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ABSTRACT OF THE DISSERTATION 

 

Handling Incomplete High-Dimensional Multivariate 

Longitudinal Data with Mixed Data Types by 

Multiple Imputation Using a 

Longitudinal Factor Analysis Model 
 

 

by 

 

Xiang Lu 

Doctor of Philosophy in Biostatistics 

University of California, Los Angeles, 2016 

Professor Thomas R. Belin, Chair 

 
 
 

We developed an imputation model solving the missing-data problem in a high-

dimensional longitudinal data set with mixed data types (continuous and ordinal) based on a 

factor-analysis and a linear mixed-effect model. Markov Chain Monte Carlo is used to fit the 

model, drawing parameters, latent variables and missing values iteratively. The imputation 

model is written in an R package. 

We tested the newly developed imputation model using simulated data sets under 32 

scenarios and 2 hypothetical missing-data mechanisms. Two competitive models PAN (Multiple 
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Imputation for Multivariate Panel or Clustered Data) and MICE (Multiple Imputation using 

Chained Equations)  are also tested in the same way for comparison, to show the necessity of 

addressing the high-dimension and mixed continuous and ordinal data type issues. 

 Part of the effort we made is to accelerate the simulation using C++ (a low-level language) 

and the parallel computing by the Hoffman 2 Cluster. Compared to running the simulation 

evaluation in an R program on one single computer, the program we use for the simulation 

evaluation runs approximately 600 times faster.  

 We also tested the robustness of the newly developed imputation model in the cases of 

violation of assumptions. We found that assuming less than the true number of factors 

corresponds to invalid inferences, while assuming more than that corresponds to reasonable 

inferences. We also found that only omitting very strong underlying quadratic trends of the 

factor scores hurt the inferences based on the imputation. In the most unfavorable scenario we 

tested, when the underlying quadratic coefficient is as large as .8 of the linear coefficient, the 

actual coverage rates of 95% interval estimates start falling below 90%. 

 An application to a dentistry data is shown, in comparison to the PAN, NORM and a fore 

runner (Wang 2002) of the newly developed method.  
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Chapter 1 

Missing Data in Longitudinal Studies 

 

 Health-science research often focuses on whether an intervention, such as a drug or 

another form of treatment, is effective. Cross-sectional data are not ideal for answering such 

questions. A better approach is to compare the same subject over two or more time points, which 

introduces longitudinal data. A comparison of the difference in outcomes before and after 

exposure to an intervention can provide a foundation for inferences about intervention effects. 

Additional measurements over time can enhance the ability to draw inferences and to provide 

better scientific knowledge. 

 High-dimensional data sets naturally arise in practice, partly as a consequence of the 

rapid development of information technology. Modern data sets could have dimensions hundreds 

of times larger than typical data sets from a few decades ago, for equal or lower cost. More 

importantly, when we recruit a group of patients for a study in health sciences, it is natural to 

want to measure as much as we can about them. Hence, statisticians see high-dimensional 

longitudinal data sets on a routine basis in research settings. 

 Suppose we have decided to collect high-dimensional longitudinal data in a study. 

Missingness can occur naturally, whether due to non-response to survey items, a missed 

appointment for scheduled follow-up, or an investigator's decision not to measure all variables at 
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all time points to reduce cost or response burden. Challenges can be expected in the analysis of 

incomplete longitudinal data since missing values cannot be assumed to arise completely at 

random when the reasons for missingness are outside the investigators’ control. Except for the 

case when data are missing by design, a researcher needs to be aware of the possibility that 

naturally occurring missing-data mechanisms could compromise the validity of naive analyses 

based on estimation strategies such as complete-case analysis, available-case analysis, and 

imputation of the last-observation carried forward. For example, if some patients in the treatment 

group of a trial drop out due to non-effectiveness of a drug, this missing-data mechanism related 

to self-selection could generate false positive findings or could otherwise produce misleading 

information. Although the actual missing-data mechanism that arises in a real study may not be 

so extreme, it is worthwhile for researchers to avoid analysis errors by making use of available 

data that has the potential to predict the values that are missing for incomplete cases. 

 

1.1 Motivating Example 

 In comparing the effects of maxillomandibular fixation (MMF) and rigid internal fixation 

(RIF), two treatments for mandible fractures (i.e., broken jaws), 336 patients were enrolled in a 

study, 142 of whom were diagnosed as having moderately severe mandible fractures and were 

randomized into receiving either MMF or RIF. Patients were followed up for 12 months 

prospectively. A variety of clinician and patient-reported measurements, which are listed in 

Table 1.1, were used to assess the effects of the treatments at discharge from the hospital and at 

follow-up visits at 10 days, 1 month, 6 months, and 12 months post-discharge. Exploratory 

analysis shows that the transformation log( /12 1)t d= + , where d  refers to the number of days 
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since discharge, makes it more reasonable to assume a linear association between time and the 

main outcome variables.  

 

Table 1.1 Outcome variables 

PAIN Patient self reported pain integer 1 - 3, higher means 
more pain 

PTHEALTH Patient self reported health level integer 1-5, higher means 
more healthy 

GOHAI GOHAI, a composite score for General 
Oral Health Assesment Index 

integer 0 - 100, higher 
means better 

MHI5 Mental Health Index, a composite score of 
five items 

integer 0 - 100, higher 
means more issue 

LNSST Logarithm of the total number of social 
support 

log of count number 
where the count number 
can be 100+ in the data 

BSI_DEP Brief Symptom Inventory for depression continuous 0 - 4, same for 
all BSI's 

BSI_OCD Brief Symptom Inventory for obsessive-
composite disorder 

 

BSI_ANX Brief Symptom Inventory for anxiety  
BSI_HOS Brief Symptom Inventory for hostility  
BSI_PHO Brief Symptom Inventory for phobia  
BSI_ADD Brief Symptom Inventory for attention 

deficit disorder 
 

N_COMP Number of patient complaint count number 0 up to 6 in 
the data 

PTSDSUM A summary of post trauma stress disorder integer 0 – 100 
SUM_LEW A summary of weighted life events 

reflecting patient's potential stress 
continuous 0 - 31 in the 
data 

PTCMPL Patient compliance dichotomous 0=not 
complied, 1=complied 

 

The General Oral Health Assessment Index (GOHAI), a quality-of-life measure, is one of 

two main outcomes of interest. GOHAI takes on integer values in the range from 0 to 100, but is 
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treated here for analysis purposes as a continuous variable. We used a linear model with different 

intercepts and slopes for the time effect in the MMF and RIF treatment groups, modeled with 

random intercept and slopes across time. Formally, 

 0 0 0 ( ) 1 1 1( )I( in RIF) ( I( in RIF))ij i RIF MMF i RIF MMF ij ijY i i tβ β β β β β ε− −= + + ⋅ + + + ⋅ +  

where i  indexes subjects, j  indexes visits; ijY  is GOHAI of subject i  at visit j; 0β  and 1β   are 

intercept and slope of group MMF; 0 ( )RIF MMFβ −  and 1( )RIF MMFβ −  are the differences in the 

intercepts and slopes between the two treatment groups; 0 iβ  and 1 iβ  are random effects for the 

intercept and slope of subject i  with an unstructured conditional variance covariance assumption; 

and ijε  is assumed to be normally distributed error term with same variance in the two groups. 

The self-reported pain level for patients (PAIN), originally recorded as having a value 

among the integers from 0 to 10, was the other main outcome variable. It is common to analyze 

such a variable as a continuous variable. However, invoking a normality assumption might be 

questionable. Considering the skewness in the PAIN data and our inability to find a power 

transformation to achieve symmetry, we collapsed the PAIN variable into 3 levels based on the 

modes we find from a histogram: low pain, which corresponds to values of 0, 1, or 2 on the 

original scale; medium pain, corresponding to values in the range from 3 to 7; and high pain, 

corresponding to values of 8, 9, or 10. We re-code these categories as 1 (low), 2 (medium) and 3 

(high). In the analysis, we used a cumulative logistic model with different intercepts and the 

same slopes in the MMF and RIF treatment groups, with random intercept only. Formally 

 ij 0 0 0 ( ) 1logit(P(U c)) I( in RIF)c i RIF MMF iji tβ β β β−≥ = + + ⋅ +  
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where 2,3c =  refers to the outcome category; i indexes subjects; j indexes visits; ijU  is the latent 

continuous pain level of subject i  at visit j assumed in an ordinal logistic model, which is 

valued in ( , )−∞ ∞ ; and other terms are similar as in the model for GOHAI. 

 Besides the outcome measurements listed in Table 1.1, an indicator for treatment group 

(MMF vs RIF), time from discharge, and several time-invariant covariates are used in the 

imputation model, including age group (18-34, 35-44,44+), race (Black, Hispanic, other), 

education (less than high school, high school and beyond), gender, marital status (married, single, 

widowed/divorced), previous trauma, alcohol use, drug use, maximum opening of the injury, and 

severity of mandible fracture (mild, moderate, severe). We consider analysis models involving 

GOHAI and PAIN that use treatment group and time as predictors. As noted by Collins, Schafer 

and Kam (2001), auxiliary variables not included in the analysis can still help add precision 

when producing imputations. 

 

1.2 Theoretical Background in Handling Missing Data 

 Rubin (1978) developed the multiple imputation framework, a strategy for addressing 

missing data problems building on a Bayesian perspective in a way that is shown to have good 

statistical properties in frequency-based evaluations. In multiple imputation, we predict (impute) 

missing values given observed values multiple times. Each imputed data set is analyzed in the 

same way as if the data were completely observed. Average values of estimated parameters 

coupled with an estimate of the total variance that combines between-imputation variability with 

average within-imputation variability are used to form the inference based on the data with 

missing values. 
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 One strategy for producing valid point estimates and dispersion estimatesis to produce 

multiple imputations based on a joint model for the data. For general-purpose procedures, a 

common starting point is to assume that the missing data are missing at random, or MAR (Rubin 

1976), an assumption that will not always be defensible. However, a model involving more 

variables generally leads to better prediction since ignoring important predictors may give rise to 

predictable biases (Rubin 1996; Collins, Schafer and Kam 2001). In addition to the potential for 

greater precision with more predictors, having more predictors may transform what would have 

been not missing at random (NMAR), into an MAR scenario (Schafer 1997). Hence we prefer to 

use an imputation model involving more variables, leading to the necessity of modeling a high-

dimensional mixture of both continuous and categorical variables. 

  

1.3 Multiple Imputation Based on Longitudinal Factor Analysis and 

Probit Model 

 Factor analysis is one way of handling high-dimensional data to provide useful 

information for scientific research. It is the basis for many scoring systems in health sciences, e.g.  

the General Oral Health Assessment Index, or GOHAI (Atchison and Dolan 1990), various 

subscales of the RAND 36-item short-form quality-of-life questionnaire, or SF-36 (Ware and 

Sherbourne 1992) and the Children's Depression Inventory, or CDI (Saylor, Finch, Baskin, 

Saylor, Darnell and Furey 1984). Using algorithms such as principal-component analysis or 

maximum likelihood, latent variables can be identified to summarize certain properties of 

subjects into factor scores. Including factor scores in a model, either as an outcome or as a 

covariate, is a common helpful practice. 
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 In this project, we are interested in recovering information from incomplete longitudinal 

high-dimensional data by introducing latent variables in a factor-analysis model that 

encompasses a large number of measured quantities. The possibility of a longitudinal trend in the 

factor scores is modeled by a random-effect linear model.  

 Another challenge in this project is to incorporate an imputation strategy for categorical 

variables. In some settings, categorical variables have been treated the same way as continuous 

variables in a regression model, where the imputed values are rounded to the nearest possible 

value. This strategy allows the categorical values to contribute their numerical values to the 

regression, which does pick up some association among variables. However, extreme categories 

sometimes signal a wider range of variability than can be well modeled with normal distribution. 

This drawback can contribute to inadequate variability in the imputed values with considerable 

over-representation of the middle-level categories, as observed by Belin, Hu, Young and Grusky 

(1999). Hence, we propose imputing ordinal categorical variables based on a probit model that is 

integrated into a factor-analysis framework that incorporates both the observed continuous 

outcome variables and latent continuous variables underlying ordinal categorical measures. 
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Chapter 2 

Literature Review 

 

 In this chapter, we describe the basic theory for handling missing data and we summarize 

earlier attempts to model continuous and ordinal variables together. The proposed approach in 

this dissertation for handling missing data can be viewed as drawing on elements from the 

literature and putting them together in a novel way to go beyond the capabilities of existing 

methods. 

 

2.1 Modeling Assumptions for Incomplete Multivariate Data 

 In general, a data set can be presented in an n p×  matrix form, with each of the n  rows 

representing an individual case and each of the p  columns representing a variable. Missing 

values can occur anywhere in a data set. A schematic representation of a data set with missing 

values is shown in Figure 2.1, where missing values are denoted by question marks. 
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 Missing data may occur in many different fashions. A helpful classification of missing-

data mechanisms is given by Rubin (1976). Let Y  represent the underlying complete data that 

would have been observed if all values were not missing, which can be partitioned into the 

actually observed part, obsY , and the actually missing part, misY . Let M  be an n p×  matrix of 

indicator of variables, where each element equals to 1 if the corresponding value of Y  is missing, 

0 otherwise. 

    Variable    
  V1 V2 ...       ... ...       ... ... Vp 
 1    1   
 2 1      
 3       
Unit .       
 .  1     
 .       
 .     1  
 n    1    

 

    Figure 2.2 A missing indicator matrix, which is a dichotomous 
 matrix valued in 0 and 1 (0’s are not shown). 

 

    Variable    
  V1 V2 ...       ... ...       ... ... Vp 
 1    ?   
 2 ?      
 3       
Unit .       
 .  ?     
 .       
 .     ?  
 n    ?    
 
Figure 2.1 An incomplete multivariate data set 
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 The joint distribution of complete data Y with missingness indicators M, given 

parameters ( , )θ ξ  can be written as 

 P( , | , ) P( | )P( | , )Y M Y M Yθ ξ θ ξ= , 

where θ  is the parameter of the distribution of data Y  and ξ  is the parameter of missing 

mechanism. The marginal distribution of the observed data ( , )obsY M  can be obtained by 

integrating the above joint distribution over the missing values: 

 P( , | , ) P( , | )P( | , , )obs obs mis obs mis misY M Y Y M Y Y dYθ ξ θ ξ= ∫ . 

 Missing data are said to be missing completely at random (MCAR) if the missing data 

mechanism is a distribution that does not depend on the data at all, i.e. 

 P( | , , ) P( | )obs misM Y Y Mξ ξ= . 

 On the other hand, we say data are missing at random (MAR) if the missing data 

mechanism is a distribution that does not depend on the missing values given the observed 

values, i.e. 

 P( | , , ) P( | , )obs mis obsM Y Y M Yξ ξ= . 

 In other words, MAR corresponds to the missing indicator being conditionally 

independent from the missing values given observed data.  Note that MAR is related to the set of 

variables of the data set in consideration and can be affected by the inclusion of auxiliary 

variables (Schafer 1997; David, Little, Samuhel and Triest 1986). It is possible that the MAR 

assumption could be valid in a data set containing, say, 10 variables, but that it might not hold 

any more when we drop a number of variables from the data set. In practice, it is not always safe 

to assume MAR, but because it is a good starting point for many analyses, we will make use of 

an MAR framework in developing a longitudinal factor model. 
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 Under MAR, the likelihood of the observed data ( , )obsY M  can be simplified as 

 

P( , | , ) P( , | )P( | , , )

P( | , ) P( , | )

P( | , )P( | )

obs obs mis obs mis mis

obs obs mis mis

obs obs

Y M Y Y M Y Y dY

M Y Y Y dY

M Y Y

θ ξ θ ξ

ξ θ

ξ θ

=

=

=

∫
∫  

 If we further assume that the parameter θ  of the data model and the parameter ξ  of the 

missing data mechanism are distinct, i.e. they are not the same parameter and do not share any 

components, then inference for the model parameter θ  can be based only on the observed-data 

likelihood P( | )obsY θ . In this case, the missing-data mechanism is said to be ignorable. 

Ignorability includes two assumptions, missing at random and distinct parameters. Since we can 

safely assume distinct parameters in most cases, ignorability can be thought of as roughly 

equivalent to missing at random. 

 By using the definition of conditional probability, MAR is equivalent to the identity 

 P( , , ) P( , )
P( , ) P( )

obs mis obs

obs mis obs

M Y Y M Y
Y Y Y

= , 

which is simplified into  

 P( | , ) P( | )mis obs mis obsY M Y Y Y=  

as we expect from conditional independence of M  and misY . Hence, assuming MAR, we can 

generate multiple complete data sets in which misY  is identically distributed as P( | , )mis obsY M Y  by 

drawing from the distribution P( | )mis obsY Y . 

