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Professor Robert Hecht-Nielsen, Chair

Professor Clark Guest, Co-Chair

In this work we seek to find the underpinnings of neuronal control and move-

ment. In doing so, we hope to gain insight into the function of the brain and also in-

spiration for the development of advanced robotics and neuronal prosthetics. In motor

control, there is strong evidence that many different signals in the brain are combined.

We propose that these various signals are different control policies and that these signals

are sparse (reflecting the simplicity of neuronal computation). Additionally, neuronal

time-integration plays a crucial role in motor control. Hence, we propose that biological

motor control involves

1. Sparse control signals.

2. Time-integration of control signals.

3. Combination of multiple control signals.

We used these three simple ideas to outperforms previous models significantly better on

human data (with p < 0.001).
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Chapter 1

Introduction

1.1 Why Human Movements

The desire to create robotic systems endowed with motor capabilities similar to

those of humans has existed for centuries. In 1495, Leonardo da Vinci created a hu-

manoid robot that came to be called “Leonardo’s Knight”. Reproductions based on da

Vinci’s designs yield a mechanical knight run by pulleys capable of performing rudimen-

tary imitations of a few human-like movements such as opening and closing its arms,

opening its visor, and moving its head [1]. Over 500 years later, roboticists have yet to

design robots that can accurately mimic human-like movements or operate in environ-

ments within which humans move with ease. A notable fact that can potentially explain

the failures over the years is that existing approaches in robotics have typically avoided

implementing solutions that replicate the systems level architecture of the mammalian

neural and biomechanical system.

The goal of humanoid robotics is to deliver human-like movement, navigation,

and object manipulation capabilities in environments humans perform well in (e.g. cities,

deserts, mountains, etc.). Attempts to create humanoid robots have involved program-

ming a controller to attempt to accomplish specific tasks. Roboticists have been very

successful in providing solutions to well defined engineering problems and will likely

continue to engineer adequate solutions to such problems. However, despite enduring

efforts, roboticists have not been able to properly mimic basic tasks that humans master

at early ages, like running, adjusting to perturbations, and obstacle avoidance. Animal

1
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motor systems are the only known set of systems excelling at the tasks described above.

We believe that mimicking the high level mathematical concepts which emerge from an

in-depth study of animal motor systems is the most promising path forward in the ef-

fort to create humanoid robots. However in order to find these mathematical principles

we must look to the anatomy and physiology of animal motor systems as a guide. We

propose a computational framework equally grounded in control theory, mathematics,

and neuroscience that bridges the gaps between these fields. Once the barriers between

these disciplines are broken down, this new family of models will be harnessed to de-

velop human like robots and advanced neural prosthetics.

How the Central Nervous System (CNS) implements a control policy to achieve

movements is not understood. Areas of cortex send axons to the spinal cord and gener-

ate movements when stimulated, which has led many to believe that cortical structures

are responsible for most aspects of movement control [2, 3, 4]. Determining the ex-

act parameters by which the cortex is able to alter behavior has proved to be difficult.

Many experiments have correlated cortical activity with various aspects of a behavior

[2, 5, 3, 4]. For example, Graziano’s work [6] implies that the cortical description of a

behavior may be limited to a high level goal state representation. Other evidence shows

that the spinal cord plays a key role in the generation of behaviors [7, 8].

One method used to understand the nature of movements is to reduce them to

simpler components. For this study we limit ourselves to examining simple, ballistic

point-to-point reaching movements. Simple movements might be considered to make

up a basis set of which more complicated movements are composed [9, 10, 11]. By

studying these simple movements, we may be able to gain insight into the control of

more complex movements such as curved movements defined by via points [12] or paths

[13]. Furthermore, it has been observed that this class of movements consistently fol-

lows bell-shaped velocity profiles [14, 12]. This observation suggests that there exists a

set of constraints placed on the dynamic system by a controller. Because this set of con-

straints exists across a range of movements, it can be said that these movements result

from a common control policy. We show here that the observable invariant parameters of

movement suggest a neural control policy which is corroborated by neurophysiological

experiments.
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1.2 Why Optimal Control

Evolution is a process that optimizes species ability to survive and reproduce

within their environments. For example, a reasonable hypothesis of an evolutionary

reward function that likely shaped the form and function of the retina might be maxi-

mizing the resolution of vision. Photoreceptor cells are optimal in relation to this cri-

terion, since they are sensitive to the smallest unit of light, single photons. These cells

have been completely optimized by evolutionary processes due to their unique reward

function [15]. Optimization theory has great potential to elucidate biological mysteries

because it gives us tools that mimic the process of evolution by finding optimal solutions

given a notion of cost or reward [16].

We will apply optimal control theory in an effort to understand the vertebrate

motor system. The optimal control approach has the added advantage of direct applica-

bility to the control of machines. We seek to demonstrate computationally that under-

standing and reproducing the myriad of human movements requires a viewpoint broader

than most models of movement currently espouse. Using optimal control theory, we can

then ask which attributes of the nervous system’s control policy might have adapted to

provide a competitive advantage. It is reasonable to assume that a bio-mechanical sys-

tem evolves to find an optimal control policy by optimizing over some cost or reward

function. In this paper, we suggest a new cost function and discuss the control policy

this cost function dictates.

1.3 Why Sparsity

We, and many others, can view the CNS as a machine that estimates the “state”

of the world and, based on this state, forms a response. The response is typically man-

ifested as a motor command so the organism can interact with the environment and

potentially change the estimated state. It is well accepted that neurons form a complex

network for information processing (for state estimation) and motor control. While the

complexity of the neural network in even the simplest organisms can be astronomically

high, the individual neuron it self can be viewed as a very simple computational unit. A
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(A) tonic spiking

input dc-current

(B) phasic spiking (C) tonic bursting (D) phasic bursting

(E) mixed mode (F) spike frequency (G) Class 1 excitable (H) Class 2 excitable
adaptation

(I) spike latency (J) subthreshold (K) resonator (L) integrator

(M) rebound spike (N) rebound burst (O) threshold (P) bistability
variability

oscillations

(Q) depolarizing (R) accommodation (S) inhibition-induced (T) inhibition-induced
after-potential spiking bursting

DAP

20 ms

Figure 1.1: Figure taken from [17]. Electronic version of the figure and reproduction

permissions are freely available at www.izhikevich.com
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neuron is in a quiescent state until its membrane potential reaches a threshold and the

neuron fires. Figure 1.1 shows several examples of observed neural responses. These

responses can be characterized as sparse signals. Thus, if the typical neuronal responses

are as shown in Figure 1.1, then sparsity is at the heart of neuronal signal processing.

In recent years, sparsity has a played a crucial role in developing computational models

for information processing in the brain. In this work we propose that sparsity also plays

a crucial role for motor control in the CNS. Thus, the brain, in addition to meeting opti-

mality conditions, capitalizes on sparsity in estimation of the state and in the control of

movement.

1.4 Organization of Dissertation

In Chapter 2 we discuss the anatomy of the spinal cord that is relevant for the

control and generation of movement. In this chapter we also describe the variant and

invariant characteristics of fast human arm movements by analyzing fast human move-

ment data. In Chapter 3 we introduce a sparse control policy known as a “bang-bang”

controller and show that such a control policy fits human data better than the influential

model of Flash and Hogan [12]. We extend the bang-bang controller for a general n-th

order controller in Chapter 4 and also compare to human data. In addition, we show how

sparse optimal control policies can be extended for curved movements. In Chapter 5 we

introduce the idea of multiple cost functions in the objective function of an optimization

problem and also finding the optimal combination of many control policies. Finally, in

Chapter 6 we apply the idea of multiply control policies to human data and show the

relationship to biological evidence.

Our research into the sparsity of control signals also led to the design of sparse

filters. We report these preliminary results in the Appendix.



Chapter 2

Neuroanatomy and Fast Human

Movements

In this chapter we are interested in providing the biological background of sen-

sorimotor control and movement. We focus on the movements that are accomplished by

the static postural goal circuit and focus on movements created by humans. The chap-

ter is organized to first give an overview of the neuroanatomy of the spinal cord (the

material for which follows closely the studies of [18, 19].) and we conclude by quan-

titative studies of fast human arm movements in accomplishing point-to-point straight

movements (these movements are the type of movement that a static postural goal circuit

implements).

2.1 Background on Human Movement

2.1.1 Fundamental Nature of Movement

It has been observed that the trajectories of motion of animal movements follow

a bell-shaped velocity profile [20, 14, 21]. We further investigate this claim and other

properties of the velocity profile of humans later in this chapter. Flash and Hogan were

the first to propose that animal movements can be formulated as the trajectory between

an initial and final position in a set time that minimizes the third derivative of the posi-

tion profile, or “jerk” [12]. In later chapters we further explore this hypothesis and make

6
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connections with neuroscience. Specifically, we show that defining the mathematics of

measuring minimization (that is defining the appropriate Lebesgue metric) is crucial in

gaining insight into the control policy that the central nervous system may implement.

By formulating the appropriate mathematics, we will show in Chapter 4 that the control

policy the central nervous systems utilizes is sparse and simple to implement. In Chap-

ters 5 and 6 we also present supporting evidence that the neuronal control signals the

central nervous system implements represent dynamic variables of high order deriva-

tives and that many optimal control signals (with respect to different cost functions) are

combined.

2.1.2 Overview of the Spinal Cord

A typical horizontal segment of the spinal cord is shown in Figure 2.1. Bror

Rexed showed that the gray matter is partitioned into 10 populations referred to as

“Rexed Laminae” [22]. The dorsal laminae largely process sensory information (pro-

prioception, nociception, etc.), while the ventral laminae are involved with regulation

of movement. Various connections between the laminae exist (including feed-forward

and feed-back, excitatory and inhibitory), but their exact properties and anatomy is un-

known. Lamina IX is in several disparate clusters where motor neurons (α, β, and γ)

reside.

Motor neurons form neuronal “pools” or “needles” that span several spinal seg-

ments (indicated as red needles in Figure 2.2). Each needle innervates a single muscle.

Each motor neuron innervates several muscle fibers. These neurons innervate the muscle

through the ventral root nerves. The dorsal root nerves transmit vital state information

to the dorsal laminae in a retrograde fashion.

The corticospinal tract largely terminates in the medial laminae. In addition

to the primary motor cortex, the premotor, supplementary, and somatosensory corti-

cal areas also contribute significantly to the corticospinal tract. This tract provides the

necessary parameters for initiating the neuronal circuit for a movement/behavior. The

information sent down this tract is sparse and we hypothesize that the primary motor

cortex (and possibly other cortical motor areas) provide the necessary parameters for



8

Figure 2.1: A typical spinal segment.

Figure 2.2: Neuronal pools span several spinal segments.
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achieving a “static postural goal.” These parameters are final limb position, duration

of movement, and final limb stiffness. In addition to receiving inputs from the higher

centers in the cortex, the dorsal root ganglion that encodes state information from the

extra-spinal system (muscles, bones, loads, etc.) also provides additional input for the

spinal circuits. For example, in the case of the “static posture” circuit, the initial posture

is provided via the dorsal root ganglion.

2.2 Organization of the Gray Matter in the Spinal Cord

The Gray matter of the spinal cord, as shown in Figure 2.1, is organized in a

“butterfly” shape and is categorized in two groups: the dorsal and the ventral horns. The

dorsal horn, corresponding roughly to laminae I through VI, can be viewed as the input

region for sensory afferent input from the muscle, skin, and other peripheral nerves. The

ventral horn, on the other hand, can be thought of as an output region where the motor

neurons (that are responsible for motor function and control) reside. The cell bodies

are organized in 10 laminae and each of the neurons can be classified broadly in four

groups: motor neurons, tract neurons, interneurons, and propriospinal neurons. The

motor neurons have axons that leave the spinal cord and innervate muscles. The tract

neurons have axons that ascend through the white matter to higher centers (such as in

the brain stem or the motor cortex). The interneurons serve as intermediate processing

units in the spinal segment. Propriospinal neurons have axons that ascend or descend

through the white matter tracts to other spinal segments. Each lamina has at least one of

these types of neurons and may also be the site of termination of descending tracts from

higher centers such as the brainstem or the motor cortex. Each lamina may also receive

inputs from neighboring lamina or neighboring spinal segments.

2.2.1 The Organization of the Dorsal Horn Laminae I through VI

Laminae I and II are involved with the processing of pain or nociception. Lamina

I, also known as the zone of Waldeyer, has most of its primary afferent input originat-

ing from cutaneous nociceptors and thermoreceptors. Lamina II, also known as the

substantia gelatinosa of Rolando, in addition to having primary afferent input from cu-
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taneous nociceptors and thermoreceptors, this region also has primary afferent input

from mechanoreceptors. The neurons in this lamina are almost entirely excitatory and

inhibitory interneurons with dendrites that branch within the lamina and also project to

other neighboring laminae.

Lamina III and IV have most of their primary afferent input originating from

mechanoreceptors. Lamina III and IV also have inputs originating from Lamina II neu-

rons that project ventrally into these laminae. Lamina V also has inputs from cutaneous

mechanical nociceptors and the more dorsal laminae (such as laminae II through IV).

Lamina VI is believed to be heavily involved in motor control since it is close to the mo-

tor regions in the ventral horn. Many of the descending tracts from the higher centers,

such as the primary motor cortex and the brain stem, terminate in this area. Also, in this

area there are numerous interneurons and propriospinal neurons. This suggests that this

lamina can be viewed as a preprocessing stage for volitional motor control, where vo-

litional commands originate from the higher centers (such as the primary motor cortex

and the brain stem), and are projected to neighboring spinal segments via propriospinal

neurons or to ventral motor regions via interneurons.

To summarize, the dorsal horn receives a significant amount of input from the

peripheral nerves and higher centers. The inputs to the dorsal horn cause the activa-

tion of many types of interneurons that modulate ventrally to the ventral horn. The

interneurons are both of the excitatory and inhibitory type and form mutually inhibitory

networks. This implies that when one particular response pathway along with its cor-

responding interneurons is activated, all other interneuronal pathways get inhibited. It

is believed that this pathway activation allows the spinal cord to respond selectively to

any input, either afferent or efferent, without inappropriately activating other antago-

nistic pathways that might hinder the appropriate response. In addition to modulating

the spinal networks, the interneurons can also modulate the output of the higher-order

neurons originating from the higher centers.
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2.2.2 The Organization of the Ventral Horn Laminae VII through

X

The neurons in laminae VII through X are in the ventral horn of the spinal seg-

ment and are believed to be heavily involved with motor processing and control. The ma-

jority of the afferent inputs to the ventral horn are concerned with proprioception. Lam-

ina VII is involved with the regulation of posture and has numerous tract neurons with

connections to the cerebellum and the midbrain. The interneurons and propriospinal

neurons in Lamina VII connect to adjacent laminae and cord segments and are involved

in the processing of reflexes, posture, and autonomic movement. Again, there are both

excitatory and inhibitory type interneurons identified as in the dorsal horn with mutually

inhibitory networks that allow selective pathway activation.

Lamina VIII receives inputs from the descending tracts (that originate from

higher centers) and also proprioceptive afferents. The interneurons and propriospinal

neurons in lamina VIII project to adjacent laminae and spinal segments and also receive

inputs from adjacent laminae. Thus lamina VIII forms another layer of neural network

processing involving both inhibitory and excitatory type neurons that modulate motor

activity based on inputs from both the higher centers (that represent volition or desired

movement) and proprioceptive afferents (that represent the state of the environment).

Lamina VIII, however, is not the final output layer for motor control.

Lamina IX can be thought of as the final output layer for motor control. The

motor neurons, that span several spinal segments, innervate muscle fibers. The motor

neurons are organized spatially, in that the more lateral the motor neurons, the more dis-

tal the muscles they innervate: the more dorsal motor neurons innervate flexor muscles

and the more ventral motor neurons innervate extensor muscles. There are three types of

motor neurons in lamina IX: α, β, and γ. α motor neurons exclusively innervate extra-

fusal muscle fibers, and γ motor neurons exclusively innervate intrafusal muscle fibers.

β motor neurons innervate both extrafusal and intrafusal type muscle fibers. In addition

to motor neurons, lamina IX also includes interneurons (such as inhibitory Renshaw

interneurons) and propriospinal neurons.

