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Abstract The dopamine (DA) hypothesis posits the increase of mesolimbic dopamine levels as a

defining commonality of addictive drugs, initially causing reinforcement, eventually leading to

compulsive consumption. While much experimental evidence from psychostimulants supports this

hypothesis, it has been challenged for opioid reinforcement. Here, we monitor genetically encoded

DA and calcium indicators as well as cFos in mice to reveal that heroin activates DA neurons

located in the medial part of the VTA, preferentially projecting to the medial shell of the nucleus

accumbens (NAc). Chemogenetic and optogenetic manipulations of VTA DA or GABA neurons

establish a causal link to heroin reinforcement. Inhibition of DA neurons blocked heroin self-

administration, while heroin inhibited optogenetic self-stimulation of DA neurons. Likewise, heroin

occluded the self-inhibition of VTA GABA neurons. Together, these experiments support a model

of disinhibition of a subset of VTA DA neurons in opioid reinforcement.

DOI: https://doi.org/10.7554/eLife.39945.001

Introduction
The DA hypothesis of drug reinforcement is rooted in the observation that electrical activation of

the medial forebrain bundle leads to repetitive action (Olds and Milner, 1954). Rats willingly self-

stimulate brain regions populated by DA neurons or receiving inputs from DA neurons. Moreover,

pharmacological blockade of DA receptors impairs the reinforcing properties of psychostimulants in

both rats (Maldonado et al., 1993; McGregor and Roberts, 1993; Roberts et al., 1977) and pri-

mates (Bergman et al., 1989; Johanson and Schuster, 1975). Several microdialysis and voltamme-

try studies demonstrated the increase of DA in the NAc shell as a common feature of addictive

drugs, including opioids (Aragona et al., 2008; Di Chiara and Imperato, 1988; Pontieri et al.,

1995; Stuber et al., 2005). Furthermore, electrolytic lesions of the VTA to NAc pathway decreased

reinforcement during intravenous self-administration of morphine and cocaine under a progressive

ratio schedule (Suto et al., 2011).

The DA hypothesis has also received support from molecular investigations. Indeed, the reinforc-

ing effects of opioids require m-opioid receptors (Charbogne et al., 2017; Contarino et al., 2002;

Matthes et al., 1996), which are enriched in VTA GABA neurons (Cohen et al., 1992; Devine and

Wise, 1994; Johnson and North, 1992). Based on in vivo single unit and brain slice recordings, a

disinhibition scenario of VTA DA neurons has been proposed (Gysling and Wang, 1983), whereby

MOR activation inhibits GABA neurons (Johnson and North, 1992) through somatodendritic hyper-

polarization and the reduction of the efferent release probability. The former effect would be
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mediated by G protein–coupled inwardly rectifying K+ (GIRK) channels, while inhibition of calcium

entry underlies the later (Lüscher et al., 1997).

Regardless, it has been repeatedly argued that the initial reinforcing effects of opioids, can

escape DA involvement. These results were largely based on pharmacological experiments. For

example, the non-selective DA antagonists alpha-flupenthixol and haloperidol decreased cocaine SA

but only to a lesser extent heroin SA (Ettenberg et al., 1982; Van Ree and Ramsey, 1987). In addi-

tion, lesioning DA terminals in the NAc with 6-OHDA had no effect on the initiation of heroin self-

administration (Gerrits and Van Ree, 1996; Pettit et al., 1984) and the D1 antagonist SCH23390,

when systemically administered, significantly decreased heroin self-administration, but had no effect

when directly infused into the NAc (Gerrits et al., 1994).

The challenge of the DA hypothesis is also supported by genetic manipulations. For example,

DA-deficient mice (targeted deletion of TH and DBH: tyrosine hydroxylase and dopamine beta-

hydroxylase) still expressed conditioned place preference for morphine (Hnasko et al., 2005) and

the downregulation of accumbal D1Rs prevented the acquisition of cocaine but not heroin self-

administration (Pisanu et al., 2015).

If not through DA, how would opioids cause reinforcement? A model has been proposed with

the pedunculopontine nucleus (PPN, called TPP in the original publication) as the initial target of

opioids, which receives a descending GABA projection from the VTA. (Bechara and van der Kooy,

1992; Nader et al., 1994; Nader and van der Kooy, 1997). In this scenario DA-dependent mecha-

nisms would take control only after chronic exposure, once dependence is established.

Not surprisingly, the question whether DA modulation underlies the reinforcing properties of opi-

oid is therefore still hotly debated (Badiani et al., 2011; Blum et al., 2015; Nutt et al., 2015), which

is why in the present study we use advanced genetic tools that allow for selective observation and

manipulation of neuronal populations to revisit this fundamental question.

Results
Mice were trained to intravenously self-administer heroin under a fixed-ratio one schedule

(Figure 1a, see Methods) for 12 daily sessions of 6 hr maximum (Figure 1b). The dose was

decreased from 50 to 25 mg/kg/infusion after six days, which led to higher acquisition rates

(Figure 1c). The animals quickly learned to discriminate between an active and an inactive lever

(after 6 days of training: 144.9 ± 26.0 active lever presses versus 8.3 ± 2.5 inactive ones; after 12

days: 283.4 ± 28 versus 20.9 ± 9.3. Figure 1d–f) and readily reached a robust number of heroin infu-

sions (after 6 days of training with the higher dose: 50.6 ± 6.9 infusions; after 6 days with the lower

dose: 138.1 ± 5.1 infusions after 12 days of training) in two to three hours at the end of the acquisi-

tion (Figure 1g). After 30d of withdrawal, mice were brought back into the apparatus in the absence

of heroin injections and significantly differentiated between active and inactive lever (Figure 1h and

i). Taken together this experiment shows that heroin was highly reinforcing and induced seeking

behavior, a widely used model for relapse (Garcı́a Pardo et al., 2017; Shaham et al., 2003).

To test whether heroin, when administered to drug-naı̈ve mice, causes a DA increase in the NAc,

we recorded the fluorescence changes of an intensity-based genetically encoded DA sensor (here

called dLight1), in freely moving mice with fiber photometry. dLight1 enables optical readout of

changes in DA concentration by coupling the agonist binding-induced conformational changes in

human DA receptors to changes in the fluorescence intensity of circularly permuted (cp) GFP derived

from GCaMP6 (Patriarchi et al., 2018). We started by replicating dopamine-specific responses in

dLight-transfected HEK cells (Figure 2a, Patriarchi et al., 2018). Next, to probe DA release in freely

moving mice, we delivered an adeno associated virus encoding dLight 1 (AAV9-CAG- dLight1) in the

