
n1

)
y1 +

(
N−l1
n2

)
y2 > RCH ,

(
l1
n1

)
< RCH

y1

w1(1− pb)
y1 + w2(1− pb)

y2 = f3(n1, n2) ;

C3 :
(

l1
n1

)
y1 +

(
N−l1
n2

)
y2 ≤ RCH

(2.11)

Figure 2.5 shows GW and the number of discarded slices during one second

for the CIF Foreman video encoded at R = 960 Kbps over a channel with RCH =

1 Mbps at pb = 10−5. The weights (w1, w2) = (0.89, 0.11) used were derived for the

Foreman video sequence. The mean CMSE value of high priority slices contributes

89% of the received video distortion whereas the mean CMSE value of low priority

slices contributes only 11%. The optimal fragment sizes are determined in terms of

the number of 150 byte slices that can be aggregated into each priority fragment.

In Figure 2.5(a), (n1, n2) = (2, 5) and [(y1, y2) = (300, 750) + h] are the optimal high

and low priority fragment sizes which achieve the maximum GW of 0.954. This is

achieved at the cost of discarding 56 low priority slices per second as shown in Figure

2.5(b). As the fragment size decreases, the fragment success rate increases but the

number of discarded slices also increases due to higher fragment overhead. When

(n1, n2) = (1, 1), more than 175 slices are discarded as shown in Figure 2.5(b) and

the corresponding GW decreases to 0.92 in Figure 2.5(a). Also when (n1, n2) = (10, 1),

i.e. low priority packets are transmitted at smaller fragment sizes and high priority

packets are transmitted at larger fragment size, the corresponding GW reaches its

minimum value of 0.87 and 85 low priority slices are discarded.

2.2.5 Branch and Bound (BnB) Optimization using Interval

Arithmetic Analysis

We used the BnB technique along with interval arithmetic analysis to solve

the priority-aware expected weighted goodput optimization problem [56]. BnB is a

global optimization technique used for non-convex problems, especially in discrete
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Figure 2.5: (a) Expected weighted goodput, and (b) slices discarded for Foreman
encoded at R=960 Kbps and x=150 bytes.

and combinatorial optimization. The original domain of the optimization variables

is divided into smaller sub-regions, and interval arithmetic analysis is performed in

each sub-region to compute the lower and upper bounds. The interval arithmetic

analysis uses inclusion functions f1(n1), f2(n1, n2), and f3(n1, n2) derived from our

main objective function in Equation 2.11 to compute the bounds. Depending on

the computed bounds, a decision is made on whether a sub-region is retained or

pruned [56–58]. In Equation 2.11, the number of slices in the high and low priority

fragments (i.e., n1, n2) and the conditions C1, C2, and C3 define the search region.

Each sub-region is defined by the lower and upper bounds of n1 and n2 as

[n1 n1] and [n2 n2] and these are used to compute the bounds of GW in that sub-

region using the above inclusion functions. The lower and upper bounds of function

f1(n1) satisfying condition C1 are derived as

f
1

=

(
w1n1x

(n1x+ h)R
RCH(1− pb)

n1x+h

)

f1 =

(
w1n1x

(n1x+ h)R
RCH(1− pb)

n1x+h

)

This is because f1(n1) in Equation 2.11 can be expressed as a product of two functions,

A(n1) = (w1n1x)
(n1x+h)R

RCH and B(n1) = (1 − pb)
(n1x+h). Here, A(n1) is minimum at n1

and B(n1) is minimum at n1, and both are positive. Therefore, the lower bound
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Table 2.1: Optimal number of slices in high and low priority fragments after running
BnB algorithm.

BER 720 Kbps 960 Kbps 1080 Kbps
10−6 (1,1) (5,10) (6,10)

5× 10−6 (1,1) (2,7) (3,7)
10−5 (1,1) (2,5) (2,5)

5× 10−5 (1,1) (1,2) (1,2)
10−4 (1,1) (1,2) (1,2)

f
1
= A(n1)|n1

×B(n1)|n1. Similarly, A(n1) is maximum at n1 and B(n1) is maximum

at n1, and both are positive. Therefore, the upper bound f 1 = A(n1)|n1 × B(n1)|n1
.

Similarly, the lower and upper bounds of functions f2(n1, n2) and f3(n1, n2) are also

derived. The lower (LB) and upper (UB) bounds of GW in a sub-region are computed

as the expected lower and upper bounds of the inclusion functions in that sub-region

over queue length l1 varying over [0 N ].

In the BnB algorithm, the overall search region of the variables n1 and n2

and the sub-regions generated from them form a tree. The sub-regions contain the

estimated LB and UB of GW . Depending on the values of these bounds, a decision is

made to either retain or prune a sub-region. The following steps are applied iteratively

until the maximum GW value is obtained:

1) In the set of unexpanded sub-regions, find the maximum ‘LB’ say LBmax and

prune all those sub-regions whose UB is less than LBmax.

2) From the set of unpruned and unexpanded sub-regions, select the sub-region with

maximum ‘UB’ and further spawn it to form two more sub-regions.

3) Modify the set of unexpanded sub-regions and repeat step 1.

The BnB algorithm reduces the number of times (i.e., 36 times for R = 960 Kbps,

pb = 5 × 10−5, and 150 byte slice size) the expected weighted goodput values have

to be computed as compared to the exhaustive search case (i.e., 100 times for all

combinations of n1 ε [1 10] and n2 ε [1 10]) .

Table 2.1 shows the optimal (n1, n2) values derived for different encoding rates

and channel BERs. (n1, n2) remains the same at R=720 Kbps for different channel

BERs since sufficient bits are available to allocate headers to each fragment. At

R=960 Kbps and 1080 Kbps, the (n1, n2) decreases as the channel BER increases in

order to increase the fragment success rate. Also as the encoding rate increases to-

wards the channel transmission rate RCH=1 Mbps for a given BER, (n1, n2) increases
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in order to limit the increase in the number of slices discarded. The computation

time for the BnB algorithm is directly dependent on the number of slices generated

during every second. The exhaustive search takes 76 ms to determine the optimal

point whereas the BnB algorithm takes 56 ms on a Core 2 Duo 2.6 GHz Intel pro-

cessor with 4 GB RAM. This value is obtained when the distribution of slices in the

priority queues (l1, l2) is assumed unknown and we need to compute the expected

GW . However, the encoder would compute the distribution of slices in the priority

queues during each second. When this information is available, the BnB algorithm

takes only 13 ms to compute the optimal point whereas the exhaustive search takes

28 ms.

2.3 Priority-agnostic vs. Priority-aware

Fragmentation

In this section, we compare the goodput and slice discard rates of the priority-

agnostic and priority-aware schemes analytically, for two bit rates of 960 Kbps and

1080 Kbps over a 1024 Kbps channel. In the next section, we compare the perfor-

mance of priority-agnostic and priority-aware schemes using simulations with video

sequences. The maximum expected goodput G in priority-agnostic fragmentation and

GW in priority-aware fragmentation shown in Figure 2.6(a) are computed using Equa-

tions 2.3 and 2.11, respectively. The slice size is 150 bytes and the weights w1 and

w2 for the priority-aware fragmentation are derived for the Foreman video sequence

as discussed in Section 2.2.4. For 960 Kbps, the weights (w1, w2) = (0.89, 0.11)

and for 1080 Kbps (w1, w2) = (0.9, 0.1). The corresponding optimal fragment sizes

for priority-aware fragmentation were listed in Table 2.1. The number of Kbytes/sec

discarded in Figure 2.6(b) in order to achieve maximum goodput is computed using

Equation 2.5.

As shown in Figure 2.6(a), priority-aware fragmentation achieves a goodput

gain of 14% over priority-agnostic fragmentation at R = 960 Kbps and pb = 10−4, even

when it discards 8.6 Kbytes of additional data per second as shown in Figure 2.6(b).

However, the performance of both fragmentation schemes starts converging as the
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Figure 2.6: (a) Expected goodput, and (b) slice discard comparisons between priority-
agnostic and priority-aware fragmentation.

channel BER decreases from 10−4 to 10−6. This is expected because, when the channel

is good enough, slices are not discarded (see Figure 2.6(b)) and packets are not lost,

and so fragmentation does not need to use priority information. In fact, the priority-

agnostic case uses 8 slices per fragment at BER of 10−6 with no slice data discarded

whereas the priority-aware case uses 5 slices per fragment for high priority and 10

slices per fragment for low priority discarding only 320 bytes of low priority slice

data. Similarly, Figure 2.6(a) shows that the priority-aware fragmentation achieves

a goodput gain of 20% over priority-agnostic fragmentation at R=1080 Kbps and

pb = 10−4. We discard 9.6 Kbytes of additional data to achieve this gain as shown

in Figure 2.6(b). Unlike R=960 Kbps, the priority-aware fragmentation achieves a

goodput gain of 9% over priority-agnostic fragmentation at lower BER (pb = 10−6)

for R=1080 Kbps in Figure 2.6(a). Note that (i) priority-aware fragmentation uses

6 and 10 slices per fragment for the high and low priority packets, respectively, as

compared to 10 slices per fragment in the priority-agnostic case, and (ii) discards

slightly more low priority slice data (i.e., 16.2 Kbytes) as compared to discarding 14

Kbytes in priority-agnostic fragmentation as shown in Figure 2.6(b).

Though the priority-aware fragmentation provides goodput gain by increasing

the transmission reliability of higher priority packets, we have also investigated if this

GW gain corresponds to better video quality. We illustrate the results for Foreman

encoded at 960 Kbps with a slice size of 150 bytes and transmitted over a 1 Mbps
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Figure 2.7: (a) Expected weighted goodput GW , and (b) average PSNR at R= 960
Kbps, RCH= 1 Mbps, and pb = 10−5.

channel with BER = 10−5. The expected goodput values for n1ε[1 10], n2ε[1 10] were

shown in Figure 2.5(a). We have also computed the video quality (in terms of average

PSNR (dB)) for these values of n1 and n2. Figures 2.7(a) and 2.7(b) illustrate the

contour plots displaying the isolines (line connecting the points of equal value) of GW

and video PSNR. The distance between the isolines is equivalent to the gradient which

represents the improvement in the corresponding values of GW and video PSNR. The

plots show that higher GW generally corresponds to higher video PSNR values. For

example, the dark red region in the contour plots represents the highest value of GW

= 0.954 for (n1, n2) = (2, 5) which also corresponds to the highest PSNR of 30.81

dB. Similarly, the dark blue region in the contour plots represents the lowest value of

GW = 0.87 for (n1, n2) = (10, 1) which also corresponds to the lowest PSNR of 25.65

dB. We have observed a similar behavior for other video sequences (e.g., CIF Silent

video) and encoding rates.

2.4 Experimental Results and Discussion

2.4.1 Simulation Setup

This section evaluates the performance of the baseline system, and priority-

agnostic and priority-aware fragmentation. The baseline system does not include slice
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prioritization and the packets are transmitted at the network limited MTU size of

1500 bytes. Two CIF resolution (352 x 288) video sequences Foreman and Silent are

used in our experiments, where Silent has lower motion activity than Foreman. They

are encoded using H.264/AVC JM 14.2 reference software [59] for a GOP length of

20 frames with GOP structure IDR B P B ... P B IDR at 30 frames/sec (fps) and

encoding rates of 720 Kbps, 960 Kbps and 1080 Kbps. Slice sizes of 150, 300, 600 and

900 bytes are used and the slices are formed using dispersed mode FMO with two slice

groups. Two reference frames are used for predicting the P and B frames, with error

concealment enabled using temporal concealment and spatial interpolation. The error

concealment in a frame depends on the frame type and the type of losses encountered.

If an entire frame (IDR, P or B) is lost, first the motion vectors and reference indices

of the co-located MBs in the previously decoded reference frame are copied and then

motion compensation is used to reconstruct the lost frame based on the copied motion

information [64,65]. If some slices of a predicted (P or B) frame are lost, the decoder

verifies the availability of motion vector information for the lost MBs. If the motion

vectors are available, motion copy is performed else co-located MBs of the previous

reference frame are directly copied. If some slices of an IDR frame are lost, the

corresponding MBs are concealed using spatial interpolation. Error concealment is

enabled for all the schemes evaluated in this section. The channel transmission rate

is 1 Mbps and the PHY and MAC layer header h is set to 50 bytes.

Three video encoding rates are chosen to study the following cases, (i) At

720 Kbps video bit rate, the 1 Mbps channel can support the fragment overhead;

(ii) At 960 Kbps, the channel may not have sufficient bits to accommodate fragment

overhead without slice discard; and (iii) at 1080 Kbps, the channel cannot even

support the encoded video rate. For both test sequences, the PSNR increases with

encoding rate as well as slice size. As the slice size increases, more MBs are encoded

in each slice; this can more effectively exploit the spatial correlation in neighboring

MBs. A 900 byte slice provides a 0.4 - 0.5 dB PSNR gain compared to a 150 byte

slice size. Similarly, when the encoding rate is increased from 720 Kbps to 960 Kbps,

the PSNR increases by 1 - 1.5 dB. In addition to computing PSNR, the subjective

quality of the resultant videos is also evaluated using the perceptually based Video

Quality Metric (VQM) discussed in [66,67]. VQM is reported as a single number for
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the entire sequence and has a nominal output range from zero to one, where zero

represents best quality.

2.4.2 Priority-Agnostic Fragmentation

Priority-agnostic packet fragmentation ignores the packet priorities and uses

the optimal fragment size derived by maximizing the expected goodput G as discussed

in Section 2.2.4. The average video PSNR and average VQM achieved by the priority-

agnostic fragmentation for the Foreman sequence are shown in Figures 2.8, 2.9, and

2.10. The average PSNR in Figures 2.8, 2.9, and 2.10 decreases when the channel

BER increases. For 720 Kbps video, the video quality is purely determined by the

impact of channel errors as sufficient bits are available to allocate a header to each

fragment. At high channel BER, the fragment success probability (Equation 2.2)

decreases, resulting in more errors. The deterioration in expected goodput G due to

increasing channel BER was shown in Figure 2.3(a). For higher video bit rates 960

and 1080 Kbps and larger slice sizes, the fragment sizes may be higher and some slices

are also discarded to meet the channel bit rate constraint which leads to more video

quality deterioration. For example, a video bit rate of 1080 Kbps requires 27 Kbytes

of slice data to be discarded every second as shown in Figure 2.4 in order to achieve

a maximum expected goodput G of only 0.67 by transmitting 300 byte fragments

as shown in Figure 2.3(b). The fragments formed from smaller slice sizes, though,

provide better PSNR performance as compared to fragments formed from larger slice

sizes in Figures 2.8(a), 2.9(a), and 2.10(a). This is because smaller slice size allows a

finer aggregation of video data into fragments. For example, each fragment contains

eight and two 150 byte slices at BER of 10−6 and 10−4, respectively, as compared to

only one 900 byte slice.

The VQM plots illustrated in Figures 2.8(b), 2.9(b), and 2.10(b) agree with

the trends observed in average PSNR values. A high level of perceived impairment

can be observed at high channel BERs, high video bit rates, and large slice sizes.

Figure 2.11 compares the expected goodput, video PSNR and VQM gains achieved

by fragments formed from 150 byte slices over those formed from 900 byte slices for

Foreman. The gains generally increase with BER for each video bit rate. At 720
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Figure 2.8: Average PSNR and VQM achieved by priority-agnostic fragmentation for
Foreman encoded at 720 Kbps.

Kbps and BER of 10−4, a large goodput gain of more than 45%, a PSNR gain of 7.6

dB, and VQM gain of 0.3 is achieved. Similarly, 31% gain in goodput is achieved for

video bit rates 960 and 1080 Kbps with corresponding PSNR gains of 4.6 dB and 4.2

dB, and VQM gains of 0.18 and 0.17, respectively.
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Figure 2.9: Average PSNR and VQM achieved by priority-agnostic fragmentation for
Foreman encoded at 960 Kbps.
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Figure 2.10: Average PSNR and VQM achieved by priority-agnostic fragmentation
for Foreman encoded at 1080 Kbps.

The PSNR and VQM gain achieved by the priority-agnostic fragmentation

over the baseline system is shown in Figure 2.12. Considerable gains are achieved for

150, 300, and 600 byte slice sizes due to enhanced fragment success rate in priority-

agnostic fragmentation as compared to the baseline system. The gain for these slice

sizes generally increases with BER for 720 and 960 Kbps video bit rate. Also smaller

slice sizes achieve larger PSNR gains as they can achieve finer aggregation of video

data in fragments. For example, a PSNR gain of 10.4 dB is achieved for a 720 Kbps

video encoded using 150 byte slices at a channel BER of 10−4. For 900 byte slices,

the gain is only up to 1 dB. At a low channel BER of 10−6, different slice sizes

achieve less than 2 dB gain, since very few fragments are corrupted by error. Figures

2.12(c) and 2.12(d) show that priority-agnostic fragmentation significantly improves

the perceptual video quality as compared to the baseline transmission.

