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Abstract of the Dissertation

Control of cyber-physical systems using

incremental properties of physical systems

by

Majid Zamani

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2012

Professor Rupak Majumdar, Co-chair

Professor Jason L. Speyer, Co-chair

Cyber-Physical Systems (CPSs) are complex systems resulting from intricate in-

teraction of digital computational devices with the physical systems. With the

recent dazzling advances in computational devices, CPSs have become ubiqui-

tous in modern technology. The increasing presence of CPSs on one hand and

the incapability of current methods to analyze them on the other hand, impel

the development of novel approaches for analysis and design. In CPSs, embed-

ded computers have the responsibility of monitoring and controlling the physical

plants using feedback loops using which physical plants affect computations and

vice versa. In these closed-loop fashions, controllers implemented in software are

termed embedded control software. Increasing use of embedded control software

in life critical applications, such as aircraft flight control systems and automo-

tive engine control systems, demands lots of efforts on software verifications and

validations which are very costly. On the other hand, by changing the center of

gravity from verification to design, it is possible to synthesize correct-by-design

embedded control software while providing formal guarantees of correctness. The

foundation of this proposed approach relies on some technical results showing how

to construct equivalent finite state models for differential equation models describ-
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ing physical plant. These finite state models are simpler descriptions of physical

plant in which each state of the finite model represents a collection or aggregate

of states in the physical plant. Similar finite state models are used in software and

hardware modeling, which enable the composition of such models with the finite

models of the physical systems. The results of this composition are finite models

capturing the behavior of the physical systems interacting with the digital com-

putation devices. Once such models are available, the methodologies and tools

developed in computer science for verification and control synthesis purposes can

be easily employed to physical systems, via these models. In the first part of this

thesis I take an important step in my quest to synthesize correct-by-design em-

bedded control software for CPSs by constructing finite state models for control

systems. I propose a novel technique to compute bisimilar finite state models of

incrementally stable nonlinear control systems. I show on practical examples that

the finite state models computed by my procedure can be several orders of mag-

nitude smaller than existing approaches. Moreover, I propose another technique

to compute (not necessarily bisimilar) finite state models of any nonlinear control

system as long as I am interested in its behavior in a compact set. In the second

part of this thesis I will show some incremental properties under which nonlinear

control systems admit finite state models. I propose some analysis tools to check

those properties. Moreover, I provide some design techniques providing controllers

enforcing those incremental properties for some special classes of nonlinear control

systems.
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CHAPTER 1

Introduction

1.1 Motivation

Embedded control systems result from the integration of computational parts

and control processes: on-board computers control physical processes through

feedback loops. Although embedded control systems have become ubiquitous in

modern technology, their designs are based on ad-hoc solutions trying to make

the connection between the classical techniques of control theory and embedded

systems engineering. As the number of embedded control systems is expected

to grow significantly in the near future, it becomes necessary to develop specific

approaches, allowing the system design to be more reliable and efficient.

Most embedded control systems are of hybrid nature: discrete dynamics mod-

eling computing parts including hardware and software and continuous dynamics

modeling control systems. The ability to handle the interaction between contin-

uous and discrete dynamics is a prerequisite of a rigorous formal framework for

the design and verification of embedded control systems. Verification and con-

trol of embedded systems generally require the development of specific techniques

combining ideas of the theories of discrete and continuous systems. The complex-

ity induced by the interaction between discrete and continuous dynamics often

makes it difficult to obtain analytical results. For this reason, the verification and

synthesis of controllers for embedded systems is often addressed by methods of

abstraction in which continuous dynamics are approximated by discrete symbolic
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models. My work in this thesis lies in two different directions. First, I analyze

the use of symbolic models for the synthesis of correct-by-design embedded con-

trollers. Second, I analyze and provide the assumptions under which nonlinear

control systems admit symbolic models.

The first part of the thesis is devoted to the study of symbolic abstractions in

control. Symbolic abstractions result from replacing aggregates or collections of

continuous states of a control system by discrete states. I study the construction

of symbolic models for some classes of control systems described by differential

equations. Similar models are used in software and hardware modeling. Therefore,

it enables us to compose such models with the symbolic abstraction of the contin-

uous dynamics. The result of this composition are symbolic models capturing the

behavior of the complete embedded control systems. By having specifications in

the form of finite symbolic models, the synthesis of controllers for the (finite-state)

symbolic abstraction can be reduced to a fixed-point computation. Finally, the

resulting controllers can be refined into hybrid-controllers that can be deployed

on the actual implementation. The controllers, obtained by this mentioned design

flow, are guaranteed to satisfy the provided specification. This justifies the name

of correct-by-design synthesis. We can divide abstraction methods for the syn-

thesis of controllers into three stages. First, a discrete approximation of a control

system, called a symbolic model, is constructed. This stage is the focus of the first

part of my thesis. Then, by having symbolic models with a finite number of states

or symbols, we are able to use algorithmic techniques, developed for discrete-event

systems to automatically synthesize controllers enforcing control and software re-

quirements using a fixed-point computation. Finally, the controller obtained is

refined in order to control the original control system.

The second part of the thesis is devoted to the study of incremental properties

of nonlinear control systems. Stability is arguably one of the core concepts upon

which our understanding of dynamical and control systems has been built. The
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related notion of incremental stability, however, has received much less attention

until recently, when it was successfully used as a tool for the analysis and design of

intrinsic observers, output regulation of nonlinear control systems, frequency esti-

mators, synchronization of coupled identical dynamical systems, symbolic models

for nonlinear control systems, bio-molecular systems, nonlinear analog circuits,

systems over finite alphabets, global synchronization in networks of cyclic feedback

systems, and piecewise affine systems with actuator and sensor faults. However,

most of the existing controller design techniques provide controllers enforcing sta-

bility rather than incremental stability. Hence, there is a growing need to extend

existing methods or develop new ones for the purpose of designing incrementally

stabilizing controllers. In the second part of my thesis, I provide some analysis and

design approaches providing controllers rendering some classes of control systems

incrementally stable.

1.2 Outline of the thesis

This thesis is divided in 5 chapters, the first of which is the current introduction.

Chapter 2 presents basic notions from control theory that will be frequently used

throughout this thesis. Chapter 3 studies the suitability of symbolic models for

the synthesis of correct-by-design embedded controllers. Chapter 4 is devoted to

study of incremental properties of nonlinear control systems. Finally, in Chapter

5, a brief suggestions for future research is provided.

For clarity of exposition, both Chapter 3 and Chapter 4 follow a common

structure. Both chapters start with an introduction including: a description of

the problem addressed, a brief literature review, and a statement of the contribu-

tions made. Following the introduction, a section establishing the preliminaries

specific to the chapter is included. The developed techniques are detailed in sub-

sequent sections, followed by a section illustrating their efficiency on examples.
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The chapters are concluded with a discussion section.
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CHAPTER 2

Some notions of mathematical control theory

2.1 Notation

The identity map on a set A is denoted by 1A. If A is a subset of B we de-

note by ıA : A ↪→ B or simply by ı the natural inclusion map taking any a ∈ A

to ı(a) = a ∈ B. The symbols N, N0, Z, R, R+ and R+
0 denote the set of nat-

ural, nonnegative integer, integer, real, positive, and nonnegative real numbers,

respectively.

The symbols Im, 0m×n, and 0m denote the identity and zero matrices on Rm×m

and Rm×n and the zero vector in Rm, respectively. Given a vector x ∈ Rn,

we denote by xi the i–th element of x, by ‖x‖ the infinity norm of x, and by

‖x‖2 the Euclidean norm of x; we recall that ‖x‖ = max{|x1|, |x2|, ..., |xn|}, and

‖x‖2 =
√
x2

1 + x2
2 + ...+ x2

n, where |xi| denotes the absolute value of xi.

Given a measurable function f : R+
0 → Rn, the (essential) supremum of f is

denoted by ‖f‖∞; we recall that ‖f‖∞ := (ess)sup{‖f(t)‖, t ≥ 0}, ‖f‖2,∞ :=

(ess)sup{‖f(t)‖2, t ≥ 0} and ‖f‖[0,τ) := (ess)sup{‖f(t)‖, t ∈ [0, τ)}; f is es-

sentially bounded if ‖f‖∞ < ∞. For a given time τ ∈ R+, define fτ so that

fτ (t) = f(t), for any t ∈ [0, τ), and fτ (t) = 0 elsewhere; f is said to be locally

essentially bounded if for any τ ∈ R+, fτ is essentially bounded. A function

f : Rn → R+
0 is called radially unbounded if f(x) → +∞ as ‖x‖ → +∞. A

function f is said to be smooth if it is an infinitely differentiable function of its

arguments.
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A continuous function γ : R+
0 → R+

0 , is said to belong to class K if it is strictly

increasing and γ(0) = 0; γ is said to belong to class K∞ if γ ∈ K and γ(r) → ∞

as r → ∞. A continuous function β : R+
0 × R+

0 → R+
0 is said to belong to class

KL if, for each fixed s, the map β(r, s) belongs to class K∞ with respect to r

and, for each fixed nonzero r, the map β(r, s) is decreasing with respect to s and

β(r, s)→ 0 as s→∞.

Let φ : Rn → Rn be a global diffeomorphism, and X : Rn → Rn be a map, we

denote by φ∗X the map defined by (φ∗X)(y) = ∂φ
∂x

∣∣
x=φ−1(y)

X ◦ φ−1(y). Let now

G : Rn → Rn×n be a smooth map. The notation φ∗G : Rn → Rn×n denotes the

smooth map (φ∗G)(x) = (∂φ
∂x

)TG(φ(x))(∂φ
∂x

). A Riemannian metric G : Rn → Rn×n

is a smooth map on Rn such that, for any x ∈ Rn, G(x) is a symmetric positive

definite matrix [Lee03]. For any x ∈ Rn and smooth functions I, J : Rn → Rn,

one can define the scalar function 〈I, J〉G as IT (x)G(x)J(x). We will still use the

notation 〈I, J〉G to denote ITGJ even if G does not represent any Riemannian

metric. A function d : Rn × Rn → R+
0 is a metric on Rn if for any x, y, z ∈ Rn,

the following three conditions are satisfied: i) d(x, y) = 0 if and only if x = y; ii)

d(x, y) = d(y, x); and iii) d(x, z) ≤ d(x, y) + d(y, z). We use the pair (Rn,d) to

denote a metric space Rn equipped with the metric d. We use the notation dG to

denote the Riemannian distance function provided by the Riemannian metric G

[Lee03]. We refer to the proof of Lemma 4.3.12 in the paper for the definition of

dG. For a set A ⊆ Rn, a metric d, and any x ∈ Rn, we abuse the notation by using

d(x,A) to denote the point-to-set distance, defined by d(x,A) = infy∈A d(x, y).

Given measurable functions f : R+
0 → Rn and g : R+

0 → Rn, we define d(f, g)∞ :=

(ess)sup{d(f(t), g(t)), t ≥ 0} and d(f, g)[0,τ) := (ess)sup{d(f(t), g(t)), t ∈ [0, τ)}.

Given a matrix M = {mij} ∈ Rn×m, the infinity norm of M is ‖M‖ =

max1≤i≤m
∑n

j=1 |mij|. The closed ball centered at x ∈ Rn with radius ε is defined

by Bε(x) = {y ∈ Rn | ‖x−y‖ ≤ ε}. A set B ⊆ Rn is called a box if B =
∏n

i=1[ci, di],

where ci, di ∈ R with ci < di for each i ∈ {1, . . . , n}. The span of a box B is defined

6



as span(B) = min {|di − ci| | i = 1, . . . , n}. For a box B and η ≤ span(B), define

the η-approximation [B]η = {b ∈ B | bi = kiη for some ki ∈ Z, i = 1, . . . , n}. Note

that [B]η 6= ∅ for any η ≤ span(B). Geometrically, for any η ∈ R+ with η ≤

span(B) and λ ≥ η the collection of sets {Bλ(p)}p∈[B]η is a finite covering of B, i.e.,

B ⊆
⋃
p∈[B]η

Bλ(p). By defining [Rn]η = {a ∈ Rn | ai = kiη, ki ∈ Z, i = 1, · · · , n},

the set
⋃
p∈[Rn]η

Bλ(p) is a countable covering of Rn for any η ∈ R+ and λ ≥

η/2. We extend the notions of span and approximation to finite unions of boxes

as follows. Let A =
⋃M
j=1Aj, where each Aj is a box. Define span(A) =

min {span(Aj) | j = 1, . . . ,M}, and for any η ≤ span(A), define [A]η =
⋃M
j=1[Aj]η.

We identify a relation R ⊆ A×B with the map R : A→ 2B defined by b ∈ R(a) iff

(a, b) ∈ R. Given a relation R ⊆ A×B, R−1 denotes the inverse relation defined

by R−1 = {(b, a) ∈ B × A : (a, b) ∈ R}.

2.2 Control systems

The class of control systems that we consider in this thesis is formalized in the

following definition.

Definition 2.2.1. A control system is a quadruple:

Σ = (Rn,U,U , f),

where:

• Rn is the state space;

• U ⊆ Rm is the input set;

• U is the set of all measurable and locally essentially bounded functions of

time from intervals of the form ]a, b[⊆ R to U with a < 0, b > 0;

• f : Rn × U→ Rn is a continuous map satisfying the following Lipschitz as-

sumption: for every compact set Q ⊂ Rn, there exists a constant Z ∈ R+

7



such that ‖f(x, u)− f(y, u)‖ ≤ Z‖x− y‖ for all x, y ∈ Q and all u ∈ U.

A curve ξ :]a, b[→ Rn is said to be a trajectory of Σ if there exists υ ∈ U

satisfying:

ξ̇(t) = f (ξ(t), υ(t)) , (2.2.1)

for almost all t ∈ ]a, b[. We also write ξxυ(τ) to denote the point reached at

time τ under the input υ from initial condition x = ξxυ(0); this point is uniquely

determined, since the assumptions on f ensure existence and uniqueness of tra-

jectories [Son98]. Although we have defined trajectories over open domains, we

shall refer to trajectories ξxυ :[0, τ ]→ Rn and input curves υ : [0, τ [→ U defined

on domains [0, τ ], [0, τ [, τ ∈ R+, with the understanding of the existence of a

trajectory ξ′xυ′ :]a, b[→ Rn and input curve υ′ :]a, b[→ U such that a < 0, b > τ ,

ξxυ = ξ′xυ′ |[0,τ ] and υ = υ′|[0,τ [. Note that by continuity of ξ, we have that ξxυ(τ)

is uniquely defined as the left limit of ξxυ(t) with t→ τ .

A control system Σ is said to be forward complete if every trajectory can be

extended to an interval of the form ]a,∞[. Sufficient and necessary conditions for

a system to be forward complete can be found in [AS99]. A control system Σ is

said to be smooth if f is smooth.

2.3 Incremental stability

We start by introducing the following definitions which were inspired by the no-

tions of incremental global asymptotic stability (δ-GAS) and incremental input-

to-state stability (δ-ISS) presented in [Ang02].

Definition 2.3.1. A control system Σ is incrementally globally asymptotically

stable (δ∃-GAS) if it is forward complete and there exist a metric d and a KL

function β such that for any t ∈ R+
0 , any x, x′ ∈ Rn and any υ ∈ U the following
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condition is satisfied:

d (ξxυ(t), ξx′υ(t)) ≤ β (d (x, x′) , t) . (2.3.1)

While δ-GAS, as defined in [Ang02], requires the metric d to be the Euclidean

metric, Definition 2.3.1 only requires the existence of a metric; hence, the existen-

tial quantifier in the acronym δ∃-GAS. The condition (2.3.1), when the metric d

is the Euclidean metric, is as follows:

‖ξxυ(t)− ξx′υ(t)‖ ≤ β (‖x− x′‖ , t) . (2.3.2)

We note that while δ-GAS is not generally invariant under changes of coordi-

nates, δ∃-GAS is. If φ : Rn → Rn is a global diffeomorphism, inequality (2.3.1)

transforms under changes of coordinate φ to:

d′ (φ ◦ ξxυ(t), φ ◦ ξx′υ(t)) ≤ β (d′ (φ(x), φ(x′)) , t) ,

where d′(y, y′) = d(φ−1(y), φ−1(y′)). Nevertheless, when the origin is an equi-

librium point for Σ and the map ψ : Rn → R+
0 , defined by ψ(x) = d(x, 0),

is continuous1 and radially unbounded2, both δ∃-GAS and δ-GAS imply global

asymptotic stability (GAS).

Definition 2.3.2. A control system Σ is incrementally input-to-state stable (δ∃-

ISS) if it is forward complete and there exist a metric d, a KL function β, and a

K∞ function γ such that for any t ∈ R+
0 , any x, x′ ∈ Rn, and any υ, υ′ ∈ U the

following condition is satisfied:

d (ξxυ(t), ξx′υ′(t)) ≤ β (d (x, x′) , t) + γ (‖υ − υ′‖∞) . (2.3.3)

By observing (2.3.1) and (2.3.3), it is readily seen that δ∃-ISS implies δ∃-GAS

while the converse is not true in general. Moreover, whenever the metric d is the

1Here, continuity is understood with respect to the Euclidean metric.
2Under the stated assumptions it can be shown that α(‖x‖) ≤ ψ(x) ≤ α(‖x‖) for some K∞

functions α and α.
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Euclidean metric, δ∃-ISS becomes δ-ISS as defined in [Ang02] as the following:

‖ξxυ(t)− ξx′υ′(t)‖ ≤ β (‖x− x′‖ , t) + γ (‖υ − υ′‖∞) . (2.3.4)

We note that while δ-ISS is not generally invariant under changes of coordinates,

δ∃-ISS is. Once again, although δ∃-ISS is not equivalent to δ-ISS, both notions

imply input-to-state stability whenever the origin is an equilibrium point for Σ

and the map ψ : Rn → R+
0 , defined by ψ(x) = d(x, 0), is continuous3 and radially

unbounded.

Remark 2.3.3. For linear control systems, the functions β and γ in Definition

2.3.2, when metric is the Euclidean one, can be explicitly computed as follows. It

can be readily verified that any linear control system:

ξ̇ = Aξ +Bυ, ξ(t) ∈ Rn, υ(t) ∈ U ⊆ Rm, (2.3.5)

is δ-ISS if and only if A is globally asymptotically stable, i.e., every eigenvalue of

A has strictly negative real part. Then, the functions β and γ can be chosen as:

β(r, t) =
∥∥eAt∥∥ r; γ(r) =

(
‖B‖

∫ ∞
0

∥∥eAs∥∥ ds) r, (2.3.6)

where ‖eAt‖ denotes the infinity norm of eAt.

In Chapter 4, we provide Lyapunov characterizations and contraction metric

descriptions for incremental stability.

2.4 Incremental forward completeness

We now describe a weaker concept that is satisfied even in the absence of stability.

Definition 2.4.1. A control system Σ is incrementally forward complete (δ-FC)

if it is forward complete and there exist continuous functions β : R+
0 × R+

0 → R+
0

3Here, continuity is understood with respect to the Euclidean metric.
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and γ : R+
0 × R+

0 → R+
0 such that for every s ∈ R+, the functions β(·, s) and

γ(·, s) belong to class K∞, and for any x, x′ ∈ Rn, any t ∈ R+, and any υ, υ′ ∈ U ,

the following condition is satisfied:

‖ξxυ(t)− ξx′υ′(t)‖ ≤ β(‖x− x′‖, t) + γ(‖υ − υ′‖∞ , t). (2.4.1)

Incremental forward completeness4 requires the distance between two arbitrary

trajectories to be bounded by the sum of two terms capturing the mismatch

between the initial conditions and the mismatch between the inputs as shown in

(2.4.1).

As an example, for a linear control system (not necessarily stable):

ξ̇ = Aξ +Bυ, ξ(t) ∈ Rn, υ(t) ∈ U ⊆ Rm,

the functions β and γ can be chosen as:

β(r, t) =
∥∥eAt∥∥ r; γ(r, t) =

(∫ t

0

∥∥eAsB∥∥ ds) r, (2.4.2)

where ‖eAt‖ denotes the infinity norm of eAt. From (2.3.4) and (2.4.1), we can

immediately see that δ-ISS implies δ-FC. However, the converse is not true, in

general, since the function β in (2.4.1) is not required to be a decreasing function

of t and the function γ in (2.4.1) is allowed to depend on t while this is not the

case in (2.3.4).

4We note that δ-FC implies uniform continuity of the map φt : Rn × U → Rn defined by
φt(x, υ) = ξxυ(t) for any fixed t ∈ R+

0 . Here, uniform continuity is understood with respect to
the topology induced by the infinity norm on Rn, the sup norm on U , and the product topology
on Rn × U .
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CHAPTER 3

Symbolic models for nonlinear control systems

3.1 Introduction

Many cyber-physical systems involve the complex interplay between continuous

controlled dynamical systems and discrete controllers. Correctness requirements

for these systems involve temporal specifications about the evolution of the dy-

namics, which are not easily amenable to classical continuous controller synthesis

techniques. As a result, in recent years, a lot of research has focused on symbolic

models of systems involving both continuous and discrete components (so called

hybrid systems). A symbolic model is a discrete approximation of the continu-

ous system such that controllers designed for the approximation can be refined

to controllers for the original system. Symbolic models are interesting because

they allow the algorithmic machinery for controller synthesis of discrete systems

w.r.t. temporal specifications [EJ91, Tho95, MPS95] to be used to automatically

synthesize controllers for hybrid systems.

3.1.1 Previous work

In the past years several different abstraction techniques have been developed to

assist in the synthesis of controllers enforcing complex specifications. This work is

concerned with symbolic abstractions resulting from replacing aggregates or collec-

tions of states of a control system by symbols. When a symbolic abstraction with a

finite number of states or symbols is available, the synthesis of the controllers can
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be reduced to a fixed-point computation over the finite-state abstraction [Tab09].

Moreover, by leveraging computational tools developed for discrete-event systems

[KG95, CL99] and games on automata [dAHM01, MNA03, AVW03], one can syn-

thesize controllers satisfying specifications difficult to enforce with conventional

control design methods. Examples of such specification classes include logic spec-

ifications expressed in linear temporal logic or automata on infinite strings.

The quest for symbolic abstractions has a long history including results on

timed automata [AD90], rectangular hybrid automata [HKPV98], and o-minimal

hybrid systems [LPS00, BM05]. Early results for classes of control systems were

based on dynamical consistency properties [CW98], natural invariants of the con-

trol system [KASL00], l-complete approximations [MRO02], and quantized in-

puts and states [FJL02, BMP02]. Recent results include work on piecewise-affine

and multi-affine systems [HCS06, BH06], set-oriented discretization approach for

discrete-time nonlinear optimal control problem [Jun04], abstractions based on an

elegant use of convexity of reachable sets for sufficiently small time [Rei09], and

the use of incremental input-to-state stability [PGT08, PT09, PPDT10, GPT09].

3.1.2 Contributions

We focus here on digital control systems, in which there is a sampling time τ and

the control action is chosen from a compact set and held constant for τ time units.

First contribution: current approaches to building the symbolic model, such

as [PGT08, PT09, PPDT10, GPT09], proceed as follows. First, they choose dis-

cretizations of the state and input sets. Then, they use either the incremental

stability assumption or incremental Lyapunov functions to show that if the dis-

cretizations are sufficiently small, and the sampling time τ is sufficiently big, then

the resulting discrete abstraction is ε-approximate bisimilar to the original system.

If the sampling time, which is usually not under the control of the verification en-
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gineer, is not sufficiently large, the technique will not apply. Even if the method

applies, the resulting state space is often prohibitively large. This is usually the

case for symbolic models built using conservative Lyapunov functions [GPT09].

We show a construction of approximately bisimilar models for digital control

systems that improves upon known algorithms. The insight in our construction is

to consider a number of sampling steps instead of only one step. That is, we dilate

the quantum of time of the control system and observe the system only every k

steps, for some parameter k. Then, instead of requiring that the sampling time

is sufficiently big, we only require that the number of steps is chosen sufficiently

large, so that the technique is always applicable. Further, we demonstrate exper-

imentally in Section 3.4 that our technique can give symbolic models that require

a much coarser discretization of the state and input sets, resulting in symbolic

models with many fewer states, while guaranteeing ε-approximate bisimulation

with the original system.

Second contribution: our next results improve upon most of the existing tech-

niques in two directions: i) by being applicable to larger classes of control systems;

ii) by not requiring the exact computation of reachable sets which is a hard task

in general. In the first direction, our technique improves upon the results in

[BMP02, HCS06, BH06] by being applicable to systems not restricted to non-

holonomic chained-form, piecewise-affine, and multi-affine systems, respectively,

and upon the results in [PGT08, PT09, PPDT10, GPT09] by not requiring any

stability assumption. In the second direction, our technique improves upon the

results in [MRO02, FJL02] by not requiring the exact computation of reachable

sets. The results in [Jun04] offer a discretization tailored to optimal control while

our discretization is independent of the control objective. In [Rei09] a different

abstraction technique is proposed that is also applicable to a wide class of con-

trol systems and does not require the exact computation of reachable sets. Such

technique provides tight over-approximations of reachable sets based on convex-
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ity but requires small sampling times. Other efficient techniques are available in

the literature for computing over-approximations of reachable sets. For example,

[Jun00, DJ02, SP90] provide tight over-approximations of reachable sets, not nec-

essarily convex, at the cost of a higher computational complexity than [Rei09].

In contrast to [Rei09, SP90], our technique imposes no restrictions on the choice

of the sampling time but provides less tight over-approximations of the set of

reachable states.

We show that symbolic models exist if the control systems satisfy an incremen-

tal forward completeness assumption which is an incremental version of forward

completeness. The second contribution of this chapter is to establish that:

For every nonlinear digital control system satisfying the incremental forward

completeness assumption, one can construct a symbolic model that is alternat-

ingly approximately simulated1 by the control system and that approximately sim-

ulates2 the control system. Although these results are of theoretical nature, we

also provide a simple way of constructing symbolic models which can be improved

by using tighter over-approximations of reachable sets such as those described

in [Rei09, Jun00, DJ02].

These relationships are weaker than the approximate bisimulation relation-

ships, established in the first part of this chapter and in [PGT08, PT09, PPDT10,

GPT09], in the sense that they are only sufficient but not necessary to guarantee

that any controller synthesized for the symbolic model can be refined to a con-

troller enforcing the desired specifications on the original control system. In other

words, any controller synthesized for the abstraction can be converted into a con-

troller enforcing the specification on the original control system. However, failing

to find a controller enforcing the specification on the symbolic model does not pre-

vent the existence of a controller for the original control system. Hence, control

1As defined in Definition 3.2.5.
2As defined in Definition 3.2.3.
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designers are confronted with the choice between the following two alternatives

when using approximate abstractions:

1. design a controller rendering the original control system incrementally input-

to-state stable using the results in Chapter 4 and then apply the abstraction

techniques proposed in the first part of this chapter or in [PGT08, PT09,

PPDT10, GPT09];

2. or construct an abstraction using the results presented in the second part of

this chapter.

Since most of the existing controller design techniques provide controllers enforc-

ing stability rather than incremental stability, the second alternative provides a

concrete approach to symbolic control design for unstable control systems. In

Section 3.4, we illustrate the results through a simple unstable example in which

a vehicle is requested to reach a target set while avoiding a number of obstacles.