NAc, followed by implantation of an optic fiber for recordings. A group of DAT-cre mice was also

injected the red-shifted opsin Chrimson (AAV8-hSyn-DIO-ChrimsonR-tdTo) into the VTA (Figure 2b–

c). Brief (5 ms) delivery of 593 nm laser light pulses into the VTA resulted in an increase of fluores-

cence in the NAc that co-varied with frequency of stimulation (Figure 2d). To then test the effects of

heroin on accumbal dopamine levels, animals were habituated to a recording arena and injected

with either saline or heroin on subsequent days. Within less than a minute after the intraperitoneal

heroin administration, we observed the onset of a fluorescence transient that peaked after three

minutes (Figure 2e–f, saline: �0.008 ± 0.007, dF/F heroin: 0.133 ± 0.03 dF/F, p=0.0062, t(6) = 4.117,

Paired Student’s T-Test, n = 7). Importantly, the effect size was similar to that of cocaine, but was
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not seen following administration of the selective-serotonin reuptake inhibitor citalopram nor the

norepinephrine reuptake inhibitor reboxetine (Figure 2g saline: �0.01 ± 0.005 dF/F, citalopram:

�0.008 ± 0.008 dF/F, cocaine: 0.165 ± 0.025 dF/F, reboxetine �0.009 ± 0.006 dF/F). These experi-

ments demonstrate that dLight fluorescence specifically captures dopamine transients, and a first

injection of heroin increases DA concentration in the NAc within minutes.

We then expressed a Cre-dependant GCaMP6m (AAV-DJ-EF1a-DIO-GCaMP6m) in DAT-Cre

mice to record VTA DA neuron activity with fiber photometry (Figure 2g–h, Cui et al., 2013;

Gunaydin et al., 2014; Lerner et al., 2015) after an i.v. heroin injection in freely moving mice.

Repeated infusions of heroin through the jugular vein, every 2 min, increased the calcium signal in

VTA-DA neurons within minutes and a plateau is observed after the third infusion (Figure 2i–j, dF/F

Figure 1. Heroin self-administration. (a), Schematic of behavioral setup for self-administration experiments in (d-g). (b), Day-to-day schedule of

experiment for (d–g). (c), Detail of the sequence of events following a press on the active lever. An active lever press triggers the illumination of a cue-

light just above the lever and an infusion of heroin. The infusion is followed by a time-out period (7 or 37 s depending on the session) where heroin is

no longer available despite presses on the correct lever. WD, withdrawal. (d), Raster plot for infusions and inactive lever presses as a function of time

during acquisition of daily self-administration session of 6 hr for a mouse that self-administered saline or (e), heroin. (f), Mean ±SEM total lever presses

and (g), infusions during the acquisition phase of saline (n = 10) or heroin (n = 14) self-administration. Infusion rate was very robust in mice which self-

administered heroin (two-way repeated-measures [RM] ANOVA, group effect, F(1, 22)=142.2, p<0.001, time effect, F(11, 242)=30.51, p<0.001, group X time

interaction, F(11, 242)=31.13, p<0.001; Bonferroni post hoc analysis, *p<0.05, **p<0.01, ***p<0.001) and animals quickly learned to discriminate between

the active and inactive lever (two-way RM ANOVA, group effect, F(3, 44)=47.16, p<0.001, time effect, F(11, 484)=6.464, p<0.001, group X time interaction,

F(33, 484)=47.16, p<0.001; Bonferroni post hoc analysis, ***p<0.001). (h), Raster plot (top) for active and inactive lever presses as a function of time during

cue-induced relapse session at day 30 of withdrawal for a mouse that self-administered either saline (top) or heroin (bottom) during acquisition phase.

(i), Mean±SEM total lever presses at 30 days of withdrawal for mice trained for heroin (n = 6) self-administration. After 30 days of forced withdrawal

seeking was robust in mice which self-administered heroin (active versus inactive lever, paired t test, t10 = 2.31, *p<0.05).

DOI: https://doi.org/10.7554/eLife.39945.002
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saline compared to baseline: �0.0063 ± 0.016, dF/F heroin compared to baseline: 0.22 ± 0.085,

n = 11, p=0.001, Wilcoxon signed rank test). Interestingly, even though the methods are inherently

technically different, the kinetic of this activity is similar to the DA surge we observed in the NAc

suggesting a tight correlation between VTA DA neurons activity and DA release. Taken together,

these experiments demonstrate that the first exposure to heroin in naive animals increases VTA DA

neuron activity and increases DA release in the NAc.

Figure 2. Heroin increases DA levels in the NAc via enhanced VTA DA neuron activity. (a) Fluorescence in response to five neuromodulators in HEK293

cells expressing dLight1 (DYN: dynorphin; GLU: glutamate; 5HT: serotonin; NE: norepinephrine). Data are presented as median with 25/75 percentile

(box) and min-max (whiskers).( b), Schematic of the experiment for c-f; (c), Left, medial NAc shell of DAT-Cre+ mice were bilaterally injected with the

DRD1-based DA sensor (dLight). Right, the amber light–drivable channelrhodopsin Chrimson was injected unilaterally in the VTA. (d), D-light-mediated

fluorescence change following optogenetic activation of VTA DA neurons by Chrimson (mean of n = 3 animals). (e), Example trace from single animal,

showing dLight-mediated fluorescence change in the NAc following intraperitoneal heroin (8 mg/kg) or saline injections. Tick mark indicates injection.

(f), Average fluorescence after saline, heroin (8 mg/kg), citalopram (10 mg/kg), reboxetine (20 mg/kg) or cocaine (20 mg/kg) treatment compared to

pre-infusion baseline (n = 4–7). Intraperitoneal injection of heroin or cocaine significantly increased fluorescence signals (as compared to control

injections for heroin, paired t test, t6 = 4.117, **p<0.01; for citalopram, reboxetine and cocaine, RM one-way ANOVA: F(3,15) = 42.48, p<0.01; Bonferroni

post hoc analysis: *p<0.05).( g), Schematic of the experiment for h-j; h, Left, VTA of DAT-Cre+ mice was bilaterally injected with the floxed version of the

calcium indicator GCAMP6m. Right, coronal confocal images of infected VTA. (i), Average GCaMP6m fluorescence in VTA DA neurons following first

intravenous infusion of heroin (100 mg/kg/inf) or saline. Red tick marks indicate injection onset. (j), Average fluorescence after heroin or saline treatment

compared to pre-infusion baseline (n = 11). Calcium transients significantly increased after heroin infusions (dF/F for saline versus heroin, Lilliefors test

for normality, Wilcoxon matched-pairs signed rank test, ***p<0.001). Error bars, SEM.

DOI: https://doi.org/10.7554/eLife.39945.003

Corre et al. eLife 2018;7:e39945. DOI: https://doi.org/10.7554/eLife.39945 4 of 22

Research article Neuroscience

https://doi.org/10.7554/eLife.39945.003
https://doi.org/10.7554/eLife.39945


To map the activated neurons in the VTA following heroin administration, mice were perfused

after the very first self-administration session and brain slices were stained for the expression of the

immediate early gene cFos and tyrosine hydroxylase (TH, Figure 3a). Cells positive for cFos that

were also TH-immunoreactive were found most prominently in the medial part of the VTA. In this

area of the VTA, 27.8% of TH+ were cFos+ after heroin SA, whereas 1.5% of TH+ were cFos+ after

saline SA (Figure 3b–e).

