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REVIEW Open Access

Context and the human microbiome
Daniel McDonald1,2, Amanda Birmingham3 and Rob Knight4,5*

Abstract

Human microbiome reference datasets provide epidemiological context for researchers, enabling them to uncover new
insights into their own data through meta-analyses. In addition, large and comprehensive reference sets offer a means
to develop or test hypotheses and can pave the way for addressing practical study design considerations such as
sample size decisions. We discuss the importance of reference sets in human microbiome research, limitations of
existing resources, technical challenges to employing reference sets, examples of their usage, and contributions of
the American Gut Project to the development of a comprehensive reference set. Through engaging the general public,
the American Gut Project aims to address many of the issues present in existing reference resources, characterizing health
and disease, lifestyle, and dietary choices of the participants while extending its efforts globally through international
collaborations.

Keywords: Microbiome, American Gut Project, Reference database, Meta-analysis

Review
Background
In the last few years, the study of the bacteria, archaea, mi-
crobial eukaryotes, and viruses that inhabit the human
body (particularly the large intestine) has revealed a
remarkable biological and functional diversity [1–6]. These
organisms, collectively known as the microbiome, poten-
tially outnumber human cells in 10:1 [7] and vastly expand
on the functional capabilities provided by our genomes.
Disruption in these microbial communities, also known as
dysbiosis, has been causatively associated by transferring
microbiomes and phenotypes to mice associated with
human Kwashiorkor [8] (a wasting disease endemic to
Africa) and obesity [9]. Numerous correlative associations
in humans and mouse models have also been observed in
a broad spectrum of complex diseases including autism
spectrum disorder [10], inflammatory bowel disease [11],
type 2 diabetes [12], colorectal cancer [13], depression
[14] (see [15] for a detailed review on the brain-gut-
microbe axis), and more.
The implication of the microbiome in human health is

immense, with prospects for novel medical products in-
cluding therapeutics and clinical assays. This has led to

large investments in both academia [3] and industry
[16]. Although such research could have a profound im-
pact on human society both in first- and third-world
countries, we are just scratching the surface of under-
standing the complexity of this vital organ. As such,
identifying means that improve the pace of research is
arguably a matter of human health on a global scale.
A crucial and missing component of microbiome re-

search is a robust and comprehensive reference set of
microbiome samples and metadata about those samples
that are available for public, unrestricted use. Such a
dataset would characterize what we know about diversity
of the human microbiome and its relationship to the
health and lifestyle choices of individuals, providing
much-needed context against which to compare findings
of focused studies such as those on particular disease
populations. This reference would allow researchers to
place their study in the framework of what is already
known in order to better interpret observed patterns
(compelling examples of this can be found in [17, 18]). It
would also enable stringent hypothesis testing and evalu-
ation of effect sizes. A robust reference dataset must be
built on top of a cross-sectional study design in order to
understand the variation in the population, while also in-
cluding rich longitudinal components to enable an un-
derstanding of how species structure changes over time.
In this review, we highlight the importance of refer-

ence sets in human microbiome research, limitations of
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existing resources, technical challenges to employing ref-
erence sets, examples of prototypical reference usages,
and contributions of the American Gut Project to ad-
dressing some of these issues. Discussion will focus on
the 16S ribosomal RNA (16S rRNA) gene, which is a
popular locus for use in microbiome studies over a wide
range of environment types [19–23] and is the core
locus assayed in the American Gut Project. Construction
of references based on other loci is important for study-
ing microbial eukaryotes, viruses, and interactions be-
tween these organisms, but high-throughput study of
these other components of the community is not yet
cost-effective.

