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ABSTRACT OF THE THESIS 

 

ChI(r)P-seq: FoxP2 Binding Sites Uncover Molecular Mechanisms Influencing Songbird 

Vocalizations 

 

by 

 

Todd Haswell Kimball 

 

Master of Science in Physiological Science 

University of California, Los Angeles, 2018 

Professor Stephanie Ann White, Chair 

 

 The zebra finch, like humans, share a vocal learning phenotype and are an ideal model 

system to understand the molecular underpinnings of this multigenomic trait. Gene expression 

profiles examined in zebra finch have painted a dynamic picture of the complex genetic interplay 

required to enable vocal learning. The transcription factor FoxP2 is a key contributor to the gene 

regulation necessary for vocal learning in both humans and zebra finch. Examining the genes 

FoxP2 targets may provide the first step in possible pathways necessary for vocal learning. 

Chromatin immunoprecipitation (ChIP) captures DNA-protein interactions, and by using this 

approach, we were able to demonstrate FoxP2 binding sites within the genome. ChIP-qPCR 

provided validation of our approach and evidence of FoxP2 binding to the promoter of MAPK11, 
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identified through our gene expression profile. Furthering this approach, ChIP-seq identified 

differential FoxP2 binding sites associated with developmental timepoints and sex differences, 

most notably Activating Transcription Factor 4 (ATF4), shown to influence synaptic plasticity 

and memory. The identification of FoxP2 binding sites and subsequent gene regulation will 

provide the starting point of pathways necessary for complex vocal development.  
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Introduction   

         As friends and family gathered to celebrate the marriage of two loved ones, a word of 

advice was asked from the couple who had been together the longest. After the ceremonial 

“She’s always right” joke delighted the crowd, the following was offered, “The key to a healthy 

relationship is communication.” The ability to effectively communicate thoughts and ideas 

provide an insight to one’s knowledge, the ability to share information, and a window into how 

an individual’s mind operates. Most have had the seemingly effortless experience of a shared 

conversation lasting hours, or the flip side, a painstaking, awkward few minutes. There are ways 

to study how to be a good communicator, tips to be engaging, to make an impact, and make our 

presence felt, but the underlying process of getting to that point is must be learned and practiced. 

         Effective communication begins by learning words and grammatical structure. Humans 

have the rare ability of vocal learning, the process of hearing vocalizations and learning how to 

produce them [1]. Babies are not born speaking, rather, by listening and processing auditory 

inputs (through interactions with adults), they are able to imitate those sounds. Eventually, one 

day, a child will be able to tell us what sound a dog makes. The progression from simple 

babbling to understanding the intricacies of language is remarkable, and its breadth of expressive 

capabilities is unmatched amongst other life on earth [2]. In an ideal setting, this development 

would be shared, but for some, vocal learning is disrupted and life is more difficult without 

effective communicative abilities. 

The KE Family: Discovering a Molecular Link to Vocal Learning 

         In 1990, a case study brought to light a rare Mendelian inherited disorder affecting both 

speech production and comprehension in an English family, known as the KE family [3]. The 
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study diagnosed affected KE family members with developmental verbal dyspraxia (DVD), 

defined by a lack of articulation resulting from a deficiency in the planning, sequencing, and 

execution of the fine motor movements necessary for speech production. Contributing to the 

phenotype, the more cognitive aspects of language, including grammatical rules and syntactical 

structure, were also impaired, while their non-verbal IQ scores remained close to the population 

mean [4-7]. The physiological determinants underlying this particular speech deficit was 

localized to the basal ganglia, among other brain regions, with affected members 

displaying bilateral abnormalities in gray matter density [8-10]. While the physiological 

characterization of DVD was being characterized, the genetic basis underlying this inherited 

disorder would provide a window into molecular processes underlying the complex phenotype of 

speech development. 

         The inheritance pattern of DVD within the KE family suggested a monogenic autosomal 

dominant mode of transference. A genome wide study discovered a linkage in a region of 

chromosome 7 that co-segregated with the speech disorder, aptly named SPCH1 [11]. A 

bioinformatic approach was used with existing BAC and PAC clones [12] to assemble, sequence, 

and further characterize SPCH1 linkage information from the KE family to hone in on the 

critical interval responsible for DVD. Additionally, patients unrelated to the KE family but who 

were also diagnosed with DVD had translocations in SPCH1. This helped to identify an interval 

that mapped to the same BAC as a polyglutamate-repeat (poly-G) protein transcribed by the 

partially characterized CAGH44 gene. Utilizing BAC clones adjacent to the CAGH44 gene, a 

hypothetical sequence was determined and validated. Expanding the CAGH44 gene, along with 

the poly-G portion, was a coding region with a high similarity to the DNA binding sequence of 
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the forkhead/winged-helix (FOX) family of transcription factors [13]. Thus, a mutation in the 

FOXP2 gene was identified as the genetic basis of DVD [14]. 

FOXP2: An Orchestra Without a Maestro’s Baton 

         The identification and characterization of the FOXP2 gene led investigators to uncover its 

role at the molecular level. The FOXP2 gene encodes the FOXP2 protein, a 715 amino acid 

Forkhead box family member containing the aforementioned DNA binding FOX domain [15], 

the poly-G region, and a zinc finger-leucine zipper domain involved in protein dimerization [16]. 

The hetero- and homodimerization of FOXP2 plays a crucial role that allows for the protein to 

bind to DNA via the forkhead/winged helix domain [17]. FOXP2 generally acts as a 

transcriptional repressor [18], binding to a sequence specific region [19-20] to regulate gene 

expression. In the KE family, a heterogenic guanine to adenine single nucleotide polymorphism 

causes a substitution of an arginine to histidine at amino acid 553 in the third helix of the DNA 

binding domain, disrupting FOXP2’s ability to bind to DNA and influence gene expression. 

         This heterogenic mutation only manifests itself in speech development and production, 

even though FOXP2 is expressed in the lungs, cardiovascular tissue, gut, and brain. FOXP2 

plays an important role in embryogenesis, and within the brain, FOXP2 is localized to the 

cortical plate, basal ganglia, thalamus, and cerebellum. The abnormal gray matter in the basal 

ganglia of affected KE family members points to the role FOXP2 plays in its development. The 

region-specific expression pattern suggests FOXP2 helps coordinates the development of motor 

related circuits [21]. In the case of the KE family, the mutation to the FOXP2 DNA helix 

diminishes its ability to coordinate gene expression, which may contribute to the developmental 

impairment of the motor related circuits driving the fine movements related to speech 

production.    
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Enter the Zebra Finch: A Songbird Model for Vocal Learning 

         At first glance, zebra finch (T. guttata) and humans have little in common; these 

songbirds sing and fly, whereas humans are ground bound and some sing better than others (most 

identify in the others camp). However, what humans share with the male orange-cheeked 

songbirds is vocal learning, making the zebra finch an experimental model system for 

mechanisms underlying learned vocal production [22]. Zebra finches and humans have similar 

critical periods for vocal learning. In finches, vocal learning begins with the sensory acquisition 

phase where a tutor song must be memorized, followed by a sensorimotor phase, where the 

juvenile practices the memorized song, modifying it over time until the song crystallizes at ~90d 

(Fig. 1) [23]. Additionally, vocal learners share similar neuronal connectivity facilitating vocal 

production, composed of a striatal-cortical-thalamic loop [24]. A molecular view of these shared 

vocal learning brain structures demonstrated similar gene expression patterns between the two 

species. Notably, the human basal ganglia shared similar gene expression with the songbird 

striatal nuclei Area X, a region that functions to facilitate and modify song output throughout the 

critical period [25]. The physiological and gene expression commonalities play a role in the 

development of vocalizations, and in both species, as does the localization of FOXP2 expression. 

         FoxP2 in the zebra finch brain plays a key role in vocal learning and vocal production 

throughout the songbird’s lifespan. In situ hybridization studies of FoxP2 mRNA in the zebra 

finch brain highlight its localization in the cortices, cerebellum, and striatum, all key areas for 

motor output [26]. In concordance with the basal ganglia abnormalities in DVD affected 

members of the KE family, FoxP2 expression in Area X is highly correlated to the quality of 

song production and learning. Perturbations to FoxP2 in Area X of juvenile male zebra finch, 

either by knockdown [27] or overexpression [28], produced impairments in song learning, 
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signifying that FoxP2 levels need to be properly regulated during this critical period. As the 

zebra finch moves from juvenile to adult, this continued regulation is necessary for song 

maintenance [29]. FoxP2 is both behaviorally and socially regulated. The song a male zebra 

finch produces is a marker for sexual selection by the females, as such, the male strives to 

produce the best quality of song when performing in front of a possible mate. This so-called 

‘directed’ song has high stereotopy, and within Area X, FoxP2 levels remain at its baseline level 

[30]. During the male’s song practice, where song variability is much higher, FoxP2 levels 

decrease [31]. The connection between the dynamic behavior of singing and regulation of FoxP2 

expression demonstrates the close link between FoxP2 and vocal output. 

Connecting Robust Gene Expression to a Complex Phenotype 

         By focusing in on FoxP2’s role facilitating vocal learning, the gene expression forest may 

not be seen due this very important tree. Given FoxP2’s function as a transcription factor and its 

dynamic regulation in behavioral settings, its expression can be tied to the regulation and 

expression of downstream genes. Studying complex phenotypes, whether disease related or 

behaviorally motivated, requires complex analytical tools to determine how genes work in 

concert with one another. Weighted gene coexpression analysis (WGCNA) was developed to 

determine how genes behave and group them together into functional modules based on shared 

mRNA expression patterns [32]. WGCNA on the striatal regions Area X and the adjacent VSP in 

the zebra finch demonstrated vastly different gene expression profiles and groups of genes 

correlated to the singing phenotype were identified within Area X, supporting the importance of 

Area X in song production. Additionally, some genes within the singing correlated modules were 

known FoxP2 regulated targets in humans [33-34]. FoxP2’s relationship to vocal learning was 

explored similarly through WGCNA in juvenile zebra finch Area X cells. The gene network 
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obtained was correlated to the quality of learning by the juvenile, and modules identified were 

mined for possible links between song learning and song production. Comparing gene expression 

profiles between male juvenile and adult Area X showed gene network preservation between 

singing correlated genes, however the juvenile learning gene modules were poorly preserved in 

the adults [35]. These gene networks showed that gene expression is closely tied to the social 

development of the zebra finch, however, the pressing question remains how FoxP2 coordinates 

expression of these genes, providing a first step in many possible pathways. 

FoxP2 Chromatin Immunoprecipitation 

         Chromatin immunoprecipitation (ChIP) is a technique utilized to capture protein-DNA 

interactions. A FOXP2 ChIP-microarray (ChIP-chip) using human brain regions, the inferior 

frontal cortex and basal ganglia, identified FoxP2 target genes, as well as regional differences 

between the two, providing evidence of differential FoxP2 targeted gene regulation [36]. A 

follow up ChIP-chip in cell culture and mouse embryonic brain demonstrated biological 

processes of identified FoxP2 target genes, showing enrichment in locomotory behavior, axon 

guidance processes, and ion transporter activity [37]. As the brain develops, FoxP2 targets genes 

that function for neuronal growth, possibly increasing connectivity between key motor brain 

areas [38]. The identified processes provide further evidence in FoxP2’s role in coordinating 

gene expression necessary for neuronal activity connected to motor output. 

         These fundamental studies began to unravel FoxP2 target genes, but how the dynamic 

regulation of FoxP2, and its subsequent effect on gene expression, contribute to vocalizations 

remains unanswered. Developing a FoxP2 ChIP experiment in active vocal learning zebra finch 

would provide evidence of FoxP2 regulating specific genes correlated to song learning from 

juvenile regulating the genes correlated to song learning from the WGCNA data set.
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Additionally, by validating the ChIP through quantitative PCR, the next logical step is to use 

next generation sequencing (ChIP-seq) to identify FoxP2 targets throughout the genome. This 

unbiased approach can be applied to multiple stages of development, juvenile and adult, as well 

as identify FoxP2 target differences within the singing phenotype by comparing the sexual 

differences between male and female. The following thesis provides a detailed description of a 

FoxP2 ChIP for specific genes for validation, as well as FoxP2 ChIP-seq, both novel in the zebra 

finch model, to begin to determine how FoxP2 orchestrates gene expression tied to vocalizations 

as well as song learning. 
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Figure 1. Vocal learning timelines between humans and zebra finch 

 

The developmental timelines of human speech and zebra finch song begin with the sensory 

acquisition phase. The juveniles listen to adult vocalizations to form a neural template of these 

sounds. Following the beginning of the sensory acquisition phase, both species begin the process 

of sensorimotor learning, where the juvenile makes the learned vocalizations and begins to 

modify these sounds to better match the learned template. In the zebra finch, the song crystalizes 

upon adulthood and is permanent, whereas humans are capable of adding to their vocalization 

throughout life. Figure is adapted from Doupe and Kuhl, 1999. 
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Methods 

Subjects 

 All animal use was in accordance with NIH guidelines for experiments involving 

vertebrate animals and approved by the University of California, Los Angeles Chancellor’s 

Institutional Animal Care and Use Committee. Adult subjects older than 120d post hatch (dph) 

were selected from our aviary for the ChIP validation and qPCR experiments. Juvenile male 

birds were isolated from their home cage at 35 dph and remained until 65 dph. On their 65th dph, 

they were selected for either non-singing (NS) or singing group (S). The NS group was obtained 

by the experimenter sitting near to the bird’s cage in the morning and, if the bird attempted to 

sing, gently distracting it from singing for two hours after lights-on. Birds who never-the-less 

sang 10 or more motifs were not used on that day. Those that sang less than 10 motifs in the first 

two hours were then left undisturbed for an additional hour and then sacrificed. This 

methodology previously resulted in gene expression profiles that were similar to those of birds 

that do not sing of their own volition (Hilliard et al., 2012), suggesting that it does not induce a 

sizeable stress response. To be included in the group, birds must have sung > 90 motifs during 

the same 2-hour window. Those that met these criteria were sacrificed 1 hour later. The subjects 

were sacrificed by rapid decapitation and brains were extracted and frozen by liquid nitrogen. 