DA neurons located in the medial part of the VTA preferentially project to the NAc core and

medial Shell as well as in the medial prefrontal cortex, whereas DA neurons located in more lateral

portions of the VTA project to the lateral Shell (Lammel et al., 2008). To reveal the target of the her-

oin-activated VTA DA neurons, we therefore injected the cholera toxin subunit B (CTB) tracer of two

distinct colors (CTB-555 and CTB-488) in the medial and lateral NAc shell respectively (Figure 3f)

confirming the topography of medio-lateral VTA-NAc parallel projections. CTB-555 seeded in the

medial NAc retrogradly migrated to the medial VTA, whereas CTB-455 injected into the lateral Shell

was mostly found in the lateral VTA, with very little co-localization of the two tracers (1.5%,

Figure 3g). This result indicates that there are very few collaterals (Yang et al., 2018), allowing for a

quantification of the co-localization of the two CTB markers with cFos after a first heroin self-admin-

istration session. We thus injected mice with the CTB tracer of two distinct colors (CTB-555 or CTB-

647 in the medial or lateral NAc shell respectively, counterbalanced between animals) and submitted

the mice to a session of heroin SA. We found that 51.0% of medial Shell projecting VTA neurons

were also cFos positive, while this was only the case in 20.5% lateral Shell projecting cells.

(Figure 3h–j). Taken together, heroin self-administration activates DA neurons in the medial part of

the VTA that project preferentially to the medial NAc shell.

To probe for a causal relationship between enhanced mesolimbic dopamine and heroin reinforce-

ment, we tested whether inhibiting VTA DA neurons during the initial sessions would impact acquisi-

tion and maintenance of heroin SA. To this end, we injected DAT-Cre mice expressing hSyn-DIO-

hM4D(Gi) in VTA DA neurons with CNO 1 hr prior to heroin self-administration (Figure 4a–b). This

chemogenetic intervention has been shown to be efficient to hyperpolarize DA neurons in acute

midbrain slices (Bariselli et al., 2018). Silencing VTA DA neurons in animals where self-administra-

tion was well established significantly decreased the number of active lever presses and ensuing her-

oin infusions (Figure 4c–e, 223 ± 60 LP for 111 ± 25 infusions dropped to 23 ± 9 LP for 15 ± 6

infusions after 4 days of treatment condition (DAT-Cre+ versus DAT-Cre-) x CNO (present, absent),

two-way repeated measures ANOVA and multiple comparison post-hoc Sidack test, *p<0.05,

**p<0.005, ****p<0.0001). We further tested the necessity of VTA DA signaling during the very early

heroin SA sessions. Silencing VTA DA neurons from the first to the fourth session significantly pre-

vented the acquisition of heroin SA (Figure 4f–h). After CNO was stopped (from session 5), the mice

quickly acquired the task and reached a number of lever presses and infusions similar to the control

animals. CNO had no effect on self-administration in DAT-Cre- mice. All together these results sug-

gest that VTA DA activity is required for the initial reinforcing properties of opioids from the very

early stage of drug exposure.

We next tested whether heroin would occlude optogenetic VTA DA neuron self-stimulation as

shown for cocaine (Pascoli et al., 2015). If heroin employs the same neuronal circuitry as VTA DA

neuron self-stimulation, a heroin injection should decrease lever pressing for VTA DA activation.

DAT-cre+ mice were infected with the blue-light shifted excitatory opsin AAV5-DIO-hChR2-eYFP

(Figure 5a–b). To avoid the development of tolerance to heroin, we injected various doses of heroin

in a randomized order intraperitoneally (i.p.) immediately prior to the self-stimulation sessions

(Figure 5c) and each session under heroin was followed by two sessions with free access to laser

stimulation (LS) (Figure 5c). At baseline, the mice pressed up to 291 ± 39 times to obtain 134 ± 1.15

LS in 60 min under a fixed-ratio 1 (FR1, followed by 20 s time out period) schedule (Figure 5d and

e). After heroin injection, the performance decreased significantly in a dose-dependent fashion

(Figure 5i), suppressing lever pressing completely at the highest dose (Figure 5d–i). To rule out any

sedative effects of heroin at these doses, a separate set of mice were tested over a 30 min free

exploration period in an open field (see Methods). We observed that heroin actually increases loco-

motor activity in open field, even at the highest dose tested (Figure 5j). These experiments indicate

that reinforcement induced by optogenetic self-stimulation of VTA DA neurons or heroin SA share

underlying neural circuits.
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Figure 3. Heroin activates NAc projecting DA neurons in the medial VTA. (a), Schematic of experiment for (b-e);

(b), TH (left, red), cFos (middle, green) staining of VTA DA neurons and co-localization of TH- and cFos-expressing

neurons (right) after one day of either saline (top) or heroin (bottom) self-administration. Mice were perfused 60

min after the end of a single self-administration session. Cell nuclei are stained with Hoechst (not shown). D,

Figure 3 continued on next page
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Finally to examine the involvement of VTA GABA neurons (Tan et al., 2012; van Zessen et al.,

2012), we tested the reinforcing properties of their self-inhibition and asked whether heroin expo-

sure would also occlude this behavior. We expressed the light-gated inhibitory proton pump

eArchT-3.0 in the VTA of GAD-Cre mice (Figure 6a–b; O’Connor et al., 2015) and gave the mice

control over the laser switch. The mice quickly learned to discriminate the active and inactive lever

by significantly increasing the number of active lever press and laser-stimulation triggered during

the acquisition sessions (293.1 ± 40 LP to obtain 119 ± 15 LS in 180 min). Intraperitoneal injection of

heroin just prior to the VTA GABA self-inhibition session significantly decreased the operant behav-

ior in a dose-dependent manner (Figure 6d–f) and abolished this behavior at the highest dose

(Figure 6d–f). In fact, the IC50 was very similar to the IC50 calculated based on the occlusion with

DA neuron self-stimulation (6.9 vs 6.4 mg/kg, Figure 6i and Figure 5i). This experiment indicates

that reinforcement by optogenetic VTA GABA self-inhibition and reinforcement by heroin share

underlying neural circuits and are compatible with a disinhibitory mechanism where heroin targets

GABA neurons leading to an increase of DA neurons activity.

Discussion
In the present study, we found that heroin increases DA in the NAc through the activation of a sub-

set of VTA DA neurons located in the medial VTA, which preferentially project to the NAc medial

shell. Our chemo- and optogenetic manipulations support a disinhibitory motif and establish a link

of causality with behavioral reinforcement.