3.2 Preliminaries

We will use notion of systems to describe both control systems as well as their

symbolic models. A more detailed exposition of the notion of system that we now

introduce can be found in [Tab09].

Definition 3.2.1. [Tab09] A system S is a quintuple:

S = (X,U,−→, Y,H),

consisting of:

• A set of states X;

• A set of inputs U ;
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• A transition relation −→⊆ X × U ×X;

• An output set Y ;

• An output function H : X → Y .

System S is said to be:

• metric, if the output set Y is equipped with a metric d : Y × Y → R+
0 ;

• countable, if X is a countable set;

• finite, if X is a finite set.

A transition (x, u, x′) ∈−→ is denoted by x
u- x′. For a transition x

u- x′,

state x′ is called a u-successor, or simply successor, of state x. We denote by

Postu(x) the set of u-successors of a state x and by U(x) the set of inputs u ∈ U

for which Postu(x) is nonempty. We shall abuse the notation and denote by

Postu(Z) the set Postu(Z) =
⋃
x∈Z Postu(x). A system is deterministic if for

any state x ∈ X and any input u, there exists at most one u-successor (there may

be none). A system is called nondeterministic if it is not deterministic. Hence, for

a nondeterministic system it is possible for a state to have two (or possibly more)

distinct u-successors.

Definition 3.2.2. [Tab09] For a system S = (X,U,−→, Y,H) and given any state

x0 ∈ X, a finite state run generated from x0 is a finite sequence of transitions:

x0
u0- x1

u1- x2
u2- · · · un−2- xn−1

un−1- xn,

such that xi
ui- xi+1 for all 0 ≤ i < n, where i ∈ N0. In some cases, a finite

state run can be extended to an infinite state run. An infinite state run generated

from x0 is an infinite sequence:

x0
u0- x1

u1- x2
u2- x3

u3- · · ·

such that xi
ui- xi+1 for all i ∈ N0.
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3.2.1 System relations

We first consider simulation and bisimulation relations that are useful when an-

alyzing or synthesizing controllers for deterministic systems. Intuitively, a bisim-

ulation relation between a pair of systems Sa and Sb is a relation between the

corresponding sets of states showing how a transition in Sa can be transformed

into a transition in Sb and vice versa. A simulation relation is a one-sided version

of a bisimulation relation.

Definition 3.2.3. Let Sa = (Xa, Ua, a
- , Ya, Ha) and Sb = (Xb, Ub, b

- ,

Yb, Hb) be metric systems with the same output sets Ya = Yb and metric d, and con-

sider a precision ε ∈ R+. A relation R ⊆ Xa ×Xb is said to be an ε-approximate

simulation relation from Sa to Sb, if the following three conditions are satisfied:

(i) for every xa ∈ Xa, there exists xb ∈ Xb with (xa, xb) ∈ R;

(ii) for every (xa, xb) ∈ R we have d(Ha(xa), Hb(xb)) ≤ ε;

(iii) for every (xa, xb) ∈ R we have that: xa
ua

a
- x′a in Sa implies the existence

of xb
ub

b
- x′b in Sb satisfying (x′a, x

′
b) ∈ R.

System Sa is ε-approximately simulated by Sb or Sb ε-approximately simulates

Sa, denoted by Sa �εS Sb, if there exists an ε-approximate simulation relation from

Sa to Sb.

Note that in [Tab09], the condition (i) of Definition 3.2.3 relates states in a

set of initial states. In this chapter we assume that all the states are initial states

for simplicity of presentation. Hence, the condition (i) is written for all the states

in X. The same simplification is used in the forthcoming relations.

Note also that when ε = 0, the condition (ii) in the above definition is changed

to (xa, xb) ∈ R if and only if Ha(xa) = Hb(xb) and R becomes an exact simulation

relation [Mil89, Par81].
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Symmetrizing the notion of simulation we obtain the notion of bisimulation,

which we report hereafter.

Definition 3.2.4. Let Sa = (Xa, Ua, a
- , Ya, Ha) and Sb = (Xb, Ub, b

- ,

Yb, Hb) be metric systems with the same output sets Ya = Yb and metric d, and con-

sider a precision ε ∈ R+. A relation R ⊆ Xa ×Xb is said to be an ε-approximate

bisimulation relation between Sa and Sb, if the following two conditions are satis-

fied:

(i) R is an ε-approximate simulation relation from Sa to Sb;

(ii) R−1 is an ε-approximate simulation relation from Sb to Sa.

System Sa is ε-approximate bisimilar to Sb, denoted by Sa ∼=ε
S Sb, if there exists

an ε-approximate bisimulation relation R between Sa and Sb.

Similarly, a 0-approximate bisimulation relation R is an exact bisimulation

relation [Mil89, Par81].

For nondeterministic systems we need to consider relationships that explicitly

capture the adversarial nature of nondeterminism. It was illustrated in [PT09]

that the preceding notions of simulation and bisimulation are not appropriate

for symbolic control design on nondeterministic systems. In the following, we

report the notions of alternating approximate simulation and bisimulation which,

as illustrated in [PT09], are appropriate for nondeterministic systems.

Definition 3.2.5. Let Sa = (Xa, Ua, a
- , Ya, Ha) and Sb = (Xb, Ub, b

- ,

Yb, Hb) be metric systems with the same output sets Ya = Yb and metric d, and

consider a precision ε ∈ R+. A relation R ⊆ Xa ×Xb is said to be an alternating

ε-approximate simulation relation from Sa to Sb if the following three conditions

are satisfied:

(i) for every xa ∈ Xa, there exists xb ∈ Xb with (xa, xb) ∈ R;
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(ii) for every (xa, xb) ∈ R we have d(Ha(xa), Hb(xb)) ≤ ε;

(iii) for every (xa, xb) ∈ R and for every ua ∈ Ua(xa) there exists ub ∈ Ub(xb)

such that for every x′b ∈ Postub(xb) there exists x′a ∈ Postua(xa) satisfying

(x′b, x
′
a) ∈ R.

System Sa is alternatingly ε-approximately simulated by Sb or Sb alternatingly

ε-approximately simulates Sa, denoted by Sa �εAS Sb, if there exists an alternating

ε-approximate simulation relation from Sa to Sb.

Note also that when ε = 0, the condition (ii) in the above definition is changed

to (xa, xb) ∈ R if and only if Ha(xa) = Hb(xb) and R becomes an exact alternating

simulation relation [AHKV98].

Symmetrizing the notion of alternating simulation one obtains the notion of

alternating bisimulation.

Definition 3.2.6. Let Sa = (Xa, Ua, a
- , Ya, Ha) and Sb = (Xb, Ub, b

- ,

Yb, Hb) be metric systems with the same output sets Ya = Yb and metric d, and

consider a precision ε ∈ R+. A relation R ⊆ Xa × Xb is said to be an alternat-

ing ε-approximate bisimulation relation between Sa and Sb, if the following two

conditions are satisfied:

(i) R is an alternating ε-approximate simulation relation from Sa to Sb;

(ii) R−1 is an alternating ε-approximate simulation relation from Sb to Sa.

System Sa is alternating ε-approximate bisimilar to Sb, denoted by

Sa ∼=ε
AS Sb, if there exists an alternating ε-approximate bisimulation relation R

between Sa and Sb.

Similarly, an alternating 0-approximate bisimulation relation R is an exact

alternating bisimulation relation [AHKV98].
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It is readily seen from the above definitions that the notions of approximate

(bi)simulation and of alternating approximate (bi)simulation coincide when the

systems involved are deterministic. It is shown in [Tab09] that for the nondeter-

ministic case, these two notions are not comparable in the sense that approximate

(bi)simulation does not imply alternating approximate (bi)simulation neither does

alternating approximate (bi)simulation imply approximate (bi)simulation.

The importance of the preceding notions lies in enabling the transfer of con-

trollers designed for the symbolic models to controllers acting on the original

control systems. More details about these notions and how the refinement of

controllers is performed can be found in [Tab09].

3.3 Existence of symbolic models

This section contains the main contributions of this chapter. The results in this

section rely on additional assumptions on U and U that we now describe. Such

assumptions are not required for the definitions and results in other sections and

chapters. We restrict attention to control systems Σ = (Rn,U,U , f) with input

set which is assumed to be a finite union of boxes containing the origin. We

further restrict attention to digital control systems, where input curves belong to

Uτ containing only curves, constant in any duration τ ∈ R+, i.e.

Uτ =
{
υ : R+

0 → U | υ(t) = υ((k − 1)τ), t ∈ [(k − 1)τ, kτ [, k ∈ N
}
,

where τ is the sampling time.

3.3.1 First result

We show that a δ-ISS digital control system Σ admits a countable symbolic ab-

straction. First, we consider a metric system Skτ (Σ) which relates two states if

the second is reached from the first in kτ time for a parameter k ∈ N.

21



Given a constant k ∈ N and a digital control system Σ = (Rn,U,Uτ , f), define

the metric system:

Skτ (Σ) = (Xkτ , Ukτ , kτ
- , Ykτ , Hkτ ), (3.3.1)

consisting of:

• Xkτ = Rn;

• Ukτ = Uτ ;

• xkτ
υkτ

kτ
- x′kτ if there exists a trajectory ξxkτυkτ : [0, kτ ]→ Rn of Σ satisfying

ξxkτυkτ (kτ) = x′kτ ;

• Ykτ = Rn;

• Hkτ = 1Rn .

Although the metric system Skτ (Σ) relates states of Σ that are k sampling

steps apart, this system is not less accurate than Sτ (Σ) relating states of Σ one

sampling time apart in the sense that for any initialized run with k transitions in

the latter there is one transition in the former and vice versa.

Now, assume that Σ is δ-ISS. Consider a triple q = (η, µ, k), where η ∈ R+ is

the state space quantization which determines a discretization of the state space,

µ ∈ R+ is the input set quantization which determines a discretization of the

inputs, and k ∈ N is a design parameter. Given Σ and q, consider the following

metric system:

Sq(Σ) = (Xq, Uq, q
- , Yq, Hq), (3.3.2)

consisting of:

• Xq = [Rn]η;

• Uq =
∏k

i=1[U]µ;
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• xq
uq

q
- x′q if there is a trajectory ξxquq : [0, kτ ]→ Rn such that ‖ξxquq(kτ)−

x′q‖ ≤ η/2;

• Yq = Rn;

• Hq = ı : Xq ↪→ Yq.

We have abused notation by identifying v ∈ [U]µ with the constant input curve

with domain [0, τ [ and value v and identifying u ∈
∏k

i=1[U]µ with the concate-

nation of k control inputs vi ∈ [U]µ (i.e., u(t) = vi for any t ∈ [(i − 1)τ, iτ [) for

i = 1, . . . , k. The set of states of Sq(Σ) is countable in general, and finite when

the set of states of Σ is restricted to a compact set.

The transition relation of Sq(Σ) is well defined in the sense that for every

xq ∈ [Rn]η and every u ∈
∏k

i=1[U]µ there always exists x′q ∈ [Rn]η such that

xq
uq

q
- x′q. This can be seen by noting that by definition of [Rn]η, for any x̂ ∈ Rn

there always exists a state x̂′ ∈ [Rn]η such that ‖x̂−x̂′‖ ≤ η/2. Hence, for ξxquq(kτ)

there always exists a state x′q ∈ [Rn]η satisfying ‖ξxquq(kτ)− x′q‖ ≤ η/2.

We can now present the first result of this chapter.

Theorem 3.3.1. Let Σ = (Rn,U,Uτ , f) be a δ-ISS digital control system, with

sampling time τ , and let functions β and γ satisfy (2.3.4). For any ε ∈ R+ and

any triple q = (η, µ, k) of quantization parameters, we have Sq(Σ) ∼=ε
S Skτ (Σ) if

µ ≤ span(U) and

β(ε, kτ) + γ(µ) + η/2 ≤ ε. (3.3.3)

Before giving the proof, we point out that if Σ is δ-ISS, there always exists

a triple q = (η, µ, k) satisfying condition (3.3.3). Since β is a KL function, there

exists sufficiently large k ∈ N such that β(ε, kτ) < ε/2; for this value of k, by

choosing sufficiently small values of η and µ, condition (3.3.3) can be fulfilled.
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Proof: We start by proving Skτ (Σ) �εS Sq(Σ). Consider the relation R ⊆

Xkτ×Xq defined by (xkτ , xq) ∈ R if and only if ‖Hkτ (xkτ )−Hq(xq)‖ = ‖xkτ−xq‖ ≤

ε. Since Xkτ ⊆
⋃
p∈[Rn]η

Bη/2(p) and by (3.3.3), for every xkτ ∈ Xkτ there always

exists xq ∈ Xq such that:

‖xkτ − xq‖ ≤ η/2 ≤ ε. (3.3.4)

Hence, (xkτ , xq) ∈ R and condition (i) in Definition 3.2.3 is satisfied. Now consider

any (xkτ , xq) ∈ R. Condition (ii) in Definition 3.2.3 is satisfied by the definition

of R. Let us now show that condition (iii) in Definition 3.2.3 holds.

Consider any υkτ ∈ Ukτ of duration kτ . Choose an input uq ∈ Uq satisfying:

‖υkτ |[(l−1)τ),lτ [ − uq|[(l−1)τ),lτ [‖∞ = ‖υkτ ((l − 1)τ)− uq((l − 1)τ)‖ ≤ µ, (3.3.5)

for any l = 1, . . . , k. Note that the existence of such uq is guaranteed by the

special shape of U and by the inequality µ ≤ span(U) which guarantees that

U ⊆
⋃
p∈[U]µ

Bµ(p). Now, we have:

‖υkτ − uq‖∞ = max
l=1,...,k

∥∥∥υkτ ∣∣[(l−1)τ),lτ [
− uq

∣∣
[(l−1)τ),lτ [

∥∥∥
∞
≤ µ. (3.3.6)

Consider the unique transition xkτ
υkτ

kτ
- x′kτ = ξxkτυkτ (kτ) in Skτ (Σ). It follows

from the δ-ISS assumption on Σ and (3.3.6) that the distance between x′kτ and

ξxquq(kτ) is bounded as:

‖x′kτ − ξxquq(kτ)‖ ≤ β (‖xkτ − xq‖, kτ) + γ (‖υkτ − uq‖∞) ≤ β (ε, kτ) + γ (µ) .

(3.3.7)

Since Xkτ ⊆
⋃
p∈[Rn]η

Bη/2(p), there exists x′q ∈ Xq such that:

‖ξxquq(kτ)− x′q‖ ≤ η/2, (3.3.8)

which, by the definition of Sq(Σ), implies the existence of xq
uq

q
- x′q in Sq(Σ).
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Using the inequalities (3.3.3), (3.3.7), (3.3.8), and triangle inequality, we obtain:

‖x′kτ − x′q‖ ≤ ‖x′kτ − ξxquq(kτ) + ξxquq(kτ)− x′q‖

≤ ‖x′kτ − ξxquq(kτ)‖+ ‖ξxquq(kτ)− x′q‖

≤ β(ε, kτ) + γ (µ) + η/2 ≤ ε.

Therefore, we conclude (x′kτ , x
′
q) ∈ R and condition (iii) in Definition 3.2.3 holds.

Now we prove Sq(Σ) �εS Skτ (Σ) implying that R−1 is a suitable ε-approximate

simulation relation. Consider the relation R ⊆ Xkτ ×Xq, defined in the first part

of the proof. For every xq ∈ Xq, by choosing xkτ = xq, we have (xkτ,xq) ∈ R

and condition (i) in Definition 3.2.3 is satisfied. Now consider any (xkτ , xq) ∈ R.

Condition (ii) in Definition 3.2.3 is satisfied by the definition of R. Let us now

show that condition (iii) in Definition 3.2.3 holds. Consider any uq ∈ Uq. Choose

the input υkτ = uq and consider the unique x′kτ = ξxkτυkτ (kτ) in Skτ (Σ). Using

δ-ISS assumption for Σ, we bound the distance between x′kτ and ξxquq(kτ) as:

‖x′kτ − ξxquq(kτ)‖ ≤ β (‖xkτ − xq‖, kτ) ≤ β(ε, kτ). (3.3.9)

Using the definition of Sq(Σ), the inequalities (3.3.3), (3.3.9), and the triangle

inequality, we obtain:

‖x′kτ − x′q‖ ≤‖x′kτ − ξxquq(kτ) + ξxquq(kτ)− x′q‖

≤‖x′kτ − ξxquq(kτ)‖+ ‖ξxquq(kτ)− x′q‖

≤β(ε, kτ) + η/2 ≤ ε.

Therefore, we conclude that (x′kτ , x
′
q) ∈ R and condition (iii) in Definition 3.2.3

holds.

Remark 3.3.2. Although we assume the set U is infinite, Theorem 3.3.1 still

holds when the set U is finite, with the following modifications. First, the system

Σ is required to satisfy the property (2.3.4) for υ = υ′. Second, take Uq =
∏k

i=1 U

in the definition of Sq(Σ). Finally, in the condition (3.3.3), set µ = 0.
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A concern that arises when using Sq(Σ) is the inter-samples behavior: can a

specification be violated for t ∈]0, kτ [ even though it is satisfied at t = 0 and

t = kτ? This concern arises already in existing approaches to compute discrete

abstractions [PGT08, PT09, GPT09] (setting k = 1).

In the absence of any bounds on inter-samples behaviors, the results of con-

troller synthesis on Sq(Σ) can be interpreted in the following way. If there is no

controller satisfying a safety or co-Büchi specification on Sq(Σ), respectively, then

we can conclude that there is no controller satisfying the same safety or co-Büchi

specification on Σ, respectively. Dually, if there is a controller satisfying a reacha-

bility or Büchi specification on Sq(Σ), respectively, then we can conclude that the

refinement of that controller satisfies the same reachability or Büchi specification

on Σ, respectively.

In practice, the parameter τ is chosen to be sufficiently small, and if k ∈ N is

also small, the specification is directly verified against Sq(Σ) ignoring inter-samples

behaviors. If it is important to include the effects of inter-samples behaviors, e.g.,

when τ or k are large, there is a naive way to solve the inter-samples behaviors,

especially in terms of synthesizing a controller. In the process of constructing

abstract transition system Sq(Σ), every transition can be labeled not only with

the input but also with the sequence of the states visited at times τ, 2τ, . . . , (k−1)τ .

Now, one can find a symbolic controller for the constructed abstract transition

system with the knowledge of what is happening in the inert-samples. By doing

this, we shrink the inter-samples behaviors in only one sample time ]0, τ [.

Furthermore, one can over-approximate the reachable states between two sam-

ple points using techniques incorporating zonotopes [Gir05, Tab09] or support

functions [GG10, FGD+11]. We illustrate the bounding technique using zono-

topes. A transition xq
uq

q
- x′q in Sq(Σ) implies the existence of a trajectory ξxquq

of Σ satisfying ‖ξxquq(kτ) − x′q‖ ≤ η/2. We can thus enclose xq in a zonotope

Z1, enclose Bη/2(x′q) in a different zonotope Z2, and use results in [Gir05] (see
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also Proposition 7.31 in [Tab09]) for a given uq ∈ Uq to obtain another zonotope

Zkτ (xq, uq, x
′
q) containing all the states ξxquq(t) for t ∈ [0, kτ ].

Fix an ε and q such that Sq(Σ) ∼=ε
S Skτ (Σ). Let Z be the smallest zonotope

enclosing Z1 and Z2. Let ε0(xq, uq, x
′
q) be an upper bound on the Hausdorff

distance between Z and Zkτ (xq, uq, x
′
q), and let ε0 be the supremum over all choices

of xq
uq

q
- x′q. Then, if Sq(Σ) ∼=ε−ε0

S Skτ (Σ), then we know that any trajectory of

Sq(Σ) is at most ε away from a trajectory of S(Σ). If ε0 > ε, then one needs to

reduce the original precision ε and compute a new q, and iterate. This represents

the tradeoff between choosing larger k’s and bounding the deviations of inter-

samples behaviors: choosing a larger k makes satisfying (3.3.3) easier, but can

make ε0 larger.

Remark 3.3.3. For linear control systems in (2.3.5) and safety (or co-Büchi)

specifications, we can compute bounds on inter-samples behaviors in the follow-

ing way. Assume W ∈ Rn is a compact and convex polyhedron with h vertices

x1, . . . , xh. Assume Σ is a globally asymptotically stable linear control system, de-

fined in (2.3.5) and Sq(Σ) is its symbolic abstraction. Assume there exists a sym-

bolic controller on Sq(Σ) satisfying3 2W . What can we say about the existence of

a controller on Sτ (Σ)? It can be readily verified that there exists a controller sat-

isfying 2Ŵ on Sτ (Σ), where Ŵ is the polyhedron with vertices x̂1, . . . , x̂k, defined

by:

x̂i = eAl
∗τxi + A−1

(
eAτ − In

) [
eA(l∗−1)τBu∗1 + . . .+ eAτBu∗l∗−1 +Bu∗l∗

]
, (3.3.10)

where l∗ and u∗ are computed by:

(l∗, u∗1, . . . , u
∗
l∗) = arg max

l=1,...,k−1
min

u1,...,ul∈U
‖x̃i‖W , (3.3.11)

where the symbol ‖·‖W denotes the point-to-set distance, namely, ‖x‖W = minw∈W ‖x−

w‖, and

x̃i = eAlτxi + A−1
(
eAτ − In

) [
eA(l−1)τBu1 + . . .+ eAτBul−1 +Bul

]
. (3.3.12)

3Note that the semantics of LTL would be defined over the output behaviors of Sq(Σ).
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If Ŵ ⊆ W , then no new states are introduced through inter-samples behaviors. A

similar analysis can be performed for co-Büchi objectives.

3.3.1.1 Comparison with previous techniques

We now compare our result (Theorem 3.3.1) with existing results on computing

ε-approximate bisimilar discrete abstractions for δ-ISS digital control systems.

The construction in Pola, Girard, and Tabuada [PGT08] essentially fixes k =

1. That is, it computes the metric system Sτ (Σ) and shows that Sq(Σ) is ε-

approximate bisimilar to it if µ ≤ span(U) and β(ε, τ) + γ(µ) + η/2 ≤ ε. This

inequality may not hold for a choice of τ and in that case, the technique fails to

construct an ε-approximate bisimilar abstraction. In contrast, we are guaranteed

that for every given ε and τ , we can choose parameters η, µ, and k such that

Sq(Σ) is ε-approximate bisimilar to Skτ (Σ).

Next, we compare with the construction in Girard, Pola, and Tabuada [GPT09].

First, we need the notion of δ-ISS Lyapunov functions, explained in more details

in Chapter 4.

Definition 3.3.4. [Ang02] Fix a control system Σ. A smooth function V : Rn ×

Rn → R+
0 is called a δ-ISS Lyapunov function for Σ if there exist K∞ functions

α, α, and σ, and a positive real κ ∈ R+ such that:

(i) for any x, x′ ∈ Rn,

α(‖x− x′‖) ≤ V (x, x′) ≤ α(‖x− x′‖);

(ii) for any x, x′ ∈ Rn and for any u, u′ ∈ U,

∂V
∂x
f(x, u) + ∂V

∂x′
f(x′, u′) ≤ −κV (x, x′) + σ(‖u− u′‖).

The results in [GPT09] additionally assume:

|V (x, y)− V (x, z)| ≤ γ̂(‖y − z‖), (3.3.13)
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for any x, y, z ∈ Rn, and some K∞ function γ̂. As explained in [GPT09], this

assumption is not restrictive provided V is smooth and we are interested in the

dynamics of Σ on a compact subset of Rn, which is often the case in practice. The

main result of [GPT09] is as follows.

Theorem 3.3.5. [GPT09] Let Σ be a δ-ISS digital control system admitting a

δ-ISS Lyapunov function V . For any ε ∈ R+ and parameters q = (η, µ, 1), we

have Sq(Σ) ∼=ε
S Sτ (Σ) if µ ≤ span(U) and

η/2 ≤ min

{
γ̂−1

((
1− e−κτ

)
α(ε)− 1

κ
σ(µ)

)
, α−1 (α(ε))

}
, (3.3.14)

For a given sampling time τ ∈ R+, there always exist η, µ ∈ R+ satisfying

the condition (3.3.14). However, it can be readily verified that if the sampling

time τ is very small, the right hand side of the inequality (3.3.14) is very small

as well. Therefore, the upper bound on η will be very small, resulting in a large

symbolic abstraction. On the other hand, we can always choose k ∈ N in (3.3.3)

appropriately, to control the size of the symbolic model, justifying advantage of

our proposed approach in comparison with the approach in [GPT09]. In Sec-

tion 3.4, we demonstrate experimentally that our approach can result in discrete

abstractions with orders of magnitude fewer states than the abstractions using

Theorem 3.3.5.

3.3.2 Second result

Here, we show that a δ-FC digital control system, suitably restricted to a compact

set, admits a finite abstraction.

We consider a δ-FC digital control system Σ = (Rn,U,Uτ , f), and a triple q =

(η, µ, θ) of quantization parameters, where η ∈ R+ is the state space quantization,

µ ∈ R+ is the input set quantization, and θ ∈ R+ is a design parameter. Given Σ
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and q, define the system:

Sq(Σ) = (Xq, Uq, q
- , Yq, Hq), (3.3.15)

consisting of:

• Xq = [Rn]η;

• Uq = [U]µ;

• xq
uq

q
- x′q if ‖ξxquq(τ)− x′q‖ ≤ β(θ, τ) + γ (µ, τ) + η

2
;

• Yq = Rn;

• Hq = ı : Xq ↪→ Yq,

where β and γ are the functions appearing in (2.4.1). In the definition of the

transition relation, and in the remainder of the chapter, we abuse notation by

identifying uq with the constant input curve with domain [0, τ [ and value uq.

The transition relation of Sq(Σ) is well defined in the sense that for every

xq ∈ Xq and every uq ∈ Uq there always exists x′q ∈ Xq such that xq
uq

q
- x′q. This

can be seen by noting that by definition of Xq, for any x ∈ Rn there always exists

a state x′q ∈ Xq such that ‖x − x′q‖ ≤ η/2. Hence, for x = ξxquq(τ) there always

exists a state x′q ∈ Xq satisfying ‖ξxquq(τ)− x′q‖ ≤
η
2
≤ β(θ, τ) + γ (µ, τ) + η

2
.

We stress that while system Sτ (Σ) is not countable, system Sq(Σ) is so and it

becomes finite when the state set of the control system Σ is restricted to a compact

set. We can now state one of the main results of this chapter which relates δ-FC

to existence of symbolic models.

Theorem 3.3.6. Let Σ = (Rn,U,Uτ , f) be a δ-FC digital control system. For any

desired precision ε ∈ R+, and any triple q = (η, µ, θ) of quantization parameters

satisfying µ ≤ span(U) and η ≤ 2ε ≤ 2θ, we have Sq(Σ) �εAS Sτ (Σ) �εS Sq(Σ).
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Proof: We start by proving Sτ (Σ) �εS Sq(Σ). Consider the relation R ⊆

Xτ×Xq defined by (xτ , xq) ∈ R if and only if ‖Hτ (xτ )−Hq(xq)‖ = ‖xτ−xq‖ ≤ ε.