Importance of reference sets in human microbiome
research
The community structure of the human microbiome is
the result of a multifactorial process that involves suc-
cession over time [24], is influenced by host genetics
[25], and is affected by lifestyle choices [26, 27]. Com-
munities are made up of thousands of microbial species,
with the predominant microbial biomass residing in the
human large intestine. Fascinatingly, within the human
gastrointestinal tract, it appears that multiple organisms
are capable of fulfilling common ecological niches, lead-
ing to remarkably different microbial communities that
possess similar functional potential [3]. Furthermore,
while variations in the human genome are minute across
the population, variations in the human microbiome on
geographical and temporal scales are immense [28, 29].
Despite investments of hundreds of millions of dollars,
we still do not understand the distribution of commu-
nity structures in healthy individuals [30], but we do
know that when studies of the microbiome are per-
formed without a concern for integration with existing
studies, effects of significant biological importance can
be easily missed [31].
A well-characterized reference dataset can be used to test

hypotheses and, conversely, to derive testable hypotheses
from the reference itself. For instance, inflammatory bowel
disease has been observed to be associated with a microbial
dysbiosis index (MD-index) that is the ratio of the relative
abundances of a set of pro-inflammatory taxa to a set of
anti-inflammatory taxa [32]; a robust reference set would
allow assessment of the hypothesis that diet or lifestyle fac-
tors are strongly correlated to this index within the general
public as well. In an opposite example, a significant correl-
ation between diversity and time of the year was observed
in the American Gut reference set [33]. Because it appears
that individuals have a higher diversity during the holiday
season in the US, one might hypothesize that it is the holi-
days and not the time of the year that drives the correla-
tion—possibly due to changes in exercise and diet patterns.
This putative effect can then be tested once the project

acquires sufficient samples from western countries in the
southern hemisphere.
A comprehensive reference dataset will also help re-

searchers make rational decisions about sample size by
enabling power calculations, which can greatly impact
the utility of a study [34]. Such a dataset is also crucially
necessary to support characterization of the effect sizes
of variables (e.g., antibiotic use). Within the microbiome
field, effect size for many variables of interest is not yet
well understood, and many that are important in dis-
eases with complex etiologies such as autism [10] are
likely to be small. Well-characterized references offer
the possibility for a researcher to expand their dataset
by pulling reference samples to augment their own [29],
particularly when meta-analysis (i.e., combination of
summarized data from multiple studies) is taken into
consideration during the design phase for a study.

Limitations of existing reference sets
The $173 million NIH-initiated Human Microbiome Pro-
ject (HMP) set out to characterize the human microbiome
at a population scale and to define standard reference
datasets to be used for human microbiome research [35].
The resulting 16S rRNA datasets are composed of samples
from 242 individuals, all of whom were medical students
in the USA and were certified healthy by medical profes-
sionals. Thousands of samples were collected from these
individuals at one to three time points, covering 15 to 18
sampling sites depending on the sex of the individual.
These samples were evaluated using two different regions
of the 16S gene (leading to two distinct datasets—V1-3
and V3-5) [31] and were processed at four different se-
quencing centers. Phenotypic information about the indi-
viduals was collected, but while the sequence data
associated with the samples are publically available, access
to any de-identified information about the individuals re-
quires rigorous approval mechanisms.
Although the HMP generated an incredible volume of

data, numerous design, technical, and access decisions
affecting the HMP dataset have made reuse challenging.
For instance, the decision to sample a few people exten-
sively rather than a large number of people minimally
(i.e., a cross-sectional study design) led to observation of
only a small fraction of the diversity present with the
population [28] and resulted in small sample sizes for
different stratifications in the dataset [36], effectively re-
moving the potential to observe demographic or regional
differences. The choice to sequence multiple loci within
the 16S rRNA gene resulted in data that are impractical
to combine due to technical bias as amplification per-
formance differs between primers [31, 37]. Furthermore,
because the study design was not sufficient to elucidate
the effect of employing multiple sequencing centers
(which has been observed in other contexts; see the
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Microbiome Quality Control Project (MBQC) [38]), this
issue must still be actively evaluated to assess the potential
for technical biases. Host information, such as age and sex,
are nearly prohibitive to access, requiring dean-level signa-
tures for each individual piece of metadata, which makes
explaining any systematic patterns in the data impossible
without knowing in advance what pattern one expects to
see. The end result is that use of the HMP 16S rRNA as a
robust reference set has proven difficult.
In contrast to the HMP, the Global Gut project [28]