The VTA consists of DA (60–65%), GABA (30–35%), glutamate (2%) and neurons that express

more than one marker (Margolis et al., 2006; Nair-Roberts et al., 2008; Roberts and Ribak, 1987;

Steffensen et al., 1998; Yamaguchi et al., 2011). Among DA neurons, subpopulations have been

proposed based on DAT expression (Blanchard et al., 1994; Li et al., 2013), properties of afferent

excitatory and inhibitory synaptic inputs, as well as projection to distinct targets, which have been

mapped to specific functions. For example, aversive stimuli potentiate glutamatergic inputs onto DA

neurons projecting to the mPFC, while rewarding stimuli potentiate inputs onto medial shell and lat-

eral shell NAc projecting DA neurons (Lammel et al., 2011). The mediolateral topography of accum-

bens shell neurons is conserved by their dopamine inputs from the VTA, where medial and lateral

shell projecting DA neurons segregate along the mediolateral VTA (Beier et al., 2015;

Lammel et al., 2012; Lammel et al., 2008). We find that heroin during initial reinforcement prefer-

entially activates neurons of the medial VTA projecting to the medial Shell, but cannot exclude the

contribution from other projections.

Most of the afferents to midbrain DA neurons are GABAergic. Back projecting accumbal

medium-spiny neurons, while targeting both DA and GABA neurons (Beier et al., 2015;

Henny et al., 2012; Yang et al., 2018), form particularly strong synaptic connections to the latter

Figure 3 continued

dorsal; L, lateral; v, ventral; m, medial. (c) , Location within the VTA of histologically identified DA neurons

expressing cFos after one day of heroin self-administration. Each color of the markers represents one animal.( d),

High magnification confocal pictures of TH and cFos staining in saline and heroin mice. (e), Quantification of the

TH positive VTA DA neurons also expressing cFos after one day of saline or heroin self-administration (saline: 2102

cells from four mice, heroin: 1902 cells from four mice). (f), Schematic of experiment for (f–g). The retrograde

tracers CTB, conjugated to either the fluorescent dye AlexaFluor 488 (green) or AlexaFluor 555 (red) were injected

in the lateral NAc shell or the medial one, respectively. In addition, a catheter implantation was performed (see

methods) in order to allow heroin self-administration.( f), Left, coronal images showing infections in the NAc shell.

Right, coronal image of the VTA. (g), Quantification of CTB positive cells in the VTA. (h), Schematic for cFos

staining in the medial and lateral VTA, projecting to the NAc medial and lateral. Coronal pictures of NAc injected

with CTB-555 in the medial Shell and CTB-647 in the lateral Shell and corresponding pictures in the VTA with cFos

staining. (i), High magnification confocal images of CTB-555 and 647 with Hoechst (left), cFos (middle, green) and

cFos with CTBs (right, green/red/magenta) in the medial or lateral VTA neurons after one day of heroin self-

administration. Mice were perfused 60 min after the end of the self-administration session and cell nuclei have also

been stained with Hoechst (not shown).( j), Quantification of the cFos positive VTA neurons labelled with red or

magenta CTB.

DOI: https://doi.org/10.7554/eLife.39945.004
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Figure 4. Chemogenetic inhibition of VTA DA neurons suppresses heroin self-administration. (a), Schematic of the experiment for (b-e); (b), Left, VTA of

DTA-Cre+ mice were bilaterally injected with the inhibitory DREADD hM4D. Right, coronal confocal images of infected VTA. (c), Raster plot for infusions

and inactive lever presses during the daily acquisition sessions of heroin self-administration for a DAT-Cre+ mouse. CNO (2 mg/kg) was injected

intraperitoneally 20 min prior. (d), Mean ±SEM total lever presses and (e), infusions during the acquisition phase of heroin self-administration for DAT-

Cre+ (n = 5, closed circle) and DAT-Cre- mice (n = 6, open circle). When the self-administration behavior was well established CNO was injected prior

to the session and the activation of the inhibitory DREADD dramatically decreased the number of lever presses and infusions (session highlighted in

grey and red, respectively) in the DAT-Cre+ animals (condition (DAT-Cre+ versus DAT-Cre-) x CNO (present, absent); (for LP: two-way RM ANOVA,

group effect, F(3, 14)=21.81, p<0.001, time effect, F(3, 42)=1.366, p=0.269, group X time interaction, F(9, 42)=1.328, p=0.252; Bonferroni post hoc analysis,

***p<0.001; for infusions: two-way RM ANOVA, group effect, F(1, 7)=12.25, p<0.01, time effect, F(3, 21)=2.664, p=0.0743, group X time interaction, F(3,

21)=2.816, p=0.064; Bonferroni post hoc analysis, **p<0.01). (f), Raster plot for infusions and inactive lever presses during the daily acquisition session of

heroin self-administration for a DAT-Cre+ mouse. Twenty minutes prior to the sessions highlighted in pink, CNO (2 mg/kg) was injected

intraperitoneally. (g), Mean ±SEM total lever presses and (h), infusions during the acquisition phase of heroin self-administration for DAT-Cre+ (n = 6,

closed circle) or DAT-Cre- mice (n = 4, open circle). CNO injection from the first session prevented the establishment of heroin self-administration

behavior in the DAT-Cre+ animals (condition (DAT-Cre+ versus DAT-Cre-) x CNO (present, absent); (for LP: two-way RM ANOVA, group effect, F(3,

16)=37.14, p<0.0001, time effect, F(4, 64)=3.755, p=0.0083, group X time interaction, F(12, 64)=2.959, p=0.002; Bonferroni post hoc analysis, **p<0.01,

***p<0.001; for infusions: two-way RM ANOVA, group effect, F(1, 8)=168.6, p<0.0001, time effect, F(4, 32)=13.52, p=0.0001, group X time interaction, F(4,

32)=8.269, p=0.0001; Bonferroni post hoc analysis, **p<0.01, ***p<0.001).
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Figure 5. Heroin occludes optogenetic self-stimulation of VTA DA neurons. (a), Schematic of the experiment for (b-f); (b), Left, VTA of DAT-Cre+ mice

was bilaterally injected with a floxed version of the excitatory opsin ChR2. Right, coronal confocal images of infected VTA.(c), Schedule of the

experiment.(d), Raster plot for laser stimulation during the daily acquisition session of 1 hr for a DAT-Cre+ mouse. Right before the sessions highlighted

in blue, heroin (mg/kg, dose administrated in a random order) was injected intraperitoneally. For a matter of clarity, only the three last baseline sessions

are shown and the heroin sessions are arranged from the lowest dose to the highest.(e), Active, inactive lever presses and (f), laser stimulation during

each session for an example DAT-Cre+ mouse. Heroin dose-dependently reduced active lever pressing and the number of laser stimulations. (g),

Active, inactive lever presses and (h), laser stimulation during the acquisition sessions of self-stimulations for either DAT-Cre+ mice (n = 11, closed

circles) or DAT-Cre- mice (n = 6, open circles). Establishment of self-stimulation behavior was present only in mice with expression of eYFP-ChR2 in VTA

Figure 5 continued on next page
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(Bocklisch et al., 2013), which then control the activity of DA neurons (Johnson and North, 1992).

This disinhibitory motif is particularly strong for neurons of the lateral VTA (Yang et al., 2018).