Since Xτ ⊆
⋃
p∈[Rn]η

Bη/2(p), for every xτ ∈ Xτ there exists xq ∈ Xq such that:

‖xτ − xq‖ ≤
η

2
≤ ε. (3.3.16)

Hence, (xτ , xq) ∈ R and condition (i) in Definition 3.2.3 is satisfied. Now consider

any (xτ , xq) ∈ R. Condition (ii) in Definition 3.2.3 is satisfied by the definition of

R. Let us now show that condition (iii) in Definition 3.2.3 holds.

Consider any υτ ∈ Uτ , defined on [0, τ [. Choose an input uq ∈ Uq satisfying:

‖υτ − uq‖∞ = ‖υτ (0)− uq(0)‖ ≤ µ. (3.3.17)

Note that the existence of such uq is guaranteed by the special form of U and by

the inequality µ ≤ span(U) which guarantees that U ⊆
⋃
p∈[U]µ

Bµ(p). Consider

the unique transition xτ
υτ

τ
- x′τ = ξxτυτ (τ) in Sτ (Σ). It follows from the δ-FC

assumption that the distance between x′τ and ξxquq(τ) is bounded as:

‖x′τ − ξxquq(τ)‖ ≤ β(ε, τ) + γ (µ, τ) . (3.3.18)

Since Xτ ⊆
⋃
p∈[Rn]η

Bη/2(p), there exists x′q ∈ Xq such that:

‖x′τ − x′q‖ ≤
η

2
. (3.3.19)

Using the inequalities ε ≤ θ, (3.3.18), (3.3.19), and the triangle inequality, we

obtain:

‖ξxquq(τ)− x′q‖ = ‖ξxquq(τ)− x′τ + x′τ − x′q‖ ≤ ‖ξxquq(τ)− x′τ‖+ ‖x′τ − x′q‖

≤ β(ε, τ) + γ (µ, τ) +
η

2
≤ β(θ, τ) + γ (µ, τ) +

η

2
,

which implies the existence of xq
uq

q
- x′q in Sq(Σ) by the definition of Sq(Σ).

Therefore, from inequality (3.3.19) and η
2
≤ ε, we conclude (x′τ , x

′
q) ∈ R and

condition (iii) in Definition 3.2.3 holds.
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Now we prove Sq(Σ) �εAS Sτ (Σ). Consider the relation R ⊆ Xτ ×Xq. For

every xq ∈ Xq, by choosing xτ = xq, we have (xτ , xq) ∈ R and condition (i) in

Definition 3.2.5 is satisfied. Now consider any (xτ , xq) ∈ R. Condition (ii) in

Definition 3.2.5 is satisfied by the definition of R. Let us now show that condition

(iii) in Definition 3.2.5 holds. Consider any uq ∈ Uq. Choose the input υτ = uq

and consider the unique x′τ = ξxτυτ (τ) ∈ Postυτ (xτ ) in Sτ (Σ). From the δ-FC

assumption, the distance between x′τ and ξxquq(τ) is bounded as:

‖x′τ − ξxquq(τ)‖ ≤ β(ε, τ). (3.3.20)

Since Xτ ⊆
⋃
p∈[Rn]η

Bη/2(p), there exists x′q ∈ Xq such that:

‖x′τ − x′q‖ ≤
η

2
. (3.3.21)

Using the inequalities, ε ≤ θ, (3.3.20), (3.3.21), and the triangle inequality, we

obtain:

‖ξxquq(τ)− x′q‖ = ‖ξxquq(τ)− x′τ + x′τ − x′q‖

≤ ‖ξxquq(τ)− x′τ‖+ ‖x′τ − x′q‖ ≤ β(ε, τ) +
η

2

≤ β(θ, τ) + γ (µ, τ) +
η

2
,

which implies the existence of xq
uq

q
- x′q in Sq(Σ) by definition of Sq(Σ). There-

fore, from inequality (3.3.21) and η
2
≤ ε, we can conclude that (x′τ , x

′
q) ∈ R and

condition (iii) in Definition 3.2.5 holds, which completes the proof.

Remark 3.3.7. Although the set U is infinite, the results in Theorem 3.3.6 still

hold when the set U is finite with the following modifications: the system Σ is

required to satisfy the property (2.4.1) for υ = υ′ and in the definition of Sq(Σ)

in (3.3.15), Uq = U and γ(µ, τ) = 0.

Remark 3.3.8. The transition relation defined in (3.3.15) can also be written as:

xq
uq

q
- x′q if B η

2
(x′q) ∩ Bβ(θ,τ)+γ(µ,τ)(ξxquq(τ)) 6= ∅. (3.3.22)
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This shows that we place a transition from xq to any point x′q for which the ball

B η
2
(x′q) intersects the over-approximation of Postuq (Bε(xq)) given by

Bβ(θ,τ)+γ(µ,τ)(ξxquq(τ)). It is not difficult to see that the conclusion of Theorem

3.3.6 remains valid if we use any over-approximation of the set Postuq(Bε(xq)).

The result in Theorem 3.3.6 is only a sufficient result in the sense that if one

fails to find a controller enforcing the desired specification on the symbolic model

Sq(Σ), it can not be concluded the non-existence of a controller enforcing the

desired specification on Sτ (Σ). On the other hand, if Sτ (Σ) is related to Sq(Σ) by

an alternating approximate bisimulation, not finding a controller for Sq(Σ) would

imply the non-existence of a controller for Sτ (Σ). The existence of a countable

approximately bisimilar system to Sτ (Σ) was shown in [PGT08] under a δ-ISS

assumption. It is therefore natural to ask the extent to which the results in

[PGT08] are recovered when δ-FC is replaced by δ-ISS. The next result gives an

answer to this question.

Theorem 3.3.9. Let Σ = (Rn,U,Uτ , f) be a δ-FC digital control system. For any

desired precision ε ∈ R+, and any triple q = (η, µ, θ) of quantization parameters

satisfying µ ≤ span(U), η ≤ 2ε ≤ 2θ, and

β(ε, τ) + 2γ (µ, τ) + β(θ, τ) +
η

2
≤ ε, (3.3.23)

we have Sτ (Σ) ∼=ε
AS Sq(Σ).

Although the condition η ≤ 2ε follows from (3.3.23), we decided to include it

in the statement of Theorem 3.3.9 so that its assumptions can be easily compared

with the assumptions in Theorem 3.3.6. Moreover, under a δ-ISS assumption

and if τ is sufficiently large, we can always find a quantization vector q satisfy-

ing (3.3.23).

Proof: We prove Sτ (Σ) �εAS Sq(Σ). Consider the relation R ⊆ Xτ ×Xq

defined by (xτ , xq) ∈ R if and only if

‖Hτ (xτ )−Hq(xq)‖ = ‖xτ − xq‖ ≤ ε.
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Since Xτ ⊆
⋃
q∈[Rn]η

Bη/2(q), for every xτ ∈ Xτ there exists xq ∈ Xq such that:

‖xτ − xq‖ ≤
η

2
≤ ε. (3.3.24)

Hence, (xτ , xq) ∈ R and condition (i) in Definition 3.2.5 is satisfied. Consider now

any (xτ , xq) ∈ R. Condition (ii) in Definition 3.2.5 is satisfied by the definition of

R. Let us now show that condition (iii) in Definition 3.2.5 holds.

Consider any υτ ∈ Uτ , defined on [0, τ [, and choose an input uq ∈ Uq satisfying:

‖υτ − uq‖∞ = ‖υτ (0)− uq(0)‖ ≤ µ. (3.3.25)

Note that existence of such uq is guaranteed by the special form of U and by the

inequality µ ≤ span(U) which guarantees that U ⊆
⋃
p∈[U]µ

Bµ(p). Consider the

unique x′τ = ξxτυτ (τ) ∈ Postυτ (xτ ) in Sτ (Σ). It follows from the δ-FC assumption

that the distance between x′τ and ξxquq(τ) is bounded as:

‖x′τ − ξxquq(τ)‖ ≤ β(ε, τ) + γ (µ, τ) . (3.3.26)

For all x′q ∈ Postuq(xq), and based on the definition of the symbolic model, we

have:

‖ξxquq(τ)− x′q‖ ≤ β(θ, τ) + γ (µ, τ) +
η

2
. (3.3.27)

Using the inequalities (3.3.23), (3.3.26), (3.3.27), and the triangle inequality, we

obtain:

‖x′τ − x′q‖ = ‖x′τ − ξxquq(τ) + ξxquq(τ)− x′q‖

≤ ‖x′τ − ξxquq(τ)‖+ ‖ξxquq(τ)− x′q‖

≤ β(ε, τ) + γ (µ, τ) + β(θ, τ) + γ (µ, τ) +
η

2
≤ ε.

Hence (x′τ , x
′
q) ∈ R and condition (iii) in Definition 3.2.5 holds and we have

Sτ (Σ) �εAS Sq(Σ).

The proof of the other direction: Sq(Σ) �εAS Sτ (Σ), follows from Theorem

3.3.6.

34



Since the relationships established in Theorem 3.3.9 in this chapter and The-

orem 5.1 in [PGT08] are different: approximate bisimulation in [PGT08] and

alternating approximate bisimulation in this chapter, and since the construction

in (3.3.15) applies to nondeterministic systems but the construction provided in

[PGT08] applies to deterministic systems, one can not compare these two theo-

rems directly. However, we can verify that the assumptions in Theorem 3.3.9 are

stronger in the sense that any quadruple (τ, η, µ, θ) satisfying (3.3.23) also satisfies

the condition β(ε, τ)+γ(µ)+ η
2
≤ ε in Theorem 5.1 in [PGT08] while the converse

is not true.

The symbolic model Sq(Σ) in (3.3.15) has a countably infinite set of states. In

order to construct a finite symbolic model we note that in practical applications

the physical variables are restricted to a compact set. Velocities, temperatures,

pressures, and other physical quantities cannot become arbitrarily large without

violating the operational envelop defined by the control problem being solved. By

making use of this fact, we can directly compute a finite abstraction SqD(Σ) of

Sτ (Σ) capturing the behavior of Sτ (Σ) within a given set D, which is assumed to

be a finite union of boxes containing the origin. By having the extra condition

η ≤ span(D), we define the system

SqD(Σ) = (XqD, UqD, qD
- , YqD, HqD),

where

• XqD = [D]η;

• UqD = Uq

• xqD
uqD

qD
- x′qD if ‖ξxqDuqD(τ) − x′qD‖ ≤ β(θ, τ) + γ (µ, τ) + η and any x′q ∈

PostuqD(xqD) in Sq(Σ) belongs to XqD;

• YqD = Yq;
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• HqD = Hq.

Note that SqD(Σ) is a finite system because D is a compact set. Moreover,

the relation R ⊆ XqD × Xq defined by (xqD, xq) ∈ R if xqD = xq is an alter-

nating 0-approximate simulation relation from SqD(Σ) to Sq(Σ). By combining

SqD(Σ) �0
AS Sq(Σ) with Sq(Σ) �εAS Sτ (Σ) we conclude4 SqD(Σ) �εAS Sτ (Σ).

Hence, any controller synthesized for the finite model SqD(Σ) can be refined to

a controller enforcing the same specification on Sτ (Σ). Detailed information on

how to construct refinements can be found in [Tab09].

3.4 Examples

We now experimentally demonstrate the effectiveness of our contributions. In the

examples below, all constants and variables use SI units. Moreover, the com-

putation of the abstractions Sq(Σ) was performed using the tool Pessoa [Pes09]

on a laptop with CPU Intel Core 2 Duo @ 2.4GHz. Controllers enforcing the

specifications were found by using standard algorithms from game theory, see e.g.

[MPS95, Tab09], as implemented in Pessoa. We assume that control inputs are

piecewise constant of duration τ

In the examples, we assume that Uτ is finite. In the first three examples, we

assume that Uτ contains curves taking values in [U]0.5 and in the last example,

taking values in [U]0.3. Hence, as explained in Remarks 3.3.2 and 3.3.7, µ = 0

in the conditions (3.3.3) and (3.3.14) and in the definition of Sq(Σ) in (3.3.15),

γ(µ, τ) = 0.

Table 3.1 summarizes the experimental results for the first three examples.

4It is shown in [Tab09] that the composition of two alternating simulation relations is still
an alternating simulation relation.
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Parameters of Sq(Σ) Time

Control τ ε µ=0.5

Systems [PGT08] [GPT09] Our approach [PGT08] [GPT09] Our approach

η η (η, k)

DC motor 0.02 1 N/A 0.012 (0.5, 2) N/A ∞ 1.42s

Robot 0.002 0.075 0.0027 0.0022 (0.01, 4) ∞ ∞ 45.29s

Pendulum 0.02 0.25 N/A 0.0007 (0.1, 2) N/A ∞ 33s

Table 3.1: Parameters of Sq(Σ) and overall required time for constructing Sq(Σ)

and synthesizing controllers. The notation N/A means not applicable. We use

the notation ∞ to indicate that the size of Sq(Σ) is too large for Pessoa to finish

constructing the abstraction.
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Figure 3.1: Upper and central panels: evolution of ξ1 and ξ2 with initial condition

(0, 0). Lower panel: input signal.

3.4.1 DC motor

Model: Consider a linear DC motor (from [CMU]) described by:

Σ :

 ξ̇1 = − b
J
ξ1 + K

J
ξ2,

ξ̇2 = −K
L
ξ1 − R

L
ξ2 + 1

L
υ,

(3.4.1)

where ξ1 is the angular velocity of the motor, ξ2 is the current through the inductor,

υ is the source voltage, b = 10−4 is the damping ratio of the mechanical system,

J = 10−4 is the moment of inertia of the rotor, K = 5× 10−2 is the electromotive

force constant, L = 2× 10−3 is the electric inductance, and R = 1 is the electric
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resistance. Using Remark 2.3.3, it is readily seen that Σ is δ-ISS.

Abstraction: We assume that U = [−1, 1]. We work on the subsetD = [−10, 10]×

[−10, 10] of the state space of Σ. For a sampling time τ = 0.02, the function β

in (2.3.4) is given by β(ε, τ) = 1.26ε. Hence, the results in [PGT08] cannot be

applied because the condition (3.3.3) of Theorem 3.3.1 cannot be fulfilled when

k = 1. On the other hand, by choosing k = 2, we have β(ε, kτ) = 0.73ε implying

that the condition (3.3.3) of Theorem 3.3.1 can be fulfilled. For a precision ε = 1,

we construct a symbolic model Sq(Σ). The parameters of Sq(Σ) based on the

results in this paper as well as the construction in [GPT09] are given in Table 3.1.

The proposed state space quantization parameter in [GPT09] is roughly 42 times

smaller than our quantization parameter. Since Σ is a 2 dimensional system, the

size of our abstraction is 422 times smaller than the one in [GPT09].

Example control problem: Consider the objective to design a controller forcing the

trajectories of Σ to reach and stay within W = [9, 10]× [−1, 1] thereafter while

always remaining within Z = [−10, 10] × [−1, 1], that is, the LTL specification

32W∧2Z. Using the result in Remark 3.3.3, we compute Ẑ and Ŵ and note that

in this case, Ẑ ⊆ Z and Ŵ ⊆ W . Hence, the existence of a symbolic controller

on Sq(Σ) satisfying 32W ∧ 2Z implies the existence of a controller satisfying

32W ∧ 2Z on Σ. In Figure 3.1, we show the closed-loop trajectory stemming

from the initial condition (0, 0) as well as the evolution of the input signal. It is

readily seen that the specifications are satisfied in the sense that trajectories of Σ

reach and stay within W ε = [9− ε, 10]× [−1− ε, 1 + ε] thereafter while always

remaining within Zε = [−10, 10]× [−1− ε, 1 + ε].
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Figure 3.2: Evolution of the robot and the input signals with initial condition

(0.9, 0.9).

3.4.2 Motion planing

Model: Consider a linear model of a robot described by:

Σ :

 ξ̇1 = −10ξ1 − ξ2 + 10υ1,

ξ̇2 = −ξ1 − 10ξ2 + 10υ2.
(3.4.2)

The position of the robot is given by the pair (ξ1, ξ2). The pair (υ1, υ2) are the

control inputs, expressing the velocity of the wheels. Using Remark 2.3.3, it is

readily seen that Σ is δ-ISS.

Abstraction: We assume that (υ1, υ2) ∈ U = [−1, 1] × [−1, 1]. We work on the

subset D = [−1, 1]× [−1, 1] of the state space of Σ. For a sampling time τ =

0.002, the function β in (2.3.4) is given by β(ε, τ) = 0.982ε. Hence, the results in

[PGT08] can be applied. On the other hand, by choosing k = 4, we have β(ε, kτ) =
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0.93ε implying that the condition (3.3.3) of Theorem 3.3.1 can also be fulfilled.

For a precision ε = 0.075, we construct a symbolic model Sq(Σ). The parameters

of Sq(Σ) based on the results in this paper and those from [PGT08, GPT09] are

given in Table 3.1. The state space quantization parameters in [PGT08, GPT09]

are roughly four times smaller than our η. Therefore, the size of our abstraction

is roughly 42 times smaller than the ones in [PGT08, GPT09].

Example control problem: Consider the problem of designing a controller navi-

gating the robot to reach the target set W = [−1, − 0.9]× [−0.1, 0.1], indicated

with a target box in the far left hand side in Figure 3.2, while avoiding the ob-

stacles, indicated as rectangular boxes in Figure 3.2, and then remain indefinitely

inside W . If we denote by φ and ψ the predicates representing the target and ob-

stacles, respectively, this specification can also be expressed by the LTL formula

32φ ∧ 2¬ψ. If we express the non-obstacle area in Figure 3.2 as the union of l

polyhedra Zi, for i = 1, . . . , l, then using the result in Remark 3.3.3, we compute

Ẑi and Ŵ , and note that for this example, Ẑi ⊆ Zi, for each i = 1, . . . , l, and

Ŵ ⊆ W . Hence, a symbolic controller on Sq(Σ) satisfying 32φ ∧ 2¬ψ implies

there exists a controller satisfying the specification on Σ. In Figure 3.2, we show

the closed-loop trajectory stemming from the initial condition (0.9, 0.9) and the

evolution of the input signals. It is readily seen that the specification is satisfied.

3.4.3 Pendulum with resource constraints

Model: Consider a nonlinear model of a pendulum on a cart (from [PGT08])

described by:

Σ :

 ξ̇1 = ξ2,

ξ̇2 = −g
l

sin (ξ1)− h
m
ξ2 + υ,

(3.4.3)

where ξ1 and ξ2 are the angular position and velocity of the point mass, υ is the

torque applied to the cart, g = 9.8 is acceleration due to gravity, l = 5 is the

length of the rod, m = 0.5 is the mass, and h = 3 is the coefficient of friction. As
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shown in [PGT08], Σ is δ-ISS.

Abstraction: We assume that U = [−1.5, 1.5]. We work on the subset D =

[−1, 1]× [−1, 1] of the state space of Σ. As shown in [PGT08], the function β in

(2.3.4) is given by β(ε, τ) = 6.17e−2.08τε, so for a sampling time τ = 0.5, we have

β(ε, τ) = 2.18ε. Hence, the results in [PGT08] cannot be applied because the

condition (3.3.3) of Theorem 3.3.1 cannot be fulfilled when k = 1. On the other

hand, by choosing k = 2, we have β(ε, kτ) = 0.77ε, so the condition (3.3.3) of

Theorem 3.3.1 is fulfilled. For a precision ε = 0.25, we construct a symbolic model

Sq(Σ). The parameters of Sq(Σ) based on the results in this paper and [GPT09]

are given in Table 3.1. The state space quantization parameter in [GPT09] is

roughly 147 times smaller than our quantization parameter. Therefore, the size

of the symbolic model computed by our algorithm is roughly 1472 ∼ 2×104 times

smaller than the one in [GPT09].

Example control problem: Suppose our objective is to design a controller forcing

the trajectories of the system to reach the target set W = [−0.7, − 0.6]× [−1, 1]

and to remain indefinitely inside W . Furthermore, to add a discrete component to

the problem, we assume that the controller is implemented on a microprocessor,

executing other tasks in addition to the control task. We consider a schedule with

epochs of four time slots in which the first two slots are allocated to the control

task and the rest of them to other tasks. The expression time slot refer to a time

interval of the form [k′τ, (k′ + 1)τ [ with k′ ∈ N and where τ is the sampling time.

Therefore, the microprocessor schedule is given by:

|aauu|aauu|aauu|aauu|aauu|aauu|aauu| . . . ,

where a denotes a slot available for the control task and u denotes a slot allotted

to other tasks. The symbol | separates each epoch of four time slots. The schedu-

lability constraint on the microprocessor can be represented by the finite system

in Figure 3.3. Initial states of the finite system are distinguished by being the
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Figure 3.3: Finite system describing the schedulability constraints. The lower

part of the states are labeled with the outputs a and u denoting availability and

unavailability of the microprocessor, respectively.
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Figure 3.4: Upper and central panels: evolution of ξ1 and ξ2 with initial condition

(−0.9, − 1). Lower panel: input signal.

target of a sourceless arrow.

In Figure 3.4, we show the closed-loop trajectory stemming from the initial

condition (−0.9, − 1), and the evolution of the input signal, where the finite

system initialized from state q3.

3.4.4 Vehicle navigation

We borrowed this example from [AM08]. In this model, the motion of the front

and rear pairs of wheels are approximated by a single front wheel and a single

rear wheel. We consider the following model for the vehicle:
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δα
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Figure 3.5: Vehicle top view.

Σ :


ẋ = v0

cos(α+θ)
cos(α) ,

ẏ = v0
sin(α+θ)

cos(α) ,

θ̇ = v0
b tan(δ),

(3.4.4)

where α = arctan
(
a tan(δ)

b

)
. The position of the vehicle is given by the pair

(x, y), and the orientation of the vehicle is given by θ. The pair (v0, δ) are the

control inputs, expressing the velocity of the rear wheel and the steering angle,

respectively. It is readily seen that Σ is not δ-ISS. Hence, the results in the first

part of this chapter and in [PGT08, PT09, GPT09] cannot be applied to this

system. We assume that a = 0.5, b = 1, and (v0, δ) ∈ U = [−1, 1]× [−1, 1]. Since

control inputs are piecewise constant of duration τ , it can be readily checked that

for any t ∈ [0, τ ], we get:

x(t) =
b
[

sin
(
α+ v0

b tan(δ)t+ θ(0)
)
− sin(α+ θ(0))

]
cos(α) tan(δ)

+ x(0),

y(t) =
−b
[

cos
(
α+ v0

b tan(δ)t+ θ(0)
)
− cos(α+ θ(0))

]
cos(α) tan(δ)

+ y(0),

θ(t) =
v0

b
tan(δ)t+ θ(0),

if tan(δ) 6= 0, and x(t) = v0 cos(θ(0))t+ x(0), y(t) = v0 sin(θ(0))t+ y(0), and

θ(t) = θ(0), if tan(δ) = 0. It can be verified that for the given U, the function β is

given by β(r, t) = (1+1.267t)r. We work on the subsetD = [0, 10]× [0, 10]× [−π, π]

of the state space of Σ. Our objective is to design a controller navigating the ve-

hicle to reach the target set W = [9, 9.5]× [0, 0.5], indicated with a red box in
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Figure 3.6: Evolution of the vehicle with initial condition (0.4, 0.4, 0).

Figure 3.6, while avoiding the obstacles, indicated as blue boxes in Figure 3.6, and

remain indefinitely inside W . For a precision ε = 0.2, we construct a symbolic

model SqD(Σ) by choosing θ = 0.2, η = 0.2, and τ = 0.3 so that the assump-

tions of Theorem 3.3.6 are satisfied. The resulting number of states, inputs, and

transitions were 91035, 49, and 34020088, respectively. The consumed CPU time

for computing the abstraction and synthesizing the controller were 13509.38 and

535.987 seconds, respectively. In Figure 3.6, we show the closed-loop trajectory

stemming from the initial condition (0.4, 0.4, 0). It is readily seen that the spec-

ification is satisfied. In Figure 3.7, we show the evolution of the input signals.

3.5 Discussion

In the first part of this chapter, we presented a construction of symbolic models

for δ-ISS digital control systems without any restriction on the sampling time and

without using Lyapunov functions. The preceding experiments demonstrate that

our construction improves upon previous techniques by providing approximate

transition systems that are orders of magnitude smaller than previous construc-

tions, enabling automatic controller synthesis for systems that were beyond the
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Figure 3.7: Evolution of the input signals.

capacity of current tools. In the second part of the chapter we showed that any

δ-FC digital control system, suitably restricted to a compact subset of states, ad-

mits a finite (not necessarily bisimilar) symbolic model. Our results improve upon

the existing work by being applicable to a large class of control systems and by

not requiring the exact computation of reachable sets or the convexity of reach-

able sets. The symbolic models constructed according to the results presented

in this chapter can be used to synthesize controllers enforcing complex specifica-

tions given in several different formalisms such as temporal logics or automata on

infinite strings. The synthesis of such controllers is well understood and can be

performed using simple fixed-point computations as described in [Tab09].
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CHAPTER 4

Incremental properties of nonlinear control

systems

4.1 Introduction

Stability is a property of dynamical systems comparing trajectories with an equi-

librium point or with a particular trajectory. Incremental stability is a stronger

property comparing arbitrary trajectories with themselves, rather than with an

equilibrium point or with a particular trajectory. It is well-known that for lin-

ear systems incremental stability is equivalent to global asymptotic stability. For

nonlinear systems, incremental stability is a stronger property requiring separate

concepts and techniques for its study.

The notion of incremental stability has a long history that can be traced back

to the work of Zames in the 60’s, as described in [Zam96]. In [Zam63], incremental

stability is introduced and studied under the input-output setting where control

systems are regarded as operators mapping input signals to output signals. In-

cremental stability then arises naturally by considering the Lipschitz constant of

the operator. A modern treatment of incremental stability, based on Lyapunov

methods, appeared only recently in [Ang02] where incremental global asymptotic

stability (δ-GAS) and incremental input-to-state stability (δ-ISS) were defined in

a state-space setting. The notion of δ-GAS was defined by requiring the Euclidean

distance between two arbitrary system trajectories to converge1 to zero. Lyapunov

1A suitable “small overshoot” requirement is also included in the definition.
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characterizations of δ-GAS and δ-ISS were also given in [Ang02]. There are two

other stability properties related to incremental stability that have an equally

long, if not longer, history.

The first is the notion of convergent system which, according to [PPvdWN04],

was introduced in the 60’s by B. P. Demidovich in [Dem61, Dem67]. A system is

convergent if all the system trajectories converge1 to a trajectory, bounded on the

whole time axis. Furthermore, Demidovich also introduced a sufficient condition

for a system to be convergent, called the Demidovich’s condition in [PvdWN05].

Since incremental stability requires every trajectory to converge to every other

trajectory, an incrementally stable system is also a convergent system whenever

a trajectory, bounded on the whole time axis, exists.

The second stability property is contractivity and was introduced in the con-

trol community by Lohmiller and Slotine in [LS98] although it had been studied

before in the mathematical community [Jou05]. Rather than comparing trajec-

tories, the notion of contracting system is infinitesimal and requires the decrease

of a suitable quantity, defined through a Riemannian metric, along trajectories.