2.4.3 Priority-Aware Fragmentation

We adapt the fragment size to slice priorities as explained in Section 2.2.4, i.e.,

larger fragment size is used for the low priority slices, along with slice fragmentation.

Priority-aware fragmentation thus maximizes the expected weighted goodput GW by

increasing the transmission reliability of high priority packets.

In order to discard the excess slices as discussed in Section 2.2.4, we first

use a modified drop-tail based slice discard scheme which first discards the lowest

priority (i.e., S=4) slices, followed by S=3 and S=2 slices, for each one second interval.
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Figure 2.11: Gains achieved by 150 byte slices over 900 byte slices in priority-agnostic
fragmentation for Foreman, in terms of (a) expected goodput, (b) average PSNR, and
(c) average VQM.
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Figure 2.12: Average PSNR gain achieved by priority-agnostic fragmentation over
baseline system for Foreman encoded at (a) 720 Kbps and (b) 960 Kbps, and corre-
sponding average VQM gain at (c) 720 Kbps and (d) 960 Kbps.
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Tables 2.2(a) and 2.2(b) show the PSNR and VQM gains for Foreman achieved by

the priority-aware fragmentation over the priority-agnostic fragmentation when both

schemes use the modified drop-tail mechanism for slice discard.

To further increase the PSNR values of the priority-aware fragmentation, we

also propose a slice discard scheme for dispersed mode FMO with two slice groups

as follows. The total slices discarded is given by Equation 2.5 and shown in Figure

2.6(b).

Step 1: Consider the B-frame starting from the end of the GOP and drop slices from

Slice Group 1 (SG1) corresponding to the two lowest priorities (i.e., S=3 and 4).

Step 2: Repeat Step 1 for the next B-frame until slices from all the B-frames are

discarded.

Step 3: Repeat Steps 1 and 2 for SG2 slices of B frames.

Step 4: Consider the P-frame starting from the end of GOP and discard the lowest

priority (i.e., S=4) slices from SG1.

Step 5: Repeat Step 4 for the next P-frames.

Step 6: Drop the lowest priority (i.e., S=4) slices from SG1 of the IDR frame.

Step 7: Drop high priority slices (i.e., S=1 and 2) from SG1 and SG2 of B-frames

starting from the end of the GOP.

Since dispersed mode FMO is used, if some low priority slices from a slice group

are discarded, the lost MBs will be concealed from spatially adjacent MBs belonging

to the other slice group. Since error concealment may not be effective when spatially

adjacent MBs are discarded, we discard the lowest priority slices from only one slice

group in P and IDR frames. Since B-frame slices do not cause error propagation

and can be effectively concealed, our scheme allows the discard of slices from both

B-frame slice groups. Unlike the proposed slice discard scheme, the modified drop-

tail based scheme does not consider the slice group, frame type and frame location

information. Table 2.3 shows the additional gain, both in terms of PSNR and VQM,

achieved by the proposed slice discard scheme over the modified drop-tail scheme in

the priority-aware fragmentation. We have achieved similar gains for the Silent video

sequence. Note that no additional gain is achieved for 720 Kbps video as no slices

are discarded for this bit rate.

Figure 2.13 shows the expected received video PSNR and VQM for priority-
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Table 2.2: (a) PSNR and (b) VQM gains of priority-aware over priority-agnostic
fragmentation with modified drop-tail slice discard for Foreman at 720, 960, and
1080 Kbps.

(a)

BER 10−6 5× 10−6 10−5 5× 10−5 10−4

150 byte 0.5, 0.3, 0.1 0.3, 0.9, 0.3 0.2, 1.1, 0.4 0.2, 0.4, 0.4 0.1, 1, 1.2
300 byte 0.5, 0.2, 0.5 1.1, 1.1, 0.4 1.2, 1.3, 0.3 1.7, 0.2, 0.4 2.1, 0.7, 1
600 byte 0.7, 0.2, 0.8 2.6, 1, 0.5 2.7, 0.9, 0.4 4.2, 1.3, 1.4 4.2, 2.7, 2.7
900 byte 1, 0.3, 1.4 3.1, 0.7, 0.3 4.2, 0.5, 0.3 5.1, 2.7, 2.5 5.9, 4.3, 4.2

(b)

BER 10−6 5× 10−6 10−5 5× 10−5 10−4

150 byte 0.01, 0.01, 0.05 0.01, 0.03, 0.08 0.01, 0.08, 0.09 0.01, 0.08, 0.06 0.01, 0.09, 0.09
300 byte 0.01, 0.01, 0.05 0.03, 0.06, 0.08 0.05, 0.08, 0.1 0.1, 0.07, 0.05 0.1, 0.07, 0.07
600 byte 0.01, 0.01, 0.06 0.08, 0.06, 0.08 0.12, 0.06, 0.09 0.22, 0.11, 0.1 0.22, 0.16, 0.15
900 byte 0.02, 0.01, 0.07 0.12, 0.03, 0.07 0.2, 0.05, 0.09 0.29, 0.18, 0.16 0.25, 0.22, 0.2

Table 2.3: (a) PSNR and (b) VQM gain due to proposed slice discard for Foreman
at 960 Kbps (1080 Kbps).

(a)

BER 10−6 5× 10−6 10−5 5× 10−5 10−4

150 byte 0.1 (1.7) 0.4 (1.3) 0.3 (1.4) 0.8 (0.5) 0.5 (0.4)
300 byte 0.2 (1.1) 0.4 (1.0) 0.2 (0.8) 0.5 (0.3) 0.3 (0.3)
600 byte 0.2 (0.9) 0.3 (0.5) 0.2 (0.6) 0.2 (0.5) 0.2 (0.2)
900 byte 0.3 (0.3) 0.2 (0.6) 0.3 (0.4) 0.2 (0.3) 0.3 (0.3)

(b)

BER 10−6 5× 10−6 10−5 5× 10−5 10−4

150 byte 0.01 (0.04) 0.01 (0.03) 0.01 (0.03) 0.02 (0.01) 0.02 (0.01)
300 byte 0.01 (0.03) 0.01 (0.03) 0.01 (0.02) 0.01 (0.01) 0.01 (0.01)
600 byte 0.01 (0.02) 0.01 (0.01) 0.01 (0.02) 0.01 (0.01) 0.01 (0.01)
900 byte 0.01 (0.01) 0.01 (0.02) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
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aware fragmentation with the proposed slice discard scheme for Foreman. The vari-

ation of average video PSNR with BER and slice size is similar to our observations

for the priority-agnostic fragmentation shown in Figures 2.8, 2.9, and 2.10. In par-

ticular, we notice in Figures 2.13(a) and 2.13(c) that the use of slice fragmentation

in priority-aware fragmentation has improved the PSNR performance of large slice

sizes and narrowed the gap between large and smaller slices sizes as compared to the

priority-agnostic fragmentation (in Figures 2.8, 2.9, and 2.10). It also has reduced

the amount of visual impairment as measured by VQM compared to the priority-

agnostic fragmentation (see Figures 2.13(b) and 2.13(d)). However, as discussed in

Section 2.2.3, the loss of the first fragment containing the slice header causes the sub-

sequent fragments of a packet to be discarded at the receiver even though they were

successfully received. This still keeps the performance of large slices slightly inferior

as compared to 150 byte slices when the channel error rate is high and the resulting

fragment success rate is low. Slice fragmentation of a large slice also causes more

slices to be discarded from the buffer when the video is encoded at high bit rates and

results in adjacent slices of the frame to be dropped. This causes the large slices to

underperform as compared to the 150 byte case even at low channel error rates at

1080 Kbps as shown in Figure 2.13(e).

Tables 2.4 and 2.5 show the video PSNR and VQM gains achieved by priority-

aware over priority-agnostic fragmentation without using slice fragmentation for Fore-

man and Silent at 960 Kbps. The corresponding gain for 1080 Kbps video is shown

in brackets. The priority-aware fragmentation scheme adapts the fragment sizes to

the individual packet priority levels which results in better received video quality.

Note that both schemes have the same PSNR performance at a video bit rate of 720

Kbps because the margin of 304 Kbps for 1024 Kbps (i.e., 1 Mbps) channel bit rate

is sufficient to transmit one slice per fragment. At a given channel BER, it is also

observed that higher gain is achieved for smaller slice sizes. Increasing the slice size

decreases the flexibility in choosing the fragment sizes as each fragment contains one

or more slices in their entirety. For example, the fragment size can be either 600

bytes or 1200 bytes for a 600 byte slice size. Moreover a 900 byte slice allows us

only 1 slice/fragment at 1500 bytes MTU. This restricts the PSNR gain that can

be achieved by priority-aware over priority-agnostic fragmentation. A similar trend
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Figure 2.13: Average PSNR achieved by priority-aware fragmentation for Foreman
encoded at (a) 720 Kbps, (c) 960 Kbps, and (e) 1080 Kbps, and corresponding average
VQM at (b) 720 Kbps, (d) 960 Kbps, and (f) 1080 Kbps.
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Table 2.4: (a) PSNR and (b) VQM gains of priority-aware over priority-agnostic
fragmentation (without slice fragmentation) for Foreman at 960 Kbps (1080 Kbps).

(a)

BER 10−6 5× 10−6 10−5 5× 10−5 10−4

150 byte 0.3 (1.7) 1 (1.5) 1.3 (1.7) 1.2 (0.8) 1.4 (1.5)
300 byte 0.1 (1.5) 1 (1.2) 1 (0.8) 0.6 (0.6) 0.2 (0.6)
600 byte 0.1 (1.3) 0.8 (0.7) 0.9 (0.8) 0.2 (0.6) 0.2 (0.5)
900 byte 0.2 (0.7) 0.7 (0.6) 0.5 (0.6) 0.2 (0.5) 0.2 (0.7)

(b)

BER 10−6 5× 10−6 10−5 5× 10−5 10−4

150 byte 0 (0.07) 0.05 (0.09) 0.05 (0.1) 0.08 (0.06) 0.08 (0.09)
300 byte 0 (0.06) 0.03 (0.09) 0.04 (0.09) 0.05 (0.05) 0.02 (0.02)
600 byte 0 (0.06) 0.02 (0.09) 0.03 (0.08) 0.02 (0.02) 0 (0.01)
900 byte 0 (0.05) 0.01 (0.06) 0.02 (0.05) 0.01 (0.01) 0 (0.01)

Table 2.5: PSNR gains of priority-aware over priority-agnostic fragmentation (without
slice fragmentation) for Silent at 960 Kbps (1080 Kbps).

(a)

BER 10−6 5× 10−6 10−5 5× 10−5 10−4

150 byte 0.2 (2.1) 0.3 (2.5) 0.9 (2.3) 1.6 (0.8) 2 (2.1)
300 byte 0.2 (2.5) 0.7 (2.7) 0.8 (2.1) 1.1 (0.8) 0.8 (0.8)
600 byte 0.4 (2.1) 0.5 (2.3) 1.1 (2.1) 0.3 (0.6) 0.3 (0.4)
900 byte 0.2 (2.3) 0.1 (1.5) 0.4 (2) 0.3 (0.5) 0.3 (0.5)

(b)

BER 10−6 5× 10−6 10−5 5× 10−5 10−4

150 byte 0 (0.07) 0.01 (0.09) 0.04 (0.09) 0.1 (0.05) 0.1 (0.1)
300 byte 0 (0.09) 0.03 (0.1) 0.03 (0.07) 0.04 (0.05) 0.03 (0.03)
600 byte 0 (0.07) 0.03 (0.1) 0.04 (0.08) 0.01 (0.02) 0.01 (0.01)
900 byte 0 (0.07) 0.01 (0.06) 0.01 (0.05) 0 (0.01) 0 (0.01)

is also observed for the VQM gain in Tables 2.4(b) and 2.5(b). Smaller slice sizes

provide relatively more improvement in the perceptual video quality at the receiver.

This inflexibility can be mitigated by allowing the fragmentation of slices by

suitably modifying the decoder to handle partial slice data. This further increases the

PSNR gain that can be achieved by priority-aware fragmentation as discussed below.

Table 2.6 shows the PSNR gains achieved by priority-aware (with slice fragmentation)

over priority-agnostic fragmentation for Foreman and Silent at 720, 960, and 1080

Kbps. Table 2.7 shows the VQM gains achieved corresponding to the PSNR gains in

Table 2.6. The priority-aware fragmentation achieves better PSNR and VQM values

as compared to the priority-agnostic fragmentation for all the slice sizes and BERs.
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Table 2.6: Average PSNR gain of priority-aware (with slice fragmentation) over
priority-agnostic fragmentation for Foreman (Silent) at (a) 720 Kbps, (b) 960 Kbps,
and (c) 1080 Kbps.

(a)

BER 10−6 5× 10−6 10−5 5× 10−5 10−4

150 byte 0.5 (0.4) 0.3 (0.2) 0.2 (0.1) 0.2 (0.1) 0.1 (0.2)
300 byte 0.5 (0.3) 1.1 (0.9) 1.2 (1) 1.7 (1.8) 2.1 (1.8)
600 byte 0.7 (0.6) 2.6 (2.1) 2.8 (2.5) 4.2 (5.3) 4.2 (5.2)
900 byte 1 (0.9) 3.1 (3.4) 4.2 (4) 5.1 (6.8) 5.9 (7.5)

(b)

BER 10−6 5× 10−6 10−5 5× 10−5 10−4

150 byte 0.4 (0.7) 1.3 (1.3) 1.4 (1.7) 1.2 (1.7) 1.5 (2.2)
300 byte 0.4 (0.3) 1.5 (1.6) 1.5 (1.3) 0.7 (1.2) 1 (2)
600 byte 0.4 (0.6) 1.3 (0.9) 1.1 (1.2) 1.5 (2.4) 2.9 (4.2)
900 byte 0.6 (0.3) 0.9 (0.8) 0.8 (1.1) 2.9 (4.5) 4.6 (6.7)

(c)

BER 10−6 5× 10−6 10−5 5× 10−5 10−4

150 byte 1.8 (1.9) 1.6 (2.5) 1.8 (2.2) 0.9 (0.6) 1.6 (2)
300 byte 1.6 (2.5) 1.4 (2.6) 1.1 (2.6) 0.7 (0.8) 1.3 (1.5)
600 byte 1.7 (2.1) 1 (2.2) 1 (2.1) 1.9 (2.1) 2.9 (3.7)
900 byte 1.7 (2.3) 0.9 (2) 0.7 (2.3) 2.8 (3.6) 4.5 (5.8)

For Foreman, a maximum PSNR gain of 5.9 dB and corresponding VQM gain of 0.25

is achieved at 720 Kbps and 900 byte slice size at channel BER of 10−4 as shown in

Tables 2.6(a) and 2.7(a), respectively. Similarly, 4.6 dB PSNR gain and corresponding

VQM gain of 0.23 is achieved for Foreman encoded at 960 Kbps for the same slice

size and channel BER in Tables 2.6(b) and 2.7(b), respectively. The maximum gains

for the Silent video sequence are 7.5 dB at 720 Kbps (Table 2.6(a)) and 6.7 dB at

960 Kbps (Table 2.6(b)) for 900 byte slice size and channel BER of 10−4. Also the

corresponding VQM gains are 0.28 in Table 2.7(a) and 0.26 in Table 2.7(b). Similar

gains are also observed when the video encoding rate (1080 Kbps) exceeds the channel

bit rate of 1 Mbps.

Figure 2.14 shows the 126th frame of Foreman encoded at 720 Kbps using a

slice size of 600 bytes at a BER of 5 × 10−5. Figure 2.15 shows the 126th frame of

Silent using these same specifications. The average VQM values are also shown in

Figures 2.14 and 2.15.
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(a) (b)

(c)

Figure 2.14: 126th frame of Foreman encoded at 720 Kbps and BER of 5×10−5 in (a)
baseline system: average PSNR=20.3 dB, average VQM=0.83, (b) priority-agnostic
fragmentation: average PSNR=25.2 dB, average VQM=0.68, and (c) priority-aware
fragmentation: average PSNR=29.9 dB, average VQM=0.46.
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(a) (b)

(c)

Figure 2.15: 126th frame of Silent encoded at 720 Kbps and BER of 5 × 10−5 in (a)
baseline system: average PSNR=22 dB, average VQM=0.81, (b) priority-agnostic
fragmentation: average PSNR=28.5 dB, average VQM=0.68, and (c) priority-aware
fragmentation: average PSNR=33.3 dB average VQM=0.47.
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Table 2.7: Average VQM gain of priority-aware (with slice fragmentation) over
priority-agnostic fragmentation for Foreman (Silent) at (a) 720 Kbps, (b) 960 Kbps,
and (c) 1080 Kbps.