Removal of tonic inhibition from VTA DA neurons by interneurons and accumbal projections can

therefore cause increases in DA neuron activity (Jhou et al., 2009; Johnson and North, 1992) and

NAc DA release (van Zessen et al., 2012). Using a genetically encoded DA reporter we confirm that

already the very first dose of heroin increases DA in the shell.

In the alternate model of DA-independent reinforcement, the initial effect of opioids would still

be on VTA GABA neurons that however mainly project to the PPN (Laviolette et al., 2004), a het-

erogeneous nucleus containing GABA, glutamate and acetylcholine neurons. The PPN projects back

to the midbrain (Oakman et al., 1995; Wang and Morales, 2009; Watabe-Uchida et al., 2012) reg-

ulating reinforcement (Floresco et al., 2003; Inglis et al., 2000; Lammel et al., 2012; Pan and

Hyland, 2005; Steidl and Veverka, 2015). The nearby LDT which strongly innervates the VTA may

also contribute (Omelchenko and Sesack, 2005). There is direct evidence that the activation of the

LDT-VTA pathway leads to CPP, reinforces operant responses with natural- (Lammel et al., 2012;

Steidl and Veverka, 2015) and drug-rewards (Shinohara et al., 2014; Wise, 2004). However, all

these scenarios converge to activate VTA DA neurons, and are thus not DA-independent. Such a

‘non-dopaminergic substrate for reward within the VTA’ (Nader and van der Kooy, 1997) is also at

odds with several publications that observe an increase of extracellular DA levels in the shell follow-

ing acute administration of opioids (Aragona et al., 2008; Di Chiara and Imperato, 1988;

Pontieri et al., 1995; Stuber et al., 2005). Moreover our data suggest that the same circuits main-

tain reinforcement as exposure becomes chronic. After 12 days of heroin self-administration, inhibi-

tion of DA neurons still caused a strong, but fully reversible decrease in the responding behavior.

Taken together DA-independent heroin reinforcement seems unlikely.

Heroin decreased lever-pressing for VTA DA neuron self-stimulation (Pascoli et al., 2015) in a

dose-dependent fashion, which could not be explained by sedative effects as the same dose was

able to increase locomotor activity in an open field. Such occlusion strongly suggests that heroin

converges on the same cellular mechanism (similar to cocaine occlusion experiments). We also - to

the best of our knowledge for the first time in the literature - observed strong reinforcement with

GABA neuron self-inhibition, which was sensitive to heroin exposure. Opioids suppress the activity

of VTA GABA interneurons by activation of m-opioid receptors (MORs) (Jalabert et al., 2011;

Johnson and North, 1992; Mazei-Robison et al., 2011), which then hyperpolarize the neurons and

decrease the release probability at the axon terminal via the activation of GIRK channels and the

inhibition of voltage gated calcium channels, respectively (Cohen et al., 1992; Johnson and North,

1992). The most straightforward interpretation for the effect on the behavior is thus again an occlu-

sion scenario. Interestingly the IC50 for this effect was virtually identical to the IC50 observed with the

occlusion of self-stimulation of DA neurons.

Our results are in direct contrast with older pharmacological experiments, where DA receptor

antagonists had an effect on reinforcement of cocaine but not heroin (Ettenberg et al., 1982;

Pettit et al., 1984). Maybe the receptor occupancy of the antagonists was insufficient, particularly

when administrated intra-cranially as suggested by the discrepancy between the systemic and intra-

cranial results (Neisewander et al., 1998). Moreover, several studies relied on CPP rather than test-

ing for the effect on self-administration. Moreover, validation of the pharmacological effect on neural

activity in vivo remains difficult.

Figure 5 continued

DA neurons (DAT-Cre+ but not DAT-Cre- mice (for LP: two-way RM ANOVA, group effect, F(3, 30)=38.27, p<0.001, time effect, F(7, 210)=0.4947, p=0.8378,

group X time interaction, F(21, 210)=2.179, p=0.0029; Bonferroni post hoc analysis, **p<0.01, ***p<0.001; for laser stimulation: two-way RM ANOVA,

group effect, F(1, 15)=581.8, p<0.0001, time effect, F(7, 105)=3.938, p=0.0007, group X time interaction, F(7, 105)=8.233, p<0.0001; Bonferroni post hoc

analysis, ***p<0.001).( i), Dose-response and fitting curve for effect of heroin i.p. injection on laser self-stimulation for DAT-Cre+ (n = 11, closed circles)

or DAT-Cre- (n = 6, open circles) mice. The values of IC50 and Hill coefficient are 6.5 mg/kg and 3.9 respectively. (j), Mean ±SEM of distance traveled in

an open field after daily injections of increasing doses of saline or heroin (n = 6). At highest doses used (16 and 32 mg/kg), heroin significantly

increased the distance traveled (saline versus heroin injection, one-way RM ANOVA, heroin doses effect, F(2.475, 12.37)=581.80.27, p=0.00084; Bonferroni

post hoc analysis, *p<0.05).
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Figure 6. Heroin occludes reinforcing effects of self-inhibition of VTA GABA neurons. (a), Schematic of the experiment for b-f; (b), Left, VTA of GAD-

Cre+ mice was bilaterally injected with a floxed version of the inhibitory opsin Arch3.0. Right, coronal confocal images of infected VTA.( c,) Schedule of

the experiment.( d), Raster plot for laser inhibition during the daily acquisition session of 3 hr for a GAD-Cre+ mouse. Right before the sessions

highlighted in yellow, heroin (mg/kg) was injected intraperitoneally.( e), total lever presses and (f), infusions during the acquisition phase of laser self-

Figure 6 continued on next page
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On the other hand, there is much support for functional accumbal DA transmission underlying

opioid reinforcement. Electrolytic lesions or inactivation of the NAc result in significantly decreased

responding for intravenous self-administration of opioids (Alderson et al., 2001; Dworkin et al.,

1988; Suto et al., 2011; Zito et al., 1985). Mice also learn to self-administer MORs agonists when

infused directly into the NAc (David and Cazala, 2000; Goeders et al., 1984), most likely via the

disinhibitory loop connecting the NAc back to the VTA. A recent study using a siRNA to downregu-

late D1aR in the NAc shell blocked the acquisition of cocaine but not heroin self-administration

(Pisanu et al., 2015), raising the question for the role of specific DA receptors in drug-adaptive

behavior.

The observation that morphine can induce CPP in DA-deficient mice (Hnasko et al., 2005) is

likely explained by developmental adaptations. Moreover, these mice suffer from a severe locomo-

tion deficit, which precluded the testing for reinforcement in a self-administration setting.