The definition of contracting system can be seen as a generalization of the Demi-

dovich’s condition. Note that while the Demidovich’s condition was introduced

as a sufficient condition for a system to be convergent, its generalization in [LS98]

was directly used as the definition of contracting system.

Although both contractivity as well as convergence are coordinate indepen-

dent properties, this is no longer the case with incremental stability. In this

chapter, however, we work with a variation of incremental stability that is coor-

dinate invariant. This is achieved by no longer insisting on the distance between

trajectories being measured by the Euclidean metric.
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4.1.1 Previous work

The number of applications of incremental stability has increased in the past

years. Examples include building explicit bounds on the region of attraction in

phase-locking in the Kuramoto system [FCPL10], modeling of nonlinear analog

circuits [BML+10], robustness analysis of systems over finite alphabets [TMD08],

global synchronization in networks of cyclic feedback systems [HSSG12], con-

trol reconfiguration of piecewise affine systems with actuator and sensor faults

[RHvdWL11], intrinsic observer design [AR03], consensus problems in complex

networks [WS05], output regulation of nonlinear systems [PvdWN05], design of

frequency estimators [SK08], synchronization of coupled identical dynamical sys-

tems [RdBS09], construction of symbolic models for nonlinear control systems

[PGT08, PT09, GPT09], and the analysis of bio-molecular systems [RdB09]. Our

motivation comes from symbolic control where incremental stability was identi-

fied as a key property enabling the construction of finite bisimilar abstractions of

nonlinear control systems, as shown in Chapter 3 and in [PGT08, PT09, GPT09].

Hence, there is a growing need for design methods providing controllers enforcing

incremental stability since most of the existing design methods guarantee stability

rather than incremental stability.

Related works include controller design for convergence of Lur’e-type sys-

tems [PvdWN05, PvdWN07] and a class of piecewise affine systems [vdWP08]

through the solution of linear matrix inequalities (LMIs). In contrast, the cur-

rent work in this chapter does not require the solution of LMIs and the exis-

tence of controllers is always guaranteed for the class of systems under consid-

eration. The quest for backstepping design approaches for incremental stabil-

ity has received increasing attention recently. Recently obtained results include

backstepping design approaches rendering parametric-strict-feedback2 form sys-

2See [KKK95] for a definition.
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tems incrementally globally asymptotically stable3 using the notion of contrac-

tion metrics in [JL02, SK09, SK08]. The results in [PvdWN05] offer a backstep-

ping design approach rendering a larger class of control systems than those in

parametric-strict-feedback form input-to-state convergent, rather than incremen-

tally input-to-state stable. We will build upon these results in [PvdWN05] and

extend those in the scope of incremental stability. The notion of (input-to-state)

convergence requires existence of a trajectory which is bounded on the whole time

axis which is not the case in incremental input-to-state stability. The notion of

input-to-state convergence can not be applied to the results in Chapter 3 and

in [PGT08, GPT09, PT09], which require the global asymptotic stability of all

trajectories rather than that of to particular trajectory.

4.1.2 Contributions

Angeli [Ang02] proposed the notions of incremental Lyapunov function and incre-

mental input-to-state Lyapunov function, and used these notions to prove charac-

terizations of δ-GAS and δ-ISS. Both proposed notions of Lyapunov functions in

[Ang02] are not coordinate independent, in general. In this chapter, we propose

new notions of incremental Lyapunov functions and incremental input-to-state

Lyapunov functions that are coordinate invariant. Moreover, we use these new

notions of Lyapunov functions to characterize notions of δ∃-GAS and δ∃-ISS. Since

the proposed notions of Lyapunov functions in this chapter are coordinate invari-

ant, they potentiate the development of synthesis tools for incremental stability.

In addition to incremental Lyapunov functions, the δ∃-GAS and δ∃-ISS condi-

tions can be checked by resorting to contraction metrics. The interested reader

may consult [LS98] for more detailed information about the notion of contraction

metrics. The description of δ∃-GAS in terms of existence of a contraction metric

was given in [AR03]. In this chapter, we provide the description of δ∃-ISS in terms

3Understood in the sense of Definition 2.3.1.
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of existence of a contraction metric.

Finally, we propose a backstopping design approach providing controllers ren-

dering some classes of control systems δ∃-GAS and δ∃-ISS. Our techniques improve

upon most of the existing backstepping techniques in three directions:

1) by providing controllers enforcing not only incremental global asymptotic

stability but also incremental input-to-state stability;

2) by being applicable to larger classes of (non-smooth) control systems;

3) by providing a recursive way of constructing not only contraction metrics

but also incremental Lyapunov functions.

In the first direction, our technique extends the results in [JL02, SK09, SK08],

where only controllers enforcing incremental global asymptotic stability are de-

signed. In the second direction, our technique improves the results in [JL02, SK09,

SK08], which are only applicable to smooth parametric-strict-feedback form sys-

tems. In the third direction, our technique extends the results in [JL02, SK09,

SK08], where the authors only provide a recursive way of constructing contrac-

tion metrics, and the results in [PvdWN05], where the authors do not provide a

way to construct Lyapunov functions characterizing the input-to-state conver-

gence property induced by the controller. Note that the explicit availability

of incremental Lyapunov functions is necessary in many applications. Exam-

ples include the construction of symbolic models for nonlinear control systems

[GPT09, Gir05, CGG11], robust test generation of hybrid systems [JFA+07], the

approximation of stochastic hybrid systems [JP09], and source-code model check-

ing for nonlinear dynamical systems [KDL+08]. Note that incremental Lyapunov

functions can be used as bisimulation functions, recognized as a key tool for the

analysis in [JFA+07, JFA+07, KDL+08].
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4.2 Preliminaries

In this chapter, we denote by ‖x‖ the Euclidean norm of x, for any x ∈ Rn, rather

than using ‖x‖2.

4.2.1 Incremental Lyapunov function

We start by introducing the following definition which was inspired by the notions

of incremental global asymptotic stability (δ-GAS) Lyapunov function and incre-

mental input-to-state stability (δ-ISS) Lyapunov function presented in [Ang02].

Definition 4.2.1. Consider a control system Σ = (Rn,U,U , f) and a smooth

function V : Rn × Rn → R+
0 . Function V is called a δ∃-GAS Lyapunov function

for Σ, if there exist a metric d, K∞ functions α, α, and κ ∈ R+ such that:

(i) for any x, x′ ∈ Rn,

α(d(x, x′)) ≤ V (x, x′) ≤ α(d(x, x′));

(ii) for any x, x′ ∈ Rn and any u ∈ U,

∂V
∂x
f(x, u) + ∂V

∂x′
f(x′, u) ≤ −κV (x, x′).

Function V is called a δ∃-ISS Lyapunov function for Σ, if there exist a metric d,

K∞ functions α, α, σ, and κ ∈ R+ satisfying conditions (i) and:

(iii) for any x, x′ ∈ Rn and for any u, u′ ∈ U,

∂V
∂x
f(x, u) + ∂V

∂x′
f(x′, u′) ≤ −κV (x, x′) + σ(‖u− u′‖).

Remark 4.2.2. Condition (iii) of Definition 4.2.1 can be replaced by:

∂V

∂x
f(x, u) +

∂V

∂x′
f(x′, u′) ≤ −ρ(d(x, x′)) + σ(‖u− u′‖),

where ρ is a K∞ function. It is known that there is no loss of generality in

considering ρ(‖x−y‖) = κV (x, y), by appropriately modifying the δ-ISS Lyapunov

function V (see Lemma 11 in [PW96]).
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While δ-GAS and δ-ISS Lyapunov functions, as defined in [Ang02], require the

metric d to be the Euclidean metric, Definition 4.2.1 only requires the existence

of a metric. We note that while δ-GAS and δ-ISS Lyapunov functions are not

invariant under changes of coordinates in general, δ∃-GAS and δ∃-ISS Lyapunov

functions are.

In the next lemma, we show that δ∃-GAS and δ∃-ISS Lyapunov functions,

defined in Definition 4.2.1, are invariant under changes of coordinates.

Lemma 4.2.3. Let Σ = (Rn,U,U , f) be a control system and let φ : Rn → Rn be

a global diffeomorphism. If the function V is a δ∃-GAS (resp. δ∃-ISS) Lyapunov

function for Σ, then the function V̂ (y, y′) = V (φ−1(y), φ−1(y′)), for any y, y′ ∈ Rn,

is a δ∃-GAS (resp. δ∃-ISS) Lyapunov function for Σ′ = (Rn,U,U , φ∗f).

Proof: For simplifying the proof, we abuse the notation and use V ◦ φ−1 to

denote V (φ−1, φ−1). Inequalities (i) in Definition 4.2.1, transforms under φ to:

α
(
d
(
φ−1(y), φ−1(y′)

))
≤ V

(
φ−1(y), φ−1(y′)

)
≤ α

(
d
(
φ−1(y), φ−1(y′)

))
.

Therefore, function V ◦ φ−1 satisfies the inequalities (i) in Definition 4.2.1 by

the metric d′(y, y′) = d (φ−1(y), φ−1(y′)). Let us now show that condition (ii) in

Definition 4.2.1 holds for V ◦ φ−1. Using ∂φ−1

∂y
∂φ
∂x

(φ−1(y)) = In, we obtain:

∂ (V ◦ φ−1)

∂y
(φ∗f)(y, u) +

∂ (V ◦ φ−1)

∂y′
(φ∗f)(y′, u)

=
∂V

∂x

∣∣
x=φ−1(y)

∂φ−1

∂y
(φ∗f) (y, u) +

∂V

∂x′
∣∣
x′=φ−1(y′)

∂φ−1

∂y′
(φ∗f) (y′, u) (4.2.1)

=
∂V

∂x

∣∣
x=φ−1(y)

f
(
φ−1(y), u)

)
+
∂V

∂x′
∣∣
x′=φ−1(y′)

f
(
φ−1(y′), u)

)
≤ −κV

(
φ−1(y), φ−1(y′)

)
,

which completes the proof. Similarly, it can be shown that V ◦ φ−1 satisfies the

condition (iii) in Definition 4.2.1 for Σ′ if V satisfies it for Σ.

Now we introduce the following definition which was inspired by the notion of
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δ-ISS Lyapunov function in Definition 4.2.1, when the metric d is the Euclidean

metric.

Definition 4.2.4. Consider a control system Σ = (Rn,U,U , f) and a smooth

function V : Rn × Rn → R+
0 . Function V is called a δ-FC Lyapunov function for

Σ, if there exist K∞ functions α, α, σ, and κ ∈ R such that:

(i) for any x, x′ ∈ Rn,

α(‖x− x′‖) ≤ V (x, x′) ≤ α(‖x− x′‖);

(ii) for any x, x′ ∈ Rn and for any u, u′ ∈ U,

∂V
∂x
f(x, u) + ∂V

∂x′
f(x′, u′) ≤ κV (x, x′) + σ(‖u− u′‖).

Note that κ in the condition (ii) in Definition 4.2.4 can be both negative and

positive.

4.2.2 Variational systems

The variational system associated with a smooth control system Σ = (Rn,U,U , f),

when we only have state variations, is given by the differential equation:

d

dt
(δξ) =

∂f

∂x

∣∣∣∣
x=ξ
u=υ

δξ, (4.2.2)

for any υ ∈ U and where δξ is the variation4 of a trajectory ξ of Σ. More details

about the variational system can be found in [CS87].

Similarly, the variational system associated with a smooth control system Σ =

(Rn,U,U , f), when we have state and input variations, is given by the differential

equation:
d

dt
(δξ) =

∂f

∂x

∣∣∣∣
x=ξ
u=υ

δξ +
∂f

∂u

∣∣∣∣
x=ξ
u=υ

δυ, (4.2.3)

where δξ and δυ are variations of a state trajectory ξ and an input curve υ of Σ,

respectively.

4The variation δξ can be formally defined by considering a family of trajectories ξxυ(t, ε)
parametrized by ε ∈ R. The variation of the state is then δξ = ∂ξxυ

∂ε .
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4.2.3 Contraction (expansion) metric

The following definition is adapted from [LS98]:

Definition 4.2.5. Let Σ = (Rn,U,U , f) be a smooth control system on Rn equipped

with a Riemannian metric G. The metric G is said to be a contraction (resp. ex-

pansion) metric, with respect to states, for system Σ if there exists some λ̂ ∈ R+

(resp. λ̂ < 0) such that:

〈X,X〉F ≤ −λ̂〈X,X〉G (4.2.4)

for F (x, u) =
(
∂f
∂x

)T
G(x) +G(x)∂f

∂x
+ ∂G

∂x
f(x, u), any u ∈ U, X ∈ Rn and x ∈ Rn,

or equivalently:

XT

((
∂f

∂x

)T
G(x) +G(x)

∂f

∂x
+
∂G

∂x
f(x, u)

)
X ≤ −λ̂XTG(x)X, (4.2.5)

where the constant
∣∣∣λ̂∣∣∣ is called contraction (resp. expansion) rate.

When the metric G is constant, the condition (4.2.4) or (4.2.5), for λ̂ ∈ R+, is

known as the Demidovich’s condition [PvdWN05]. It is shown in [PvdWN05] that

such condition implies incremental stability and the convergent system property.

Note that the inequality (4.2.4) or (4.2.5) implies:

d

dt
〈δξ, δξ〉G ≤ −λ̂〈δξ, δξ〉G, (4.2.6)

when we only have state variations and δξ is the variation of a state trajectory ξ

of Σ.

The following definition is a generalization of Definition 4.2.5, when we have

state and input variations.

Definition 4.2.6. Let Σ = (Rn,U,U , f) be a smooth control system on Rn equipped

with a Riemannian metric G. The metric G is said to be a contraction (resp. ex-

pansion) metric, with respect to states and inputs, for system Σ if there exists
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some λ̂ ∈ R+ (resp. λ̂ < 0) and α ∈ R+
0 such that:

〈X,X〉F + 2

〈
∂f

∂u
Y,X

〉
G

≤ −λ̂〈X,X〉G + α〈X,X〉
1
2
G〈Y, Y 〉

1
2
Im

(4.2.7)

for F (x, u) =
(
∂f
∂x

)T
G(x) +G(x)∂f

∂x
+ ∂G

∂x
f(x, u), any X ∈ Rn, x ∈ Rn, u ∈ U, and

Y ∈ Rm, or equivalently:

XT
((

∂f
∂x

)T
G(x) +G(x)∂f

∂x
+ ∂G

∂x
f(x, u)

)
X + 2Y T

(
∂f
∂u

)T
G(x)X

≤ −λ̂XTG(x)X + α(XTG(x)X)
1
2 (Y TY )

1
2 , (4.2.8)

where the constant
∣∣∣λ̂∣∣∣ is called contraction (resp. expansion) rate.

Note that the inequality (4.2.7) or (4.2.8) implies:

d

dt
〈δξ, δξ〉G ≤ −λ̂〈δξ, δξ〉G + α〈δξ, δξ〉

1
2
G〈δυ, δυ〉

1
2
Im
, (4.2.9)

when we have state and input variations and where δξ and δυ are variations of a

state trajectory ξ and an input curve υ of Σ.

4.3 Chracterizations of incremental stability

4.3.1 Lyapunov characterizations of incremental stability

The following theorem, provided in [Ang02], characterizes δ-GAS and δ-ISS in

terms of existence of a δ-GAS and a δ-ISS Lyapunov function, respectively.

Theorem 4.3.1 ([Ang02]). Consider a control system Σ = (Rn,U,U , f). Then:

• If U is compact then Σ is δ-GAS if and only if it admits a δ-GAS Lyapunov

function;

• If U is closed, convex, compact, contains the origin and f(0, 0) = 0, then Σ

is δ-ISS if and only if it admits a δ-ISS Lyapunov function.
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To provide characterizations of δ∃-ISS (resp. δ∃-GAS) in terms of the existence

of δ∃-ISS (resp. δ∃-GAS) Lyapunov functions, we need the following technical

results.

Here, we introduce the following definition which was inspired by the notion

of uniform global asymptotic stability with respect to sets, presented in [LSW96].

Definition 4.3.2. A control system Σ = (Rn,U,U , f) is uniformly globally asymp-

totically stable (U∃GAS) with respect to a set A ⊆ Rn if it is forward complete

and there exist a metric d, and a KL function β such that for any t ∈ R+
0 , any

x ∈ Rn and any υ ∈ U , the following condition is satisfied:

d(ξxυ(t),A) ≤ β(d(x,A), t). (4.3.1)

We now introduce the following definition which was inspired by the notion of

uniform global asymptotic stability (UGAS) Lyapunov functions in [LSW96].

Definition 4.3.3. Consider a control system Σ = (Rn,U,U , f), a set A, and a

smooth function V : Rn → R+
0 . Function V is called a U∃GAS Lyapunov function,

with respect to A, for Σ, if there exist a metric d, K∞ functions α, α, and κ ∈ R+

such that:

(i) for any x ∈ Rn,

α(d(x,A)) ≤ V (x) ≤ α(d(x,A));

(ii) for any x ∈ Rn and any u ∈ U,

∂V
∂x
f(x, u) ≤ −κV (x).

The following theorem characterizes U∃GAS in terms of the existence of a

U∃GAS Lyapunov function.

Theorem 4.3.4. Consider a control system Σ = (Rn,U,U , f) and a set A. If U

is compact and d is a metric such that the function ψ(·) = d(·, y) is continuous5

for any y ∈ Rn then the following statements are equivalent:

5Here, continuity is understood with respect to the Euclidean metric.
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(1) Σ is forward complete and there exists a U∃GAS Lyapunov function with

respect to A, equipped with the metric d.

(2) Σ is U∃GAS with respect to A, equipped with the metric d.

Proof: First we show that the function φ(·) = d(·,A) is a continuous function

with respect to the Euclidean metric. Assume {xn}∞n=1 is a converging sequence in

Rn with respect to the Euclidean metric, implying that ‖xn− x∗‖ → 0 as n→∞

for some x∗ ∈ Rn. By the triangle inequality, we have:

d (x∗, y) ≤ d (x∗, xn) + d (y, xn) , (4.3.2)

for any n ∈ N and any y ∈ A. Using inequality (4.3.2), we obtain:

φ (x∗) = d(x∗,A) = inf
y∈A

d (x∗, y) ≤ inf
y∈A
{d (x∗, xn) + d (y, xn)} (4.3.3)

= d (x∗, xn) + inf
y∈A

d (y, xn) = d (x∗, xn) + φ (xn) ,

for any n ∈ N. Using inequality (4.3.3) and the continuity assumption on d,

implying that limn→∞ d (x∗, xn) = 0, we obtain for any n ∈ N:

φ (x∗) ≤ inf
m≥n
{d (x∗, xm) + φ (xm)} ⇒ φ (x∗) ≤ lim

n→∞
inf φ (xn) , (4.3.4)

where limit inferior exists because a lower bounded sequence of real numbers

always admit a greatest lower bound [RRA09]. By doing the same analysis, we

have:

φ (x∗) ≥ lim
n→∞

supφ (xn) , (4.3.5)

where limit superior exists because an upper bounded sequence of real numbers

always admit a least upper bound [RRA09]. Using inequalities (4.3.4) and (4.3.5),

one obtains:

φ (x∗) = lim
n→∞

φ (xn) , (4.3.6)

implying that φ is a continuous function with respect to the Euclidean metric.

Since φ(·) = d(·,A) is a continuous, positive semidefinite function, by choosing

ω1(·) = ω2(·) = d(·,A) in Theorem 1 in [TNK98], the proof completes.
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Before showing the main results, we need the following technical lemma, in-

spired by Lemma 2.3 in [Ang02].

Lemma 4.3.5. Consider a control system Σ = (Rn,U,U , f). If Σ is δ∃-GAS, then

the control system Σ̂ = (R2n,U,U , f̂), where f̂(ζ, υ) =
[
f(ξ1, υ)T , f(ξ2, υ)T

]T
, and

ζ =
[
ξT1 , ξ

T
2

]T
, is U∃GAS with respect to the diagonal set ∆, defined by:

∆ =
{
z ∈ R2n|∃x ∈ Rn : z =

[
xT , xT

]T}
. (4.3.7)

Proof: Since Σ is δ∃-GAS, there exists a metric d : Rn × Rn → R+
0 such that

property (2.3.1) is satisfied. Now we define a new metric d̂ : R2n×R2n → R+
0 by:

d̂(z, z′) = d(x1, x
′
1) + d(x2, x

′
2), (4.3.8)

for any z =
[
x1

T , x2
T
]T

, z′ =
[
x′1

T , x′2
T
]T
∈ R2n. It can be readily checked that

d̂ satisfies all three conditions of a metric. Now we show that d̂(z,∆), for any

z =
[
xT1 , x

T
2

]T ∈ R2n, is proportional to d(x1, x2) which will be exploited later in

the proof. We have:

d̂(z,∆) = inf
z′∈∆

d̂(z, z′) = inf
x′∈Rn

d̂

 x1

x2

 ,
 x′

x′

 (4.3.9)

= inf
x′∈Rn

{d(x1, x
′) + d(x2, x

′)} ≤ inf
x′=x1

{d(x1, x
′) + d(x2, x

′)}

=d(x1, x1) + d(x1, x2) = d(x1, x2).

Since d is a metric, by using the triangle inequality, we have: d(x1, x2) ≤ d(x1, x
′)+

d(x2, x
′) for any x′ ∈ Rn, implying that:

d(x1, x2) ≤ inf
x′∈Rn

{d(x1, x
′) + d(x2, x

′)} = d̂(z,∆). (4.3.10)

Hence, using (4.3.9) and (4.3.10), one obtains:

d(x1, x2) ≤ d̂(z,∆) ≤ d(x1, x2)⇒ d(x1, x2) = d̂(z,∆). (4.3.11)
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Using equality (4.3.11) and property (2.3.1), we have:

d̂ (ζzυ(t),∆) = d̂

 ξx1υ(t)

ξx2υ(t)

 ,∆
 = d (ξx1υ(t), ξx2υ(t)) (4.3.12)

≤ β (d (x1, x2) , t) = β
(
d̂ (z,∆) , t

)
,

for any t ∈ R+
0 , and any υ ∈ U , where ζzυ =

[
ξTx1υ, ξ

T
x2υ

]T
, and z =

[
xT1 , x

T
2

]T
.

Hence, Σ̂ is U∃GAS with respect to ∆.

We can now provide characterization of δ∃-GAS in terms of existence of a

δ∃-GAS Lyapunov function.

Theorem 4.3.6. Consider a control system Σ = (Rn,U,U , f). If U is compact

and d is a metric such that the function ψ(·) = d(·, y) is continuous6 for any

y ∈ Rn then the following statements are equivalent:

(1) Σ is forward complete and there exists a δ∃-GAS Lyapunov function, equipped

with the metric d.

(2) Σ is δ∃-GAS, equipped with the metric d.

Proof: First we show the proof from (1) to (2), even in the absence of the

compactness assumption on U and the continuity assumption on d. The proof

is inspired by the work in [AS99]. By using property (i) in Definition 4.2.1, we

obtain:

d (ξxυ(t), ξx′υ(t)) ≤ α−1 (V (ξxυ(t), ξx′υ(t))) , (4.3.13)

for any t ∈ R+
0 , any x, x′ ∈ Rn, and any υ ∈ U . By using property (ii) and the

comparison lemma [Kha96], one gets:

V (ξxυ(t), ξx′υ(t)) ≤ e−κtV (ξxυ(0), ξx′υ(0)), (4.3.14)

6Here, continuity is understood with respect to the Euclidean metric.
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for any t ∈ R+
0 , any x, x′ ∈ Rn, and any υ ∈ U . By combining inequalities (4.3.13)

and (4.3.14), one gets:

d (ξxυ(t), ξx′υ(t)) ≤ α−1
(
e−κtV (x, x′)

)
.

Moreover, using V (x, x′) ≤ α(d (x, x′)), one obtains:

d(ξxυ(t), ξx′υ′(t)) ≤ α−1
(
e−κtα(d(x, x′))

)
.

Therefore, by defining function β as:

β(d(x, x′), t) = α−1
(
e−κtα (d(x, x′))

)
(4.3.15)

the condition (2.3.1) is satisfied. Hence, the system Σ is δ∃-GAS.

We now prove that (2) implies (1). Since Σ is δ∃-GAS, using Lemma 4.3.5,

we conclude that the control system Σ̂, defined in Lemma 4.3.5, is U∃GAS with

respect to the diagonal set ∆. Since ψ(·) = d(·, y) is continuous7 for any y ∈ Rn,

it can be easily verified that ψ̂(·) = d̂(·, z′) is also continuous7 for any z′ ∈ R2n,

where the metric d̂ was defined in Lemma 4.3.5. Using Theorem 4.3.4, we conclude

that there exists a U∃GAS Lyapunov function V : R2n → R+
0 , with respect to ∆,

for Σ̂. Thanks to the special form of Σ̂, using the equality (4.3.11), and slightly

abusing notation, the function V satisfies:

(i) α

d̂

 x

x′

 ,∆
 ≤ V

 x

x′

 ≤ α

d̂

 x

x′

 ,∆


⇒ α(d(x, x′)) ≤ V (x, x′) ≤ α(d(x, x′));

(ii)
[
∂V
∂x

∂V
∂x′

]  f(x, u)

f(x′, u)

 ≤ −κV
 x

x′


⇒ ∂V

∂x
f(x, u) + ∂V

∂x′
f(x′, u) ≤ −κV (x, x′),

for any x, x′ ∈ Rn, any u ∈ U, some K∞ functions α, α and some κ ∈ R+. Hence,

V is a δ∃-GAS Lyapunov function for Σ. This completes the proof.

7Here, continuity is understood with respect to the Euclidean metric.
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Before providing characterization of δ∃-ISS in terms of existence of a δ∃-ISS

Lyapunov function, we need the following technical lemma, inspired by Proposi-

tion 5.3 in [Ang02]. By following similar steps as in [Ang02], we need to define

the proximal point function satU : Rm → U, defined by:

satU(u) = arg min
u′∈U
‖u′ − u‖ . (4.3.16)

As explained in [Ang02], by assuming U is closed and convex and since ‖ · ‖ :

Rm → R+
0 is a proper and convex function, the definition (4.3.16) is well-defined

and the minimizer of ‖u′ − u‖ with u′ ∈ U is unique. Moreover, by convexity of

U, we have:

‖satU(u1)− satU(u2)‖ ≤ ‖u1 − u2‖, ∀u1, u2 ∈ Rm. (4.3.17)

Lemma 4.3.7. Consider a control system Σ = (Rn,U,U , f), where U is closed

and convex. If Σ is δ∃-ISS, equipped with a metric d such that ψ(·) = d(·, y)

is continuous8 for any y ∈ Rn, then there exists a K∞ function ρ such that the

control system Σ̂ = (R2n,D,D, f̂)9 is U∃GAS with respect to the diagonal set ∆,

where:

f̂(ζ, ω) =

 f(ξ1, satU(ω1 + ρ(d(ξ1, ξ2))ω2))

f(ξ2, satU(ω1 − ρ(d(ξ1, ξ2))ω2))

 , (4.3.18)

ζ =
[
ξT1 , ξ

T
2

]T
, D = U× B1(0m), and ω =

[
ωT1 , ω

T
2

]T
.