Chromatin Immunoprecipitation 

 Chromatin immunoprecipitation (ChIP) was performed using ChIP-IT High Sensitivity 

(Active Motif, Cat. No. 53040) following manufacturer’s protocol. Whole brain was isolated 

from an adult male zebra finch, minced, and crosslinked in a formaldehyde solution. The tissue 

was homogenized with a hand-held tissue homogenizer for 45 s at 35,000 rpm. Following 

homogenization, the sample was sonicated at 25% amplitude, 30 s on, 30 s off, for 30 minutes. 
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portion of the sonicate was de-crosslinked and quantified by a Nanodrop 1000 (Thermo 

Scientific, F713). The sample was split evenly into three tubes. A cocktail of 4 µg of anti-FoxP2 

primary antibodies were applied to one sample (Thermo Fisher, Cat. No. 720031, Abcam, Cat. 

No. ab1307, and Santa Cruz, Cat. No. sc-517261), IgG in another (Millipore, Cat. No. 12-370), 

and the third used as input DNA. After an overnight incubation, the samples were washed, 

decrosslinked, and subjected to further PCR analysis. 

PCR and Quantitative PCR 

 The promoter region of MAPK11, determined to be 100 bp upstream of the transcription 

start site (TSS) was identified by searching in the NCBI database the transcript ID. Primers to 

this region were manually binned into 100 bp regions. The MAPK11 primers were as follows: 

forward 5’-CCCTTTCCCCAAATGGCAGA-3’ and reverse 5’-TATGAGCCTTGCCTTGGAG 

C-3’. The initial PCR experiment was performed using DreamTaq PCR Master Mix per 

manufacturer’s protocol. A PCR protocol was used as follows: (1) 95° C 1 min, (2) 95° C 30 s, 

(3) 67° C 30 s, (4) 72° C 1 min, repeat (2-4) for 40 cycles, (5) 72° C 10 min. PCR product was 

run on a 1.5% agarose gel in presence of SYBR Safe to allow for visualization of DNA. PCR 

products were purified (QIAQuick Gel Extraction Kit) and sent for sequencing by Laragen, Inc. 

Reverse primers sent for sequencing are as follows: 5’-TATGAGCCTTGCCTTGGAGC-3’ and 

5’-CCTATGAGCCTTGCCTTGGA-3’. 

 Quantitative PCR was performed on the Thermo Fisher QuantStudio 3. PCR was 

performed using PowerUP SYBR Green Master Mix (TermoFisher Scientific) with the following 

conditions: (1) 50° C 2 min, (2) 95° C 2 min, (3) 95° C 15 s, (4) 60° C 15 s, (5) 72° C 1 min, 

repeat (3-5) for 40 cycles. All reactions were run in triplicate for FoxP2 ChIP, IgG, and input 

samples. Primer region amplification was quantified and FoxP2 ChIP and IgG was normalized to 
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input using 2-Δ ΔCT method [39]. The following primer sets were constructed similarly to 

MAPK11: ACTB (Beta-Actin) and 1000-3000 bp upstream from CNTNAP2 TSS for negative 

controls and the promoter region of CNTNAP2 for a positive control. All primer constructs used 

are annotated in Table 1. 

MAPK11 Expression and Western Blot Following FoxP2 Overexpression 

FoxP2 overexpression was achieved by bilateral injections of FoxP2-AAV detailed previously 

[34]. Area X was punched and subjected to either RNA isolation by Qiagen RNeasy Plus Kit 

(Cat. No. 74134) or protein isolation via homogenization in RIPA buffer. Western blot was 

performed on a 12% poly-acrylamide gel with MapK11 primary antibody (Cell Signaling, Cat. 

No. 9212S, 1:1000 dilution). MAPK11 RT-PCR primers for RNA expression are located in 

Table 2. RNA extracts were reverse transcribed using iScript cDNA Synthesis Kit (Bio-Rad, Cat. 

No. 170-8891) per kit instructions. qRT-PCR was performed as detailed above. 

Next Generation Sequencing Library Preparation 

 Input and FoxP2 ChIP samples were quantified (Qubit 1.0 Fluorometer) and diluted to 

0.5 ng. Library preparation was performed using NuGen Ovation Ultralow Library System V2-

32 (Cat. No. 0344-32) per manufacturer’s instructions. Briefly, ChIP samples were end repaired 

and sequence specific adapters were ligated to each sample. Following ligation, the DNA 

fragments were magnetic bead purified and PCR amplified with the following conditions: (1) 72° 

C 2 min, (2) 95° C 3 min, (3) 98° C 20 s, (4) 65° C 30 s, (5) 72° C 30 sec, repeat (3-5) for 15 

cycles. The amplified DNA was subjected to a final round of bead purification. 

Next Generation Sequencing 

 Library preparations were quality assessed by the Agilent 4200 TapeStation system (Cat. 

No. G2991AA) using D1000 Screen Tape. The ChIP libraries were quantified by the Qubit 1.0 
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Fluorometer and diluted to 10 nM, Libraries from each sample were combined and sequenced 

across two lanes by the UCLA Neurogenomics Core (UNGC; https://www.semel.ucla.edu/ungc) 

by the Illumina HiSeq 4000 sequencer, generating between 15 and 50 million 65 bp single-end 

reads per library. Reads were demultiplexed by UNGC and shared with us via file transfer 

protocol. 

ChIP-seq Preprocessing and Data Analysis 

 Raw single-end FASTQ files provided by UNGC underwent quality control analysis by 

FastQC (bioinformatics.babraham.ac.uk/projects/fastqc), indicating good sequencing quality, 

with high confidence base calling across all bases in each sample with no adapter contamination. 

There were 3 biological replicates and an input control sample per group. Raw reads were 

aligned to the Ensembl zebra finch genome assembly 3.2.4 (release 92) using Bowtie2 [40] with 

default parameters and a Bowtie2 index built using bowtie2-build. SAM alignments were 

converted to BAM and sorted using Samtools [41]. Peak calling was performed using MACS 

version 2.1.1.20160309 [42], using input sequencing as a control (input sequencing was 

performed for each biological group), with the following parameters: --down-sample --seed 123, 

-g 1.2e9. All peaks called for a biological replicate were combined with peaks of all replicates 

within the same group using the union() function within the GenomicRanges package [43] in 

Bioconductor [44]. We identified peaks within promoter regions (defined as 2000 bp upstream 

and 200 bp downstream from the TSS) of genes (from Ensembl database, release 92). Due to the 

sparse annotation of the zebra finch genome, Ensembl gene IDs were matched to human paralogs 

from the HUGO Gene Nomenclature Committee (HGNC) [45], RefSeq [46], and NCBI 

databases using BiomaRt [47]. Genes with HGNC paralogs were piped into a custom KEGG 

pathway analysis that uses KEGG.db [48], a Bioconductor package. ChIPseeker [49] was used to 
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generate average profile plots of peak occupancy over all TSSs. Additionally, FoxP2 consensus 

binding motif, downloaded from the JASPAR database [50] and converted into a position-weight 

matrix (PWM), was used with the Biostrings package [51] (from Bioconductor) to identify 

regions of the genome that match the FoxP2 motif with 80% confidence, and distance to motif 

was calculated using the distanceToNearest() function from the GenomicRanges package. 

Genome browser tracks (bigWig files) were generated using the bamCoverage function within 

deepTools [52] version 3.0.2, and visualized using the Integrated Genome Browser [53] 

(bioviz.org). ATF4, RPL12, RPL22, RPL29, and RPL34 qPCR for ChIP-seq validation was 

performed as detailed above (Primer sequences can be found in Table 2). 

Table 1. Primer Sequences for ChIP-qPCR  

Gene Start End Forward 5'-3’ Reverse 5'-3' 

MapK11 

483 321 GCTCCAAGGCAAGGCTCATA CCAGTCTGGGGACATTATGGT 

342 232 GTCCAGGACTTATCCCCAGG CCTATGAGCCTTGCCTTGGA 

253 141 GCAGCCAGGGAACTAGTCAG TGCCTGGGGATAAGTCCTGG 

208 108 CCTTTACCCTCTTGCACCTTCT GCTAGATGGAAAACAAGGCACC 

161 92 AGGGCTCTTACCCCTTCCTT GCTGACTAGTTCCCTGGCTG 

CNTNAP2 

997 899 TGAAGTGGTTAAGACCGTGTGT TAGGCACTGTACTCCCTCGG 

898 810 TTAGAGGAGCCCCAAAGCAG TCACAGTCACTAAATAACAGCAGGT 

77 2 GCAATAACCTCCCAGCTCAGATA TGTGAGTGCGTGTTTGGCT 

CNTNAP2 

Negative 

1551 1834 CTTCTGTTCCTCTCCTGCTGT TGGTCTGCTGAGCCTTTAAGT 

2113 2334 AGATTCAGCAGGCTGGTTGG GCAGGCCTCACTTGTGGTTA 

ACTB 
888 817 CACAATGCCACATGCAAGGA ATCGTGCACACCAGTGTAGG 

674 549 GTGCAACATGCAGATCGGTG TGTGGGATGCTGATGCATGT 
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Table 2. Primer Sequences for RNA Expression via qRT-PCR  

Gene Forward 5'-3’ Reverse 5'-3' 

MapK11     GGAATCATCCATCGGGACCT 
 

     GGATTGGCACCACGAAACAC 
 

ATF4 CGGGAGTACCCCACCAATTC CTCCTGTTCCGCCCTCTTTT 

RPL12 

RPL22 

ACAGGCAAGCGCAGATAGAG 

ATCGAGAGGAGCAAGAGCAAG 

GGGTGTCTCCCATCAATGCT 

GATCTGGAAGTAGCGCAGCTC 

RPL29 GCACAACCAGTCCCGTAAGT TCAGCCCCTTCTTGTTGTGT 

RPL34 GGCGCCAGGGGTGAAA TCCTGTCACGGACACACTTG 
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Results 

Foxp2-ChIrP: Optimizing a ChIP Protocol to Investigate Song Learning Pathways 

 WGCNA is a valuable tool to organize genes into distinct modules based on shared 

expression values [31]. To untangle this web of interconnected genes, further bioinformatic 

approaches led to the identification of modules and individual genes correlated to the 

quantifiable song learning phenotype [34]. This analysis identified MAPK11 as the gene with the 

greatest gene significance to learning. Although not a member of the module with the overall 

highest correlation to learning, MAPK11 was highly connected to its members. With the 

hypothesis that MAPK11 plays a role in vocal development, and the knowledge of FoxP2 as a 

vital transcription factor underlying vocal learning, the next question is whether FoxP2 targets 

MAPK11 to influence gene expression.  

 FoxP2 Chromatin immunoprecipitation (ChIP) has been examined in mice and humans, 

but not in the zebra finch model. I therefore had to develop an optimized protocol which is 

presented here as part of the results section. The ChIP process necessitates the extraction of 

enough chromatin as starting material with which to begin the protocol. Isolation of chromatin 

specifically from the song dedicated nuclei would be insufficient for the amount of starting DNA 

needed, thus, the entire telencephalon was utilized. Following the cross-linking of DNA-protein 

interactions with formaldehyde, DNA sonication, the breaking of the DNA into sizable 

fragments for subsequent pulldown, was optimized to achieve fragments between 200-1000 bps 

in length (Fig. 2A). The most important aspect of a ChIP involves the antibody selection for 

FoxP2 pulldown. Throughout the ChIP protocol, FoxP2 remains in its native conformation, thus 

an antibody must recognize an available epitope. As a way to hedge our bet, three antibodies 

were chosen to target different regions of the FoxP2 protein (Fig. 2B). FoxP2-specific pulldown 
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validation was achieved by PCR for genes that have been previously shown to contain FoxP2 

target regions (i.e. positive controls) and genes/regions void of FoxP2 binding (negative 

controls). CNTNAP2 is a direct target of FoxP2 in zebra finch [54] and was used as a positive 

control (Fig 2C). As negative controls, previous FoxP2 ChIP-chip studies utilized β-actin 

(ACTB) as a region free of FoxP2 binding, and as a more specific negative control, a region 

3000-2000 bp upstream from the CNTNAP2 transcription start site (TSS), deemed CNTNeg, was 

selected (Fig 2D). Following DNA pulldown and purification, PCR demonstrated enriched 

pulldown of CNTNAP2 positive control regions and void of enrichment at the negative controls 

when compared to non-specific IgG (Fig 2E). 