 When the missing-data mechanism is not MAR (and hence not MCAR, since MCAR is a 

special case of MAR), the distribution of missing-data indicators depends on unobserved values 

even conditioning on the observed values. Sometimes we call this scenario not missing at 

random (NMAR), in which case the missing-data mechanism is nonignorable, i.e. likelihood-
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based or Bayesian inferences for parameters of the data require modeling of the missing-data 

mechanism. 

 

2.2 Early Efforts for Handling Missing Data 

 One way to analyze incomplete data is through complete-case analysis, where cases with 

any missing values are simply deleted. One problem of this method is the inefficiency due to 

data being dropped. Furthermore, the accuracy of this way is often questionable. Complete-case 

analysis works well in scenarios that are "close to" MCAR in the sense that the bias generated is 

negligible. However, MCAR rarely happens in reality unless missing data are missing by design; 

when human decisions contribute to missingness, one can expect systematic patterns to emerge 

related to missingness. 

 A minor variation on complete-case analysis is available-case analysis, in which all 

available data are used to estimate given parameters. Little and Rubin (2002) show that 

available-case analysis can suffer from problems with incompatibility, as when the values used 

to estimate variances are not the same as the values used to estimate covariances, since the cases 

where variables are jointly observed might be a subset of the cases where  separate variables are 

observed. 

 Early efforts aiming at handling missing data also include single imputation, e.g. mean 

substitution in which the missing values are replaced by the mean (or conditional mean) of the 

observed values. Mean substitution ensures every variable is imputed within its plausible range. 

However, it can generate biases for not considering the missing-data mechanism; it also tends to 
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underestimate the uncertainty due to missing data, since the uncertainty due to missingness is not 

counted. 

 To make statistically sound analysis of data with missing values, Rubin (1978, 1987) 

developed the multiple imputation method, which is sketched in the next section. 

 

2.3 Multiple Imputation 

Imputation involves filling in values for missing items, so that a complete data set is 

obtained on which one can carry out a standard complete-data analysis. However, the uncertainty 

associated with the missing values is not reflected in the imputation if we obtain only one such 

complete data set. This lack of uncertainty in the imputed data set usually leads to over-

estimation of precision of statistical analysis, implying smaller error components and narrower 

confidence intervals than appropriate, where the actual level (false positive rate) of statistical 

tests will not in general be equivalent to the nominal level. 

Rubin (1978, 1987) developed the multiple imputation (MI) technique to reflect the 

uncertainty in imputed values while retaining the advantage of allowing existing complete-data 

analysis methods to be applied to data sets with missing values. In MI, a data set with missing 

values is imputed to form m≥2 complete data sets. A generally valid procedure for producing 

imputations is to replace the missing values by an independent sample from their posterior 

predictive distribution. Variation among the m imputations reflects the uncertainty of the missing 

values that is predicted from the observed data. The resulting m versions of the complete data 

sets are then analyzed by existing statistical methods. After performing the identical analysis on 

each of those data sets, the results are combined using the rules developed by Rubin and 
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Schenker (1986) to produce an overall statistical inference incorporating missing-data 

uncertainty.  

Specifically, suppose ¶
jQ  is an estimate of a scalar parameter of interest Q  obtained from 

imputed data set j  where 1j m= … , and ¶
jU  is the estimated variance of ¶

jQ . Then the overall 

estimate of Q  is 

 
¶

1

m
j

j

Q
Q

m=

= ∑ , 

and the overall estimated variance is 

 1(1 )T U B
m

= + + , 

where  

¶

1

m
j

j

U
U

m=

= ∑  

is the average within-imputation variance, and  

¶ 2

1

1 ( )
1

m

j
j

B Q Q
m =

= −
− ∑  

is the between-imputation variance. The distribution of 1
2( )Q Q T −− ⋅  has an approximate t-

distribution with degrees of freedom 

 21( 1)(1 )m
r

ν = − + , 
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Where r represents the relative increase in variance due to non-response 

1(1 ) Br m
U

−= + . 

Inference for a multi-dimensional parameter can be handled by multivariate 

generalizations of the above rules (Li, Raghunathan and Rubin 1991; Li, Meng, Raghunathan 

and Rubin 1991). 

 Rubin (1987) shows that only a small number of imputations are needed to achieve a 

relatively efficient estimate in most cases. The relative efficiency reflecting the ratio of the 

estimated precision based on m imputations to that based on an infinite number of imputations 

can be approximated by the quantity 1(1 )m
λ −+ , where λ  is the fraction of missing information, 

estimated by 

$ 2 /( 3)
1

r
r

νλ + +
=

+
. 

For example, for a data set with 30% missing information ( .3λ = ), an estimate based on 

m=5 imputations will have relative efficiency 94.4%. 

 Three general strategies can be applied to produce multiple imputations. In a joint 

modeling strategy, one develops a joint model for multivariate data and bases the draws for 

missing values on the implied conditional distributions. Such an approach is often implemented 

through the use of a Markov chain Monte Carlo (MCMC) procedure (Cassella, Robert and Wells 

2004). 
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 An alternative approach is the sequential regression strategy, e.g. ICE/MICE (Van 

Buuren and Oudshoorn 1999) and IVEWare (Raghunathan, Lepkowski, Van Hoewyk and 

Solenberger 2001), which is motivated by an analogy with MCMC methods.  This idea involves 

specifying a set of conditional distributions of outcome variables with missing values given all 

other variables. Theoretically, the collection of conditional distributions might not compatible, in 

the sense that the sequence would not converge to any joint distribution (Gelman and Speed 

1993; Hobert and Casella 1998; Liu, Gelman, Hill, Su and Kropko 2013). However, this method 

embraces an approximation at the modeling stage for the sake of flexibility and simplicity and 

has been seen to work reasonably well in applications. (e.g., Raghunathan et al. 2001) 

 Another category of imputation method is the implicit-model strategy, e.g. hot-deck 

imputation (Rubin 1976) and predictive-mean mean matching (Heitjan and Little 1991, Schenker 

and Taylor 1996). The idea is to borrow imputed values that are observed on other cases sharing 

some relevant properties, like coming from the same batch or having a similar predicted mean 

given multiple covariates. Siddique and Belin (2008) described a distance-based donor selection 

approach with an approximate Bayesian bootstrap where donors are selected with probability 

inversely proportional to their distance from the donee. A related SAS macro MIDAS has been 

developed by Siddique and Harel (2009) for multiple imputation using distance-aided selection 

of donors. 
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2.4 Existing Methods Related to Multiple Imputation for High-

Dimensional Data with Mixed Data Types 

 The goal of multiple imputation is to predict missing values given observed values and 

missing indicators. Hence any statistical method that supports prediction of outcome variables 

can potentially be the basis of a strategy for imputation. 

2.4.1 Multivariate Normal Imputation 

One general strategy of dealing with missing values is to produce imputations under a 

completely specified joint model. A multivariate normal model, which implies that conditional 

distributions are governed by a linear regression relationship, is widely used. 

The approach has been implemented in Schafer’s NORM program (Schafer 1997), which is 

also available as an R package. NORM assumes that the variable 
1

~ ( , )
iid

i p pp
Y N µ

××
Σ , but each iY  may 

have some components missing. To facilitate multiple imputation using NORM, a preprocessing 

step of finding the maximum likelihood estimate (MLE) of ( , )µ Σ  using E-M algorithm can be 

helpful to orient the needed statistical computing steps. Multiple imputations can then be 

produced by first drawing Markov Chain Monte Carlo (MCMC) samples using a data 

augmentation (Tanner and Wong 1987) procedure starting from the MLE and then selecting m 

values, typically after long lags in the iterative simulation steps to avoid autocorrelation, to serve 

as imputations. These draws are then plugged into the original incomplete data set to form m  

complete data sets. A viable strategy is to generate a long chain and to allow the m  draws to be 

equally spaced with large gaps so they can be expected to have minimal auto-regression. 
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Standard practice includes discarding the initial part of chain as “burn-in” iterations to allow the 

Markov-Chain sequence to approach convergence in distribution. 

 

2.4.2 Imputation Based on Mixed-Effect Linear Model 

 For use with longitudinal or panel-study data, Schafer (1997) proposed the PAN model 

for imputing high dimensional data with missing values using a mixed-effect linear model. 

Suppose we have r  outcome variables 1... rY Y , all of which may contain missing values. Also 

suppose we have I  units (e.g. subject, clusters) indexed by 1, 2, ...i I= , each of which contributes 

in  repeated measure of the outcome variables 1... rY Y . Consider design variables 1... pX X  and 

1... qZ Z  for q p≤ , which correspond to the fixed effects and random effects. The model can be 

written as 

i i i

i i i i i
p rn r n p n q q r

y x z bβ ε
×× × × ×

= + +  

where iy , ix  and iz  are sub-matrices of Y , X  and Z  corresponding to subject i , iε  represents 

multivariate normal errors, β  is the matrix of fixed coefficients and ib  is the matrix of random 

coefficients with variance-covariance matrix possibly assumed to be 1diag( ... )r
q q q q
R R
× ×

, Ir q qR ×⊗  or 

qr qrR ×  depending on the generality we allow in the model. 

 With a prior distribution containing very little information, which is often used in the 

absence of more precise information about parameters, this model is capable of imputing high-

dimensional missing data. Except for the design variables X  and Z , this model allows missing 
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data to appear in any variable in a study. Accordingly, it can also address the problem of missing 

covariates of an analysis model by treating them as outcomes in the imputation model. 

 

2.4.3 Imputation Based on Factor Analysis Model 

 Song and Belin (2004) developed a multiple imputation model based on common factor 

analysis to overcome the problem of over-parameterization with multivariate data. Rubin (1996) 

suggests that, when carrying out multiple imputation, one should consider as many variables as 

possible to account for patterns of association in the data; hence, the number of parameters in the 

imputation model could be very large. But given that the number of subjects (sample size) in any 

study will be limited, imputation-model parameters could be poorly estimated or inestimable.  

Another motivation for factor analysis arises when several variables are highly collinear. In 

this situation, the sample covariance matrix can become poorly conditioned or hard to invert, 

which results in difficulty in estimation. Invoking a ridge prior (Schafer 1997) is one possible 

solution, while factor analysis is a competing approach. 

In the factor analysis model, the parameters include the factor loading matrix and variance of 

errors. Compared to multivariate normal imputation, which estimates the covariance of every 

possible pair of variables, the factor analysis model economizes on the number of parameters by 

making use of the factor loading matrix to simplify the overall covariance matrix.  
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2.4.4 Imputation based on General Location Model 

 In situations featuring a mixture of categorical and continuous data, one joint-modeling 

idea is the general location model, originally developed by Olkin and Tate (1961). Categorical 

variables 1 qW W…  are treated as one single categorical variable W  with 
1

q

k
k

M I


  categories, 

where kI  is the number of categories of variable kW . Given W m  where , m  is in 1...M , the 

multivariate continuous variable Y  has distribution ( , )mN m  , where vector mm  is mean for 

subjects of m th category, while   is a covariance matrix shared among all categories of subjects. 

 Little and Schluchter (1985) refined this model by adopting a log-linear model for the 

categorical portion of the data and a regression relationship between continuous variables and 

categorical variables. Specifically, categorical variables 1 qW W…  are assumed to have cell 

probabilities consistent with a log-linear model having main effects and interactions associated 

with the categorical variables. Given a value of W  (a q-vector), we can write ~ ( , )Y N W   

where Y  is p-dimensional continuous variable,   is p q  coefficient matrix, where   is still a 

common covariance matrix of errors.   could further be restricted by BA   where A  is a 

known matrix of design and B  is the set of unknown parameters. 

Belin, Hu, Young and Grusky (1999) evaluated the performance of imputation using an 

adaption of Little and Schluchter’s refined model developed by Schafer (1997). The method was 

applied to a mental health study assuming ignorable missingness. The comparison between 

predictions of missing values and actual follow-up measurements showed statistically significant 

differences, especially for binary proportions and ordinal variables. The main issue for the binary 

variables came from the common   assumption of the general location model, as the implied 
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linear discriminant for predicting binary variables gave rise to predictions with unrealistically 

small amounts of binomial uncertainty. Also regarding ordinal variables treated as continuous 

when the underlying distribution is actually skewed, imposing a bell-curve assumption produced 

too many imputations close to the mean of the distribution, which can bias subsequent estimates 

of quantities that depend on such values. 

 

2.4.5 Multiple Imputation by Chained Equations 

 With high-dimensional data, another possible strategy is to produce imputations one 

variable at a time using a series of overlapping regression relationships, such as implemented in 

the MICE (Multiple Imputation by Chained Equations) package developed by Van Buuren and 

Oudshoorn (1999). The idea can be described as follows.  

Let data be 1 2( , , , )n k kY Y Y Y× = … , a set of k random variables. Each variable may be partially 

observed, say, ( , )obs mis
j j jY Y Y=  where 1j k= … . Let 1( , , )obs obs obs

kY Y Y= …  and 1( , , )mis mis mis
kY Y Y= … . The 

imputation problem is to draw a sample of Y , or a sample from ( | )mis obsP Y Y  and combined with 

obsY . 

 Denote 1 1 1( , , , , )j j j kY Y Y Y Y− − += … … , i.e. all variables except jY . Assuming a series of 

conditional distributions 

 
1 1 1( | , )

( | , )k k k

P Y Y

P Y Y

θ

θ

−

−

L , 
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we could then mimic the process of obtaining a sample of ( | )mis obsP Y Y  using a Gibbs sampler: 

 

( ) ( 1) ( 1)
1 1 1 2

( ) ( 1) ( 1) ( )
1 1 1 2

( ) ( ) ( )
1 1

( ) ( ) ( ) ( )
1 1

~ ( | , , , )
~ ( | , , , , )

~ ( | , , , )
~ ( | , , , , )

t obs t t
k

mis t mis obs t t t
k

t obs t t
k k k k
mis t mis obs t t t

k k k k k

P Y Y Y
Y P Y Y Y Y

P Y Y Y
Y P Y Y Y Y

θ θ

θ

θ θ

θ

− −

− −

−

−

…
…

…
…

…

. 

 The name “chained equation” comes from the feature of this algorithm that a k-

dimensional problem is split into k one-dimensional problems, which provides a considerable 

amount of flexibility. It allows us to specify various conditional distributions (e.g. multinomial or 

Poisson) for each random variable, resulting in a more flexible and possibly better imputation 

method than adapting draws from joint models that do not approximate actual data distributions 

very well. Constraints involving imputed values are also relatively easy to maintain. 

 

2.4.6 MCMC Strategies for Ordinal Repeated Measures and for a 

combination of Ordinal and Continuous Repeated Measures 

 Early development of MCMC strategies for multivariate data focused on normal-theory 

models (Gelfand and Smith 1990, Schafer 1997), where conditional distributions could be 

represented using familiar regression relationships. Modeling of ordinal data involves additional 

technical challenges, with some early methods relying on non-conjugate prior-to-posterior 

updating in a Bayesian paradigm (Chib and Greenberg 1998). 

 Zhang, Boscardin and Belin (2006) outlined an MCMC strategy using parameter-

expanded data augmentation with a Metropolis-Hastings step to embed the analysis of dependent 
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ordinal repeated measures in a multivariate-normal latent variable framework. Zhang, Boscardin 

and Belin (2008) extended the idea to accommodate both ordinal and continuous repeated 

measures.  

Define 

1

2

1

1

continuous

ordinal

i

ip i
i

ii

ip

v

v V
T

Cc

c

  
 
 
   = =      
       

M

M

, 

where   

1

1
(1)~ ( , )

i

i i vv

ip

v
V N X

v
β

 
 

= Σ 
 
 

M . 

One can assume the categorical outcome ijc  be determined by the latent normal variable 

ijz  through the relationship ij 1iff z ( , ]ij j l j lc l γ γ−= ∈ , where 0jγ = −∞ , 
jjJγ = ∞ , and ijc  is an ordinal 

variable with possible values 0 ( 1)jJ −L . Here (1)
iX  is the covariates of subject i associated with 

continuous variables. Similarly (2)
iX , introduced below, is associated with ordinal variables. 

One can also assume the conditional distribution (2)~ ( , )ij i zzz N X Rβ , wehre zzR  is a 

correlation matrix. Here ijz  is assumed to have unit variance to preserve the identifiability of the 

model. 

 Hence we have  
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(1)

(2)~ ( , )i vv vzi

i zv zzi

V X
N

Z RX
β

Σ Σ    
≡ Λ    Σ    

, 

where Λ  is a covariance matrix with constraints related to the structure of zzR . 

Compared to a familiar multivariate model, which assumes 

1 1
1 1

( ) ( )i ik i ip i
p kk p

y y x x β ε
×× ×

= +L L  , 

this model has the form 

 
1

1

2

2

1
(1)

1
1

1
(2)

2
1

error

error

i

i
kp k

ip

i

i
kp k

ip

v
X

v

z
X

z

β

β

××

××

 
 

= + 
 
 
 
 

= + 
 
 

M

M

 

where 1p  is the number of repetitions of continuous outcomes and 2p  is the number of 

repetitions of ordinal outcomes. It can be more general to assume separate linear parameters 1β  

and 2β  instead of β , depending on the relationship between the continuous and the categorical 

outcome variables. 