Here, by confirming the validity of the DA hypotheses for opioids, we aim to integrate work on

these drugs into the emerging circuit model for addiction. Our study thus supports VTA DA neuron

disinhibition for the opioid reinforcement. Untangling the circuits underlying opioid reinforcement

may not only allow refining addiction treatments, but also draft the roadmap for the development of

analgesic compounds without addiction liability.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
(M. musculus)

DATIREScre The Jackson
Laboratory
(www.jax.org)

MGI:3689434

Genetic reagent
(M. musculus)

Gad2tm2(cre)Zjh The Jackson
Laboratory
(http://www.
jax.org)

MGI:4418713

Cell line
(homo sapiens,
human)

HEK293T ATCC Cat# CRL-1573

Recombinant
DNA reagent

AAV9-CAG-
dLight1.1

Dr. Lin Tian,
University of
California Davis

Patriarchi et al.,
2018

Recombinant
DNA reagent

AAVDJ-EF1a-
DIO-GCaMP6m

Stanford
Vector Core

Cat# GVVC
-AAV-94

Recombinant
DNA reagent

AAV8-hSyn-
DIO-ChrimsonR-
tdTo

UNC Vector
Core

Recombinant
DNA reagent

AAV5-hSyn-
DIO-HM4D
(Gi)-mCherry

UNC Vector
Core

Recombinant
DNA reagent

AAV5-EF1a-
DIO-ChR2
(H134R)-eYFP

UNC Vector
Core

Continued on next page

Figure 6 continued

inhibition for an example GAD-Cre+ mouse. Heroin injection resulted in a dose-dependent decrease in laser self-inhibition.( g,) Dose-response and

fitting curve for effect of heroin i.p injection on laser self-inhibition for GAD-Cre+ mice (n = 7). The values of IC50 and Hill coefficient are 6.2 mg/kg and

2.8 respectively. (h,) Summary diagram. After self-administration heroin, metabolized in morphine, binds to the MORs located on GABA neurons and

activates GIRKs channels. It results in the inhibition of these neurons and the disinhibition of the DA neurons located in the ventromedial VTA.

Disinhibition of these neurons leads to an increase in DA release in the medial NAc shell.
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Recombinant
DNA reagent

AAV5-EF1a-
DIO-eArch
3.0-eYFP

UNC Vector
Core

Peptide,
recombinant
protein

CTB (Alexa
FluorTM
555 Conjugate)

Invitrogen/
Thermo Fisher

Cat# C34776

Peptide,
recombinant
protein

CTB (Alexa
FluorTM
488 Conjugate)

Invitrogen/
Thermo Fisher

Cat# C34775

Peptide,
recombinant
protein

CTB (Alexa
FluorTM
647 Conjugate)

Invitrogen/
Thermo Fisher

Cat# C34778

Chemical
compound,
drug

Diacetylmorphine
(heroin)

DiaMo
Narcotics
GmbH

DIAPHIN

Chemical
compound,
drug

Citalopram Cayman
Chemical

Cat# 14572

Chemical
compound,
drug

Reboxetine Tocris Cat# 1982

Chemical
compound,
drug

Cocaine University
Hospital of
Geneva

Antibody Anti-cFos Santa
Cruz
Biotechnology

RRID:
AB_2106783

(dilution 1:5000)

Antibody Anti-Tyrosine
Hydroxylase

Sigma-Altrich Cat# T2928 (dilution 1:500)

Antibody Anti- GFP Invitrogen/
Thermo Fisher

Cat# 11122 (dilution 1:500)

Software,
algorithm

Prism 7.02 Graphpad

Software,
algorithm

MATLAB
R2017a

Mathworks

Software,
algorithm

Synapse Tucker-Davis
Technologies

Animals
Wild-type C57BL/6 and transgenic mice were used throughout the study. Weights, ages and gen-

ders were homogeneously distributed among the groups. Transgenic mice were backcrossed to the

C57BL/6 line for a minimum of four generations. Transgenic DAT-Cre mice (Slc6a3) were heterozy-

gous BAC transgenic mice in which the Cre recombinase expression was under the control of the

regulatory elements of the DA transporter gene (DAT-Cre+ mice; (Turiault et al., 2007) DAT-Cre

mice were originally provided by Günther Schutz. GAD-Cre+ (Gad65Cre non-inducible;(Kätzel et al.,

2011)) mice (Gad2) were also used. All animals were kept in a temperature (21 ± 2˚C) and humidity

(50 ± 5%) controlled environment with a 12 hr light/12 hr dark cycle (lights on at 7:00). Food and

water were available ad libitum, unless otherwise stated. All procedures were approved by the ani-

mal welfare committee of the Cantonal of Geneva, in accordance with Swiss law.

Stereotaxic injections and optic fiber cannulation
Anesthesia was induced at 5% and maintained at 2.5% isoflurane (w/v) (Baxter AG) during the sur-

gery. The animal was placed in a stereotaxic frame (Angle One) and craniotomies were performed

using stereotaxic coordinates (for VTA: AP �3.3; ML �0.9 with a 10˚ angle; DV �4.3. For the lateral
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NAc shell: AP 0.98; ML +- 1.6; DV �4.5. For the medial NAc shell: AP 1.6; ML +- 0.5; DV �4.3). Injec-

tions of virus (0.5 ml) used graduated pipettes (Drummond Scientific Company), broken back to a tip

diameter of 10–15 mm, at an infusion rate of 0.05 ml / min. Following the same procedure AAV5-

hSyn-DIO-HM4D(Gi)-mCherry, AAV5-EF1a-DIO-ChR2(H134R)-eYFP and AAV5-EF1a-DIO-eArch3.0-

eYFP (all from University of North Carolina Vector Core) were also injected bilaterally in the VTA,

while AAV-DJ-EF1a-DIO-GCaMP6m (Stanford Vector Core) and dLight1 (AAV9-CAG-dLight1.1,

courtesy of Dr. Lin Tian, University of California Davis) were injected unilaterally in the VTA and the

NAc, respectively. Finally, cholera toxin subunit B Alexa Fluor 555, 488 and 647 conjugate (CTB 555,

CTB 488 and CTB 647, Invitrogen) were injected bilaterally in the lateral or medial NAc shell respec-

tively. When the experimental paradigm required it, during the same surgical procedure, unique

chronically indwelling optic fiber cannula (Sparta et al., 2011) were implanted above the VTA using

the exact same coordinates as for the injection except for DV coordinate, which was reduced to 4.2.

Three screws were fixed into the skull to support the implant, which was further secured with dental

cement. First behavioral session typically occurs 10–14 days after surgery to allow sufficient expres-

sion of the virus.

Implantation of jugular vein catheter
Mice were anaesthetized with a mix of ketamine (60 mg/kg, Ketalar) and xylazine (12 mg/kg, Rom-

pun) solution. Catheters (CamCaths, model MIVSA) made of silicone elastomer tubing (outside diam-

eter 0.63 mm, inside diameter 0.30 mm) were inserted 1.0–1.2 cm in the right jugular vein, about 5

mm from the pectoral muscle, to reach the right atrium. The other extremity of the catheter was

placed subcutaneously in the mid-scapular region and connected to stainless steel tubing appearing

outside the skin. Blood reflux in the tubing was checked to confirm correct placement of the cathe-

ter. Mice were allowed to recover for 3–5 days before the start of drug self-administration training

and received antibiotics (Baytril 10%, 1 ml in 250 ml of water) in the drinking water during this

period. Catheters were flushed daily with a heparin solution (Heparin ‘Bichsel’) in saline (30 IU) dur-

ing the recovery period and just before and after each self-administration session.