(a)

BER 10−6 5× 10−6 10−5 5× 10−5 10−4

150 byte 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)
300 byte 0.01 (0.01) 0.03 (0.04) 0.05 (0.04) 0.1 (0.13) 0.1 (0.11)
600 byte 0.01 (0.01) 0.08 (0.07) 0.12 (0.12) 0.22 (0.21) 0.22 (0.18)
900 byte 0.02 (0.03) 0.12 (0.13) 0.2 (0.18) 0.29 (0.31) 0.25 (0.28)

(b)

BER 10−6 5× 10−6 10−5 5× 10−5 10−4

150 byte 0.02 (0.01) 0.04 (0.05) 0.09 (0.08) 0.1 (0.11) 0.11 (0.11)
300 byte 0.02 (0.01) 0.07 (0.06) 0.09 (0.09) 0.08 (0.09) 0.08 (0.1)
600 byte 0.02 (0.01) 0.07 (0.05) 0.07 (0.08) 0.12 (0.12) 0.17 (0.19)
900 byte 0.02 (0.01) 0.04 (0.03) 0.06 (0.06) 0.19 (0.19) 0.23 (0.26)

(c)

BER 10−6 5× 10−6 10−5 5× 10−5 10−4

150 byte 0.09 (0.08) 0.11 (0.1) 0.12 (0.11) 0.07 (0.05) 0.1 (0.11)
300 byte 0.08 (0.08) 0.11 (0.11) 0.12 (0.1) 0.07 (0.05) 0.08 (0.09)
600 byte 0.08 (0.07) 0.09 (0.1) 0.11 (0.1) 0.11 (0.12) 0.16 (0.19)
900 byte 0.08 (0.09) 0.09 (0.1) 0.10 (0.09) 0.18 (0.18) 0.21 (0.24)
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Chapter 3

Cross-Layer Prioritized Video

Packetization and Error Protection

3.1 Introduction

In this chapter, we describe our cross-layer scheme which minimizes the ex-

pected received video distortion by jointly optimizing the packet sizes at the APP

layer and estimating their FEC code rates to be allocated at the PHY layer for noisy

channels. Some low priority slices are also discarded in order to increase the protec-

tion to more important slices and meet the channel bit-rate limitations. Our proposed

scheme ensures that higher priority slices which contribute more distortion are sent

in smaller packets with stronger FEC coding. At the same time, it also efficiently

controls the overhead incurred from the total protocol header bits associated with

the formed packets. The distortion contributed by each slice is determined by its

CMSE. Simulation results show that the proposed scheme efficiently transmits video

over noisy channels.

To avoid the delays associated with optimizing the packet sizes and their as-

sociated FEC code rates for entire slices of a GOP, we extend our scheme to work

on each frame independently by predicting its expected channel bit budget. This

prediction uses a GLM developed over the factors (a) normalized CMSE per frame,

(b) channel SNR, and (c) normalized compressed frame bit budget allocated by the

H.264 encoder. The three factors are determined from a video dataset that spans

43
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Figure 3.1: Flow diagram of proposed cross-layer system for RTP/UDP/IP video
transmission.

high, medium, and low motion complexity. Further, to avoid the complexity associ-

ated with computing the CMSE distortion contributed by a video slice, we use our

low-complexity GLM defined in [50] for predicting the slice CMSE.

This chapter is organized as follows. Section 3.2 gives an overview of our

proposed cross-layer approach. Section 3.3 discusses packet formation and optimal

packet code rate allocation. Section 3.4 discusses the problem formulation for other

error protection schemes. Simulation results and performance comparisons for an

AWGN channel are presented in Section 3.5. Section 3.6 investigates the feasibility

of our proposed cross-layer approach for live streaming. It also discusses the factors

influencing the frame bit budget. Section 3.7 proposes and validates our GLM model

for predicting the frame bit budget for live streaming.

3.2 Proposed Cross-Layer Approach

Figure 3.1 illustrates a flow diagram of our proposed cross-layer approach

at the transmitter. The APP layer carries out two functions: CMSE based slice

prioritization and optimal packet formation (illustrated further in Figure 3.2) for

H.264 video slices.
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3.2.1 CMSE Computation/Prediction of H.264 Video

Slices

The video frames in a GOP are encoded using the fixed slice size configuration

in H.264/AVC, where MBs of a frame are aggregated into slices with fixed size [2,68].

The slices are prioritized based on their CMSE values computed using Equation 2.1 in

Chapter 2. However, the computation of slice CMSE introduces high computational

overhead as it requires decoding the entire GOP for every slice loss. This overhead

can be avoided by predicting the slice CMSE using our low-complexity GLM recently

proposed in [50]. This model reliably predicts the slice CMSE values by extracting

the encoded frame and the error frame features. The encoded frame features consist

of motion characteristics, signal characteristics, maximum residual energy, and total

number of MB sub-partitions in a slice. The error frame features consist of the

temporal duration, initial mean square error, and initial structural similarity index.

The actual slice CMSE values were used as ground truth. The readers are encouraged

to refer to [50] for more details. The slice contributing the highest distortion is

the most important slice (i.e., highest priority). This process defines the relative

importance order for the slices in the GOP [1]. Note that our joint video packetization

and error protection scheme proposed in this chapter will also work well with other

slice distortion computation schemes such as Li and Liu [69].

3.2.2 H.264 Video Packet Formation

The optimal packet formation block uses a joint optimization scheme to form

variable-sized packets (by aggregating pre-encoded slices according to their CMSE)

and estimate their corresponding optimal FEC code rates that are applied at the

PHY layer, in order to minimize the received video distortion as will be discussed in

Section 3.3.

The FEC configuration contains a mother code rate and a family of rate com-

patible punctured convolutional (RCPC) code rates [70]. We use binary phase shift

keying (BPSK) modulation and the packet size is constrained by the wireless network

MTU [71]. The optimal packet formation block uses the information about the MTU

size, RTP/UDP, IP and MAC layer headers which remain unchanged for a given net-
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work, and the channel SNR, FEC configuration and channel bit rate information from

the PHY layer. The RTP/UDP/IP overhead appended to each packet formed at the

APP layer is 4 bytes after robust header compression (RoHC) [60]. Each packet is

also appended with 50 bytes of MAC and PHY layer headers. Our scheme studies the

video quality improvement that can be achieved by exploiting the slice priorities and

the trade-offs between the priority-adaptive packet sizes and RCPC code rates with

the total incurred overhead (FEC + network protocol header) for a given channel

SNR, channel bit rate, and source bit rate.

3.3 Expected Video Distortion Minimization

We introduce a DP-based approach to minimize the expected video distortion.

RCH is the channel transmission rate in bits per second. The video is encoded at a

frame rate of fs fps. The total outgoing bit budget for a GOP of length LG frames is
RCHLG

fs
. We use ns to denote the total number of slices generated within a GOP; ns

is a constant. We use np to denote the number of packets formed from these slices in

the GOP; np is variable. Sp(i) is the i
th packet size before adding network headers of

size h bits and parity bits from the selected RCPC code. The RCPC code rates are

chosen from a candidate set, R, of punctured code rates {R1, R2, R3, ..., RK}. The

number of packets discarded is npd which will be described in Sections 3.3.2 and 3.3.4.

3.3.1 Packet Formation (PF) Block

The proposed scheme is a recursive process between two blocks: Packet forma-

tion (PF) block and Optimal RCPC code rate allocation (OCRA) block as shown in

Figure 3.2. The PF block initializes np = ns and npd = 0, and calls the OCRA block

after sorting the np = ns packets of a GOP in descending priority order. The OCRA

block determines the optimal RCPC packet code rates and the number of packets

discarded, npd, to minimize a dual cost function value (computed over the GOP) de-

scribed in Section 3.3.2. The OCRA block then forwards the computed parameters

to the PF block as shown in Figure 3.2.

The PF block aggregates the two packets with least CMSE contribution from
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Figure 3.2: Block diagram of proposed dynamic programming approach to estimate
packet sizes and their FEC.

the remaining set of packets not discarded by the OCRA block. The aggregated packet

is inserted into a new position in the sorted list based on its distortion computed as

the sum of the CMSE values of both packets. This maintains the decreasing order of

packet distortion. It calls the OCRA block again to determine optimal RCPC code

rates for the new set of packets. The parameters shown in Figure 3.2 are exchanged

recursively between the blocks until aggregating packets is no longer beneficial to

reduce the dual cost function value. As an example, Figure 3.3 shows one iteration of

our proposed scheme in the PF block. The first packet in each iteration is the most

important and contributes the maximum distortion. After returning from the OCRA

block, the number of packets is updated to np = ns − npd since npd packets were

dropped in the OCRA block. The two least important packets are then aggregated

and inserted into a new position while the remaining packets are simply retained.

The aggregated packet is at position np − j. The np − 1 packets with their sizes

and distortion values are once again sent to the OCRA block, to estimate their new

optimal packet code rates.

The size of the aggregated packets is constrained by the MTU size for wire-

less networks. Aggregating packets reduces the total overhead from network protocol

headers; the bits saved are used to increase the FEC protection to more important

packets. Since the PF block aggregates the least important packets, this ensures that

packets contributing higher distortion are transmitted with smaller sizes, and the

OCRA block ensures that they have stronger FEC hence lower packet error proba-

bilities.
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Figure 3.3: Packet formation in PF block: linearity model for packet CMSE and size.

3.3.2 Distortion Minimization with Optimal RCPC Code

Rate Allocation (OCRA) Block

The distortion due to the compression is neglected in this formulation because

the slices are pre-encoded and assumed to be at relatively high quality, so compression

distortion is small compared to distortion from slice losses and discards. The initial

values are np = ns and npd = 0. The expected video distortion within a GOP,

E[D̃GOP ], is modeled as the sum of the distortion due to channel-induced packet loss

and distortion from packets discarded at the sender as in [43].

E[D̃GOP ] =

np−npd∑

i=1

E[D̃p(i)] +

np∑

i=np−npd+1

Dp(i) (3.1)

Dp(i) is the distortion caused due to the loss of packet i and is computed as

the sum of the CMSE of individual slices contained in the packet. Each video packet

is appended with a h bit network header and parity bits for a code rate ri selected

from the set R. We consider a discrete-time memoryless AWGN channel. A video

packet is in error if at least one bit is in error after channel decoding at the receiver.

If the bit errors following decoding were independent from bit to bit, then the packet

error probability, ppkt(i), which depends on the channel SNR, packet size, and the

selected RCPC code rate could be computed as in [20, 36, 43, 45, 72, 73]:

ppkt(i) = 1− (1− pb(SNR, ri))

(

h+Sp(i)

ri

)

(3.2)
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where pb(SNR, ri) is the bit error probability after channel decoding for code rate ri.

We use the above expression for packet error probability in the design procedure to

determine the FEC rates. For a given value of npd, the distortion due to the discarded

packets in Equation 3.1 is a constant K1. The optimization problem for minimizing

expected video distortion over the GOP by allocating optimal code rates is formulated

as:

minr

{∑np−npd

i=1

[
1− (1− pb(SNR, ri))

(

h+Sp(i)

ri

)

]
Dp(i) +K1

}

= K1 +minr

{∑np−npd

i=1

[
1− (1− pb(SNR, ri))

(

h+Sp(i)

ri

)

]
Dp(i)

}

subject to

(C1)
∑np−npd

i=1
h+Sp(i)

ri
≤
(

RCHLG

fs

)

(C2) ri−1 ≤ ri for i = 2, 3, 4, 5, 6, ..., (np − npd)

where r =
[
r1, r2, ..., rnp−npd

]
and ri ε R (3.3)

Constraint 1 in Equation 3.3 is the channel bit rate constraint. Constraint 2

ensures that higher priority packets have code rates at least as good as those allocated

to lower priority packets. This speeds up the optimization process by narrowing down

the selection set of packet code rates. To solve this non-linear integer programming

problem, we first relax the constrained optimization problem in Equation 3.3 to an

unconstrained problem [74,75]. By absorbing the constraints into the objective using

Lagrange multipliers λ =
[
λ1, λ2, ..., λnp−npd

]
with each λi ε R

+, we construct the

Lagrangian cost function as:

FGOP (r,λ) = K1 +
∑np−npd

i=1

[
1− (1− pb(SNR, ri))

(

h+Sp(i)

ri

)

]
Dp(i)

+λ1

(∑np−npd

i=1
h+Sp(i)

ri
− RCHLG

fs

)
+
∑np−npd

i=2 λi(ri−1 − ri)

where λ =
[
λ1, λ2, ..., λnp−npd

]
(3.4)

We form the dual cost function dGOP (λ) by minimizing the Lagrangian cost

function for a given λ, where λ is searched using a subgradient approach which will

be discussed in Section 3.3.3. Let C be the space of all possible combinations of

ri, i = 1, 2, ..., np − npd selected from R that can be applied to the packets before
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transmission. The dual function is computed as:

dGOP (λ) = minr ε C FGOP (r,λ)

= minr ε C

∑np−npd

i=1

{(
1− (1− pb(SNR, ri))

(

h+Sp(i)

ri

)

)
Dp(i)

}

+λ1

(∑np−npd

i=1
h+Sp(i)

ri
− RCHLG

fs

)
+
∑np−npd

i=2 λi(ri−1 − ri) +K1

= K2 +minr ε C

∑np−npd

i=1

(
1− (1− pb(SNR, ri))

(

h+Sp(i)

ri

)

)
Dp(i)

+minr ε C

∑np−npd

i=1 λ1

(
h+Sp(i)

ri

)
+
∑np−npd

i=2 λi(ri−1 − ri)

(3.5)

K2 = K1−λ1

(
RCHLG

fs

)
in Equation 3.5 is a constant and the computation of dGOP (λ)

can be further simplified as follows.

Let A(ri) = Dp(i)

(
1− (1− pb(SNR, ri))

(

h+Sp(i)

ri

)

)
+ λ1

(
h+Sp(i)

ri

)
. Then we

can modify the first term in Equation 3.5 as:

minr ε C

{∑np−npd

i=1 A(ri) +
∑np−npd

i=2 λi(ri−1 − ri)
}

= minr ε C A(r1) + A(r2) + ...+ A(rnp−npd
) + λ2(r1 − r2) + λ3(r2 − r3)+

...+ λnp−npd
(rnp−npd−1 − rnp−npd

)

= minr1 ε R {A(r1) + λ2(r1)}+minr2 ε R {A(r2)− λ2(r2) + λ3(r2)}+ ...+

minrnp−npd−1 ε R

{
A(rnp−npd−1)− λnp−npd−1(rnp−npd−1) + λnp−npd

(rnp−npd−1)
}

+minrnp−npd
ε R

{
A(rnp−npd

)− λnp−npd
(rnp−npd

)
}

= minr1 ε R {A(r1) + λ2(r1)}+
∑np−npd−1

i=2 minri ε R {A(ri) + ri(λi+1 − λi)}
+minrnp−npd

ε R

{
A(rnp−npd

)− λnp−npd
(rnp−npd

)
}

The dual function can now be expressed in terms of function A(ri) as:

dGOP (λ) = K2 +minr1 ε R {A(r1) + λ2(r1)}
+
∑np−npd−1

i=2 minri ε R {A(ri) + ri(λi+1 − λi)}
+minrnp−npd

ε R

{
A(rnp−npd

)− λnp−npd
(rnp−npd

)
}

= K2 +
∑np−npd

i=1 minri ε R F̃GOP,i(ri, λi)

(3.6)

where F̃GOP,i(ri, λi) =





A(r1) + λ2(r1) for i = 1

A(ri) + ri(λi+1 − λi) for i = 2, 3, 4, ..., np − npd − 1

A(rnp−npd
)− λnp−npd

(rnp−npd
) for i = np − npd



51

The minimum of the dual cost function for a given λ can be found by min-

imizing the sub-Lagrangian cost functions F̃GOP,i(ri, λi) individually. The solution

space of the minimization of FGOP (r,λ) is (K+1)(np−npd). Since we can minimize the

sub-Lagrangians individually, dGOP (λ) can be computed with only (np− npd)(K +1)

evaluations of F̃GOP,i(ri, λi) and comparisons [74]. This reduces the computational

complexity involved in deriving the optimal set of packet sizes and their code rates.

The frame-based optimization schemes use the slices of a frame (instead of a GOP)

to form np packets. Therefore, their optimization complexity is much smaller than

for a GOP-based scheme.