 The main challenge in sampling parameters from this model is drawing the covariance 

matrix, which contains a sub-matrix that has to be a correlation matrix in order to identify the 

ordinal portion of the model. Zhang, Boscardin and Belin (2006) suggested using a parameter 

extended Wishart (PXW) proposal distribution and a parameter extended Metropolis-Hastings 

step for drawing Λ .  
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A matrix can be drawn from a parameter-extended Wishart distribution by drawing a 

matrix from a Wishart distribution and dropping the variance part in order to satisfy the 

correlation-matrix constraint. Specifically, to draw proposal values of Λ , one can draw 

0~ ( , )Wishart mΣ Ω  and let  

1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2
vv vv vv vv vz zz

T
zz vz vv zz zz zz

D R D D R D
D R D D R D

 
Σ =  

 
. 

Only the part 

1/2 1/2 1/ 2

1/2
vv vv vv vv vz

T
vz vv zz

D R D D R
R D R

 
Λ =  

 
 

is used in the iterative simulation procedure. Note that zzD  is an artificial construct introduced to 

help in the estimation procedure. Letting 

vv

zz

D
D

D
 

=  
 

 

and  

vv vz

zv zz

R R
R

R R
 

=  
 

, 

a mapping ( ) ( , )g R DΣ =  on the Wishart random variable is used for variable transformation. The 

density function of ( , )R D  is 1 1( , ) ( ( , ))g R D W g R D− −∇ ⋅  where ( )W ⋅  is the Wishart density function. 

This density function shows up in the Metropolis-Hastings step of the iterative simulation 

procedure. 
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Zhang, Boscardin and Belin (2008) assumed complete data, with the objective being to 

find posterior distribution of ( , , , | , )p Z V Cβ γΛ  where Z is the latent variable, V represents 

continuous variables, C represents ordinal variables and γ  represents the cut-points associated 

with the ordinal variables, while β , Λ  represents the same as above. We then can represent the 

posterior distribution as 

  ( , , , | , )p Z V Cβ γΛ  

 ∝ ( , , ) ( , | , , ) ( | , , , , )p p Z V p C Z Vβ γ β γ β γΛ Λ Λ . 

Making use of conditional independence properties in the model, we can simplify to 

 ∝ ( , , ) ( , | , ) ( | , )p p Z V p C Zβ γ β γΛ Λ  

 = |
1

( ) ( , ) ( ) ( | , )
N

i i i
i

p p R D p N Y X Iβ γ β
=

Λ ⋅∏  , 

where  

 i
i

i

V
Y

Z
 

=  
 

 

 
(1)

(2)
i

i
i

X
X

X
 

=  
 

 

and iI  is an indicator for iC  being compatible with iZ  and iγ . 

Assuming prior distributions 

 
0 0

0

~ ( , )
( ) 1
~ ( , )

k

jl

N b B
p

PXW m

β
γ ∝

Λ Ω

 , 

an MCMC algorithm with one Metropolis-Hastings step is derived from the posterior distribution: 
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—
1

( | , , , , ) ( ) ( | , )
N

i i i
i

p Z V C p I N Y Xβ γ β β
=

Λ ∝ ⋅ Λ∏ .  Hence  

| , , , , ~ ( , )Z V C N Vββ γ βΛ
)

, 

where  

1 1 1
0

1

( )
N

T
i i

i

V X X Bβ
− − −

=

= Λ +∑  

and  

1 1
0 0

1

( )
N

T
i i

i

V X X B bββ − −

=

= Λ +∑
)

, 

according to a standard Bayesian result. 

— (2)
22( | , , , , ) ( | , )i i i ip Z V C I N Y Xγ β βΛ ∝ ⋅ Λ , i.e. the multivariate normal distribution 

constrained on the possible intervals. Specifically, if we let 1'j p j≡ + , each component of Z 

given other components of Z and other variables in the model has density function 

( | , , , , , , )ij i i ikp z V C z k jβ γΛ ≠ ∝ ± ±( | , )ij ij ij ijI N z µ λ⋅  where ±
ijµ  and ±

ijλ  are standard results of conditional 

distribution of one component given the rest in a multivariate normal distribution. The latent 

variables are drawn component by component for better efficiency (constraining a series of 

univariate normal variables, each to an interval vs. constraining a multivariate normal variable to 

a high-dimensional rectangle). 

— ( | , , , , )p V Cγ γ βΛ  is uniformly sampled from the interval that is compatible with other 

cut points and ordinal data C . 
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—The Metropolis-Hastings step for ( , )R DΛ =  involves the following: generate * *( , )R D  

by sampling a *1/ 2 * *1/2 * ( )~ ( , )iD R D W Wishart m W= , and then take 

* *
( 1) ( 1)

( ) ( )

             with probability( , )
( , )

otherwise( , )
i i

i i

R D
R D

R D
α+ + 

= 


 

where * * ( ) * ( ) ( ) * ( )min{( ( , ) ( | )) / ( , | ) ( | )),1}i i i ip R D q W W p R D Y q W Wα = , and where * ( )( , )iq W W  is the 

proposal density function of ( )( , )iPXW m W  described earlier. 

 

2.4.7 A Bayesian Implementation of Factor Analysis 

 Quinn (2004) used a Bayesian method to fit a factor analysis model to a mixture of 

ordinal and continuous variables. The author assumes that the ordinal variables follow probit 

models, while the latent variables underlying the ordinal variables and the continuous outcomes 

are collectively governed by a factor analysis model. Specifically, let subject 1...i N=  and 

outcome variable 1...j J= . Suppose 
N J
Y

×

 is the outcome variable matrix. Let the matrix *
N J
Y

×

 be 

composed of elements *
ijy  being the latent variable associated with ijy  if outcome j  is ordinal, 

while *
ijy  being equal to ijy  otherwise. Suppose variable j  is ordinal valued in 1... jC . Define 

ijx c=  if *
( 1) ( )( , )ij j c j cx γ γ−∈ , where (0) (1) ( )( , ,..., )

jj j j Cγ γ γ , or ( ,0,..., )−∞ +∞  are cut-points, where 

(2) ( 1),...,
jj j Cγ γ −  are free parameters.  

 According to the factor analysis model, let J -vector *
i i iy φ ε= Λ + .  By transposing and 

stacking the * 'iy  vectors for all subjects, we obtain the matrix form of the factor analysis model 
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* '

N J N K K J
Y E

× × ×
= Φ Λ +  

where 

11 12

21 22 23

1

1

0 0
0 0

0

K KK

J JK

λ λ
λ λ λ

λ λ

λ λ

 
 
 
 
 

Λ =  
 
 
 
 
 

L
L

M M M O O M
M M M

L
M M

L

 

with constraints 12 0λ >  ... , 0K Kλ >  for identifiability. Here 1K −  is the number of factors because 

of the intercept term in the model. Accordingly, the matrix Φ contains a column of 1's. 

 Assume the factor scores for subject i  is (2: ) 1~ (0, )i K KN Iφ − , with error terms represented as 

Var ~i J Jε ×Ψ , where J J×Ψ  is a diagonal matrix with constraint 1jjψ =  if variable j  is ordinal. 

 Prior distributions for free parameters are taken to be independent with: 

   0 0~ IG( , )
2 2

j j
jj

a b
ψ  , 

  0 0~ ( , )jk jk jkN l Lλ  truncated from 0 below if 0jkλ >  is assumed,  

and cut-points are assumed to have a flat priors. 

 The joint likelihood can be written as 

*
*

( 1) ( )

*

* *

( | , )
11 1 1

( j is continuous) ( j is ordinal) ( ) ( ( , ))

( , , , , , )
( | , ) ( | , , ) ( ) ( ) ( )

(I I I I ) ( ) ( ) ( ) ( )
j

i i
ij ij j c j c

CN J N

N y
ci j i

y c y

p Y Y
p Y Y p Y p p p

p p p p
φ

γ γ

γ

γ

− Λ Ψ
== = =

= ∈

Λ Φ Ψ

∝ ⋅ Λ Φ Ψ ⋅ Λ Φ Ψ

∝ + ⋅ ⋅ Λ Φ Ψ∑∏∏ ∏

 

 An MCMC procedure can be developed using the following conditional distributions to 

guide steps of the algorithm: 

 ' 1 1 ' * ' 1 1
(2: ) 1 (2: ) (2: ) (2: ) 1 1 (2: ) (2: )| ~ (( ) ( ) , ( ) )i K K K K K i K K KN I y Iφ − − − −

− −− + Λ Ψ Λ Λ − Λ + Λ Ψ Λi i i i i i  
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* *

0 0 ( ( ) ') '( ( ) ')
| ~ IG( , )

2 2
j j j j j j

jj

a N b Y Y
ψ

+ + − Φ Λ − Φ Λ
− i i i i  for ordinal j  

 * | ~ ( ,1)ij j iy N φ− Λ i  truncated to ( 1) ( )( , )
ij ijj x j xγ γ−  for ordinal variable j 

|γ Φ Λ  (blocking *Y ): a Metropolis-Hastings step for the 2jC −  free components of jγ , 

i.e. ( )j cγ  where 2... jc C= .  The proposal ( )
( )
can

j cγ  is drawn from 2
( )( , )j c jN tγ  truncated to 

( )
( 1) ( 1)( , )can

j c j cγ γ− +  with acceptance probability 

( ) ( )
( ) ( 1)

1 ( ) ( 1)

( )
( 1) ( ) ( 1) ( )

( ) ( ) ( )
2 ( 1) ( ) ( 1) ( )

( ) ( )

( ) ( )

(( ) / ) (( ) / )
(( ) / ) (( ) / )

ij ij

ij ij

j

can canN
j y j i j y j i

j
i j y j i j y j i

canC
j c j c j j c j c j
can can can

c j c j c j j c j c j

t t
t t

γ φ γ φ
α

γ φ γ φ

γ γ γ γ
γ γ γ γ

−

= −

−
+ −

= + −

Φ − Λ − Φ − Λ
=

Φ − Λ − Φ − Λ

Φ − − Φ −

Φ − − Φ −

∏ i i

i i

1

∏
 

where the former part comes from the normal assumption of *Y  (integrated out), 

while the latter part comes from the proposal distribution ( ) 2
( ) ( )~ ( , )can

j c j c jN tγ γ  

constrained on the interval ( )
( 1) ( 1)( , )can

j c j cγ γ− + . 

|Λ − : Each row of Λ  is drawn separately. Let jλ o  be the column vector of free elements 

of the j th row of Λ , jλ •  be the column vector of fixed elements of the j th row of 

Λ . Similarly let jΦ o  and j•Φ  be the corresponding parts of Φ . Since 

* 2| ~ (( ) , )j
j j j jj N

j

Y N I
λ

γ ψ
λ•

•

 
ΦΛΨ Φ Φ  

 

o
i o  

is truncated onto some support only related to γ , we draw from the conditional 

distribution  

* 1 ' 1 1 ' *
0 0

1 ' 1
0

| ~ (( ) ( ( )) ,

( ) )
j j jj j j j jj j j j j

j jj j j

Y N L l Y

L

λ ψ ψ λ

ψ

− − −
• • •

− −

ΦΨ + Φ Φ + Φ − Φ

+ Φ Φ
o o o o o o

o o o

. 



 31 

 Building on these ideas, in the rest of this dissertation, we develop a longitudinal factor 

analysis model to accommodate incomplete high-dimensional longitudinal data, and we explore 

the statistical properties of the procedure. 

 

2.4.7 Longitudinal Factor Models 

Wang (2002) developed a model imputing missing data in a multivariate longitudinal 

data set. This model included only continuous outcome variables; any categorical variable is 

imputed using an approximation based on continuous variables (for example, rounding the 

imputed values to the nearest possible values).  One objective of our project is to incorporate a 

probit model for ordinal variables, in order to make the model more flexible while maintaining 

the validity of the imputed values. The strategy developed here builds on the framework outlined 

in Wang (2002). 

 Lin (2012) developed a related model analyzing multivariate longitudinal data measured 

at irregular time points.  Based on the general linear mixed-effect model (GLMM), this model 

included outcome variables distributed as normal (for continuous variables), Poisson (for count 

variables) and Bernuolli (for dichotomous variables), where dimension reduction is achieved by 

a factor analysis model. 
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Chapter 3 

The Longitudinal Factor Imputation Model 

 

 The Longitudinal Factor (LF) imputation model consists of two stages explaining the 

variability of the data within-time-point and between-time-point. Specifically, we use a linear 

mixed-effect model specification to characterize longitudinal patterns of associations, and we use 

a factor-analysis model specification to characterize cross-sectional associations among variables 

measured at the same time. The model is complicated enough that we need to use an iterative-

simulation MCMC method to fit the model. 

 

3.1 Structure of the LF Imputation Model 

 Stage 1 of the LF Imputation Model characterizes patterns of cross-sectional association 

within time points. The variables in the imputation model can be either covariates or outcomes in 

subsequent analysis models. Specifically, we can represent the variables measured on subject i as: 

1 1 1 2

1 1 1 2

11 1 1 1 1

1 1

... ...

... ...
... ...

i i p i p i p p

i

iT iTp iTp iTp p

Y Y Y Y
Y

Y Y Y Y

+ +

+ +

 
 

=  
 
 

, 

where iY  is a 1 2( )T p p× +  matrix, where element itjY  stands for the  jth variable at the tth time 

point on subject i. Without loss of generality, we let indices 11...p  refer to continuous variables, 
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while indices 1 1 2... ( )p p p+  refer categorical variables with possible values 1... jC  (i.e., the jth 

variable has Cj categories). 

 To facilitate our formulation, let itj itjU Y=  for 11 j p≤ ≤  and itjU  be a probit model latent 

variable for 1 1 21p j p p+ ≤ ≤ + . So we have  

1 1 1 2

1 1 1 2

11 1 1 1 1

1 1

... ...

... ...
... ...

i i p i p i p p

i

iT iTp iTp iTp p

U U U U
U

U U U U

+ +

+ +

 
 

=  
 
 

 

which is a 1 2( )T p p× +  matrix of continuous variables. Denote the cut-points involved in the 

probit model for variable j, where 1 1 21p j p p+ ≤ ≤ + , by  

(0) (1) ( 1) ( )...
j jj j j C j Cξ ξ ξ ξ−−∞ = ≤ ≤ = + ∞ . 

 Hence we have 

itjY a=  if and only if  ( 1) ( )j a itj j aUξ ξ− ≤ ≤  

where 1 ja C≤ ≤ . Accordingly, the identity ( 1) ( )( , )
itj itjitj j Y j YU ξ ξ−∈  always holds. Since shifting all of 

the cut-points by some quantity is equivalent to shifting the probit latent variable by the same 

quantity, we add the constraint (1) 0jξ =  to ensure identifiability of model parameters. 

 Letting '
itU  be the tth row of iU ,  we conceptualize the factor analysis model as: 

1 21 2

1 2

1
1

( ) ( 1)( ) 1
( 1) 1( )

1
1it

it
it it itp p Kp p it

Kit p p
itK

U
f

U
f

U
f

ε ε
+ × ++ ×

+ ×+

        = = + = +           

ΛΛM
M

,                        (3.1) 
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where 
1it

itK

f

f

 
 
 
  

M  is the factor score of subject i at time t, and Λ  is the loading matrix. We may 

transpose both sides of Equation 3.1into rows, then stack those rows of the n subjects and T time 

points into a matrix form 

1 2

T

( ) ( 1)
(1 , )nTnT p p nT K

U F
× + × +

= Λ + Ε  

which is more convenient to use in the computing process. We let the loading matrix Λ  be 

common across all time points, while the temporal trend is explained by the trajectory model 

(Stage 2) of the factor scores over time. 

 The elements of the error term itε  are assumed to be independently normally distributed, 

with variances  2 /j twψ   for all j and t. This framework anticipates carrying at a weighted least 

square linear regression for the jth variable where 11...j p= , and where the probit latent variables 

(indices 1 1 21p p p+ +… ) have unit variance. The weight parameters tw  for 1...t T=  model the 

relative dispersion of the outcome variables at the tth time point, where it is assumed that 

0 1tw< <   and  1 1Tw w+ + =L  for 1...t T= . 

 These weight parameters are designed to deal with the possibility of hetroscedasticity in 

the distributions governing a given quantity at different time points. Such a scenario could arise 

when the resources available to generate data vary over time. For example, outcome 

measurements might be based on an average of subjective assessments by multiple raters, and 

the number of raters could be different at distinct time points. 