Lastly, lamina X, despite its label, is not the final output for motor control but yet

another neural processing center. The neurons are either interneurons or propriospinal
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neurons with decussating axons. This region most likely serves as a relay to the con-

tralateral spinal segment. Again, the mutually inhibitory network that is formed with

the excitatory and inhibitory type neurons allow for the activation or deactivation of

pathways on either side of the spinal segment. This is crucial for contralateral motor

coordination.

2.2.3 Descending Tracts

The descending tracts are formed by the axons that are projected from the higher

centers, such as the motor cortex and the brain stem, to the spinal segment interneurons

and motor neurons. A tract that is of particular importance in volition control is the cor-

ticospinal tract. This tract originates from the motor cortical areas (the primary motor

cortex, the supplementary motor cortex, and the somatosensory motor cortex). In all

vertebrates the corticospinal tract terminates in the medial laminae interneurons. In ad-

dition to terminating in the medial laminae interneurons and propriospinal neurons, the

corticospinal tract also terminates in the motor neurons for humans. It is important to

note, however, that while it maybe tempting to deduce that in humans the primary motor

cortex has direct control over the motor neurons and hence direct control over the motor

control of muscle flexion and extension, this neural connection is not sufficient for the

control of efficient and useful movements [23, 24]. The direct connection to the motor

neurons most likely provides a level of dexterity in motor control that humans posses,

but is not fundamental for the useful movements that have lead to the dominance of ver-

tebrate life forms on Earth. In lower mammals the corticospinal tract terminate exclu-

sively in the medial laminae via polysynaptic connections and interlaminar connections

to the motor neuron output.

The corticospinal tract axons terminate on numerous neuron types in the spinal

cord, including inhibitory Renshaw cells, excitatory and inhibitory interneurons, and

primary afferent fibers. The medial laminae, such as laminae IV to VIII are the site

of heavy corticospinal tract termination either via monosynaptic or polysynaptic con-

nections. It is believed that the descending corticospinal tracts that terminate in medial

laminae also influence several neural pools indirectly through propriospinal neurons.

The propriospinal neurons in turn innervate motor neurons that directly control mus-
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cles. Thus, a model emerges: the volitional desire of movement that is generated in

the cerebral cortex excites, through the corticospinal tract, a network of spinal neuronal

pools that consist of propriospinal neurons (that span parallel spinal segments) and in-

terneurons. This network, with the sensory feedback, integrates to a control command

to the motor neurons that then finally control the muscle fibers.

2.3 Static Postural Goals

Much research in computational neuroscience and motor control often attempts

to hypothesize the function of cortical motor areas (M1, premotor cortex, etc.)(for ex-

ample [25, 23, 26, 27]) and largely ignores the spinal cord [24, 28, 29, 30]. These

hypotheses attempt to define the coding of the neurons in M1 and many have noted the

confusion in what exactly the layer V neurons (that contribute to the corticospinal tract)

encode [31, 32, 33, 34]. While there is no dispute that the cerebral cortex is central in

behavior processes, the role of the spinal cord is too often misleadingly oversimplified

as a mere “bundle of wires” for the cortex to exert direct control over the limbs and bod-

ily functions [30]. We have deduced from the neuroscientific literature that the spinal

cord plays an important role in controlling limbs for the generation of controlled move-

ments, and that the cerebral cortex has little direct control over skeletal muscles. In fact,

the spinal cord ought to be thought of as a “second brain” taking cues from the cerebral

cortex and exerting direct control over limbs for the generation of precise movements.

Although M1 contributes a majority of fibers in the descending corticospinal

tract, other cortical motor areas, such as the premotor cortex, the supplementary mo-

tor cortex and, perhaps strangely, the somatosensory cortex, also contribute significant

fibers to the descending corticospinal tract [35, 36, 37] Due to these significant projec-

tions, we conclude that M1 must not be the sole structure to study. We hypothesize that

the subset of the descending corticospinal tract that originates from M1 (and possibly

alongside with the somatosensory cortex) encodes “static postural goal” parameters that

are received as inputs to spinal circuits. This hypothesis is strongly suggested and sup-

ported by the studies of Graziano and colleagues [6]. Here by “static postural goal” we

mean the achievement of a stationary final position for a set of limbs. The spinal cir-
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cuits are the neuronal gray matter within the spinal column that function independently

and carry out different roles. These independent spinal circuits receive appropriate in-

put parameters to generate and directly control precise movements. In the case of static

postural goal circuits, the input from the higher centers (most likely M1) consists of

three parameters: movement duration, final static posture, and the final muscle stiffness

in posture (these parameters are suggested by Graziano’s experiments and also compu-

tational models [38, 12] typically use these three parameters). In addition to receiving

inputs from the higher centers in the cortex, the dorsal root ganglion that encodes state

information from the muscles also provides additional input for the spinal circuits. Fi-

nally, the output of the spinal circuits is manifested through the motor neurons in the

Rexed lamina IX of the spinal column that directly innervate muscle fibers.

2.4 Fast Human Arm Movements Data

Complex movements can be considered to be combinations of shorter, simpler

motor programs or movement primitives [39]. To better understand complex move-

ments, one needs to first have a strong understanding of the simpler components that

they consist of. For this reason the work described here focuses on simple point-to-point

reaching movements. The past literature has claimed several characteristics regarding

fast human arm movements:

1. Fast huamn movements are smooth and have bell-shaped velocity profiles [20, 14,

21].

2. The peak-velocity to average-velocity ratio of fast human movements is an in-

variant characteristic and on average is 1.805 with a standard deviation of 0.153

[12].

These observations have been crucial in developing computational models that describe

human arm movements, and therefore we spend the rest of the chapter to verify the va-

lidity of these claims. We will show that fast human movements can indeed be character-

ized by stereotypical bell-shaped profiles, but the data set that we have does not support
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Figure 2.3: Experiment setup for data collection and typical movement profile.

the idea that the peak-velocity to average-velocity ratio of fast human movements is an

invariant characteristic, but rather dependendent on the subject and the movement type.

We explore the validity of these claims with a data set acquired from Amir

Karniel at the Ben-Gurion University of the Negev and was originally described in [40].

The recordings include velocity and position profiles of short point-to-point movements

made by 5 healthy individuals and recorded using a manipulandum. Each subject was

instructed to move his or her hand between two of three targets arranged in an equilat-

eral triangle, 10 cm apart. The arrangement of the manipulandum and the three points

are shown in Figure 2.3(a). The movements lasted a third of a second ±50 ms. A more

formal description of the data collection methods can be found in [40].

2.4.1 Velocity Profiles

Figure 2.3(b) shows a one-dimensional (on the horizontal axis of Figure 2.3(a))

projection of a typical position profile. Note that in this example the subject has an

“over-shoot” of the target: that is, when making the movement, the hand of the subject

went beyond the target point. As a result of this overshoot, the subject had to make

corrective movements to settle at the target point. Similarly, instead of an overshoot,

a subject may have an under-shoot: that is, the initial burst of the movement does not

reach the end-point target, and thus the subject has to make corrective movements to
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Figure 2.4: Typical velocity profile illustrating the “ballistic” and “corrective” portions

of a movement.

reach the target. We can summarize the movement consisting of two portions: the “bal-

listic” portion of the movement that may have an under-shoot or over-shoot, and the

“corrective” portion of the movement that adjusts the hand to reach the final end-point

target. Figure 2.4 illustrates these portions.

A fundamental claim regarding fast human arm movements is that the velocity

profiles of such movements have stereotypical bell-shaped profiles. We now attempt to

verify this claim on the Karniel and Mussa-Ivaldi data set. The left column of Figure

2.5 shows the velocity profile of three trials. Note that all three trials consist of the two

portions previously defined: the ballistic portion and the corrective portion. Also note

that these trials have various number of time samples. That is, if we view each trial as a

vector belonging to a real vector space (in the Euclidean sense), each trial belongs to a

different vector space since the dimension of each vector (that is, trial) is different. Also

note that in different trials the movements have different onsets, i.e., there is a phase

difference between different trials. We wish to explore the statistical behavior of the
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velocity profiles, but since each trial belongs to a different vector space it is not clear

how to compute various statistics on data points that are in different vector spaces.

To resolve the differrent number of samples issue, we use the technique of

up/downsampling. We find the median trial length (out of the 1,830 trials) is 146, and

we up or down sample appropriately each trial to this median length. As a result, all

trials now have a length of 146 samples and we can compute the average velocity profile

(trials that are in the negative direction are inverted): this is shown in Figure 2.6. This

figure verifies that the on average the velocity profile of fast human arm movements take

a bell-shaped profile followed by a small corrective portion. This figure also verifies that

on average the velocity profiles are smooth with no abrupt discontinuities. In addition

to a time-domain based analysis, we also consider the Fourier domain. Again, we have

to resolve the issue of different trials having a different number of samples, and, addi-

tionally, we do not want the phase differences between different trials to be reflected in

our statistical analyses since these phase difference do not reveal information about the

dynamics of movement (instead, phase information may reveal insights about subject

reaction times, which is not the focus of this work).

To resolve these issues, we zero-pad the velocity profiles so that all trials have

512 dimensions and analyze the trials in Fourier magnitude domain. We are only inter-

ested in the Fourier magnitudes since the phase information is not relevant (that is, we

are not interested in the different onset times that different subjects made on different

trials). The right-column of Figure 2.5 shows the 512-dimensional Fourier transforms

magnitudes of the corresponding velocity profiles in the time-domain. If the velocity

profiles of these trials were indeed perfect bells as [20, 14, 21] and many others have

claimed, then the Fourier magnitudes of these velocity profiles would also have bell-

shaped profiles. However, we can see that there are deviations from the bell-shaped pro-

file in the Fourier magnitude of the velocity profiles. These deviations are most likely

due to the corrective portions of movement that divert the Fourier magnitude from hav-

ing a perfect bell-shape behavior.

Figure 2.7 shows the average Fourier magnitude transform of the velocity pro-

files. This is taken over all 5 subjects over 4 days and amounts to 1,830 trials. As
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Figure 2.5: Examples of typical trial velocity profiles. The left column shows the

velocity profile in the time domain, and the right column shows the corresponding

magnitude Fourier transform.
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Figure 2.6: Average velocity profile.

Figure 2.7 shows, the average Fourier magnitude-transform of the velocity profiles is

nearly a perfect bell. This verifies that the velocity profiles of human subjects, on aver-

age, are indeed bell-shaped. In other words, we can conclude that the corrective portions

of the movement are mostly random and that when averaged, they all cancel each other

out.

2.4.2 Regularities in Velocity Profiles

One of the difficulties in exploring the various velocity profiles is that each trial

is a high-dimensional vector that is difficult to visualize. There are various methods

of visualizing high-dimensional data, many of which involve projecting the data onto

a 2-dimensional subspace for ease of visualization. For our analysis, we compute the

Principle Component Analysis (PCA)[41] decomposition on this data. This was done by

first computing the covariance matrix of the data set in the Fourier magnitude domain

(a 512 dimensional vector space), followed by the eigenvalue decomposition on this

covariance matrix. The eigenvectors then correspond to the “principle components”

or the directions with the most amount of variance in the Fourier magnitude domain.

The eigenvalues correspond to the variance in each principle component. In effect, PCA

projects the data onto an ordered set of axes, where the first axis corresponds to direction

with the largest variance and the last axis (in this case, the 512th direction) corresponds
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Figure 2.7: Average Fourier Magnitude velocity profile.

to the direction with the smallest variance. This ordering allows us to only consider the

directions with the largest variance.

Figure 2.8 shows the 6 principle components with the largest variance. These

6 principle components account for 99.34% of the variance in this data set. Similarly,

the top 2 principle components account 94.1% of the variance in this data set. To be

able to visualize and compare each trial, we project each trial onto the top 2 principle

components and this is shown in Figure 2.9. Clearly we see that there are two promi-

nent clusters. Figure 2.10 shows the the same projection but highlighting each trial by

subject. Figure 2.11 shows these projections for the 5 subjects and all subjects, but high-

lighting the movement type. Figure 2.11 clearly shows what the two prominent clusters

correspond to: one cluster corresponds to horizontal type movements (movements that

are between points B and C in Figure 2.3(a)) and another corresponds to movements

that are diagonal (movements that are between points A and B and between points A

and C in Figure 2.3(a)). Clearly, this indicates that for these 5 subjects, the dynamics

of fast arm movements fall into two categories. Since the system has not changed, we

infer from this result that the central nervous system utilizes (at least) two different con-

trol strategies for the control of movement. This leads us to consider different control
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policies that we discuss in later chapters.

2.4.3 Peak Velocity to Average Velocity Ratio

Another assumption regarding fast human arm movements is that the peak-

velocity to average-velocity ratio of the “ballistic” portion of the movement is an in-

variant characteristic and on average is 1.805 with a standard deviation of 0.153 [12].

Here we clarify the validity of this claim on the Karniel and Mussa-Ivaldi data set. In

the rest of the document we refer to this ratio as r. We compute r for the “ballistic”

portion of each trial and show the distribution of r for each subject in Figure 2.12. The

“ballistic” portion of each trial was found by the technique described in Chapter 4. A

Chi-squared goodness-of-fit shows that the r for each subject is normally distributed

with p < 0.001. Figure 2.12 also shows that the mean r for each subject is different and

can be very different from the purported 1.805. A one-way ANOVA test shows that the

mean r for each subject is indeed different (with p < 0.001), hence we cannot verify

that r is an invariant characteristic of fast human arm movements. This further supports

the idea that there are various dynamics in fast arm movements. Again, as in the case

of the PCA discussion above, since the system has not changed, we infer that there are
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Figure 2.11: Top two PCA
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a multitude of control policies used by the central nervous system hence resulting in a

myriad of movement dynamics. These ideas are discussed in much greater detail in later

chapters.

2.5 Notes

Chapter 2, in part, is a modified reprint with major revision from of the material

as it appears in Society for Neuroscience. Yazdani, M., G. Gamble, G. Henderson, R.

Hecht-Nielsen. “A neuronal network model of the static postural goal circuit in the

spinal cord”. Program No. 108.6. 2010. San Diego, CA: Society for Neuroscience,

2010.



Chapter 3

A Simple Control Policy for Smooth

Movement Maximization

Point-to-point fast hand movements, often referred to as ballistic movements, are

a class of movements characterized by straight paths and bell-shaped velocity profiles.

In this chapter we propose a bang-bang optimal control policy1 that can achieve such

movements. This optimal control policy is accomplished by minimizing the L∞ norm

of the jerk profile of ballistic movements with known initial position, final position, and

duration of movement. We compare the results of this control policy with human motion

data recorded with a manipulandum. We propose that such bang-bang control policies

are inherently simple for the central nervous system to implement and also minimize

wear and tear on the bio-mechanical system. Physiological experiments support the

possibility that some parts of the central nervous system use bang-bang control policies.

Furthermore, while many computational neural models of movement control have used

a bang-bang control policy without justification, our study shows that the use of such

policies is not only convenient, but optimal.

1In Chapter 4 we generalize these control signals as “sparse” signals.
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3.1 Background

There have been several attempts to mathematically model human point-to-point

movements of an end effector (the hand) [12, 13, 38]. A key study of this type is [12].

Flash and Hogan began their work on modeling movement by observing that short du-

ration, straight line reaching movements (ballistic movements) exhibit a stereotypical

bell-shaped velocity profile. Their work resulted in a model that was exceptionally good

at reproducing the trajectory of a movement given the limited information of initial

position, final position, and movement duration. This model was achieved by finding

the trajectory that minimized the L2 norm of the 3rd derivative of the position trajec-

tory. The 3rd derivative of position is known primarily as “jerk”, but is also known as

“shock”, “jolt”, “surge” or “lurch”. We henceforth refer to their model minimizing the

L2 norm of jerk as MJ2.

Although theMJ2 is exceptionally good at reproducing trajectories from limited

constraints, it remains unclear how the central nervous system would generate these

trajectories. Various other models have been proposed that minimize other derivatives

of position such as acceleration [42]. This recent work by Ben-Itzhak and Karniel has

produced a model that not only generates accurate point-to-point movements but also

suggests a control policy by which the CNS could be generating such movements. The

work presented here expands upon those findings and suggests an alternative model that

presents a simple control policy the CNS may implement.

We propose an optimal control policy for achieving ballistic movements based

on minimizing the jerk of the trajectory of the end effector. We formulate the problem

as an optimal control problem wherein the jerk is treated as the control signal. Our

model minimizes the L∞ norm of the jerk and shows that the optimal control policy is

of a “bang-bang” type controller, a policy which simply switches a system between two

states [43]. The appeal of such controllers is that they are inherently simple to imple-

ment. Furthermore, minimizing the L∞ norm minimizes the maximum allowable jerk

for the system, which can reduce wear and tear. Henceforth, we refer to our proposed

model as MJ∞.