3.3.3 Determination of λ

We use the subgradient method [74] to search for the best λ over the space

C. The dual function dGOP (λ) is a concave function of λ even when the problem in

the primal domain is not convex [74,75]. Therefore the optimal λ is found by solving

maxλ ε R+ dGOP (λ). Since the dual is a piecewise linear concave function [74], it may

not be differentiable at all points. Nevertheless, subgradients can still be found and

are used to compute the optimal value [74]. It can be shown that the subgradient is a

descent direction of the Euclidean distance to the set of maximum points of the dual

function [74]. This property is used in the subgradient method for the optimization

of a non-smooth function. The subgradient method is an iterative search algorithm

for λ. In each iteration, λk+1
i is updated by the subgradient ξki of dGOP (λ) at λ

k
i :

λ
(k+1)
i = max(0, λk

i + skξ
k
i /‖ξk‖) (3.7)

where sk is the step size. Based on the derivation in [74], the subgradients ξk of

dGOP (λ) at λ
k are

ξk1 = g(rk)− RCHLG

fs
=
∑np−npd

i=1

(
h+Sp(i)

ri

)
− RCHLG

fs

ξki = ri−1 − ri for i = 2, 3, 4, ..., np − npd

(3.8)

where g(.) is the rate constraint function of the problem and

rk =
[
rk1 , r

k
2 , ..., r

k
np−npd

]
is the solution to the term minr ε C FGOP (r,λ

k) in Equation



52

3.5.

3.3.4 Discarding Packets

By explicitly discarding a small number of low priority packets, we gain addi-

tional room for packet size adaptation and FEC, and can derive significant benefits

overall. To allow either the discarding of less important packets or sending them

unprotected, the candidate set of punctured code rates R is modified to

{1, R1, R2, R3, ..., RK ,∞}. This neither changes the objective function to be min-

imized in Equation 3.3 nor does it affect the optimization algorithm discussed in

Section 3.3.2. If the code rate of packet i, ri = ∞, then its probability of bit error

pb(SNR, ri) = 1 causing it to be discarded. The induced distortion is accounted for

in the overall expected distortion E[D̃GOP ] through component K1 in Equation 3.3.

If ri = 1, the video packet is transmitted uncoded over the channel.

3.4 Problem Formulation of other Error Protec-

tion Schemes

We compare our scheme discussed in Section 3.3, denoted from now on as

DP-UEP, with the Dual15 [43], and the EEP-slice-ENH schemes. The Dual15

scheme treats every slice as a packet and does not aggregate them to save on the

total overhead incurred from network protocol headers of 54 bytes being associated

with every slice. It finds the optimal set of punctured code rates to protect the slices

based on their importance (i.e., using UEP) and minimize expected received video

distortion.

The EEP-slice-ENH is similar to our proposed scheme DP-UEP in the

way pre-encoded slices are aggregated to form packets with more important ones

having smaller sizes and error probabilities and also the less important packets being

discarded to meet the channel bit rate constraint. However, unlike DP-UEP, all

packets in EEP-slice-ENH are equally protected with the best possible EEP code

rate. This scheme is broadly similar to other packet (or payload) size adaptation

schemes in the literature [12,14,37,40,76]. The objective of this scheme is to minimize
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the expected received video distortion and it is formulated in a manner similar to

Equation 3.3:

minr ε R

{∑np−npd

i=1

[
1− (1− pb(SNR, r))

(

h+Sp(i)

r

)

]
Dp(i) +K1

}

= K1 +minr ε R

{∑np−npd

i=1

[
1− (1− pb(SNR, r))

(

h+Sp(i)

r

)

]
Dp(i)

}

subject to
∑np−npd

i=1
h+Sp(i)

r
≤
(

RCHLG

fs

)
(3.9)

Constraint 2 in Equation 3.3 is not valid here since r is no longer a vector. As

in Equation 3.3, K1 is the permanent distortion caused by the discarded packets and

is constant for a given value of npd. Apart from the change that only a single λ and

r value needs to be determined, the same DP-based approach described in Sections

3.3.1 and 3.3.2 is used to solve the optimization problem in Equation 3.9.

3.5 Performance of DP-UEP

In this section, we evaluate and compare the performance of DP-UEP,

Dual15, and EEP-slice-ENH schemes with video quality measured by PSNR and

VQM [66,67].

3.5.1 Simulation Setup

Two CIF (352 x 288) video sequences, Foreman and Silent, are used in our

experiments. Silent has lower motion activity than Foreman. They are encoded

using H.264/AVC JM 18.5 reference software [68] at an encoding rate of 720 Kbps

and transmitted over a 2 Mbps AWGN channel. The GOP structure, length, and

frame rate used for simulations in Chapter 2 are also used here. The slice size in the

fixed slice size configuration of H.264/AVC is set to 300 bytes. The error concealment

discussed in Chapter 2 is enabled for all the schemes evaluated in this chapter.

The total network protocol header size is 54 bytes per packet as discussed in

Section 3.2.2. The mother code of the RCPC code has rate 1
4
with memory M=4 and

puncturing period P=8. Log-likelihood ratio (LLR) is used in the Viterbi decoder.

The initial RCPC rates available are {(8/9), (8/10), (8/12), (8/14), (8/16), (8/18),
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(8/20), (8/22), (8/24), (8/26), (8/28), (8/30), (8/32)}. Two additional rates, 8/8

corresponding to no coding and ∞ corresponding to discarding are also included.

The performance evaluation of the schemes is based on a bit-level simulation of the

compressed videos using the derived packet sizes and FEC code rates over 100 real-

izations of every AWGN channel SNR. The simulation results in Sections 3.5.2 and

3.6 use the CMSE values computed from Equation 2.1 in Chapter 2.

3.5.2 Performance Comparison

Figure 3.4 shows the average PSNR and VQM performance over an AWGN

channel. As the channel SNR increases, the packet error decreases and the received

videos achieve average PSNRs closer to their error-free PSNR values. The EEP-

slice-ENH scheme performs the worst. Though it adapts the packet size to the

video priority by aggregating the slices and discarding lower priority packets, it is

still limited to providing equal protection to all the packets formed. The lowest and

highest optimal EEP code rates derived across GOPs were
[

8
20

8
14

]
. However, as the

channel SNR deteriorates in Figure 3.4, the lowest code rate 8
20

is insufficient to

protect the packets from channel induced errors.

The Dual15 scheme does not consider packet formation through slice aggre-

gation and only performs optimal (UEP) RCPC code rate allocation to the slices

(considered as individual packets) of each GOP [43]. It also discards least impor-

tant slices, if required to meet the channel bit budget constraints. The slice error

probability in the Dual15 scheme is dependent on the optimal RCPC code rate al-

located since the size of each slice is more or less the same. Also every slice in the

Dual15 scheme is attached with the 54 byte network protocol header resulting in

more overhead. In contrast, our proposed DP-UEP scheme takes advantage of both

the priority-adaptive packet sizes and optimal RCPC packet code rate allocation.

Our DP-UEP scheme assigns optimal code rates as low as 8
32

to the high priority

packets with small packet sizes (e.g. 300 byte, which is the slice size used in encoding,

or 600 byte obtained by aggregating two slices) and higher code rates to the lower

priority packets with larger packet sizes within every GOP. The packet sizes of the

low priority packets are restricted by the network MTU size of 1500 bytes. Figure 3.4
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Figure 3.4: Average video PSNR (dB) and corresponding average VQM compari-
son computed over 100 realizations of each AWGN channel for Foreman:(a),(b), and
Silent:(c),(d).
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shows the improvement in video quality of our DP-UEP scheme compared to the

EEP-slice-ENH and Dual15 schemes. For example, at a channel SNR of 3 dB, the

EEP-slice-ENH, Dual15, and DP-UEP schemes achieve average VQM values of

0.38, 0.32, and 0.2, and corresponding average PSNR values of 28.3 dB, 30.2 dB, and

33.5 dB, for Foreman. Our DP-UEP scheme achieves maximum PSNR gains of 3.5

dB for Foreman and 2.8 dB for Silent over Dual15 at a channel SNR of 3 dB. The

DP-UEP scheme also achieves maximum gains of 5.2 dB for Foreman and 4.3 dB for

Silent over the EEP-slice-ENH scheme at channel SNR of 3 dB. Similar behavior

is also observed in the VQM performance.

This considerable improvement in video quality achieved by our DP-UEP

scheme can be explained by the following two factors: (i) the lower number of slices

discarded per GOP shown in Figure 3.5, and (ii) the composition of the final trans-

mitted bits in terms of the compressed source bits, network protocol headers, and

FEC bits shown in Figure 3.6. Balancing the overhead due to the FEC parity bits

allows the Dual15 scheme to discard fewer slices per GOP as compared to the EEP-

slice-ENH scheme. Our DP-UEP scheme further reduces the number of discarded

slices as compared to the Dual15 scheme by balancing both the overhead due to FEC

parity bits as well as the network protocol headers attached to the packets formed

by aggregating slices. For example, at a channel SNR of 3 dB in Figure 3.5, our

DP-UEP scheme does not discard any slices whereas 20 and 35 slices are discarded

in every GOP by the Dual15 and EEP-slice-ENH schemes, respectively. As the

channel SNR decreases, more slices are discarded by every scheme. For example, at a

channel SNR of -1 dB, 101, 62, and 50 slices are discarded by the EEP-slice-ENH,

Dual15, and DP-UEP schemes, respectively. This means that though we encode

the video at a target bit rate of 720 Kbps, every scheme adjusts this bit rate by dis-

carding the slices in order to minimize the expected received video distortion under

the given channel SNR condition and bit budget constraints.

Figure 3.6 shows the bit contribution of the source, network protocol headers,

and FEC to the total bits transmitted over a 2 Mbps channel at 3 dB channel SNR for

Foreman. Our DP-UEP scheme transmits more source bits (i.e., a relatively higher

bit rate) than the other two schemes by reducing the network protocol overhead as

well as allocating optimal RCPC code rates based on packet priority. It also uses only
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Dual15, and DP-UEP for Foreman.
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Figure 3.6: Distribution of the final output bits for Foreman at 3 dB channel SNR in
EEP-slice-ENH, Dual15, and DP-UEP schemes.

5.5% bits for the network protocol overhead, compared to 8.5% and 11.5% overhead

bits for EEP-slice-ENH andDual15, respectively. Further, 61.3% bits are allocated

for FEC overhead by DP-UEP compared to 57.3% in Dual15, thus providing better

FEC protection. Although EEP-slice-ENH uses 64.1% FEC bits, it uses EEP which

ignores packet priority. The DP-UEP scheme sends the highest percentage of source

bits (i.e., 33.2%) which also correlates to no slices being discarded at 3 dB channel

SNR, shown earlier in Figure 3.5. A similar trend is also observed for Silent, and for

other channel SNRs.
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3.6 Frame-Level DP-UEP Scheme

The DP-UEP scheme was designed for a pre-encoded video and the cross-

layer optimization was performed over each GOP. Its computational complexity and

delay are not suitable for live streaming applications, such as live sports events. In

this section, we extend DP-UEP to be applied over the slices of a single frame instead

of the entire GOP to reduce its computational complexity and delay. This requires

DP-UEP to process the encoded slices of only one frame at a time in the PF and

OCRA blocks (shown in Figure 3.2) instead of performing optimization over the slices

of an entire GOP. Since a typical GOP consists of different frame types (i.e., IDR,

I, P, and B), we require a good estimate of the channel bit budget for that frame in

order to allocate the protocol header and FEC bits to its packets. Moreover, different

frame types generate different numbers of slices that contribute different amounts of

distortion based on the error propagation and video content. Therefore, we need to

distribute the channel bit budget for a GOP among the different frames and to that

extent we study the video factors which are most influential on the expected channel

bit budget estimate of a frame. From now on, we refer to our DP-UEP scheme

over the slices of the entire GOP as DP-UEP(GOP) and over slices of a frame as

DP-UEP(frame).

Before investigating the important factors influencing the expected channel bit

budget for each frame within the GOP, we study how well DP-UEP(frame) might

perform compared to DP-UEP(GOP). We study the average PSNR and average

VQM performance of DP-UEP(frame) by using the measured slice CMSE values and

the channel bit budget allocated to each frame by the DP-UEP(GOP) for Foreman

and Silent. Later in Section 3.7, we train a GLM for predicting the expected channel

bit budget for each frame in real-time. To avoid the delays involved with processing

an entire GOP, we will need to use an estimate of the frame bit budget rather than

the actual bit budget allocated by the DP-UEP(GOP) scheme. However, analyzing

the channel bit budget allocation, Rl for the frame l, by the DP-UEP(GOP) scheme

can provide some motivation for whether the frame-based approach is worth pursuing.

To compute Rl, we first derive the overhead bit budget proportion, wl
ovh for the frame
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l, from the result of the DP-UEP(GOP) scheme as:

wl
ovh =

# FEC bits for frame l

# FEC bits for whole GOP
(3.10)

This quantity, while it is explicitly the fraction of FEC bits which a particular

frame gets relative to FEC bits for the whole GOP, is taken to be an estimate of

overhead bits (both FEC and protocol header bits) which the frame gets relative to

the overhead bits for the whole GOP. Rl is then evaluated using wl
ovh for a video bit

rate denoted by Rv as:

Rl =

nl
s∑

i=1

Sl
p(i) + wl

ovh

{
(RCH −Rv)LG

fs

}
(3.11)

where nl
s is the number of slices in frame l and Sl

p(i) is the size of slice i in frame l. The

video bit rate of 720 Kbps, used in our simulations in Section 3.5, is assigned to Rv.

We determine the optimal packet sizes and their corresponding code rates separately

for each frame in the GOP using the cross-layer DP-based approach discussed in

Section 3.3. We observe that the average PSNR performance of DP-UEP(frame) is

only slightly lower than that of DP-UEP(GOP) (shown later in Figure 3.8), but still

higher than the Dual15 scheme. A small drop in average PSNR and VQM is due to

the fact that our optimization scheme for slices of each frame is sub-optimal compared

to the DP-UEP(GOP) scheme. In other words, DP-UEP(frame) may have discarded

some slices from a frame which were retained in the DP-UEP(GOP) scheme.

From the analysis of the DP-UEP(GOP) scheme, we observed that wl
ovh for a

frame l is dependent on the following video factors: (a) normalized CMSE for frame

l, denoted as wl
cmse, (b) normalized compressed frame bit budget, denoted as wl

c, (c)

channel SNR, and (d) video content. wl
cmse is computed as the ratio of the total

CMSE contribution of all slices in frame l to the total CMSE contribution of all slices

in the GOP. wl
c is computed as the ratio of the size of the compressed frame in bits

to the total source bit rate for the GOP.

wl
cmse =

∑nl
s

i=1D
l
p(i)

∑LG

j=1

∑n
j
s

i=1D
j
p(i)

;wl
c =

∑nl
s

i=1 S
l
p(i)(

RvLG

fs

) (3.12)
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where Dl
p(i) is the distortion caused due to the loss of slice i in frame l.

3.7 Frame-Level DP-UEP using Prediction

The DP-UEP(frame) scheme in the previous section has the following two

major issues for live streaming applications: (i) measuring CMSE values of the slices

of a frame requires the decoding of current and other frames of the GOP which is

computationally intensive and introduces about one GOP time delay, and (ii) deter-

mining the channel bit budget for different frames in each GOP in real-time. In this

section, we introduce an improved frame-level scheme, denoted asDP-UEP(predict),

to address these issues.

CMSE Prediction: For the first issue, we use a slice CMSE prediction scheme

proposed in [50], which predicts the CMSE corresponding to individual slice losses

of a frame in real-time. This scheme uses a combination of video parameters which

can be easily extracted during the encoding of a frame without requiring information

from future frames.

ŵl
ovh Prediction: To address the second issue we train a GLM to predict the

wl
ovh of every frame l, denoted as ŵl

ovh, in real-time. The GLM to estimate ŵl
ovh

is developed over a database of the factors discussed in Section 3.6 and derived for

videos with different types of motion and content. We use a database of 12 CIF video

sequences that span (a) low motion: Silent, Mother-Daughter, Bridge, and Akiyo;

(b) medium motion: Table Tennis, Coastguard, Tempete, and Foreman; and (c) high

motion: Soccer, Bus, Football, and Stefan. We use the first three sequences from each

motion category for training and the last one from each category for testing. For a

given Rv, we compute the factors wl
ovh, w

l
cmse, and wl

c for the frames of each training

video sequence by using the DP-UEP(GOP) scheme and store them in the database

along with the channel SNR. The GLM, explained later in Section 3.7.1, is trained

offline only once. ŵl
ovh is then used to estimate the channel bit budget constraint (as

shown in Equation 3.11) and estimate the optimal packet sizes and code rates for the

slices of frame l.
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3.7.1 Generalized Linear Modeling Approach for Estimating

wl
ovh

GLMs are an extension of classical linear models [77, 78]. We train the GLM

to predict wl
ovh (i.e., ŵl

ovh). Let Y = [y1, y2, y3, ..., yN ] be a vector of our response

variable wl
ovh from the database. Every data point yi in Y is expressed as a linear

combination of a known covariate vector [1, xi1, xi2, xi3, ..., xip], where p is the number

of factors, and a vector of unknown regression coefficients β = [γ, β1, β2, ..., βp]
T . The

covariate vector is a row of matrix X of order N × (p + 1) with elements xij for N

observations and p factors also from the database.

f(Y) = Xβ ; f(yi) = γ +

p∑

j=1

xijβj. (3.13)

where f(.) is called the link function. After estimating β, we use it to derive the

predicted response variable vector Ŷ = [ŷ1, ŷ2, ŷ3, ..., ŷN ] computed as f−1(Xβ); f−1

is the inverse of the link function and Ŷ is a vector of ŵl
ovh.