In modeling the dispersion parameters of the 1p  continuous variables across the T  time 

points, the most general assumption could be assuming 1p T⋅  variance terms, which could result 
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in too many parameters in the model, making it hard to estimate. A model without weight 

parameters would assume each continuous variable has a constant variance over time, 

corresponding to 1p  variance parameters. Adopting the weighted regression model, we include 

1p T+  parameters to accommodate the possibility of hetroscedasticity, thereby going in between 

these alternatives. A feature of this approach is that we assume that the dispersion of all 

continuous variables change in the same way across time points, as in the scenario where the 

number of raters change over time but is the same for all outcomes measured at a given time. In 

the application considered here, patients’ measurements are made at discharge from the 

hospitalization following treatment for a broken jaw as well as 10 days 1 month, 6 months, 12 

months afterwards, which gives rise to a concern that dispersion of outcome measure could 

increase over time. The weighted regression model offers a framework for researchers to check 

for certain departures from a homoscedasticity assumption. 

As in a general weighted least square linear regression, time points with higher weights 

correspond to more influence on the model parameters, and lower weights correspond to less 

influence. The weights are drawn from their posterior distribution, which is determined mostly 

by the conditional variances and missingness of the outcome variables in each time point. 

Formally, 

1 2
1

2

2
1

2

1
~ ( 0 , )tit p p

p

p

wN

I

ψ

ε
ψ+

  
  
  
    
  

O
                                (3.2) 

 The constant element 1 attached to the vector of the factor scores in formula (3.1) 

simplifies the way to allow or not to allow the intercepts in the outcome model. For example, 
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fixing an element in the first column of Λ  to 0 means not to allow an intercept; while dropping 

this constraint implies that an intercept is included. 

 The intercepts associated with the latent probit variables correspond to the conditional 

probability of the lowest level of the ordinal variables, a quantity that is needed to produce 

imputations. On the other hand, we chose not to model the intercepts of the continuous variables, 

since compared to not modeling them, modeling the intercepts yields similar imputation results 

but much greater auto-correlation in the Markov-chain Monte Carlo estimation procedure based 

on our simulation evaluations. As the mission of the LF model is to impute missing values based 

on observed data rather than to estimate parameters, we shift the continuous variables by a 

constant (say, their sample means) in the beginning and add back the constant after imputation to 

avoid modeling the intercepts of continuous variables. 

 We therefore fix elements in the first column of Λ to 0, i.e., let 1 0jΛ =  for 11 j p≤ ≤  as a 

constraint as proposed by Geweke and Zhou (1996), we also impose constrains on a triangular 

array of elements in the upper-right corner of Λ , i.e. 0j kΛ ≥  for 2k j≥ + , to avoid undesired 

rotations of Λ ,.  

 In Stage 2 of the LF Imputation Model, we assume that factor scores follow a linear 

mixed-effect model 

1 1 1
it it i it itK aK a K b b

f X Zα γ δ
×× × × ×

= + +                                                   (3.3) 

where X is a set of variables with complete data. Theoretically, any variable that is collected 

completely can be put in X. However, more parameters are introduced in the model if we include 

a variable in X compared to adding a variable into the outcome Y. In choosing where to put a 
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variable, we need to consider how it makes sense to relate a variable to factor scores and their 

trajectories. 

 We assume the random effects to be distributed as 

1
' V( ) ~ (0, )i Kb

K

R
N

R
γ

 
 
 
  

O  

where  each of kR , 1...k K=  is a b b×  positive-definite matrix. Here the "V" operator means the 

vectorization of a matrix by concatenating its columns. 

 The error part of the factor score, itδ , is assumed to have unit variance for the purpose of 

identifiability of the model. In additional to the block-diagonal error structure for random effects, 

we use a one-step auto-regressive (AR1) error structure to accommodate longitudinal correlation 

among factor scores. Given itX , itZ  and the model parameters, each of the K T-length vectors of 

factor score is assumed to be independent from each other. Specifically, we assume  

1

~ (0, AR1 ( ))

i k

T T

iTk

N

δ

ρ

δ

 
 
 
 
 
 

M
M

  

 for 1...k K= , where the matrix 

1

1

1

AR1 ( )

1

T

T

T

ρ ρ
ρ

ρ
ρ

ρ ρ

−

−

 
 
 =
 
 
 

L
O O M

M O O
L

. 

 To complete the LF Imputation Model specification, the prior distributions of the 

parameters can be characterized as follows: 

 ξ  ~ uniform over its support 
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 Λ  ~ element-wise 2
0 0( , )N µ σΛ Λ  subject to factor-model identifiability constraints 

 
2

02 0~ Inv-Gamma( , )
2 2

jj
j

sn
ψ α β= =  

 2
0 0~ ( , )

t tt w ww N µ σ  constrained such that on 
1

1
T

t
t

w
=

=∑  and 0tw >  for all t 

 α  ~ element-wise 2
0 0( , )N α αµ σ  

 0 0 0~ Inv-Wishart(scale ,df )kR Sν ν= =  

 2
0 0~ ( , )N ρ ρρ µ σ  constrained on the possible support ( 1,1)− . 

 

3.2 Fitting the LF Imputation Model 

 With the development of the LF Imputation Model in a hierarchical modeling framework, 

it is natural to use Markov-chain Monte Carlo (MCMC) statistical computing techniques to fit 

the model and to draw a Bayesian inference. We start the development in this section by 

outlining the conditional distributions that provide the foundation for an MCMC fitting 

procedure. We use a Metropolis-within-Gibbs sampling framework (Gelman, Carlin, Stern, 

Dunson, Vehtari and Rubin 2014) to draw a sample from the posterior distribution of the 

parameters, latent variables, and missing data. Certain steps are implemented using the 

Metropolis-Hastings algorithm due to the conditional distributions being not well-known 

distributions that can be sampled directly. 

 We draw the missing outcome variables and the probit-model latent variables based on 



 39 

1 2
1 2 1

2

2
1

2
( ) 1

1
1

| ~ ( , )tit p p
p p pit

p

wU f w Y N
f

I

ψ

ψ ξ
ψ+

+ ×

  
  

    Λ         
  

Λ
O

, 

then truncating itjU  on the interval 1( , )
itj itjj Y j Yξ ξ−  for non-missing ordinal outcome variables, which 

correspond to indices 1 1 21p j p p+ ≤ ≤ + . For itjU ’s corresponding to missing continuous 

outcome variables and missing ordinal outcome variables, no truncation is needed. Since the 

variance-covariance matrix is assumed to be diagonal, we draw normally distributed components 

individually. The covariances among the outcomes variables are explained by factor scores and 

the factor loading matrix as described below. 

We draw the conditional variances of the outcome variables as  

2 2 2
0 0

1 1| , , , ~ Inv-Gamma( ( ) , ( ) )
2 2j jj jjU w f n nT s sψ α βΛ = + = +   

for 11j p= … , where  

( ) ( )
1

2 T T T

1

( 1 ) ( )( 1 )jj j j n j j
nT

T

w
s U F I U F

w
⋅ ⋅ ⋅ ⋅
×

 
 = − Λ ⊗ − Λ 
  

O . 

Here 
1 2( )nT p p

U
× +

 and 
nT K
F
×

 are long-form matrices of the outcome variables (including the latent 

variables underlying binary or ordinal outcomes) and factor scores. 

 We draw the weights 1( , ..., ) | , ,Tw w U f Λ  using a Metropolis-Hastings step. We start 

from equal weights 

1 1( , ..., )
T T

, 
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so that all of the elements sum up to 1. The proposal draw is the sum of the current weights and a 

multivariate jumping step vector. The result is truncated such that every element is within the 

interval (0,1). We use the step vector  

1 1( , ..., )D
T T

− , 

where D~Dirichlet(τw, τw , ... τw). Theoretically, any multivariate distribution with elements 

summing up to 0 is suitable to be chosen for the step vectors, so that the proposals weights sum 

to 1 by constriction. The magnitude of the step vector is determined by the tuning parameter τw 

with higher values corresponding to smaller steps. We calculate the estimated scaled error part of 

the continuous outcome variables by 

1 1
1 1

1

1
1

1: 1:
1 11

1
(( ) )it it p p

p p it
p

h U
f

ψ

ψ

−

⋅
× ×−

 
  

= − Λ   
   

O . 

We use the probability min( ,1)wα  to determine whether (can ) (can )
1( , ..., )Tw w  is accepted, 

where 

(can) 2 2
0 0

1
2
0

(can)
(can) T

1 1 1

(can)

(can)1

( ) ( )
exp(

2

1log ( )
2 2

1

( 1) log )1

t t

T

t w t w
t

w

T T n
t

t t it it
t t it

T t t

w
t

t t

w

w w

wn w w h h
w

w w
T

w w
T

µ µ

σ

τ

α =

= = =

=

− − −
= −

+ − −

− +
+ −

− +

∑

∑ ∑ ∑

∑

  . 

 

 We draw the cut-points | , ,Y fξ Λ  by a Metropolis-Hasting step. The proposal draws of 

the cut-points for the jth variable are generated iteratively for 2 ... ( 1)jc C= −  as 
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(can) 2
( ) ( )~ ( , )j c j c jNξ ξ τ  truncated on  ( )

( 1) ( 1)( , )can
j c j cξ ξ− + . Here the 2

jτ  where 1 1 2( 1) ... ( )j p p p= + +  are 

tuning parameters for the jth variable. Then we use the probability min( ,1)jα  to determine 

whether ( ) ( )
(2) ( 1)...

j

can can
j j Cξ ξ −  are accepted, where 
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 The factor scores of the ith subject | , , , ,i if U w ψ ρΛ  are drawn based on the Bayesian 

solution of  a linear regression for the subject, where the if  is treated in the same way as a vector 

of linear coefficients. We denote 
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We draw | , , , , ~ ( , )i i i if U w N Vψ ρ µΛ , where  

T 1 1 1
( 1) ( 1)(( ) (AR1 ( ) ) )i T w T T KV I I Iρ− − −

⋅ − ⋅ −= ⊗ Λ Ψ ⊗ Λ + ⊗  

and 

1
T 1
( 1) 1

1 1
1
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(AR1 ( ) ) ( ))

i

i i T w T

iT

i i

T K T T i

iT iT

U
V I
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X Z
I I I

X Z

µ

ρ α γ

−
⋅ − ⋅

−

 
 = ⋅ ⊗ Λ Ψ − ⊗ Λ 
  

   
   + ⊗ ⊗ + ⊗   
      

M

M M

. 

 

 

 The loading matrix | , ,f w ψΛ  is drawn by row since the variance-covariance matrix of 

the error term of U is assumed to be diagonal. The regression equation of the jth outcome can be 

written as 

T T(1, ) ( )
j jitj it P j P itjU f ε= Λ + , 

where jP  is a subset of {1, , ( 1)}K +L  indicating which elements of  j⋅Λ  are free elements 

instead of being assumed to fixed to 0. Only the corresponding part of the factor score vector is 

involved in the regression equation. The values of  jP  can be written exhaustively as 

   1 {2}P =  

   2 {2,3}P =  

   1 {2, 3, , }KP K− = L  

   
1

{2, 3, , }K pP P K= = =L L  

   
1 1 2

{1, 2, 3, , }p p pP P K+= = =L L , 
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corresponding to the constraints of Λ we described in the section outlining the model.  

 Letting 
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which is the conditional variance-covariance matrix of jU⋅ , a Bayesian linear regression formula 

is applied to achieve the conditional distribution of  ~ ( , )
j j jj P N Vµ

⋅ ⋅Λ ΛΛ ,  where 

T 1 1 1
( ) 0( (1 , ) (1 , ) )

j j j jnT P w j nT PV F F V
⋅ ⋅

− − −
Λ ⋅ ⋅ Λ= Ψ +  

and 

T 1 1
( ) 0 0( (1 , ) )

j j j j jnT P w j jV F U Vµ µ
⋅ ⋅ ⋅ ⋅

− −
Λ Λ ⋅ ⋅ Λ Λ= Ψ + . 

This normal draw is then truncated invoking non-negativity constraints on the diagonal elements. 

Based on experience, there is a small chance for the non-negativity constraint not to be satisfied 

even if we have a large number of trials. In this case, one can flip the sign of the corresponding 

element of the factor scores for all subjects at all time points, which does not change the meaning 

of the model while making the non-negativity constraint more straightforward to satisfy. 

 We draw the temporal correlation coefficients of the factors scores | , ,fρ α γ  by a 

Metropolis-Hastings step. The proposal is drawn from 2
(can ) ~ ( , )N ρρ ρ τ  truncated on the interval 

( 1 ,1)− , where 2
ρτ  is a tuning parameter and ρ is the current value.  We define the estimated 

error terms of the factor scores for subject i at time t as it it it i ite f X Zα γ= − − , and we then let 

T
1 1( ... ) ( ... )i iK i iTg g e e= , where ikg  is a T-vector of the estimated error terms of the kth element of 
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the factor scores across all time points belonging to subject i.  Then we use the probability 

min( ,1)ρα  to determine whether (can )ρ  is accepted, where 

2 2
(can ) 0 0

2
0
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T
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( ) ( )
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2
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α − − −
= −

−

− − ∑

. 

 We draw the fixed effect α  and the random effects iγ  by a similar rearrangement of the 

elements of the factor scores such that one component of the factor scores across all T time 

points of a subject is treated as a T-vector in a regression equation. Specifically, letting 

T
1 1( ... ) ( ... )i iK i iTf fφ φ = , 

Equation 3.3 (on page 36) implies 

T T
1 1

T T

1 T T
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i i

ik k i k ik
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iT iT
T a T b

X Z
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X Z
φ α γ⋅ ⋅

×

× ×
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   = + +   
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M M   , 

where ikg  is defined in the ρ  step. For a given 1...k K= , the n subjects contribute a sample for 

deriving the conditional distribution of α , iγ  and kR . Therefore, we stack the factor scores and 

covariates of all subjects into long-form matrices of Φ , X and Z, while denoting iΦ , iX  and iZ  

as the rows belonging to the ith subject in these matrices.  We hence draw 

T | , , ~ ( , )
k kk kf R N Vα αα ρ µ
⋅ ⋅⋅  

where 

T 1 1 1
0
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( ( 1 ( ) ) )
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n
T
i T i k i i

i
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⋅

− − −

=

= + +∑ , 
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 and 

T T 1 1
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( (AR1 ( ) ) ( ) )

k k
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i T i k i i k
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V X Z R Z Vα α α αµ ρ µ
⋅ ⋅
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⋅

=

= + Φ +∑ . 

 We draw 

T( ) | , , , ~ ( , )
ki kii k kf R N Vγ γγ α ρ µ⋅  

where 

T 1 1 1( AR1 ( ) )
ki i T i kV Z Z Rγ ρ − − −= +  

and 

T 1 TAR1 ( ) (( ) )
ki ki i T i k i kV Z Xγ γµ ρ α−

⋅ ⋅= Φ − . 

 We finally draw the variance-covariance matrices of the random effects 

T
b 0 0 0

1
| ~ Inv-Wishart (scale ( ) ( ) , df )

n

k i k i k
i

R S nγ ν γ γ ν⋅ ⋅
=

= + = +∑ . 

 The MCMC procedure iterates the above steps a large number of times until we see 

evidence of convergence. 

 

3.3 Starting Values 

 In general, the number of iterations leading to convergence of an MCMC procedure 

depends on starting values for model parameters. In line with principles developed in Gelman 

and Rubin (1992) and Schafer (1997), we chose starting values based on the following 

considerations: 

 For parameters of associations in the imputation model, we choose starting values that 

suggest limited or no associations and that overstate variability. This is built on a perspective that 
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the greatest risk to Bayesian inference emerges from assumptions that are artificially precise and 

favor inferences showing substantial associations. 

 We anticipate an investigator would run less complicated models using available 

software before applying the LF Imputation Model. For example, a set of univariate one-way 

ANOVA’s or univariate linear mixed models would give quantities such as the total sum of 

squares, which leads to a reasonable upper bound for conditional variances. 

 Specifically, the covariance, the correlation, the association and the loading parameters 

are taken to start from their null values. That is, the loading matrix Λ  starts from a 0 matrix; the 

weights 1( ,... )Tw w  start from equal weights 1/T ; the fixed effects α  start from a 0 matrix, and 

the auto-regressive coefficient ρ  starts from 0. The variances of error terms start from values 1 

for 2
jψ  and values I /2T  for kR , which based on preliminary analyses can be expected to be 

overestimates. This ensures a reasonable contribution in the model-fitting across all outcomes 

variables in the first few iterations. 

The cut-points start from crude guesses based on the marginal probabilities of categories. 

For example, jξ , which is a ( 1)jC + -vector, starts from a transformation of cut-points resulted 

from an ordinal logistic model of the corresponding ordinal outcome variable without any 

predictors. Compared to the cut-points  jζ  in an ordinal logistic regression, which can be arrayed 

as 

(0) (1) ( 1) ( )...
j jj j j C j Cζ ζ ζ ζ−−∞ = < < < < = +∞ , 

the cut-points in the LF Imputation Model can be arrayed as 

(0) (1) (2) ( 1) ( )0 ...
j jj j j j C j Cξ ξ ξ ξ ξ−−∞ = < = < < < < = +∞ . 
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We let ( )j cξ  start from ( ) (1).588 ( )j c jζ ζ−  for 2 ... 1jc C= − , where the proportion .588 comes 

from the shape difference between a normal distribution and a logistic distribution. 