Flash and Hogan also solved for the trajectory that minimizes jerk, however their

cost function utilizes theL2 norm. While such a cost function yields bell-shaped velocity
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profiles and position profiles as observed in humans, the jerk profiles given by the model

are not a simple bang-bang type controller. Ben-Itzhak and Karniel developed a model

(MACC) that also yields accurate trajectories. In contrast to MJ2 model, their model

implies a simple bang-bang controller. They arrive at this model by minimizing the

L2 norm of the acceleration with a free parameter constraining the maximum allowable

jerk. While they show that their model improves error significantly, we argue that their

usage of a free parameter is not needed and adds unnecessary complexity. The model

presented here still yields a bang-bang control policy but is less complex in that no free

parameter is required.

This paper is divided into the following sections. In section 2, we describe our

model used to describe realistic human movements as well as provide justification for its

biological importance. Next, in section 3, we explain the process by which the human

movement data were collected and parsed for proper analysis and comparison. In Sec-

tion 4 we discuss the results of the data comparison with our model, MJ∞, and theMJ2

model. The last section discusses the importance of this work and draws conclusions

about the insights provided by modeling human movement.

3.2 Model Description

The reasons the central nervous system minimizes the jerk of movements are not

immediately apparent. Mechanical systems have maximum tolerances related to various

dynamic variables (velocity, acceleration, jerk, etc.). Beyond these tolerance levels,

components of the system may begin to fail. Biological systems are mechanical systems

and therefore also have thresholds that, when exceeded, may lead to damage such as

ligaments and muscles tearing or bones breaking. Jerk is one of the dynamic variables

that bears directly on the well-being of a mechanical system. Mechanical engineers and

roboticists have recognized the benefits of minimizing jerk and have incorporated this

concept into their systems [44, 45, 46, 47]. Optimizing animal movement by minimizing

jerk is beneficial in that it can reduce stress on the mechanical components of the body.

It is not obvious what function of the instantaneous jerk should be minimized

to match biological observation. The L2 norm (as used in the MJ2 model) measures
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the summation of squared jerk over the course of the movement while the L∞ norm

(as used in the MJ∞ model) minimizes the maximum jerk value over the course of the

movement. While the L2 norm metric penalizes high jerk values, it does not explicitly

force the system to keep the maximum instantaneous jerk as low as possible. In the

jerk profile figure shown in Figure 3.1, notice that near time t=0 and t=1 second, the

jerk resulting from the MJ2 model far exceeds the maximum jerk over the entire move-

ment by the MJ∞ model. In contrast to the L2 norm metric, limiting the maximum

instantaneous magnitude of jerk via an L∞ norm cost function reduces the possibility

of the movement passing some critical jerk threshold, after which damage to the body

may occur. This intuitive rationale helps justify why evolution may have minimized the

maximum magnitude of instantaneous jerk (L∞ norm) during a movement rather than

the sum of squared jerk over the course of a movement (L2 norm).

3.2.1 Minimizing jerk as a control variable

In this section we formulate the problem of minimizing the jerk of a ballistic

point-to-point movement as a control problem where the control signal is the jerk, the

initial and final positions are known, and the duration of movement is also known. For

ease of notation, here we restrict our problem formulation to one dimension and note

that extensions to higher dimensions are straight-forward. The control signal that we

seek to achieve a minimum jerk position trajectory x(t) is formulated as follows:

minimize
u(t)

‖ u(t) ‖p

subject to ẋ(t) = Ax(t) +Bu(t)

(3.1)

where A =


0 1 0

0 0 1

0 0 0

, B =


0

0

1

, x(t) =


x(t)

ẋ(t)

ẍ(t)

, u(t) =
...
x(t), and where ‖ · ‖p

denotes the Lp norm.

The solution to equation A.3 will determine the optimal control policy u(t). The

selection of theLp norm can result in vastly different control policies. For 1 ≤ p < 2, the

control policy will result in physiologically unrealistic movements and as a result these
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Figure 3.1: The profiles corresponding to the L2 norm control policy and L∞ norm

control policy are shown in red and blue respectively. These plots are generated

according to Theorems 1 and 2 respectively.
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types of control policies are not discussed here. Instead we will pay close attention to

cases where p = 2 and p =∞. For p = 2, we have the following policy as described in

the following theorem:

Theorem 1. The solution to equation A.3 with p = 2 is a straight line trajectory given

by the following control policy:

u(t) =
...
x(t) = (xf − xi)

(
360

T 5
t2 − 360

T 4
t+

60

T 3

)
where xi is the initial hand position at time t = 0 and xf is the final hand position at

time t = T .

Proof. This was originally shown by [12]

The control policy corresponding to the above theorem has been shown to fit

human data very well [12]. The next theorem shows that if the L∞ norm of jerk is

minimized (i.e, p =∞) in equation A.3 then we have a bang-bang control policy:

Theorem 2: Bang-bang Control Theorem. The solution to equation A.3 with p =∞
is a straight line trajectory given by the following control policy:

u(t) =
...
x(t) =


J 0 ≤ t < T

4

−J T
4
≤ t < 3T

4

J 3T
4
≤ t ≤ T

(3.2)

with J = 32
xf−xi
T 3 where xi is the initial hand position at time t = 0 and xf is the final

hand position at time t = T .

Proof. This was originally shown by [45]

Ben-Itzhak and Karniel [42] proposed a similar bang-bang control policy for

achieving ballistic point-to-point movements. Their control policy minimizes acceler-

ation and also places a threshold on the jerk of the trajectory. This threshold is a free

parameter in their model that controls the amount of allowable jerk. Here we show that

achieving a bang-bang control policy can be done without introducing any free parame-

ters simply by minimizing jerk as measured by the infinity norm.
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3.3 Methods

The human arm movement data used in this study for comparison with our model

were provided by Amir Karniel at the Ben Gurion University of the Negev, the same data

he and Ben-Itzhak used in their 2008 paper outlining their model of fast arm reaching

movements [42]. The data originated from a 2002 paper by Karniel and Mussa-Ivaldi

[40] investigating the nervous system’s ability to adapt to perturbations. An abbreviated

description of the data collection techniques is given below. For a complete description,

see [40].

Seated subjects held a robotic manipulandum which was restricted to two dimen-

sional movements corresponding to the horizontal plane of the subjects. They watched

a screen which displayed the position of their hand (and the manipulandum) in relation

to three positional markers A, B and C. The markers were positioned to form an equi-

lateral triangle (see Figure 2.3(a)). The subjects were instructed to move the on-screen

representation of the manipulandum from one target to another. The distance between

the targets was 10cm. This motion was to occur within one third of a second, ±50ms.

Feedback was given to the subjects indicating if they had reached the target and if they

did so within the appropriate time window. Position profiles were recorded for all six

possible movement types for five subjects over the course of four days. The original

data included a subset of trials in which the arm was perturbed during movement from

one marker to another. This subset was excluded from our analysis. Only unperturbed

movements were analyzed. See Figure 2.3(b) for an example of a typical movement.

The data included uninteresting aspects such as near stationary positional in-

formation before a subject began moving and after a subject reached his or her goal

and stopped moving. Various methods have been used for movement onset detection

[48, 49, 50]. Unfortunately, there is no consensus regarding which technique is best for

choosing the relevant portion of a movement as the definition of what is relevant may

change from study to study or from one movement type to another. We employ a simple

method to determine the start and end times of each movement. We start by finding the

onset of the movement. To do so, we compute the energy of a moving window of five
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time steps over the velocity profile from a given trial:

E =
5∑
i=1

v2[i] (3.3)

where v[i] is the velocity of the manipulandum at time step i of the current window.

The window starts at the beginning of the recorded data of a trial (time steps 1-5) and

moves forward in one time step increments (e.g. 2-6, 3-7, etc). If E is not greater than

a threshold, δ, the window continues moving forward and the test is repeated.

When the window moves over a portion of the velocity profile where the manip-

ulandum is both stationary and close to the starting position (i.e. before the movement

begins), E is low. As the window moves over a portion of the velocity profile which is

increasing, E becomes greater. We define the starting time of the movement to be the

beginning time step of the window at the first window position where E ≥ δ.

Finding the time at which the ballistic portion of the movement ends is difficult

due to corrective movements made by the subjects after they reach their target, e.g. the

correction of perceived target overshoot. Recall that we are only interested in ballistic

movements. The corrective portions of the movement fall outside the ballistic portion

of the movement. We define the middle (T
2

) and end (T ) times of a movement in the

same way as done in [42]. End effector velocity profiles for ballistic point-to-point

movements are known to have a symmetric bell shape [14, 12]. In order to determine

the end time of the movement, we first define the middle position of the movement (T
2

)

to be the point of maximum velocity, i.e. the top of the symmetric bell. We then simply

double this value to find the end time T .

Like other methods, this heuristic technique is not guaranteed to find the ideal

onset and end of the recorded movements. Both the MJ2 and MJ∞ models assume

an initial and final position at which velocity is zero. For this reason, it is appropriate

to filter the trials, keeping those for which our start/end detection algorithm has chosen

points which most closely meet the zero velocity start and end point assumptions of the

models. By definition these are the only trials that are relevant to the models.

Since none of the trials have exactly zero velocity start and end points, some

degree of tolerance must be allowed. Furthermore, some metric must be employed to

define the degree of closeness to zero velocity for a given start/end point. We define
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close to zero velocity for start and end points on a trial by trial basis by computing a

ratio between the velocities in question and the peak velocity:

c =
vs + ve

2vp
(3.4)

Where c is a unitless indicator of closeness to zero, vs is starting velocity, ve is the ending

velocity and vp is the peak velocity of the movement. Applying this metric to all trials

yields a distribution between 0 and 1 (see Figure 3.2). As the c value gets closer to zero,

the corresponding trial increasingly conforms to the zero start and end assumptions of

theMJ2 andMJ∞ models and is therefore more appropriate for comparison against the

models. We included all trials with a c value less than the harmonic mean of the entire

distribution. That is, we favored trials which most closely conform to the assumptions

of the models while still leaving enough trials to properly gauge statistical significance.

The use of the harmonic mean as a level of tolerance of deviation from zero velocity

is somewhat arbitrary. What is important is that the trials with large c values (that do

not conform to the models assumptions) are discarded while keeping enough trials to

maintain statistical significance. In all, our filtered data set included 406 movement

trials.

3.4 Results

To assess the performance of the minimum L2 norm jerk model (MJ2) in com-

parison to the minimumL∞ norm jerk model (MJ∞), we compute the time-series mean-

squared error between the model’s predicted position trajectory with the human subjects

trajectory. Our intention is to show that MJ∞’s much simpler control policy can fit data

at a high accuracy. In fact, we show that our model significantly exceeds the accuracy

of the MJ2 model for this data set. Formally, the mean-squared error is computed as

follows:

MSEk =
1

tk

tk∑
i=1

(xk[i]− pk[i])2 (3.5)

where k refers to the trial, tk the number of samples for the kth trial, xk is the model

position profile for the kth trial, and pk is the recorded data position data for the kth

trial.
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velocity for each trial. Ideally, the trials should have start and end velocities as close to

rest as possible in order to conform to both models’ assumptions.
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Figure 3.3: Bars A - E show the comparison of the average MSE of position profiles

predicted by MJ2 and MJ∞ vs. human trial data along with standard error bars. “All

Subjects” is an aggregate of the trials in A-E. The MJ∞ model performs better than the

MJ2 model in all cases. The results for A, B, E are significant with p < 0.05 by a

Wilcoxon rank-sum test. The “All Subjects” aggregate results are extremely significant

with p < 0.001 by a Wilcoxon rank-sum test. This test was utilized due to the

non-normality of the data as is typically done in this situation [42].

Figure 3.3 shows the comparison of the average MSE trajectories between MJ2

and MJ∞. MJ∞ has a smaller MSE in all cases. We therefore can conclude that the

trajectory estimates of MJ∞ are just as good or significantly better than those of MJ2.

Furthermore, their control policies differ significantly and we suspect that the simple

control policy (the bang-bang controller of MJ∞) would be favored by a biological

system.

The MACC (Minimum Acceleration Criterion with Constraints) model proposed



36

P
o
s
ti
o
n

Time(samples)
 

 

Data

MJ
∞

 Model

V
e
lo

c
it
y

Time(samples)

A
c
c
e
le

ra
ti
o
n

Time(samples)

J
e
rk

Time(samples)

Figure 3.4: Overlay of MJ∞ model with human movement data of a single trial.

by Ben-Itzhak and Karniel [42] also implies a simple bang-bang controller, however,

their approach requires a free parameter that places a cap on the maximum allowable

jerk (manifested as a constraint on the control signal). Although changing this parameter

can change the switching times of the bang-bang controller, it is not clear how to select

an appropriate value for this parameter. Ben-Itzhak and Karniel choose the value for this

parameter by performing a grid search and selecting the best value that fit the data for

each trial. Even though they showed that using this method of selecting the parameter

value results in trajectories that have MSE significantly smaller than the MJ2, these

results depend upon the model’s ability to tune this parameter on a trial by trial basis.

This may explain the improvement over other models they have used for comparison.

While it is feasible for the CNS to implement additional parameters, free parameters add

unnecessary complexity for achieving bang-bang control. It is worth noting that while

our model does not require any free parameters, it is a special, but important, case of the

MACC model where the free parameter is chosen such that the infinity-norm of the jerk

profile is minimized and hence is equivalent to the MJ∞ jerk profile.

Our suggestion of a bang-bang control policy is based upon the fact that mini-
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mizing jerk with an L∞ norm measure results in a two state jerk profile. Since the jerk

is an observable characteristic of the movement, experimental data should be able to

confirm the true nature of the jerk profile. Unfortunately, numerical computations of

jerk by derivative approximation (as done in this paper) amplify noise inherent in the

original recording. This makes drawing direct conclusions about the nature of the jerk

profile difficult (see jerk approximation in Figure 3.4). To overcome this difficulty we

decided to evaluate the error of the models with respect to the positional data. Future

work on this hypothesis should include recordings of acceleration, which should reduce

noise amplification and possibly make the true jerk profile apparent.

3.5 Discussion and Future Work

In this paper we studied an optimal control policy for achieving point-to-point

ballistic movements using the minimum-jerk criterion. We focused on minimizing the

L∞ norm of jerk (MJ∞) to achieve a simple bang-bang control policy as opposed to

using the L2 norm (MJ2). We compared the two policies with human motion data

recorded with a manipulandum and showed that the MJ∞ outperforms the MJ2 at pre-

dicting ballistic human arm movements.

Determining the precise contributions of the various components of the CNS to

the control of movement is difficult, since observations of the motor system’s neural

activity in behaving animals are hard to obtain. However, measurements of external

motor behavior are much easier to record. It is natural then to attempt to leverage the

movement data we have to explain what the control policy used by the CNS may be.

Since the movements were performed by well trained individuals in an unperturbed

workspace it is reasonable to assume that feedback due to movement errors would be

minimal. Furthermore, experimental studies on deafferented animals have demonstrated

that trajectory planning for fast point-to-point movements is not disrupted [21] and that

proprioceptive or cutaneous feedback is not necessary for the execution of such move-

ments. Because of the lack of feedback involved with these movements, we can model

these movements as a feed forward control problem.

With this in mind, our proposed optimal control problem was solved once, and
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the solution was used for each trial (as done in [12]). We remind the reader that we

are not proposing that the biological system is performing an optimization computation

each time a movement occurs. Instead, we are suggesting that evolution has already

performed the optimization process via some cost function and arrived at a neurome-

chanical system (the human body) with a construction intrinsically built to minimize

jerk.

The selection of a cost function to optimize is crucial and can result in vastly

different control policies. If we assume a cost function that evolution has used to opti-

mize animal movement, we can extrapolate a corresponding control policy. In addition,

we can draw inferences regarding the nature of the biological mechanisms that might

implement such a system. Since minimizing the L∞ norm of jerk results in a bang-bang

control policy, we can hypothesize that simple two-state step functions are utilized to

control a biomechanical system. These two-state step functions are desirable because

binary control is simple.

In addition, utilizing two-state control policies have been shown to be effective

in computational models of movement. Recent computational models of spinomuscular

control require only step functions representing supraspinal inputs in order to drive a

network to achieve human like movements [51, 52]. Other models have shown that

central pattern generators can be driven via step inputs [53].