Confirming MAPK11 as a FoxP2 Target via ChIP-qPCR 

 Following FoxP2 ChIP-qPCR validation, novel targets of FoxP2 could now be 

investigated. Using the JASPAR database, a resource for transcription factor binding sequences, 

the FoxP2 binding motif was transformed into a position weight matrix (PWM). I then searched 

through the T. guttata genome for genes whose promoters matched the matrix with a confidence 

interval of 0.80 (Fig. 3A). Fortuitously, the gene with the greatest significance to song learning, 

MAPK11 contained a 10 bp motif within its promoter region with a one bp difference to the 

canonical FoxP2 binding motif. Primers were designed (Fig. 3B) and qPCR on FoxP2 ChIP 

samples showed an enrichment of DNA pulled down from these regions compared to IgG, 

providing evidence that FoxP2 binds to the promoter region of MAPK11 containing the FoxP2 

binding motif (Fig. 3C). Ensuring the PCR product was in fact our region of interest, the 

amplified product was verified by sequencing (Fig. 4). 

FoxP2 bound to the promoter of MAPK11 tells one aspect of this interaction, but the 

question of regulation remains. A viral construct to overexpress FoxP2 was injected into Area X
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of juvenile males according to our RNA-seq protocol [34]. Bilateral punches were retrieved, one 

set up for RNA extraction, the other for protein extraction. Surprisingly, the increase in FoxP2 

expression did not significantly affect MAPK11 expression RT-qPCR (Fig. 4A) nor were 

changes in protein quantity via Western blot analysis (Fig. 4B). Our inability to detect changes in 

MAPK11 qRT-PCR signals following FoxP2 over-expression could reflect MAPK11’s enormous 

number of roles in various biological pathways, signaling cascades, and its overall importance to 

cell function.  

Identifying Differential FoxP2 Binding Sites by ChIP-seq 

 The ChIP-qPCR experiments demonstrated FoxP2 binding to the promoter region of 

MAPK11, however, to say this is the tip of the iceberg does a disservice to tips of icebergs. The 

importance of FoxP2 to learned vocalizations has been demonstrated multiple times in both 

humans and songbirds, with its dynamic expression driving further gene expression changes 

throughout this complex phenotype. Following up the initial ChIP work, ChIP-seq across 

different sexual and groups would shed light on how FoxP2 differentially targets genes. In order 

to capture sex differences, adult male and adult female zebra finches (n=3) were selected, and for 

developmental differences, male juveniles (65 dph) were chosen for ChIP-seq. Additionally, the 

juveniles were split to have a non-singing (NS, n=3) and a singing (S, n=3) group, knowing that 

FoxP2 expression changes specifically within Area X with this behavioral paradigm [26]. We 

hoped to find genes where FoxP2 was bound that highlight the differences in the singing 

phenotype (M v F and Juv NS v S) and the learning phenotype (M v Juv).  

 Sequencing libraries were prepared from the isolated ChIP DNA with specific adapter 

barcodes, validated for fragment length and quality, diluted to 10 µM, pooled together into 2 

lanes, and supplied to the UNGC to sequence and de-multiplex. The quality of sequencing was 
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checked and validated via FastQC (Fig. 6), showing high confidence of each base sequenced. 

Sequenced reads were aligned to the T. guttata genome, downsampled to the lowest aligned read 

count, and input DNA controlled before peak calling (Table 2). Peak width was determined to 

ensure small peak ranges (Fig 7A).  If the ChIP protocol was successful, the proximity of the 

peaks to the JASPAR defined FoxP2 motif would be close. By using a threshold of 0.80 

sequence match, the distance of the location of each peak to a motif was determined, validating 

the pulldown was specific to FoxP2 binding sites (Fig. 7B). Further validation of peak location 

was achieved by determining the peak frequency around the promoter TSS (Fig. 7C), with each 

group showing higher peak frequency near the TSS. In summary, validation of proper FoxP2 

ChIP pulldown was demonstrated by the peaks of each group having uniform width, located in 

close proximity to a FoxP2 binding motif, and a higher peak frequency relative to TSS.    

 Identifying FoxP2 binding sites within the promoter region gave a number of genes for 

comparison (Table 3). Applying HNGC gene symbols to the Ensemble gene IDs diminished the 

list of genes with known functions within the zebra finch genome considerably, due in part to its 

incomplete annotation. Nevertheless, the analysis persists. KEGG pathway analysis determined 

key contributors to biological function both within each group and between the group 

comparisons. The KEGG analysis on total genes, regardless of group, with FoxP2 bound to the 

promoter highlighted two pathways worth further exploration: ribosomal and neurotrophin 

signaling pathways. Interestingly, when comparing the male and female FoxP2 binding sites, 

both ribosomal and neurotrophin pathways are observed in only the male. In the adult male and 

juvenile, only the adult continues to have the ribosomal pathway present. The neuotrophin 

pathway was a key KEGG pathway difference between the juvenile S and NS, with the juvenile 

singer having FoxP2 bound to key genes within this pathway (Fig. 8). This observation led to the 
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hypothesis that these genes play a role in the singing phenotype, and engaged in a process that is 

age dependent. In the adult male, the ribosomal genes RPL12, RPL22, RPL29, and RPL34, were 

all observed having FoxP2 binding, which was not seen in any other group, possibly, an age and 

sex related difference in processing of RNA. Within the juvenile, singing leads to a decreased 

level of FoxP2 expression in Area X, which may activate the neurotrophin pathway, specifically 

by FoxP2 binding to the promoter region of Activating Transcription factor 4 (ATF4) promoter 

region.  ATF4 is a transcription factor observed as a regulator of GABAB receptor trafficking, a 

key component to synapse plasticity and memory formation [55] (Fig. 9A). 

 Building the connection of FoxP2 binding to these differential genes, qRT-PCR was 

conducted on adult male and female zebra finch, as well as a Juvenile NS. Unfortunately, due to 

the uncooperative manner of the juvenile songbirds, a Juvenile S was not available for gene 

expression analysis. Regardless, in the samples tested, the male zebra finch showed increased 

expression pattern for all genes (ATF4, RPL12, RPL22, RPL29, RPL34) shown to be bound in 

the adult male and not in females or juvenile NS (Fig. 9B). To further the link, the gene 

expression of profile of the female and juvenile NS showed remarkable similarity. This analysis 

was conducted with an n=1 in each group, so further testing remains to be done. Additionally, to 

further this claim, a juvenile S sample would be necessary to test if ATF4 expression is similarly 

high, since it shares a FoxP2 binding site with the adult male, and if the ribosomal genes are low, 

as with the female and juvenile NS.    
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Figure 2. FoxP2-ChIP Validation

 
Figure 2. A) Sonication of DNA isolated from the zebra finch telencephalon with enrichment of 

fragments between 200-1000 bp. 1.5% Agarose gel stained with SyberSafe. B) Schematic of 

FoxP2 protein, red antibodies used to target different regions of the FoxP2 protein. C) CNTNAP2 

gene (teal) with highlighted promoter region and -3000- -2000 bps upstream below. Arrows 

signify primers for regions of PCR amplification. D) Negative control β-actin with promoter 

region and arrows for primers for PCR amplification. E) ChIP-qPCR results showing enrichment 
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of amplification from CNTNAP2 positive control regions and negative results from CNTNeg and 

β-actin when normalized to non-specific IgG. 

 

Figure 3. FoxP2 Binds to MAPK11 Via Sequence Specific Binding Motif 

 

Figure 3. A) JASPAR database FoxP2 binding sequence, which was converted into a PWM and 

searched throughout the T. guttata genome promoter regions. B) Schematic of MAPK11, 

promoter region in teal and purple, blue arrows represent primers for regions of PCR 

amplification. Highlighted box below (-295- -275) represents sequence match for FoxP2 binding 

motif. C) FoxP2 ChIP-qPCR results for regions highlighted above. Overall enrichment of pulled 

down DNA from the MapK11 primers compared to IgG with CNTNAP2 as the positive control 

and CNTNeg and β-actin as negative control
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Figure 4. Sequence of PCR Amplified MAPK11 Promoter Region

 

Figure 4. MAPK11 schematic with highlighted regions targeted for ChIP-qPCR. PCR product 

was isolated and sent for sequencing with the primers in yellow. Sequencing results in black with 

red region signifying FoxP2 binding motif match. 

 

Figure 5. FoxP2 Does Not Regulate of MAPK11 Expression 

 

Figure 5. A) RT-qPCR on FoxP2 from Area X punches in which one hemisphere was injected 

with an AAV to drive FoxP2 over-expression. While an increase in FoxP2 is observed, no 

significant differences in MAPK11 RNA expression was detected relative to the uninjected 

hemisphere. B) Western blot analysis shows no difference in MapK11 protein quantification 

following FoxP2 OE. 
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Figure 6. FoxP2 ChIP-seq Base Confidence via FastQC 

 

Figure 6. FastQC results for each sequenced sample. Each row is a single base and row is the 

confidence score. Green indicates high confidence in base calling. For each sample, the black 

trace falls within the green region. 
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Table 3. Aligned Reads and Peaks in Sequenced Samples 

 Reads Aligned Reads % Mapped 

Reads 

Number of 

Peaks 

Adult F Input 52682934 45702287 86.75 
5282 

Adult F Average 29135155 24375707 83.66 

Adult M Input 49408845 43559577 88.16 
5335 

Adult M Average 18762813 15816448 84.30 

Juvenile M NS Input 71618720 63317203 88.41 
4027 

Juvenile M NS Average 28732780 24899762 86.66 

Juvenile M S Input 52903079 46292072 87.5 
2688 

Juvenile M S Average 21374580 18595482 87.0 

 

Table 3. Number of reads, aligned reads, % mapped and number of peaks for each group. The 

Average of each group was calculated from an n=3. Aligned reads were downsampled to Adult 

M Average aligned reads prior to peak calling. 
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Figure 7. FoxP2 ChIP-seq Peak Characteristics and Localization 

 
 

 
 

Figure 7. A) Peak width of each ChIP-seq group, average peak width ~110 bp B) Distance of 

each peak to the JASPAR database consensus FoxP2 binding motif, with a confidence of 0.80 
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match to the PWM. C) Peak frequency around the promoter region. The TSS is demonstrated by 

the dashed line, showing an enrichment of peak frequency at the TSS. 

 

Table 4. FoxP2 Binding Sites Within the Promoter Region 

 # of Genes Genes with HGNC 

Total T. guttata Genome 18585 10794 

Bound in at Least One Group 475 279 

Bound in All 89 15 

Adult Comparisons 

Male and Female 123 33 

Male 177 116 

Female 83 47 

Male Adult - Juvenile Comparisons 

Male and Juvenile NS 148 41 

Male 152 108 

Juvenile NS 59 43 

Male and Juvenile S 135 39 

Male 165 110 

Juvenile S 60 46 

Male Juvenile Comparisons 

Juvenile NS and Juvenile S 134 41 

Juvenile NS 73 43 

Juvenile S 61 44 

 

Table 4. Number of genes observed with a FoxP2 binding site within the promoter region. The 

identified genes were given an ENSEMBL ID which was matched to HGNC genes, showing the 

total number of genes with known functions on the right. 
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Figure 8. KEGG Pathway Analysis of FoxP2 Differentially Bound Genes 

 

  
 

Figure 8. KEGG pathway analysis. A) Significant enriched terms within KEGG pathways of all 

gene promoter regions bound by FoxP2 throughout the groups. B-D) Comparison analysis of 

KEGG pathways B. Binding sites in males not found in females, C. Genes enriched in pathways 

found in adult males but not in male juveniles, D. Enriched pathways found in juvenile singers 

but not in juvenile non-singers. 
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Figure 9. Differential FoxP2 Binding Affects Gene Expression 

 

Figure 9. A) Peak visualization of the promoter region of ATF4. Chromosome 1A schematic with 

ATF4 coordinates top. Peaks labeled with blue and yellow, shown above visualization of aligned 

reads for each group. Clearly demonstrating abundance of reads in Adult M and Juv M S, 

signifying peaks in the promoter region. B) qRT-PCR on selected genes show an upregulation in 

the Adult Male (blue), which has FoxP2 bound, compared to Adult F and Juv NS, which no 

FoxP2 binding was observed. FoxP2 expression (far right) implies FoxP2 binding is not due to 

increased abundance of FoxP2 in the Adult M. 
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Discussion 

 RNA-seq and ChIP-seq techniques provide a powerful means whereby one can identify 

changes in gene expression and transcription factor binding sites in an unbiased manner. Here, I 

was able to optimize the ChIP protocol to validate FoxP2 binding at specific sites and examine 

binding sites throughout the genome. One drawback, however, is that the large amount of data 

generates an abundance of noise. This is especially evident in the zebra finch model, where the 

amount of data far surpasses the genome’s annotation. Yet, by closely examining the data, 

certain pathways or genes reveal themselves as avenues for further exploration. Our RNA-seq 

study provided a bioinformatic approach to identify genes correlated to learning to start 

deciphering possible pathways. By doing so, MAPK11 was identified as having the greatest gene 

significance to vocal learning. The importance of FoxP2 to vocal learning led to the question of 

how FoxP2 influences MAPK11 during this critical period. 

 Following optimization of the ChIP protocol, my ChIP-qPCR analysis in the zebra finch 

demonstrated FoxP2 binding to a region of MAPK11. Bioinformatic analysis suggested that this 

region was in the MAPK11 promoter. Indeed, in a subset of animals that were previously 

generated, ChIP-qPCR results showed FoxP2 pulling down our MAPK11 region of interest. 