 This set of starting values worked reasonably well in the simulations described in Chapter 

5, in the sense that all Markov chains we drew showed satisfactory convergence within roughly 

6000 iterations.  
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Chapter 4 

Statistical Computing Techniques 

 

 A substantial part of this project has been to develop statistical software implementing 

the LF Imputation Model and to test its performance in different hypothetical scenarios.  This 

chapter documents the choices we made in implementing the LF Imputation Model, in order to 

facilitate future efforts in the continuation of this project or other projects involving similar 

intensity of statistical computing. 

 To place the implementation choices in context, we describe briefly the evaluation 

strategy outlined in Chapter 5, given the imperative to carry out simulation studies to assess both 

the accuracy of the program and the statistical properties of the procedure, both of which induce 

certain demands on the computational task at hand. We defer many of the relevant details of the 

evaluation strategy to the next chapter, aiming here only to motivate the choices in the 

architecture of a statistical-computing strategy. 

 As mentioned in Chapter 1, the research question is to evaluate the performance of the LF 

Imputation Model across different settings characterized by the dimension of outcome measures, 

the number of subjects, the dimension of internal factor scores, and the number of time points. 

We call each combination of the above factors a scenario, e.g. the combination of 40 outcome 

variables, 5 internal factor scores, 50 subjects and 5 time points is one scenario of interest. In 

each scenario, we incorporated some item missingness through a missing-completely-at-random 

(MCAR) mechanism and we also consider 2 hypothetical missingness mechanisms with 

missingness rates of either 20% or 100% on the outcome variable we analyzed, where 100% 
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missingness implies that the variable was not measured at the given time point and imputations 

are based entirely on patterns of associations with other variables measured at the same time 

point or with the same variable at different time points. Both of the missingness mechanisms 

belong to missing-at-random (MAR). We call a scenario with one of the above two missingness 

mechanism a case. The performance of the LF Imputation Model is tested on 64 cases (32 

scenarios × 2 missingness mechanisms). For each case, the test results are based on 204 data sets 

with shared underlying model parameters but with different errors and random effects. The 

quantities used to evaluate of the LF Imputation Model include the actual coverage rates of 

model parameters, the average bias in estimates, and the average confidence interval lengths. For 

example, when intervals from 190 of the 204 generated data sets cover the parameter of interest 

in a certain case, we calculate 190/ 204 93.1%=  as the actual coverage rate in this case. 

 For a certain scenario, all of the 204 complete data sets share the same factor structure, 

leaving the normal errors and random effects to vary. Different factor structures are nested in the 

32 scenarios, i.e. we tested the LF Imputation Model under 32 different scenarios and 32 

different factor structures which are randomly chosen, assuming factor structures do not interact 

with the scenario settings. 

 As described earlier, we test the LF Imputation Model in 64 cases. We generate one data 

set for each case and apply the proposed imputation method and analysis procedures. We repeat 

this approach 204 times using different random seeds to produce different residual errors and 

random effects. We call each repetition among the sequence of 204 data sets a replication, 

which consists of applying the proposed procedure once for each case. In this dissertation, if a 

specific case is not mentioned, “a replication” could also be interpreted to mean applying the LF 

Imputation Model to all cases across all cases within a scenario. 
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 Fitting the LF Imputation Model in each of 204 replications across 64 cases is a 

computationally demanding task. To tackle the issues surrounding the amount of computation, 

we wrote our MCMC procedure in a low-level language (C++) instead of R, and parallelized the 

204 replications using the Hoffman 2 cluster. Compared to R, programs written in low-level 

languages can often perform the same amount of computation by a factor of 10−100 times faster. 

On the other hand, the efficiency gain from parallelization depends on the current workload of 

the cluster. Based on our experience, the cluster sometimes allowed all 204 jobs to be running at 

a time, but at times the cluster allowed as few as 10 jobs at a time. Typically we experienced 

about 60 jobs running at a time. Our efforts led to a gain in computation efficiency by a factor of 

approximately 600 times compared to a single computer running the same program written in R. 

 Each replication, which corresponds to 64 data sets, typically took about 2 hours when 

8000 MCMC iterations were drawn for each chain. Because each scenario differs in complexity, 

we count the total time taken across all data sets in a replication. Without any parallelization, 

about 408 hours (204 replications × 2 hours) would have been needed. With the parallelization of 

about 60 jobs running simultaneously, it took about 6−10 hours to finish the whole simulation. 

 The content in the following sections can be viewed as a brief introduction to some 

options of the front end of efforts to implement a project that requires intense statistical 

computation. This material might motivate further reading, including documents available on the 

internet that are accessible through web searching. 
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4.1 Making an R Package for the LF Imputation Model 

 Since we want any program used to implement te LF Imputation Model be easy to 

translate for future applications, the way it is organized needs to be familiar to others. The open 

source R package is a standard way to implement statistical programs and to make them 

available to other researchers. 

 An R package consists of a set of R functions collected in a folder, with possible data and 

other files wrapped together. The folder containing the R functions is attached to the search path 

when the package is loaded. For example, we can run the following commands in an R session: 

> search() # look at the search path 
[1] ".GlobalEnv"        "package:stats"     "package:graphics"  
[4] "package:grDevices" "package:utils"     "package:datasets"  
[7] "package:methods"   "Autoloads"         "package:base"   
 
> library(norm) # load the package norm 
Warning message: ... 
 
> search() # look at the search path again, now "norm" is in the search path 
[1] ".GlobalEnv"        "package:norm"      "package:stats"     
[4] "package:graphics"  "package:grDevices" "package:utils"     
[7] "package:datasets"  "package:methods"   "Autoloads"         
[10] "package:base"     
 
> ls(2) # look into the loaded package norm, all functions of norm 
package are located in this folder 
[1] "da.norm"        "em.norm"        "getparam.norm"  "imp.norm"       
[5] "loglik.norm"    "logpost.norm"   "makeparam.norm" "mda.norm"       
[9] "mi.inference"   "ninvwish"       "prelim.norm"    "rngseed"     
 

 As we see from the above outputs, loading a package results in adding a folder into the 

search path, which itself is a list of folders. From that point forward, R can find the functions, e.g. 

"da.norm" by looking through the search path one by one, until "da.norm" is found in a folder in 

this list. It is possible that two functions in different packages happen to share the same name. 
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When both of the packages are loaded, the function loaded earlier is "masked". To refer to the 

"masked" function, one would need to use the expression "package::function" instead of the 

function name only. However, although this issue could arise in future uses of the package 

developed here, it did not compromise our present work. 

 Other actions before loading and after unloading of a package, like opening a data file or 

creating and deleting a temporary file, can also be specified. 

In order to make a package, one can run the function package.skeleton() to generate the 

source code of an empty package in the current working folder before adding the actual program. 

The current working folder can be shown using the command  

> getwd() 
[1] "C:/Users/Xiang/Documents" 
 

 The source code folder contains sub-folders "R", "src" and "man" in which we put R 

programs, source files of low-level language programs if any, and help files respectively. Once 

these contents are in place, it is possible to use the command 

> install.packages("package_name", type = "source", repos = NULL) 
 

Incorporating compiled low-level language programs if needed to create and to copy the package 

folder into the library installation folder. The package installation folder can be seen by using the 

command 

> .libPaths() 
[1] "C:/Program Files/R/R-2.15.0/library" 
 

 The above folder information can be found in the "R Environment Variables" section of 

related R documents. By clarifying the organization of packages and letting every user follow the 

same location conventions, members of the R community can exchange programs which work 

together with a minimal chance of any conflict arising between shared programs. 
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4.2 Using a Cluster for Parallel Computing 

 To evaluate the LF Imputation Model in a parallel computing environment, we divide a 

large computational task into smaller independent pieces (jobs) which can be run in any order 

and hence can be parallelized. One can then submit these jobs to a parallel-computing cluster and 

wait until they are all done.  

 On the service side, a cluster manages a set of computers which keep running jobs. 

Drawing on a built-in queuing system, jobs from the queue are passed to idle computers until 

either all computers are in use or the queue is empty. Since the jobs are run by a number of 

computers in parallel, the running time (wall-clock time) is reduced. Another reason why a 

cluster of computers with a queuing system is appealing is that the system can be shared by 

multiple users, which lowers the total cost of computing for a group of users. 

 To carry out parallel computing using a cluster, a user first cuts his or her computation 

into small jobs. The way this is done might differ for each different computational problem. The 

computation involved in the current project ran an R program calling C++ functions 204 times 

with different seeds submitted to a random-number generator used as input. Letting each job 

running the R program one time, with different seeds generating random numbers, a sequence of 

204 jobs working together comprised the computation needed in this project. 

 We use a script “R.q” to build a command file (.cmd) for the R program. A complete list 

of available scientific computing software and corresponding instructions is available in the 

document "Hoffman 2 software" available at   

http://www.hoffman2.idre.ucla.edu/software/ . 

http://www.hoffman2.idre.ucla.edu/software/
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The “R.q” script asks the user a number of questions interactively, including what R program to 

run, what arguments to pass, how much time to allow at most, how much memory is needed at 

most, and what notification, if any, is needed after finishing. The answers to these questions are 

collectively written into a command file containing all information needed by a computer to run 

the given job. This command file is then submitted by the user with the command “qsub”. 

 Instead of generating and submitting command files for each of the 204 replications, we 

automated the process by saving one single .cmd file and writing an R function qsub() to 

repeatedly edit a line 

Rscript --default-packages=pkg -e 'cmd1' -e 'cmd2' ... 

in the command file before submitting. Here, the arguments “pkg”, “cmd1”, “cmd2”, and so on 

contain the arguments passed to the R function qsub(). The option “-e” means to execute the 

subsequent command, while the option “--default-packages=pkg” means to load the contents of 

“pkg” before executing. The arguments “cmd1”, “cmd2”, and so on are executable R programs 

that can be run one by one in R. By putting different Rscript lines into a set of command files 

and then submitting them, we can parallelize R programs using a cluster. 

 There are other ways to structure parallel computing through packages, such as with the 

packages MPI and OpenMP, in which users start multiple processes or threads within a program. 

Users have more responsibility to achieve parallelization with these packages, which provide 

options to deal with the complexities involved in communications within the cluster and barriers 

among active processes, thereby providing users with finer control of parallelization. Our project 

did not require parallelization to this level. 
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4.3 Using the R−C/C++ Interface 

 R is a free statistical software package based on the S-Plus language, which is an 

interpreted language in the sense that each statement in the program is processed right before 

execution. The interpretation results in worse performance in terms of computational efficiency 

than is attainable on a computer in exchange for greater simplicity and convenience. 

Programmers appreciate the flexibility and compatibility of the S-Plus language, for routine tasks 

but favor low-level languages for their performance in situations requiring high computational 

intensity. 

R provides a framework for calling a program written in low-level language from within 

R to perform computationally-intensive tasks. Structured this way, the low-level language 

components have full access to any type of input data objects, and have the ability generating 

any type of output data objects. Although the low-level language instructions have the ability to 

access all objects in the R environment, cross-language reference is not typically recommended 

as a programming strategy to avoid possible chaotic interactions. Similar situation is sometimes 

seen when programs induce excessive communications using global variables. The motivation 

for dividing tasks here, namely an efficiency tradeoff, justifies the minimally elevated risk of 

excessive communication between program components. 

After extracting data from R objects, a low-level language program can carry out the 

actual computation. Then the results are "copied” and “pasted" to the resulting data objects in the 

shared memory, and passed back to R. 

 Below is an illustrative example of a C++ program to calculate the sum of all of the 

elements of a matrix. This example incorporates all the operations mentioned above, clarifying 

what is needed in a program written in low-level language and integrated with R. The program 
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developed for this project to implement the LF Imputation Model is analogous, although longer 

in each step is more involved. 

 

// Include header files to use the Scythe Statistical Library 
#include <scythestat/matrix.h> 
... 
// Include header files to access R objects 
#include <R.h> 
... 
// use "scythe" (Scythe Library) namespace as default  
using namespace scythe; 
 
 
// Specify C style arguments passing in functions, required by R 
extern "C" 
{ 
 SEXP matsum(SEXP mat) 
  // SEXP stands for "simple expression", which can 
  // be any type of object in R 
 { 
  // Find nrow, ncol and elements of the matrix 
  SEXP dim = getAttrib( mat, R_DimSymbol ) ;  
  int nrow = INTEGER(dim)[0];  
  int ncol = INTEGER(dim)[1];  
  double *vec = REAL(mat); 
   
  // Construct a matrix (Scythe Library matrix object) 
  Matrix<> A (nrow, ncol, vec); 
 
  // Calculate the sum of all numbers in the matrix 
  double s = sum(A); 
   
  // Prepare return value, a vector with length=1 
  SEXP Rval; 
  PROTECT( Rval = allocVector(REALSXP,1) ); 
  REAL(Rval)[0]=s; 
  UNPROTECT(1); 
   
  return Rval; 
 } 
} 
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 Within R, one can use the following function to encompass this C++ function. 

matsum<-function(x) 
{ 
 x1<-x 
 storage.mode(x1)<-"double" 
 .Call("matsum",PACKAGE="blfmi",mat=x1) 
} 
 
 This R function first makes sure that the input matrix consists of double-precision 

floating point numbers, changing inputted values to double-precision if necessary. Then the 

matrix is passed to the C++ function. After the operations in the C++ function are done, the R 

function returns whatever the C++ program returns to it.  The reason why we change the storage 

type is that R allows any storage type so long as the implied computations make sense, but the 

C++ program needs the data type be unambiguous and specified explicitly. This flexible feature 

of R partially accounts for why R programs run slower than programs written in low-level 

languages. 

 

4.4 The Scythe Statistical Library 

 Another tool we found useful in this project is the Scythe Statistical Library (Pemstein, 

Quinn and Martin 2011), an open source C++ library for statistical computing. This library 

includes a suite of matrix functions, pseudo-random number generators, and numerical 

optimization routines. Based on the author's test, the Scythe carried out a bootstrap computation 

faster than R by a factor of about 10 times (3.6 seconds versus 40 seconds). 

 To use the Scythe Statistical Library, one needs to download the library's source code, 

including a set of header files, into a folder. When compiling or building an R package, one uses 
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the -I option to add that folder into the "include path" so that the #include part of a C++ program 

can find those files. Adapting to the local programming environment, we put the line 

PKG_CPPFLAGS = -I ~/include 

in the file ~/.R/Makevars. As a result, the C++ compiler would look into the ~/include folder for 

the header files in building an R package. 

 As a brief explanation of the example program, the class “Matrix” and the function 

“sum” shown in the C++ program are defined in the Scythe Statistical Library. The "namespace" 

line makes it straight ward to refer to them; otherwise, we would need to introduce class and 

function names by their package name every time, like “scythe.Matrix” and “scythe.sum”, to 

allow them to be recognized by the compiler. The ensemble of R as a programming interface, 

C++ as a low-level language, the Scythe Statistical Library as an efficient toolkit for familiar 

statistically-relevant computational tasks, and the Hoffman 2 parallel computing environment 

thus provided a powerful engine for carrying at multiple imputation for high-dimensional 

multivariate incomplete data sets with mixed data types and longitudinal structure. 
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Chapter 5 

Simulation Studies 

 
 The goal of multiple imputation (MI) is to recover information in an incomplete data set 

by drawing on available information, usually based on associations between variables allowing 

one to model the relationship between the missing data and the observed data, but also based on 

information in prior specifications. By fitting a Bayesian model encompassing the missing data, 

one can obtain the posterior predictive distribution of the missing data given observed data. One 

can then draw a number of samples from this distribution to serve as multiple imputations, from 

which incomplete-data inferences can be made through a combined statistical analysis. In 

considering the properties of statistical procedures, difficulties can arise from flaws in parametric 

models, small sample size, complications in the data structure, and other features of the problem. 

In this section, we consider whether such difficulties lead to deficiencies in the newly developed 

LF Imputation Model. The sample size, the number of variables, the number of time points, and 

the dimension of the factor scores are expected to be relevant in this sense. 

 Besides the LF Imputation Model, we also tested the PAN and MICE imputation methods 

in the same way to compare their performance. 

 

5.1 Simulation Scenarios and Replications 

 We evaluate the LF Imputation Model through the performance of two statistical analyses 

applied to multiply imputed data sets. We consider 32 different scenarios, constructed as 
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factorial combinations of  the number of time points (4 or 5), the number of outcome variables 

(10, 20, 40, or 60,  with half of the variables continuous and the other half ordinal), the 

dimension of the underlying factor scores (3 or 5), and the number of subjects (50 or 200). Two 

hypothetical missing-data mechanisms, both of which belong to the class of MAR mechanisms, 

are also considered. 