Similarly, on/off control policies have been observed both in vivo and in vitro in

multiple vertebrates. Complex movements such as walking can be activated by gross

on/off stimulation of groups of neurons in the brain stem or the spinal cord. The exper-

iments reported in [8] induced various patterns of locomotion in a spinally transected

cat by administering a simple step-like electrical stimulation of the lower region of the

cat’s spinal cord. The experiments in [54] showed that fictive locomotor patterns could

be induced with the use of step-like excitation to either the brain stem or spinal cord of

mice. Classes of neurons in the brain stem and lumbar regions of the spinal cord of the

mice were genetically engineered to contain channelrhodopsin light gated ion channels.

Using this technique, light stimulation (or lack thereof) served as an on/off switch for the

genetically modified motor system neurons. Gross “on” stimulation to either the brain

stem or the lumbar region of the spinal cord activated a class of neurons in those regions
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and induced fictive locomotion patterns. The gross “on” stimulation was a control signal

driving the generation of locomotor patterns.

The computational and animal experiments explained above indicate that one or

more bang-bang type controllers may exist somewhere in the nervous system. It is still

an open question as to how and where their neural implementations exist. The evidence

cited here suggests that these controllers may exists in supraspinal centers [6, 51], within

the spinal cord [7, 8], or both in the brain stem and spinal cord [54]. Furthermore, it is

plausible that populations of bursting neurons could implement a bang-bang control sig-

nal [55]. This minimum jerk-based bang-bang control signal could then be converted to

a signal representing any lower order derivative (acceleration, velocity, etc) via integra-

tion of the signal. Certain populations of neurons are known to perform functions akin

to time integration [56]. Integration of a neural signal encoding velocity would lead to a

signal encoding position as happens in the occular-motor system [57, 58]. We stress that

these suggestions for our control policy’s neural implementation are merely hypotheses

backed by neuro-scientific evidence.

We suggest several important extensions to this work. As discussed earlier, to

gauge a more accurate jerk profile than that attained by numerical approximations of

higher derivatives, we propose using a manipulandum device where the jerk profile can

be recorded directly with high bit precision. As shown in Figure 1 the jerk profile that

we propose has step-like features and discontinuities. If the jerk profile of human arm

reaching movements has such features, then care must be taken to acquire and digitize

the jerk signal appropriately. Only then can we effectively compare theMJ∞ jerk profile

with the acquired jerk profile from human subjects.

Another interesting extension would be to investigate how well MJ∞ models

curved movements as done by MJ2 and other models [13, 59]. Although the MJ∞

performs very well at modeling straight point-to-point ballistic movements, and it is

likely to perform well with curved movements, it is possible that more exotic control

policies might be needed to explain more complex movements. With this in mind, we

plan on making simultaneous use of multiple control policies by switching between

them or blending them depending on the nature of the task at hand. In addition, to

achieve a model that replicates a wider array of human movements (such as perturbed
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movements), future research directions should extend this feed-forward model to in-

clude feedback (environmental and proprioceptive). Finally, to acquire a deeper under-

standing of the central nervous system, we propose modeling ballistic movements with

neuronal networks in order to test the control signal schemes outlined in this work and

their potential neural implementations.

3.6 Notes

Chapter 3, in full, is a modified reprint with minor revisions of the material as it

appears in Neural Networks. Yazdani, M., G. Gamble, G. Henderson, R. Hecht-Nielsen.

“A Simple Control Policy for Achieving Minimum Jerk Trajectories.” Neural Networks,

vol. 27, pp. 74-80, 2012



Chapter 4

Sparse Optimal Control Policies

In this chapter we generalize the bang-bang minimum jerk model of Chapter 3

to a sparse control policy that results from solving a minimum “effort” control problem

where the “effort” is measured by the L∞ norm, and the control signal is any high-order

derivative. We call this generalization the sparse minimum effort control problem. We

test minimum snap and minimum crackle models with human data and show that such

high-order control signals are just as good, if not better, than the minimum jerk control

signal. We argue that such high-order derivative control signals can be characterized by

high frequency pulse trains (on the millisecond order) which can be easily encoded by

spiking neurons. Lastly, we extend the sparse control signals for curved movements.

4.1 Optimal Control Overview

In this section we give an overview of optimal control theory and highlight two

optimal control problems: the minimum-time and the minimum-effort control problems.

Our overview is meant as means to establish common notation and terminology. For a

more in depth overview, see the many excellent texts available [43, 60]. Optimal Control

theory is an application of optimization theory to the control of a dynamic “plant” or

system. In optimization theory, we seek to find an element in a domain and a constraint

set that we wish to minimize (or maximize) a criterion (also referred to as an objective).

When the elements in the intersection of the domain and constraint set are functions, the

criterion is typically referred to as an objective functional or a cost functional, whereas

41
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when the elements are points in a vector space, the criterion is referred to as an objective

function or a cost function. In optimal control, we seek an optimal controller (typically

a function of time if the system is continuous or a vector if the system is discrete) that

has certain constraints (for example, the controller is limited by a specified amount of

power or resources) that minimizes a criterion.

We describe dynamic systems as a set of first-order differential equations:

ẋ(t) = a(x(t),u(t), t). (4.1)

x(t) is referred to as the “state” of the system, u(t) is the controller of the system, and

a(·, ·, t) is, in general, a non-linear time dependent function describing the dynamics of

the state as determined by the state and controller at time t. We assume that the initial

state x(t0) and initial time is known. Often the dynamic system is assumed to be linear

(or locally linear). In that case, the linear system can be either time variant and expressed

as

ẋ(t) = A(t)x(t) + B(t)u(t)

or time-invariant and expressed as

ẋ(t) = Ax(t) + Bu(t). (4.2)

Given the dynamic system of equation 4.1 and an initial state x(t0), we seek a

control signal u(t) to transfer the system to a desired state in a finite time. In practice, the

control signal u(t) is not unconstrained, but rather bounded by the available resources

(such as fuel, energy, or supply). In optimal control, we seek an optimal control signal

u∗(t) that, in addition to transferring the system to a desired state, the control signal also

minimizes a cost functional J(u(t)). The cost functional is application dependent and,

clearly, the optimal solution u∗(t) depends on what we consider cost. For example, in

the cost functional we may penalize large control signals or penalize deviations from a

desired trajectory. Subsequently we will discuss two important cost functionals.

4.1.1 Minimum-Time Control

In the minimum-time control problem, the objective is to transfer a system to

a final state with a constrained control signal as quickly as possibly. Thus, the cost
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functional penalizes the total time it takes to transfer the initial state to a final state and

can be expressed as

J(u(t)) = tf − t0 (4.3)

where tf is unknown, the initial state x(t0) and initial time t0 are known, and the system

dynamics are described by equation 4.1. We furthermore constrain the control signals

to be bounded

|u(t)| ≤ B. (4.4)

We now show the solution to the minimum-time control problem for linear and

time invariant system as described by equation 4.2. We consider A and B to be constant

n×n and n×m matrices respectively. Thus the minimum-time control problem can be

expressed as
minimize

u(t),T
T

subject to ẋ(t) = Ax(t) + Bu(t)

x(0) = xi

x(T ) = xf

|u(t)| ≤ B

(4.5)

where we have defined T ≡ tf − t0 and assumed t0 = 0. This special case has been

solved by Pontryagin and colleagues and their main results can be summarized in the

following two theorems (see [61] for more details):

Existence and Uniqueness Theorem. If all the eigenvalues of A have non-positive real

parts, then an optimal control policy exists that can transfer a linear time-invariant

system from any initial state x(t0) to any desired state. Furthermore, if an optimal

control signal exists, then it is unique.

Number of Switches Theorem. If the eigenvalues of A are all real and a unique optimal

control signal exists, then the control signal can switch at most n+ 1 times.

This type of control signal is typically referred to as a “bang-bang” control signal

since the signal is step-like and switches between the lower bound (−B in the case of the

constraint in equation 4.4) and the upper bound (positive B in the case of the constraint

in equation 4.4). This type of control signal can be regarded as a “sparse” control signal
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since the number of changes in the signal’s values is small. In other words, the changes

in the control signal can be described by a small number of Dirac delta functions.

4.1.2 Minimum-Effort Control

In the minimum-effort control problem, the objective is to transfer a system from

an initial state to a final state with a control signal that is as “small” as possible (hence,

minimum “effort”). Typically, the “size” of a control signal is measured with a penalty

function. In this work we consider the Lp norm penalty function and can express the

cost functional as

J(u(t)) = ||u(t)||p (4.6)

where ||·||p denotes theLp norm (and is typically theL2 norm), and the system dynamics

are described by equation 4.1. We can also have additional constraints in the minimum-

effort control problem, and just as in the minimum-time control problem, there can be

many variations by introducing additional constraints or additional costs to the objective.

For example, a simple extension would be to consider a control problem where the cost

functional trades-off between “effort” and the transfer time and can be expressed as a

combination of equations 4.3 and 4.6

J(u(t)) = γ||u(t)||p + tf − t0 (4.7)

where γ ≥ 0 is a trade-off parameter between “effort” and the state transfer time and

can be varied depending on the application.

A minimum-effort control problem that we have considered in describing human

movements is the model originally introduced by Flash and Hogan:

minimize
u(t)

||u(t)||2

subject to ẋ(t) = Ax(t) + Bu(t)

x(0) = xi

x(T ) = xf

(4.8)

where x(t) =
[
x(t) ẋ(t) ẍ(t)

]T
is the state vector, xi and xf are the initial and final

boundary conditions, and T is the duration of the movement (with movement starting
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at time t = 0). Flash and Hogan used a jerk control signal (u(t) =
...
x(t)), and further-

more used a third-order integrator model for the linear time-invariant dynamic equation

parameters:

A =


0 1 0

0 0 1

0 0 0

 and B =


0

0

1

 . (4.9)

This simple model yields trajectories that are remarkably similar to those of humans.

Naturally, simple extensions of this optimization problem can yield results that are even

more realistic and many researches have begun exploring extensions. For example, [62]

has noted that when humans make movements to a target, the target that is reached is

a not a specific point, but rather a distribution of points. Hence, in their optimization

procedure they relaxed the constraints of equation 4.8.

4.1.3 Some Remarks on Optimal Control and Optimization

Optimal control theory and optimization have been applied to a diverse set of

fields. Caution must be taken when it is claimed or suggested that a control policy is

“optimal.” A control policy is only optimal with respect to the objective and the con-

straint set of the optimization problem. Therefore, in some sense, every optimal control

policy comes with the caveat that it is dependent on the objective and constraint in the

design of the problem. If an optimal control policy does not meet a desired specifica-

tion, this is because the optimization problem has not been appropriately defined. For

example, some have criticized the Flash and Hogan model of equation 4.8 that, for ex-

ample, the control policy does not allow any variations in the final target (when it has

been shown that humans demonstrate reaching a distribution of targets as opposed to a

single precise target). This does not imply that the control policy that Flash and Hogan

suggested is “sub-optimal,” but rather that characteristics that are sought after have not

been appropriately defined.
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Figure 4.1: Example of a sparse signal and its spike encoding.

4.2 Sparse Optimal Control Policies for Straight Point-

to-Point Trajectories

We define a sparse optimal control policy as a control policy that meets an op-

timality condition and is also sparse. Here we define a sparse signal as a signal where

the number of changes in the signal is small. For example, a Heaviside step function

is a very sparse signal since the changes in this signal is described by a unit impulse

function. Similarly, a rectangular pulse is characterized by two impulse functions (see

Figure 4.1). The “bang-bang” control signals in the minimum-time control problem dis-

cussed above are examples of a sparse control signal that are also optimal in that they

minimize the time of state transfer for a system.

Here we discuss sparse optimal control signals that solve the minimum-effort

problem. The control signal is defined as the n-th order derivative in terms of position

x(t),

un(t) =
dn

dtn
x(t). (4.10)

The minimum effort control problem that results in sparse control signals uses the L∞
norm and is written as
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minimize
un(t)

||un(t)||∞

subject to ẋn(t) = Anxn(t) + Bnun(t)

xn(0) = xi

xn(T ) = xf

(4.11)

where xn(t) =
[
x(t) d

dt
x(t) d2

dt2
x(t) . . . dn−1

dtn−1x(t)
]T

is the state vector, xi and xf
are the initial and final boundary conditions, and T is the duration of the movement

(with movement starting at time t = 0). Here we consider a system that is an n-th order

integrator, thus

An =

[
0(n−1)×1 I(n−1)×(n−1)

0 01×(n−1)

]
and Bn =

[
0(n−1)×1

1

]
. (4.12)

The L∞ norm can be computed by solving maximize
0≤t≤T

|u(t)|. In Chapter 3 we showed

that when u(t) =
...
x(t) and n = 3, the sparse control signal explains the trajectories of

human movements better than the traditional Flash and Hogan model of equation 4.8.

Furthermore, and perhaps more important, sparse control signals are biologically more

realistic than non-sparse signals.

We now show the general analytic solution for equation 4.11. To derive the

general solution, we assume that that the boundary conditions are

xi =

[
xi

0(n−1)×1

]
and xf =

[
xf

0(n−1)×1

]
. (4.13)

That is, we assume that the movement starts at rest and ends at rest. We solve the general

sparse minimum effort control problem by manipulating equation 4.11 to a form that has

been previously solved. Namely, note that every optimization problem can be written

equivalently as a linear optimization problems by introducing an auxiliary variable K
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and we can equivalently express equation 4.11 as follows:

minimize
un(t),K

K

subject to ẋn(t) = Anxn(t) + Bnun(t)

xn(0) = xi

xn(T ) = xf

||un(t)||∞ ≤ K

(4.14)

where un(t), An, Bn, xi, and xf are defined as before in equations 4.10, 4.12, and 4.13

respectively. The equivalency between equations 4.11 and 4.16 is due to the fact that

every objective can be bounded, and this bound is expressed as an additional constraint

in equation 4.16. We can simplify this bound as follows:

||un(t)||∞ ≤ K

=⇒ maximize
0≤t≤T

|un(t)| ≤ K

=⇒ |un(t)| ≤ K.

(4.15)

In words, the result of equations 4.15 is due to the fact that if the largest element of

|un(t)| for 0 ≤ t ≤ T is less than or equal to K, then every element in |un(t)| for

0 ≤ t ≤ T is less than or equal to K, that is |un(t)| ≤ K for 0 ≤ t ≤ T . We can

therefore write equation 4.16 as

minimize
un(t),K

K

subject to ẋn(t) = Anxn(t) + Bnun(t)

xn(0) = xi

xn(T ) = xf

|un(t)| ≤ K.

(4.16)

The optimization problem of equation 4.16 has the same form as equation 4.5. We can

therefore use the results from the minimum-time control problem and apply them here

(namely that the results of Pontryagin and colleagues still hold). The difference is that

in equation 4.5 the unknown is time T , whereas in equation 4.16 the unknown is the

bound K on the control signal un(t). Since the dynamic system in equation 4.16 is an

n-th order integrator, we can use the result from [63] and write the following Theorem:
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Number of Switches for an N-th Order Integrator Theorem 1. For a control problem

of the type in equations 4.5 or 4.16 where the system dynamic equations are an n-th

order integrator (as in equation 4.12), then the number of switchings in the control

signal is exactly n+ 1 and the control signal is symmetric.

In other words, as the order of the control signal goes up (that is, as n increases)

then the number of switchings in the control signal increases by the same amount. [64]

solved the general n-th order minimum-time control problem of equation 4.5 for an n-

th order integrator. We adapt their results for the general n-th order minimum-effort

control problem of equation 4.16 and summarize the solution as follows:

K∗n =
22(n−1)(n− 1)!(xf − xi)

T n
(4.17)

t∗i = T sin2

(
πi

2n

)
, i = 0, . . . , n (4.18)

where t∗i denote the optimal switching times. Figure 4.2 shows examples of several

sparse optimal control signals.