set out to characterize microbial diversity at spatial and
temporal scales. To do this, the researchers collected
samples from three distinct populations (US citizens,
Malawians, and Venezuelan Amerindians), the latter two
of which are culturally distinct from western popula-
tions. Within each population, samples were collected
cross-sectionally over an age gradient. Notably, the two
non-western populations appear to be completely dis-
tinct from the western individuals, suggesting the limited
population size and emphasis of the HMP grossly under-
estimate the variation in community structure across the
human race. However, the populations do intersect on
samples collected from infants, suggesting that it is
potentially lifestyle, diet, or environmental choices that
shape our microbiomes as we age (including interaction
with our genetic predisposition [25]). Although the se-
quence data are readily available for reuse, the distribution
of many of the study variables is not approved, limiting
the long-term usefulness of the samples. (It should be
noted that the Global Gut did not intend to be a reference
for microbiome research, but the populations represented
in the dataset are extremely difficult to collect samples
from and have shown to be useful in adding perspective
for independent projects [29, 39]).
Lack of access to the full set of metadata variables

associated with these earlier studies is crippling, as in-
terpretation of the observational data can only happen
within the context of the collected variables. From a
practical standpoint, if a systematic pattern is observed
in the data, but there are not any variables that explain
the pattern, then the researcher cannot support a
hypothesis about the pattern without collecting new in-
formation (which may be impractical and impossible or
introduce recall bias). Similarly, confidence in the face
of confounding variables is reduced if only a limited
number of variables are tracked. As a concrete example,
if researchers broadly characterize subjects by diet type
(e.g., vegan) and observe an effect, the researchers will
be unable to assess whether the effect is due to the diet
type itself, differential fiber consumption, protein
source, etc., unless these other variables are recorded.
Given that researchers typically do not know the answer
in advance of a study, it is imperative that study designs
strive to collect as much information as feasible.

Technical challenges to employing reference sets
Even a well-designed and carefully collected reference must
be employed with caution in order to minimize spurious
variation and contain necessary computational effort. The
first of these needs arises since reference-based analyses
assume that any systematic compositional differences in-
herent in the data outweigh any technical variation, which
is particularly problematic when combining data generated
from different protocols or platforms [31]. In fact, bio-
logical conclusions can be driven by technical variation
even if the researchers are careful (as in [40], where sam-
ples were found to cluster by the extraction kit used),
which underscores the need for accepted community stan-
dards for sample handling, sequencing, and data analysis in
order to minimize the potential for introducing such vari-
ation. Bioinformatic strategies to mitigate any remaining
variation, such as trimming sequences to a common
length between studies, have shown to help normalize
platform bias [29]. Sometimes, stronger measures are
necessary: for example, the American Gut Project received
samples from self-reported healthy individuals that con-
tained levels of gammaproteobacteria beyond anything
previously observed in healthy populations (although simi-
lar to those observed in samples from ICU patients
[manuscript in prep]). It was determined that these
blooms likely stemmed from the shipping conditions for
some samples. The blooms can be bioinformatically sub-
tracted from the dataset [manuscript in prep] by removing
organisms observed to bloom (as has been observed to
happen in storage [unpublished observations]). As a result,
any meta-analysis that leverages the American Gut data
must perform this same subtraction in order to equalize
bias that the filter introduces. Ongoing studies of stability
[41, 42] are explicitly exploring the effect of different types
of storage effects so that they can be controlled for as ne-
cessary in the future.
Once technical variation has been minimized, the

comparative analysis can begin. Many researchers, par-
ticularly those at remote sites, do not have access to
large-scale compute instruments and must rely on com-
modity hardware for data analysis; this creates the temp-
tation to employ analysis techniques that require as little
computation as possible. However, some such tech-
niques are particularly vulnerable to artifacts caused by
combining dissimilar datasets.
An exemplar of this issue is the assignment of oper-

ational taxonomic units (OTUs). The primary data type
used in analysis of a microbiome study is the OTU table
[43, 44], a matrix in which the rows represent observa-
tions (OTUs), the columns represent samples, and the ele-
ments correspond to the number of counts of a given
observation within a sample. In order to be comparable, a
reference and a study must have their sequence data
assigned to a shared set of OTUs (i.e., partitioned into a