 In each scenario, which is defined as a combination of the number of time points, the 

number of outcome variables, the dimension of factor scores, and the number of subjects, we 

first draw the underlying parameters from their specified distributions, including the fixed-effect 

coefficients, loading matrix, and variances of the observation-level errors or random coefficients. 

 The underlying fixed effects are drawn from independent uniform distributions on the 

interval ( 1,1)− . The variance-covariance matrices of random effects are drawn from scaled 

Wishart distributions independently with scale parameter 

.16 .1
.1 .16

− 
 − 

 

and 20 degrees of freedom for all factor scores. The autoregressive parameter ρ  is drawn from a 

normal distribution with mean .2 and standard deviation .05. The underlying loading matrix of 

the factor analysis model comes from drawing standard normal distributions for each element 

independently. Covariate matrices are taken to have elements that are independent with standard 

normal distributions. The variances of error terms of the continuous outcomes in the factor 

analysis model are drawn from a normal distribution with mean .15 and standard deviation .03, 

making the variances of error terms roughly comparable to the variances of the random effects. 

The proportions for the 3-category ordinal variables are drawn from a Dirichlet distribution with 

shape parameters (10, 10, 10), with cut-points that are set correspondingly. Taken together, 
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considering the combination of the variances of the random effects and the variances of the error 

terms, the magnitudes of the fixed effects range from small to large effect sizes. Properties of the 

procedure, such as coverage of interval estimates, are provided across a range of effect-size 

scenarios. 

 After the parameters of the model are determined, we take 4000 independent draws from 

the error distribution of the data, which includes the error terms in the factor analysis model and 

random coefficients, making use of variance parameters previously drawn. By putting the 

common model parameters and the independent draws of error terms together, we thus obtain 

4000 independent data sets sharing one single model parameter for a scenario. In generating data, 

we keep the factor loading matrix unchanged across all time points as is assumed in the LF 

Imputation Model. 

 Here, one scenario corresponds to 4000 independent data sets sharing a common model 

parameter. We sometimes refer to them as replications since analyses on these data sets can be 

viewed as repeated efforts seeking insight regarding the same underlying scenarios. When 

interval estimates are generated, some replications give intervals that cover the underlying true 

parameter values while others do not, allowing us to assess the actual coverage rate. Besides the 

actual coverage rate, two other quantities we use for the purpose of evaluating the respective 

imputation procedures are the average lengths of interval estimates and the average biases of 

point estimates compared to the underlying true values. 

 It is reasonable to worry that data sets sharing one particular set of model parameters 

would not be sufficient to expose potential problems of a statistical procedure, because those 

model parameters might combine to mask problems that would be revealed with different 

parameter values. The performance results based on 32 scenarios, each of which corresponds to a 
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different draw of model parameters, helps address this concern. We also changed the random 

seed for generating the model parameters to verify that good performance results are repeatable 

instead of just representing "lucky" results in terms of problems being masked by possible 

interaction between underlying parameters and scenario settings.  

 In a given scenario, we apply each of the two statistical analyses, one focused on 

continuous variables and the other focused on categorical variables, on the 4000 complete data 

sets to approximate the performance measures one would obtain with an infinite number of 

replications. We generate missing data based on the first 204 complete data sets, targeting a 

margin of error of 1.96 .95 (1 .95) / 204 3%× × − ≈  for estimates of the 95% coverage rate. 

Incomplete-data analyses applied to these 204 replications generate the observed coverage rates, 

the average lengths of intervals, and the average biases in parameters. Since the incomplete-data 

analyses we use here are based on standard complete-data analyses following different 

approaches to handling missing data (including available-case analysis as well as multiple 

imputation based on either the LF Imputation Model, the PAN imputation model supplemented 

with rounding for categorical values, or the MICE imputation procedure) the performance 

evaluation thus provides a foundation to contrast these alternative ways of handling missing data. 

 Since two missing-data mechanisms (described in following section) and 32 scenarios are 

considered, the above performance-evaluation procedure is repeated across the 2 32 64× =  cases 

or combinations. 
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5.2 Missing-Data Mechanisms in the Simulation 

 Generally any non-MCAR missing-data mechanism gives rise to the concern that 

statistical analyses are apt to be invalidated by some association between missingness and the 

underlying missing values on the variable of interest. We focus here on MAR mechanisms, 

which are likely to give rise to adverse impact on statistical analyses if the missing-data problem 

is not properly addressed and where it is possible to recover information using available data. 

 The two hypothetical missing-data mechanisms we consider here, both of which are 

MAR, will be described in following paragraphs. Thanks to the functionality of the R software 

package, other investigators can have access to the R package developed for this project and can 

modify the simulation program to evaluate the performance of the LF Imputation Model under 

an alternative missing-data mechanism. Importantly, the results presented here should not be 

understood as covering all MAR mechanisms; rather, these mechanisms considered here can be 

viewed as offering insight relevant plausible MAR mechanisms although perhaps not all MAR 

mechanisms. 

 In missing-data mechanism 1 (M1), letting jY  be the j th outcome variable, the first K/2-

1 continuous variables 1 / 2 1KY Y −L  and ordinal variables / 2 1 1K KY Y+ −L  are subject to missing-

completely-at-random missingness for each item following a Bernuolli coin flip with 20% 

probability of missingness. For the missingness of / 2KY  and KY we use a logistic-regression model 

conditioned on the other continuous variables, and similarly, for the last ordinal variable, we 

follow the framework introduced by Wang (2002) and use a logistic-regression model 

conditioned on the other ordinal variables. Specifically, let 

 1( missing) .2itP y = = ,  ...  / 2 1( missing) .2K itP y − = = , 
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 / 2 1( missing) .2K itP y + = = ,  ...  1( missing) .2K itP y − = = , 

while  

1 1 / 2 1 / 2 1 1 1 / 2 1 / 2 1
/ 2 1

1 1 / 2 1 / 2 1 1 1 / 2 1 / 2 1
,

exp( ) /(1 exp( ))
( missing)

exp( ) /(1 exp( ))
it K K it it K K it

K it
it K K it it K K it

i t

a y a y a y a y
P y r n T

a y a y a y a y
− − − −

− − − −

+ + +
= = ⋅ ⋅ ⋅

+ + +∑
L L
L L

   (5.1) 

1 / 2 1 / 2 1 1 1 / 2 1 / 2 1 1
2

1 / 2 1 / 2 1 1 1 / 2 1 / 2 1 1
,

exp( ) /(1 exp( ))
( missing)

exp( ) /(1 exp( ))
K it K K it K it K K it

K it
K it K K it K it K K it

i t

b y b y b y b y
P y r n T

b y b y b y b y
+ − − + − −

+ − − + − −

+ + +
= = ⋅ ⋅ ⋅

+ + +∑
L L
L L

   (5.2) 

 For the values of a's and b's, which determine the association between underlying values 

of variables and missingness rates, we first used absolute values of draws from a standard normal 

distribution to make them all positive invoking the framework used by Song and Belin (2004). 

However, in preliminary assessments, we found that such an approach does not generate 

substantial bias for available-case analysis in all scenarios. The apparent explanation for why 

available-case analysis does not break down in some scenarios has to do with our use of both 

positive and negative factor loadings in the factor-loading matrix incorporated in the LF 

Imputation Model, unlike the non-negative loadings (hence non-negative correlation coefficients 

among outcome variables) used Song and Belin (2004) in their factor-model framework. Hence, 

correlation coefficients among outcome variables can be either positive or negative and can 

cancel each other's effect in the logistic when the a's and b's are all positive. Although we do see 

good statistical properties of the LF Imputation Model when drawing a's and b's as absolute 

values of standard normal draws, the fact that available-case analysis doing a fair job in some 

scenarios raises a concern about judging the extent to which the LF imputation Model is really 

advantageous compared to simple-minded approaches that are not expected to perform well in 

general. For the purpose of demonstration, we use an artificial choice of a's and b's, which could 
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be taken as a "worst case scenario" for available-case analysis where all scenarios are affected by 

the missingness but where it is possible using MI analyses to obtain valid analysis results. 

 Specifically, we draw a's and b's from a standard normal distribution, then decide their 

signs based on the sign of corresponding correlation coefficient. This results in a setting where 

all terms in the logistic regression model contribute to missingness in the same direction, where 

higher values of covariates predict missingness to be more likely. This eliminates the possibility 

that the contribution from one term offsets the contribution from another. 

 In equations (5.1) and (5.2), we incorporate a scaling operation dividing the expit of a 

subject by the sum of  the expits of all subjects into the calculation of missingness probabilities, 

in order to make the missingness rates equal to the target rates 1r  or 2r .  

 In the first missing-data mechanism (M1), we set 1r  and 2r  both equal to .2. 

In the context of a basic mixed-model repeated-measures analysis in longitudinal 

research, Wang (2002) developed a related method and was able to show that inferences about 

cross-sectional means could be recovered accurately even if data were 100% missing.  Here the 

inference relied on the trajectory assumption of the longitudinal data. The missing-data 

mechanism M2 used here is designed to investigate whether the LF Imputation Model can 

similarly recover information about a quantity of interest connected with a variable that is 100% 

missing. 

 In the second missing-data mechanism (M2), the approach remains the same except that 

we set 1r  and 2r  equal to .1, and then make the remaining variable of interest to be completely 

missing at the particular time point we analyze. Such a context can be thought of as representing 

a situation particular variable is not measured at a given time point. 
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5.3 Statistical Analyses Involved in Evaluating the Imputation 

Methods 

 At the analysis stage, we first consider the mean of the second-to-the-last observation of 

the K/2-th variable, which has a continuous distribution, to be the target quantity of interest.  

 The second analysis we consider is similar to the former except that it estimates the 

proportions of the K-th variable, a 3-category ordinal variable with 1p  and 3p  defining the 

distribution (the middle category having probability  1 31 p p− − ). The reason why we use 1 3,p p  

instead of 1 2,p p  is that the extreme categories are affected more by missingness than the middle 

category in the MAR missing-data mechanism we described in the previous section. 

 

5.4 Simulation Results 

 After carrying out an analysis of the underlying complete data for reference, we assess 

the performance of available-case analysis, where we make use of all item data without further 

consideration of missing data, as well as the following three multiple-imputation approaches: the 

Longitudinal-Factor Imputation (LF), the PAN method based on the R program implementing a 

multivariate linear model longitudinal panel data, and the Multiple Imputation by Chained 

Equations method (MICE). Since the way MICE is implemented in R does not make it 

straightforward to handle the more standard “long-form” representation of multivariate 

longitudinal data with one row per time point, we use a “wide-form” representation of the data 

such that a row reflects a subject, which can be handled by MICE. 
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 Across a total of 32 scenarios, available-case analysis is seriously biased. This is not 

surprising given the "worst case scenario" missingness mechanism we have deliberately chosen. 

The performance of the LF Imputation Model is valid across all the scenarios we tested in terms 

of reproducing a valid coverage rate with reasonable lengths of interval estimates. The 

performance of the MICE imputation method was not as good as expected, although in hindsight, 

this finding seems reasonable, knowing that MICE is not designed to apply on longitudinal data. 

In comparison, PAN performs generally well on the continuous outcomes when the program 

does not crash, although the PAN program often crashed when confronted with a large number 

of variables. Meanwhile, for the ordinal outcome variables, PAN imputation followed by 

rounding to the nearest integer generates invalid inferences in some scenarios in our test, since 

PAN is not designed based on a model of ordinal data. 

 As described above, our simulation shows the LF Imputation Model producing uniformly 

valid results across all scenarios tested. For brevity, since qualitative conclusions do not vary 

substantially across scenarios, we present a subset of the analysis results from our simulation 

evaluations, focusing on scenarios where other missing-data approaches yield invalid inferences.  

 

5.4.1 Findings Based on Available-Case Analysis 

 Key simulation results are shown in Table 5.1 and 5.2. As shown in the columns 

corresponding to Available-Case Analysis, the sample mean of the continuous variable under 

analysis is biased toward lower values, consistent with the missingness mechanism inducing 

more missing data for higher values. The same reasoning explains a downward bias of 3p  and an 

upward bias of 1p  in the available-case analysis. 
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5.4.2 Findings Based on the LF Imputation Model 

 The LF Imputation Model works well for both continuous and ordinal variables in all of 

the scenarios we tested. With reference to analysis results based on the underlying complete data, 

the LF Imputation Model achieves valid coverage rates, negligible biases, and reasonable 

changes in interval lengths. The performance of the LF Imputation Model is either comparable or 

better than that of the other missing-data methods including Available-Case, PAN and MICE. 

This is not surprising, given that the data were generated to be consistent with an LF Imputation 

Model. Nevertheless, it is reassuring to know that the method is able to produce sensible 

inferences under the data model used to develop the method. 

 

5.4.3 Findings Based on the PAN Imputation Model 

 Unlike available-case analysis and MICE, PAN has the same capacity in M2 to estimate 

the mean of a variable that is 100% as LF does, drawing in the same way on longitudinal patterns 

of associations. However, the PAN program crashes in the scenarios with both higher number of 

variables and lower number of subjects due to its inability to invert covariance matrices 

necessary to fit the PAN model. This generally happens in data sets with a large number of 

outcomes but low actual dimension, a combination that is a recipe for substantial collinearity. 

Across all of the replications within a scenario, we observed no exception in terms of whether 

PAN crashes or not, i.e., either all 204 replications crashed after some number of MCMC draws, 

or all 204 replications generated meaningful results within the 8000 draws we tried. 
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 Table 5.1 shows the results of analyses of a continuous variable in the scenarios with 50 

subjects, 5 time points, 5 factor scores, and the number of variables varying among 10, 20, 40 or 

60. PAN provides valid inferences for the continuous variable in the scenarios with 10 or 20 

variables, but crashes in scenarios with 40 or 60 variables. 

 We did not observe such crashes in the scenarios with 200 subjects, which is a sufficient 

number allowing PAN to produce valid estimates up to 60 variables. Since all inferences with 

200 subjects are similar to those in Table 5.1 except for there have been no crashes of the PAN 

program, we did not show those results. 

 In summary, in the scenarios we considered, PAN yields valid statistical inferences for 

the mean of a 20% and 100% missing continuous variable so long as the program does not crash, 

with interval lengths that are slightly higher than but comparable to those produced in the same 

scenarios by the LF Imputation Model. A higher number of outcome variables and lower sample 

sizes were seen to be associated with crashes of the PAN procedure. 

 

5.4.4 Findings Associated with Rounding for Ordinal Variables After Continuous 

Imputation 

 Table 5.2 shows the analysis of the proportions for an ordinal variable across scenarios 

with 200 subjects, 5 time points, 3 factors, and the number of variables varying among 10, 20, 40 

and 60. With this number of subjects, PAN did not crash. However, the actual coverage rate of 

3p  in the scenario with 40 variables was only 66%, substantially lower than the target rate of 

95%. 
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 Since PAN treats ordinal variables as continuous, it yields provisional imputed values 

that have decimal expansions (e.g., 1.35 or 2.56). Rounding to the nearest possible value after 

imputation is one way to deal with this problem. But such an approach might result in 

deficiencies in the imputation, given the ad-hoc nature of the procedure which is not backed by a 

well-motivated statistical model. We hypothesized that the categorical feature of the data gave 

rise to this problem of PAN imputation. 

 To verify our hypothesis, we replaced a continuous variable in the data with the 

underlying latent variable associated with an ordinal variable under analysis. We applied the 

corresponding missing-data indicator to the latent variable. Hence we were working with two 

versions of the same variable, one categorical and the other continuous, with exactly the same 

missing-data indicator and appearing in the same data set. We multiply imputed such a data set 

with PAN, where the same predicting information is used to produce the imputed values of these 

two versions of the variable. The analysis of the multiply imputed categorical variable yields a 

coverage rate of 58%, slightly worse than the previous finding of 66%. However, the analysis of 

the multiply imputed continuous version of the variable gave a valid coverage rate (98%).  So 

PAN appears to impute the underlying latent variable appropriately while giving rise to 

deficiencies in the conversion of the underlying continuous measure into a categorical quantity. 

 This problem is related to non-linearity in the relationship between the numerical values 

of the categorical variable and the underlying latent variable. In other words, imputing the 

ordinal variable by its numerical value leads to a violation of the PAN model assumptions 

(linearity, and possibly conditional normality). As we know, a univariate transformation may 

either help or hurt linearity. A set of cut-points, can be used to categorize a continuous variable 

into a categorical variable, based on a discrete version of a transformation. In some situations, 
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these cut-points transform a linear variable (in relation to other variables) into a highly non-linear 

quantity. Putting the numerical values of a categorical variable into a linear regression or a 

multivariate normal model may produce misleading results in this case. 