4.2.1 Sparse Optimal Control Signals in Fast Human Movements

The sparse optimal control signals introduced in the previous section are not

only optimal with respect to a minimum-effort objective, but are also biologically more

realistic. These sparse optimal control signals can be efficiently represented with neu-

ronal spikes. If we treat each spike as an idealized Dirac delta function [65], then a spike

sequence that represents an n-th order optimal control signal can be expressed as

ρn(t) = K∗n

n∑
i=0

(−1)iδ(t− t∗i ) (4.19)

where K∗n and t∗i can be found from equations 4.17 and 4.18 respectively. The spike

train represented by equation 4.19 is not from a single neuron, but rather a population

of excitatory and inhibitory neural network. The exact architecture of such a neural net-

work is unknown, but the construction of such a network to generate spikes as expressed

in equation 4.19 is trivial.
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Figure 4.2: Examples of sparse optimal control signals ui(t) for i = 3, . . . , 6. Shown

are movements that starts from t = 0 and end at t = 1.
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In Chapter 3 we showed that a sparse optimal control signal that corresponds to

jerk (expressed as ρ3(t) in the notation of equation 4.19) explains fast human movements

better than the smooth control signal that results when using the L2 norm. We now

also propose that the control signals the brain uses are not limited to the jerk control

signal. There is nothing preventing the brain from having a high-order control signal

(see Figure 4.3 for the error of using a higher-order derivative control signal). With each

increase in the order of the control signal, the number of spikes increases. Furthermore,

as shown in Figure 4.2, these high-order derivative control signals can form a basis set

for a subspace of fast human movements. In the literature such basis sets are often

referred to as motor primitives [39].

4.2.2 Experimental Setup

The human arm movement data for this work was originally collected by Karniel

and Mussa-Ivaldi and used in their 2002 paper to investigate the nervous system’s abil-
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ity to adapt to perturbations. We used a subset of this data that was relevant for our

study of fast movements (the baseline unperturbed movements) and summarize their

experimental setup below and refer the reader to [40] for a more complete description.

Five subjects participated in an experiment involving a manipulandum that re-

stricted their movements to a two-dimensional horizontal plane of the seated subjects

(subjects participated separately in these experiments). During each trial, the subject

watched a screen that displayed the position of their hand and the manipulandum in re-

lation to three positional markers A, B and C. Each marker was separated by 10 cm and

formed an equilateral triangle as shown in Figure 2.3(a). For each trial, the subject was

instructed to move the on-screen representation of the manipulandum from one target

to another in about one third of a second with a tolerance of ±50ms. At the end of

each trial feedback was given indicating if the subject had reached the target and also if

the execution of their movement was within the allowed time window. The trajectories

were recorded for all six possible movement types for all subjects over the course of

four days. The experiments also included trials where the arm was perturbed during

movement. We excluded these trials from our study and only considered unperturbed

trials. For each trial, we only select the so-called “ballistic” portion of the movement.

That is, we select the portion of the trial where movement had started and the movement

had completed its “feedforward” portion. There are various methods for movement on-

set and offset detection [48, 49, 50], and there is no standard technique for choosing the

relevant portion of a movement since the definition of what is relevant may change from

study to study or from one movement type to another.

We approach finding the start and end of movement by finding the point in time

when the velocity has reached it’s peak velocity. Fast movement always have a unique

global maximum in the trial (unless the trial is an outlier) so finding the time at which

this maximum occurs is unique. Once this point in time is found, we proceed to consider

velocity samples before and after the peak velocity and check to see if they fall below

a pre-determined threshold. Once the velocity sample is below this threshold, we refer

to this sample as the “start” or “end” depending on whether the sample is before or

after the peak velocity. We have considered different thresholds and even considered

using the onset and offset detection method of Chapter3, however the qualitative results
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do not change hence our overall results in this paper are not sensitive to the method

used in finding the onset and offsets of movement. Regardless of what onset and offset

detection method used, real trials do not neatly satisfy the boundary conditions assumed

in theorems 1 and 2. That is, it is very rare for the trial to start and end at complete rest

(with velocity and higher derivatives equal to zero). As a result we apply theorems 1

and 2 by not arbitrarily set the boundary conditions to zero, but rather set the boundary

conditions to the velocities and higher derivatives of the given trial. Again, this change

does not have an impact on the qualitative results, but we make this change since it fits

the assumptions of data more accurately.

4.3 Sparse Optimal Control Policies for Curved Trajec-

tories

The sparse optimal control policy for straight trajectories that we showed in the

previous section can also be extended to curved trajectories. We introduce a via-point

into the constraint set of equation 4.11:

minimize
un(t)

||un(t)||∞

subject to ẋn(t) = Anxn(t) + Bnun(t)

xn(0) = xi

xn(tv) = xv

xn(T ) = xf

(4.20)

where xn(tv) = xv specifies the state (denoted xv) at time tv. The time tv can be inferred

from the data. This is the same formulation that Flash and Hogan proposed for curved

movements in [12], but here we use the L∞ norm instead. By using the L∞ norm, we

have sparse optimal control signals. The optimization problem of 4.20 can be solved

numerically with the techniques discussed in Chapter 5. Figure 4.4 shows an example

simulation of a curved trajectory specified by a via-point. Note that even though the

movement has a curved trajectory, the control signal (jerk in this case) is still sparse.

Future work should test this sparse control signal for curved movements.
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Figure 4.4: A curved trajectory specified by a via point.

4.4 Notes

Chapter 4, in part, has been submitted for publication of the material. The dis-

sertation author is the primary investigator and author of this material.



Chapter 5

Multiple Cost Funcions

In this chapter we extend the sparse minimum effort control problem of Chapter

4 to multiple composite cost functions. We first begin by giving a numerical solution to

the minimum effort control problem. This is so we can use numerical methods and opti-

mization techniques and no longer need to rely on analytic solutions1. Using numerical

techniques, we solve the minimum effort control problem with multiple control signals

that are combined.

5.1 Numerical Solutions to the Minimum Effort Control

Problem

In this section we formulate numerical solutions to solving the minimum effort

control problem. We define the minimum effort control problem as a control signal that

corresponds to a high order derivative of the position of the end effector and define the

cost function as minimizing the norm of the control signal. Formally, we define the

control signal u(t) in terms of the position x(t) as

un(t) =
dn

dtn
x(t). (5.1)

The minimum effort control problem then becomes

1In general, closed-form analytic solutions do not exist for a general optimal control problem.
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minimize
un(t)

‖ un(t) ‖p

subject to ẋn(t) = Axn(t) +Bu(t)

xn(0) = xi

xn(T ) = xf

(5.2)

where xn(t) =
[
x(t) d

dt
x(t) d2

dt2
x(t) . . . dn−1

dtn−1x(t)
]T

is the state vector, xi and xf
are the initial and final boundary conditions, and T is the duration of the movement

(with movement starting at time t = 0). Here we consider a system that is an n-th order

integrator, thus A =

[
0(n−1)×1 I(n−1)×(n−1)

0 01×(n−1)

]
and B =

[
0(n−1)×1

1

]
.

To reformulate the problem in discrete time, we define the vector x as follows:

x[k] = x(k∆T ), k = 0, . . . , N

x =
[
x[0] x[1] · · · x[N ]

]
That is each element of the vector x is a sample from the continuous time position

trajectory x(t) sampled at intervals of ∆T . Clearly, to have N + 1 samples, we must

have ∆T = T
N

. We can approximate the derivative of x(t) using x with the difference

equation (∆T )−1(x[i]−x[i−1]) for i = 1, . . . , N . If we define the N × (N + 1) matrix

D1 as:

D1 ≡ (∆T )−1



−1 1 0 · · · 0 0 0

0 −1 1 0 · · · 0 0

0 0 −1 1 · · · 0 0
...

...
...

... . . . ...
...

0 · · · · · · · · · 0 −1 1


then we can write the velocity as D1x. We can also write the velocity using the second

difference (∆T )−2(x[i+ 1]− 2x[i] + x[i− 1]) and we can write the acceleration matrix
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D2 as

D2 ≡ (∆T )−2



1 −2 1 0 · · · 0 0 0 0

0 1 −2 1 · · · 0 0 0 0

0 0 −1 2 · · · 0 0 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 0 · · · 0 1 −2 1


We can similarly write the jerk as the difference equation (∆T )−3(x[i+ 2]−3x[i+ 1] +

3x[i]− x[i− 1]) for i = 1, . . . , N − 2. If we then define the (N − 2)× (N + 1) matrix

D3 as:

D3 ≡ (∆T )−3



−1 3 −3 1 0 0 · · · 0 0 0

0 −1 3 −3 1 0 · · · 0 0 0

0 0 −1 3 −3 1 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...

0 0 0 0 · · · −1 3 −3 1 0

0 0 0 0 · · · 0 −1 3 −3 1


Thus the jerk can be computed as D3x.

It can be shown that the general n-th order derivative matrix Dn is an (N − n+

1)× (N + 1) Toeplitz matrix where the non-zero elements of the matrix are found from

the binomial coefficients. To write this more generally, we introduce some notation.

We define pi ∈ R1×(i+1) as a row-vector with elements belonging to the ith row of a

modified Pascal triangle:

i = 0: 1

i = 1: -1 1

i = 2: 1 -2 1

i = 3: -1 3 -3 1

i = 4: 1 -4 6 -4 1

For example, p1 =
[
−1 1

]
, p2 =

[
1 −2 1

]
, and p3 =

[
−1 3 −3 1

]
.

D1 then, as shown above, is the N × (N + 1) Toeplitz matrix where the first row is[
p1 01×(N−1)

]
, D2 is the (N − 1) × (N + 1) Toeplitz matrix where the first row is



58

[
p2 01×(N−2)

]
, and D3 is the (N − 2) × (N + 1) Toeplitz matrix where the first row

is
[
p3 01×(N−3)

]
. Therefore, we can compactly write Dn as the (N − n) × (N + 1)

Toeplitz matrix where the first row is
[
pn 01×(N−n)

]
. Clearly the derivative order must

satisfy n < N , otherwise the notion of discrete-time derivative is meaningless here.

We can now formulate the discrete-time counterpart to equation 5.2 as follows:

minimize
x

‖ Dnx ‖p

subject to Aeqnx = beqn

(5.3)

where Aeqn and beqn are defined respectively as:

Aeqn ≡



1 01×(N)

01×(N) 1

(∆T )−1p1 01×(N−1)

01×(N−1) (∆T )−1p1

(∆T )−2p2 01×(N−2)

01×(N−2) (∆T )−2p2
...

...

(∆T )−(n−1)pn−1 01×(N−(n−1))

01×(N−(n−1)) (∆T )−(n−1)pn−1



and beqn ≡



xi

xf

ẋi

ẋf

ẍi

ẍf
...

x
(n−1)
i

x
(n−1)
f



.

Note that Aeqn is a 2n × (N + 1) matrix and beqn is a 2n × 1 column vector. The

equality constraint of equation 5.3 essentially constrains the solution set to the boundary

conditions of the trajectory that are determined by the initial and final positions, and

the initial and final (n − 1) derivatives. Note that when the minimum effort control

problem was solved previously, we only considered the case where the initial and final

(n− 1) derivatives had the value of zero (the movement starts and ends at “rest”). Here,

however, we relax this requirement since we are not computationally restricted from

considering the more general (and realistic) case of non-zero boundary conditions.
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5.1.1 The solution to the minimum effort control problem using the

l2 norm

We now proceed to solve equation 5.3 for the case that p = 2 (that is, the case

that the l2 norm is used)
minimize

x
‖ Dnx ‖2

subject to Aeqnx = beqn

(5.4)

using the method of Lagrange multipliers. We formulate the Lagrangian for equation

5.3 as follows:

L(x, λ) = xTDT
nDnx + λT (Aeqnx− beqn). (5.5)

We formulate the dual function g(λ) by solving the following problem:

g(λ) = minimize
x

L(x, λ). (5.6)

The solution to the optimization problem of equation 5.6 (that is, the dual function g(λ))

can be found by setting ∂
∂xL(x, λ) to zero and solving for x:

∂

∂x
L(x, λ) = 2DT

nDnx + ATeqnλ = 0

=⇒ x = −1

2
(DT

nDn)−1ATeqnλ

(5.7)

Note that since equation 5.5 is convex (due the fact that DT
nDn � 0 ), this solution is the

true minimum. Thus, we can find the dual function by evaluating equation 5.5 at this

minimum:

g(λ) =
∂

∂x
L(x, λ)

∣∣∣∣
x=− 1

2
(DT

nDn)−1Aeqnλ

= −1

2
λTAeqn(DT

nDn)−1ATeqnλ− λ
T beqn

(5.8)

We now evaluate the maximum of the dual function as folows:

∂

∂λ
g(λ) = −1

2
Aeqn(DT

nDn)−1ATeqnλ− beqn = 0

=⇒ λ = −2(Aeqn(DT
nDn)−1ATeqn)−1beqn

(5.9)

Again note that this is the true maximum of the dual function since g(λ) is a concave

function (due to the fact that −1
2
Aeqn(DT

nDn)−1ATeqn � 0). Thus, we can now evaluate
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equation 5.5 at this solution and solve for x to find the solution to equation 5.3:

∂

∂x
L(x, λ)

∣∣∣∣
λ=−2(Aeqn (D

T
nDn)−1AT

eqn
)−1beqn

= 0

=⇒ x∗ = (DT
nDn)−1ATeqn(Aeqn(DT

nDn)−1ATeqn)−1beqn (5.10)

Since equation 5.4 is a convex optimization problem (the objective function is the norm

of a linear function, thus a convex function, and the constraints are linear), the solution

x∗ as expressed in equation 5.10 is the true global minimum.

5.1.2 The solution to the minimum effort control problem using the

l∞ norm

We now proceed to solve equation 5.3 for the case that p = ∞ (that is, the cost

of the control signal is measured using the l∞ norm):

minimize
x

‖ Dnx ‖∞

subject to Aeqnx = beqn

(5.11)

We solve this optimization problem by formulating equation 5.11 as a Linear Program

that can then be solved with an off-the-shelf software package. To pose equation 5.11 as

a Linear Program, we introduce a scalar auxiliary variable s ∈ R and solve the following

optimization problem that is equivalent to equation 5.11:

minimize
x,s

s

subject to Aeqnx = beqn

‖ Dnx ‖∞≤ s

(5.12)

Similarly, since ‖ Dnx ‖∞≤ s =⇒ −s1 � Dnx � s1 (here � denotes an element-

by-element inequality and 1 denotes a vector of all 1’s), we can write equation 5.13

equivalently as
minimize

x,s
s

subject to Aeqnx = beqn

− s1 � Dnx � s1

(5.13)
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which is also equivalent to equation 5.11. Equation 5.13, however, is a Linear Program

since the objective function, the equality constraint, and the inequality constraints are

all linear. This can be solved with any off-the-shelf Linear Program solver (such as

[66, 67]).

5.1.3 Minimum Jerk as a Minimum Effort Control Problem

Here we give a specific example of a control signal and solve the control problem

of equation 5.3. We consider the control signal to be the third derivative of position, or

jerk, and consider an initial position of 0 and a final position of 1 units. The duration

of the movement is 1 sec and the number of samples is 50 (thus, i = 0, 1, . . . , 49). The

movement starts at rests, and ends at rest. Hence, the objective function and constraints

of equation 5.3 are

‖ D3x ‖p

and

Aeq3 =



1 01×49

01×49 1

(∆T )−1p1 01×48

01×48 (∆T )−1p1

(∆T )−2p2 01×47

01×47 (∆T )−2p2


and beq3 =



0

1

0

0

0

0


. (5.14)

where ∆T = 0.02. Having defined the objective function and the constraint matrices,

we solve equation 5.3 for p = 2 and p = ∞ with the methods described above. The

solved solution is shown in Figure 5.1 were the blue shows the solution to equation 5.3

with p =∞ and red shows the solution with p = 2.

5.2 Minimum Effort Control with a Hybrid Metric

The previous section illustrated the numerical solutions to the minimum effort

control problem for the p = 2 and p = ∞ case. The solutions show that when p = ∞,

the minimum effort control problem of equation 5.2 results in a sparse “bang-bang”



62

0 0.2 0.4 0.6 0.8
0

0.5

1

Time (s)

P
o

s
it
io

n

 

 

∞−norm

2−norm

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

Time (s)

V
e

lo
c
it
y

0 0.2 0.4 0.6 0.8

−5

0

5

Time (s)

A
c
c
e

le
ra

ti
o

n

0 0.2 0.4 0.6 0.8
−50

0

50

Time (s)

J
e

rk

Figure 5.1: The solution to equation 5.3 with n = 3 and equality matrices as defined by

equation 5.14. The blue line shows the solution to equation 5.3 with p =∞, while the

red line shows the solution to equation 5.3 with p = 2.