However, when repeated on a new set of 12 birds via ChIP-seq, we failed to find a significant 

relationship. The sparsely annotated zebra finch genome makes it challenging to determine 

whether the MAPK11 region in question lies in the promoter region, or within an intron. If so, 

this could explain the lack of evidence supporting FoxP2 regulation of MAPK11 expression in 

both the new qPCR and Western analyses. If our hypothesis that FoxP2 is in fact binding to the 

promoter region, the absence of changes in expression upon FoxP2 overexpression may be due 

to the abundance of roles MAPK11 plays within cell signaling cascades whereby a change in 
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one pathway may not be robust enough to be detected due to all the other regulatory signals. 

Indeed, there may be some type of compensatory regulation that resists the effects of our 

intervention.  

 The validation of the FoxP2-ChIP in zebra finch provides a novel look at which genes 

FoxP2 binds to in a laboratory model for vocal learning. Our analysis focused on differential 

FoxP2 binding sites associated with sex and developmental stage. The most interesting FoxP2 

binding sites were specific to the adult male zebra finch. The RNA processing genes RPL12, 

RPL22, RPL29, and RPL34 were found to be bound by FoxP2 only in the adult male. How these 

proteins regulate RNA translation throughout vocal development remains to be explored. RPL22 

IP pulled down increased amounts of DARPP32, a marker for medium spiny neurons [55]. It is 

within these medium spiny neurons that is thought to be a key driver of FoxP2 expression in 

Area X [56]. This furthers the link by demonstrating medium spiny neurons express both FoxP2 

and RPL22, with FoxP2 binding to and increasing the translation of RPL22.  

 Our analysis also highlighted ATF4 as a FoxP2 target in adult males and juvenile singers. 

Meduim spiny neurons are GABAergic inhibitory neurons and ATF4 knockdown decreases 

GABAβR trafficking [54]. FoxP2 may regulate ATF4 expression, affecting GABA receptor 

trafficking and neuronal firing rate. Area X plays a role in song modification and maintenance 

throughout the male zebra finch lifespan. FoxP2 binding to ATF4 may play a role in a molecular 

pathways key to this vital song production behavior.  

 This project has highlighted a key technique to identify FoxP2 binding sites within the 

zebra finch model. Until the genome is fully annotated, these results are preliminary. The genes 

uncovered to be bound and regulated by FoxP2 provide further clues to the complex interplay of 

vocal learning and gene expression.   
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Appendix: FoxP2 Isoforms Delineate Spatiotemporal Transcriptional Networks for Vocal 

Learning in the Zebra Finch 

Zachary D. Burkett, Nancy F. Day, Todd H. Kimball, Caitlin M. Aamodt, Jonathan B. Heston, 

Austin T. Hilliard, Xinshu Xiao, and Stephanie A. White 
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Statement of Contribution  

 Vocal learning in the zebra finch is accompanied by underlying changes in gene 

expression. In the song specific motor nucleus, Area X, of still learning juveniles, groups of 

interconnected genes are correlated to the act of learning and other groups to the act of singing. 

When compared to the gene expression network of adults, the connectiveness of singing 

correlated genes remains, while connectivity of the learning related gene modules breakdown. 

Those genes most correlated to singing can be mined for possible pathways partially responsible 

for the execution of song modification that must occur for song learning to be mastered. The 

work presented here is a study into these gene networks done by Zachary Burkett. My 

contribution to this was the beginning of my M.S. thesis, optimizing and performing a ChIP-PCR 

protocol in the zebra finch model and qRT-PCR. My contribution is presented in Figure A1C and 

Figure A6. I also wrote portions of the methods section that generated the data. 
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Abstract 

 Human speech is one of the few examples of vocal learning among mammals yet ~half 

of avian species exhibit this ability. Its neurogenetic basis is largely unknown beyond a shared 

requirement for FoxP2 in both humans and zebra finches. We manipulated FoxP2 isoforms in 

Area X, a song-specific region of the avian striatopallidum analogous to human anterior striatum, 

during a critical period for song development. We delineate, for the first time, unique 

contributions of each isoform to vocal learning. Weighted gene coexpression network analysis of 

RNA-seq data revealed gene modules correlated to singing, learning, or vocal variability. 

Coexpression related to singing was found in juvenile and adult Area X whereas coexpression 

correlated to learning was unique to juveniles. The confluence of learning and singing 

coexpression in juvenile Area X may underscore molecular processes that drive vocal learning in 

young zebra finches and, by analogy, humans. 
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Introduction 

 The ability to learn new vocalizations is a key subcomponent of language. Complex 

behaviors such as human speech and birdsong are rarely monogenic in origin, making the 

attribution of their direct molecular underpinnings a challenge (Marcus and Fisher, 2003). While 

language is unique to humans, learned vocal behavior is present in a number of animal taxa. 

Among laboratory animals, the zebra finch songbird (Taeniopygia guttata) is the primary genetic 

model for vocal learning, and song learning in this species shares numerous parallels with human 

speech development. For example, both species share corticostriatal loops for producing 

vocalizations and have direct projections from cortical neurons onto brainstem motor neurons 

that control the vocal organs, a connection that is lacking or reduced in non-vocal learners 

(Lemon, 2008; Ju¨rgens, 2002; Arriaga et al., 2012; Doupe and Kuhl, 1999; Petkov et al., 2012). 

The brains of avian vocal learners contain a distributed corticostriatal network of clustered cells 

devoted to vocal production learning, commonly referred to as the song control circuit, offering 

tractable targets for experimental manipulation. Despite their evolutionary distance, humans and 

zebra finches exhibit shared transcriptional profiles in key brain regions for vocal learning that 

are unique from surrounding brain areas and from the brains of non-vocal learning species 

(Pfenning et al., 2014). 

 The forkhead box P2 (FOXP2) transcription factor was the first gene shown to be 

important for vocal learning in both humans and songbirds. Forkhead box proteins are 

characterized by the presence of DNA-binding FOX domains (Clark et al., 1993) and FOXP 

subfamily members form homo- or heterodimers at zinc finger and leucine zipper domains in 

order to bind DNA. In humans, a heterozygous mutation in the FOX domain of FOXP2 causes a 

rare heritable speech and language disorder in a cohort known as the KE family (Vargha-
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Khadem et al., 1998; Lai et al., 2001), potentially by altering the subcellular localization of the 

molecule (Vernes et al., 2006). While the mutation disrupts vocal learning (Marcus and Fisher, 

2003) and also vocalization in vocal non-learners (Chabout et al., 2016; Castellucci et al., 2016), 

multiple FOXP2 isoforms are endogenous to both songbirds and humans, including one that 

lacks the DNA binding domain (Teramitsu and White, 2006; Bruce and Margolis, 2002). This 

truncated variant is referred to as FOXP2.10+ because, although it lacks the FOX domain, it 

retains the dimerization domains plus an additional 10 amino acids that are not found in the full-

length form (FoxP2.FL). 

 Consistent with its lack of a FOX domain, in vitro assays of FOXP2.10+ indicate that it 

may regulate other FoxP2 isoforms (Vernes et al., 2006). Since it retains the dimerization 

domain, it has been hypothesized to act as a cytoplasmic sink, binding to other FOXP proteins 

and preventing their entry to the nucleus and interaction with DNA. Investigation of FoxP2 

function in zebra finches has revealed remarkable parallels with humans. Similar FoxP2 

expression patterns occur in developing human and zebra finch brains (Teramitsu et al., 2004). In 

zebra finches, knockdown of FoxP2 in the song dedicated striatopallidal nucleus, Area X, during 

vocal development impaired vocal mimicry of tutor songs (Haesler et al., 2007), much as the KE 

family mutation impairs speech. These observations indicate that functional FoxP2 is necessary 

for proper vocal learning, an inference supported by work in songbirds (Haesler et al., 2007; 

Heston and White, 2015). 

 The unique organization of song control circuit neurons enabled the discovery that FoxP2 

is dynamically downregulated within Area X when zebra finches practice their songs, termed 

‘undirected’ (UD) singing (Teramitsu and White, 2006; Miller et al., 2008; Hall, 1962; 

Immelmann, 1962; Dunn and Zann, 1996). This decrease in FoxP2 is accompanied by increased 
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vocal variability (Miller et al., 2010; Hilliard et al., 2012a), thought to be a form of vocal 

exploration. Blockade of FoxP2 downregulation impaired birds’ ability to induce variability in 

their songs. A poor learning phenotype emerged following FoxP2 overexpression (Heston and 

White, 2015) that was remarkably similar to that observed following FoxP2 knockdown (Haesler 

et al., 2007). Taken together, these results indicate that the dynamic regulation of at least 

FoxP2.FL, and thereby the behavior-linked up- and down-regulation of its transcriptional targets, 

is necessary for the proper learning of vocalizations. No specific role in vocal behavior has yet 

been attributed to the FoxP2.10 + isoform. 

 These observations pinpoint FoxP2 as a molecular entry point to the pathways underlying 

vocal learning. In adult birds, we previously used Weighted Gene Coexpression Network 

Analysis (WGCNA) to identify thousands of genes regulated by singing specifically in Area X 

(Hilliard et al., 2012a; Langfelder and Horvath, 2008). Since adult zebra finches sing stable, or 

crystallized, songs, the transcription patterns underlying vocal learning were not identified. Here 

we conduct a new study with two goals: (1) Determine whether FoxP2.10+ may play a role in 

vocalization and, (2) Manipulate FoxP2 isoforms in juveniles to generate a broad range of 

behavioral and transcriptional states upon which to apply WGCNA and thereby reveal learning-

related gene modules. Toward the first goal, overexpression of FoxP2.10+ revealed a unique role 

for this truncated isoform in the acute modulation of vocal variability. Toward the second goal, 

overexpression of either GFP or one of the two FoxP2 isoforms created three distinct groups of 

juvenile birds: one that was good at learning and acutely modulating variability (GFP), one that 

was poor at learning and acutely modulating variability (FoxP2.FL), and one that was good at 

learning but injected stability into song (FoxP2.10+). We applied WGCNA to the Area X 

transcriptome of birds across this behavioral continuum and discovered striatopallidal 
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coexpression patterns that were positively correlated to learning. These learning-related patterns 

were present in juvenile but not adult Area X. However, singing-driven coexpression patterns in 

Area X were largely preserved between juveniles and adults, suggesting that: (1) song production 

modules are independent of learning state and (2) the spatiotemporal cooccurrence of both song 

production and learning-related gene modules in juvenile Area X is fundamental to vocal 

learning. 

Methods 

Subjects 

All animal use was in accordance with NIH guidelines for experiments involving vertebrate 

animals and approved by the University of California, Los Angeles Chancellor’s Institutional 

Animal Care and Use Committee. Birds were selected from breeding pairs in our colony. 

Experimental timeline 

The experimental timeline is schematized in Figure 2A. Breeding cages that contained candidate 

experimental birds were placed in sound attenuation chambers along with their parents and 

siblings when juveniles reached ~20 d, as in Heston and White (Heston and White, 2015).  

Chambers were continuously recorded so as to capture tutor song. At 30d, juvenile males were 

bilaterally injected with AAV1 into Area X to overexpress either FoxP2.FL, FoxP2.10+, or GFP, 

then returned to their chambers. At 40d, juvenile males were isolated from all other birds and 

continuously audio-recorded. At ~60 d, an ‘NS-UD’ experiment was performed according to the 

methods of Miller et al., Chen et al., and Heston et al. (Heston and White, 2015; Miller et al., 

2010; Chen et al., 2013) to assess the induction of vocal variability. On the ‘NS-UD’ day, for the 

first two hours after lights-on, birds were distracted by gentle ‘shushing’ if they attempted to 

sing. (Those that sang >10 motifs were excluded from that day’s experiment). On the ‘UD-UD’   
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day, birds were allowed to sing UD song for the first two hours after lights-on. The level of 

variability in songs sung subsequent to those two hours was quantified. 

 At 65d, birds were sacrificed following two hours of UD singing with one exception: In 

order to assure a broad range of song amounts immediately preceding sacrifice (and thereby 

capture a range of singing-induced gene expression), we distracted one bird in the GFP group 

from singing during the two hours preceding sacrifice.  

 A total of 19 birds received stereotaxic injections with AAV (7 GFP, 6 FoxP2.FL, 6 

FoxP2.10+). Sample size was based on numbers used in Heston and White (Heston and White, 

2015) where 5–8 animals per group were sufficient to reveal treatment effects. The authors of the 

WGCNA R package recommend a minimum of 15 samples for building a network 

(https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/faq.html), so 

we ensured at least five animals in each of the three groups. 

Song recording 

Countryman EMW or Shure SM93 omnidirectional lavalier microphones were used to 

continuously record birds from ~20 d until sacrifice (65d). Sounds were digitized using PreSonus 

FirePod or PreSonus Audioboxes at a 44.1 kHz sampling rate and 24-bit depth. Recordings were 

managed by SAP 2011 software (Tchernichovski et al., 2000). 