 Another example similarly demonstrates how the strategy of imputing the values of a 

categorical variable by a multivariate normal model followed by rounding to the nearest integer 

value can lead to incorrect prediction, reinforcing the message that non-linearity induces a 

breakdown in this strategy. We use the NORM package, which like PAN relies on multivariate-

normal assumptions that imply linear-regression relationships governing conditional distributions. 

We generated 420 independent standard normal random numbers and call them variable 1x ; we 

use 280 1's, 60 2's and 80 3's as variable 2x . Here 2x  can be regarded as the categorized version 

of 1x  by some corresponding cut-points. The numerical values of 2x  are clearly non-linear with 

respect to 1x , in that, 2x  does not change in relation to 1x  over the greater part of the space, rather 

just increasing in relation to 1x  at the cut-points. We let the values of 2x  be missing with 

probability  

1

1

exp(1.4 1.9)
1 exp(1.4 1.9)

x
x
−

+ −
, 

where the constants 1.4 and 1.9 yield a missingness rate about 20% for 2x . We let all values of 1x  

be observed, and we assume that the missing-data mechanism is MAR. Then we use the package 

NORM, which assumes a multivariate normal distribution (bivariate here) to carry out multiple 

imputation followed by rounding to the nearest integer, as a foundation for a multiple-imputation 

analysis of proportions. As shown in Figure 5.4, the predictions based on the linear regression 

line, when using half integers (1.5 and 2.5 here) as cut-points, are incorrectly categorized to the 

middle (2nd) category in many imputations. We found the actual coverage rate of the interval 
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estimates for the proportion associated with the third category (the true rate being 80 / 420 .19B ), 

to be only about 13%. 

 The bias related to the rounding-to-the-nearest integer after a normal-model imputation 

has long been noted. Horton, Lipsitz and Parzen (2003) predicted the amount of the bias related 

to rounding normal imputations to handle missing binary values. Song, Harrison, Hanson and 

Hall (2009) extended this idea to ordinal data. Bernaards, Belin and Schafer (2007) introduced an 

adaptive cut-off method to improve the imputation, followed by Demirtas (2010), who used a 

distance-based rounding approach for ordinal variables. A discrete model can also be involved in 

imputation of categorical variables. For example, the LF Imputation Model, which assumes a 

probit model and the  MICE package (Van Buuren and Groothuis-Oudshoorn 2011) give users 

the capability of building such customized models. Vermunt (2008) and Gebregziabher and 

Desantis (2010) used latent-class-variable imputation, which is another way to deal with this 

problem. 

 

5.4.5 Findings Associated with the MICE Imputation Model 

 The analysis based on the MICE imputation does not show as much flexibility to adapt to 

the scenarios we tested as LF and PAN do. This is due to the design of MICE not being tailored 

to the panel data. The R package of MICE does not support “long-form” panel data, nor does it 

make it straightforward to specify panel structure with the “wide-form” data.  

In order to maintain the independence among the data rows, a user has to transpose a long-form 

data set into wide-form, which complicates the task of representing the panel structure 

covariance within a subject due to the repeated measurements. The corresponding imputation 

model hence assumes the existence of all possible covariance structures, allowing for distinct 
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correlations between any two variables and between any two time points. This may lead to a 

model with too many parameters to estimate. At the same time, the default version of the MICE 

model does not make any trajectory assumption. Thus, the multiple imputation of a multivariate 

longitudinal data set given by the current implementation of MICE picks up less information 

from the observed data than what is possible. Ideally, reasonable smoothness and 

exchangeability assumptions should be built into a model's implied conditional distributions; 

providing both flexibility and precision is a central challenge for any imputation procedure.
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Table 5.1 Performance of alternative procedures for mean of variable K/2 among K=10,20,40, 
or 60 variables, scenarios with 50 subjects, 5 time points and 5 factors 

 Complete Data 
Analysis 

  Available Case Analysis Longitudinal Factor 
Model (LF) 

Linear Model for Panel 
 Data (PAN) 

Chained Equation 
(MICE) 

     K Bias Len Cvrg Bias Len Cvrg Bias Len Cvrg Bias Len Cvrg 
    M1 10 -.49 2.3 .87 .04 1.9 .96 -.04 2.0 .96 -.59 2.9 .89 
     20 -.40 1.6 .84 -.04 1.4 .96 -.04 1.5 .96 -.17 2.0 .95 
K Bias Len Cvrg  40 -.36 1.4 .76 -.004 1.1 .97 - - - -.10 1.1 .89 
10 .05 1.9 .95  60 -1.4 2.7 .47 .02 2.7 .93 - - - -.05 1.3 .88 
20 -.03 1.4 .94               
40 .007 1.1 .93 M2 10 - - - .04 2.1 .95 .05 2.2 .97 - - - 
60 .03 2.7 .93  20 - - - -.05 1.6 .97 -.04 1.7 .98 - - - 
     40 - - - -.006 1.3 .97 - - - - - - 
     60 - - - .01 2.8 .93 - - - - - - 

Note: M1 refers to missingness based on a logistic regression with coefficients unfavorable to available case analysis. 
          M2 refers to missingness based on M1 plus observations of outcome variables in our analysis missing 100%. 
          Bias refers to average bias, across 204 replications. 
          Len refers to average width of 95% interval across 204 replications. 
          Cvrg refers to the actual coverage rate of 95% interval across 204 replications (implying margin of error of ±3%) 
          "-" refers to findings that program crashed or did not produce usable result. 
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Table 5.2 Performance of alternative procedures for 1p  and 3p  of ordinal variable K among 
K=10,20,40, or 60 variables scenario with 200 subjects, 5 time points and 3 factors 

 Complete Data Analysis   Available Case Analysis Longitudinal Factor Model 
(LF) 

Linear Model with Paneled 
Data (PAN) 

MICE 

     K Bias Length Cvrg Bias Length Cvrg Bias Length Cvrg Bias Length Cvrg 

    M1 10 .08 
-.14 

.16 

.15 
.39 
.01 

.005 
-.008 

.13 

.15 
.99 
.99 

.002 
-.03 

.12 

.15 
.99 
.91 

.003 
-.008 

.14 

.14 
.97 
.97 

     
 20 .04 

-.13 
.17 
.15 

.71 

.22 
.009 
-.009 

.15 

.13 
.99 
.98 

-.0001 
-.03 

.14 

.15 
.99 
.97 

.003 
-.007 

.13 

.14 
.98 
.98 

K Bias Length Cvrg  
 40 .08 

-.08 
.11 
.18 

.62 

.48 
.005 
-.01 

.13 

.15 
1 

.98 
.008 
-.05 

.14 

.17 
.97 
.85 

.04 
-.02 

.15 

.16 
.92 
.95 

10 -.001 
-.001 

.12 

.14 
.97 
.98 

 
 60 .1 

-.14 
.15 
.14 

.30 

.05 
.002 
-.003 

.12 

.14 
.98 
.97 

-.004 
-.04 

.12 

.15 
.98 
.89 

.06 
-.03 

.16 

.15 
.71 
.93 

20 -.001 
.005 

.13 

.14 
.91 
.98               

40 .003 
-.002 

.13 

.13 
.97 
.99 M2 10 - - - -.002 

-.004 
.17 
.20 

1 
1 

-.01 
-.05 

.16 

.18 
.99 
.93 - - - 

60 -.003 
.0006 

.12 

.14 
.99 
.97  20 - - - -.003 

.02 
.23 
.19 

1 
1 

-.03 
-.05 

.18 

.18 
.99 
.90 - - - 

     40 - - - .001 
-.01 

.20 

.20 
1 
1 

-.03 
-.08 

.12 

.19 
.96 
.66 - - - 

     60 - - - -.003 
-.002 

.16 

.17 
1 
1 

-.007 
-.05 

.17 

.18 
1 

.93 - - - 

Note: M1 refers to the missing mechanism based on a logistic regression with coefficients unfavorable to available case analysis, M2 refers to the missing mechanism based on M1 plus 
observations of outcome variables in our analysis missing 100%, see Section 5.2. 

          Bias refers to average bias, across 204 replications. 
          Length refers to average width of 95% interval, across 204 replications. 
          Cvrg refers to the actual coverage rate of 95% interval, across 204 replications (implying margin of error of ±3%). 
          "-" refers to findings that program crashed or did not produce usable result. 
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Table 5.3 Analysis under different combinations of the assumed number of factors and the true number of factors 

True No. of factors=3  True No. of factors=5  
 

Assumed 
No. of 
factors 

No. of 
scenarios 
failed* for 

µ  

Relative % 
length  
of CI** 

of µ  

No. of 
scenarios 
failed*** 
for 1p  
and 3p  

Relative  % length 
of CI  of 1p  and 3p  

 
 
 

No. of  
scenarios  
failed for 

µ   

Relative % 
length of CI 

of   
µ  

No. of  
scenarios 

failed for 1p  
and 3p  

Relative %  length 
of CI of 1p  and 3p  

1 12 +14 
(-6,+46) 6 +9 

(+1,+24) 
+4 

(-2,+15)       

2 3 +3 
(-4,+23) 0 +3 

(-0,+18) 
+2 

(-2,+8)       

3 0 − 0 − −  3 +6 
(-1,+21) 1 +4 

(-3,+12) 
+2 

(-6,+12) 

4 0 -0 
(-2,+3) 0 +0 

(-4,+6) 
+0 

(-3,+3)  1 +3 
(-3,+14) 0 +1 

(-6,+6) 
+1 

(-3,+7) 

5 0 +0 
(-2,+4) 0 -0 

(-5,+2) 
+0 

(-3,+4)  0 − 0 − − 

6 0 +0 
(-2,+6) 0 -0 

(-3,+4) 
+0 

(-4,+7)  0 +1 
(-4,+2) 0 +0 

(-6,+6) 
-0 

(-5,+3) 

7       0 +1 
(-1,+3) 0 +0 

(-7,+5) 
-0 

(-3,+4) 

8       0 +1 
(-1,+6) 0 +0 

(-4,+4) 
-0 

(-3,+3) 
 
* Fail is defined as a coverage rate < 90% in the analysis of  µ  in either missing mechanism. 
**  Average length of CI of 16 scenarios with both missing mechanism compared to that assuming the right number of factors. 
*** Fail is defined as any coverage rate < 90% in the analysis of 1p  and 3p  in either missing mechanism. 
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5.5 Robustness to Violations of Assumptions 

5.5.1 The Impact of a Difference Between the Assumed and True Number of 

Factors 

In an application of the LF Imputation Model, the number of factors is generally 

not known. To deal with this issue, we explore what happens when the assumed number 

of factors is incorrect for the number of factors deliberately used in generating the data. 

Statistical analyses based on imputation from alternative approaches are listed side by 

side to see the implications of an incorrectly assumed number of factors. 

Specifically, we considered examples ranging from having 2 fewer factors up to 3 

more factors than the correct underlying number of factors being used in the generating 

the data. Overall, we found that incorrectly assuming more than the actual number of 

factors yielded acceptable imputations while incorrectly assuming fewer than the actual 

number gives rise to invalid inferences in many of our test scenarios. This insight could 

prove helpful in fixing the number of factors in a real application of the LF Imputation 

Model. For example, we can try different number of factors from low to high until we see 

a number from which qualitatively similar statistical inferences are achieved. Any 

number at that level or above it might then be a reasonable assumption for the assumed 

number of factors.  

 Table 5.3 shows the results of analyses of both continuous and ordinal variables 

under both correct and incorrect assumptions about the number of factors. We considered 

the true underlying number of factors being 3 and 5, separated in the left and right 

sections in the table. Each row within a section is generated based on 16 scenarios 
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(sample size either 50 or 200; number of variables either 10, 20, 40 or 60; number of time 

points either 4 or 5) and missing-data mechanism either M1 or M2. We counted the 

number of failed scenarios, i.e., scenarios in which invalid inferences are made in either 

M1 or M2. Here, an invalid inference is indicated when the actual coverage of any 

parameter in the analysis falls below 90%. We also compared the lengths of 95% interval 

estimates based on an incorrectly assumed number of factors to those based on a correctly 

assumed number of factors. The average, minimum, and maximum change in the length 

of the interval estimates over all our test scenarios are also reported. 

Our tests show that assuming fewer than actual number of factors leads to invalid 

inferences in some scenarios. The further the departure from the true underlying number 

of factors, the worse the coverage tends to be, and the longer the typical lengths of 95% 

intervals at the same time. 

 Due to the conservativeness of the intervals we use in estimating proportions, 

fewer failures were observed in the ordinal variable analyses than in the continuous 

variable analysis. 

 Compared to the scenarios with 3 true factors, the scenarios with 5 true factors 

tended to be more robust in terms of the performance of the LF Imputation Model when 

we assume fewer than the correct number of factors by the same amount. For example, 

“under-assuming” the number of factors by 1 roughly corresponds to misrepresenting 1/3 

of the factor model parameters when the true number of factors is 3, a more severe offset 

than misrepresenting 1/5 of the factor-model parameters when the true number of factors 

is 5.  
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5.5.2 The Impact of a Possible Underlying Quadratic Trend 

 The LF Imputation Model assumes factor scores to have a linear trajectory. In 

order to study the impact of a possible underlying quadratic trend in the imputed data, we 

set the parameters governing the linear contribution of visit time to factor scores to .5, 

and systematically vary the parameter governing the quadratic contribution of visit time 

to factor scores from -.4 to .4 in increments of .1. Since the linear coefficients are fixed 

to .5, the resulting data sets can be compared regarding the extent to which the model 

assumptions are violated. For example, when the quadratic coefficient is .4, the equation 

for the k-th factor scores can be written as 

2
0 3 3 4 4.5( ) .4( )itk k k i k i itkf t t t t x xβ β β ε= + − + − + + +  

where t =1, 2, 3, 4, 5, and t =3. Thus, the quadratic model is capable of generating values 

that depart substantially from a linear trend, with the ratio of the quadratic coefficient to 

the linear coefficient ranging up to .8 in absolute value. The question then becomes 

whether the linear model can adapt in some way to accommodate variation from the 

quadratic model. 

 By looking through out the analysis results of the 32 test scenarios, we generally 

find that scenarios with larger sample size are more vulnerable to violation of the 

linearity assumption. This might have been expected, as larger sample sizes yield more 

precise estimates and shorter interval lengths, so that a deviation from the assumed trend 

is easier to detect. Also, data associated with the missing-data mechanism M2, which 

corresponds to a missingness rate of 100% for variables at the visit time we analyze, is 

more vulnerable to violation of the linearity assumption. This makes sense, as the 
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subsequent analysis rely more heavily on imputed values that are based on invalid 

assumptions. 

Figure 5.3A plots the average endpoint values from 95% interval estimates of the 

mean of the 5th variable, each based on data generated in the scenario with 5 time points, 

10 outcome variables, 200 subjects, 5 factor scores with different quadratic coefficients, 

and with missing-data mechanism M2. The actual coverage rate remains above 90% until 

the quadratic coefficients reach -.4 and .4, at which point the coverage rate drops to 90% 

for -.4 and 88% for .4. Figure 5.3B plots the average endpoint values from 95% interval 

estimates of proportion 1p  associated with the 10th variable. The coverage rate remains 

above 90% for quadratic coefficients throughout the range of -.4 to .4. The analyses of 

the proportion 3p  yielded similar result as those for 1p . 

We initially thought the results for the largest values of the quadratic coefficients 

might give rise to much worse coverage of parameter values. Here, the variance-

covariance structure seems to enable the model to adapt somewhat to the quadratic 

pattern, thereby mitigating the bias that might otherwise have been expected.  
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Table 5.4 Average, minimum and maximum of values of  

(multiple-chain average interval length
single-chain average interval length  -1)×100%  

across 32 simulation scenarios 
 Continuous Ordinal 

M1 0 (-1%,+1%) 0 (-2%,+3%) 
M2 0 (-1%,+3%) 0 (-4%,+4%) 
 

 
 

Figure 5.1 Convergence of the correlation parameter in LF model 
  true value is .2, start values are -.5, -.3, -.1, .1, .3, .5 
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Figure 5.2 Convergence of weight parameters in LF model when 
true values are (.15,.25,.15,.25,.2) with starting values 
from (.2,.2,.2,.2,.2) 
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5.6 MCMC Convergence in the Model Fitting 

 We use Markov Chain Monte Carlo, specifically using a data-augmentation 

framework, to fit the LF Imputation Model while generating multiple imputations. Each 

data set corresponds to one Markov chain, resulting in 204 (replications) × 32 (scenarios) 

× 2 (missingness mechanisms) chains. As an example to illustrate the convergence 

properties of the procedure, we present results here from one replication in the scenario 

with 50 subjects, 20 variables, 3 factor scores, 5 time points, and missingness mechanism 

M1.  