Response Variable Distribution

To determine the link function for the GLM, we need to know the distribution

family of our response variable. We evaluate the goodness of fit for ranking Weibull,

Gamma, and Gaussian fitted distributions of wl
ovh by using three information criteria

(IC): (a) SIC: Schwarz information criterion, aka Bayesian information criterion [79],

(b) AIC: Akaike information criterion [80,81], and (c) HQIC: Hannan-Quinn informa-

tion criterion [82]. Each information criterion depends on the number of distribution

parameters to be estimated. For example, the Gaussian distribution has two param-

eters, mean and standard deviation, and the Gamma and Weibull distributions have

two parameters, scale and shape parameter. Each information criterion also depends

on the number of observations of our response variable wl
ovh, and the maximized log-

likelihood estimate of the fitted distribution producing the set of observations. For m

observations and u distribution parameters, the SIC is the most strict in penalizing

loss of degrees of freedom by having more distribution parameters and is computed

as u × ln(m) − 2 × ln(Lmax), where Lmax is the maximized value of the likelihood
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function for the fitted distribution. HQIC holds the middle ground in its penalizing

for u and is computed as
(
m−2u+2
m−u+1

)
ln(ln(m))− 2× u× ln(Lmax). Finally, AIC is the

least strict of the three in penalizing loss of degrees of freedom and is computed as
(
m−2u+2
m−u+1

)
− 2× ln(Lmax).

Table 3.1: Goodness of fit statistics for maximized likelihood function based on three
information criteria.

IC/Fitted Distribution Weibull Gamma Gaussian
SIC 23.71 23.71 25.79

HQIC 12.72 12.72 16.88
AIC 6.25 6.25 8.33

We randomly chose m = 5000 observations from the vector of wl
ovh values in

the database, obtained from all the training videos at channel SNRs from -2 dB to

6 dB. These are divided into 100 bins from zero to one and the likelihood function

is maximized for each of the three fitted distributions. The distribution parameters

where the likelihood is maximized are: (a) Gaussian: mean = 0.05, standard deviation

= 0.095, (b) Gamma: shape parameter = 1, scale parameter = 0.05, and (c) Weibull:

shape parameter = 1, scale parameter = 0.05. Since the shape parameter of both

Gamma and Weibull distributions is 1, they are in essence exponential distributions.

In Table 3.1, the goodness of fit of all three information criteria are minimum for

Weibull and Gamma distributions; therefore our response variable is exponential.

Figure 3.7 also shows that the cumulative distributions of Weibull and Gamma are

the same and closer to the cumulative distribution of the 5000 observations than the

Gaussian cumulative distribution.

Model Fitting and Validation

We use the statistical software R [83] for fitting our GLM and its validation.

We classified our response variable as a member of the exponential family of distribu-

tions with identity as its link function. The GLM model in R uses the AIC index [80]

to determine the order in which three factors, wl
cmse, w

l
c, and channel SNR are fitted.

Here, the AIC index is defined as 2p−2max(L), where p is the number of factors and

L is the log-likelihood estimate for the model. We let Yk represent the model with a
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ovh.

subset of k factors. The ith data point in Yk, yki , where i = 1, 2, ..., N is expressed as:

yki = γ + βk
1xi1 + βk

2xi2 + ...+ βk
j xij + ... + βk

kxik. (3.14)

Here, γ is the intercept as considered in Equation 3.13, βk
j = 1, 2, ..., k are the fitted

coefficients for k factors, and xij represents the j
th factor value for the ith observation

in Yk. The simplest model is the Null Model having only the intercept γ whereas

the Full Model has all the p factors, i.e. k = p. The factors are also known as

covariates. The following forward stepwise approach is used to determine the order

of our covariates:

Step 1: We fit a group of p univariate models and compute their AIC values.

The best univariate model has the smallest AIC value.

Step 2: We then fit (p − 1) multivariate models where each model has two

covariates. The first covariate is from the best univariate model in Step 1 and the

second covariate is chosen from the remaining (p−1) available covariates. We compute

the AIC values for the (p− 1) multivariate models and choose the best multivariate

model with the smallest AIC value. The two covariates fitted at this stage would

progress to the next step to be fitted with the third covariate.
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Table 3.2: Final generalized linear model factors and coefficients including
interactions.

Covariate(Factor) Coeff. for Final Model Model Deviance
γ −0.0193 167.18

wl
c 1.3240 12.2

wl
cmse 5.37× 10−5 11.7

channel SNR 0.0028 11.7

wl
c× channel SNR -0.0564 9.75

wl
cmse× channel SNR 9.521 × 10−5 9.7

The covariates and coefficients of our final model are shown in Table 3.2. We

also introduced two interactions, wl
c×channel SNR and wl

cmse×channel SNR.

The goodness of fit for a GLM can be characterized by its deviance, which

is a general term of variance [77]. By definition, the deviance is zero for the Full

model and positive for all other models. A smaller deviance means a better model

fit. After fitting a particular model, the importance of each factor in the model can

be evaluated by the resultant increase in deviance when we remove that factor from

the model. The third column in Table 3.2 shows the reduction in deviance as each of

the covariates in the first column is added to the model using the stepwise approach

described above. Model 1 is the best univariate model with wl
c. Model 2 has both

wl
c and wl

cmse covariates. In addition to these, Model 3 has channel SNR. Model 4

adds the first interaction between wl
c and channel SNR, and Model 5 includes all the

factors in Table 3.2.

3.7.2 PSNR and VQM Performance

We evaluate the average PSNR and average VQM of our proposed

DP-UEP(predict) scheme for the three test videos: low motion Akiyo, medium

motion Foreman, and high motion Stefan. The predicted channel bit budget for

frame l is evaluated as ŵl
ovh × RCHLG

fs
. The proposed DP-UEP in Section 3.3 was

used to compute the optimal packet sizes and RCPC code rates for the slices of frame

l. ŵl
ovh uses the coefficients of the factors shown in Table 3.2. Since computing the

factor wl
cmse for frame l is not feasible in real-time, ŵl

cmse uses the predicted CMSE

value of each slice i, D̂l
p(i) in frame l, as computed in [50]. But the predicted slice

CMSE values of the future frames in the GOP will not be available during real-

time transmission. We therefore use the total predicted CMSE of all the slices of
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the previous GOP to compute the normalized predicted CMSE of the frame in the

current GOP as shown in Equation 3.15.

ŵl
cmse =

∑nl
s

i=1 D̂
l
p(i)

∑LG

j=1

∑n
j
s

i=1,previousGOP D̂j
p(i)

(3.15)

For the first GOP, the ŵl
cmse is assumed to be zero. It is reasonable to use

the predicted CMSE of the previous GOP because for most GOPs there is a high

correlation between the CMSE of adjacent GOPs. On a core 2 Duo 2.6 GHz Intel

processor with 4GB RAM, we observed that the average computation time across all

test videos and channel SNR from -1 dB to 6 dB, is 75 ms for the IDR frame, 10.5

ms for the P frame, and 1.5 ms for the B frame. Since IDR frames have considerably

more slices than P and B frames, and P frames have more slices than B frames, the

computation time also varies accordingly. These computational delays are acceptable

in live streaming applications.

Figure 3.8 shows the performance of the DP-UEP(predict), DP-UEP

(frame), DP-UEP(GOP), and Dual15 schemes on the test videos, in terms of av-

erage PSNR and VQM values. The GOP structure, frame rate, and slice size are

the same as considered in Section 3.5.1, and error concealment is also enabled. The

videos are encoded at 720 Kbps and transmitted over a 2 Mbps AWGN channel. We

observe that the error-free PSNR value decreases as the motion in the video increases.
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Figure 3.8: Average video PSNR (dB) and average VQM comparison computed over
100 realizations of each AWGN channel for Akiyo: (a),(d), Foreman: (b),(e) and
Stefan: (c), (f). The error-free PSNR values are: 46.5 dB for Akiyo, 37.3 for Foreman,
and 29.7 for Stefan.

DP-UEP(predict) has better performance than the Dual15 scheme for all

three test videos. DP-UEP(predict) enables real-time packet formation and trans-
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mission of videos which is not possible with the other three schemes. However, its

performance is lower than DP-UEP(GOP) and DP-UEP(frame) due to the predic-

tion of channel bit budget and slice CMSE values for each frame. For example, the

PSNR gain achieved by DP-UEP(GOP) over Dual15 for Foreman in Figure 3.8(b)

is 3.5 dB at a channel SNR of 3 dB. For DP-UEP(frame) which knows the required

channel bit budget, the PSNR gain drops to 2.7 dB. Predicting the channel bit budget

for each frame in DP-UEP(predict) causes the PSNR gain to drop further to 1.4 dB.

Similar behavior can also be seen in Akiyo and Stefan in Figures 3.8(a) and 3.8(c).

The maximum PSNR gains achieved by DP-UEP(predict) over Dual15 are 1.8 dB

for Akiyo at 0.5 dB channel SNR, 2.12 dB for Foreman at 1 dB channel SNR, and

1.5 dB for Stefan at channel SNR of 2.5 dB. Similar trends are also observed in the

VQM performance of the three videos shown in Figure 3.8. Further, simulations of

three more test videos (whale show, Hall Monitor, and Container) from outside our

database showed trends similar to those in Figure 3.8.
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Chapter 4

Scheduling Scalable Video

Streaming over Time-Varying

Wireless Links

4.1 Introduction

Video streaming applications over wireless networks are rapidly growing. How-

ever, video data has high bit rate and is delay-sensitive. As a result, video transmis-

sion is challenging over bandwidth limited and time-varying wireless channels. Addi-

tionally, unique characteristics of the video traffic, such as the temporal and spatial

dependencies between different video frames and their deadline constraints, pose a

challenge in supporting video quality in wireless networks. A survey of the theoretical

and practical challenges in wireless video streaming can be found in [84].

To provide better video quality, various technologies have been employed such

as scalable video coding [3, 85], error resilient coding [86, 87], video transcoding [88,

89], packet scheduling [90], and playout adaptation [91–94]. Scheduling algorithms

employed at the transmitter play a key role in determining the performance of wireless

systems. Most of the initial work on scheduling schemes focused on maximizing

throughput and optimizing system performance for non-real-time and delay-tolerant

traffic. For example, opportunistic schedulers for the problem of downlink scheduling

were extensively studied in [95] and [96], wherein a single transmitter at the base

68
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station is shared amongst multiple downlink users. Opportunistic scheduling entails

exploiting multiuser diversity inherent in wireless systems due to fluctuating channels.

However, such schedulers, being oblivious to packet deadlines, video data bit rate

variations, and frame dependencies, perform poorly in the context of delay-sensitive

video streaming. Therefore, network-adaptive video streaming techniques proposed

in [97–99] have gained significant interest. They try to overcome fluctuations due to

wireless link impairments by using controls at various layers of the transmitter and/or

receiver.

In a streaming media system, the client usually buffers the video data it has

received in a playout buffer and begins playback after a short delay (known as the pre-

roll delay) of up to several seconds [100]. Smoothing the video in this manner allows

it to be transmitted in a less bursty fashion and potentially simplifies operations such

as resource allocation and improves network utilization [101, 102].

Adaptive streaming techniques are generally classified as either receiver-driven

or transmitter-driven [98]. A receiver-driven technique that allows the streaming

media client to control the playout rate of the decoder without the involvement of the

transmitter was proposed in [103]. Depending on the video and the playout buffer

fullness (amount of data in the playout buffer), playout interval variation from 25%

up to 50% was considered. Though this reduces the probability of playout buffer

underflow and overflow, noticeable artifacts can still occur in the displayed video.

In the transmitter-driven techniques, rate-distortion (R-D) optimized packet

scheduling techniques [90, 104, 105] are the state-of-the art. In every transmission

opportunity, the rate is optimized for the scheduled media unit (a group of NAL units)

to minimize the expected received video distortion by taking into consideration the

transmission errors, retransmission delays, the decoding dependencies (frame types),

and the channel bit rate constraint. It also includes selecting the media units to

discard for a low channel bit rate constraint. The optimization problem is solved for an

average channel by using the Lagrangian R-D formulation and is not designed to adapt

and exploit the time-varying transmission rates supported by wireless links. Further,

though the above schemes could show noticeable benefits by allowing adaptation to

wireless link errors and retransmission delays, they require significant modifications

in the streaming client and/or the streaming server [106,107]. Our scheme focuses on
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solutions to schedule the video stream over a wireless link with time-varying bit rate,

which requires insignificant modifications in the streaming server. At the same time,

our scheduling solution provides improved video quality at the receiver by considering

the relative importance of the frames and their delay bounds.

Transmission rates on the wireless links could vary significantly in every trans-

mission time interval (TTI) due to impairments such as fading, and multi-user channel

access characteristics [108, 109]. These changes in transmission rate impact the end-

to-end delay of video frames. When the wireless link is slow and cannot support the

video bit rate, compressed video frames fill up the post-encoding buffer eventually

causing it to overflow and the frames to timeout. Meanwhile, frames are continuously

played out at the client, causing the playout buffer to underflow and eventually caus-

ing an outage. Buffer underflow occurs when the number of frames in the playout

buffer falls below a pre-determined threshold whereas an empty playout buffer results

in an outage [53, 93, 110, 111].

Most of the existing transmitter-based scheduling schemes are based on the

single layer coding of H.264/AVC [2] and propose modifications to the rate control

module of the encoder. The scalable extension of H.264 enables encoding a high-

quality video bit stream containing one or more subset bit streams [3]. This makes

it attractive to be used in streaming applications. In this chapter, we propose a

transmitter-driven scheduling algorithm which is aware of video packet importance

and frame deadlines. It exploits the temporal and SNR scalabilities of a H.264/SVC

compressed bit stream, and derives a subset (i.e., scalable) bit stream for transmission

over a wireless link with time-varying bit rate. The subset bit stream provides grace-

ful degradation in bad channel conditions. Our scheme uses a sliding-window based

flow control at the post-encoding buffer of the streaming server. The flow control de-

termines how many and which particular NAL units, from a window of temporal and

quality layers, are to be scheduled for transmission during every TTI. The scheduled

NAL units improve the received video quality for the available channel resources. The

optimization problem of maximizing the expected received video quality is reduced

to maximizing the product of the normalized CMSE value with the inverse of the

time-to-expiry (TTE) value.

Section 4.2 discusses the related work. The system model comprising of the
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video streaming system, scalable video coding, and the wireless channel model is

discussed in Section 4.3. Section 4.4 discusses the optimization problem formulation

for the baseline and proposed scheduling approaches. The performance of the different

scheduling schemes at different pre-roll delays, and under varying channel conditions

is discussed in Section 4.5.

4.2 Related Work

Kang and Zakhor [112] proposed a packet scheduling algorithm for streaming

an MPEG-4 compressed video over wireless channels with dedicated fixed bandwidth,

fixed round trip time, and known channel bit error rate. Different deadline thresholds

were assigned to video packets based on their importance. The importance of a video

packet was determined by its relative position within the GOP and its motion texture

context. Packets with the nearest deadline were transmitted first.

A packet selection algorithm for adaptive transmission of smoothed and lay-

ered video over a wireless channel was discussed in [113]. Before transmitting a packet

from the current video layer, the scheme proposes to compute the minimum success

probability of the next higher priority layer among all the remaining frames. De-

pending on whether this value is greater than a pre-determined heuristic threshold,

the packet from the current layer could either be transmitted or discarded. This is

done to maintain similar video quality among the transmitted frames. However, the

complexity involved in determining the minimum success probability increases as the

number of frames increases. Further, a time-varying channel makes it infeasible to

compute the success probability for a large number of remaining frames.

Hung et al. [53] proposed a scheduling scheme based on an active and passive

playout adaptation in the receiver buffer. The active playout tries to smooth the video

playout by slowly varying its rate in order to overcome bad channel conditions. The

passive playout kicks in during serious congestion and the smallest possible playout

rate is employed at the receiver buffer. Playout interval variations of up to 50% are

considered depending on the video content. However, the playout adaption is still

limited in efficiently delivering video packets over a time-varying wireless link and

in avoiding playout interruptions. Hence, a deadline-aware packet scheduling scheme
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is also considered at the transmitter which discards the packets of the frames which

have missed their playout deadline. It also uses different numbers of retransmissions

for packets belonging to different priority frames and schedules the new packets and

the packets to be re-transmitted within channel bit-rate constraints. The scheme does

not fully avoid playout buffer outage.