Self-administration apparatus
All behavioral experiments were performed during the light phase and took place in mouse operant

chambers (ENV-307A-CT, Med Associates) situated in sound-attenuating cubicle (Med Associates).

Two retractable levers were present on both sides of one wall of the chamber. A cue-light was

located above each lever and a house light was present in each chamber. During intravenous drug

self-administration sessions, the stainless steel tubing of the catheter device was connected through

a CoEx PE/PVCtubing (BCOEX-T25, Instech Solomon) to a swivel (Instech Solomon) and then an infu-

sion pump (PHM-100, Med-Associates). The apparatus was controlled and data captured using a PC

running MED-PC IV (Med-Associates).

Drug self-administration acquisition
To familiarize the mice with the operant self-administration setting, we performed four days of food

shaping, whereby the mouse had to press an active lever once to obtain a food reward (FR1, one 60

min session per day, 20 mg sucrose pellet, Test Diet, USA). Following IV-catheter placement surgery

mice were deprived of food for 12 hr before the first self-administration session to promote explor-

atory activity and were given food access ad libitum after the first session. Each session was 360 min

in duration and started with the illumination of the house light and the insertion of the two levers

into the operant chamber. During the first six sessions, a single press on the active lever (termed

fixed-ratio one, or FR1) resulted in an infusion of 0.05 mg/kg of heroin (diacetylmorphine, DiaMo

Narcotics GmbH, dissolved in 0.9% saline at 0.05 mg/mL and delivered at 0.0177 ml/s as a unit dose

depending on the weight of the mouse) paired with a 5 s continuous illumination of the cue light

above the active lever. Completion of the fixed-ratio also initiated a timeout period of 40 s during

which heroin was no longer available. For the next six sessions, the dose of heroin was halved to

0.025 mg/kg in order to boost lever pressing (as a measure of motivation) while avoiding overdoses

or any eventual sedative effect. Time out period was reduced to 10 s. The active lever (left or right

lever) was randomly assigned for each mouse. To avoid an overdose of heroin, a maximum of 75

infusions for the ‘high’ dose and 150 for the ‘low’ dose were allowed per session. Only mice having
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reached a stable rate of correct lever responses were included in the study. Saline control mice

undertook the same procedure as heroin mice except that saline (NaCl 0.9% B. Braun) replaced her-

oin infusions.

Test of cue-associated drug seeking
Thirty days after the final self-administration session (that is day 42), mice were tested for cue-associ-

ated seeking. The cue-associated drug-seeking test was a 90 min session, identical to the heroin

acquisition period (house light on, insertion of the two levers), except that one press on the active

lever (FR1 schedule) now triggered illumination of the cue light for 5 s but without a heroin infusion

or a timeout period. The infusion pump was also activated during the drug-seeking session, because

the pump noise provided an extra drug-associated cue.

Fiber photometry cannulation and recordings
Following viral injections (see above), DAT-Cre+ or wildtype mice were chronically implanted with an

optic fiber (MFC_400/430–0.48_4 mm_ZF2.5(G)_FLT, Doric Lenses) above the VTA (GCaMP6m

experiments) or NAc (dLight experiments). During recordings excitation (470 nm, M470F3, Thorlabs)

and control LED light (405 nm, M405FP1, Thorlabs) was passed through excitation filters and

focused onto a patch cord (MFP_400/430/1100–0.48_4 m_FC-ZF2.5, Doric Lenses). The fiber patch

cord was connected to the chronically implanted fiber, and emission light (500–550 nm) was col-

lected through the same fiber and passed onto a photoreceiver (Newport 2151, Doric Lenses). Exci-

tation light was sinusoidally modulated at 211 and 531 Hz (470 nm and 405 nm light, respectively)

and collected raw signal was demodulated by a real-time signal processor (RZ5P, Tucker Davis Sys-

tems) to determine contributions from 470 nm and 405 nm excitation sources (see Lerner et al.,

2015).

For bulk GCaMP6 imaging of VTA DA calcium activity, animals were also surgically implanted

with an intravenous catheter in the right jugular vein (see above). After habituation they were then

recorded while freely moving in standard Med-Associates operant chambers. They were recorded

for a baseline period (10 min) and then received five saline IV injections, immediately followed by a

second baseline period (10 min) and five IV heroin injections. All injections were non-contingent with

a two minute inter-injection interval.

For recordings of striatal dopamine dynamics using dLight, after habituation to handling, animals

were injected intraperitoneally while freely moving in their homecage. In order to assess the effects

of heroin (8 mg/kg), intraperitoneal Injections were performed on two experimental days separated

by at least 48 hr (saline or heroin in counterbalanced design). A separate cohort of animals was sub-

sequently treated with saline, citalopram (10 mg/kg, Cayman Chemical), reboxetine (20 mg/kg, Toc-

ris) and cocaine (20 mg/kg) on separated recording days. During each day, fluorescence was

recorded for at least a five-minute baseline period before injection, and a twenty-minute period after

injection.

A subgroup of dLight animals was DAT-Cre positive (n = 3), and also injected with AAV8-hSyn-

FLEX-ChrimsonR-TDTomato in the VTA, while a second optic fiber was placed above the structure.

On a separate session, animals were optogenetically stimulated in the VTA while freely moving in

their homecage. Using a counterbalanced sequence, bursts of 10–15 mW 593 nm wavelength light

were administered once per 30 s. Bursts consisted of 5 pulses of 5 ms duration at 5, 10, 20, and 50

Hz. Laser light originated from a 593 nm DPSS laser that was gated by a shutter (CMSA-SR475_FC,

Doric Lenses).

All data analyses were performed offline in Matlab (custom script https://github.com/tjd2002/tjd-

shared-code, Davidson, 2016). To calculate dF/F, a linear fit was applied to the 405 nm signal dur-

ing the baseline period to align it to the 470 nm signal, producing a fitted 405 nm signal that was

used as F0 to normalize the 470 nm using standard dF/F normalization: (470 nm signal - fitted 405

nm signal)/fitted 405 nm signal. To quantify signal changes, for GCaMP6 experiments the average

signal in the five minutes preceding the first IV injection (saline or heroin) was then compared to the

average signal in the five minutes following the fifth IV injection (saline or heroin). For dLight experi-

ments, the average signal in the five minutes preceding IP injection was compared to the average

signal between ten and fifteen minutes after IP injection. At the end of all experiments, mice were
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euthanized and brains fixed in paraformaldehyde to prepare histological slices for verification of virus

expression.