McDonald et al. Microbiome  (2015) 3:52 Page 3 of 8



common set of bins). OTUs themselves are clusters of
similar sequences, with the similarity threshold generally
set at 97 % by sequence identity, and are typically deter-
mined in one of three ways as summarized in Table 1 (for
a comprehensive review of OTU picking, please see [45];
each of these methods is named in terms of its OTU refer-
ence, but nota bene that this represents a distinct concept
from that of the reference datasets discussed throughout).
The first is a closed-reference approach in which all the
sequence data for the input study and the microbiome ref-
erence set are compared against a curated 16S rRNA data-
base such as Greengenes [46] to identify which known
OTUs are represented. This is computationally tractable
even for very large studies since the evaluation of every se-
quence is independent of every other and since the refer-
ence dataset’s OTU assignments can be computed just
once (and in advance). The second strategy, known as de
novo picking, defines novel OTUs based on the sequences
in a study. This is computationally expensive, as all the
data must be maintained in memory in order to determine
the clusters, and the process is very complex to parallelize.
The third approach, open-reference picking, is a hybrid
method in which sequences are first compared to a data-
base of known OTUs as described above, after which
those that fail to match to a known OTU are then put
through a de novo step.
Studies employing a reference set typically rely on the

closed-reference approach to minimize compute since only
the input study need be evaluated and can be done so in

an embarrassingly parallel fashion. Another benefit is that
the closed-reference strategy is unlikely to result in OTUs
composed of non-16S sequence, as the reference is
expected to only contain 16S exemplars; furthermore,
comprehensive references like Greengenes typically con-
tain only near-full-length reads, thus allowing researchers
to combine data represented by multiple variable regions.
Of course, any annotation information about the reference,
such as the phylogenetic relationship between the data
contained or annotations such as taxonomy, can be at-
tached to the input study data “for free.” Unfortunately,
this strategy can only classify sequences that are reasonably
similar to those in the reference database. Combining stud-
ies with differential representation in the reference (e.g.,
samples from different environments) can lead to statisti-
cally significant patterns in the data that are not driven by
the underlying biology. As an example, imagine three sam-
ples A, B, and C where A is composed of Escherichia coli
and both B and C are composed of Escherichia coli coli
and Bacillus subtilis. If the reference is only composed of
Escherichia coli, then all three samples will appear to be
quite similar. However, if the reference includes Bacillus
subtilis, then the conclusion drawn is quite different as A
would be less similar to B and C.
In contrast to closed-reference, a de novo approach con-

sumes more computational resources but requires no pre-
existing reference and allows a researcher to assign OTUs
to as much of the data as possible, including OTUs never
before observed. It is capable of producing phylogenies

Table 1 A comparison of OTU-picking strategies

Strategy Pros Cons Data combination bias

Closed-reference • Is extremely parallelizable • Is limited to finding diversity
present in OTU reference

• May show large bias if combining studies with
differential representation in the reference

• Computes reference assignments only once

• Is highly unlikely to retain non-16S sequences

• Supports and reads fragments from multiple
loci

• Gets the phylogeny and taxonomy for free

De novo • Utilizes all of the sequences • Must hold all sequence data
in memory

• May generate spurious OTUs if combining
studies with differential error profiles

• Requires no OTU database • Is very complex to parallelize

• Can group organisms distinct from anything
seen before

• Produces spurious OTUs
without pre-filtering

• May produce phylogenies sensitive to subtle
differences in OTUs

• Is infeasible if data are from
multiple loci

• Must redo OTU picking with
all data being combined

Open-reference • Leverages an OTU database but also utilizes
sequences that do not match to that database

• Produces spurious OTUs
without pre-filtering

• Shows less bias due to differential diversity
representation than closed-reference

• Is infeasible if data are from
multiple loci

• Is modestly parallelizable • Must redo OTU picking with
all data being combined