Stereotaxic surgery and viruses 

Behavior and RNA-seq experiments 

As described in Heston and White (2015), 30d juvenile males were anesthetized using 2–4% 

isoflurane in pure oxygen and secured in a custom-built avian stereotaxic apparatus, then injected 

with virus bilaterally into Area X at the following coordinates: 45° head angle, 5.15 mm rostral 

of the bifurcation of the midsagittal sinus, 1.60 mm lateral of the midline, and to a depth of 3.3 
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mm. Virus was injected via a Drummond Nanoject II through a glass microelectrode (~40 mM 

inner diameter) backfilled with mineral oil. Three 27.6 nL injections were performed with a 15 s 

wait between injections and a 10 min wait before retraction of the electrode so as to minimize 

vacuum action pulling the virus away from the injection site. Incisions in the scalp were closed 

with Vetbond (3M, St. Paul, MN, USA). Birds received oxygen for ~2 min until alert, then 

returned to their home cages. 

 AAV1 used in Heston and White (Heston and White, 2015) and produced by Virovek 

(Hayward, CA) was used here. AAV1s contained zebra finch FoxP2.FL or FoxP2.10+ coding 

sequences (Teramitsu and White, 2006) (Genbank Accession Number DQ285023), or that for 

GFP, downstream of the CMV early enhancer/chicken b actin (CAG) promoter. Virus titers were 

all ~2.24E + 13 vg/ml, thus equivalent volumes were delivered to each bird irrespective of 

construct. Heston et al. (Heston and White, 2015) estimated that 24 ± 5.5% of neurons at the 

epicenter of the virus injection are transduced and that 96.7 ± 1.7% of cells that are transduced 

are neurons. These transduction rates are sufficient to observe a behavioral effect of the virus and 

were thus used in the present study. 

Histological assessment of FoxP2.10+ overexpression 

FoxP2.10+ is a naturally occurring truncated isoform of FoxP2.FL, with a unique 10 amino acid 

sequence at its C-terminus. There is currently no antibody specific to this truncated isoform, 

presenting a challenge to its immunological detection. The limited cloning capacity of AAV 

precluded our ability to express a reporter gene in the viruses that we used for behavioral and 

RNA-seq experiments. Moreover, we opted not to include an epitope tag on AAV-expressed 

FoxP2 isoforms in order to avoid any conformational changes that could confound our 

behavioral or RNA-seq analyses. For histological analysis only, however, we took advantage of 
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the larger cloning capacity of HSV to express FoxP2.10+ tagged with an Xpress epitope at its N-

terminus downstream of the IE 4/5 promoter and a GFP transduction reporter downstream of the 

CMV promoter (McGovern Institute for Brain Research at the Massachusetts Institute of 

Technology, Cambridge, MA). Surgical procedures were identical to those performed with AAV 

except that the virus was diluted to 60% in PBS immediately preceding injection, per the 

manufacturer’s recommendation. HSV reaches peak expression more rapidly than does AAV, 

thus HSV-injected birds were sacrificed 3–5 days post-injection (Neve et al., 2005). 

In situ hybridization 

In situ hybridizations were performed as in Jacobs et al. (1999) using two [33P]UTP-labeled 

riboprobes antisense to distinct regions of zebra finch FoxP2 (Teramitsu et al., 2004). 20 mM 

thick sections were thaw-mounted onto Superfrost Plus microscope slides (ThermoFisher 

Scientific, Waltham, MA, USA), then postfixed with 4% paraformaldehyde in PBS, pH 7.4. 

PCR primers 

To quantify levels of FoxP2.FL, we selected a primer pair previously used to quantify FoxP2 

knockdown (Haesler et al., 2007; Olias et al., 2014). The forward sequence was 5’-CCTGGCTG 

TGAAAGCGTTTG-3’ and the reverse was 5’ATTTGCACCCGACACTGAGC-3’. We designed 

a primer pair for FoxP2.10+ using the NCBI Primer-BLAST tool (Ye et al., 2012). The input 

sequence was FoxP2.10+ mRNA CDS (GenBank accession DQ285023.1). The forward primer 

sequence was 5’-CGCGAACGTCTTCAAGCAAT-3’ and the reverse sequence was 5’-

AAAGCAATATGCACTTACAGGTT-3’. Primer specificity was determined by obtaining a 

single peak in melting curve analysis and obtaining a single amplicon of predicted size following 

qPCR. GAPDH forward and reverse primers were 5’-AACCAGCCAAGTACGATGACAT-3’ 

and 5’-CCATCAGCAGCAGCCTTCA-3’, respectively. 
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qRT-PCR experiments 

200 ng of RNA from Area X micropunches was reverse transcribed into cDNA using the Bio-

Rad iScript cDNA Synthesis Kit (Hercules, CA, USA). 25 mL qPCR reactions were assembled 

in MicroAmp Optical 96-Well Reaction Plates (ThermoFisher Scientific). Reaction components 

were 0.5 mL cDNA, 200 nM primers, 12.5 mL PowerUp SYBR Green Master Mix 

(ThermoFisher Scientific), and 10.75 uL nuclease-free water. Cycling conditions were 50°C for 

2 min, 95°C for 2 min, then 40 cycles of 95°C for 15 s and 60°C for 1 min. A dissociation step of 

95°C for 15 s, 60°C for 1 min, 95°C for 15 s, and 60°C for 15 s was then performed. All 

reactions were run in triplicate and all samples for an individual animal were run together on the 

sample plate. FoxP2 expression was quantified relative to GAPDH and normalized to the GFP-

injected animals using the 2-D DCT method (Livak and Schmittgen, 2001). 

Immunostaining 

For histological analyses, animals were sacrificed 3–5 days following HSV injection then 

perfused with warm saline followed by ice cold 4% paraformaldehyde in 0.1 M phosphate 

buffer. Tissue was cryosectioned at 20 mM, thaw-mounted onto glass microscope slides, and 

stored at -80°C until use. Thawed sections were incubated overnight with goat-anti-FoxP2 

(1:500; Abcam, Cambridge, UK; [Thompson et al., 2013]) and mouse-anti-Xpress (1:500; 

ThermoFisher Scientific, Waltham, MA). AlexaFluor 546 donkey-anti-goat (1:500) and 

AlexaFluor 405 donkey-anti-mouse (1:250) secondary antibodies were used to generate anti-

FoxP2 and anti-Xpress signals, respectively. Sections were visualized using a Zeiss 

(Oberkochen, Germany) LSM 800 confocal microscope and processed using NIH ImageJ 

(Schneider et al., 2012). 

Song analysis and statistics 
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Motif similarity 

The Similarity Batch in SAP was used to quantify the acoustic similarity between pupil and tutor 

songs (Tchernichovski et al., 2000). Asymmetric comparisons were performed between 10 tutor 

motifs (obtained from the final day before the pupil was acoustically isolated) and 20 pupil 

motifs (obtained every ~3 days following viral injection). We used the average percentage 

similarity from these comparisons as a representative of how well the pupil learned its tutor’s 

song on a given day of analysis. Statistical significance of motif similarity data was calculated by 

performing one-way ANOVAs on the average percentage similarity score of each animal across 

virus groups within each time bin, as depicted in Figure 2D. If the ANOVA yielded a significant 

result, Tukey’s Honest Significant Difference (HSD) was used as a post-hoc test. 

Overall vocal variability 

To broadly assess the amount of variability in the animal’s song preceding sacrifice, asymmetric 

comparisons between 20 pupil motifs and themselves were conducted. We calculated the motif 

identity for all motif-motif comparisons as the product of their percentage similarity and 

accuracy divided by 100. Higher identity scores indicate lower variability within the batch. 

Acute vocal variability modulation  

For finer-grained analyses of acoustic variability as presented in Figures 2C and Figure 2—

figure supplement 1, we utilized SAP and Vocal Inventory Clustering Engine (VoICE; [Burkett 

et al., 2015]; https://github.com/zburkett/VoICE). Syllables from the first 20 min following two 

hours of non-singing or undirected singing on the NS-UD experiment days were hand 

segmented, had their acoustic features quantified in the SAP Feature Batch, then clustered by 

VoICE. Data for analyses of acoustic features were taken from the VoICE output. Effect sizes 

were calculated using the formula (NS-UD)/(NS +UD), where values were the CV of a given 
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acoustic feature following two hours of NS or UD. Thus, negative values indicate increased song 

variability after UD singing (see below for more information regarding this transformation). 

Statistical significance for each song feature was assessed by one-way ANOVA on the CV effect 

size for all syllables from all animals within each group. Tukey’s HSD was used as a post-hoc 

test in the instance of a significant ANOVA result. For the raw acoustic data, as presented in 

Figure 2—figure supplement 1, the syllables were considered paired within virus construct and 

across singing context. Paired T-tests were used to assess whether two hours of non-singing vs. 

two hours of undirected singing significantly altered the CV for each acoustic feature. 

Song analysis: (NS-UD)/(NS + UD) effect size vs. raw acoustic feature CV 

The calculation of effect size was performed because it allows for comparison across virus 

groups instead of a series of paired comparisons within group (Miller et al., 2015). The 

transformation normalizes acoustic features so that any observed changes are viewed in the 

context of the initial values. We present a hypothetical example in the table below where a 

change of 50 Hz for two syllables is given a greater weight for a syllable that has an overall 

lower frequency when using the transformation we applied for our song data: 

Syllable A Syllable B 
 

NS 

 

UD 

Raw 

Delta 

 

(NS-UD)/(NS+UD) 

 

NS 

 

UD 

Raw 

Delta 

(NS-UD)/(NS+UD) 

100 Hz 150 Hz 50 Hz -0.2 500 Hz 550 Hz 50 Hz -0.048 

 

Tissue collection and processing, RNA extraction, cDNA library preparation, and sequencing 

Two hours following lights-on at ~65 d, birds were sacrificed by decapitation. Brains were 

rapidly extracted and frozen on liquid nitrogen, then stored at -80°C until all brains were 

collected. As in Hilliard et al. (2012a), tissue micropunches of Area X and VSP were performed. 

Brains were coronally sectioned on a cryostat at 30 mM until Area X became visible. Area X and 

outlying VSP were punched using a 20-gauge Luer adapter and stored in RNAlater (Qiagen, 
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Germantown, MD) at -80°C until RNA extraction was performed. 30 mM sections were then 

collected, thaw mounted, and thionin stained for post-hoc validation of punch accuracy. 

 Total RNA extraction was performed as in Hilliard et al. (2012a). Samples were 

processed semi-randomly and in parallel with another sequencing project. Tissue punches from 

both studies were processed in batches of 8. We used Qiagen RNeasy Micro Kits (Cat. No 

74004) following the manufacturer’s protocol and QIAzol as the lysis reagent. An additional 

wash beyond the manufacturer’s protocol was performed in RW1 and RPE buffers. Final elution 

volume was 20 mL. Extracted total RNA were stored at -80°C until all RNA extractions were 

completed. All extractions were completed over the course of two weeks. 

 Total RNA was provided to the UCLA Neuroscience Genomics Core (UNGC; 

https://www.semel.ucla.edu/ungc) where RNA quality was assessed on an Agilent TapeStation 

(Agilent Technologies, Santa Clara, California). RNA of sufficient quality (RIN >8) was then 

used to generate cDNA libraries using the Illumina TruSeq Stranded Poly-A Prep Kit (Illumina, 

San Diego, CA, USA Cat No 20020594). Libraries for each sample were divided across two 

lanes and sequenced in a total of 8 lanes using an Illumina HiSeq 2500 in high output mode, 

generating between 15 and 35 million 50 bp paired-end reads per library. 

RNA-seq preprocessing and WGCNA 

Raw FASTQ files furnished by UNGC were first quality controlled using FASTQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). FASTQC returned results 

indicating high quality across all bases in each read in each sample and no adapter contamination 

was detected, therefore we did not perform any filtration of the reads before alignment. Reads 

were aligned to the NCBI zebra finch genome assembly 3.2.4 

(http://www.ncbi.nlm.nih.gov/assembly/524908/) and RefSeq annotations using STAR (Dobin et 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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al., 2013). Mismatch tolerance was two base pairs. Only uniquely mapped reads were considered 

in downstream analyses. The featureCounts() function in the Rsubread R package was used to 

count all reads mapping within exon features, then all exon counts were summed to the gene 

level so that each gene had a single value of reads mapped to it (Liao et al., 2014; Liao et al., 

2013). Gene expression was then quantified by calculation of transcripts per million (TPM). 

TPM values were log2 transformed and genes with zero variance across samples were removed. 

We checked for batch effect on average expression resultant of RNA extraction group, RNA 

extraction experimenter, and across sequencing lanes. No batch effects were observed. We used 

an iterative process of removing gene expression data from single samples whose expression was 

>2.5 SD of that gene’s expression across all samples, repeating until no samples remained with 

expression >2.5 SD away from the gene’s average expression across all samples. Finally, we 

calculated the intrasample correlation (ISC) and used a hard cutoff of 2 SD away from the group 

ISC for removal of samples from the study. No sample in any group (Area X or VSP) was >2 SD 

from the group ISC. Data were quantile normalized as the last step. Final data input to WGCNA 

was 13665 and 13781 genes for Area X and VSP networks, respectively, across 19 total samples. 

We calculated the soft thresholding power for construction of the WGCNA adjacency matrix 

using the pickSoftThreshold function in the WGCNA R package at 18 for Area X and 14 for 

VSP. We then constructed a signed network using the blockwiseModules function in the 

WGCNA R package. For the Area X network, we used a minimum module size of 100 genes and 

deepSplit was set equal to four for Area X and two for VSP. Genes were required to have at least 

a connectivity of 0.3 with their module eigengene in order to remain a member of their module 

and the module ‘core’ (=minimum module size/3) needed to have a minimum eigengene 

connectivity of 0.5 for the module to not be disbanded. All other parameters were set to default. 
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Networks were iteratively constructed with genes in the grey module removed from the 

expression data after each round of network building and module definition. The networks were 

considered final after no genes were placed into the grey module. 