Cell culture for dLight1 sensitivity experiment
HEK293T cells (ATCC, Manassas VA #1573, STR authenticated, mycoplasma negative) were cultured

and transfected as previously described (Patriarchi et al., 2018). Briefly, hippocampal neurons were

isolated and infected using AAVs (1 x 109 GC/ml) at DIV5. Two weeks later, cells were washed with

HBSS (Life Technologies) and imaged using a 40X oil-based objective on an inverted Zeiss Observer

LSN710 confocal microscope with 488/513 ex/em wavelengths. For testing dLight1 sensitivity, neu-

rotransmitters were directly applied to the bath during imaging sessions. A dual buffer gravity-driven

perfusion system was used to exchange buffers between different drug concentrations. One-photon

emission spectrum for the sensors was determined using the lambda-scan function of the confocal

microscope. Two-photon emission spectrum was obtained with a 40X water-based objective on a Sli-

ceScore (Scientifica) and used to obtain normalized two-photon cross-section using MATLAB ROIs

were generated using the threshold function in Fiji. Spatial movies and images of dF/F in response

to a ligand was calculated as
F tð Þ�F

�
baseline

� �

F
�
baseline

with F tð Þ the pixel-wise fluorescence value at each time

and mean fluorescence in time points prior to ligand application,F
�
baseline.

Immunostaining and cell counting
Mice were injected with a lethal dose of pentobarbital (150 mg/kg) and perfused trans-cardially with

cold PBS and 4% paraformaldehyde solution. Brains were extracted and submerged in fixative for 24

hr at 4˚C. Series of coronal 60 mm thick sections were cut on a vibratome. Immunostaining started

by blocking slices in PBS 10% BSA and 0.3% Triton X-100 followed by overnight incubation in PBS

3% BSA and 0.3% Triton X-100 with primary antibody: cFos (dilution 1:5000, rabbit polyclonal, Santa

Cruz, RRID: AB_2106783), TH (dilution 1:500, Mouse monoclonal anti-Tyrosine Hydroxylase, Sigma

T2928) or GFP (dilution 1:500, rabbit polyclonal, Invitrogen, A11122). After three 15 min washes in

PBS at room temperature, slices were incubated with 1:500 Alexa-conjugated secondary antibodies

against the corresponding species (Alexa-Fluor 488, 555, Life Technologies). After three more steps

of washing in PBS, a Hoechst staining was used to stain all neurons. Slices were then mounted and

covered on microscope slides using mounting medium Mowiol (Calbiochem, Cat 475904–100 GM).

Images were obtained in a confocal laser-scanning microscopy with a Fluoview 300 system (Olympus)

using a 488 nm argon laser and a 537 nm heliumneon laser or in Leica SP5 confocal microscope

using additional 350 nm laser with a 20x/0.7 NA oil immersion or objective. A semi-automated

method was used to quantify viral infection and cFos expression in confocal images of brain slices

containing the VTA or the NAc. Equally thresholded images were subjected to multiparticle analysis

(NIH ImageJ). Region of interest (ROI) intensity values were obtained from the z stack of raw images

by using Multi Measure tool. Colocalization was determined by overlap of the ROI obtained from

the two independent fluorescence signals. Analysis was performed in at least three sections per

animal.

DA neuron Self-Stimulation/Inhibition Acquisition
For optogenetic studies, fiber optic cannulae of mice were connected via patch cords (Thor Labs,

Germany) to a rotary joint (FRJ_1 � 2_FC-2FC; Doric Lenses, Quebec, Canada), suspended above

the operant chamber. A second patch cord connected from the rotary joint to a blue or orange

DPSS laser (SDL-473–100 mW or SDL-593–100 mW, respectively; Shanghai Dream Lasers; Shanghai,

China) positioned outside of the cubicle. Laser power was typically 15–20 mW measured at the end

of each patch cord. Thus, allowing for up to 30% power loss in connecting the patch cord to the

implanted cannulae, we estimated laser power to be approximately 10–14 mW at the tip of the can-

nulae. In some cases, a mechanical shutter was used to control laser output (SR474 driver with

SR476 shutter head; Stanford Research Systems, aligned using a connectorized mechanical shutter

adaptor; Doric Lenses).

Each of the 22 optogenetic stimulation of VTA DA acquisition sessions lasted 60 min with no max-

imum number of reward. During all the sessions, a single press on the active lever (termed fixed ratio

one, or FR1) resulted in a 10 s illumination of a cue light (pulses of 1 s at 1 Hz). After a delay of 5 s,
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onset of a 15 s blue laser stimulation (473 nm) composed of 30 bursts separated by 250 ms (each

burst consisted of 5 laser pulses of 4 ms pulse width at 20 Hz; Brown et al., 2010). A 20 s timeout

followed the rewarded lever press, during which lever presses had no consequence but were

recorded.

Each of the 19 optogenetic inhibition of VTA GABA acquisition sessions lasted 180 min with no

maximum number of reward. During all the sessions, a single press on the active lever (termed fixed

ratio one, or FR1) resulted in a 10 s illumination of a cue light (pulses of 1 s at 1 Hz). After a delay of

5 s, onset of a 15 s continuous orange laser stimulation. A 20 s timeout followed the rewarded lever

press, during which lever presses had no consequence but were recorded.

Effect of heroin on locomotor activity
To assess locomotor activity, mice were tested over a 30 min free exploration period in an open

field. The apparatus consisted of Plexiglas square (40 � 40 cm). Light intensity was respectively 150

lux and 120 lux at the center and walls of the arena. Animals were injected daily with saline or

increasing doses of heroin (4, 8, 16, 32 mg/kg, i.p., 10 ml/kg) immediately before being placed in

the apparatus. The distance travelled was recorded and analyzed by a video-tracking system (ANY-

maze; Stoelting).

Effect of chemogenetic inhibition of VTA DA neurons on self-
administration behavior
One hour before the behavioral test, DAT-Cre+ mice expressing DREADD receptors were intraperi-

toneally injected with CNO 2 mg/kg in saline solution (10 ml/kg). The mice were then placed in the

same settings as in a self-administration 360 min session (as described on page 12). Mice were ran-

domly assigned to one of the two behavioral protocols. DAT-Cre- mice were used in the same set-

tings as negative controls.

Statistics
Sample sizes were calculated using publicly available sample size calculators; group sizes are in the

range use for similar methodology by us and others. Experiments were typically repeated in at least

two cohorts. Samples were randomly assigned to experimental groups. Experimenters were not

blinded for data collection and analysis, except for cFos quantification (both acquisition and analy-

sis),. Multiple comparisons were first subject to mixed-factor ANOVA defining both between- (for

example, DAT-cre +vs DAT-cre-; saline or heroin self-administration groups) and/or within- (for

example, active or inactive lever presses) group factors. Where significant main effects or interaction

terms were found (p<0.05), further comparisons were made by a two-tailed Student’s t-test with

Bonferroni correction. Single comparisons of between- or within-group measures were made by

two-tailed non-paired or paired Student’s t-test, respectively.
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Michaël Loureiro https://orcid.org/0000-0002-5915-5627

Lin Tian http://orcid.org/0000-0001-7012-6926
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dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science 341:1521–
1525. DOI: https://doi.org/10.1126/science.1237059, PMID: 24072923
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