• Shows less bias due to differential error
profiles than de novo
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sensitive to subtle differences in OTUs (as the representa-
tive member for an OTU is an actual study sequence), but
this very sensitivity means that contamination in the data
(e.g., non-16S sequence such as phiX) will also be clus-
tered into OTUs unless the contamination is explicitly
filtered out prior to OTU picking and that the method is
not suitable for data drawn from multiple variable regions
(as highlighted in [31]). Additionally, the distinct error
profiles of the studies being combined (which can stem
from the 16S protocol, variation in the master PCR mix,
error profiles of the sequencing instrument used, etc.) may
lead to spurious, study-specific OTUs (for example, the
GC bias of the Illumina platform can lead to sequences
that contain more GC than another platform which can
result in OTUs specific to the platform even if the bio-
logical origin of the amplicon is the same). As a result, a
meta-analysis that uses a de novo strategy must redo
OTU picking after combining the sequence data from
the studies.
The hybrid open-reference method steers a middle

course: Since data that are not represented in the reference
are recovered, bias driven by differential representation in
the reference is reduced. In addition, since the amount of
data being fed into the de novo step is minimized, the im-
pact of study-specific error profiles is diminished. Open-
reference OTU picking is modestly parallelizable and can
be augmented with techniques such as use of a random
subsample when constructing the intermediate de novo
reference in order to accelerate its performance (details on
the procedure can be found in [45] but are generally han-
dled in by software without end-user intervention). How-
ever, open-reference picking shares a number of drawbacks
with the de novo strategy, including necessity for pre-
filtering, unsuitability for data from multiple variable
regions, and necessity for re-picking when combining stud-
ies together. Of course, given the continued expansion of
computational resources, sequencing throughput, and
completed genomes available, optimal strategies for over-
coming technical hurdles and enabling meta-analysis will
require ongoing re-assessment.

Examples of reference set usage
One of the first studies to combine multiple microbiome
datasets (which these researchers are aware of ) was the
work by Lozupone and Knight [47], which aggregated
sequence data from hundreds of studies in order to de-
termine environmental factor(s) that explained the ob-
served differences in microbial community structure.
They discovered that data from samples collected in the
natural environment across a multitude of gradients
(e.g., pH, temperature, atmospheric pressure) separated
primarily based on whether the samples originated from
saline or non-saline environments—despite the substan-
tial technical differences between studies. Fascinatingly,

when these same data were combined with samples col-
lected from vertebrate guts, the primary variation in the
data was explained by whether the samples were envir-
onmental or host associated [1], implying that an
extremely high degree of specialization has occurred in
the microbial communities of vertebrate guts (which is
particularly interesting given the difference in evolu-
tionary time that environmental microbial communities
have had to specialize relative to the time that verte-
brates have existed). While this meta-analysis did not
employ a reference set of the type discussed here, it has
itself become a de facto reference set that has subse-
quently been employed for comparison with numerous
other studies [48–50].
More recently, a re-evaluation of a longitudinal study

aimed at exploring succession in microbial communities
within an infant (for the original study, see [24]) was
performed using the HMP as context [31]. While the
original work showed a distinct increase in the diversity
of the infant’s fecal community through the first few
years of life, putting its results in context immediately
clarified the trajectory of succession by showing that the
microbiome moved from resembling a vaginal commu-
nity (which makes sense given the mode of birth, see
[51] for a study on the effects of delivery mode on the
infant microbiome) to resembling a fecal community.
Visualizing longitudinal microbiome studies as anima-
tions (see [52] for a movie of the re-evaluation of the
aforementioned infant longitudinal data), particularly in
the context of a reference, has been so useful that the
ability was recently added into EMPeror [53], a common
visualization tool for ordination plots generated from
microbiome data.
Meta-analyses are becoming more widespread as com-

putational power increases, sometimes employing past
studies that were not intended as reference sets in that
new role. Moeller et al. [29] reused the Global Gut [28]
data to paint a compelling picture of the coevolution of
hominids and their gut communities, highlighting a de-
parture that humans have appeared to take with respect
to our closest ancestors. The data suggest that the rate
of change in the human microbiome is significantly
higher since divergence with chimpanzee, particularly in
US adults, including a significant decrease in alpha di-
versity. The motivation to reuse the Global Gut data was
access to samples collected from hunter-gatherer groups
as well as western adults, enabling the researchers to test
the hypothesis that hunter-gatherer groups are more simi-
lar from a microbial perspective to our closest ancestors
potentially due to the dramatic dietary differences that
exist between these groups and western populations.
However, the sample size for any given age group and
population combination (e.g., infant Malawians) within
Global Gut was relatively small, so it would be interesting
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to revisit this and see what the pattern of coevolution is
against a reference that contains a larger number of sam-
ples for different age groups.