Proof: The proof was inspired by the proof of Proposition 5.3 in [Ang02].

We include the complete details to ensure that the interested reader can assess

the essential differences caused by using the arbitrary metric d rather than the

Euclidean metric. Since Σ is δ∃-ISS, equipped with the metric d, there exist some

KL function β and K∞ function γ such that:

d(ξxυ(t), ξx′υ′(t)) ≤ max{β(d(x, x′), t), γ(‖υ − υ′‖∞)}. (4.3.19)

8Here, continuity is understood with respect to the Euclidean metric.
9The set D contains all measurable and locally essentially bounded functions of time from

intervals of the form ]a, b[⊆ R to D with a < 0 and b > 0.
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Note that inequality (4.3.19) is a straightforward consequence of inequality (2.3.3)

in Definition 2.3.2 (see Remark 2.5 in [Son89]). Using the results in Lemma 4.3.5

and the proposed metric d̂ in (4.3.8), we have that d(x, x′) = d̂(z,∆), where

z =
[
xT , x′T

]T
. Without loss of generality we can assume α(r) = β(r, 0) > r for

any r ∈ R+. Let ρ be a K∞ function satisfying ρ(r) ≤ 1
2
γ−1 ◦ (α−1(r)/4) (note

that γ, α ∈ K∞). Now we show that

γ
(∥∥∥2ω2(t)ρ

(
d̂(ζzω(t),∆)

)∥∥∥) ≤ d̂(z,∆)/2, (4.3.20)

for any t ∈ R+
0 , any z ∈ R2n, and any ω = [ω1, ω2]T ∈ D. Since γ is a K∞ function

and ω2(t) ∈ B1(0m), it is enough to show

γ
(

2ρ
(
d̂(ζzω(t),∆)

))
≤ d̂(z,∆)/2. (4.3.21)

Since

γ
(

2ρ
(
d̂(ζzω(0),∆)

))
= γ

(
2ρ
(
d̂(z,∆)

))
≤ α−1

(
d̂(z,∆)

)
/4 < d̂(z,∆)/4,

(4.3.22)

and ϕ(·) = d̂(·,∆) is a continuous10 function (see proof of Theorem 4.3.4), then

for all t ∈ R+
0 small enough, we have γ

(
2ρ
(
d̂(ζzω(t),∆)

))
≤ d̂(z,∆)/4. Now,

let

t1 = inf
{
t > 0 | γ

(
2ρ
(
d̂(ζzω(t),∆)

))
> d̂(z,∆)/2

}
. (4.3.23)

Clearly t1 > 0. We will show that t1 = ∞. Now, assume by contradiction that

t1 < ∞. Therefore, the inequality (4.3.21) holds for all t ∈ [0, t1). Hence, for all

t ∈ [0, t1), one obtains:

γ
(∥∥∥2ω2(t)ρ

(
d̂(ζzω(t),∆)

)∥∥∥) ≤ γ
(

2ρ
(
d̂(ζzω(t),∆)

))
(4.3.24)

≤ d̂(z,∆)/2 < α
(
d̂(z,∆)

)
/2.

10Here, continuity is understood with respect to the Euclidean metric.
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Let υ and υ′ be defined as:

υ(t) = satU
(
ω1(t) + ρ

(
d̂(ζzω(t),∆)

)
ω2(t)

)
,

υ′(t) = satU
(
ω1(t)− ρ

(
d̂(ζzω(t),∆)

)
ω2(t)

)
.

By using (4.3.17), we obtain:

‖υ(t)− υ′(t)‖ ≤
∥∥∥2ω2(t)ρ

(
d̂(ζzω(t),∆)

)∥∥∥ .
Using (4.3.19) and (4.3.24), we have:

d̂(ζzω(t),∆) = d (ξxυ(t), ξx′υ′(t)) ≤ β (d(x, x′), 0) = β
(
d̂(z,∆), 0

)
(4.3.25)

= α
(
d̂(z,∆)

)
,

for any t ∈ [0, t1), any ω ∈ D, and any z =
[
xT , x′T

]T ∈ R2n. Using ρ(r) ≤
1
2
γ−1 ◦ (α−1(r)/4), the inequality (4.3.25) implies that

γ
(

2ρ
(
d̂(ζzω(t),∆)

))
≤ d̂(z,∆)/4,

for any t ∈ [0, t1), contradicting the definition of t1. Therefore, t1 = ∞ and

inequality (4.3.20) is proved for all t ∈ R+
0 . Therefore, using (4.3.19) and (4.3.20),

we obtain:

d̂(ζzω(t),∆) = d (ξxυ(t), ξx′υ′(t)) (4.3.26)

≤ max {β (d(x, x′), t) , γ (‖υ − υ′‖∞)}

≤ max
{
β (d(x, x′), t) , γ

(∥∥∥2ω2ρ
(
d̂(ζzω,∆)

)∥∥∥
∞

)}
≤ max

{
β
(
d̂(z,∆), t

)
, d̂(z,∆)/2

}
,

for any z =
[
xT , x′T

]T ∈ R2n, any ω ∈ D, and any t ∈ R+
0 . Since β is a KL

function, it can be readily seen that for each r > 0 if d̂(z,∆) ≤ r, then there

exists some Tr ≥ 0 such that for any t ≥ Tr, β
(
d̂(z,∆), t

)
≤ r/2 and, hence,

d̂(ζzω(t),∆) ≤ r/2. Now we show that the set ∆ is a global attractor for the

control system Σ̂. For any ε ∈ R+, let k be a positive integer such that 2−kr < ε.
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Let r1 = r and ri = ri−1/2 for i ≥ 2, and let τ = Tr1 + Tr2 + · · · + Trk . Then,

for t ≥ τ , we have d̂(ζzω(t),∆) ≤ 2−kr < ε for all d̂(z,∆) ≤ r, all ω ∈ D, and all

t ≥ τ . Therefore, it can be concluded that the set ∆ is a uniform global attractor

for the control system Σ̂. Furthermore, since d̂(ζzω(t),∆) ≤ β
(
d̂(z,∆), 0

)
for all

t ∈ R+
0 , all z ∈ R2n, and all ω ∈ D, the control system Σ̂ is uniformly globally

stable and as showed in [TNK98], it is U∃GAS.

Finally, the next theorem provide a characterization of δ∃-ISS in terms of the

existence of a δ∃-ISS Lyapunov function.

Theorem 4.3.8. Consider a control system Σ = (Rn,U,U , f). If U is compact

and convex and d is a metric such that the function ψ(·) = d(·, y) is continuous11

for any y ∈ Rn then the following statements are equivalent:

(1) Σ is forward complete and there exists a δ∃-ISS Lyapunov function, equipped

with metric d.

(2) Σ is δ∃-ISS, equipped with metric d.

Proof: First we show the proof from (1) to (2), even in the absence of the

compactness and convexity assumptions on U and the continuity assumption on

d. The proof is inspired by the work in [AS99]. By using property (i) in Definition

4.2.1, we obtain:

d (ξxυ(t), ξx′υ′(t)) ≤ α−1 (V (ξxυ(t), ξx′υ′(t))) , (4.3.27)

for any t ∈ R+
0 , any x, x′ ∈ Rn, and any υ, υ′ ∈ Rn. By using property (iii) and

the comparison lemma [Kha96], one gets:

V (ξxυ(t), ξx′υ′(t)) ≤ e−κtV (ξxυ(0), ξx′υ′(0)) + e−κt ∗ σ(‖υ(t)− υ′(t)‖), (4.3.28)

11Here, continuity is understood with respect to the Euclidean metric.
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for any t ∈ R+
0 , any x, x′ ∈ Rn, and any υ, υ′ ∈ Rn, where ∗ denotes the convolution

integral12. By combining inequalities (4.3.27) and (4.3.28), one gets:

d (ξxυ(t), ξx′υ′(t)) ≤ α−1
(
e−κtV (x, x′) + e−κt ∗ σ(‖υ(t)− υ′(t)‖)

)
≤ α−1

(
e−κtV (x, x′) +

1− e−κt

κ
σ(‖υ − υ′‖∞)

)
≤ α−1

(
e−κtV (x, x′) +

1

κ
σ(‖υ − υ′‖∞)

)
= γ(ρ, φ),

where γ(ρ, φ) = α−1(ρ+ φ), ρ = e−κtV (x, x′), and φ = 1
κ
σ (‖υ − υ′‖∞). Since γ is

nondecreasing in each variable, we have:

d (ξxυ(t), ξx′υ′(t)) ≤ h
(
e−κtV (x, x′)

)
+ h

(
1

κ
σ (‖υ − υ′‖∞)

)
,

where h(r) = γ(r, r) = α−1(2r) and h : R+
0 → R+

0 is a K∞ function. Moreover,

using V (x, x′) ≤ α(d (x, x′)), one obtains:

d(ξxυ(t), ξx′υ′(t)) ≤ α−1
(
2e−κtα(d(x, x′))

)
+ α−1

(
2

κ
σ(‖υ − υ′‖∞)

)
.

Therefore, by defining functions β and γ as:

β(d(x, x′), t) =α−1
(
2e−κtα (d(x, x′))

)
γ (‖υ − υ′‖∞) =α−1

(
2

κ
σ(‖υ − υ′‖∞)

)
,

the condition (2.3.3) is satisfied. Hence, the system Σ is δ∃-ISS.

We now prove that (2) implies (1). As we proved in Lemma 4.3.7, since Σ is δ∃-

ISS, it implies that the control system Σ̂, defined in Lemma 4.3.7, is U∃GAS with

respect to ∆. Since ψ(·) = d(·, y) is continuous13 for any y ∈ Rn, it can be easily

verified that ψ̂(·) = d̂(·, z′) is continuous13 for any z′ ∈ R2n, where the metric d̂

was defined in the proof of Lemma 4.3.5. Using Theorem 4.3.4, we conclude that

there exists a U∃GAS Lyapunov function V, with respect to ∆, for Σ̂. By using

the special form of Σ̂, defined in Lemma 4.3.7, the equality (4.3.11), and slightly

abusing notation the function V satisfies:

12e−κt ∗ σ(‖υ(t)− υ′(t)‖) =
∫ t
0
e−κ(t−τ)σ(‖υ(τ)− υ′(τ)‖)dτ .

13Here, continuity is understood with respect to the Euclidean metric.
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(i) α

d̂

 x

x′

 ,∆
 ≤ V

 x

x′

 ≤ α

d̂

 x

x′

 ,∆


⇒ α(d(x, x′)) ≤ V (x, x′) ≤ α(d(x, x′));

for any x, x′ ∈ Rn, some K∞ functions α, α and

(ii)

[
∂V

∂x

∂V

∂x′

] f(x, satU(d1 + ρ(d(x, x′))d2))

f(x′, satU(d1 − ρ(d(x, x′))d2))

 ≤ −κV
 x

x′

 (4.3.29)

⇒ ∂V

∂x
f(x, satU(d1 + ρ(d(x, x′))d2))+

∂V

∂x′
f(x′, satU(d1 − ρ(d(x, x′))d2)) ≤ −κV (x, x′),

for some κ ∈ R+, any x, x′ ∈ Rn, and any
[
dT1 , d

T
2

]T ∈ D. By choosing d1 =

(u + u′)/2 and d2 = (u − u′)/(2ρ(d(x, x′))) for any u, u′ ∈ U, it can be readily

checked that
[
dT1 , d

T
2

]T ∈ U× B1(0m), whenever 2ρ(d(x, x′)) ≥ ‖u − u′‖. Hence,

using (4.3.29), we have that the following implication holds:

if ϕ(d(x, x′)) ≥ ‖u− u′‖, then
∂V

∂x
f(x, u) +

∂V

∂x′
f(x′, u′) ≤ −κV (x, x′), (4.3.30)

where ϕ(r) = 2ρ(r). As showen in Remark 2.4 in [Son89], there is no loss of

generality in modifying inequalities (4.3.30) to

∂V

∂x
f(x, u) +

∂V

∂x′
f(x′, u′) ≤ −κ̂V (x, x′) + σ(‖u− u′‖), (4.3.31)

for some K∞ function σ and some κ̂ ∈ R+, which completes the proof.

The following theorem describes δ-FC in terms of existence of a δ-FC Lyapunov

function.

Theorem 4.3.9. A control system Σ is δ-FC if it admits a δ-FC Lyapunov func-

tion.
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Proof: The proof is very similar to the first part of the proof of Theorem

4.3.8. By using property (i) in Definition 4.2.4, we obtain:

‖ξxυ(t)− ξx′υ′(t)‖ ≤ α−1 (V (ξxυ(t), ξx′υ′(t))) , (4.3.32)

for any t ∈ R+
0 , any x, x′ ∈ Rn, and any υ, υ′ ∈ U. By using the property (ii) and

the comparison lemma [Kha96], one gets:

V (ξxυ(t), ξx′υ′(t)) ≤ eκtV (ξxυ(0), ξx′υ′(0)) + eκt ∗ σ(‖υ(t)− υ′(t)‖) (4.3.33)

for any t ∈ R+
0 , any x, x′ ∈ Rn, and any υ, υ′ ∈ U, where ∗ denotes the convolution

integral. By combining inequalities (4.3.32) and (4.3.33), one gets:

‖ξxυ(t)− ξx′υ′(t)‖ ≤α−1
(
eκtV (x, x′) + eκt ∗ σ(‖υ − υ′‖)

)
≤α−1

(
eκtV (x, x′) +

eκt − 1

κ
σ(‖υ − υ′‖∞)

)
= γ(ρ, φ)

where γ(ρ, φ) = α−1(ρ+ φ), ρ = eκtV (x, x′), and φ = eκt−1
κ
σ (‖υ − υ′‖∞). Since γ

is nondecreasing in each variable, we have:

‖ξxυ(t)− ξx′υ′(t)‖ ≤ h
(
eκtV (x, x′)

)
+ h

(
eκt − 1

κ
σ (‖υ − υ′‖∞)

)
where h(r) = γ(r, r) = α−1(2r) and h : R+

0 → R+
0 is a K∞ function. Moreover,

using V (x, x′) ≤ α(‖x− x′‖), one obtains:

‖ξxυ(t)− ξx′υ′(t)‖ ≤ α−1
(
2eκtα(‖x− x′‖)

)
+ α−1

(
2
eκt − 1

κ
σ(‖υ − υ′‖∞)

)
.

Therefore, by defining functions β and γ as:

β(‖x− x′‖, t) =α−1
(
2eκtα (‖x− x′‖)

)
γ(‖υ − υ′‖∞ , t) =α−1

(
2
eκt − 1

κ
σ(‖υ − υ′‖∞)

)
,

the condition (2.4.1) is satisfied. Hence, the system Σ is δ-FC.
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4.3.2 Contraction (expansion) description of incremental stability

Note that for all definitions and results in this subsection we require function f

to be continuously differentiable which was not the case in characterizations of

incremental stability using incremental Lyapunov functions.

The following theorem shows that the inequality (4.2.4) implies δ∃-GAS.

Theorem 4.3.10. Let Σ = (Rn,U,U , f) be a smooth control system on Rn equipped

with a Riemannian metric G. If G is a contraction metric, with respect to states,

for Σ and if (Rn,dG) is a complete metric space14, then Σ is δ∃-GAS.

Different variations of this result appeared in [LS98] and [AR03]; see [AR03]

for a concise proof and the proof of Theorem 4.3.11 for a more detailed treatment

including the completeness assumption. It is also shown in the proof of Theorem

4.3.11 that the additional assumption ω〈X,X〉In ≤ 〈X,X〉G ≤ ω〈X,X〉In for

ω, ω ∈ R+ leads to the stronger conclusion that Σ is in fact δ-GAS.

The following theorem shows that the inequality (4.2.7) implies δ∃-ISS.

Theorem 4.3.11. Let Σ = (Rn,U,U , f) be a smooth control system on Rn

equipped with a Riemannian metric G and U be a convex set. If the metric G

is a contraction (resp. expansion) metric, with respect to states and inputs, for

system Σ and (Rn,dG) is a complete metric space, then Σ is δ∃-ISS (resp. δ-FC).

Similarly to contraction metrics with respect to states, it will be shown that

Σ is δ-ISS when the inequalities ω〈X,X〉In ≤ 〈X,X〉G ≤ ω〈X,X〉In are satisfied

for ω, ω ∈ R+.

Proof: Since (Rn,dG) is a complete metric space, using the Hopf-Rinow

theorem [Pet97], we conclude that Rn with respect to the metric G is geodesically

complete. The rest of the proof is inspired by the proof of Theorem 2 in [AR03].

14A metric space (Rn,d) is said to be complete if every Cauchy sequence of points in Rn has
a limit that is also in Rn.
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Consider two points x and x′ in Rn and a geodesic χ : [0, 1]→ Rn joining x = χ(0)

and x′ = χ(1). The geodesic distance between the points x and x′ is given by:

dG(x, x′) =

∫ 1

0

√(
dχ(s)

ds

)T
G(χ(s))

dχ(s)

ds
ds. (4.3.34)

Consider the straight line χ̂t(s) = (1 − s)υ(t) + sυ′(t), for fixed t ∈ R+
0 , fixed

υ, υ′ ∈ U , and for any s ∈ [0, 1]. The curve χ̂t is a geodesic, with respect to

the Euclidean metric, on the convex subset U ⊆ Rm joining υ(t) = χ̂t(0) and

υ′(t) = χ̂t(1). Consider also the input curve υs defined by υs(t) = χ̂t(s). Let l(t)

be the length of the curve ξχ(s)υs(t) parametrized by s and with respect to the

metric G, i.e.:

l(t) =

∫ 1

0

√
δξTG(ξχ(s)υs(t))δξds, with δξ =

∂

∂s
ξχ(s)υs(t). (4.3.35)

In the rest of the proof, we drop the argument of the metric G for the sake of

simplicity. By taking the derivative of (4.3.35) with respect to time, we obtain:

d

dt
l(t) =

∫ 1

0

d
dt

(
δξTGδξ

)
2
√
δξTGδξ

ds

=

∫ 1

0

δξT
((

∂f
∂x

)T
G+ ∂G

∂x
f +G∂f

∂x

)
δξ + 2δυT

(
∂f
∂u

)T
Gδξ

2
√
δξTGδξ

ds, with δυ =
∂

∂s
υs(t).

Since G is a contraction (expansion) metric, with respect to states and inputs,

with λ̂ and α the constants introduced in Definition 4.2.6, the following inequality

holds:

d

dt
l(t) ≤ − λ̂

2
l(t) +

α

2

∫ 1

0

√
δυT δυds = − λ̂

2
l(t) +

α

2
‖υ(t)− υ′(t)‖. (4.3.36)

Using (4.3.36), and comparison principle [Kha96], we obtain:

l(t) ≤e−
λ̂
2
tl(0) +

α

2
e−

λ̂
2
t ∗ ‖υ(t)− υ′(t)‖

≤e−
λ̂
2
tl(0) +

α

λ̂

(
1− e−

λ̂
2
t
)
‖υ − υ′‖∞, (4.3.37)

where ∗ denotes the convolution integral. From (4.3.34) and (4.3.35), it can be

seen that l(0) = dG(x, x′). However, for t ∈ R+, l(t) is not necessarily the Rie-

mannian distance function, determined by G, because ξχ(s)υs(t) is not necessarily
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a geodesic, implying that it is always bigger than or equal to the Riemannian dis-

tance function15: dG(ξxυ(t), ξx′υ′(t)) ≤ l(t), and, hence, the following inequality

holds:

dG (ξxυ(t), ξx′υ′(t)) ≤ e−
λ̂
2
tdG(x, x′) +

α

λ̂

(
1− e−

λ̂
2
t
)
‖υ − υ′‖∞, (4.3.38)

which, in turn, implies that Σ is δ∃-ISS when λ̂ ∈ R+ and δ-FC when λ̂ ∈ R.

The proof for the case that G is a contraction (expansion) metric, with respect to

states, can be readily verified by just enforcing δυ(t) = 0 and υ(t) = υ′(t) for any

t ∈ R+
0 .

Using the inequalities ω〈X,X〉In ≤ 〈X,X〉G ≤ ω〈X,X〉In , it can be readily

checked that:

√
ω‖ξxυ(t)− ξx′υ′(t)‖ ≤dG (ξxυ(t), ξx′υ′(t)) ,

dG(x, x′) ≤
√
ω‖x− x′‖,

Hence, the condition (4.3.38) reduces to:

‖ξxυ(t)− ξx′υ′(t)‖ ≤
√
ω

ω
e−

λ̂
2
t‖x− x′‖+

1
√
ω

α

λ̂

(
1− e−

λ̂
2
t
)
‖υ − υ′‖∞, (4.3.39)

which is the δ-ISS condition in (2.3.4) for λ̂ ∈ R+ and δ-FC condition in (2.4.1)

for λ̂ ∈ R.

Since completeness of the metric space (Rn,dG) is crucial to the previous proof,

the following lemma provides a sufficient condition on the metric G guaranteeing

that (Rn,dG) is a complete metric space.

Lemma 4.3.12. The Riemannian manifold Rn equipped with a Riemannian met-

ric G, satisfying16 ω‖y‖2 ≤ yTG(x)y for any x, y ∈ Rn and for some positive

constant ω, is complete as a metric space, with respect to dG.

15Note that given a Riemannian metric G, the Riemannian distance function is the smallest
distance, determined by G.

16This condition is nothing more than uniform positive definiteness of G.
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Proof: The proof was suggested to us by C. Manolescu. First, for each pair

of points x, y ∈ Rn, we define the path space:

Ω(x, y) = {χ : [0, 1]→ Rn | χ is piecewise smooth, χ(0) = x, and χ(1) = y}.

Recall that a function χ : [a, b]→ Rn is piecewise smooth if χ is continuous and if

there exists a partitioning a = a1 < a2 < · · · < ak = b of [a, b] such that χ|(ai,ai+1)

is smooth for i = 1, · · · , k − 1. We can then define the Riemannian distance

function dG(x, y) between points x, y ∈ Rn as

dG(x, y) = inf
χ∈Ω(x,y)

∫ 1

0

√(
dχ(s)

ds

)T
G(χ(s))

dχ(s)

ds
ds.

It follows immediately that dG is a metric on Rn. The Riemannian manifold Rn is

a complete metric space, equipped with the metric dG, if every Cauchy sequence17

of points in Rn has a limit in Rn. Assume {xn}∞n=1 is a Cauchy sequence in Rn,

equipped with the metric dG. By using the assumption on G, we have

dG(xn, xm) = inf
χ∈Ω(xn,xm)

∫ 1

0

√(
dχ(s)

ds

)T
G(χ(s))

dχ(s)

ds
ds (4.3.40)

≥ √ω inf
χ∈Ω(xn,xm)

∫ 1

0

√(
dχ(s)

ds

)T
dχ(s)

ds
ds =

√
ω‖xn − xm‖.

It is readily seen from the inequality (4.3.40) that the sequence {xn}∞n=1 is also

a Cauchy sequence in Rn with respect to the Euclidean metric. Since the Rie-

mannian manifold Rn with respect to the Euclidean metric is a complete metric

space, the sequence {xn}∞n=1 converges to a point, named x∗, in Rn. By picking a

convex compact subset D ⊂ Rn, containing x∗, and using Lemma 8.18 in [Lee03],

we have: ω‖y‖2 ≥ yTG(x)y for any y ∈ Rn, x ∈ D, and some positive constant

ω. Since the sequence {xn}∞n=1 converges to x∗ ∈ D, there exists some integer N

such that the sequence {xn}∞n=N remains forever inside D. Hence, we have:

√
ω‖xn − x∗‖ ≤ dG(xn, x

∗) ≤
√
ω‖xn − x∗‖, (4.3.41)

17A sequence {xn}∞n=1 in a metric space X, equipped with a metric d, is a Cauchy sequence
if limn,m→∞ d(xn, xm) = 0.
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for n > N . Therefore, the sequence {xn}∞n=1 converges to x∗ ∈ Rn, equipped with

the metric dG. Therefore, Rn with respect to the metric dG is a complete metric

space.

Resuming, in this section we have provided a characterization of δ∃-GAS and

δ∃-ISS in terms of the existence of δ∃-GAS and δ∃-ISS Lyapunov functions and we

have provided sufficient conditions for δ∃-GAS and δ∃-ISS in terms of the existence

of a contraction metric. Based on these results, in the next section, we propose a

backstepping controller design procedure, providing controllers rendering control

systems incrementally stable. Additionally, we will provide incremental Lyapunov

functions and contraction metrics for smooth control systems.

4.4 Backstepping Design Procedure

The backsteping method proposed here is inspired by the backstepping method,

described in [PvdWN05]. Here, we will extend this approach to render the closed-

loop system δ∃-ISS and to construct δ∃-ISS Lyapunov functions and contraction

metrics, with respect to states and inputs. Consider the following subclass of

control systems:

Σ :

 η̇ = f(η, ζ),

ζ̇ = υ,
(4.4.1)

where x =
[
yT , zT

]T ∈ Rnη+nζ is the state of Σ, y and z are initial conditions for

η, ζ-subsystems, respectively, and υ is the control input.

In support of the main result of this section (Theorem 4.4.2), we need the

following technical result.

Lemma 4.4.1. Consider the following interconnected control system

Σ :

 η̇ = f(η, ζ, υ),

ζ̇ = g(ζ, υ).
(4.4.2)
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Let the η-subsystem be δ∃-ISS with respect to ζ, υ and let the ζ-subsystem be δ∃-ISS

with respect to υ for some metrics dη and dζ, respectively such that the solutions

ηyζυ
18 and ζzυ satisfy the following inequalities:

dη (ηyζυ(t), ηy′ζ′υ′(t)) ≤ βη (dη (y, y′) , t) + γζ (dζ(ζ, ζ
′)∞) + γυ (‖υ − υ′‖∞) ,

(4.4.3)

dζ (ζzυ(t), ζz′υ′(t)) ≤ βζ (dζ (z, z′) , t) + γ̃υ (‖υ − υ′‖∞) , (4.4.4)

where y, y′ and z, z′ are the initial conditions for the η, ζ-subsystems, respectively.

Then, the interconnected control system Σ in (4.4.2) is δ∃-ISS with respect to υ.

Proof: The proof was inspired by the proof of Proposition 4.7 in [Ang02].