Chen et al. [54] studied an adaptive video scheduling scheme in a Markov de-

cision process (MDP) framework at the transmitter, which requires the knowledge

of instantaneous playout buffer status and channel conditions at the receiver. How-

ever, the scheduling policy is derived offline and thus is not adaptive to channels with

time-varying bit rate. A state space reduction technique is proposed to limit the

complexity of the MDP. The scheduling scheme works on a window of frames to be

decoded at the receiver. The window size provides a tradeoff between the optimality

and complexity of the scheduling scheme.

A priority-based media delivery scheme is discussed by [114] for the pre-

buffering and re-buffering in the receiver playout buffer to overcome channel inter-

ruptions. The H.264/SVC bit stream is divided into three priorities. The scheduling

scheme buffers more high priority data in the playout buffer. This results in pre-

buffering the data for a longer playback time compared to the earliest deadline first

(EDF) scheme [51]. The scheme has been proposed for both real time protocol (RTP)

and hypertext transfer protocol (HTTP) based streaming.

In order to reduce the impact of network bandwidth fluctuation, an adaptive

priority ordering algorithm for H.264/SVC bitstreams is proposed in [115]. It arranges

the coding layers (i.e. spatial, temporal, and quality scalability) according to their

R-D tradeoff within a GOP so that the transmitted video quality can be preserved

over dynamic bandwidth conditions.

Stockhammer et al. [106] derived the required initial buffering delay and the

receiver buffer size to avoid playout interruption due to buffer underflow or video

packet loss due to buffer overflow while streaming a MPEG-4 encoded variable bit

rate video. The conditions were derived for a wireless channel with known packet

success probability and for pre-encoded video streams. The problem is solved in the

framework of the leaky bucket algorithm in the hypothetical reference decoder or

video buffering verifier at the receiver.
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Recently, Chen et al. [107] described the strict conditions guiding an x264

encoder to design a bandwidth adaptive rate control for the first time. The rate

control in [107] derives an upper and lower bound for the target frame size and the

corresponding tightest bounds on the encoder and decoder buffer sizes subject to a

strict end-to-end delay over a fast time-varying channel. The encoder then fixes the

size of the frame to the average of the upper and lower bounds. The scheme depends

on the accuracy of channel estimation at the transmitter. It may cause large variation

in bits allocated to different frames, resulting in inconsistent video quality due to

the emphasis on a strict end-to-end delay bound over a fast time-varying channel.

Further, the rate control does not take into account the importance of the frame

and the error propagation it may cause (due to the allocated quantization parameter

value) at the receiver. To limit the variation in quality from frame-to-frame, accurate

R-D models [116, 117] are required to estimate the target frame size for a targeted

quality along with some R-D optimization. This has been ignored in [107] since the

emphasis of choice on best rate points may cause large delay jitter.

Dua et al. [118] proposed a channel, deadline, and distortion aware scheduling

scheme for streaming H.264/AVC compressed videos to multiple video clients in a

wireless communication system. The scheduling problem was studied in a DP frame-

work to minimize the aggregate distortion cost incurred over all receivers. The scheme

showed significant PSNR gains over benchmark multi-user scheduling schemes such

as the round robin, EDF, and best channel first schemes. Distortion for every video

packet in a frame was computed as the MSE contributed by its loss. The packets of

a frame were then ordered for scheduling based on their distortion. Scheduling was

carried out for the packets of a single head-of-line frame of all users at a time, under

the assumption that except for the first I-frame, all the other frames in the video

are of equal importance. This ignores the fact that video frames contribute different

levels of distortion based on their scene complexity, motion level, and type (I, P, and

B).

A MDP framework in [119] was used for cross-layer optimization of scheduling

at the post-encoding buffer of a video server, the packet size and scheduling at the

MAC layer of the base station, and MAC receiver buffer at the client. The scheme

derives a foresighted control policy (i.e., the optimal value function) and the optimal
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policy (set of actions) by using the value iteration algorithm over a constant bit rate

BSC. Due to the large dimensionality of the problem, a strong quantization of the

values was considered by the different states. The evaluation of the transition prob-

abilities was done offline using the training video sequences. The authors resort to

learning techniques, such as reinforcement learning, in order to estimate the optimal

policy and also suggest updating the entries of the transition matrix online at each

time instant. However, this is not realistic because the base station needs to simulta-

neously coordinate with the video server and the wireless video client to differentiate

bad policies from good ones in real-time and eliminate them. For streaming applica-

tions, it will degrade the video quality until the learning is finished. Moreover, the

reward matrix cannot consider the immediate effect of a selected set of actions on

video quality and only has to use the video quality determined at the source. The

framework also does not consider the frame delay constraints normally associated

with scheduling in streaming applications. The foresighted control policy in [119],

maximizing some long-term discounted sum of rewards linked to the video quality,

achieved considerable PSNR gains compared to the short-term myopic policy in [120]

which maximizes the immediate reward without paying attention to the consequence

the current decision may have on future rewards.

The problem of joint adaptive media playout control at the receiver and video

motion-aware packet scheduling across the APP and MAC layers at the transmitter

was formulated in a MDP framework by [120]. It employed an online reinforcement

learning approach with a layered real-time DP algorithm for adaptive video trans-

mission. In addition to the parameters in [119], it also considered the modulation

and coding options, provided by the PHY layer in the 802.11a standard, in the set of

actions and states. It preemptively varied the playout speed of scenes, based on the

motion intensity, to reduce the perceptible effect of playout speed variation. However,

the high computational complexity of this scheme makes it unsuitable for real-time

delay-sensitive streaming.

Li et al. [93] proposed an MDP-based joint control of packet scheduling at

the transmitter and content-aware playout at the receiver, in order to maximize the

quality of video streaming over wireless channels. They also proposed a content-aware

adaptive playout control (i.e., slowdown) that considers the video content (i.e., motion
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characteristics in particular). This scheme improved the quality of the received video

with only a small amount of playout slowdown which was mainly placed in low-motion

scenes where its perceived effect is lower.

4.3 System Model

4.3.1 Scalable Video Coding

The coded video data of H.264/SVC [3] are organized into NAL units, each

containing an integer number of bytes. NAL units are classified into video coding

layer (VCL) NAL units, which contain coded slices or coded slice data partitions,

and non-VCL NAL units, which contain associated additional information. The most

important non-VCL NAL units are parameter sets and Supplemental Enhancement

Information (SEI). The pre-roll delay and the playout rate are communicated by the

streaming server to the client through the SEI [106, 107, 121].

We use hierarchical prediction with a structural encoding/decoding delay of

zero [3] as shown in Figure 4.1(a). The temporal enhancement layers are coded as uni-

directionally predicted P-pictures. The darkest colored frames belonging to temporal

layer T0 in Figure 4.1(a) are encoded as key pictures to limit the distortion propaga-

tion within a GOP. Our scalable bitstream contains |T̄| temporal layers (where |T̄| is
the cardinality of the set T̄) with a maximum frame rate of fr fps (e.g., 30 fps). The

GOP size is then computed as 2(|T̄|−1). Figure 4.1(a) has |T̄| = 4, T̄ = {T0, T1, T2, T3}
and GOP size of 8.

We consider medium-grain scalability (MGS) for SNR scalability. Our scalable

bitstream contains |Q̄| quality enhancement layers. Every frame is identified with its

index f which could be 0, 1, 2, ..., F ; F being the last frame index of the sequence. A

NAL unit belonging to a frame f and quality enhancement layer q ∈ Q̄ is identified as

Lf,q. The base layer (BL) NAL unit of frame f is identified as Lf,0 with q = 0. Figure

4.1(b) shows the motion-compensated prediction dependency between the layers for a

GOP size of 4. A vertical arrow denotes a spatial prediction signal from the lower layer

being used in the upper layer reconstruction. A non-vertical arrow denotes a lower

temporal layer being used in the motion-compensated prediction of a higher temporal
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Figure 4.1: (a) Hierarchical prediction structure, and (b) motion-compensated pre-
diction for MGS layers with key pictures.

layer. Together, they determine the error propagation path spatially and temporally.

We use a MGS vector, [3, 3, 10], to divide the integer transform coefficients of each

4× 4 MB into three quality enhancement layers [52, 122].

Our proposed algorithm uses the CMSE to determine the importance of the

VCL NAL units. CMSE values consider the error propagation due to the lost NAL

units and are evaluated at the streaming server. CMSE is computed using Equation

2.1 in Chapter 2. Figure 4.2 shows the average R-D characteristic curves for a 480p

(720 × 480) video, Table Tennis, compressed using the H.264/SVC codec JSVM 9.8

[122], and using MGS with T̄ = {T0, T1, T2, T3} and Q̄ = {0, 1, 2, 3}. Every quality

layer is represented by a single non-truncatable NAL unit. When the BL of a frame

expires, we perform frame copy concealment in the decoder. The y-axis in Figure 4.2

shows the average distortion (CMSE or IMSE) and the x-axis shows the average bit

rate up to a particular temporal layer and quality layer. For example, the four R-D

points for temporal frame T0 correspond to the BL and three quality enhancement

layers with corresponding cumulative bit rates of 406, 763, 952, and 1156 Kbps.

Similarly, for temporal frame T3, the R-D points correspond to the BL and three

quality enhancement layers with corresponding cumulative bit rates 593, 1371, 1691,

and 2022 Kbps. Maximum video quality is achieved if all the temporal and quality

layers are decoded at 2022 Kbps. Similar R-D behavior was observed for other test

sequences.
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Figure 4.2: Average R-D characteristic curves in terms of (a) CMSE, and (b) IMSE
for different temporal and quality layers.

4.3.2 Video Streaming System

We consider a wireless video streaming system which consists of a streaming

server at the transmitter, a wireless channel, and a streaming client at the receiver

as shown in Figure 4.3. In streaming applications, the video server rather than

the encoder decides the rate at which the frames are input into the post-encoder

buffer [106, 107]. Hence, the variable bit rate scalable media stream is characterized

by a frame duration ∆t and a sampling curve Rv(t). The sampling curve of the video

sequence represents the overall amount of data (measured in bits) delivered into the

post-encoder buffer by the video server up to time t. The sampling curve of the

channel indicates the overall amount of video data transmitted up to time t. The

sampling curve is monotonically increasing and has a staircase characteristic. Figure

4.4 shows the sampling curve for the 480p Table Tennis video considered in Section

4.3.1 at ∆t = 1
30

seconds, i.e. for video frames being delivered into the post-encoder

buffer at 30 fps. The sum average bit rate for all the layers is 2022 Kbps. The

non-uniform nature of the jump in the staircase pattern of the video sampling curve

is attributed to its bursty nature, i.e. frames with highly fluctuating sizes arrive at

a constant interval of ∆t. The arrival of a frame belonging to temporal layer T0

into the post-encoder buffer results in a steeper jump in the Table Tennis sampling

curve in Figure 4.4(b). Figure 4.4(a) also illustrates two sampling curves for channels
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Figure 4.3: Video streaming system over a wireless link with time-varying throughput.

supporting different outgoing video bit rates of 1 and 3 Mbps.

Frames buffered in the post-encoder buffer have fixed frame deadlines. Frame

deadline is the time instant at which the frame is expected by the client for decoding

and depends on the pre-roll delay and playout rate allowed at the decoder [99]. All the

NAL units of a frame have the same deadline. The pre-roll delay depends on the initial

number of frames stored in the playout buffer and the playout rate [84,97,98,103–105].

If d frames are initially buffered at the receiver, after which it starts decoding and

playing them out at a rate of fr fps, then the resulting pre-roll delay is d
fr

seconds.

The decoder at the client starts decoding at time t. The deadline of a frame d+ i in

the post-encoder buffer of the video server will then be t + d+i
fr

= t + d
fr

+ i
fr
. This

is the time at which the client’s decoder fetches the frame d + i for decoding. If the

frame d+ i is not available, then the decoder conceals it using frame copy. Figure 4.5

illustrates the video streaming timing diagram for a pre-roll delay of d = 3 frames.

It shows the times at which the video server begins to transmit the frames in the

post-encoder buffer and the times at which they are completely received at the video

client. For example, the video server begins transmitting the first frame, belonging

to temporal layer T0, at time t1. The first frame is completely received by the video

client at time t2 (with t2 − t1 being the resultant delay). The video server begins the

transmission of the second frame, belonging to temporal layer T3, at time t2. Here,

we have ignored the propagation time. The pre-roll condition of d = 3 is satisfied



79

10 12 14 16 18 20
0

5

10

15

20

25

30
Table Tennis 480p, 30fps, Average Bit rate = 2022 Kbps

time(sec)

B
it

s
 (

M
b

)

Outgoing video bit rate = 1 Mbps
Outgoing video bit rate = 3 Mbps
Table Tennis sampling curve

All video bits cannot
be sent over the channel

More video bits can be
sent over the channel

(a)

15 15.2 15.4 15.6 15.8 16
12

12.5

13

13.5

14

14.5
Table Tennis 480p, 30fps, Average Bit rate = 2022 Kbps

time(sec)

B
it

s
 (

M
b

)

(b)

Figure 4.4: (a) Sampling curve for Table Tennis Rv(t), and outgoing video bits sup-
ported by the channel, (b) close up of the sampling curve between t=15 sec and t=16
sec.

when the third frame, belonging to temporal layer T2, is received at the video client

at time t4. The receiver then starts the decoding process at time t4. The video client

expects the fourth frame to be available for decoding by t4+
3
fr
+ 1

fr
, which is its frame

deadline. The TTE value of a NAL unit is the time duration between the current

time and its frame deadline. For example, the current time at which the fourth frame

is scheduled in Figure 4.5 is t4 and its TTE is equal to t4 +
4
fr
− t4 =

4
fr
. The TTE of

a frame should at least be equal to the time required to transmit one NAL unit of the

frame. If some NAL units of the frame were unable to reach the client within their

TTE, then they would expire causing them to be discarded from the post-encoder

buffer. The deadlines of the fifth (t4 +
5
fr
) and sixth (t4 +

6
fr
) frames are also marked

on the transmission time axis of the video server and the receive time axis of the

video client.

4.3.3 Wireless Channel

We are interested in capturing the time-varying nature of the wireless channel,

whether it is 802.11, cellular, or home environment, where the available resources are

distributed among multiple users and multiple applications. We model the wireless

channel as a first-order ergodic Markov chain with K states, and S̄ = {s1, s2, ..., sK}
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Figure 4.5: Video streaming timing diagram demonstrating frame deadlines and time-
to-expiry computation.

denotes its state space [54,114,123]. The corresponding video bit rates supported by

the states are denoted by Ri, i ∈ {1, 2, 3, ..., K}. The channel state supporting the

lowest bit rate R1 is s1, and sK is the state supporting the highest bit rate RK . Let

pi,j, i, j ∈ {1, 2, 3, ..., K} be the state transition probability from channel state si to

sj, and πi be the steady-state probability of state si. We assume that transitions only

happen between adjacent states, i.e. pi,j = 0, if |i − j| > 1. The duration of each

channel state is equal to one TTI and the constraint on the total number of video

bits that can be transmitted in channel state si is Ri × TTI. The TTI is considered

to be a multiple of frame time, for example 100ms ≈ 3 frame time at fr = 30 fps.

The estimation of the parameters of the Markov model is an important issue.

Several studies [124–126] have estimated these parameters from empirical data for

some typical environments. Moreover, [108,109] elaborate on how first-order ergodic

Markov chains with different numbers of states can be used to represent a fading

channel.
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4.4 Problem Formulation

4.4.1 EDF-based Scheme

In existing video transmission systems, packets are transmitted in the same

order as they are played out at the receiver. Recent schemes [52–55,93,106,114,123]

have also adopted the EDF [51] motivated scheduling of compressed scalable video for

streaming applications. The EDF-based scheme transmits the BL NAL unit followed

by the higher SNR layer NAL units of the frame f with the nearest deadline. The

NAL unit of a frame is scheduled only if it can reach the decoder before the frame

deadline and this depends on the supported outgoing video bit rate Ri. If the BL

NAL unit Lf,0 expires, the whole frame f is dropped.

The limitation of the EDF-based scheme becomes evident during persistent

bad channel conditions. Even when the channel supports the lowest outgoing video

bit rate R1, the EDF-based scheme continues to transmit the higher SNR layers of

the unexpired frame. This can cause subsequent frames in the post-encoder buffer

to be delayed and eventually expire. Though continuous frame losses are concealed

using frame copy, they can severely degrade the received video quality. The EDF-

based scheme does not consider the importance of different temporal layers and their

contribution to distortion.