63

control policy, while when p = 2 the control signal is smooth and non-sparse. [68] have

suggested a control signal that appears to be a trade-off between the smooth and sparse

control policies. They advocate that such a control policy has certain advantages for

biological control. For example, such a control policy has the benefit that it is partially

hard-limited, but has fewer discontinuities than the sparse optimal control signal derived

from the control problem in equation 5.11. Here we show that the proposed control

signal of [68] can be derived by solving an optimization problem that trades-off between

the cost function measuring the “effort” of the control signal with the l2 norm and the

l∞ norm. This can be written as follows:

minimize
x

(1− θ) ‖ Dnx ‖∞ +θ ‖ Dnx ‖2

subject to Aeqnx = beqn

(5.15)

where 0 ≤ θ ≤ 1 is a “free” trade-off parameter to be selected.

When θ is close to one, the ‖ Dnx ‖2 term in the cost function of equation

5.15 dominates and the solution to the optimization problem is close to the solution of

equation 5.4. Similarly, when θ is close to zero, the ‖ Dnx ‖∞ term in the cost function

of equation 5.15 dominates and the solution is close to the solution of equation 5.11.

The optimization problem of equation 5.15 can be solved by introducing the auxiliary

variable s and solving the following equivalent problem:

minimize
x,s

(1− θ)s+ θ ‖ Dnx ‖2

subject to Aeqnx = beqn

‖ Dnx ‖∞≤ s

(5.16)

As before, since ‖ Dnx ‖∞≤ s =⇒ −s1 � Dnx � s1 and ‖ Dnx ‖2= xTDT
nDnx, we

can write equation 5.16 equivalently as

minimize
x,s

(1− θ)s+ θxTDT
nDnx

subject to Aeqnx = beqn

− s1 � Dnx � s1

(5.17)

Equation 5.17 is a Quadratic Program (QP) since the objective function is quadratic,

and the equality and inequality constraints are linear. There are numerous off-the-shelf
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Figure 5.2: The control policies resulting from varying θ from zero to one for the

optimization problem in equation 5.15.

software packages that solve QPs. Figure 5.2 shows equation 5.17 solved many times

as θ is varied from zero to one. Clearly, we can see that as θ increases the control signal

ranges from the sparse policy of equation 5.11 to the smooth policy of equation 5.4. The

disadvantage of such a model is that selecting the appropriate θ is not clear.
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5.3 Minimum Acceleration Criterion with Constraints

Karniel and colleagues proposed a model they called the Minimum Acceleration

Criterion with Constraints (MACC) that they defined as follows:

minimize
u3(t)

‖ ẍ(t) ‖2

subject to ẋ3(t) = Ax3(t) +Bu(t)

x3(0) = xi

x3(T ) = xf

‖ u3(t) ‖≤ β

where β is a free parameter that hard-limits the control signal u3(t) =
...
x(t). Karniel and

colleagues showed that the solution to this optimization problem is a bang-bang (that is,

“sparse”) control policy, where the switching times are controlled by the β parameter.

Here we will show that the MACC is yet another minimum effort control problem with

a multiple criterion cost function. We can move the constraint on the control signal that

is set by β to the objective function and write the following optimization problem:

minimize
u3(t)

‖ ẍ(t) ‖2 +γ ‖ u3(t) ‖∞

subject to ẋ3(t) = Ax3(t) +Bu(t)

x3(0) = xi

x3(T ) = xf

Clearly, this is a minimum effort control problem with an additional cost associated

with the acceleration of the end-effector. While the γ parameter does not have a one-to-

one relationship with the β parameter of the previous optimization problem, they both

represent the trade-off with hard-limiting the control signal (that is, keeping the cost of

the effort small) and the “size” of the acceleration. This optimization can also be solved

in discrete time as a Quadratic Program. First, we write the MACC in discrete time as

follows:
minimize

x
‖ D2x ‖2 +γ ‖ D3x ‖∞

subject to Aeqnx = beqn

(5.18)
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where again γ is the trade-off parameter. In a manner similar to equation 5.15, the

optimization problem of equation 5.18 can be posed as a Quadratic Program and solved

with a QP solver.

5.4 Combination of Multiple Control Signals

We propose a control paradigm where multiple control signals (that correspond

to different dynamic variables) are involved in controlling a biomechanical system. This

paradigm is inspired by evidence from the central nervous system encoding different dy-

namic variables (such as velocity and acceleration) as control signals. The multi-control

policy model hypothesizes that segregated populations of neurons throughout the ner-

vous system (such as the brain stem or the motor cortex) represent control policies that

reflect the various trade-offs that are defined by a cost function. For example, one neu-

ral population may represent a control signal that creates “peaked” velocity profiles,

while another population may represent a control signal that creates a velocity trajec-

tory with a more “broad” profile. While the full biological details of such a hypothesis

are unknown, we propose a simplified mathematical model to illustrate our proposed hy-

pothesis. Here we propose that a population of neurons represent a control policy with a

trade-off in one extreme (“peakiness” in the velocity profile for example), while another

population represents a control policy operating in an opposite extreme (“broadness” in

the velocity profile). In addition, there may be several neural populations where each

population represents different control policies that reflect different costs. These neural

populations are then combined to produce the rich set of movements we observe.

Our goal here is to illustrate the feasibility of combining control signals to

achieve a rich set of movements, and we do not focus on the specific control policies

that neural populations encode. The specific control policy that neurons represent is

unknown, but since sparse control policies are biologically realistic, we propose that

each population represents a sparse control policy for a control signal that represents a

high-order derivative of the end-effector dynamics (such as “jerk” corresponding to the

third derivative of position). The model that we propose here is for a one-dimensional

end-effector point mass (that we treat as the hand of the subject) to simplify the math-
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ematics and the model. Extensions to higher dimensions can be analogously made and

more sophisticated and accurate models of the musclo-skeletal system can be included,

but we defer this work for future studies since the simplifications we have made here

are sufficient for illustrating the concept and architecture of combining multiple control

policies.

While such evidence makes it certain that the central nervous system uses mul-

tiple (and different) control signals, how such control signals are combined is unknown.

We propose that the control policy the CNS follows is a simple linear combination of

various control signals (each optimal with respect to a particular cost function: the l∞
norm in our case) that result in a rich set of movements. It is possible to consider other

optimal control signals (such as ones proposed by [69, 62, 70]) and to combine these

signals in other ways that are perhaps even non-linear, but these possibilities are not

explored here and are deferred for future work. We propose two models: the Convex

Combination Trade-off Control model and the Optimal Confluence model. The Convex

Combination Trade-off Control model considers finding a control a signal that is a con-

vex combination of two different control signals with two different sets of constraints.

While the Convex Combination Trade-off Control model can be extended to any control

system, tuning the trade-off parameters that are introduced makes its application diffi-

cult in practice. The Optimal Confluence model, on the hand, is tailored towards the

specific case where the combined control signal should match a desired peak velocity.

Clearly, this model is specialized for a specific criterion, but for our application of fast

human movements, it is sufficient.

5.4.1 Convex Combination Trade-off Control Model

We define the Convex Combination Trade-off Control model as an optimization

problem where we seek a control signal that is a convex combination of two different

control signals and also a “convex” combination of the two different constraints. That

is, when we design a particular control signal according to equation 5.3, we have a

particular set of constraints associated with the particular optimization problem. Solving

a different control signal optimization problem according to equation 5.3 involves a

different set of constraints. Therefore, if we wish to design a convex combination of
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two different control signals, then we also need to consider a “convex combination” of

the two different constraints. More concretely consider the following two optimization

problems:
minimize

x
‖ Dn−1x ‖p

subject to Aeqn−1x = beqn−1

(5.19)

and
minimize

x
‖ Dnx ‖p

subject to Aeqnx = beqn

(5.20)

where Aeqn−1 , beqn−1 , Aeqn , and beqn are defined as before. We wish to now design an

optimization problem where the cost function reflects the convex combination of the

objective functions of equations 5.19 and 5.20 and also reflects a convex combination

of their respect constraints Aeqn−1x = beqn−1 and Aeqnx = beqn . Note that we can write

Aeqn and beqn recursively as:

Aeqn =

[
Aeqn−1

an

]
and beqn =

[
beqn−1

ban

]
(5.21)

where an =

[
(∆T )−(n−1)pn−1 01×(N−(n−1))

01×(N−(n−1)) (∆T )−(n−1)pn−1

]
and ban =

[
x
(n−1)
i

x
(n−1)
f

]
.

Having introduced this notation, we can define the Convex Combination Trade-

off Control optimization problem as follows:

minimize
x

θ ‖ Dn−1x ‖p +(1− θ) ‖ Dnx ‖p +(1− θ)γ ‖ anx− ban ‖2

subject to Aeqn−1x = beqn−1

(5.22)

where θ is the parameter that control the convex combination of the two different control

signals, and γ determines the sensitivity of the augmented constraints. When θ is close to

one, the optimization problem in equation 5.22 approaches the solution of equation 5.19,

while when θ approaches zero, the optimization problem in equation 5.22 approaches

the solution of equation 5.20. The γ parameter must be selected beforehand for the

convex combination of the two different control signals to work. We now give a more

concrete example where a jerk control signal and a snap control signal are combined



69

0 0.5 1
0

0.5

1

Time (s)

P
o
s
it
io

n

0 0.5 1
0

0.5

1

1.5

2

2.5

Time (s)

V
e
lo

c
it
y

 

 

0 0.2 0.4 0.6 0.8
−10

−5

0

5

10

Time (s)

A
c
c
e
le

ra
ti
o
n

0 0.2 0.4 0.6 0.8
−100

−50

0

50

100

Time (s)

J
e
rk

0.0

0.6

0.75

0.85

0.95

1.0

Snap

Jerk

Figure 5.3: The control policies resulting from varying θ from zero to one for the

optimization problem in equation 5.23.

with the model of 5.22. This problem can be written as:

minimize
x

θ ‖ D3x ‖∞ +(1− θ) ‖ D4x ‖∞ +(1− θ)γ ‖ a4x− ba4 ‖2

subject to Aeq3x = beq3

(5.23)

where we have considered the case p = ∞ case for measuring the effort of the jerk

(D3x) and snap (D4x) control signals. Figure 5.3 shows that as θ is varied from zero

to one, the control signal (along with the constraints) are varied from a minimum snap

control model to a minimum jerk. Note that the γ parameter makes varying θ be very

sensitive to switching from a minimum snap to a minimum jerk control signal.
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5.4.2 Optimal Confluence Model

Since studies (as indicated in Chapter 2) have shown that the peak velocity of a

fast movement is an important parameter in determining the characteristics of the dy-

namics, we propose that in addition to using the boundary conditions of the initial and

final positions to also use the desired peak velocity as an additional parameter in deter-

mining the characteristic of the movement. We define the Optimal Confluence model as

an optimization problem where we seek a control signal that is a convex combination

of two different optimal control signals, where the combined control signal has a peak

velocity as close as possible to a desired peak velocity. More concretely, consider the

following two optimization problems:

minimize
x

‖ Dmx ‖p

subject to Aeqmx = beqm

(5.24)

and
minimize

x
‖ Dnx ‖p

subject to Aeqnx = beqn

(5.25)

where Aeqn−1 , beqn−1 , Aeqn , and beqn are defined as before, and m 6= n. Let x∗m and

x∗n be the optimal solutions to equations 5.24 and 5.25 respectively. Define vMax
m ≡‖

D2x∗m ‖∞ and vMax
n ≡‖ D2x∗n ‖∞ (that is, vMax

m and vMax
n are the peak velocities

for x∗m and x∗n respectively). The Optimal Confluence model then finds the optimal

convex combination between the control policies of equations 5.24 and 5.25 so that the

combination is as close as possible to a desired peak velocity. This is done by solving

the following optimization problem:

minimize
w1,w2

(w1v
Max
m + w2v

Max
m − vpeak)2

subject to w1 ≥ 0

w2 ≥ 0

w1 + w2 = 1

(5.26)

where vpeak denotes the desired peak velocity for the combined control signal, and w1

and w2 are the convex combination weights.
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Figure 5.4: The solution to equation 5.3 with n = 5 and and p =∞.

To illustrate the Optimal Confluence model, consider the example where we wish

to combine two control signals that correspond to jerk and crackle (the 5th derivative of

position). We consider an initial position of 0 and a final position of 1 units, and that

the movement starts at rests, and ends at rest. The duration of the movement is 1 second

and the number of samples is 50 (thus, i = 0, 1, . . . , 49). The optimal jerk control policy

for this example was solved before and is shown as the blue curve in Figure 5.1. The

optimal crackle control policy for this example has the solution shown in Figure 5.4

(note that Aeq5 and beq5 equality matrices can be similarly defined as equation 5.14).

The Optimal Confluence model finds the optimal combination of the jerk control signal

shown in blue in Figure 5.1 and the crackle control signal shown in Figure 5.4 to a

desired peak velocity. Figure 5.5 shows the jerk control signal in blue, the crackle

control signal in green, and the desired trial in red. The Optimal Confluence model

(shown in cyan) is the then the optimal convex combination of the jerk and crackle
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crackle (green) control signals to be as close as possible to the desired peak velocity of

a given movement dynamics (shown in red).
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control signals to be as close as possible to the desired velocity profile.

5.5 Notes

Chapters 5, in part, have been submitted for publication of the material. The

dissertation author is the primary investigator and author of this material.



Chapter 6

Confluence

We propose an optimal control model of human movement that combines mul-

tiple control policies and has direct ties to neuroscience. We model optimal control

signals generated by disparate populations of neurons that together drive the CNS to

generate movement. These signals originating from different parts of the nervous sys-

tem are combined in varying ratios to achieve varied movements. Each control signal

is optimized with respect to a cost function. Combinations of control signals based

upon different cost functions result in different control strategies. The confluence of

these control signals allows for greater variability in the combined signal and leads to

the variability observed in human movement. We cite examples of how elements of the

vertebrate motor system map directly to our mathematical model. By relating the model

to anatomy and physiology, we narrow the gap that typically exists between optimal

control theory and the functioning of the motor system.

6.1 Introduction

How humans achieve graceful and effective movement is largely unknown. The

neuroscientific literature suggests that the control signals emanating from disparate parts

of the nervous system are combined in varying ratios to achieve a vast array of move-

ments. We propose that different weightings of these signals lead to different movement

characteristics. Each control signal emanating from a given population of neurons has

been optimized via evolutionary processes with respect to a cost or reward function or
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functions. Our new optimal control paradigm utilizes multiple cost functions (that are

not necessarily composite) that reflect the diversity of tasks and environments biologi-

cal systems encounter over the course of their evolution. When applying optimization

theory to biological motor control, two questions arise:

1. What control policy (or policies) does the motor system use to achieve move-

ments?

2. How are control policies implemented by the nervous system?

6.1.1 What Policy or Policies?

An optimal control policy is a strategy that is optimal in the control of a sys-

tem (such as a biomechanical system, a robotic arm, etc.) with respect to minimiz-

ing (or maximizing) a specific cost (or reward) function. Techniques from optimal

control theory that utilize a single cost function to arrive at a control policy include:

[12, 69, 71, 62, 13, 42]. These policies are only optimal with respect to a the single cost

function each respective author has proposed.1

Here.

Optimal control cost functions that are typically considered involve either a sin-

gle criterion or trade-offs between several criteria (e.g. find a policy to get to a destina-

tion as fast as possible while consuming the least amount of fuel). One of the earliest

applications of optimal control to human movement is the work of Flash and Hogan [12]

where the cost function has the effect of minimizing “effort.”2 The control signal which

Flash and Hogan proposed is a signal that corresponds to the third derivative of position

of the hand (also known as jerk) during a point-to-point arm reaching task. Other control

signals and minimum effort control problems have been considered. For example, [69]

considered torque change as a control signal while Ben-Itzhak and Karniel [42] consid-

ered acceleration. While the mathematical formulations of more recent optimal control
1In finding an optimal control policy, in addition to the cost function, the set of constraints in the

optimization problem also plays a major role in determining the characteristics of an optimal control
policy. Details of the constraint set used in this work are discussed in the methods section.

2A “minimum effort” control problem is an optimization problem that seeks a control policy that
meets the desired set of constraints of the problem and uses the smallest “size” or “effort” of the control
signal [43]. The mathematical definition of measuring the size of a control signal can lead to insights in
biological control as proposed in Chapter 4.
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models (such as [62, 13, 72]) may appear fundamentally different from the approach of

Flash and Hogan, they are in fact extensions of the minimum effort type control problem

that Flash and Hogan proposed. These works employ a single cost function that trades

off between minimizing effort (the control signal) and other criteria such as end-point

accuracy or stability.