Contributions of the American Gut Project
The American Gut Project set out to build a comprehen-
sive open-source and open-access microbiome 16S rRNA
reference dataset for the scientific community to use. It re-
lies on a crowd-funding model that allows for broad reach
across the US population and is set up so that virtually
anyone can participate (with the exception of convicted
felons and children younger than 6 weeks old). Individuals
can elect to receive a collection kit in exchange for a con-
tribution to the project. Though the sample population is
not free from bias (being shifted toward older Caucasians
interested in their own health), the variability encompassed
by the project vastly exceeds that of the HMP [36]. In
addition, the project has recently expanded internationally
to the UK and Australia to reduce participant overhead for
shipping samples (although, to minimize the introduction
of technical variability, all samples are extracted at one site,
UC San Diego). All participants in the project are con-
sented under protocol #141853 approved by the University
of California San Diego’s Human Research Protection
Program (HRPP); the protocol specifies that all non-
identifying data collected will be deposited into the
public domain. Each participant is presented with a
HRPP-approved questionnaire that covers diet, lifestyle,
and health history, including a NIH-validated food
frequency questionnaire [54]. The infrastructure to sup-
port electronic consent, questionnaires, localization for
international portals, and management of over 22,000
bar-coded samples has opened the doors for external re-
searchers and the general public alike to perform their
own experiments using the framework of the American
Gut Project.
The American Gut Project is a subset of the Earth

Microbiome Project (EMP) [19], which has been instru-
mental in advocating for adherence to the standards of the
Genomics Standards Consortium, including minimum in-
formation about a marker gene sequence (MIMARKS)
[55]—a suite of standards defining variables to be collected
within a marker gene survey for virtually any environment
imaginable. The EMP and American Gut also follow pub-
lished sequencing protocols [56] that aim to normalize
technical bias for microbiome studies and employ the Bio-
logical Observation Matrix (BIOM) [44] specification as a
standard and computationally efficient means to represent
the resulting large, sparse-omics datasets and their sample
and observation metadata. All data are de-identified and
deposited into the public domain as quickly as possible via
the European Bioinformatics Institute (EBI), which is part
of the International Nucleotide Sequence Database Con-
sortium (INSDC). American Gut has taken a further step

by providing executable IPython [57] Notebooks allow
others to reproduce and modify the analyses being per-
formed on the data. All code for the project is hosted on
Github in the “biocore” organization and is available
under the BSD license, and all code and binaries used by
the project are open-source.
Although the American Gut is useful, by design it is not

intended to provide an unbiased population but rather to
harness crowd funding and public enthusiasm to uncover
the range of extant microbiomes. Given this fact, many
questions could be best addressed by instead adding micro-
biome components to existing carefully designed cohorts
such as NHANES [58], the Nurses’ Health Study [59], and
TwinsUK [60]. Relevant areas of inquiry include relating
the microbiome to heart disease, cancer, stroke, cognitive
abilities, and host genetics, as well as leveraging new ave-
nues to assess sources of technical variation. These studies
offer the unique potential to build off of their already well-
characterized populations.

Conclusions
Research is never performed in isolation. It is built upon
the foundations laid by prior knowledge and evaluated in
the context of present knowledge. However, if data are not
collected with a view toward integration, or if rich refer-
ence points do not exist, research is effectively performed
in a vacuum. These are some of the challenges that a com-
mon reference can help to address, and the American Gut
is a widely collaborative, carefully structured project that
aims to provide such a reference. The establishment of a
comprehensive reference encourages widespread use of
standard protocols, since normalization of technical vari-
ation is essential when comparing results to the reference
and assessing the significance of a study against the back-
ground population. Application of context-aware study de-
signs that adhere to community-accepted standards used
by references like the American Gut should minimize the
time until microbiome research findings become medically
actionable.
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