 During network construction, FoxP2 was removed, presumably due to the lack of 

coexpression with other genes in the network resulting from virus-driven overexpression. 

Therefore, we added FoxP2’s expression data back into the final overall network and it became 

the only gene in the grey module. Once coexpression modules were defined, we correlated vocal 

behavior to the module eigengenes. Since the grey module included only a single gene with no 

significant behavioral correlations, it was excluded from module-trait analyses. 

WGCNA and network terminology 

WGCNA is a well-established technique for gleaning biologically relevant clusters of 

coexpressed and functionally related genes from microarray and sequencing data. WGCNA 

methods and terminology are summarized and defined in numerous manuscripts (Hilliard et al., 

2012a; Zhang and Horvath, 2005; Dong and Horvath, 2007; Zhao et al., 2010; Yip and Horvath, 

2007; Horvath, 2011). For the sake of convenience, we provide working definitions of network 

terms that we use throughout the manuscript. Definitions of greater detail are available in the 

manuscripts cited above. 

• Adjacency (a): The first step of network construction is to generate an adjacency matrix 

where Aij = Sij
β, where i and j are genes, S is the expression correlation across samples, 

and β is an empirically derived power to which the correlation is raised such that the 

resulting network approximates a scale free topology. 

• Connectivity (k): Connectivity is a measure of connectedness of a given gene, either in 

the context of its module (kIN) or the entire network (kTotal). Connectivity is defined as 
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follows: ki = ∑ 𝑎𝑁
𝑗=1 ij where i and j are genes, N is all of the genes in the module or 

network, and a is the adjacency between genes i and j. 

• Topological overlap: Adjacency is transformed to topological overlap as a method of 

calculating the interconnectedness (or similarity) between two nodes. Topological 

overlap is defined as follows: ωij = (lij + aij)/(min{ki,kj} + aij) and lij = ∑ 𝑎𝑖𝑢𝑎𝑢𝑗̇𝑢≠𝑖,𝑗  where 

u represents all genes besides i and j. A and k are defined above. 

• Gene significance: The Pearson correlation between a gene’s expression profile and, in 

our work, a given behavioral metric. 

• Module eigengene: The first principal component of a module’s gene expression profile, 

a method of summarizing an entire module in one vector. 

• Module membership: The correlation between an individual gene expression profile and 

a module eigengene. Genes with high module membership tend to have high 

intramodular connectivity and are referred to as intramodular hubs. Of note, genes can 

have high module membership in more than one module. 

• Zsummary: Along with median rank, a term for quantifying preservation of gene 

coexpression patterns between two independent datasets (Langfelder et al., 2011), such as 

between juvenile and adult Area X or juvenile Area X and juvenile VSP. Zsummary is a 

composite preservation score defined as the average of Zdensity and Zconnectivity, 

which assess the preservation of connection strength among network nodes (e.g. Are 

strongly connected nodes in one network also strongly connected in the other?) and the 

connectivity patterns between nodes (e.g. Do the patterns of connection between specific 

nodes exist in both networks?), respectively, following permutation tests under the null 

hypothesis. Higher Zsummary scores indicate better preservation. 
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Correlation of behavior to gene expression 

Calculation of gene significance to a trait requires the definition of a single value to which the 

amount of gene expression in each sample is correlated. Gene significances were calculated for 

the following traits: Motifs, defined as the number of motifs each animal sang in the two hours 

following lights-on on the day of sacrifice; Tutor similarity, defined as the percentage similarity 

between the pupil and its tutor on the day of sacrifice; Variability induction, defined by inserting 

Wiener entropy CV scores into the equation (NS-UD)/(NS + UD) from the first twenty syllable 

renditions sung during the NS-UD experiment performed at ~60 d; Motif identity, defined as the 

product of the similarity and accuracy scores divided by 100 of the last 20 motifs sung by each 

bird before sacrifice. Song variability was assessed on the motif level for the purpose of gene 

significance calculations so as to obtain a single value for each animal. 

 Following network construction, modules were summarized by calculating a module 

eigengene, defined as the first principal component of the module’s expression data using the 

moduleEigengenes() function in the WGCNA R package. The relationship between a module 

and a behavior was assessed by determining the Pearson correlation between the module 

eigengene and continuous behavioral traits as defined in ‘Song Analysis and Statistics’, above. 

Significance was then determined by calculating the Fisher transformation of each correlation 

using the corPvalueFisher() function in the WGCNA R package. We performed p-value 

corrections for module-trait correlations using the p.adjust() function with the number of 

comparisons equal to the number of traits (4) by the number of modules (21; the FoxP2-only 

grey module was not included for purposes of p-value correction). The p-values presented in this 

manuscript are uncorrected for multiple hypothesis testing but those that pass FDR-correction at 

p<0.05 are indicated. We chose to present uncorrected p-values due to the small sample size used 
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to create the overall network (n = 19 birds). The authors of WGCNA suggest a minimum of 15 

samples with >20 preferred 

(https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/faq.html). P-

value corrections drive nearly all results to insignificance, including well preserved module-trait 

relationships that are present in adults and survive such corrections due to the larger sample size 

in that study. We use the significant but uncorrected p-values in this study as a guide toward 

interesting module-trait relationships, then use the properties of the network to inform the 

downstream analysis.  

 Our choice of behavioral traits for correlation to the gene network was hypothesis-driven. 

In addition to the obvious quantification of vocal learning, the comparison for variability 

induction was planned, as indicated by the fact that we conducted the NS-UD and UD-UD 

behavioral paradigms (prior to the bird’s sacrifice) that led to it. We originally used these 

paradigms as a method for naturally regulating FoxP2 levels, before we had identified a virus 

that was effective in doing so. In that study (Miller et al., 2010), our prediction was that 

behavioral conditions that lead to low endogenous FoxP2 in Area X (namely 2 hr of UD 

singing), would be associated with higher levels of variability. This was indeed the case. We 

replicated this finding in zebra finches (Heston and White, 2015) but did not observe the same 

phenomenon in Bengalese finches (Chen et al., 2013) as noted in our Discussion. The feature 

highlighted by those studies was Weiner entropy.  

Gene ontology, module significance, and term significance  

At the time of this study, annotation of the zebra finch genome is relatively sparse, thus zebra 

finch gene symbols were converted to their Human Genome Organisation (HUGO) Gene 

Nomenclature Committee (HGNC) paralogs, then submitted to GeneAnalytics, a comprehensive 
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tool for the contextualization of gene set data that integrates across multiple databases (Ben-Ari 

Fuchs et al., 2016). Genes with no known human homolog were excluded. Symbols were 

submitted to the GeneCards GeneAnalytics suite at http://geneanalytics.genecards.org (Ben-Ari 

Fuchs et al., 2016). GeneCards enrichment scores were converted into p-values, which were used 

as the input to module significance calculations. Module significance of a term was defined as 

the product of the average module membership for each gene annotated with a term, and one 

minus the p-value for that term such that the genes with the highest module membership and 

lowest p-value prioritize the terms (Hilliard et al., 2012a). Term significance was defined by 

weighting the module significance score by the gene significance for a given behavioral metric. 

Transcription factor binding site analysis 

The FoxP2 consensus binding sequence from the JASPAR database (Nelson et al., 2013; 

Mathelier et al., 2016) was converted into a position-weight matrix (PWM) and used to scan the 

promoter (defined as the first 1000 base pairs upstream of the transcription start site in the 

RefSeq models) for each gene in the zebra finch genome. Putative FoxP2 binding sites were 

identified using the matchPWM function in the Biostrings R package 

(https://bioconductor.org/packages/release/bioc/html/Biostrings.html) with a minimum hit score 

of 80%. 

Chromatin immunoprecipitation-PCR 

Chromatin immunoprecipitation (ChIP) was performed using ChIP-IT High Sensitivity (Active 

Motif, Carlsbad, CA, USA, Cat. No. 53040) following the manufacturer’s protocol. Whole brain 

was isolated from an adult male zebra finch, minced, and crosslinked in a formaldehyde solution. 

The tissue was homogenized with a hand-held tissue homogenizer for 45 s at 35,000 rpm. 

Following homogenization, the sample was sonicated at 25% amplitude 30 s on, 30 s off, for 10 
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min. A portion of the sonicate was de-crosslinked and quantified. The sample was split evenly 

into three tubes. A cocktail of anti-FoxP2 primary antibodies were applied to one sample 

(Millipore, Billerica, MA, USA Cat. No. ABE73, ThermoFisher Scientific Cat. No. 5C11A2, and 

Abcam ab16046), IgG in another (Millipore 12–370), and the third was input DNA. After an 

overnight incubation, the samples were washed, decrosslinked and subjected to PCR. The 

‘promoter’ sequence for MAPK11 was binned into 100 bp regions for primer construction. 

MAPK11 primers were as follows: forward 5’- CCCTTTCCCCAAATGGCAGA-3’ and reverse 

5’-TATGAGCCTTGCCTTGGAGC-3’. PCR protocol was performed using DreamTaq PCR 

Master Mix per manufacturer’s protocol. A PCR protocol was used as follows: (1) 95°C 1 min, 

(2) 95°C 30 s, (3) 67°C 30 s, (4) 72°C 1 min, repeat (2-4) for 40 cycles, (5) 72°C 10 min. PCR 

products were run on a 1.5% agarose gel in the presence of SYBR Safe to allow visualization of 

DNA. PCR products were purified (QIAQuick Gel Extraction Kit) and sent for sequencing by 

Laragen, Inc. Reverse primers sent for sequencing are as follows:  

5’-TATGAGCCTTGCCTTGGAGC-3’ and 5’-CCTATGAGCCTTGCCTTGGA-3’. 

Protein interaction networks and scaling of interaction confidence scores 

STRING is a comprehensive database of known and predicted protein-protein interactions 

derived from experimental data, coexpression data, automated text mining, and also pulls 

information from other interaction databases. STRING accepts gene symbols as input, then 

mines for interactions between those genes and assigns a confidence score between 0 and 1 

based on the evidence in the database for the genes’ interaction. We submitted gene symbols for 

the human homologs of module members to STRING then operated on the highest confidence 

interactions (>0.9) in downstream analyses. 
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 Interaction scores were scaled by different metrics to emphasize or deemphasize network 

position and/or relationship to behavior (Supplementary file 5). Those metrics are: 

1. The product of each gene’s connectivity in juvenile Area X network: emphasizes 

interactions between the most connected genes in the juvenile network.  

2. The product of each gene’s differential connectivity between juvenile and adult Area 

X networks: emphasizes interactions between genes that are of high network 

importance in juveniles but not adults. 

3. The product of each gene’s gene significance for learning or singing: emphasizes 

interactions between genes that are strongly correlated to behavior independent of 

their connectivity. 

4. The product of each gene’s connectivity and gene significance: emphasizes 

interactions between genes that are strongly correlated to behavior and of highly 

connected in the juvenile network. 

Network visualization and interactive figures 

Network plots presented in this manuscript were constructed using the freely available plotting 

software, Gephi (https://gephi.org), using edge lists prepared in R and exported in the. GEXF 

format. 

 We have created interactive versions of many of the network plots in this manuscript 

(Figure 3F) all additional Area X modules (similar to Figure 3F but not presented in the 

manuscript), and the protein interaction network presented in Figure 7. They are hosted at our 

laboratory website (https://www.ibp.ucla.edu/research/white/genenetwork.html) along with high 

resolution static PDF versions. Interactive figures were exported from Gephi using the Sigma.js 

Exporter plugin (https://github.com/oxfordinternetinstitute/gephi-plugins). 

https://github.com/oxfordinternetinstitute/gephi-plugins
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 In weighted coexpression networks, each node (i.e. gene) is connected to every other 

node in the network, even if the weight of the edge (i.e. connection) is zero. Therefore, plots 

depicting nodes and their edges with other genes become exceedingly complicated and 

unintuitive if all nodes and edges are included. In an effort to sparsify the networks and present 

the most salient data, we removed edges and genes from the coexpression networks using the 

following workflow: first, remove <98% of edges, then remove all disconnected nodes, then 

remove all nodes that are not part of the network’s main component (e.g. the largest group of 

connected nodes). The remaining nodes and edges were plotted. 

 In this manuscript, we present three types of network plots that look similar but convey 

different data. The three types are as follows: 

 1. The overall gene coexpression network, as in Figure 3—figure supplement 5 and 

https://sites.google.com/a/g.ucla.edu/genenet/coexpressionnetwork. In these plots, the nodes 

represent genes and their colors represent the module assignment. Edges represent the adjacency 

between nodes and the edge color is a combination of the origin and target node colors. Due to 

the overwhelming number of edges in this network, the edge weights are scaled to minimize the 

range. Node size in this network is equivalent to the node’s degree (e.g. the number of 

connections originating or terminating at that node) and the maximum node size is suppressed so 

as to provide maximal visual clarity.  