The essential differences lie in the choice of the metric for the overall system Σ

using the metrics for η, ζ-subsystems. We provide the proof so that it can be

easily compared with the proof in [Ang02]. Using (4.4.3), (4.4.4) and triangular

18Notation ηyζυ denotes a trajectory of η-subsystem under the inputs ζ and υ from initial
condition y ∈ Rnη .
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inequality, the following chain of inequalities hold:

dη (ηyζυ(t), ηy′ζ′υ′(t))

≤ βη (dη (ηyζυ(t/2), ηy′ζ′υ′(t/2)) , t/2) + γζ

(
dζ (ζ, ζ ′)[t/2,∞)

)
+ γυ

(
‖υ − υ′‖[t/2,∞)

)
≤ βη (βη (dη(y, y

′), t/2) + γζ (dζ (ζ, ζ ′)∞) + γυ (‖υ − υ′‖∞) , t/2)

+ γζ

(
dζ (ζ, ζ ′)[t/2,∞)

)
+ γυ

(
‖υ − υ′‖[t/2,∞)

)
≤ βη (3βη(dη(y, y

′), t/2), t/2) + βη (3γζ (dζ (ζ, ζ ′)∞) , t/2)

+ βη (3γυ (‖υ − υ′‖∞) , 0) + γζ

(
dζ (ζ, ζ ′)[t/2,∞)

)
+ γυ

(
‖υ − υ′‖[t/2,∞)

)
≤ βη (3βη(dη(y, y

′), t/2), t/2) + βη (3γζ (βζ (dζ (z, z′) , 0) + γ̃υ (‖υ − υ′‖∞)) , t/2)

+ βη (3γυ (‖υ − υ′‖∞) , 0) + γζ

(
dζ (ζ, ζ ′)[t/2,∞)

)
+ γυ

(
‖υ − υ′‖[t/2,∞)

)
≤ βη (3βη(dη(y, y

′), t/2), t/2) + βη (3γζ (2βζ (dζ (z, z′) , 0)) , t/2)

+ βη (3γζ (2γ̃υ (‖υ − υ′‖∞)) , t/2) + βη (3γυ (‖υ − υ′‖∞) , 0)

+ γζ

(
dζ (ζ, ζ ′)[t/2,∞)

)
+ γυ

(
‖υ − υ′‖[t/2,∞)

)
≤ βη (3βη(dη(y, y

′), t/2), t/2) + βη (3γζ (2βζ (dζ (z, z′) , 0)) , t/2)

+ βη (3γζ (2γ̃υ (‖υ − υ′‖∞)) , 0) + βη (3γυ (‖υ − υ′‖∞) , 0)

+ γζ (βζ (dζ (z, z′) , t/2) + γ̃υ (‖υ − υ′‖∞)) + γυ

(
‖υ − υ′‖[t/2,∞)

)
≤ βη (3βη(dη(y, y

′), t/2), t/2) + βη (3γζ (2βζ (dζ (z, z′) , 0)) , t/2)

+ βη (3γζ (2γ̃υ (‖υ − υ′‖∞)) , 0) + βη (3γυ (‖υ − υ′‖∞) , 0)

+ γζ (2βζ (dζ (z, z′) , t/2)) + γζ (2γ̃υ (‖υ − υ′‖∞)) + γυ (‖υ − υ′‖∞)

≤ β̂ (dη(y, y
′), t) + β̃ (dζ(z, z

′), t) + γ̂ (‖υ − υ′‖∞) , (4.4.5)

where γ̂ ∈ K∞, and β̂, β̃ ∈ KL are defined as following:

γ̂(r) = βη (3γζ (2γ̃υ(r)) , 0) + βη (3γυ(r), 0) + γζ (2γ̃υ(r)) + γυ(r),

β̂(r, t) = βη (3βη (r, t/2) , t/2) ,

β̃(r, t) = βη (3γζ (2βζ(r, 0)) , t/2) + γζ (2βζ(r, t/2)) .

74



Now we define a new metric d : Rnη+nζ × Rnη+nζ → R+
0 by:

d(x, x′) = dη(y, y
′) + dζ(z, z

′), (4.4.6)

for any x =
[
yT , zT

]T ∈ Rnη+nζ and x′ =
[
y′T , z′T

]T
∈ Rnη+nζ . It can be

readily checked that d satisfies all three conditions of a metric. By defining

ξxυ =
[
ηTyζυ, ζ

T
zυ

]T
, using inequalities (4.4.4) and (4.4.5), and for any t ∈ R+

0 ,

any x, x′ ∈ Rnη+nζ , and any υ, υ′ ∈ U , we obtain:

d (ξxυ(t), ξx′υ′(t)) = dη (ηyζυ(t), ηy′ζ′υ′(t)) + dζ (ζzυ(t), ζz′υ′(t)) (4.4.7)

≤ β̂ (dη(y, y
′), t) + β̃ (dζ(z, z

′), t) + γ̂ (‖υ − υ′‖∞)

+ βζ (dζ (z, z′) , t) + γ̃υ (‖υ − υ′‖∞)

≤ β̂ (dη(y, y
′) + dζ(z, z

′), t) + β̃ (dη(y, y
′) + dζ(z, z

′), t)

+ βζ (dη(y, y
′) + dζ (z, z′) , t) + γ̂ (‖υ − υ′‖∞) + γ̃υ (‖υ − υ′‖∞)

≤ β (d(x, x′), t) + γ (‖υ − υ′‖∞) ,

where β ∈ KL and γ ∈ K∞ are defined as following:

β(r, t) =β̂(r, t) + β̃(r, t) + βζ(r, t),

γ(r) =γ̂(r) + γ̃υ(r).

Hence, the overall system Σ of the form (4.4.2) is δ∃-ISS with respect to υ.

We can now state the main result, on a backstepping controller design approach

for the control system Σ in (4.4.1), rendering the resulting closed-loop system δ∃-

ISS.

Theorem 4.4.2. Consider the control system Σ of the form (4.4.1). Suppose

there exists a continuously differentiable function ψ : Rnη → Rnζ such that the

control system

Ση : η̇ = f(η, ψ(η) + υ̃) (4.4.8)
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is δ∃-ISS with respect to the input υ̃. Then for any λ ∈ R+, the state feedback

control law:

υ = k(η, ζ, υ̂) = −λ(ζ − ψ(η)) +
∂ψ

∂y
(η)f(η, ζ) + υ̂ (4.4.9)

renders the control system Σ δ∃-ISS with respect to the input υ̂.

Proof: Consider the following coordinate transformation:

χ =

 χ1

χ2

 = φ(ξ) =

 η

ζ − ψ(η)

 , (4.4.10)

where ξ =
[
ηT , ζT

]T
. In the new coordinate χ, we obtain the following dynamics:

Σ̂ :

 χ̇1 = f (χ1, ψ(χ1) + χ2) ,

χ̇2 = υ − ∂ψ
∂y

(χ1)f (χ1, ψ(χ1) + χ2) .
(4.4.11)

The proposed control law (4.4.9), given in the new coordinate χ by

υ = k(χ1, χ2 + ψ(χ1), υ̂) = −λχ2 +
∂ψ

∂y
(χ1)f (χ1, ψ(χ1) + χ2) + υ̂, (4.4.12)

transforms the control system Σ̂ into:

Σ̃ :

 χ̇1 = f(χ1, ψ(χ1) + χ2),

χ̇2 = −λχ2 + υ̂.
(4.4.13)

Due to the choice of ψ, the χ1-subsystem of Σ̃ is δ∃-ISS with respect to χ2. It can

be easily verified that the χ2-subsystem is input-to-state stable with respect to the

input υ̂. Since any ISS linear control system is also δ-ISS [Ang02], χ2-subsystem

is also δ-ISS19 with respect to υ̂. Therefore, using Lemma 4.4.1, we conclude that

the control system Σ̃ is δ∃-ISS with respect to the input υ̂. Since, δ∃-ISS property

is coordinate invariant, we conclude that the original control system Σ in (4.4.1)

equipped with the state feedback control law in (4.4.9) is δ∃-ISS with respect to

the input υ̂ which completes the proof.

19We recall that δ-ISS property is equivalent to δ∃-ISS property when the metric is the Eu-
clidean one.
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Remark 4.4.3. The δ∃-ISS property of system Ση in (4.4.8) can be stablished,

for example, using the approaches provided in [PvdWN05, vdWP08] for some rel-

evant classes of control systems (such as piece-wise affine systems and Lur’e-type

systems).

Remark 4.4.4. The result of Theorem 4.4.2 can be extended to the case that we

have arbitrary number of integrators:

Σ :



η̇ = f(η, ζ1),

ζ̇1 = ζ2,
...

ζ̇k = υ.

(4.4.14)

Note that in this case, the functions f and ψ must be sufficiently differentiable.

Although the proposed approach in Theorem 4.4.2 provides a controller ren-

dering the control system Σ of the form (4.4.1) δ∃-ISS, it does not provide a way of

constructing δ∃-ISS Lyapunov functions or contraction metrics. In the next lem-

mas, we show how to construct incremental Lyapunov functions and contraction

metrics for the resulting closed-loop system, recursively. Note that the constructed

incremental Lyapunov functions can be used as a necessary tool in the analysis in

[GPT09, Gir05, JFA+07, KDL+08].

Lemma 4.4.5. Consider the control system Σ of the form (4.4.1). Suppose there

exists a continuously differentiable function ψ : Rnη → Rnζ such that the smooth

function V̂ : Rnη × Rnη → R+
0 is a δ∃-ISS Lyapunov function for the control

system:

Ση : η̇ = f(η, ψ(η) + υ̃), (4.4.15)

and with respect to the control input υ̃. Assume that V̂ satisfies condition (iii) in

Definition 4.2.1 for some κ ∈ R+ and some σ ∈ K∞, satisfying σ(r) ≤ κ̂r2 for

some κ̂ ∈ R+ and any r ∈ R+
0 . Then the function Ṽ : Rnη+nζ × Rnη+nζ → R+

0 ,
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defined as:

Ṽ (x, x′) = V̂ (y, y′) + ‖(z − ψ(y))− (z′ − ψ(y′))‖2,

where x =
[
yT , zT

]T
and x′ =

[
y′T , z′T

]T
, is a δ∃-ISS Lyapunov function for Σ as

in (4.4.1) equipped with the state feedback control law (4.4.9) for all λ ≥ κ+κ̂+1
2

.

Proof: As explained in the proof of Theorem 4.4.2, using the proposed state

feedback control law (4.4.9) and the coordinate transformation φ in (4.4.10), the

control system Σ of the form (4.4.1) is transformed to the control system Σ̃ in

(4.4.13). Now we show that

V (x̂, x̂′) = V̂ (x̂1, x̂
′
1) + (x̂2 − x̂′2)T (x̂2 − x̂′2),

is a δ∃-ISS Lyapunov function for Σ̃, where x̂ =
[
x̂T1 , x̂

T
2

]T
and x̂′ =

[
x̂′T1 , x̂

′T
2

]T
are the states of Σ̃ and x̂1, x̂

′
1, and x̂2, x̂

′
2 are the states of χ1, χ2-subsystems,

respectively. Since V̂ is a δ∃-ISS Lyapunov function for χ1-subsystem when χ2 is

the input, it satisfies condition (i) in Definition 4.2.1 using a metric d as follows:

α(d(x̂1, x̂
′
1)) ≤ V̂ (x̂1, x̂

′
1) ≤ α(d(x̂1, x̂

′
1)),

for some α, α ∈ K∞. Now we define a new metric d̂ : Rnη+nζ × Rnη+nζ → R+
0 by

d̂(x̂, x̂′) = d(x̂1, x̂
′
1) + ‖x̂2 − x̂′2‖.

It can be readily checked that d̂ satisfies all three conditions of a metric. Using

metric d̂, function V satisfies condition (i) in Definition 4.2.1 as follows:

µ
(
d̂(x̂, x̂′)

)
≤ V (x̂, x̂′) ≤ µ

(
d̂(x̂, x̂′)

)
,

where µ, µ ∈ K∞, µ
(
d̂(x̂, x̂′)

)
= α(d(x̂1, x̂

′
1)) + ‖x̂2 − x̂′2‖2, and µ

(
d̂(x̂, x̂′)

)
=

α(d(x̂1, x̂
′
1))+‖x̂2−x̂′2‖2. Now we show that V satisfies condition (iii) in Definition

4.2.1 for Σ̃. Since V̂ is a δ∃-ISS Lyapunov function for χ1-subsystem when χ2 is

the input, λ ≥ κ+κ̂+1
2

, σ(r) ≤ κ̂r2, and using the Cauchy Schwarz inequality, we
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have:

∂V

∂x̂

[
f(x̂1, ψ(x̂1) + x̂2)T ,−λx̂T2 + ûT

]T
(4.4.16)

+
∂V

∂x̂′
[
f(x̂′1, ψ(x̂′1) + x̂′2)T ,−λx̂′T2 + û′T

]T ≤
∂V̂

∂x̂1

f(x̂1, ψ(x̂1) + x̂2) +
∂V̂

∂x̂′1
f(x̂′1, ψ(x̂′1) + x̂′2)

+2(x̂2 − x̂′2)T (−λx̂2 + û)− 2(x̂2 − x̂′2)T (−λx̂′2 + û′) ≤

−κV̂ (x̂1, x̂
′
1) + σ(‖x̂2 − x̂′2‖)− 2λ‖x̂2 − x̂′2‖2 + 2(x̂2 − x̂′2)T (û− û′) ≤

−κV̂ (x̂1, x̂
′
1) + κ̂‖x̂2 − x̂′2‖2 − 2λ‖x̂2 − x̂′2‖2 + 2‖x̂2 − x̂′2‖‖û− û′‖ ≤

−κV̂ (x̂1, x̂
′
1) + κ̂‖x̂2 − x̂′2‖2 − 2λ‖x̂2 − x̂′2‖2 + ‖x̂2 − x̂′2‖2 + ‖û− û′‖2 ≤

−κV (x̂, x̂′) + ‖û− û′‖2.

The latter inequality implies that V is a δ∃-ISS Lyapunov function for Σ̃. Since

δ∃-ISS Lyapunov functions are coordinate-invariant, as shown in Lemma 4.2.3, we

conclude that the function Ṽ : Rnη+nζ × Rnη+nζ → R+
0 , defined by:

Ṽ (x, x′) = V (φ(x), φ(x′)) = V̂ (y, y′) + ‖(z − ψ(y))− (z′ − ψ(y′))‖2,

is a δ∃-ISS Lyapunov function for Σ, as in (4.4.1) equipped with the state feedback

control law in (4.4.9).

Remark 4.4.6. One can use the LMI based results in [PvdWN05, PvdWN07,

vdWP08] to find a quadratic δ∃-ISS Lyapunov function for system Ση in (4.4.15).

The next results provide a backstepping design approach for parametric-strict-

feedback and strict-feedback form control systems by recursively applying the

results proposed in Lemma 4.4.5.

Consider the class of control systems Σ = (Rn,U,U , f) with f of the parametric-

79



strict-feedback form [KKK95]:

f1(x, u) = h1(x1) + b1x2,

f2(x, u) = h2(x1, x2) + b2x3,
...

fn−1(x, u) = hn−1(x1, · · · , xn−1) + bn−1xn,

fn(x, u) = hn(x) + g(x)u,

(4.4.17)

where x ∈ Rn is the state and u ∈ U ⊂ R is the control input. The functions

hi : Ri → R, for i = 1, . . . , n, and g : Rn → R are smooth, g(x) 6= 0 over the do-

main of interest, and bi ∈ R, for i = 1, . . . , n, are nonzero constants.

We can now state the results, describing a backstepping controller for control

system of the form (4.4.17).

Theorem 4.4.7. For any control system Σ = (Rn,U,U , f) with f of the form (4.4.17)

and for any λ ∈ R+, the state feedback control law:

k(x, û) =
1

g(x)

[
kn(x)− hn(x)

]
+

1

g(x)
û, (4.4.18)

where

kl(x) = −bl−1 (xl−1 − φl−2(x))− λ (xl − φl−1(x))

+
∂φl−1

∂x
f(x, k(x)), for l = 1, · · · , n, (4.4.19)

φl(x) =
1

bl

[
kl(x)− hl(x)

]
, for l = 1, · · · , n− 1,

φ−1(x) = φ0(x) = 0 ∀x ∈ Rn, b0 = 0, and x0 = 0,

renders the control system Σ δ∃-ISS with respect to the input υ̂ and the function

V̂ (x, x′) =

√√√√n−1∑
l=0

[
(xl+1 − φl(x))−

(
x′l+1 − φl(x′)

)]2
,

is a δ∃-ISS Lyapunov function for Σ.
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Proof: The proposed control law (4.4.18) transforms a control system Σ =

(Rn,R,U , f) with f of the form (4.4.17) into:

f1(x, k(x, û)) = h1(x1) + b1x2,

f2(x, k(x, û)) = h2(x1, x2) + b2x3,
...

fn−1(x, k(x, û)) = hn−1(x1, · · · , xn−1) + bn−1xn,

fn(x, k(x, û)) = kn(x) + û.

(4.4.20)

The coordinate transformation z = ψ(x), where ψ : Rn → Rn is the smooth map

(with smooth inverse) defined by:

z = ψ(x) =



x1

x2 − φ1(x)

x3 − φ2(x)
...

xn − φn−1(x)


, (4.4.21)

transforms the control system Σ with f of the form (4.4.20) into:

Σ′ :
{
ζ̇ = Aζ +Bυ̂ , (4.4.22)

where

A =



−λ b1 0 0 · · · 0

−b1 −λ b2 0 · · · 0

0 −b2 −λ b3 · · · 0
...

. . .
...

0 · · · 0 −bn−1 −λ


, B =


0
...

0

1

 . (4.4.23)

It can be easily checked that the function:

V (z, z′) =

√
(z − z′)T (z − z′),

satisfies

∂V

∂z
(Az +Bû) +

∂V

∂z′
(Az′ +Bû′) ≤ −λV (z, z′) + ‖û− û′‖. (4.4.24)
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Hence the function V satisfies conditions (i) and (iii) in Definition 4.2.1 implying

that it is a δ∃-ISS Lyapunov function for Σ′. Using Theorem 4.3.8, we obtain that

Σ′ is δ∃-ISS with respect to the input υ̂. Using Lemma 4.2.3, we conclude that

the function:

V̂ (x, x′) = V (ψ(x), ψ(x′)) =√
(ψ(x)− ψ(x′))T (ψ(x)− ψ(x′)) =√√√√n−1∑

l=0

[
(xl+1 − φl(x))−

(
x′l+1 − φl(x′)

)]2
,

is a δ∃-ISS Lyapunov function for Σ. Therefore, using Theorem 4.3.8, we obtain

that Σ is δ∃-ISS with respect to the input υ̂. The δ∃-ISS condition (2.3.3), as

shown in Theorem 4.3.8, is given by:

d (ξxυ̂(t), ξx′υ̂′(t)) ≤ 2e−λtd(x, x′) +
2

λ
‖υ̂ − υ̂′‖∞,

where d(x, x′) = ‖ψ(x)− ψ(x′)‖, for any x, x′ ∈ Rn.

Remark 4.4.8. It can be readily seen that the state feedback control law (4.4.18)

renders the control system Σ δ∃-GAS and the function

V̂ (x, x′) =

√√√√n−1∑
l=0

[
(xl+1 − φl(x))−

(
x′l+1 − φl(x′)

)]2
,

is a δ∃-GAS Lyapunov function for Σ.

Now, we extend the result in Theorem 4.4.7 to the class of control systems

Σ = (Rn,U,U , f) with f of the strict-feedback form [KKK95]:

f1(x, u) = h1(x1) + g1(x1)x2,

f2(x, u) = h2(x1, x2) + g2(x1, x2)x3,
...

fn−1(x, u) = hn−1(x1, · · · , xn−1) + gn−1(x1, · · · , xn−1)xn,

fn(x, u) = hn(x) + gn(x)u,

(4.4.25)
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where x ∈ Rn is the state and u ∈ U ⊆ R is the control input. The functions

hi : Ri → R, and gi : Ri → R, for i = 1, . . . , n, are smooth, and gi(x1, · · · , xi) 6= 0

over the domain of interest.

Theorem 4.4.9. Let Σ = (Rn,U,U , f) be a control system where f is of the

form (4.4.25). The state feedback control law u = k(ϕ(x), û), where k was defined

in (4.4.18) and ϕ : Rn → Rn is the smooth map (with smooth inverse) defined by:

ϕ(x) =



x1

g1(x1)x2

g1(x1)g2(x1, x2)x3

...∏n−1
i=1 gi(x1, · · · , xi)xn


, (4.4.26)

renders control system Σ δ∃-ISS with respect to the input υ̂ and the function

Ṽ (x, x′) =

√
(ψ ◦ ϕ(x)− ψ ◦ ϕ(x′))T (ψ ◦ ϕ(x)− ψ ◦ ϕ(x′)),

where ψ was defined in (4.4.21), is a δ∃-ISS Lyapunov function for Σ.

Proof: It can be readily verified that the coordinate transformation η = ϕ(ξ)

transforms the control system Σ = (Rn,U,U , f) with f of the form (4.4.25) to the

control system Σ′ = (Rn,U,U , f ′), where f ′ = ϕ∗f has the following form:

f ′1(y, u) = h′1(y1) + y2,

f ′2(y, u) = h′2(y1, y2) + y3,
...

f ′n−1(y, u) = h′n−1(y1, · · · , yn−1) + yn,

f ′n(y, u) = h′n(y) + g′(y)u,

(4.4.27)

where h′i : Ri → R, for i = 1, · · · , n, are smooth functions, g′ =
∏i=n

i=1 gi, and

y ∈ Rn is the state of Σ′. As proved in Theorem 4.4.7, the state feedback control

law k, defined in (4.4.18), makes the function:

V̂ (y, y′) =

√
(ψ(y)− ψ(y′))T (ψ(y)− ψ(y′)), (4.4.28)
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a δ∃-ISS Lyapunov function, for the control system Σ′. As proved in Lemma 4.2.3,

the function:

Ṽ (x, x′) = V̂ (ϕ(x), ϕ(x′)) =

√
(ψ ◦ ϕ(x)− ψ ◦ ϕ(x′))T (ψ ◦ ϕ(x)− ψ ◦ ϕ(x′)),

is a δ∃-ISS Lyapunov function , for the control system Σ, equipped with the

state feedback control law k(ϕ(x), û). Therefore, the state feedback control law

k(ϕ(x), û) makes the control system Σ δ∃-ISS with respect to the input υ̂. The

δ∃-ISS condition (2.3.3), as shown in Theorem 4.3.8, is given by:

d (ξxυ̂(t), ξx′υ̂′(t)) ≤ 2e−λtd(x, x′) +
2

λ
‖υ̂ − υ̂′‖∞,

where d(x, x′) = ‖ψ ◦ ϕ(x)− ψ ◦ ϕ(x′)‖, for any x, x′ ∈ Rn.

Remark 4.4.10. It can be readily seen that the state feedback control law k(ϕ(x), û),

where k was defined in (4.4.18), renders the control system Σ δ∃-GAS and the

function

Ṽ (x, x′) =

√
(ψ ◦ ϕ(x)− ψ ◦ ϕ(x′))T (ψ ◦ ϕ(x)− ψ ◦ ϕ(x′)),

is a δ∃-GAS Lyapunov function for Σ.

The next lemma shows how to construct contraction metrics for the closed-loop

system resulting from the backstepping controller synthesis technique in Theorem

4.4.2.

Lemma 4.4.11. Consider the control system Σ of the form (4.4.1) and assume

that function f is smooth. Suppose there exists a continuously differentiable func-

tion ψ : Rnη → Rnζ such that the metric Ĝ : Rnη → Rnη×nη is a contraction

metric, with respect to states and inputs, for the control system

Ση : η̇ = f(η, ψ(η) + υ̃), (4.4.29)

satisfying the condition (4.2.7) for some λ̂ ∈ R+ and α ∈ R+
0 . Then

G̃(x) =

 Ĝ(y) +
(
∂ψ
∂y

)T
∂ψ
∂y
−
(
∂ψ
∂y

)T
−∂ψ

∂y
Inζ

 ,
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where x =
[
yT , zT

]T
, is a contraction metric, with respect to states and inputs,

for Σ as in (4.4.1) equipped with the state feedback control law in (4.4.9) for all

λ > α2

8λ̂
.

Proof: As explained in the proof of Theorem 4.4.2, using the proposed

control law (4.4.9) and the coordinate transformation φ in (4.4.10), the control

system Σ of the form (4.4.1) is transformed to the control system Σ̃ in (4.4.13).

Now we show that the metric

G(x̂) =

 Ĝ(x̂1) 0nη×nζ

0nζ×nη Inζ

 ,
is a contraction metric, with respect to states and inputs, for Σ̃, where x̂ =[
x̂T1 , x̂

T
2

]T
is the state of Σ̃, and x̂1, and x̂2 are states of χ1, χ2-subsystems, re-

spectively. It can be easily seen that G is positive definite because Ĝ is positive

definite since it is a contraction metric for Ση. Now we show that G satisfies the

condition (4.2.7) for the control system Σ̃. Since Ĝ is a contraction metric, with

respect to states and inputs, for χ1-subsystem when χ2 is the input, we have:

X̂T
1

((
∂f

∂x̂1

)T
Ĝ(x̂1) + Ĝ(x̂1)

∂f

∂x̂1

+
∂Ĝ

∂x̂1

f(x̂1, ψ(x̂1) + x̂2)

)
X̂1

+ 2X̂T
2

(
∂f

∂x̂2

)T
Ĝ(x̂1)X̂1 ≤ −λ̂X̂T

1 Ĝ(x̂1)X̂1 + α
(
X̂T

1 Ĝ(x̂1)X̂1

) 1
2
(
X̂T

2 X̂2

) 1
2
,

(4.4.30)

for any X̂1, x̂1 ∈ Rnη , X̂2, x̂2 ∈ Rnζ , some λ̂ ∈ R+, and some α ∈ R+
0 . By choosing
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λ > α2

8λ̂
, using (4.4.30), and the Cauchy Schwarz inequality we obtain:

[
X̂T

1 X̂T
2

]((∂ [f,−λx̂2 + û]T

∂x̂

)T
G(x̂) +G(x̂)

∂ [f,−λx̂2 + û]T

∂x̂
+

∂G

∂x̂

 f(x̂1, ψ(x̂1) + x̂2)

−λx̂2 + û

) X̂1

X̂2

+ 2Y T

 0nη×nζ

Inζ

T G(x̂)

 X̂1

X̂2

 =

[
X̂T

1 X̂T
2

]
(
∂f
∂x̂1

)T
Ĝ(x̂1) + Ĝ(x̂1) ∂f∂x̂1 + ∂Ĝ

∂x̂1
f Ĝ(x̂1) ∂f∂x̂2(

∂f
∂x̂2

)T
Ĝ(x̂1) −2λInζ


 X̂1

X̂2

+ 2Y T X̂2 ≤

− λ̂
〈
X̂1, X̂1

〉
Ĝ

+ α
〈
X̂1, X̂1

〉 1
2

Ĝ

〈
X̂2, X̂2

〉 1
2

Inζ

− 2λX̂T
2 X̂2 + 2Y T X̂2 ≤

− λ̃
〈
X̂1, X̂1

〉
Ĝ
− λ̃X̂T

2 X̂2 + 2
√
Y TY

√
X̂T

2 X̂2 +
〈
X̂1, X̂1

〉
Ĝ
≤

− λ̃
〈
X̂, X̂

〉
G

+ 2
〈
X̂, X̂

〉 1
2

G
〈Y, Y 〉

1
2
Inζ

,

for any X̂ =
[
X̂T

1 , X̂
T
2

]T
∈ Rnη+nζ , any x̂ =

[
x̂T1 , x̂

T
2

]T ∈ Rnη+nζ , any Y ∈ Rnζ ,

and some λ̃ ∈ R+. Hence, G is a contraction metric, with respect to states and

inputs, for Σ̃. Since a contraction metric, with respect to states and inputs, is

coordinate invariant, as shown in Lemma 4.4.19, we conclude that G̃ = φ∗G is a

contraction metric, with respect to states and inputs, for Σ as in (4.4.1) equipped

with the state feedback control law in (4.4.9). This completes the proof.