4.4.2 CMSE-based Scheme

We try to minimize the expected received video distortion under the con-

straints of video frame deadlines, and outgoing video bit rates supported by the

channel. The CMSE distortion contributed by a NAL unit Lf,q in frame f , belonging

to a temporal layer in T̄ and spatial layer q ∈ Q̄, is Df,q and is computed using Equa-

tion 2.1 in Chapter 2. The size of the NAL unit is Bf,q in bits. Suppose d frames were

allowed to be buffered at the receiver (pre-roll of d
fr

seconds) after which the receiver

started decoding at time t′. Then at the current time t, the TTE of the NAL unit,

Ld+i,q in frame d+ i, scheduled to be sent over a channel with state sl is computed as

TTE(d+ i, t) = t′ +
d+ i

fr
− t (4.1)
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If the TTE becomes less than the time required by the NAL unit to reach the

decoder, then all the higher SNR layer NAL units in frame d + i are also discarded

along with it. At the current time t and channel state sl, the TTE of a frame f must

satisfy t′ + f

fr
− t ≥ Bf,q

Rl
for the transmission of its NAL unit Lf,q. Here,

Bf,q

Rl
is the

time required to transmit the NAL unit Lf,q in the channel state sl.

Since the video characteristics and channel rate vary over time, we propose a

sliding-window flow control scheme. The algorithm determines which NAL units from

a window of w(t) frames should be scheduled for transmission. The window contains

the BL and SNR layer NAL units belonging to unexpired frames which have to be

scheduled in the current TTI. When the channel state supports a low outgoing rate

then not every NAL unit in the window can be scheduled during the current TTI.

Some higher quality layer NAL units which have not expired and were not scheduled

in the current TTI remain in the window and get carried over to the next TTI. This

increases the number of frames and NAL units to be scheduled.

The flow control optimization is carried out over the window of w(t) unexpired

frames during every TTI to find the set of NAL units N̄ and their scheduling order

which minimizes the expected received video distortion under the constraint of the

outgoing rate. The set of all NAL units W̄ which forms the search space has a size

w(t) × |Q̄| and the size of the solution set is |N̄| ≤ |W̄|. The search space W̄ and

solution set N̄ contain 2-tuple elements (frame index, SNR layer id), for example

(f, n), where f could be 0, 1, 2, ..., F , and n ∈ Q̄. The jth scheduled NAL unit in the

solution set N̄ is accessed as N̄j(1), and N̄j(2). To minimize the expected received

video distortion in the current TTI where the channel state is sl, we must find and

schedule the set of NAL units N̄ which maximizes the objective function formulated

as

max
{N̄∈W̄}

(
|N̄|∑
j=1

DN̄j(1),N̄j(2)

)

s.t. (C1) : TTE(N̄j(1), t) >
B

N̄j(1),N̄j (2)

Rl
, ∀ j

(C2) :
|N̄|∑
j=1

BN̄j(1),N̄j (2) ≤ (Rl × TTI) .

(4.2)

The above objective function assumes that a new TTI starts at the current time
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t. The first constraint in Equation 4.2 ensures that only those NAL units are scheduled

which can make it to the destination without expiring. The second constraint requires

that all the NAL units scheduled in the current TTI must be supported by the rate

Rl for the current channel state sl. The unexpired NAL units belonging to the set

{W̄ − N̄} remain in contention to be scheduled in the next TTI.

The scheduling problem in Equation 4.2 is a 0-1 knapsack problem [127, 128]

in which each NAL unit is unique as an item, therefore making the number of such

copies being selected either 0 or 1. For every item, which is a NAL unit LN̄j(1),N̄j (2),

its distortion DN̄j(1),N̄j (2) represents the item value and its size BN̄j(1),N̄j(2) represents

the item weight. The maximum weight supported by the channel is Rl ×TTI, which

represents the number of bits that can be scheduled during that TTI. Each item

also has an additional parameter in terms of its TTE value which must satisfy a

lower bound (i.e., constraint (C1) in Equation 4.2) in order to be in contention to

be selected. It is not feasible to solve the formulation in Equation 4.2 directly by

exhaustive search [127, 128].

Solution using Dynamic Programming

We solve the optimization problem in Equation 4.2 using a DP approach which

runs in polynomial time (in the number of NAL units scheduled and transmitted).

In each iteration, we select one of the unexpired NAL units from the window of w(t)

frames to be scheduled such that the cumulative sum of the CMSE values of the

scheduled NAL units is maximum. Basically, the unexpired NAL units which are

contending to be scheduled are ranked based on their CMSE contribution and the

one with the highest rank is transmitted in each iteration. Further, when more than

one NAL unit have the same CMSE, they are ranked depending on the temporal and

SNR layers to which they belong. This scheme gives a higher priority to the NAL

units belonging to the lower temporal and SNR layers in the window. These NAL

units are generally larger in size and usually contribute high CMSE distortion due to

error propagation.

Note that the NAL unit selected in each iteration is a unique solution due

to the implicit constraint that the higher SNR layers of a frame cannot contend for

selection if its lower layer has not yet been scheduled. Therefore, there will be a
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maximum of w(t) NAL units contending in each iteration out of which one NAL unit

is selected. Suppose θ NAL units from index j = k − θ to j = k − 1 have already

been scheduled from the search space W̄ in the current TTI (i.e., the size of the

current solution set |N̄| is θ). Further, say the NAL units contending for the current

scheduling spot (index j = k) belong to a subset W̃ ∈ W̄, whose size is w(t). Then

the kth NAL unit is selected recursively as,

max
{N̄∈W̄}

(
k∑

j=k−θ

DN̄j(1),N̄j(2)

)
=

k−1∑
j=k−θ

DN̄j(1),N̄j(2)

+arg max
{
D

W̃1(1),W̃1(2)
, ..., D

W̃|W̃|(1),W̃|W̃|(2)

} (4.3)

Equation 4.3 implies that the next step of the optimization process is in-

dependent of its past steps, thus forming the foundations of the DP solution. The

computational complexity is greatly decreased to O(|N̄|), depending only on the total

number of NAL units scheduled in the TTI. The NAL unit selected in every recursion

of Equation 4.3 is immediately transmitted. This is a significant improvement over

the exponential computational complexity of the exhaustive search algorithm.

4.4.3 Proposed Scheme

The above CMSE-based scheme does not consider the size (in bits) and the

TTE values to rank the contending NAL units. Many NAL units with a large CMSE

value also have a large size. Scheduling such a NAL unit may cause more delay to

the transmission of subsequent NAL units in the window. We propose a scheduling

scheme which considers the importance of NAL units in terms of (a) the CMSE

distortion contributed to the received video quality, (b) the size of the NAL unit in

bits, and (c) the TTE of the NAL unit in seconds.

We define a new parameter VL
W̃j (1),W̃j(2)

(t) to rank every contending NAL unit

L
W̃j(1),W̃j(2)

in the window W̃ by combining these three parameters. At current time t,

the TTE of L
W̃j(1),W̃j(2)

will be TTE(W̃j(1), t) and it must satisfy TTE(W̃j(1), t) >
B

W̃j (1),W̃j(2)

Rl
. VL

W̃j (1),W̃j (2)
(t) is computed as
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VL
W̃j(1),W̃j (2)

(t) =
D

W̃j(1),W̃j(2)

B
W̃j(1),W̃j(2)

×
(
TTE(W̃j(1), t)− (

B
W̃j(1),W̃j (2)

Rl
)

) (4.4)

In VL
W̃j(1),W̃j (2)

(t), the CMSE of the NAL unit divided by its size is its nor-

malized CMSE value while its TTE is updated continuously as time t progresses.

During every iteration of the DP solution, we simply transmit the NAL unit with the

maximum VL
W̃j(1),W̃j (2)

(t) instead of transmitting the NAL unit with the maximum

CMSE (shown in Equation 4.3).

Figure 4.6 illustrates a sample of the iterations of our proposed DP solution

in a TTI. In Figure 4.6(a), frames j to j + 4 constitute the window of frames w(t)

which are considered for transmission during the current TTI. The frame TTE value

increases from frame j to frame j+5. The empty spaces in frames j and j+1 in Figure

4.6(a) indicate the NAL units that were transmitted in the previous TTI. The leftover

NAL units in frames j and j+1 have been carried over to the current TTI. The new

frames in the current window are j+2, j+3, and j+4 and the window size is w(t) = 5

frames. Figure 4.6(b) shows the window after four iterations. The additional empty

spaces in Figure 4.6(b) indicate the NAL units that have already been transmitted in

the current TTI. Figure 4.6(c) shows the iterations corresponding to the NAL units

transmitted in the current TTI. In each iteration, the lowest available SNR layer NAL

unit of each frame in the window contend with one another for a scheduling spot.

Among the contending NAL units, the one contributing the maximum parameter

value (Equation 4.3) is chosen for transmission. For example, the BL (q = 0) NAL

unit of the frame j + 2, Lj+2,0, gets selected for transmission in iteration 1. In

iteration 2, the first SNR layer NAL unit of frame j+2, Lj+2,1, comes into contention

for a scheduling spot. However, the BL NAL unit of frame j + 4 gets transmitted in

iteration 2, and the first SNR layer NAL unit of frame j+2 is transmitted in iteration

3. During this period, frame j expired. The window size then decreases to only 4

frames, i.e. j + 1 to j + 4 as shown in Figure 4.6(b). In iteration 4, only four NAL

units now contend against each other for a scheduling spot and the BL of frame j+3

is scheduled to be transmitted.
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Figure 4.6: Sample iterations of our proposed dynamic programming algorithm over
a window of frames at the video server.
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4.5 Experimental Results and Discussion

We study the effect of the scheduled NAL units on the received video quality

through simulations and compare the performance of our proposed approach to (i) the

EDF-based scheduling scheme [51], which has also been used recently in [52–55], and

(ii) the CMSE-based scheme where the NAL units in the sliding-window are scheduled

based only on their CMSE contribution. In the past, frame importance and motion-

texture have been used to schedule the frames in non-scalable video streaming [112].

Recently, [1] also used CMSE to prioritize non-scalable NAL units within a GOP

and schedule them in the decreasing order of priority. The CMSE-based scheme on

scalable video is similar to [1,112]. Our proposed algorithm trades off the importance

of the NAL units with their deadlines and determines the appropriate transmission

order for the NAL units in the sliding-window. It significantly reduces whole frame

losses and improves received video quality.

4.5.1 Simulation Setup

This section evaluates the performance of the EDF-based, CMSE-based, and

our proposed scheduling schemes. Two 480p (720× 480) resolution video sequences,

Table Tennis and Stefan, are used in our experiments. They are encoded using

H.264/SVC JSVM 9.8 reference software [122] at a frame rate of 30 fps, for a GOP

length of 8 frames, using hierarchical prediction with a structural encoding/decoding

delay of zero as shown in Figure 4.1. A GOP size of 8 gives four temporal layers,

T̄ = {T0, T1, T2, T3}. MGS is enabled to achieve a fine level of SNR quality and

the integer transform coefficients of every 4 × 4 transform block are split into three

additional layers by using the MGS vector [3, 3, 10] suggested in [52, 122]. Hence, we

get four SNR quality layers Q̄ = {0, 1, 2, 3}. Decoding all the temporal and quality

layers in Table Tennis and Stefan results in PSNR values of 35.2 dB and 34.8 dB,

respectively. Tables 4.1(a) and 4.1(b) show the cumulative bit rates of the sub-streams

in Table Tennis and Stefan. For example, the bit rate of the BL in temporal layer T1

in Table Tennis is 468 Kbps, and it includes the BL of temporal layer T0 from which

it is temporally predicted. Similarly, the bit rate for the first quality enhancement

layer of temporal layer T2 in Table Tennis is 1138 Kbps which includes its own BL
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Table 4.1: Bit rates (Kbps) of sub-streams of 720 × 480 resolution (a) Table Tennis
and (b) Stefan.

(a)

(q ∈ Q̄ t ∈ T̄) T0 T1 T2 T3

q = 0 406 468 525 593
q = 1 763 946 1138 1371
q = 2 952 1177 1410 1691
q = 3 1156 1422 1697 2022

(b)

(q ∈ Q̄ t ∈ T̄) T0 T1 T2 T3

q = 0 506 697 901 1069
q = 1 893 1324 1833 2354
q = 2 1081 1594 2185 2785
q = 3 1199 1743 2360 2995

as well as the BL and first quality enhancement layers of temporal layers T0 and T1.

The video playout rate at the receiver is fixed at 30 fps. Four different pre-roll delay

values of 0.1, 0.2, 0.3, and 0.4 seconds are considered corresponding to 3, 6, 9, and 12

frames allowed to be initially buffered at the receiver before starting decoding. Each

temporal layer has four NAL units corresponding to the four quality enhancement

layers. The NAL unit sizes vary depending on the temporal and quality layers and

the video content. Generally, the NAL unit size decreases from temporal layer T0

to T1, T2, and T3. Tables 4.2 and 4.3 show the average NAL unit sizes and average

CMSE values.

The wireless channel is modeled as an ergodic Markov chain with three states

good, medium, and bad. The state transition probability matrix P̄ = [pi,j] =


5/6 1/6 0

1/6 1/2 2/6

0 1/3 2/3


 with i, j ∈ {1, 2, 3}, s1 being the bad channel state, and s3 being

the good channel state [52, 54, 114, 123]. We assume that transitions only happen

between adjacent states, i.e., pi,j = 0, if |i − j| > 1. The state probability vector

p̄ [l] = [ps1 [l] ps2 [l] ps3 [l]]
T at index l is computed using the recursive Chapman-

Kolmogorov equation as p̄T [l] = p̄T [l − 1]×P̄. The steady-state vector π̄ = lim
l→+∞

p̄ [l]

is computed by solving the system of equations π̄T = π̄T × P̄ [129]. The steady-state

probabilities of the three channel states are all equal to 1
3
.

The frames are read into the post-encoder buffer at 30 fps. The TTI value of

the channel is set to 100 ms which is equal to a window of approximately 3 frames.

The supported outgoing video bit rates, Ri, corresponding to the good, medium, and

bad channel states for Stefan are 3000, 2100, and 1200 Kbps, and for Table Tennis are

2025, 1400, and 800 Kbps. Monte-Carlo simulations were performed for 120 random
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Table 4.2: (a) Average NAL unit sizes (bytes) and (b) average CMSE values of Table
Tennis.

(a)

(q ∈ Q̄ t ∈ T̄) T0 T1 T2 T3

q = 0 13522 1942 892 568
q = 1 11907 3933 2221 1374
q = 2 6302 1336 673 405
q = 3 6791 1328 676 368

(b)

(q ∈ Q̄ t ∈ T̄) T0 T1 T2 T3

q = 0 5845 2582 851 298
q = 1 308 152 75 36
q = 2 230 98 48 23
q = 3 190 91 46 23

Table 4.3: (a) Average NAL unit sizes (bytes) and (b) average CMSE values of Stefan.

(a)

(q ∈ Q̄ t ∈ T̄) T0 T1 T2 T3

q = 0 16882 6222 3354 1401
q = 1 12903 7955 5027 2941
q = 2 6265 2716 1342 659
q = 3 3942 967 422 299

(b)

(q ∈ Q̄ t ∈ T̄) T0 T1 T2 T3

q = 0 10591 5626 2585 1022
q = 1 288 175 95 44
q = 2 211 106 52 26
q = 3 177 92 48 25

channel realizations. Each channel realization contains multiple channel states of TTI

duration. To verify that 120 random channel realizations are a sufficient nmber, we

generated two additional sets of 120 realizations each and verified that the average

output results were within 0.0005%. The EDF-based, CMSE-based, and our proposed

scheduling schemes are depicted in the figures as ‘EDF’, ‘CMSE’, and ‘Prop.’.

4.5.2 Evaluation of Average Goodput and Percentage of Ex-

pired Whole Frames

We first compute the goodput for all the scheduling schemes as

Goodput =
Total video bits received

Total video bits in sequence
(4.5)

Figures 4.7(a) and 4.7(b) show the average goodput evaluated over 120 different

channel realizations for Table Tennis and Stefan. The average goodput values for the

EDF-based, CMSE-based, and proposed schemes differ only within 1.2%. Also the
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Figure 4.7: Average goodput of the EDF-based, CMSE-based, and proposed schedul-
ing schemes.

average goodput increases with pre-roll delay because more frames are allowed to be

buffered at the receiver which increases the frame deadlines and TTE values of the

NAL units in the post-encoder buffer.

A frame is completely lost if its BL NAL unit expires. Figures 4.8(a) and 4.8(b)

show the percentage of expired whole frames averaged over 120 channel realizations,

for Table Tennis and Stefan in the EDF-based, CMSE-based, and proposed schemes

at different pre-roll delays. The expired whole frames are discarded from the post-

encoder buffer and concealed at the decoder by using frame copy. The CMSE-based

scheme sends the most important NAL units belonging to the lower temporal and

SNR layers and hence incurs a lower percentage of expired whole frames compared

to the EDF-based scheme. However, it ignores the frame deadlines causing frames

in higher temporal layers (e.g., T3) to expire. The proposed scheme achieves a very

low percentage of whole frame losses because it considers the TTE value, CMSE

contribution, and the sizes of the NAL units in the frame window. As the pre-roll

delay increases, the percentage of expired whole frames decreases in all three schemes.