 2. Individual coexpression modules, as in Figure 3F and 

https://sites.google.com/a/g.ucla.edu/genenet/modules. These plots are similar to the preceding 

except that, potentially, more nodes are present in the module since the filtration procedures 

detailed above are applied in a different context (e.g. only the expression data in the module are 
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considered here vs. the expression data for the entire network). The same scaling parameters as 

above are applied to the edges for visual clarity. 

 3. Protein interaction network, as in Figure 7 and 

https://sites.google.com/a/g.ucla.edu/genenet/protein. Nodes represent proteins and their colors 

represent the coexpression module assignments. Node size is equivalent to its degree. Here, the 

edge width conveys meaning and is helpful in interpreting the relationship between nodes. An 

edge is drawn between two nodes when the STRING database indicates a high confidence 

interaction (score >0.9) between them. Edge widths are the confidence score scaled by the 

product of the origin and target node’s intramodular connectivities (kIN). Thus, thick edges 

indicate a high confidence protein level interaction between two genes that are well connected 

members of learning and singing related modules. Unlike the previous plots, a node’s size does 

not necessarily convey a higher degree of coexpression network importance. Instead, it indicates 

many interactions involving this protein described in the database. The thickness of the edges 

conveys influence of the gene’s biological importance, as interpreted through their kIN. Whether 

a node’s degree or the weight of its connections is the ultimate determinant of its relationship to 

vocal learning remains to be determined but the reader should keep the preceding information in 

mind when interpreting this network. 

Accession information 

 Raw and processed RNA-seq and behavioral data for each bird are available at the Gene 

Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) at accession number 

GSE96843. 
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Results 

Virus-mediated overexpression of FoxP2 isoforms affects song learning 

and/or vocal variability 

Adeno-associated viral (AAV) constructs were used to drive overexpression of FoxP2.FL or 

FoxP2.10+ in Area X of developing males (Figure 1—figure supplement 1). To verify isoform-

specific overexpression, we used two riboprobes in in situ hybridization experiments: one 

antisense to a region common to both transcripts (mid probe) and one antisense to a region near 

the 3’ end of FoxP2.FL (3’ probe; [Teramitsu and White, 2006]; Figure 1A). Robust signals 

beyond endogenous/background levels were observed in the striatopallidum of both hemispheres 

using the mid probe but only in the hemisphere injected with the FoxP2.FL construct using the 3’ 

probe (Figure 1B). These results indicate that each viral construct overexpressed its encoded 

FoxP2 isoform and was thus suitable for bilateral injection into Area X of juvenile males at 35d. 

An additional cohort received AAV encoding GFP as a control. We quantified levels of FoxP2 

expression at 65d by performing qRT-PCR with a set of primers that amplifies a region common 

to both transcripts (Haesler et al., 2007; Olias et al., 2014) and another set specific to the 

FoxP2.10+ (see Materials and methods). The first primer set indicated that FoxP2 levels were 

higher in birds injected with either construct relative to control levels. When quantified by the 

second primer set, we found elevated PCR product only in the animals injected with the 

FoxP2.10+ construct (Figure 1C). No overexpression was detected in the ventral striatopallidum 

(VSP; the zebra finch striatum is interspersed with pallidal-like cells and is separate from the 

pallidum [Reiner et al., 2004]) (Figure 1—figure supplement 2). Taken together, these results 

indicate that both constructs were effective in elevating levels of their encoded FoxP2 

isoform within Area X throughout the 30d experimental period.  
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 Overexpression of a tagged form of FoxP2.10+ in a human neuronal cell line (SH-SY5Y) 

suggested that FoxP2.10+ acts as a posttranslational regulator of FoxP2.FL through 

heterodimerization and the formation of cytoplasmic aggresomes (Vernes et al., 2006). We thus 

examined the protein-level distribution of FoxP2.10+ and FoxP2.FL in the finch striatopallidum 

following overexpression of an N-terminus Xpress tagged FoxP2.10+ linked to a GFP reporter 

(see Stereotaxic Surgery and Viruses in Materials and methods). Transduced cells shared the 

distinctive FoxP2.10+ staining pattern of aggresomes seen previously. In FoxP2+ cells that co-

expressed the Xpress tag and GFP reporter, endogenous FoxP2.FL signal was interspersed 

among Xpress-positive puncta (Vernes et al., 2006) (Figure 1D). 

 We previously found that, in unmanipulated birds, two hours of UD singing in the 

morning is sufficient to decrease Area X FoxP2 mRNA (as measured by both the mid and 3’ 

probes) and protein (Teramitsu and White, 2006; Miller et al., 2008). This decrease in FoxP2 

was accompanied by an increase in the variability of UD songs, in the form of decreased self-

similarity (see Materials and methods), that were sung subsequent to the two hour time-point, a 

paradigm which we term UD-UD (Miller et al., 2010; Hilliard et al., 2012a). In contrast, when 

birds were distracted from singing for two hours in the morning (non-singing; NS), their 

subsequent UD songs (termed NS-UD) were less variable. Moreover, overexpression of 

FoxP2.FL in Area X abolished the increase in vocal variability normally induced by the UD-UD 

paradigm (Heston and White, 2015). These observations indicate that downregulation of full 

length FoxP2 is important for acute vocal variability but we did not directly manipulate 

FoxP2.10+. Here, we performed similar behavioral experiments to test for the induction of vocal 

variability and included the FoxP2.10+ injected animals (Figure 2A and B). To assess whether 

UD singing drove an increase in vocal variability, we used the UD-UD paradigm (see Materials 
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and methods) and quantified the effect of two hours of UD singing on the coefficient of variation 

(CV) of acoustic features in the subsequent UD songs of ~60d birds overexpressing GFP, 

FoxP2.FL, or FoxP2.10+. Results were compared to songs sung by the same birds undergoing 

the NS-UD paradigm. As predicted, GFP-expressing animals exhibited a negative effect size for 

most acoustic features, and FoxP2.FL overexpression diminished these practice-induced changes 

in vocal variability, replicating our previous findings (Heston and White, 2015) (Figure 2C). 

 Unexpectedly, in animals overexpressing FoxP2.10+, song variability after two hours of 

UD singing (UD-UD) was significantly less than that after two hours of non-singing (NS-UD) 

for syllable duration, amplitude modulation, and Wiener entropy (Figure 2C). Rather than 

increasing song variability (as in the GFP group) or creating a state of equivalent variability (as 

in the FoxP2.FL group), UD-UD singing led to markedly invariable songs in the FoxP2.10+ 

birds, suggesting a role for FoxP2.10+ in promoting song stability. We also examined variability 

in the raw acoustic features of NS-UD and UD-UD song and found that expression of either 

FoxP2 isoform did not dramatically alter variability, indicating that the viral-driven 

overexpression specifically affected the modulation of variability (See ‘Acute Modulation of 

Vocal Variability’ in Materials and methods) and not its overall level (Figure 2-figure 

supplement 1 and Materials and methods). Despite its suppressive effect on practice-induced 

song variability, overexpression of FoxP2.10+ did not impair overall vocal learning (Figure 2D 

and E). As shown by Heston and White (Heston and White, 2015), FoxP2.FL birds were capable 

of changing their songs over the course of the experiment (data not shown) but were less able to 

match their tutors’ songs (Figure 2D and E). These results suggest that the ability to modulate 

between relatively low and high variability states is important for proper vocal learning. 



58 

 In sum, our viral manipulations generated groups of animals in distinct states of vocal 

variability and learning. GFP-injected birds learned well and displayed singing-induced 

variability in the acoustic features of song. FoxP2.FL birds learned poorly and had no difference 

in their songs’ acoustic variability following practice. FoxP2.10+ birds learned well but seemed 

to exist in a state where practice drives invariability in vocal acoustics. As such, a broad degree 

of both learning and variability induction existed across groups (Figure 2F). Next, we used these 

behavioral metrics as correlates to gene coexpression patterns to interrogate the transcriptional 

profiles underlying these traits. 

Gene modules in juvenile Area X that correlate to vocal behavior are enriched for 

communication and intellectual disability risk genes 

We used RNA-seq to quantify gene transcription in Area X of 65d juveniles overexpressing 

GFP, FoxP2.FL or FoxP2.10+, then used WGCNA to identify gene coexpression modules and 

link them to song learning. We built an overall network composed from all samples together 

(Figure 3A and B), as well as construct-specific networks (Figure 3—figure supplements 1–4). 

In the overall network (see Materials and methods), 7461 genes formed 21 modules (Figure 3A 

and B, Supplementary file 1). We found significant correlations between module eigengenes and 

the following behaviors: tutor percentage similarity (i.e. vocal learning: darkred, green, and 

greenyellow modules), number of motifs sung (i.e. amount of singing: black, orange, darkgreen, 

royalblue, and blue modules), singing-induced acoustic variability (i.e. variability induction: 

black, brown, darkgreen, darkgrey, magenta, orange, pink, purple and turquoise modules), and 

motif identity (i.e. overall vocal variability: dark-grey module) (0.00008 < p < 0.05; Figure 3B). 

Hereafter, these modules are termed ‘learning-related’, ‘song-production’, ‘variability-induction’ 

and ‘vocal variability’ modules, respectively. We examined all modules whose p-value was 
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<0.05 and calculated the relationship between module membership and gene significance. (For 

definitions of WGCNA and network terms, see Materials and methods: WGCNA and network 

terminology. For information about significance levels reported here, see Materials and methods: 

Correlation of behavior to gene expression). For most modules, strong correlations were 

observed for each trait, indicating that the genes most representative of the module’s overall 

expression profile were those most strongly related to the behavior (Figure 3C). 

 Connectivity is the core gene coexpression network concept and genes with high 

connectivity have the strongest coexpression relationships across the entire network, indicating 

greater importance to overall network structure and biological significance. The purple, green, 

and pink modules contained the most densely interconnected genes (Figure 3—figure 

supplement 5), and were correlated to percentage similarity to tutor (green learning-related 

module) or singing-induced variability (purple and pink variability-induction modules) (Figure 

3B and D). These findings indicate that information about the relationships between gene 

coexpression and behavior was reflected in the structure of the network: A gene’s relationship to 

a module or a module’s relationship to the network was predictive of strong behavioral 

relevance. Therefore, we examined the most well-connected/hub genes within the context of 

their module (genes with the greatest intramodular connectivity) or the entire network (genes 

with the greatest whole-network connectivity). We discovered that many of these hub genes are 

known risk genes for human disease. For example, of the 7462 genes in the overall network, 

Fragile X Mental Retardation 1 (FMR1) had the third highest connectivity and was the most well 

connected member of the green module (Supplementary file 1). Deficiency in FMR1 gives rise 

to Fragile X Syndrome, a genetic disease with a multitude of symptoms including intellectual 

deficiency and speech and language impairment. 
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 To attribute biological meaning to the modules, we calculated a module significance 

score for the resulting disease, gene ontology, and pathway annotations returned from 

GeneAnalytics (Ben-Ari Fuchs et al., 2016) (See Materials and methods). The top five terms for 

the black song production module (negatively correlated to the amount of singing), the brown 

variability induction module (positively correlated to variability induction), and green learning-

related module (positively correlated to learning) are shown in Figure 3E with comprehensive 

results presented in Supplementary file 2. Since most modules contain hundreds of genes, 

prioritizing the ontology terms by the connectivity of their annotated genes allows genes with the 

greatest network importance (Figure 3F) to emphasize the terms with the greatest biological 

importance (Figure 3E). 

Juvenile Area X modules for learning, but not singing, are preserved in juvenile VSP 

To validate the specificity of the Area X modules to vocal behavior, we compared the overall 

Area X network to a network constructed from the adjacent non-song VSP (Hilliard et al., 2012a; 

Feenders et al., 2008) from the same animals. Area X and VSP networks were constructed using 

the genes that were common to the two, enabling analysis using module preservation functions. 

We hypothesized that the genes in the Area X song production modules would have no 

correlation to behavior in VSP since, despite its close proximity and similar cell type 

composition, the VSP is not similarly linked into song control circuitry (Person et al., 2008). 

Moreover, a body of evidence suggests that the song control circuit evolved as a specialization of 

existing motor circuitry (Pfenning et al., 2014; Feenders et al., 2008; Barrett, 2012; Oakley and 

Rivera, 2008). As predicted, no module in the VSP network displayed any correlation to any of 

the singing or learning behaviors as gene significances using Area X and VSP expression data 

are markedly different (Figure 4A, X vs. V). We calculated module preservation statistics 
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between the two brain regions and observed that the song production modules were among the 

most poorly preserved (Langfelder et al., 2011) across the two networks (Figure 4B, 

Supplementary file 3). This result indicates differential connectivity of song production module 

genes between Area X (Figure 4C, top) and VSP (Figure 4C, bottom), further underscoring that 

Area X is specialized for song. This lack of preservation was not the product of differential gene 

expression between the two regions (Figure 4D, top) but instead reflected altered connectivity 

among similar genes (Figure 4D, bottom). In striking contrast to the song production modules, 

the green learning-related module was strongly preserved in VSP (Figure 4B, Figure 3B), 

indicating a generalized learning-related coexpression state exists in the juvenile striatopallidum 

that is specialized for singing in Area X.  