The next results provide a backstepping design approach for parametric-strict-

feedback and strict-feedback form control systems by recursively applying the

results proposed in Lemma 4.4.11.

Theorem 4.4.12. For any control system Σ = (Rn,U,U , f) with f of the form (4.4.17)

and for any λ ∈ R+, the state feedback control law:

k(x, û) =
1

g(x)

[
kn(x)− hn(x)

]
+

1

g(x)
û, (4.4.31)
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where

kl(x, û) =− bl−1 (xl−1 − φl−2(x))− λ

2
(xl − φl−1(x))

+
∂φl−1

∂x
f(x, k(x, û)), for l = 1, · · · , n,

φl(x) =
1

bl

[
kl(x)− hl(x)

]
, for l = 1, · · · , n− 1,

φ−1(x) =φ0(x) = 0 ∀x ∈ Rn, b0 = 0, and x0 = 0,

renders the control system Σ δ∃-GAS.

Proof: Consider the following system:

Σl :

 η̇l = Fl(ηl) +Blξl,

ξ̇l = kl(ηl, ξl),
(4.4.32)

where ηl = [ξ1, · · · , ξl−1]T , Bl = [0, · · · , 0, bl−1]T ∈ Rl−1, zl = [yTl , xl]
T ∈ Rl is

the state of Σl, Fl(yl) = [f1(x, u), · · · , fl−2(x, u), hl−1(x1, · · · , xl−1)]T , and yl =

[x1, · · · , xl−1]T . By using induction on l, we show that the metric Gl, defined by:

Gl(yl) =

 Gl−1(yl−1) +
(
∂φl−1

∂yl

)T
∂φl−1

∂yl
−
(
∂φl−1

∂yl

)T
−∂φl−1

∂yl
1

 , (4.4.33)

is a contraction metric, with respect to states, for the system (4.4.32) with con-

traction rate λ. For l = 1, it can be easily checked that G1(y1) = 1 is a contraction

metric, with respect to states, with the contraction rate λ for the scalar system:

Σ1 : ξ̇1 = k1(ξ1) = −λ
2
ξ1.

Assume that the metric Gk−1 is a contraction metric, with respect to states, for

the system Σk−1, for some 2 ≤ k ≤ n, and with contraction rate λ. This implies:

[
Y T X

]((∂(Fk +Bkφk−1)

∂yk

)T
Gk−1(yk−1) +Gk−1(yk−1)

∂(Fk +Bkφk−1)

∂yk

+
∂Gk−1
∂yk

(Fk +Bkφk−1)

) Y

X

 ≤ −λ [Y T X
]
Gk−1(yk−1)

 Y

X

 , (4.4.34)

87



for any Y ∈ Rk−2, and X ∈ R. Since the metric Gk−1 is only a function of

yk−1 = [x1, · · · , xk−2]T , and the vector Bk has zero entries except for the last

entry, it can be easily shown that ∂Gk−1

∂yk
Bk = 0k−1, and the inequality (4.4.34)

reduces to:

[
Y T X

]((∂(Fk +Bkφk−1)

∂yk

)T
Gk−1(yk−1) +Gk−1(yk−1)

∂(Fk +Bkφk−1)

∂yk

+
∂Gk−1

∂yk
Fk

) Y

X

 ≤ −λ [Y T X
]
Gk−1(yk−1)

 Y

X

 . (4.4.35)

Now, we show that:

Gk(yk) =

 Gk−1(yk−1) +
(
∂φk−1

∂yk

)T
∂φk−1

∂yk
−
(
∂φk−1

∂yk

)T
−∂φk−1

∂yk
1

 , (4.4.36)

is a contraction metric, with respect to states, for the system Σk. For any nonzero

vector
[
Y T , X

]T ∈ Rk, we have:

[
Y T X

]
Gk(yk)

 Y

X

 =

[
Y T X

]  Gk−1(yk−1) +
(
∂φk−1

∂yk

)T
∂φk−1

∂yk
−
(
∂φk−1

∂yk

)T
−∂φk−1

∂yk
1

 Y

X

 =

Y TGk−1(yk−1)Y +

(
∂φk−1

∂yk
Y −X

)2

. (4.4.37)

If Y ∈ Rk−1 is the zero vector, X must be nonzero implying that the equation

(4.4.37) is equal to X2 which is positive. On the other hand, if Y ∈ Rk−1 is

nonzero, Y TGk−1(yk−1)Y is a positive scalar because Gk−1 is a Riemannian metric.

Hence, Gk is positive definite. Using the inequality (4.4.35), the long algebraic

manipulations in (4.4.38) show that Gk satisfies (4.2.5) with the contraction rate

λ. Hence, the metric Gk is a contraction metric, with respect to states, for the

system Σk. Therefore, for any l ≤ n, the metric Gl is a contraction metric, with

respect to states, for the system (4.4.32) and with the contraction rate λ.
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——————————————————————————————————–

[
Y
T
X
]
 ∂

[
FTk + BTk xk kk(x, û)

]T
∂zk


T

Gk(yk) +Gk(yk)
∂
[
FTk + BTk xk kk(x, û)

]T
∂zk

+ Ġk(yk)


 Y

X

 = (4.4.38)

[
Y
T
X
](

∂Fk
∂yk

Bk

(Fk + Bkxk)
T ∂2φk−1

∂yk
2 +

∂φk−1
∂yk

∂Fk
∂yk

+ λ
2

∂φk−1
∂yk

− BTk Gk−1(yk−1) −λ
2

+
∂φk−1
∂yk

Bk


T

·

 Gk−1(yk−1) +

(
∂φk−1
∂yk

)T ∂φk−1
∂yk

−
(
∂φk−1
∂yk

)T
−
∂φk−1
∂yk

1

 +

 Gk−1(yk−1) +

(
∂φk−1
∂yk

)T ∂φk−1
∂yk

−
(
∂φk−1
∂yk

)T
−
∂φk−1
∂yk

1

 ·


∂Fk
∂yk

Bk

(Fk + Bkxk)
T ∂2φk−1

∂yk
2 +

∂φk−1
∂yk

∂Fk
∂yk

+ λ
2

∂φk−1
∂yk

− BTk Gk−1(yk−1) −λ
2

+
∂φk−1
∂yk

Bk

+


∂Gk−1
∂yk

(Fk + Bkxk) +
∂2φk−1

∂yk
2 (Fk + Bkxk)

∂φk−1
∂yk

+

(
∂φk−1
∂yk

)T
(Fk + Bkxk)

T ∂
2φk−1

∂yk
2 −

∂2φk−1

∂yk
2 (Fk + Bkxk)

−(Fk + Bkxk)
T ∂

2φk−1

∂yk
2 0


)
·

 Y

X

 =
[
Y
T
X
]
·


((

∂(Fk+Bkφk−1)

∂yk

)T
Gk−1(yk−1) +Gk−1(yk−1)

∂(Fk+Bkφk−1)

∂yk
+
∂Gk−1
∂yk

Fk

)
− λ

(
∂φk−1
∂yk

)T ∂φk−1
∂yk

λ

(
∂φk−1
∂yk

)T
λ
∂φk−1
∂yk

−λ

 ·
 Y

X

 ≤ −λ [Y T X
]
Gk(yk)

 Y

X

 .

——————————————————————————————————–

The proposed control law (4.4.31), transforms a control system of the form

(4.4.17) into:

Σn :

 η̇n = Fn(ηn) +Bnξn,

ξ̇n = kn(ηn, ξn) + υ̂.
(4.4.39)

It can be easily checked that υ̂ does not appear in the variation of Σn when we

only have state variations. Since the metric Gn is not a function of the n-th state,

its derivative with respect to time does not include υ̂. Hence, we can apply the

induction results to Σn to conclude that the metric Gn is a contraction metric,

with respect to states, for Σn and with the contraction rate λ. Moreover, it can

be readily seen that Gn = ψ∗In, where ψ was defined in (4.4.21). Note that dIn is

just the Euclidean metric and we know that (Rn,dIn) is a complete metric space.

Moreover, since ψ : Rn → Rn is an isometry20, (Rn,dGn) is also a complete metric

space [Lee03]. By using Theorem 4.3.10, we conclude that a control system of the

20Suppose M and M̃ are Riemannian manifolds with Riemannian metrics G and G̃, respec-
tively. A smooth map ψ : M → M̃ is called an isometry if it is a diffeomorphism satisfying
G = ψ∗G̃.

89



form (4.4.17), equipped with the state feedback control law (4.4.31), is δ∃-GAS.

The δ∃-GAS condition (2.3.1), as shown in [AR03], is given by:

dGn (ξxυ(t), ξx′υ(t)) ≤ e−
λ
2
tdGn(x, x′). (4.4.40)

Remark 4.4.13. The contraction metric Gn(yn), with respect to states, for the
control system (4.4.17), equipped with the state feedback control law (4.4.31), is
given by:

(4.4.41)




 [1] +

(
∂φ1
∂y2

)T ∂φ1
∂y2

−
(
∂φ1
∂y2

)T
− ∂φ1
∂y2

1

 +
(
∂φ2
∂y3

)T ∂φ2
∂y3

−
(
∂φ2
∂y3

)T
− ∂φ2
∂y3

1

 + · · ·

.

.

.


+

(
∂φn−1
∂yn

)T ∂φn−1
∂yn

−
(
∂φn−1
∂yn

)T

−
∂φn−1
∂yn

1


,

where yl = [x1, · · · , xl−1]T , for l = 2, · · · , n, and the contraction rate is λ.

Remark 4.4.14. It can be checked that the function

V (x) =
1

2

n−1∑
l=0

(xl+1 − φl(x))2 ,

is a Lyapunov function [Kha96] for the control system (4.4.17), equipped with the

state feedback control law (4.4.31) when û = 0. Moreover, the Hessian of V (x) is

equal to the contraction metric Gn, with respect to states, defined in (4.4.41).

In the next theorem, we show that control law (4.4.31) also enforces δ∃-ISS.

Theorem 4.4.15. For any control system Σ = (Rn,U,U , f) with f of the form

(4.4.17) and for any λ ∈ R+, the state feedback control law:

k(x, û) =
1

g(x)

[
kn(x)− hn(x)

]
+

1

g(x)
û, (4.4.42)

where

kl(x, û) =− bl−1 (xl−1 − φl−2(x))− λ

2
(xl − φl−1(x))

+
∂φl−1

∂x
f(x, k(x, û)), for l = 1, · · · , n,

φl(x) =
1

bl

[
kl(x)− hl(x)

]
, for l = 1, · · · , n− 1,

φ−1(x) =φ0(x) = 0 ∀x ∈ Rn, b0 = 0, and x0 = 0,

renders the control system Σ δ∃-ISS with respect to the input υ̂.
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Proof: Consider the following system:

Σl : η̇l = Fl(ηl) +Blφl−1(ηl), for l = 2, · · · , n, (4.4.43)

where ηl = [ξ1, · · · , ξl−1]T , Bl = [0, · · · , 0, bl−1]T ∈ Rl−1, yTl = [x1, · · · , xl−1]T is the

state of Σl, and Fl(ηl) = [f1(ξ, υ), · · · , fl−2(ξ, υ), hl−1(ξ1, · · · , ξl−1)]T . As proved

in Theorem 4.4.12, the metric Gl in (4.4.33) is a contraction metric, with respect

to states, for the system Σl and with the contraction rate λ. The proposed control

law (4.4.42), transforms a control system of the form (4.4.17) into:

Σ :

 η̇n = Fn(ηn) +Bnξn,

ξ̇n = kn(ηn, ξn) + υ̂.
(4.4.44)

Now, we show that:

Gn(yn) =

 Gn−1(yn−1) +
(
∂φn−1

∂yn

)T
∂φn−1

∂yn
−
(
∂φn−1

∂yn

)T
−∂φn−1

∂yn
1

 , (4.4.45)

is a contraction metric, with respect to states and inputs, for the control system

(4.4.44). For n = 1, it can be easily checked that G1(y1) = 1 is a contraction

metric, with respect to states and inputs, with the contraction rate λ, satisfying

(4.2.8) with α = 2 for the scalar control system:

Σ : ξ̇1 = k1(ξ1) + υ̂ = −λ
2
ξ1 + υ̂.

As proved in Theorem 4.4.12, Gn(yn) is positive definite. Using the inequality

(4.4.35) for k = n, long algebraic manipulations in (4.4.46) show that Gn satisfies

(4.2.8) with the contraction rate λ and α = 2. Hence, the metric Gn is a contrac-

tion metric, with respect to states and inputs, for the control system (4.4.44). As

explained in the proof of Theorem 4.4.12, we know that (Rn,dGn) is a complete

metric space. By using Theorem 4.3.11, we conclude that a control system of the

form (4.4.17), equipped with the state feedback control law (4.4.42), is δ∃-ISS with

respect to υ̂. The δ∃-ISS condition (2.3.3), as shown in Theorem 4.3.11, is given
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——————————————————————————————————–

[
Y
T
X
]
 ∂

[
FTn + BTn xn k(yn, xn) + û

]T
∂x


T

Gn(yn) +Gn(yn)
∂
[
FTn + BTn xn k(yn, xn) + û

]T
∂x

+ Ġn(yn)


 Y

X

+

2U

 ∂
[
FTn + BTn xn k(yn, xn) + û

]T
∂û


T

Gn(yn)

 Y

X

 =
[
Y
T
X
]
· (4.4.46)

( ∂Fn
∂yn

Bn

(Fn + Bnxn)
T ∂2φn−1

∂yn2 +
∂φn−1
∂yn

∂Fn
∂yn

+ λ
2

∂φn−1
∂yn

− BTnGn−1(yn−1) −λ
2

+
∂φn−1
∂yn

Bn


T

·

 Gn−1(yn−1) +

(
∂φn−1
∂yn

)T ∂φn−1
∂yn

−
(
∂φn−1
∂yn

)T
−
∂φn−1
∂yn

1

 +

 Gn−1(yn−1) +

(
∂φn−1
∂yn

)T ∂φn−1
∂yn

−
(
∂φn−1
∂yn

)T
−
∂φn−1
∂yn

1

 ·
 ∂Fn

∂yn
Bn

(Fn + Bnxn)
T ∂2φn−1

∂yn2 +
∂φn−1
∂yn

∂Fn
∂yn

+ λ
2

∂φn−1
∂yn

− BTnGn−1(yn−1) −λ
2

+
∂φn−1
∂yn

Bn

+


∂Gn−1
∂yn

(Fn + Bnxn) +
∂2φn−1

∂yn2 (Fn + Bnxn)
∂φn−1
∂yn

+

(
∂φn−1
∂yn

)T
(Fn + Bnxn)

T ∂
2φn−1

∂yn2 −
∂2φn−1

∂yn2 (Fn + Bnxn)

−(Fn + Bnxn)
T ∂

2φn−1

∂yn2 0


)
·

 Y

X

 + 2U

(
−
∂φn−1

∂yn
Y +X

)
≤
[
Y
T
X
]
·


((

∂(Fn+Bnφn−1)

∂yn

)T
Gn−1(yn−1) +Gn−1(yn−1)

∂(Fn+Bnφn−1)

∂yn
+
∂Gn−1
∂yn

Fn

)
− λ

(
∂φn−1
∂yn

)T ∂φn−1
∂yn

λ

(
∂φn−1
∂yn

)T
λ
∂φn−1
∂yn

−λ

 ·
 Y

X

 + 2

√√√√√[Y T X
]
Gn(yn)

 Y

X

√U2 ≤ −λ
[
Y
T
X
]
Gn(yn)

 Y

X

 + 2

√√√√√[Y T X
]
Gn(yn)

 Y

X

√U2.

——————————————————————————————————–

by:

dGn (ξxυ̂(t), ξx′υ̂′(t)) ≤ e−
λ
2
tdGn(x, x′) +

2

λ

(
1− e−

λ
2
t
)
‖υ̂ − υ̂′‖∞

≤ e−
λ
2
tdGn(x, x′) +

2

λ
‖υ̂ − υ̂′‖∞.

Remark 4.4.16. The contraction metric, with respect to states and inputs, for a

control system of the form (4.4.17), equipped with the state feedback control law

(4.4.42), is given by (4.4.41).

Remark 4.4.17. It can be shown that the function

V (x) =
1

2

n−1∑
l=0

(xl+1 − φl(x))2 ,

is an input-to-state stability Lyapunov function [Kha96] with respect to υ̂ for a

control system of the form (4.4.17), equipped with the state feedback control law

(4.4.42).
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Now, we extend the results in Theorems 4.4.12 and 4.4.15 to the class of control

systems Σ = (Rn,U,U , f) with f of the strict-feedback form in (4.4.25).

In order to extend Theorems 4.4.12, and 4.4.15 to control systems of the form

(4.4.25), we need the following technical lemmas.

Lemma 4.4.18. Let Σ = (Rn,U,U , f) be a control system and let φ : Rn → Rn be

a global diffeomorphism. If the metric G is a contraction metric, with respect to

states, for Σ′ = (Rn,U,U , φ∗f) and with contraction rate λ ∈ R+, then the metric

φ∗G is a contraction metric, with respect to states, for the system Σ and with the

contraction rate λ.

Proof: Since G is a contraction metric, with respect to states, for the system

Σ′ and with the contraction rate λ, using the inequality (4.2.6), we have:

d

dt
〈δη, δη〉G ≤ −λ〈δη, δη〉G, (4.4.47)

where δη is variation of the state trajectory of Σ′. Since G is a metric and

Θ(x) = ∂φ
∂x

(x) is an invertible matrix21, it is readily seen that (φ∗G)(x) is a positive

definite matrix. We now show that the metric φ∗G is a contraction metric, with

respect to states, for the system Σ. For the coordinate transformation η = φ(ξ),

we have:

δη = Θ(ξ)δξ. (4.4.48)

By taking the derivative of (4.4.48) with respect to time, we obtain:

d

dt
δη = Θ̇(ξ)δξ + Θ(ξ)

d

dt
δξ. (4.4.49)

21For any smooth map φ : Rn → Rn with a smooth inverse, it is easy to show that ∂φ
∂x (x) is

an invertible matrix for any x ∈ Rn.
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Using (4.4.47), (4.4.48), and (4.4.49), we obtain:

d

dt
〈δη, δη〉G =

(
d

dt
δη

)T
Gδη + δηTG

d

dt
δη + δηT Ġδη

=

(
Θ̇δξ + Θ

d

dt
δξ

)T
GΘδξ + (Θδξ)T G

(
Θ̇δξ + Θ

d

dt
δξ

)
+ δηT Ġδη

=

(
d

dt
δξ

)T
φ∗Gδξ + δξTφ∗G

d

dt
δξ + δξ

d

dt
(φ∗G) δξ =

d

dt
〈δξ, δξ〉φ∗G

≤− λ〈δη, δη〉G = −λδηTGδη = −λ (Θδξ)T GΘδξ = −λδξTφ∗Gδξ

=− λ〈δξ, δξ〉φ∗G.

Hence, the metric φ∗G is a contraction metric, with respect to states, for the

system Σ and with the contraction rate λ.

In the next lemma, we extend the results of Lemma 4.4.18 to contraction with

respect to states and inputs.

Lemma 4.4.19. Let Σ = (Rn,U,U , f) be a control system and let φ : Rn → Rn be

a global diffeomorphism. If the metric G is a contraction metric, with respect to

states and inputs, satisfying (4.2.8) with contraction rate λ ∈ R+, and α ∈ R+
0 , for

Σ′ = (Rn,U,U , φ∗f), then the metric φ∗G is a contraction metric, with respect to

states and inputs, satisfying (4.2.8) with the contraction rate λ, and the constant

α for the system Σ.

Proof: Since G is a contraction metric, with respect to states and inputs, for

the control system Σ′, satisfying (4.2.8) with the contraction rate λ, and α ∈ R+
0 ,

using the inequality (4.2.9), we have:

d

dt
〈δη, δη〉G ≤ −λ〈δη, δη〉G + α〈δη, δη〉

1
2
G〈δυ, δυ〉

1
2
Im
. (4.4.50)
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Using (4.4.48), (4.4.49), (4.4.50), and the results of Lemma 4.4.18, we obtain:

d

dt
〈δη, δη〉G =

d

dt
〈δξ, δξ〉φ∗G

≤− λ〈δη, δη〉G + α〈δη, δη〉
1
2
G〈δυ, δυ〉

1
2
Im

=− λ〈δξ, δξ〉φ∗G + α
(

(Θδξ)T GΘδξ
) 1

2 〈δυ, δυ〉
1
2
Im

=− λ〈δξ, δξ〉φ∗G + α〈δξ, δξ〉
1
2
φ∗G〈δυ, δυ〉

1
2
Im
.

Hence, the metric φ∗G is a contraction metric, with respect to states and inputs,

satisfying (4.2.8) with the contraction rate λ, and the constant α, for Σ.

We can now state the result for a control system Σ = (Rn,U,U , f) with f of

the form (4.4.25).

Theorem 4.4.20. Let Σ = (Rn,U,U , f) be a control system where f is of the

form (4.4.25). The state feedback control law u = k(ϕ(x), û), where k was defined

in (4.4.31) and ϕ : Rn → Rn is the smooth map (with smooth inverse), defined in

(4.4.26), renders control system Σ δ∃-GAS.

Proof: The coordinate transformation η = ϕ(ξ) transforms the control sys-

tem Σ = (Rn,U,U , f) with f of the form (4.4.25) to the control system Σ′ = (Rn,U,U , f ′),

where f ′ = ϕ∗f . It can be easily checked that f ′ has the following form:

f ′1(y, u) = h′1(y1) + y2,

f ′2(y, u) = h′2(y1, y2) + y3,
...

f ′n−1(y, u) = h′n−1(y1, · · · , yn−1) + yn,

f ′n(y, u) = h′n(y) + g′(y)u,

(4.4.51)

where h′i : Ri → R, for i = 1, · · · , n, are smooth functions, g′ =
∏i=n

i=1 gi, and

y ∈ Rn is the state of Σ′. As proved in Theorem 4.4.12, the state feedback control

law k, defined in (4.4.31), makes the metric Gn, defined in (4.4.41), a contraction

metric, with respect to states, for the control system Σ′ and with the contraction
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rate λ. As proved in Lemma 4.4.18, the metric ϕ∗Gn is a contraction metric, with

respect to states, with the contraction rate λ, for the control system Σ, equipped

with the state feedback control law k(ϕ(x), û). Since (Rn,dGn) is a complete

metric space and ϕ is an isometry, (Rn,dϕ∗Gn) is also a complete metric space

[Lee03]. Therefore, the state feedback control law k(ϕ(x), û) makes the control

system Σ δ∃-GAS.

The δ∃-ISS version of Theorem 4.4.20 is given by the following result.

Theorem 4.4.21. Let Σ = (Rn,U,U , f) be a control system where f is of the

form (4.4.25). The state feedback control law u = k(ϕ(x), û), where k and ϕ were

defined in (4.4.42) and (4.4.26), respectively, renders control system Σ δ∃-ISS with

respect to the input υ̂.

Proof: By following the same steps as in the proof of Theorem 4.4.20, and

using Lemma 4.4.19, we obtain that the state feedback control law u = k(ϕ(x), û)

makes the metric ϕ∗Gn a contraction metric, with respect to states and inputs,

for Σ and with the contraction rate λ. Hence, the control system Σ, equipped

with the state feedback control law k(ϕ(x), û), is δ∃-ISS with respect to the input

υ̂.

Remark 4.4.22. Although we only discussed single input control systems, exten-

sions to multi input control systems are straightforward using the techniques in

[KKK95].

4.5 Examples

We illustrate the results in this chapter on several examples.
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4.5.1 Non-smooth control system

We illustrate the results in Theorem 4.4.2 and Lemma 4.4.5 on the following

non-smooth control system:

Σ :



η̇1 = −η1 + |η3|,

η̇2 = −η2 + sat(η1)sat(η3),

η̇3 = η3 + η1η2η3 + η3
3 + ζ1,

ζ̇1 = ζ1 + ζ3
1 + η2

3 + υ,

(4.5.1)

where sat : R→ R is the saturation function, defined by:

sat(x) =


−1 if x < −1,

x if |x| ≤ 1,

1 if x > 1.

(4.5.2)

It can be readily verified that Σ is unstable at (0, 0, 0, 0), implying that Σ is

not δ∃-ISS. It can be checked that the results in [JL02, SK09, SK08, PvdWN05]

can not be applied to design controllers that render the system Σ δ∃-ISS. By

introducing the feedback transformation υ̂ = ζ1 + ζ3
1 + η2

3 + υ, the control system

Σ is transformed into:

Σ̂ :



η̇1 = −η1 + |η3|,

η̇2 = −η2 + sat(η1)sat(η3),

η̇3 = η3 + η1η2η3 + η3
3 + ζ1,

ζ̇1 = υ̂.

(4.5.3)

Now by choosing ψ(η) = −4η3− η1η2η3− η3
3, and substituting ψ(η) + υ̃ instead of

ζ1, we obtain the following η-subsystem:

Σ̂η :


η̇1 = −η1 + |η3|,

η̇2 = −η2 + sat(η1)sat(η3),

η̇3 = η3 + η1η2η3 + η3
3 + ψ(η) + υ̃ = −3η3 + υ̃.

(4.5.4)
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It remains to show that Σ̂η is δ∃-ISS with respect to υ̃. First we show that the

control system:

Σ̂1 : η̇1 = −η1 + |η3|,

is δ∃-ISS with respect to the input η3. By choosing the function V1(y1, y
′
1) =

(y1 − y′1)2, where y1 and y′1 are states of Σ̂1, and using the Cauchy Schwarz

inequality, we have that:

∂V1

∂y1

(−y1 + |y3|) +
∂V1

∂y′1
(−y′1 + |y′3|) ≤ −2(y1 − y′1)2 + 2|y1 − y′1||y3 − y′3|

≤ −V1(y1, y
′
1) + |y3 − y′3|2,

showing that V1 is a δ∃-ISS Lyapunov function for Σ̂1 and, hence, Σ̂1 is δ∃-ISS

with respect to the input η3. Now we show that the control system:

Σ̂2 : η̇2 = −η2 + sat(η1)sat(η3),

is δ∃-ISS with respect to inputs η1 and η3. Similarly, by choosing the function

V2(y2, y
′
2) = (y2 − y′2)2, where y2 and y′2 are states of Σ̂2, and using the Cauchy

Schwarz inequality, we have that:

∂V2
∂y2

(−y2 + sat(y1)sat(y3)) +
∂V2
∂y′2

(−y′2 + sat(y′1)sat(y′3)) ≤

−2(y2 − y′2)2 + 2|y2 − y′2||sat(y1)sat(y3)− sat(y′1)sat(y′3)| =

−2(y2 − y′2)2 + 2|y2 − y′2||sat(y1)sat(y3)− sat(y1)sat(y′3) + sat(y1)sat(y′3)− sat(y′1)sat(y′3)| ≤

−2(y2 − y′2)2 + 2|y2 − y′2| (|sat(y1)||sat(y3)− sat(y′3)|+ |sat(y′3)||sat(y1)− sat(y′1)|) ≤

−2(y2 − y′2)2 + 2|y2 − y′2| (|y3 − y′3|+ |y1 − y′1|) ≤

−V2(y2, y
′
2) + (|y1 − y′1|+ |y3 − y′3|)

2
,

showing that V2 is a δ∃-ISS Lyapunov function for Σ̂2 and, hence, Σ̂2 is δ∃-ISS with

respect to inputs η1 and η3. Similarly, it can be shown that the control system:

Σ̂3 : η̇3 = −3η3 + υ̃,

is δ∃-ISS with respect to υ̃. By virtue of Lemma 4.4.1, we conclude that the

control system Σ̂η is δ∃-ISS with respect to υ̃. By using the results in Theorem
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4.4.2 for the control system Σ̂, we conclude that the state feedback control law:

υ̂ = k(η, ζ, ῡ) =− λ(ζ1 − ψ(η)) +
∂ψ

∂y
η̇ + ῡ (4.5.5)

=− λ
(
ζ1 + 4η3 + η1η2η3 + η3

3

)
+
(
η3 + η1η2η3 + η3

3 + ζ1

) (
−4− η1η2 − 3η2

3

)
− η2η3 (−η1 + |η3|)− η1η3 (−η2 + sat(η1)sat(η3)) + ῡ,

makes the control system Σ̂ δ∃-ISS with respect to input ῡ, for any λ ∈ R+.