As discussed earlier, a higher pre-roll delay results in higher frame deadlines and NAL

unit TTEs. This reduces the number of NAL units that expire, due to the increased

transmission delays during bad channel conditions.

Figures 4.9(a) and 4.9(b) show the percentage of expired whole frames from
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Figure 4.8: Percentage of expired whole frames in EDF-based, CMSE-based, and
proposed schemes over 120 random channel realizations.
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Figure 4.9: Percentage of expired whole frames in different temporal layers of EDF-
based, CMSE-based, and proposed schemes over 120 random channel realizations.
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Table 4.4: Average normalized CMSE values of 720×480 resolution (a) Table Tennis
and (b) Stefan.

(a)

(q ∈ Q̄ t ∈ T̄) T0 T1 T2 T3

q = 0 0.43 1.33 0.95 0.5
q = 1 0.03 0.04 0.03 0.03
q = 2 0.04 0.07 0.07 0.06
q = 3 0.03 0.07 0.07 0.06

(b)

(q ∈ Q̄ t ∈ T̄) T0 T1 T2 T3

q = 0 0.63 0.91 0.77 0.73
q = 1 0.02 0.02 0.02 0.02
q = 2 0.03 0.04 0.04 0.04
q = 3 0.05 0.1 0.1 0.1

different temporal layers in Table Tennis and Stefan, computed as a ratio of the

number of frames in a temporal layer whose BL NAL unit has expired to the total

number of frames in that layer, averaged over 120 random channel realizations. The

EDF-based scheme discards a significantly higher percentage of frames belonging to

the higher temporal layers T2 and T3 as compared to the CMSE-based and proposed

schemes. Since the EDF-based scheme considers only the TTE values of the NAL

units during scheduling, transmission of the significantly larger frames belonging to T0

and T1 cause the smaller sized frames belonging to T2 and T3 to expire. The CMSE-

based scheme ignores the frame deadlines and only considers the CMSE values of

the NAL units. From Tables 4.2 and 4.3, we observe that this scheme transmits the

larger BL NAL units of lower temporal layers in the window causing more NAL units

belonging to higher temporal and SNR layers to expire. Though the proposed scheme

considerably reduces the total number of expired whole frames, it incurs a slightly

higher percentage of expired frames from T0 as compared to the CMSE-based and

EDF-based schemes. Though the CMSE distortion contributed by a NAL unit in

T0 is large, sometimes its size is also large causing its normalized CMSE to become

smaller than other contending NAL units. This causes it to lose out to NAL units

from higher temporal layers while contending for a scheduling spot. Table 4.4 shows

the average normalized CMSE values for Table Tennis and Stefan derived from Tables

4.2 and 4.3, respectively.

Next, we look at how the expired NAL units are distributed among the different

temporal and SNR layers.
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Figure 4.10: Total percentage of expired NAL units in 120 random channel realizations
for EDF-based, CMSE-based, and proposed schemes.

4.5.3 Evaluation of Expired NAL Units

Figures 4.10(a) and 4.10(b) illustrate the percentage of NAL units expired

in Table Tennis and Stefan, averaged over 120 random channel realizations. The

percentage of expired NAL units decreases with increasing pre-roll delay in the three

schemes. At every pre-roll delay, more NAL units are discarded in the proposed

scheme than in the EDF-based scheme, for both the sequences. The CMSE-based

scheme has the highest percentage of expired NAL units among the three schemes.

However, the goodput is almost the same for the three schemes as shown in Figures

4.7(a) and 4.7(b). In fact, more higher SNR layer NAL units expire in CMSE-based

and our proposed schemes, which is discussed in the next paragraph. As shown in

Tables 4.2(a) and 4.3(a), these higher SNR layer NAL units are much smaller in

size than the BL NAL units. Since both the CMSE-based scheme and our proposed

scheme schedule the larger BL NAL units from the frame window more often, the

NAL units belonging to higher SNR layers expire.

Figures 4.11(a) and 4.11(b) show the percentage of expired NAL units belong-

ing to different SNR layers in Table Tennis and Stefan. Here, the second, third, and

fourth quality enhancement layers are denoted as EL1, EL2, and EL3. Our proposed

scheme has significantly reduced the percentage of expired BL NAL units and hence,

also significantly reduced the distortion caused by complete frame loss as compared to
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Figure 4.11: Percentage of expired NAL units in different SNR quality layers from
120 random channel realizations of EDF-based, CMSE-based, and proposed schemes.

the EDF-based scheme. However, this is achieved at the expense of more smaller-sized

NAL units belonging to the higher quality enhancement layers. In the CMSE-based

scheme, more NAL units in EL1, EL2, and EL3 expire than in our proposed scheme.

This is because during every TTI the smaller-sized NAL units of higher SNR layers in

the window fall behind in the scheduling order. For example, at a pre-roll delay of 0.2

seconds, almost 58% of NAL units in T3 expire in the CMSE-based scheme compared

to 38% in our proposed scheme and 29% in the EDF-based scheme. The discarded

NAL units belonging to the higher SNR layers EL1, EL2, and EL3 also include the

events where they were discarded because the BL of that frame had expired. For

example, at a pre-roll delay of 0.2 seconds for Table Tennis in Figure 4.11(a), 1%

of the EL3 NAL units were discarded in our proposed scheme because the BL NAL

units expired, an additional 25% were discarded when EL1 NAL units expired, and

additional 8% were discarded when EL2 NAL units expired. Finally, only 3% had

actually contended for a scheduling spot but failed.

Figures 4.12(a) and 4.12(b) show the percentage of expired NAL units from

different temporal layers averaged over 120 random channel realizations. We observe

that a greater percentage of NAL units expire from T0 in both the EDF-based and

proposed schemes compared to the CMSE-based scheme. However, as shown in Fig-

ures 4.9(a) and 4.9(b) very few whole frames in T0 expire in all the three schemes,
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Figure 4.12: Percentage of expired NAL units in different temporal layers from 120
random channel realizations of EDF-based, CMSE-based, and proposed schemes.

indicating that the expired NAL units belong to higher SNR layers of T0. On the

other hand, a higher percentage of NAL units expire from T2 and T3 temporal layers

in the CMSE-based scheme. Figures 4.11(a) and 4.11(b) show that for all temporal

layers, the expired slices are comprised of few BL NAL units and significantly more

NAL units belonging to the higher SNR layers. Tables 4.2(a) and 4.3(a) show that

NAL units in T0 are much larger in size than the NAL units in T1, T2, and T3 layers

and therefore, require more time to be transmitted. Also from Table 4.4 their average

normalized CMSE values are usually smaller compared to the NAL units in T1, T2,

and T3. Overall, our proposed scheme achieves a trade-off by discarding fewer frames

from lower temporal layers and relatively more frames from higher temporal layers.

Similarly, it discards fewer BL NAL units and relatively more NAL units from higher

SNR layers.

4.5.4 Evaluation of Video Quality

Figures 4.13(a) and 4.13(b) show the average video PSNR for Table Tennis

and Stefan, computed over 120 different channel realizations for each pre-roll delay.

Our proposed scheme achieves a PSNR gain of 3.3 dB (for Table Tennis) at pre-roll

delays of 0.3 and 0.4 seconds and 5.4 dB (for Stefan) at a pre-roll delay of 0.4 seconds,

over the EDF-based scheme. It also achieves PSNR gains of 2 dB (for Table Tennis)
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Figure 4.13: Average video PSNR of the EDF-based, CMSE-based, and proposed
schemes over 120 random channel realizations.

at pre-roll delays of 0.3 and 0.4 seconds, and 1.5 dB (for Stefan) at a pre-roll delay

of 0.2 seconds, over the CMSE-based scheme. The poor video quality of the EDF-

based scheme is primarily attributed to the whole video frames being discarded in

close proximity. To illustrate this, we plot the frame to frame performance of the

EDF-based and proposed schemes in one of the 120 channel realizations.

Figures 4.14, 4.15, and 4.16 show the number of SNR quality layers received

for every video frame in the proposed, EDF-based, and CMSE-based schemes for a

pre-roll delay of 0.1 seconds. Figures 4.17, 4.18, and 4.19 show the same for a pre-roll

delay of 0.4 seconds. If the reference frames belonging to T0, T1, and T2 layers are

affected by expired NAL units, the distortion propagates to other frames in the GOP.

When the number of SNR layers on the y-axis is zero, it indicates that the whole

frame has expired. Frames which only play out the BL, show only one SNR quality

layer on the y-axis.

It is evident from the figures that for both pre-roll delays, the EDF-based

scheme drops many frames in close proximity causing larger quality degradation. Also

the EDF-based scheme shows large fluctuations in video quality, because some frames

within the same GOP are completely discarded whereas some other frames have higher

SNR layers scheduled. In our proposed scheme, for those GOPs in which complete

frames are discarded, very few frames have their higher SNR layers scheduled. The
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Figure 4.14: Per-frame video quality comparison between the proposed, EDF-based
and CMSE-based schemes for Stefan at pre-roll delay of 0.1s.
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Figure 4.15: Per-frame video quality comparison between the proposed, EDF-based
and CMSE-based schemes for Stefan at pre-roll delay of 0.1s.
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Figure 4.16: Per-frame video quality comparison between the proposed, EDF-based
and CMSE-based schemes for Stefan at pre-roll delay of 0.1s.
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Figure 4.17: Per-frame video quality comparison between the proposed, EDF-based
and CMSE-based schemes for Stefan at pre-roll delay of 0.4s.
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Figure 4.18: Per-frame video quality comparison between the proposed, EDF-based
and CMSE-based schemes for Stefan at pre-roll delay of 0.4s.
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Figure 4.19: Per-frame video quality comparison between the proposed, EDF-based
and CMSE-based schemes for Stefan at pre-roll delay of 0.4s.
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CMSE-based scheme has less fluctuation in video quality as compared to the EDF-

based scheme but it still discards some whole frames in close proximity. Finally, we

also observe that as we go from a lower to higher pre-roll delay, more higher quality

SNR layers are delivered for the frames.

4.6 Acknowledgement

Chapter 4 of this dissertation contains material that will appear in conference

and/or journal publications. I am the primary author and the co-authors Dr. Pamela

Cosman and Dr. Sunil Kumar directed and supervised the research which forms the

basis for Chapter 4.



Chapter 5

Conclusion

In this dissertation, we investigated the impact on expected goodput and ex-

pected video distortion of (a) video packet prioritization and priority-aware scheduling

at the APP layer, (b) packet size adaptation in terms of priority-aware MAC layer

fragmentation and priority-adaptive slice aggregation at the APP layer, and finally

(c) UEP at the PHY layer. The goal was to improve the received video quality in

unreliable wireless networks with a cross-layer design.

In Chapter 2, a priority-aware MAC layer packet fragmentation scheme was

proposed to improve the quality of pre-encoded H.264 bitstreams (measured in terms

of PSNR and VQM) over error-prone wireless links. Video slices were prioritized in

four classes based on their CMSE. The optimal fragment sizes for the respective pri-

ority levels were derived using the BnB technique combined with multi-dimensional

arithmetic interval methods. The performance in terms of expected received video

quality was compared to (a) the traditional baseline model where each packet is trans-

mitted onto the channel at the network limited MTU size, and (b) priority-agnostic

fragmentation using a single optimal fragment size. It was shown that maximizing

the expected goodput or expected weighted goodput provides large gains in received

video quality. The cross-layer priority information exchange between the APP and

MAC layers allowed us to design a slice discard scheme which enabled us to reduce

the impact of lost slices on the received video quality. The fact that these gains

are achieved without error correction techniques makes it all the more interesting to

evaluate the above strategies in conjunction with UEP at the PHY layer for different

101
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priority levels.

In Chapter 3, an efficient joint optimization algorithm for packet formation

and optimal RCPC code rate allocation was proposed to improve the quality of

H.264/AVC bitstreams transmitted over noisy channels. The proposed algorithm

used a cross-layer information exchange between the PHY, MAC, and APP layers.

A DP approach was used where packets were formed through slice aggregation and

the optimal RCPC packet code rates were determined recursively over a GOP. The

options of not coding or discarding some less important packets were exploited to

reduce the expected received video distortion by increasing protection to more im-

portant packets. The proposed scheme outperformed EEP schemes as well as the

Dual15 scheme in [43], providing significantly better video quality for different se-

quences. The DP approach was also extended to work on each frame instead of the

entire GOP in order to enable live streaming with low computational complexity.

The frame bit budget prediction was obtained from a GLM model developed using

three factors - normalized compressed frame bit budget, normalized frame CMSE,

and channel SNR over a database of videos. Our proposed DP approach showed rea-

sonable gains in PSNR and VQM in videos spanning low, medium, and high motion.

Our proposed schemes can work well with current wireless network standards such as

IEEE 802.11n with MTU packet size restrictions. It would be interesting to evaluate

the proposed schemes along with adaptive modulation and coding for time-varying

link conditions and channel bit rates.

In Chapter 4, a sliding-window based flow control algorithm for scheduling

H.264/SVC compressed video was proposed to improve the quality of streaming appli-

cations over a time-varying channel. Our scheduling algorithm considered the relative

importance of the contending NAL units belonging to different temporal and SNR

layers in terms of (i) the CMSE distortion contributed to the received video quality,

(ii) the size of the NAL units in bits, and (iii) the TTE of the NAL unit in seconds.

The scheduling problem of determining the appropriate order of transmission was

formulated as a 0-1 knapsack problem and a DP solution was proposed which runs in

polynomial time. Our proposed scheduling approach significantly reduced the number

of whole frames discarded as compared to (a) a CMSE-based scheme which considers

the relative importance of the NAL units only in terms of their CMSE contribution,
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and (b) the EDF-based scheme which minimizes the dwelling time of the NAL units

in the post-encoder buffer. Our proposed scheme showed significant PSNR gains over

the CMSE-based and EDF-based schemes for different video sequences and at differ-

ent pre-roll delays. Our scheduling algorithm could be easily incorporated into the

current RTP or HTTP streaming protocols.

5.1 Future work

There are various avenues for future work in cross-layer video packet priori-

tization, packet scheduling, adaptive packetization, and protection schemes. In this

dissertation, we evaluated different cross-layer approaches on pre-encoded H.264 bit-

streams and dropped low priority slices/packets whenever necessary to provide more

protection to the higher priority packets. This assumes that the concealment tech-

niques at the video client can efficiently reduce the error propagation and improve

the perceptual video quality. One could extend the adaptive packetization and UEP

to work with the R-D module in the video encoder to determine the optimal quan-

tization parameter such that the network layers need to discard very few packets.

Reinforcement learning with a focus on on-line performance can also be employed to

explore the variations in channel/network conditions and derive a proper feedback

that allows the video encoder to adapt the video bit rate appropriately.

Our cross-layer prioritized packet fragmentation at the MAC layer can be

extended to work with UEP at the PHY layer and the performance can be evaluated

for multipath fading channels. Further, Type I and Type II hybrid adaptive repeat

request (HARQ) are used in wireless networks to deal with packet losses. A HARQ

scheme can be designed such that video packets are re-transmitted based on their

priority.

Multiple users share the resources provided by wireless networks. Video clients

in the same network could have completely different channel conditions depending on

their location, distance from the base station, power level, and multipath fading. Cur-

rent resource allocation models are largely disassociated with the QoS requirements

of the video clients in terms of their acceptable perceptual quality. Given the accept-

able video quality levels, each video client could derive the PER bound depending
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on its channel condition and periodically communicate it to the base station. The

base station could then use cross-layer adaptive packetization and UEP to achieve

the required PER bounds and allocate the network resources appropriately.

In Chapter 4, we proposed a transmitter-driven scheduling scheme with a con-

stant playout rate of 30 fps at the receiver. One could also employ a joint playout

adaptation at the receiver in order to avoid playout buffer underflow during poor

channel conditions which cannot support the compressed video bit rate. The video

client needs to feed back the modified playout rate in order for the transmitter to com-

pute the new frame deadlines and update the TTE values of the NAL units. It would

also be worthwhile to evaluate the performance of scheduling at the APP layer along

with retransmissions at the MAC and FEC at the PHY layer. We have considered

only a single hop streaming scenario in this dissertation. In ad-hoc wireless networks,

it is normal to stream the video over multiple hops. The scheduling algorithm at the

transmitter and routers could take into account the buffer backlog of the intermediate

routers, and the channel conditions of the intermediate links to minimize the number

of NAL units timing out before reaching the receiver.
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