 Figure 5.1 relates to the scenario where the true correlation between factor scores 

in adjacent time points is .2ρ = . We explored the impact of alternatively starting at -.5, -

.3, -.1, .3 or .5. in the MCMC procedure. The Markov chains rapidly mix well and appear 

to stabilize around a 95% credible interval of (-.01,.26). The Gelman-Rubin potential 

scale reduction factor (Gelman and Rubin 1992) has a 95% upper limit of 1.01, which 

suggests satisfactory convergence for applied research.  

 Another step in the MCMC estimation is to draw values from a weighted 

regression procedure. Starting from the null value (.2,.2,.2,.2,.2), the weights finally 

converge around the true values (.15,.25,.15,.25,.2) as shown in Figure 5.2. 

 Working with a version of a factor-analysis model where the outcome variables 

are not necessarily standardized, the factoring is being done on the covariance matrix 

rather than the correlation matrix of the multivariate observations at a given time point. 

This leads to the elements of the loading matrix possibly being outside of the range from 

-1 to 1. In an effort to start from an “over-dispersed” distribution, we used starting values 
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independently drawn from 3 discrete values, namely -2, 0 and 2, with equal probability 

for each free element in the loading matrix. Since the true values of the loading 

coefficients were drawn from a standard normal distribution, our choice of starting values 

makes the Markov chains start from possible values with considerable variation around 

the true values. We tested the 32 scenarios with 2 missing mechanisms using loading 

matrices with starting values chosen so that all parameters other than those whose 

convergence behavior was being studied were taken as starting from predicted null values, 

with the assumption regarding the number of factor scores to be used in the imputation 

being correct. As we hypothesized, the different starting points lead to convergence to the 

desired target distribution when the burn-in process is long enough. 

Using 8000 iterations as a burn-in period for each chain, we found that analyses 

based on all chains are qualitatively identical in all scenarios for both of the missing-data 

mechanisms (M1 and M2). In Table 5.4, we summarized the changes of interval-estimate 

lengths (in percentages) comparing multiple-chain imputation and single-chain 

imputation across all 32 scenarios, across the two missing mechanisms (M1 and M2), and 

across the two types of outcomes being analyzed (continuous and ordinal).  The averages 

of roughly 0 with ranges below ±4% in the changes of interval lengths in all four cells 

suggest that the single-chain imputations mixed well in convergence. Here multiple-chain 

imputation appropriately extends the interval estimates; on the other hand, the single-

chain imputation we used in the simulations did not head to any invalid inferences 

regarding the factor structure. 
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Figure 5.3 Robustness of estimation to the quadratic coefficients where linear coefficient .5 

 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Quadratic coefficient

S
am

pl
e 

m
ea

n 
of

 a
 c

on
tin

uo
us

 o
ut

co
m

e 
va

ria
bl

e

 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Quadratic coefficient
S

am
pl

e 
p1

 o
f a

n 
or

di
na

l v
ar

ia
bl

e

 

                      A                                                                                        B 
 
 A shows the average 95% confidence intervals of the mean of the 5th variable (continuous) 
using the LF Imputation Model assuming correct number of factors linear time trend only. The actual 
quadratic coefficient of time vary from -.4 to .4. The stars are approximate theoretical values based on 
4000 true complete data with same parameters. The actual coverage rates drops below 90% only for the 
values -.4 and .4 of quadratic coefficients. 
 
 B shows the average 95% CI of 1p  of the 10th variable (ordinal), otherwise same as A. The 
actual coverage rates are above 90% for all values of quadratic coefficients. 
 
 In both A and B, M2 (100% missing of the variable in the analysis) of scenario with 5 time 
points, 10 outcome variables, 200 subjects and 5 factor scores is used, linear contribution of visit time 
are fixed to .5 for all 5 factors. 
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Figure 5.4 Non-linearity of an ordinal variable in relation to the latent variable 
 

 2x  is the categorized version of 1x  by certain cut-points. A linear regression of 

2x  on 1x  generates wrong prediction on the gray part if we round to the nearest integer.  
 
 Note, we connect the points or circles with gray vertical lines in order to help 
reader eliminate the perceptual illusion that the 3 categories are overlapped horizontally. 
Technically they do overlap by the diameter of a circle, but no more. 
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Figure 5.3 Convergence of loading coefficients for variable 10, the  
 continuous variable under analysis, true value is (.09,.25,.41), 
 start from (0,0,0) 
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Chapter 6 

Application to Dentistry Data 

 

 As described in Chapter 1, a motivating example is provided by a dentistry data 

set from a study including 336 patients to compare two treatments for broken jaws. All 

patients are assigned to one of the two treatments: maxillomandibular fixation (MMF), or 

rigid internal fixation (RIF). The oral health of each patient is measured at 5 time points, 

namely just before discharge from the hospital, 10 days after discharge, 1 month after 

discharge, 6 months after discharge, and 12 months after discharge. 

 Because RIF is a surgical treatment, hence more expensive compared to MMF, 

patients are able to recover certain functions, such as eating more quickly than with MMF. 

Wang (2002) hypothesized that the RIF treatment group would show better recovery in 

terms of patients’ general oral health assessment index (GOHAI), an oral-health quality-

of-life composite measure derived from questionnaire items. 

Due to the longitudinal nature of the study and some patients not being available 

at all visits, the data set is marked by considerable missingness. For example, the 

missingness rates of GOHAI measurements across the 5 visits are 2.1%, 14%, 14.6%, 

43.2%, and 41.4%, which are high enough to induce concerns for some analyses. Using 

only subjects with 5 complete measurements, or using only available cases in a model 

that does not require subjects to have all measurements, there is some possibility that 

meaningful biases in estimates of quantities of interest would result due to selection 

effects. A sensible imputation strategy for the missing data could be expected to recover 
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the joint distribution based on associations among variables, resulting in analyses being 

more trustworthy than those based on either complete-case or available-case approaches, 

especially when the missingness rate is not negligible. 

 

6.1 Treatment Difference in GOHAI Trajectories During 

Recovery 

An important question in the applied context was whether there is any treatment 

difference between the treatment groups in terms of the slopes relating changes in 

GOHAI to time across the period from the patient’s discharge from the hospital to the 

patient’s one-year follow-up assessment. The researchers hypothesized that there is some 

difference between treatment groups. Wang (2002) multiply imputed the GOHAI 

variable, which takes on integer values in the range from 0 to 100 but was analyzed as a 

continuous variable, using two different models: a multivariate normal model fitted with 

the program NORM (Schafer 1997) and a forerunner of the LF Imputation M developed 

by Wang (2002), like the model introduced by this report, incorporated both longitudinal 

and cross-sectional associations but where the ordinal variables are treated as continuous 

variables in that version, with rounding to the nearest possible value. The analysis results 

based on different ways of handling missing observations are summarized in Table 6.1. 

In line with Wang (2002), we assumed the number of factors to be equal to 3 in the newly 

developed LF Imputation Method. 
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Table 6.1 Linear Trajectory of GOHAI  

 Available-case  Norm Wang (2002) LF Imputation 
Model 

B00  
(MMF) 

28.55 
(26.24 , 30.92) 

29.30 
(26.35 , 32.33) 

28.90 
(26.45 , 31.20) 

28.72 
(26.09 , 31.35) 

B01 
(RIF-MMF) 

-.292 
(-4.674  ,4.049) 

-4.241 
(-7.183 , -1.437)* 

-3.932 
(-5.271 , -1.946)* 

-3.87 
(-5.68 , -2.06)* 

B10  
(MMF) 

7.074 
(4.780  ,9.237) 

6.147 
(1.902 , 9.794) 

6.571 
(2.238 , 9.342) 

6.26 
(2.39 , 10.12) 

B11  
(RIF-MMF) 

1.859 
(-2.418 , 5.956) 

2.721 
(.202 , 5.381)* 

2.690 
(.916 , 5.017)* 

2.38 
(.35 , 4.41)* 

Each cell contains Posterior Mean (CI)  
* p<.05 
 

Working with imputed data sets, a linear statistical model with different intercept 

and slope is used for the trajectory of GOHAI scores. In Table 6.1, there is a tendency for 

available-case analysis yield longer interval estimates for all parameters, while the 

analyses based on the multiple imputation strategy of Wang (2002) and LF Imputation 

Model correspond to shorter confidence intervals, with that corresponding to NORM-

based multiple imputation falling in between. In summary, the multiple imputation results 

give rise to a significant non-zero slope difference, which is not reflected in the available-

case results. 

These results match with the finding of our simulations in Chapter 5: the 

available-case analyses correspond to longer interval estimates and lower coverage rates. 

The columns of Table 6.1 corresponding to the method of Wang (2002) and LF 

Imputation Model, which make use of the trajectory the longitudinal data, correspond to 

shorter interval estimates and coverage rate as claimed. The MICE approach (Van 

Buuren and Groothuis-Oudshoorn 2011), a sequential regression approach implemented 

in R, is not shown in here. Based on our test, MICE and NORM perform similarly in 
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terms of actual coverage rates and lengths of interval estimates. The specification of 

conditional steps in MICE accommodates a broader range of scenarios than those implied 

by NORM. In line with other evaluations (e.g., Tang, Song, Belin and Unützer 2005) we 

find the flexibility of conditional specifications of MICE provides robustness against 

departures from normality, emerging as preferable to NORM in situations where both 

models yield similar interval lengths. 

Our simulation results lend support to the analysis result of the dentistry data 

corresponding to the LF Imputation Model as being preferable to NORM or available-

case analysis, in line with the conclusion of Wang (2002). 

 

6.2 Treatment Difference in Patient Pain Levels 

Another question of interest is whether the two treatment groups feel different 

pain levels during the course of the patients’ recovery. We applied an ordinal logistic 

model on the pain level of a patient at each visit, after multiple imputation using the LF 

Imputation Model developed here. 

Pain was originally measured on an integer scale from 0 – 10. As described in 

Chapter 1, we categorized the pain into three levels based on a desire to avoid either an 

11-level categorical variable analysis, which seems too complicated as a starting point for 

the newly developed method, or adopting a normal assumption without considering 

problems associated with possible skewness. 



 92 

 

Time

P
ro

po
rti

on

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

MMF

1 2 3 4 5

RIF

Low Med High
 

A. Before imputation 

Tim e

P
ro

po
rti

on

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

M M F

1 2 3 4 5

R IF

L ow M e d H ig h
 

                B. After imputation 

Figure 6.1 Distribution of PAIN Level Before and After Imputation using LFA 
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As shown in Figure 6.1 A, pain levels are completely observed in the initial visit 

of all patients, while considerable portions of patients are missing this variable in 

subsequent visits. Specifically, 14%, 14.6%, 43.2% and 41.4% of the pain measurements 

are missing across the 2nd through the 5th visits, respectively. The proportions of low, 

medium and high pain levels suggest a trend of patients generally experiencing lower 

pain levels over time, if we assume that high pain levels do not predominate in the 

missing observations. However, while prior knowledge suggests that patients who 

recover well are apt to be represented in the incomplete cases, prior knowledge also 

suggests that patients who are doing poorly might be disproportionally represented in the 

incomplete cases due to missed visits.  

 Figure 6.1 B shows the pain levels in one imputed data set based on the LF 

Imputation Model. The five data sets we prepared for a multiple imputation analysis 

using the LF Imputation Model differ little in their proportions, making the five box plots 

difficult to distinguish visually. In Table 6.2, we show the average proportions across 

imputations with standard errors obtained from multiple imputation frameworks.  

Table 6.2 Proportions of Imputed PAIN Levels 

  Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 
High .41 (0) .16 (.01) .11 (.01) .04 (.02) .05 (.01) 
Med .49 (0) .45 (.01) .37 (.02) .22 (.03) .07 (.02) 

MMF 
 
 Low .10 (0) .39 (.02) .52 (.02) .74 (.04) .88 (.02) 

High .43 (0) .16 (.02) .13 (.01) .03 (.01) .03 (.01) 
Med .47 (0) .42 (.01) .27 (.02) .16 (.03) .08 (.02) 

RIF 
 
 Low .10 (0) .42 (.01) .61 (.02) .80 (.03) .89 (.02) 

Average (SE based on to multiple imputation) 
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Figure 6.1 B shows a clear trend toward generally lower pain levels among 

patients. The imputation model incorporating factor analysis on all measured variables 

and a missing-at-random assumption for the missing-data mechanism suggests that the 

missing observations are mostly in the low and medium pain levels. 

  In order to answer the question whether the two treatments differ in patient pain 

levels, we fit an ordinal logistic model with a random effect using the package pglm 

(Paneled Generalized Linear Model) in R. The model incorporates a random intercept 

and a difference of intercepts for two treatments, as suggested in Chapter 1. As shown in 

Table 6.3, available-case analysis, MICE, and the LF Imputation Model all suggest 

significantly more pain associated with RIF. 

Table 6.3 Ordinal Logistic Regression of PAIN 

 Available-case  MICE LF Imputation Model 
B00  
(MMF) 2.82 (2.45 , 3.18) 2.13  (1.61, 2.65） 2.21 (1.68 , 2.74) 

B01 
(RIF-MMF) .42 (.11 , .74)* .40 (.11, .68)* .37 (.08 , .65)* 

B1  
(slope) -1.08 (-1.20 , -.96)* -.93 (-1.04 , -.82)* -.96 (-1.07 , -.85)* 

CutI Cut Points 0 ( - ) 
2.32 (2.10 , 2.54) 

0 (-) 
2.21 (2.01 , 2.40) 

0 ( - ) 
2.21 (1.98 , 2.45) 

SE of random 
intercept 1.23 (.93 , 1.53) 1.09 (.82 , 1.37) 1.04 (.72 , 1.38) 
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Chapter 7 

Discussion and Future Research 

 

 Missing values sometimes lead inefficiency or bias in a statistical analysis when 

complete-case or available-case strategies are used. It is generally more desirable to 

address missing-data problems by applying multiple imputation to the full data set before 

fitting the statistical models for scientific research. Compared to the imputation based on 

part of the data set, imputation based on a full range of variables is more likely to carry 

the information needed to predict the missing values. In other words, the MAR 

assumption is apt to be more plausible on the full data set than on a subset of the data set. 

We proposed an imputation method which is capable of handling continuous and 

ordinal variables to address the difficulty that mixed variable types may present in a 

multivariate data. However, there might be more data types like binary, nominal, and 

count variables. As proposed by Dunson and Herring (2005), a Baysian model assuming 

latent variables in an exponential family may be used to impute  more types of variables. 

 The LF Imputation Model assumes the number of factors to be known. In Section 

5.4, we showed that imputations assuming this number to be lower than the number leads 

to unstable results, while assuming this number to be slightly higher than the true value 

leads to reasonable results. It is difficult to determine the number of factors based on the 

analysis results. Song and Belin (2008) proposed to choose the number of factors based 

on the AIC and BIC in the fitting of the imputation model. The eigen-values and scree 

plots in their work show some evidence regarding the number of factors to use, although 



 96 

finding the eigen-values might be challenging using a data set with missing values. It is 

also possible to add a reversible-jump MCMC step (Lopes and West 2004) to the 

imputation algorithm so that the number of factors can be fit in the context of an MCMC 

algorithm. 

 The LF Imputation Model assumes an AR(1) covariance structure of factor scores. 

In order to simplify the model, we assume all factor scores share the same correlation 

coefficient ρ . A natural extension is to assume different AR(1) structures, or as many  

ρ 's as there are  factors. Other covariance structures might be considered as well. 

 Unbalanced longitudinal data can be another challenge. The LF Imputation Model 

models the trend, the covariance within time points, and the covariance between time 

points separately, which makes it possible to produce imputations for time points where 

values are 100% missing. This feature can be used to handle unbalanced data at least to 

some extent. However, more work is needed if the degree to which the data are 

unbalanced is extreme. 

 The LF Imputation Model is closely related to the PAN model, which assumes a 

multivariate normal model on the data. LF is applicable to high-dimensional data, even 

with small numbers of subjects and high collinearity, while PAN crashes in these 

situations. The imputation of categorical variable is also improved since the LF 

Imputation Model assumes a probit link for latent variables underlying the categorical 

variables. There are ways to improve PAN such as incorporating a ridge prior in the error 

covariance. When multiple choices of imputation methods are available, researchers need 

to make their own decision. Alternatively, Siddique, Harel and Crespi (2012) proposed a 

nested imputation method to incorporate several plausible imputation models.  
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 In some situations, the factor model itself is of interest to researchers. Erosheva 

and Curtis (2011) and Pape, Aßmann and Boysen-Hogrefe (2013) proposed relabeling 

algorithms, which may motivate further work to find suitable rotations for the series of 

draws of the loading matrices. Exploratory information of the full data set might be 

achieved this way to help make the factor structure interpretable. 

 In summary, factor-analysis methods proved useful in our investigation to help fit 

flexible models to highly multivariate data with a mix of data types. Future research 

could build on the methods developed here, including both MCMC methods to fit non-

standard statistical models and parallel-computing methods to make model-fitting 

feasible. The ability to such method to large data sets and extend such method to large 

data sets and a broader mix of data types offers great promise for the future research. 
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