To the best of our knowledge, all applications of optimal control to human move-

ments have consisted of a single proposed cost function3 producing a single control

signal. In contrast, biological systems have many interacting subsystems composed of

disparate structures that coevolved together, each system forged by a different cost or

reward function. Likewise, it is reasonable to assume that most elements of the motor

system (e.g. spinal cord, cerebellum, brain stem motor nuclei, motor cortex) did not

evolve based on a single cost function, but instead each coevolved utilizing different

cost functions.

6.1.2 An Approach to Modeling the Motor System Using Optimal

Control: The Optimal Confluence Control Framework

Despite optimal control theory’s great promise to shed light on biological sys-

tems that have been forged by evolutionary processes, researchers that utilize this tech-

nique typically do not attempt to connect the mathematics of their models with neuronal

mechanisms [60]. The main contribution of this work is the explanation we offer re-

garding the highly plausible implementation of optimal control in the vertebrate motor

system. In doing so, we address the second question regarding applying optimization

theory to biological motor control, “How are control policies implemented in the ner-

vous system?”

There is abundant evidence that heterogeneous neural control signals originating

in disparate parts of the motor system are combined (see Discussion section for further

details and see Figure 6.1). This combination implies that the animal motor system can

trade-off between various control policies. We propose a novel framework that consists

3Typically, a cost function that trades off between various criterion is referred to as a composite cost
function. While a composite cost function contains several criteria, they are still encapsulated by a single
function.
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Figure 6.1: Figure adapted from [73].

of multiple control policies that are each optimal with respect to different cost functions.

We call this formulation an “Optimal Confluence” control framework and assert that it

is a step towards applying optimal control theory to understanding biological systems.

Although this formulation is mathematically and fundamentally different from

previous optimal control models, any set of optimal control models can be adapted to be

implemented within the Optimal Confluence framework. The key difference between

our framework and traditional optimal control policies is the way in which trade-offs

between various cost/reward goals are achieved (e.g. [70] trades-off between end-point

position accuracy, end-point stability, and effort). Any set of cost functions can be

chosen, and a separate control signal/policy is pre-optimized for each. Trade-offs are

achieved by combining the resulting optimal signals in different ratios to produce differ-

ent types of movements. The Optimal Confluence control problem is to find the optimal

combination of these different control signals for the particular movement considered.

Our model draws its inspiration from the vertebrate nervous system and the evo-

lutionary forces that presumably shaped its sub-components and neural control signals.

Real-time optimization performed by the nervous system during movements seems com-

putationally implausible. With this in mind, our approach posits that the optimization of

neural control signals was accomplished over millennia via evolutionary processes, and

that the only real-time neural computation performed during a movement resembles a
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linear combination of neural signals.

6.1.3 An Application of Optimal Confluence Control for Minimum

Effort Policies: JCOC

The Optimal Confluence paradigm provides a universal framework for exploring

the control of movements by the central nervous system by allowing for multiple control

policies of any type to be combined. The remainder of this paper will discuss the partic-

ular control problem of making fast point-to-point reaching movements. In particular,

we utilize the Optimal Confluence framework to implement a combination of minimum

effort control policies that minimize jerk and crackle (5th derivative of position) and

combine the resultant signals to drive a system. The Jerk-Crackle Optimal Confluence

model (JCOC) demonstrates the ability of the Optimal Confluence paradigm to model a

basic human movement.

One of the characteristics of fast human arm movements that Flash and Hogan

and others have defined is the ratio of peak velocity to average velocity of the hands

movement. We use r to refer to this value:

r =
peak velocity of movement

average velocity of movement

Minimum effort models typically have a rigid value for r that does not change.

An inspection of our human fast hand movement data reveals that r varies from trial to

trial in ways that are not captured by minimum effort control policies. Flash and Hogan’s

data was based on one subject’s movements over thirty trials and yielded an r value of

1.805 with a standard deviation of 0.153. They chose jerk as the derivative of position to

minimize in part because their minimum jerk model predicts an r value of 1.875, very

close to their experimental data [12]. However, studies with more extensive data show

that models based on minimum snap fit the data better than those based on minimum

jerk [74, 75, 76]. Yet, other studies continued to find that minimum jerk models were a

better fit to the data [77]. Other studies still use jerk minimization but admit that snap

minimization is a better fit in many cases [78]. A comparison of a minimum snap model

vs a minimum jerk model against our data supports the notion that minimum snap is a

better fit (see Figure 6.4). Scientific studies that are tangentially related to models of
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human movement accept the Flash and Hogan minimum jerk model as baseline truth,

and use this to bolster the arguments they are making [79, 80].

There is a reason for this confusion. All of these models fit the data only on

average, and do not account for the variability of r observed across trials. Often, no

model in the minimum effort family provides a good fit because a trial’s r value falls in

between that generated by two of the minimum effort models (see Figure 6.2). The ap-

plication of our framework to minimum effort control problems, JCOC, does not suffer

from these deficiencies. The confluence of pre-optimized control signals based upon the

minimization of multiple derivatives of position allows for a flexible r value that fits data

better not just on average but on a trial to trial, subject to subject basis (see Figure 6.3).

We propose that in this way, the nervous system combines many policies to achieve the

variability observed in human movement.

We use sparse control policies4 in this work as an example to showcase the ap-

plication of the confluence of multiple optimal control signals. We consider two control

signals that are optimal with respect to a cost function based on minimizing two high-

order derivatives of the position of the end-effector (hand). One control signal corre-

sponds to jerk (this is the same control signal that Flash and Hogan used) and another

corresponds to the 5th derivative of position, also known as “crackle.” Each of these

control signals is minimized, as measured by the infinity-norm, to result in a sparse con-

trol signal for an example of minimizing a control signal with the infinity-norm). The

minimum jerk control signal has an r of 1.81 while the minimum crackle control signal

has an r of 2.09. The combination of these control signals yields an r between these two

extremes, a range in which most fast reaching movements lie. Our Optimal Confluence

framework combines the control signals in such a way that the combined control signal

has an r as close as possible to the trial’s r. See Chapter 5. We remind the reader that

any set of control policies can be plugged into our proposed framework, such as those

proposed in [62, 13]. We choose cost functions related to the derivatives of position be-

cause there is neuroscientific evidence that such signals exist in many parts of the motor

system.

4A sparse control policy is a control policy that uses a sparse signal (that is, the signal is characterized
by a small number of spikes). See Chapter 4 for more details.
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Figure 6.2: The green and blue curves correspond to the minimum jerk and minimum

crackle velocity profiles respectively. The red curve is the velocity profile of a give trial.

6.2 Results

The data set used in this study was acquired from Amir Karniel at the Ben-

Gurion University of the Negev. The recordings include velocity and position profiles

of short point-to-point movements made by five individuals and recorded using a ma-

nipulandum. Each subject was instructed to make a fast movement between two of three

targets arranged in an equilateral triangle, 10 cm apart. The movements lasted a third

of a second ±50 ms. A more formal description of the data collection methods can be

found in Mussa-Ivaldi and Karniel’s work [40] or see Chapter 3.

The green and blue curves in Figure 6.2 result from minimization of jerk and

crackle (respectively) with the same and norm. As can be seen in the figure the maxi-

mum velocity achieved by the crackle model is higher than that of the jerk model. The

red line above is a typical profile from the data set of actual human movements and lies

in between the two models. This typical case demonstrates the need for a more advanced

model since neither jerk nor crackle minimization (nor any of the other derivatives) can

accurately describe the human movement data. Jerk and crackle minimization were cho-

sen for optimal combination because their velocity profiles lie near the lower and upper

bounds of peak velocity of the data set.
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Figure 6.3: Plotted in blue is the peak velocity of each trial of subjects A-E. Plotted in

red is the average peak velocity of each subject. Solid green and orange lines are the

peak velocities corresponding to jerk and crackle minimization respectively.

The ratio r of a given model is sensitive to several factors. Both the minimized

derivative and norm of minimization can influence r see table of r vs derivative of min.

A period of time lies before and after each trial movement that are unimportant for this

investigation. An automated process of selecting the ballistic portion of the movement

was developed (see methods). This process can introduce error into the calculation of

trial r values by way of altering the average velocity of a trial. To avoid this error, and

since the distance and duration of the movements in this data set are fairly consistent, we

use peak velocity for the the optimization procedure in this study (see methods section).

Figure 6.3 shows that the mean peak velocity for each subject is different and does not

necessarily correspond to an r value of 1.805 as reported by Flash and Hogan. A one-

way ANOVA test shows that the mean peak velocity for each subject is indeed different

(with p < 0.001), hence we can conclude that r is not an invariant characteristic of

fast human arm movements. Furthermore, a principle component analysis of velocity

profiles for single subjects yields two clusters. One cluster corresponds to diagonal

movements while the other corresponds to horizontal movements. This further supports

the idea that different control signals are needed to control movements with different
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smaller error than all models shown with p < 0.001.

dynamics.

6.2.1 Evaluation of Model

Mean squared error (MSE) of the velocity profile of the model versus the trial’s

was used to compare the accuracy of the models discussed here. In Chapter 3 we demon-

strated that using the infinity-norm instead of the 2-norm improves accuracy of the

model, as can be seen in Figure 6.4, and for this reason we chose to continue to use

the infinity-norm (see also methods). While the accuracy improvements between Flash

and Hogan’s model and our previous work are significant, the JCOC model based on

jerk and snap significantly outperforms both models. As seen in Figure 6.5 the JCOC

model has a significantly lower MSE than one or both of its constituent models in almost

all cases.
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6.3 Discussion

The Optimal Confluence paradigm outlined in this work creates a bridge be-

tween mathematical models of movement and known biological systems. It emphasizes

the role of position and its derivatives as neural motor control signals. Neuroscientific

examples of such signals driving motor control are plentiful. This new paradigm also

allows for the combining or confluence of such neural signals, as we will show, a phe-

nomenon witnessed throughout the nervous system.

6.3.1 The Role of Neural Integration and the Derivatives of Position

in Motor Control

We posit that the majority of animal species that have a sense of position, ve-

locity, acceleration, etc., have an evolutionary advantage. A drosophila can sense the

direction from which a threat is approaching (change in position). The positional infor-

mation directly influences the fly’s motor system as it positions its body optimally for

a quick escape in the opposite direction [81]. A cheetah would not be able to change

its velocity in a manner needed to catch its prey if it had no notion of acceleration. The

cheetahs intended magnitude of velocity change must be encoded in some way within

the its nervous system.

More generally, if an animal species is to avoid extinction, possessing some

neural representations of basic Newtonian variables is evidently advantageous and nec-

essary in order to navigate effectively. Thus, these neural representations must influence

the motor systems of these animals. Animals without these abilities have more difficulty

navigating their environments in order to find food, escape predators, etc. In contrast,

the majority of surviving species have these capabilities.

We have proposed that neural signals representing higher derivatives of position

are central to vertebrate motor control. These signals appear in numerous contexts.

For example, in the vestibular system, the semicircular canals and the otolith organs

both produce signals coding for derivatives of the position of the head [73, 82, 83, 84,

85, 86, 87] which initiate changes in eye position and the muscles that control body

stability. Other examples of position and its derivatives contributing to the control of
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motor function include signals from muscle spindles which encode relative position and

velocity of the limbs and body, or signals from Golgi tendon organs which encode force

exerted by muscles (with an obvious relationship to acceleration) [88, 89]. All of these

signals converge upon spinal circuits and influence motor control.

The implementation of the Optimal Confluence paradigm demonstrated in this

work treats higher order derivatives of position as control signals.5 As outlined above, it

is advantageous for animal nervous systems to have access to information representing

position and its derivatives. In order to convert a control signal representing a higher

order derivative to a signal representing a lower derivative, all that is necessary is the

operation of integration (see Figure 6.1). There is evidence for the existence of multiple,

disparate classes of neural mechanisms capable of approximating mathematical integra-

tion in humans and other animals. Examples include integrators in entorhinal cortex

[90], hypothesized neural integration in head direction cells [91, 92], and integration in

the oculomotor system [73].

For example, the oculomotor system6 consists of several subsystems, many of

which use neural integration mechanisms [94, 95, 96, 97]. Here we choose to exam-

ine the vestibulo-ocular reflex. The semicircular canals of the inner ear detect angular

acceleration of the head [87]. Yet, the signals measured in the nerve emanating from

these organs code for velocity, not acceleration. Further downstream in the system,

neural signals coding for eye position emerge. These signals drive the alpha motor

neurons controlling the eye muscles to move in the opposite direction of head move-

ment in proportion to the velocity of the head movement, and then hold the new eye

position, keeping the eyes on target [73]. Robinson was one of the first to realize that

integration (in the mathematical sense) must be occurring [57]. The existence of neural

integration mechanisms in the oculomotor system is now well accepted [73, 98, 99].

Two brain stem nuclei, the interstitial nucleus of Cajal (INC) and the nucleus prepositus

hypoglossi (NPH), are key in the vertical and horizontal (respectively) oculomotor neu-

ral integration systems [94, 95, 97, 96]. This system uses signals representing position

5Any type of control signal can be used within the framework, this is simply one instance of the
framework.

6The oculomotor system is a system widely studied in order to gain insight into the functioning of the
motor system in general [93].
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and its derivatives to drive oculomotor function. All the systems mentioned earlier pro-

vide a biological substrate for the computation of the dynamic variables found in many

mathematical models of animal movement [12, 62, 42, 69, 70].

6.3.2 Confluence of Neural Signals

Aside from neural integration, the oculomotor system exhibits a confluence of

neural signals working together to achieve precision motor control. For example, the

otolith organs produce signals representing linear acceleration. Similar to the role of

the semicircular canals in the VOR, the otolith organs also play a role in eye control

[73, 100]. The VOR and the otolith organs, along with other oculomotor subsystems

all act in concert in order to control ocular motor neurons.The same neural integration

nuclei involved in the VOR system (INC and NPH) are also influenced by signals from

the otolith organs, as well as signals representing volitional control of the eyes, and by

signals that are step-like which originate from premotor neurons in the rostral midbrain

to produce saccades [93]. When taken together, we see a confluence of neural signals

from different areas of the brain converging, combining and cooperating in order to

produce numerous types of eye movements such as smooth tracking of moving objects,

saccades of varying magnitude, vergence, target fixation during head movement, etc.

The oculomotor system is not controlled by a single control signal, but rather combines

different signals in varying degrees depending on the desired behavior [93].

Limb movement is also achieved via a confluence of neural signals. Betz cells

originating in motor cortex converge directly on alpha motor neurons in the spinal cord

while other projections from motor cortex and brainstem influence spinal alpha and

gamma motor neurons only indirectly, e.g. through various layers of the Rexed lam-

ina, before the final signals reaches alpha and gamma motor neurons in the spinal cord

[101, 102]. Additionally, spinal circuitry and alpha motor neurons receive signals from

muscle spindles and Golgi tendon organs which directly and indirectly influences motor

control [89]. All of this evidence for the combination of multiple cooperating signals

supports the need for a new optimal control paradigm that more directly reflects these

observations of the vertebrate motor system.
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6.3.3 Motor Primitives and the Optimal Confluence Paradigm

Motor primitives are loosely defined as a group of simple movements that can

be combined to create more complex movements. Evidence points to the existence of

“motor primitives” located in the spinal cord [7, 103, 39]. The most well known are so

called pattern generators that produce oscillatory patterns in animals which are central

to locomotion. The neural machinery that accomplishes this appears to be located in the

spinal cord as it does not require supraspinal input in order to produce locomotion [8].

An experiment by Giszter demonstrated the existence of limb position motor

primitives in the spinal cord of frogs [7]. A frog’s limb was moved to various starting

positions. The frog’s spinal cord is then stimulated. Stimulation of the same location in

the spinal cord caused the frogs limb to produce force toward the same point in space,

regardless of the limb’s starting position. To accomplish this, the same spinal stimulation

necessarily activated muscles in different orders and in varying degrees depending on

the initial position of the limb. This result indicates that locations in the spinal cord

are “tuned” for locations in space regardless of the organisms initial limb position. A

variation on the experiment showed that simultaneous excitation of multiple areas of

the spinal cord (multiple motor primitives) produce some combination of effects not

witnessed when either one area or the other was stimulated in isolation. The force

(represented by vectors) created by the combination of the motor primitives was the

vector sum of each of the forces generated by each primitive on its own. The two

primitives were combined to create a force in a new direction with a new magnitude.