Therefore, the state feedback control law

υ = k̂(η, ζ, ῡ) = k(η, ζ, ῡ)− ζ1 − ζ3
1 − η2

3, (4.5.6)

makes the control system Σ δ∃-ISS with respect to input ῡ.

Let us now aim for finding a δ∃-ISS Lyapunov function V : R4 × R4 → R+
0

for the control system Σ equipped with the state feedback control law k̂. First

we show that the function V̂ (y, y′) = (y1 − y′1)2 + (y2 − y′2)2 + (y3 − y′3)2 is a

δ∃-ISS Lyapunov function for the control system Σ̂η. It can be easily seen that

the function V̂ satisfies the condition (i) in Definition 4.2.1. Using the Cauchy
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Schwarz inequality, we have that:

∂V̂

∂y
f(y, ψ(y) + ũ) +

∂V̂

∂y′
f(y′, ψ(y′) + ũ′) =

2 (y1 − y′1) (−y1 + |y3|+ y′1 − |y′3|) +

2 (y2 − y′2) (−y2 + sat(y1)sat(y3) + y′2 − sat(y′1)sat(y′3)) +

2 (y3 − y′3) (−3y3 + ũ+ 3y′3 − ũ) ≤

−2 (y1 − y′1)
2 − 2 (y2 − y′2)

2 − 6 (y3 − y′3)
2

+

2|y1 − y′1||y3 − y′3|+ 2|y2 − y′2| (|y1 − y′1|+ |y3 − y′3|) + 2|y3 − y′3||ũ− ũ′| ≤

−1

2
(y1 − y′1)

2 − 1

2
(y2 − y′2)

2 − 2 (y3 − y′3)
2

+

−
(

1√
2
|y1 − y′1| −

√
2|y3 − y′3|

)2

−
(

1√
2
|y2 − y′2| −

√
2|y3 − y′3|

)2

+

− (|y1 − y′1| − |y2 − y′2|)
2

+ 2|y3 − y′3||ũ− ũ′| ≤

−1

2
V̂ (y, y′) + |ũ− ũ′|2.

Therefore, the function V̂ satisfies the condition (iii) in Definition 4.2.1. Hence V̂

is a δ∃-ISS Lyapunov function for Σ̂η. Using Lemma 4.4.5, we conclude that the

function:

V (x, x′) =V̂ (y, y′) + | (z1 − ψ(y))− (z′1 − ψ(y′)) |2 (4.5.7)

=(y1 − y′1)2 + (y2 − y′2)2

+ (y3 − y′3)2 +
(
(z1 + 4y3 + y1y2y3 + y3

3)− (z′1 + 4y′3 + y′1y
′
2y
′
3 + y′33 )

)2
,

where x = [y1, y2, y3, z1]T is the state of Σ, is a δ∃-ISS Lyapunov function for the

control system Σ equipped with the state feedback control law k̂ in (4.5.6) with

λ > 5
4
.

We simulate the closed-loop system with λ = 5 and ῡ(t) = 10 sin(2t), for any

t ∈ R+
0 . In Figure 4.1, we show the closed-loop trajectories stemming from the

initial conditions (1, 1, 1, 1) and (−1,−1,−1,−1), respectively.
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Figure 4.1: Evolution of η1, η2, η3, and ζ1 with the input ῡ(t) = 10 sin(2t) and

initial conditions (1, 1, 1, 1), and (−1, − 1, − 1, − 1), respectively.

4.5.2 Single-machine infinite-bus electrical power system

Here, we illustrate the results in Theorem 4.4.9. Consider a single-machine infinite-

bus electrical power system with static VAR compensator [SL10]. The control

system Σ = (R3,U,U , f) with f of the form:

f1(x, u) =x2, (4.5.8)

f2(x, u) =− ω0

H
E ′qVsysvc0 sin(x1 + δ0)− D

H
x2 +

ω0

H
Pm −

ω0

H
E ′qVs sin(x1 + δ0)x3,

f3(x, u) =− 1

Tsvc
x3 +

1

Tsvc
u,

models a single-machine infinite-bus (SIMB) electrical power system with static

VAR compensator (SVC). In the mentioned model, x1 is the deviation of the

generator rotor angle, x2 is the relative speed of the rotor of the generator, x3 is

the deviation of the susceptance of the overall system, δ0 is the operating point of

the generator rotor angle, ω0 is the operating point of the speed of the generator

rotor, H is the inertia constant, Pm is the mechanical power on the generator

shaft, D is the damping coefficient, E ′q is the inner generator voltage, Vs is the

infinite bus voltage, ysvc0 is the operating point of the susceptance of the overall
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system, Tsvc is the time constant of SVC regulator, and u is the input of SVC

regulator. We assume that sin(x1 + δ0) is nonzero over the domain of the interest.

The control system (4.5.8) is of the form (4.4.25). The coordinate transforma-

tion (4.4.26), given by:
η1

η2

η3

 = ϕ(ξ) =


ξ1

ξ2

−ω0

H
E ′qVs sin(δ0 + ξ1)ξ3

 , (4.5.9)

transforms the control system Σ = (R3,U,U , f) to the control system Σ′ =

(R3,U,U , f ′) with f ′ = ϕ∗f of the form:

f ′1(y, u) =h′1(y1) + y2 = y2, (4.5.10)

f ′2(y, u) =h′2(y1, y2) + y3 = −D
H
y2 +

ω0

H
Pm −

ω0

H
E ′qVsysvc0 sin(y1 + δ0) + y3,

f ′3(y, u) =h′3(y) + g′(y)u = y2 cot(y1 + δ0)y3 −
1

Tsvc
y3 −

ω0

HTsvc
E ′qVs sin(y1 + δ0)u.

By using the results in Theorem 4.4.7 for a control system of the form (4.5.10)

and for λ = 1, we have:

φ1(y1) =− y1,

φ2(y1, y2) =− 2y1 +
ω0

H
E ′qVsysvc0 sin(y1 + δ0)− ω0

H
Pm +

(
D

H
− 2

)
y2,

k3(y) =− 3y1 +

(
D

H
− 3

)
y3

+

(
D

H
− 3

)
ω0

H
Pm +

(
3− D

H

)
ω0

H
E ′qVsysvc0 sin(y1 + δ0)

+
ω0

H
E ′qVsysvc0 cos(y1 + δ0)y2 +

(
3
D

H
− D2

H2
− 5

)
y2.
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Therefore, the state feedback control law:

k(y, û) =
1

g′(y)
[k3(y)− h′3(y)] +

1

g′(y)
û (4.5.11)

=− HTsvc
ω0E ′qVs sin(δ0 + y1)

[
− 3y1 +

(
D

H
− 3 +

1

Tsvc

)
y3

+

(
3− D

H

)
ω0

H
E ′qVsysvc0 sin(y1 + δ0) +

ω0

H
E ′qVsysvc0 cos(y1 + δ0)y2

+

(
3
D

H
− D2

H2
− 5

)
y2 +

(
D

H
− 3

)
ω0

H
Pm − y2 cot(y1 + δ0)y3

]

− HTsvcû

ω0E ′qVs sin(δ0 + y1)
,

makes the control system Σ′ δ∃-ISS with respect to the input υ̂. The corresponding

δ∃-ISS Lyapunov function for the control system (4.5.10) is given by:

V̂ (y, y′) =

[
(y1 − y′1)2 + ((y1 − y′1) + (y2 − y′2))

2
+

[
(y3 − y′3) +

(
2− D

H

)
(y2 − y′2)

+ 2(y1 − y′1)− ω0

H
E ′qVsysvc0(sin(y1 + δ0)− sin(y′1 + δ0))

]2
] 1

2

.

By using Theorem 4.4.9, the state feedback control law (4.5.11), and the coor-

dinate transformation (4.5.9), we obtain the state feedback control law k(ϕ(x), û)

making Σ δ∃-ISS with respect to the input υ̂. The corresponding δ∃-ISS Lyapunov

function for the control system Σ is given by:

Ṽ (x, x′) =

[
(x1 − x′1)2 + ((x1 − x′1) + (x2 − x′2))

2
+

[
− ω0

H
E ′qVs

(
sin(δ0 + x1)x3

− sin(δ0 + x′1)x′3

)
+

(
2− D

H

)
(x2 − x′2) + 2(x1 − x′1)

− ω0

H
E ′qVsysvc0(sin(x1 + δ0)− sin(x′1 + δ0))

]2
] 1

2

.

4.5.3 Synchronous generator

We illustrate the results in Theorem 4.4.21 on a synchronous generator. Consider

a synchronous generator [RGHS01] connected through a transmission line to an
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G XL

Figure 4.2: Generator connected through a transmission line to an infinite bus.

infinite bus, as shown in Figure 4.2. The control system Σ = (R3,U,U , f) with f

of the form:

f1(x, u) = h1(x1) + g1(x1)x2,

f2(x, u) = h2(x1, x2) + g2(x1, x2)x3,

f3(x, u) = h3(x) + g3(x)u,

(4.5.12)

where

h1(x1) =0,

g1(x1) =1,

h2(x1, x2) =− Ex2 + FPm0 + VsGeq0 sin(δ0 + x1),

g2(x1, x2) =VsG sin(δ0 + x1),

h3(x) =− Ix3 + JVs sin(δ0 + x1)x2 − Ieq0,

g3(x) =IKc,

models a synchronous generator connected to an infinite bus. In the aforemen-

tioned model, x1 is the deviation of the power angle, x2 is the relative speed of

the rotor of the generator, x3 is the deviation of the quadrature axis voltage of

the generator, δ0 is the operating point of the power angle, Pm0 is the operating

point of the mechanical input power, eq0 is the operating point of the quadra-

ture axis voltage of the generator, Vs is the infinite bus voltage, Kc is the gain

of the excitation amplifier, and u is the input of the silicon-controlled rectifier

amplifier of the generator. Other parameters in (4.5.12) are given by: E = D
2H

,

I = 1
T ′

, F = ω0

2H
, G = − ω0

2H
1
Xqs

, and J =
Xq−X′d
X′ds

, where D is the per-unit damp-

ing constant, H is the inertia constant, ω0 is the synchronous generator speed,
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T ′ =
X′ds
Xqs

T ′d0, Xqs = XT + 1
2
XL +Xq, X

′
ds = XT + 1

2
XL +X ′d, T

′
d0 is the direct axis

transient short-circuit time constant, XT is the reactance of the transformer, Xq

is the quadrature axis reactance, X ′d is the direct axis transient reactance and XL

is the reactance of the transmission line. We assume that sin(δ0 + x1) is nonzero

over the domain of the interest.

The control system (4.5.12) is of the form (4.4.25). The coordinate transfor-

mation (4.4.26), given by:
η1

η2

η3

 = ϕ(ξ) =


ξ1

ξ2

VsG sin(δ0 + ξ1)ξ3

 , (4.5.13)

transforms the control system Σ = (R3,U,U , f) to the control system Σ′ =

(R3,U,U , f ′) with f ′ = ϕ∗f of the form:

f ′1(y, u) = h′1(y1) + y2,

f ′2(y, u) = h′2(y1, y2) + y3,

f ′3(y, u) = h′3(y) + g′3(y)u,

(4.5.14)

where

h′1(y1) =0,

h′2(y1, y2) =− Ey2 + FPm0 + VsGeq0 sin(δ0 + y1),

h′3(y) =− IVsGeq0 sin(δ0 + y1) + JV 2
s G sin2(δ0 + y1)y2 − Iy3 + cot(δ0 + y1)y2y3,

g′3(y) =IKcVsG sin(δ0 + y1).

By using the results in Theorem 4.4.15 for the control system of the form

(4.5.14) and for λ = 2, we have:

φ1(η1) =− η1,

φ2(η1, η2) =− 2η1 + (E − 2) η2 − FPm0 − VsGeq0 sin(δ0 + η1),

k3(η) =
(
−5 + 3E − E2

)
η2 − 3η1 + (E − 3) η3 + (E − 3)FPm0

+ (E − 3)VsGeq0 sin(δ0 + η1)− VsGeq0 cos(δ0 + η1)η2.
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Therefore, the state feedback control law:

k(η, υ̂) =
1

g′3(η)
[k3(η)− h′3(η)] +

1

g′3(η)
υ̂ (4.5.15)

=
1

IKcVsG sin(δ0 + η1)

[ (
−5 + 3E − E2

)
η2 − 3η1 + (E − 3 + I) η3

+ (E − 3)FPm0 + (E − 3 + I)VsGeq0 sin(δ0 + η1)

−VsGeq0 cos(δ0 + η1)η2 − JV 2
s G sin2(δ0 + η1)η2

− cot(δ0 + η1)η2η3

]
+

υ̂

IKcVsG sin(δ0 + η1)
,

makes the control system Σ′ δ-ISS with respect to the input υ̂. The corresponding
contraction metric for the control system (4.5.14) is given by:

G(y) =


 1 +

(
∂φ1
∂y1

)T ∂φ1
∂y1

−
(
∂φ1
∂y1

)T
− ∂φ1
∂y1

1

 +
(
∂φ2
∂z2

)T ∂φ2
∂z2

−
(
∂φ2
∂z2

)T
− ∂φ2
∂z2

1

 =


2 +

(
2 + VsGeq0 cos(δ0 + y1)

)2 −2E + 5− (E − 2)VsGeq0 cos(δ0 + y1) 2 + VsGeq0 cos(δ0 + y1)

−2E + 5− (E − 2)VsGeq0 cos(δ0 + y1) (E − 2)2 + 1 2− E

2 + VsGeq0 cos(δ0 + y1) 2− E 1

 ,

where zT2 = [y1, y2]T . By using Theorem 4.4.21, the state feedback control law

(4.5.15), and the coordinate transformation (4.5.13), we have the state feedback

control law k(ϕ(x), û) making Σ δ-ISS with respect to the input υ̂. The corre-

sponding contraction metric for the control system Σ is given by:

(ϕ∗G) (x) = ΘT (x)G(ϕ(x))Θ(x),

where

Θ(x) =
∂ϕ

∂x
(x) =


1 0 0

0 1 0

VsG cos(δ0 + x1)x3 0 VsG sin(δ0 + x1)

 . (4.5.16)

Since the map ϕ does not transform the first and the second coordinate and the

metric G is only function of the first coordinate, we have G(ϕ(x)) = G(x).

4.6 Discussion

In this chapter we developed Lyapunov characterizations and contraction metric

description of δ∃-GAS and δ∃-ISS. Moreover, we developed a backstepping proce-
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dure to design controllers enforcing incremental input-to-state stability (or con-

traction properties) for the resulting closed-loop system. The proposed approach

in this paper generalizes the work in [JL02, SK09, SK08] by being applicable to

larger classes of control systems and the work in [PvdWN05] by enforcing incre-

mental input-to-state stability rather than input-to-state convergence. Moreover,

in contrast to the proposed backstepping design approach in [PvdWN05], here we

provided a way of constructing incremental Lyapunov functions, which are known

to be a key tool in the analysis provided in [GPT09, Gir05, JFA+07, KDL+08].

107



CHAPTER 5

Conclusion and future contributions

In this thesis I have studied control problems for embedded control systems using

incremental properties of control systems. First, in Chapter 3, I addressed con-

structions of equivalent finite symbolic abstractions for some classes of nonlinear

control systems. These abstractions, with finite number of states, simplify the de-

sign of controllers satisfying specifications, difficult to enforce with conventional

control design methods, such as logic specifications expressed in linear tempo-

ral logic or automata on infinite strings. Similar finite abstractions are used in

software and hardware modeling, which enables the composition of such abstrac-

tions with the finite abstraction of the nonlinear control system. The result of

this composition are finite abstractions capturing the behavior of the nonlinear

control system interact with the digital computation devices. Once such abstrac-

tions are available, the methodologies and tools developed in computer science

for verification and control synthesis purposes can be easily employed to control

systems, via these abstractions. In Chapter 4, I studied the incremental properties

under which control systems admit finite symbolic abstractions. I also provided

the characterizations (descriptions) of those incremental properties in terms of

existence of incremental Lyapunov functions (contraction metrics). Furthermore,

I provided some analysis and design approaches providing controllers enforcing

those incremental properties on nonlinear controlled systems. Rather than ap-

plications of those properties in the synthesis of finite abstraction, they can also

be beneficial in global synchronization in networks of cyclic feedback systems

108



[HSSG12], control reconfiguration of piecewise affine systems with actuator and

sensor faults [RHvdWL11], intrinsic observer design [AR03], consensus problems

in complex networks [WS05], output regulation of nonlinear systems [PvdWN05],

design of frequency estimators [SK08], synchronization of coupled identical dy-

namical systems [RdBS09], the analysis of bio-molecular systems [RdB09], and so

on.

Switched control systems are a class of hybrid control systems often appearing

in embedded control applications. One can use the results in [GPT09] to construct

finite abstractions for the switched control systems. However, the extension to the

general class of hybrid systems is still open and further research is required. The

main difficulty lies in deducing, from the entrance of a single trajectory in a guard

set, the entrance of the surrounding trajectories in the same guard set. The

exception of switched systems is easy to clarify because for this class of hybrid

systems the guards match with the invariant sets.

The current available symbolic abstraction methods only apply to small di-

mensional systems or restricted classes of dynamics. To use symbolic models for

systems of larger size, it is necessary to obtain abstractions with reduced complex-

ity. The first approach to be explored is the use of adaptive multi-scale abstrac-

tions. The existing results include the use of nonuniform grid with fixed sampling

time [TI09] and the use of uniform grid with varying sampling time [CGG11].

Hence, one possible extension is by using nonuniform grid and varying sampling

time. The second approach to deal with reduced complexity of symbolic models

is the use of compositional methods for systems defined as an interconnection of

subsystems. The initial results in [KS10] provide compositional analysis for linear

control systems. The idea is to compute symbolic models for each subsystem,

to synthesize local controllers at the subsystem level and to ensure coordination

at the global level to control the original overall system. The third approach is

by integrating the design of controllers with the construction of symbolic models,
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such as the results in [PBD12] for incrementally input-to-state stable nonlinear

control systems.

While construction of finite abstractions have been recently studied extensively

for deterministic nonlinear control systems, they received much less attentions for

stochastic control systems. The existing results on stochastic control systems

include constructions of finite bisimilar abstractions for probabilistically incre-

mentally globally asymptotically stable dynamical systems [Aba09], for stochastic

hybrid dynamical systems with some given ergodic properties [ADD11], and for

any stochastic dynamical systems, restricted in some finite time-horizon, [AP11]

and constructions of infinite bisimilar abstractions for some classes of stochastic

control systems [JP09]. Although the works in [Aba09, ADD11, AP11] provide

finite bisimilar abstractions, they only deal with dynamical systems rather than

control systems. Hence, they can only be applied for verification purposes rather

than synthesis of controllers enforcing complex specifications. To the best of our

knowledge, there is no work on the construction of finite bisimilar abstraction for

stochastic control systems that are left for future research.

110



References

[Aba09] A. Abate. A contractivity approach for probabilistic bisimulations
of diffusion processes. in Proceedings of 48th IEEE Conference on
Decision and Control, pages 2230–2235, December 2009.

[AD90] R. Alur and D. L. Dill. Automata, Languages and Programming,
volume 443 of Lecture Notes in Computer Science, chapter Au-
tomata for modeling real-time systems, pages 322–335. Springer,
Berlin, April 1990.

[ADD11] A. Abate, A. D’Innocenzo, and M.D. Di Benedetto. Approximate
abstractions of stochastic hybrid systems. IEEE Transaction on
Automatic Control, 56(11):2688–2694, November 2011.

[AHKV98] R. Alur, T. A. Henzinger, O. Kupferman, and M. Vardi. Alternat-
ing refinemnet relations. in Proceedings of the 8th International
Conference on Concurrence Theory, Lecture Notes in Computer
Science 1466, pages 163–178, Springer, Berlin, 1998.

[AM08] K. J. Astrom and R. M. Murray. Feedback systems: An Introduction
for Scientists and Engineers. Princeton University Press, 2008.

[Ang02] D. Angeli. A Lyapunov approach to incremental stability proper-
ties. IEEE Transactions on Automatic Control, 47(3):410–21, 2002.

[AP11] A. Abate and M. Prandini. Approximate abstractions of stochastic
systems: a randomized method. in Proceedings of 50th IEEE Con-
ference on Decision and Control and European Control Conference,
pages 4861–4866, December 2011.

[AR03] N. Aghannan and P. Rouchon. An intrinsic observer for a class
of Lagrangian systems. IEEE Transactions on Automatic Control,
48(6):936–945, 2003.

[AS99] D. Angeli and E. D. Sontag. Forward completeness, unboundedness
observability, and their Lyapunov characterizations. Systems and
Control Letters, 38:209–217, 1999.

[AVW03] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of
controllers with partial observation. Theoretical Computer Science,
28(1):7–34, 2003.

[BH06] C. Belta and L.C.G.J.M. Habets. Controlling a class of nonlinear
systems on rectangles. IEEE Transactions on Automatic Control,
51(11):1749–1759, 2006.

111



[BM05] T. Brihaye and C. Michaux. On the expressiveness and decidability
of o-minimal hybrid systems. Journal of Complexity, 21(4):447–
478, 2005.

[BML+10] B. N. Bond, Z. Mahmood, Y. Li, R. Sredojevic, A. Mergretski,
V. Stojanovic, Y. Avniel, and L. Daniel. Compact modeling of
nonlinear analog circuits using system identification via semidef-
inite programming and incremental stability certification. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 29(8):1149–1162, August 2010.

[BMP02] A. Bicchi, A. Marigo, and B. Piccoli. On the reachability of quan-
tized control systems. IEEE Transactions on Automatic Control,
47(4):546–563, 2002.

[CGG11] J. Camara, A. Girard, and G. Gossler. Synthesis of switching con-
trollers using approximately bisimilar multiscale abstractions. in
Proc. of 14th Int. Conf. Hybrid Systems: Computation and Control
(HSCC), April 2011.

[CL99] C. Cassandras and S. Lafortune. Introduction to discrete event
systems. Kluwer Academic Publishers, Boston, MA, 1999.

[CMU] Control tutorial for Matlab and Simulink. Electronically available
at: http://www.library.cmu.edu/ctms/ctms/.

[CS87] P. E. Crouch and A. J. Van Der Schaft. Variational and hamiltonian
control systems. Springer, 1987.

[CW98] P. E. Caines and Y. J. Wei. Hierarchical hybrid control sys-
tems: A lattice-theoretic formulation. Special Issue on Hybrid
Systems, IEEE Transaction on Automatic Control, 43(4):501–508,
April 1998.

[dAHM01] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar.
Symbolic algorithms for infinite-state games. In CONCUR 01:
Concurrency Theory, 12th International Conference, number 2154
in Lecture Notes in Computer Science, 2001.

[Dem61] B. P. Demidovich. Dissipativity of a nonlinear system of differential
equations, part i. Vestnik Moscow State Univiersity, ser. matem.
mekh., (in Russian), 6:19–27, 1961.

[Dem67] B. P. Demidovich. Lectures on stability theory (in Russian). Nauka,
Nauka, Moscow, 1967.

112



[DJ02] M. Dellnitz and O. Junge. Set oriented numerical methods for
dynamical systems. Handbook of dynamical systems, 2:221–264,
2002.

[EJ91] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and de-
terminacy. In FOCS 91: Foundations of Computer Science, pages
368–377. IEEE, 1991.

[FCPL10] A. Franci, A. Chaillet, and W. Pasillas-Lepine. Phase-locking be-
tween kuramoto oscillators: robustness to time-varying natural fre-
quencies. in Proceedings of the 49th IEEE Conference on Decision
and Control, pages 1587–1592, December 2010.

[FGD+11] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler. SpaceEx: scalable
verification of hybrid systems. In CAV 11: Computer Aided Veri-
fication, pages 379–395. Springer, 2011.

[FJL02] D. Forstner, M. Jung, and J. Lunze. A discrete-event model of
asynchronous quantised systems. Automatica, 38:1277–1286, 2002.

[GG10] C. Le Guernic and A. Girard. Reachability analysis of linear sys-
tems using support functions. Nonlinear Analysis: Hybrid Systems,
4(2):250–262, 2010.

[Gir05] A. Girard. Reachability of uncertain linear systems using zono-
topes. In HSCC 05: Hybrid Systems: Computation and Control,
LNCS 3414, pages 291–305. Springer, 2005.

[GPT09] A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar
symbolic models for incrementally stable switched systems. IEEE
Transactions on Automatic Control, 55(1):116–126, January 2009.

[HCS06] L.C.G.J.M. Habets, P.J. Collins, and J.H. Van Schuppen. Reach-
ability and control synthesis for piecewise-affine hybrid systems on
simplices. IEEE Transactions on Automatic Control, 51(6):938–
948, 2006.

[HKPV98] T.A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s de-
cidable about hybrid automata? Journal of Computer and System
Sciences, 57:94–124, 1998.

[HSSG12] A. Hamadeh, G. B. Stan, R. Sepulchre, and J. Goncalves. Global
state synchronization in networks of cyclic feedback systems. IEEE
Transactions on Automatic Control, 57(2):478–483, February 2012.

113



[JFA+07] A. A. Julius, G. E. Fainekos, M. Anand, I. Lee, and G. J. Pappas.
Robust test generation and coverage for hybrid systems. in Proc. of
10th Int. Conf. Hybrid Systems: Computation and Control (HSCC),
April 2007.

[JL02] J. Jouffroy and J. Lottin. Integrator backstepping using contraction
theory: a brief methodological note. in Proceedings of 15th IFAC
World Congress, 2002.

[Jou05] J. Jouffroy. Some ancestors of contraction analysis. Proceedings of
the 44th IEEE Conference on Decision and Control, pages 5450–
5455, December 2005.

[JP09] A. A. Julius and G. J. Pappas. Approximations of stochastic hybrid
systems. IEEE Transaction on Automatic Control, 54(6):1193–
1203, 2009.

[Jun00] O. Junge. Rigorous discretization of subdivision techniques. In
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