This concept of combining “motor primitives” (also called muscle synergies) has been

discussed frequently in the literature [104, 105, 106, 10].

6.4 Notes

Chapters 6, in part, have been submitted for publication of the material. The

dissertation author is the primary investigator and author of this material.



Appendix A

Sparse Optimal Fitlers

A.1 Overview

Finite Impulse Response (FIR) digital filters are often used in digital signal pro-

cessing due to their guarantee of stability, the ease of ensuring linear phase delays, and

simplicity in implementation[107]. Implementing FIR filters involves a series of delays,

multiplications, and additions of the input signal. The order of the filter is determined

by the highest delayed element that has a non-zero coefficient. For example, we refer to

the following filter

H(z) =
k=N∑
k=0

akz
−k

with aN 6= 0 as an N -th order FIR filter. Since a major set of computations involved in

implementing FIR filters are additions and multiplications, here we define the FIR filter

complexity as the number of non-zero coefficients in the filter (the coefficients in an FIR

filter represent a weight assigned to a delay element of the input). Clearly, for the N -th

order FIR filter above, if all filter coefficients are not zero, then the complexity would

be N + 1.

In practice, the coefficients of the FIR filter must be chosen appropriately to

achieve a set of desired goals that depend on the application. The selection of these

coefficients is often done algorithmically. For example, the Parks-McClellan algorithm

is popularly used to select FIR filter coefficients that are close to a desired frequency

response (such as lowpass, bandpass, etc.)[107]. As another example, the FIR filter may

88
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be designed to maximize the signal-to-noise ratio (SNR), that is we we wish to improve

the visibility of a possibly random signal corrupted with noise[108, 109, 110]. In the

context of detection theory such filters are often called “Matched Filters.”

Here we are interested in designing filters that not only meet a certain set of spec-

ifications (desired frequency response or maximizing SNR), but are also sparse. That

is, we are interested in designing filters that are of high order N but exhibit low com-

plexity M where M � N . While in general these sparse filters may be sub-optimal,

their significant reduction in complexity offer an attractive advantage in ease of imple-

mentation. In our discussion we focus on optimal filters that maximize SNR. It will be

shown that the solution to maximizing the SNR when the desired signal is corrupted

with white Gaussian noise is to find the eigenvector of the signal autocorrelation matrix

with the largest eigenvalue (the classic “Matched Filter” solution). We thus seek to find

an eigenvector of the autocorrelation matrix that is also sparse.

Recently, Oppenheim and co-authors proposed linear programming algorithms

for the design of sparse filters with a desired filter specification[111]. Thus their algo-

rithm is limited to filters whose desired filter specifications is known a priori. While

the algorithm we propose is a quadratic program, our algorithm is general enough to

“sparsify” any set of FIR filter coefficients. This is first done by computing the filter co-

efficients using the appropriate algorithm (the eigenvector corresponding to the largest

eigenvalue of the autocorrelation matrix in the case of maximizing SNR), followed by

finding a sparse approximation to the designed filter. We will describe this method in

detail in section 2 and show simulation results in section 3. We show future directions

in the conclusion section.

A.2 Problem definition and solution

We wish to design a sparse FIR filter that improves the visibility (that is, the

SNR) of a signal s[n] corrupted with white Gaussian noise. Furthermore, we assume

that the signal s[n] is stationary, zero-mean, and its autocorrelation matrix R is known.

This signal is corrupted with white Gaussian noise w[n] with variance σ2
w. This resultant

signal we denote as x[n], that is x[n] = s[n] + σww[n]. We then proceed to filter x[n]
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Figure A.1: Adapted from Moon and Stirling[112]

with an FIR filter of length N denoted by h ∈ RN that produces the output y[n]. This

process is illustrated graphically in Figure 1. We select the FIR filter coefficients h such

that the output signal y[n] recovers x[n] (with a delay introduced by the filter).

A.2.1 Optimal Filter Formulation

The SNR at the output of the FIR filter is as follows (the details can be found in

the end of this section):

SNR =
hHRh
σ2
whHh

(A.1)

where (·)H denotes the Hermitian operation. The SNR in Equation (A.1) is also referred

to as the Rayleigh quotient[113]. The FIR filter coefficients h are unknown, and we

would like to select them in such a way that they maximize the SNR in Equation (A.1).

For ease of notation, we consider the real case and so the Hermitian operator will be

denoted with the transpose operation (·)T . To avoid a trivial or non-volatile solution,

in addition to maximizing Equation (A.1), a constraint is introduced on the filter coeffi-

cients h as follows:

h∗ = arg max
h
{hTRh :‖ h ‖2= 1} (A.2)

where ‖ · ‖2 denotes the l2 norm of a vector (which can be computed as ‖ h ‖2= hTh)

and we can drop σ2
w since it is a constant.

By the Courant-Fischer Theorem[113] the solution h∗ to Equation (A.2) is the

eigenvector with the largest eigenvalue of the autocorrelation matrix R. The FIR filter

h∗ is optimal in the sense that it maximizes the SNR in Equation (A.1) from all family

of filters h that are from the set {h :‖ h ‖2= 1}. This filter, however, is in general not

sparse. In what follows we propose a method of finding a filter that is close to the opti-

mal filter h∗ but is also sparse (many coefficients are zero). While the sparse filter may
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be sub-optimal in the sense that it is not the solution to Equation (A.2), the low computa-

tional cost of the filter is what we are interested in. Our method introduces a parameter

that can be used to trade-off between the optimality as defined in Equation (A.2) and

sparsity.

A.2.2 Sparse Filter Formulation

In this section we propose a method of approximating the optimal filter h∗ as

found by Equation (A.2) with a sparse representation. This problem is akin to finding

a sparse vector representation[114, 115, 116] and we propose the following program to

approximate a sparse eigenvector:

minimize
h

‖ h∗ − h ‖2

subject to Card(h) = L
(A.3)

where Card(·) is the cardinality function (the function that determines the number of

non-zero elements in a vector), and L ∈ N with L ≤ N (with the case L = N yielding

the same solution in Equation (A.2)). We can interpret the objective function ‖ h∗−h ‖2
in Equation (A.3) as a measure of the closeness of the sparse filter h to the optimal FIR

filter h∗ while the single constraint function Card(h) = L restricts the number of non-

zero coefficients the sparse FIR filter h contains. Clearly, if L = N the sparse filter

will equal the optimal FIR filter (that is, h = h∗), and the optimal value of the objective

function in Equation (A.3) will be zero.

A different but similar way to finding the sparse filter is to consider the following

nearly-equivalent program:

minimize
h

‖ h∗ − h ‖2 +γCard(h) (A.4)

where γ ≥ 0 is a tradeoff parameter that the user selects. The interpretation of solv-

ing Equation (A.4) is that we trade off between the closeness to the optimal filter h∗ as

measured by ‖ h∗ − h ‖2 with the sparsity of the filter h as measured by Card(h). The

paramter γ is our tradeoff parameter with γ = 0 yielding the same solution as the opti-

mal filter (but resulting in no sparsity) and larger γ placing more emphasis on improving

sparsity. In practice one should vary γ to find the appropriate tradeoff for the specific
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application. The equivalent tradeoff can be accomplished in Equation (A.3) by varying

the sparisty constraint value L. While solving either Equation (A.3) or Equation (A.4)

will yield sparse approximations, finding the optimal sparse solution is not trivial since

the computations involve a combinatorial search space which can be prohibitively large.

We hence revert to approximate solutions that can be solved efficiently.

Recent sparse methods propose to approximate the cardinality function with the

l1 norm, since the l1 norm is the convex hull of the cardinality function (that is, the l1
norm is the closest convex function to the non-convex cardinality function). While this

may seem to be a poor approximation and it is suboptimal to the cardinality function,

it often yields solutions that are sufficiently close to the desired design parameters and

the gain in computability is an attractive advantage to the small loss in optimality. Thus,

in this paper we find sparse eigenvector approximations to the optimal FIR filter h∗ by

solving the following convex optimization program:

minimize
h

‖ h∗ − h ‖2 +γ ‖ h ‖1 (A.5)

where again γ ≥ 0 is the tradeoff parameter. As in Equation (A.4), the parameter γ

trades off between the closeness of the filter to the optimal FIR filter h∗ and the “spar-

sity” of the filter as approximated with the l1 norm ‖ h ‖1. This method is very similar

to LASSO regression as proposed by Tibshirani[117].

The objective function in Equation (A.5) is convex since l2 and l1 are both convex

functions (any norm is convex) and the positive linear combination of two convex func-

tions is also convex[118]. The appeal of a convex optimization problem is the guarantee

in finding globally optimal solutions. This makes the issue of developing solvers to be

simple. In the case of Equation (A.5), we can actually solve this using an off-the-shelf

quadratic program (QP) solver that solves the equivalent program:

minimize
h

hTh− 2h∗Th

subject to − δ ≤ hi ≤ δ, i = 1, . . . , N
(A.6)

where here the role of δ ≥ 0 is very similar to the tradeoff parameter γ. Equation (A.6)

is referred to as a QP, since the objective function is of quadratic form in the unknown

variable h and the constraints are linear inequalities.
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Figure A.2: Original and Corrupted Signal

A.3 Simulation Results

In this section we report results on three different experiments. In the first exper-

iment we are interested in improving the detection time of switching states in a binary

signal. In the second experiment we are interested in improving the visibility (that is the

SNR) of a known sinusoid corrupted with white Gaussian noise, and in the last experi-

ment we consider improving the visibility of a random signal realization corrupted with

white Gaussian noise. We compare the performance of the traditional optimal filter (the

Matched Filter) with the sparse filter we proposed in the previous section. We also com-

pare the complexity of the traditional filter with the sparse filter (recall that we define

complexity as the number of non-zero coefficients in the FIR filter).

A.3.1 Detection of Switching States

A given realization of the signal of interest is shown in Figure A.2(a): a binary

signal with two states in {+1,−1}. In this problem we are interested in detecting ac-

curate switching times between the two states. The corrupted signal that we are given,

however, is given in Figure A.2(b). Clearly, estimating the switching times in this cor-

rupted signal is difficult. Estimating the original signal from this corrupted signal using

the traditional optimal (matched) filter is shown in Figure A.3(a), the same estimation
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Figure A.3: Filter Outputs. Note that an appropriate scaling amplitude should be

applied after filter to recover the appropriate amplitude of the original signal. However,

in this problem we are most interested in switching times, so this step was not taken.
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done using the sparse filter is shown in Figure A.3(b). While the output of the tradi-

tional optimal filter shown in Figure A.3(a) may be less noisy, we argue that detecting

the switching times between the states is more accurate using the sparse filter in Fig-

ure A.3(b).

The filter coefficients for the traditional optimal filter and the filter coefficients

for the sparse filter are shown in Figures A.4(a) and A.4(b) respectively. Clearly, the

spare filter has a much lower complexity (by a factor of 10) than the traditional filter (the

sparse filter has a complexity of 77 while the full filter a complexity of 800). From these

figures we can conclude that the reason the sparse filter is not only simpler but performs

better is because the traditional filter does too much averaging. In the case of slowly

varying signals, this would be beneficial, but when signals have sharp instantaneous

changes (as is in the case of the binary signal considered here), too much averaging

results in losing temporal resolution in the state changes.

A.3.2 Estimating Sinusoidal Signal Corrupted in White Gaussian

Noise

In this section we consider a sinusoid buried in white Gaussian noise. Table A.1

compares the performance of three different filters for estimating the sinusoid corrupted

in white Gaussian noise. The “full” filter is the optimal filter with complexity 200. The

“sparse” filter is the sparse representation of the “full” filter but with a complexity of

16. The “simple” filter is the optimal filter but with the same complexity as the “sparse”

filter. Clearly, the optimal “full” filter with complexity 200 results in the best estimation

(smallest Mean Squared Error or MSE). But it is interesting to note that while the “sparse

filter” has the same complexity as the “simple” filter, it has a much smaller MSE than

the “simple” filter. This is highly desirable, since the “sparse” filter has a much lower

complexity than the “full” filter, but also much better at estimating than the “simple”

filter with the same complexity. Note that all these results are extremely significant at

p < 0.0001 using a Wilcoxon rank sum test.
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Sinusoid Estimation
Filter Type MSE ± SD Complexity

Full 1.78× 10−4 ± 3.03× 10−6 200
Sparse 3.97× 10−4 ± 2.24× 10−6 16
Simple 4.55× 10−4 ± 2.89× 10−6 16

Table A.1: Estimation of Sinusoidal Signals

A.3.3 Estimating Randomized Signal Corrupted in White Gaussian

Noise

Table A.2 similarly compares the performance of the three different filters for

estimating a random signal (a realization of a Gaussian process) corrupted with white

Gaussian noise. Again, the “full” filter is the optimal filter with complexity 200, the

“sparse” filter is the sparse representation of the “full” filter but with complexity 4, and

the “simple” filter is the optimal filter but with the same complexity as as the “sparse”

filter. As shown in the table, in this case the “sparse” filter has the smallest MSE, even

better than the “full” filter with complexity 200. The reason for this may be similar

to those reasons discussed in section 3.1. That is, the “full” filter performs too much

averaging, and over-averaging for signals that change values quickly (as is the case of

the random signal), the resolution of the signal is lost. Again, the results reported in this

table are extremely significant at p < 0.0001 using a Wilcoxon rank sum test.

Random Signal Estimation
Filter Type MSE ± SD Complexity

Full 2.13× 10−3 ± 3.93× 10−6 200
Sparse 1.8× 10−3 ± 1.73× 10−6 4
Simple 2.3× 10−3 ± 4.04× 10−6 4

Table A.2: Estimation of Random Signal
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A.4 Conclusions and Future Work

In this paper we proposed developing FIR filers that are optimal in improving

SNR and are also sparse. We proposed developing a method by first designing the

optimal filter (by maximizing the SNR resulting in finding the eigenvector with the

largest eigenvalue of the signal data correlation matrix), and then to “sparsify” this filter

by finding a set of FIR filter coefficients that are close to the optimal filter but are also

sparse. We measured sparsity by using an l1 norm approximation to the cardinality

function. While such a method is only an approximation to the cardinality function, this

optimization procedure is convex (guaranteeing a global optimal solution) and can also

be solved efficiently with off-the-shelf solvers (when the problem is posed as a quadratic

program such as in Equation (A.6).

We demonstrated three experiments, one involving improving the detection of

switching times of states in a binary signals, and two experiments in estimating signal

corrupted with white Gaussian noise. These experiments illustrate that the sparse filter is

an attractive option at significantly improving the estimation with a low complexity FIR

filter. In certain cases, the spare filter will even outperform the high-order FIR optimal

filter with high complexity. While in this paper we focused on developing optimal FIR

filers for improving SNR, we propose for future work in developing sparse FIR filters

that are close to a given desired filter specification. We propose that our method of

finding a sparse eigenvector for optimal SNR filters can be also extended to finding a

sparse eigenvector for a given filter specification using the eigenfilter approach proposed

by Nguyen[119].

A.5 Maximum SNR filters

In this section we show the derivation for the optimal filter that maximizes SNR

(also known as the “Matched Filter”). We closely follow the formulation taken in Moon

and Stirling[112]. Consider the signals as described in Figure 1. Let s[t] =
(
s[t], s[t −

1], . . . s[t−N +1]
)T be the signal input, and let x[t] =

(
x[t], x[t−1], . . . x[t−N +1]

)T
be the input to the filter h ∈ RN . The output of the filter at time sample t is y[t] = hTx[t].

The output power of the filter is thus
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E{y[t]2} = E{hTx[t]x[t]Th} = hTE{x[t]x[t]T}h = hTRh + σ2
whTh (A.7)

where E{·} denotes the expectation operator, R is the data autocorrelation matrix com-

puted by E{s[t]s[t]T}, and σ2
w is the noise variance. The first term in Equation (A.7) is

the power due the signal alone, and the second term is the power due to the noise alone.

Thus, the SNR (signal power to noise power ratio) can be written as

SNR =
hHRh
σ2
whHh

A.6 Notes

Appendix A, in full, is a modified reprint with minor revisions of the material as

it appears in SPIE. Yazdani, M. and R. Hecht-Nielsen. “Optimal filters with heuristic

1-norm sparsity constraints.” Proc. SPIE 8137, 813709, 2011.
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