Juvenile Area X modules for singing, but not learning, are preserved in adult Area X 

 To provide further context for the modules observed in our overall network and how they 

relate to learned vocalization, we compared them with prior data from adult zebra finch Area X 

(Hilliard et al., 2012a; Hilliard et al., 2012b). Our present network captures a point in zebra finch 

development when birds are actively learning how to improve their songs whereas in adulthood, 

the learning process has ended and adult songs are ‘crystallized’. Contrasts between juvenile and 

adult networks highlight gene coexpression patterns that change between the two learning states, 

and inform their molecular underpinnings. 

 Our previous study in adults found multiple modules in Area X that were correlated to 

singing crystallized songs. We reasoned that if highly similar coexpression patterns were present 

in juveniles, then they would likely be unrelated to learning. In this case, the capacity to learn a 

song might be attributable to other genes and/or the relationships between them. To compare 

across studies, we built two new, age-specific networks composed of genes common to the two 
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original networks, then computed gene significance scores for all genes in both networks. We 

found a remarkable correlation between gene significances to singing in juveniles and adults 

(Figure 5A), showing that genes in Area X shared similar relationships to singing, whether it be 

positive, negative, or nonexistent, independent of the animal’s age and learning state. The 

replicated discovery of specific sets of song-production genes across studies and ages speaks to 

the profound effect that singing behavior has on gene transcription profiles within the song-

dedicated basal ganglia. 

 We next calculated module preservation across the two studies, which assesses how well 

the coexpression relationships between genes persist across ages (Langfelder et al., 2011). We 

observed strong to very strong relationships between module preservation and correlation to 

singing, and genes related to singing clustered together independent of age (Figure 5B and C, 

Supplementary file 4). These results indicate that not only are the relationships between genes 

and singing consistent across ages but those genes’ coexpression patterns are preserved as well. 

Since singing-driven gene coexpression patterns were similar between juvenile and adult Area X, 

the capacity to learn vocalizations is not a product of large-scale differences in coexpression of 

the song production module genes. We therefore looked for any modules that differed between 

juvenile and adult Area X. We found that the green, greenyellow and darkred learning-related 

modules that were significantly correlated to tutor similarity in juveniles were poorly preserved 

in adult Area X (Figure 5B and C, Supplementary file 4). Irrespective of preservation between 

juvenile and adult Area X, the genes in song production and learning-related modules were 

similarly activated by singing (Figure 5D, top row) and the ranked gene expression within each 

module displayed a positive correlation across ages (Figure 5D, middle row). However, only the 

song production modules showed positive correlations between connectivity in juvenile and 
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adult Area X (Figure 5D, bottom row). These results attribute the difference between juvenile 

and adult Area X not to differential expression or altered correlation to behavior, but to 

differential connectivity in adults of modules that are correlated to tutor similarity in juveniles. 

Our findings suggest that the capacity to alter vocalizations may not reside in the absolute 

expression level of a given gene but instead the gene’s transcriptional context. For example, 

FMR1 was poorly connected in the adult network but was positioned as a hub gene in the 

juvenile network, indicating the gene’s importance during a developmental period when 

vocalizations are being actively modified but not during their maintenance. In general, genes that 

were positively correlated with learning and/or had high module membership in the green 

learning-related module had the greatest decrease in connectivity in adulthood (Figure 5—figure 

supplement 1). 

A bioinformatics approach indicates MAPK11 as an entry point to neuromolecular networks for 

vocal learning 

Above we describe two classes of coexpression modules: (1) learning-related modules that are 

preserved throughout the striatopallidum but present only in juveniles, (2) song production 

modules that are preserved across age but specific to Area X. Therefore, song production 

modules and learning-related modules exist simultaneously only in juveniles, and their co-

occurrence within Area X may reflect the capacity to dramatically alter vocalizations during 

sensorimotor learning. Therefore, we hypothesized that interactions between these two modules 

may drive the vocal learning process.  

 To test this idea using bioinformatics, we examined any genes linked to FoxP2, whose 

overexpression drove the broad range of tutor song copying in our animals. The gene with the 

greatest gene significance to learning was MAPK11 (Figure 6A and B). Interestingly, in Foxp2 
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heterozygous knockout mice, MAPK11 levels increase, supporting the interaction we observed 

here (Enard et al., 2009). To examine whether MAPK11 could be a target of FoxP2 in the zebra 

finch, we scanned the MAPK11 gene for sequences corresponding to the FoxP2 binding motif 

from the JASPAR database (see Materials and methods) (Nelson et al., 2013; Mathelier et al., 

2016). We found a match with a single base difference beginning 288 base pairs upstream of the 

zebra finch MAPK11 transcription start site identified in the RefSeq model (Figure 6C). (Note 

that the RefSeq model may be incomplete; see MAPK11 annotation note in Materials and 

methods). We then used chromatin immunoprecipitation followed by PCR (ChIP-PCR) to test 

whether or not FoxP2 binds this predicted MAPK11 regulatory region. Chromatin-

immunoprecipitation of FoxP2 enriched a MAPK11 fragment of the predicted size and 

encompassing the putative FoxP2 binding site. Moreover, the sequenced fragment contains the 

FoxP2 binding motif (Figure 6D, Figure 6—figure supplement 1). Taken together, these data 

suggest that birds overexpressing FoxP2.FL may be limited in their capacity to learn due, at least 

in part, to FoxP2 regulation of MAPK11. In line with this, both the FoxP2.10+ and 

GFP animals had higher MAPK11 gene significance scores for tutor similarity than did 

FoxP2.FL animals (Figure 6A). 

 A strength of WGCNA is the ‘guilt by association’ approach whereby genes in close 

network proximity to a gene of interest become candidates for a role in the same biological 

processes. With this in mind, we used MAPK11 as an entry point to pathways related to vocal 

learning. We first scanned for genes with high topological overlap with MAPK11 (e.g. the closest 

network neighbors to MAPK11). Many of these genes were well-connected members of the 

green learning module (Figure 6E). One such gene, ATF2 (formerly known as CREB2), had the 

fifth highest green intramodular connectivity and third highest whole network connectivity 
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(Supplementary file 1). ATF2 protein is necessary for proper development of the nervous system 

(Reimold et al., 1996) and serves a dual purpose in affecting transcription by binding to cAMP 

response elements and also by acetylating histones H2B and H4 (Bruhat et al., 2007; Kawasaki 

et al., 2000). Like FMR1, ATF2 is poorly connected in the adult network (Hilliard et al., 2012a). 

 While its role in development of the nervous system has been defined, no specific 

relationship between ATF2 and learned vocalization has been described. In our network, the 

ATF2 acetylation target histone H2B sorted into the blue song production module, which is 

strongly and positively correlated to the act of singing (Figure 3B, Supplementary file 1) and 

acetylation of histone H2B at lysine five has been linked to learning and memory in rat 

hippocampus (Bousiges et al., 2013). A pathway such as this represents an interaction between a 

network hub in a learning module (ATF2) and a song production module gene (histone H2B) at a 

developmental time point at which the bird is actively learning its vocalizations. 

 To generalize this strategy, we used the Search Tool for the Retrieval of Interacting 

Genes/Proteins (STRING) database (Szklarczyk et al., 2015) to identify additional interactions 

between learning-related network hubs and song production genes in Area X. We submitted 

genes from the green, greenyellow, and darkred learning-related modules and the black, blue, 

darkgreen, orange, and royalblue song production modules, then filtered for cross-module 

interactions and scaled the confidence scores by the average intramodular connectivity of each 

gene in the interaction. This yielded a ranked list of interactions between genes positively 

correlated to learning and those correlated to singing, which was prioritized by weighted 

confidence score to yield the highest confidence interactions between genes with the greatest 

network importance (Supplementary file 5). These interactions were plotted as a network with 

proteins as nodes and interaction scores as edges (Figure 7). This approach allowed us to not 
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only visualize the confidence in gene interactions but also the local neighborhoods formed by the 

protein interaction network, emphasizing genes of potentially greater importance in the vocal 

learning process based on the number of interactions they have. 

 We ranked interactions by four different metrics designed to emphasize or deemphasize 

gene significance, intramodular connectivity, and differential connectivity in juveniles vs. adults 

(see Materials and methods). These metrics provide a basis for selecting protein-protein 

interactions based on the relationship to the genes and their most strongly correlated behavior, 

the coexpression network importance of the genes, or the change in connectivity between 

juvenile and adult birds. In using the latter metric, the decreased connectivity of learning-related 

genes ATF2 and FMR1 in adulthood is accounted for and interactions involving those genes are 

prioritized. Interactions between ATF2 and IRF2, DUSP5, and FOS are among the highest 

scoring interactions using this metric. All such interactions are presented in Supplementary file 

5. 

Construct-specific networks 

In addition to the overall Area X network presented above, we built and compared construct-

specific networks from birds injected with the FoxP2.FL expressing virus versus those injected 

with the FoxP2.10+ expressing virus versus those expressing GFP (Figure 3—figure 

supplements 1–3). This analysis enabled us to assess the level of construct-driven changes in 

gene coexpression as well as to test for the presence of the learning-related module in the control 

birds whose FoxP2 levels were unmanipulated. We quantified module preservation between the 

FoxP2 networks and the GFP network (Figure 3—figure supplement 4). In both FoxP2 networks, 

a gradient of module preservation was observed versus the GFP network with both overlapping 

and significantly different modules observed. Birds in these experimental conditions were 
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siblings, and in some cases from the same clutch, suggesting that the driving effect of network 

differences is the construct-specific manipulation. The green learning-related module was well-

preserved across the three networks. The strong correlation of this module to learning passed 

false discovery rate correction in the GFP cohort comprised of only seven birds, indicating that 

the learning-related coexpression pattern observed in the overall network is also present without 

FoxP2 manipulation. 

Discussion 

 In this study, we overexpressed FoxP2 isoforms or GFP and thereby created a range of 

song learning and song variability induction (Figure 2F), ideal for transcriptome profiling and 

WGCNA. We constructed an overall Area X gene network and discovered modules correlated to 

singing, learning, and vocal variability. The network properties of these modules revealed strong 

relationships between gene module membership and the behavior(s) to which the modules were 

correlated. 

 To understand how gene coexpression patterns change across the boundary of the 

sensorimotor critical period for vocal learning, we compared the juvenile Area X overall network 

constructed here to one previously constructed from adult Area X (Hilliard et al., 2012a). We had 

competing hypotheses about whether the inability to learn new songs as an adult is resultant of 

changes to the song production modules observed in juveniles or associated with some other 

transcriptional change. Module preservation statistics revealed robust preservation of the juvenile 

Area X song production modules in the adult network, supporting the latter hypothesis. In 

striking contrast, the densely interconnected green learning-related module observed in juvenile 

striatopallidum was poorly preserved in adults, indicating that at least part of the learning-related 

transcriptome is altered by aging. Further, the green learning-related module was strongly 
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preserved across the construct-specific networks (Figure 3—figure supplements 1–4) and 

robustly correlated to learning in the GFP network. This latter finding suggests that the 

coexpression of these genes occurs in non-manipulated birds and is not a byproduct of 

experimental perturbation of FoxP2 levels. 

 Because we created networks from VSP of the same animals, we could compare how 

well the Area X modules were preserved in a similar brain region that is unspecialized for song. 

As in Hilliard et al. (2012a), Area X song production modules were poorly preserved in VSP in 

contrast to the strongly preserved green learning-related module. These experiments define 

juvenile Area X as a nexus wherein the striatopallidal learning-related modules exist in tandem 

with song production modules. As the brain ages, singing continues to drive transcriptional 

patterns in Area X but the learning-related patterns are lost (Figure 8A; Figure 8B). Our findings 

suggest a model for the  molecular basis of complex learned vocal behavior as – not specific 

genes or coexpression modules but rather the spatiotemporal overlap of ‘singing’ and ‘learning’ 

building blocks. Song control nuclei are proposed to have evolved as specializations of pre-

existing motor circuitry (Pfenning et al., 2014; Feenders et al., 2008). A similar principle may 

thus extend across the songbird telencephalon whereby nonspecialized/learning related and 

specialized/behavior related coexpression patterns converge to permit sensorimotor learning. 

 Our findings validate prior results in which overexpression of FoxP2.FL prevented 

practice-induced changes in song variability and impaired song learning. These results support 

the hypothesis that behavior-linked cycling of FoxP2, rather than its absolute level, is critical for 

vocal learning. In addition, we uncovered singing-induced vocal invariability as a novel 

behavioral effect of FoxP2.10+ overexpression. Despite the poor exploration of motor space 

induced by FoxP2.10+ overexpresssion, these animals learned their tutors’ songs well, a finding 
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seemingly at odds with motor learning theory where broad exploration of motor space is refined 

through practice before arriving at an ‘ideal’ precise pattern for execution of the skill (Kaelbling 

et al., 1996; Wu et al., 2014). A similar phenomenon was observed in a different species of 

passerine songbird, the Bengalese finch (Lonchura striata domestica), where two hours of UD 

singing resulted in less variable songs than those sung after two hour of non-singing (Chen et al., 

2013). In both species, the inability to induce song variability did not affect vocal learning, 

suggesting that the ability to have relatively low or high variability states in singing are 

necessary to properly learn a song regardless of whether those differential variability states 

precede or follow singing. 

 WGCNA identified FMR1 as a gene of great importance in a learning module. FMR1 

encodes an RNA-binding protein and therefore its levels could have a profound effect on a 

number of targets in the network (Ascano et al., 2012). FMR1 protein is expressed throughout 

the zebra finch song control circuit primarily in neurons, and birdsong has been suggested as an 

interesting model in which to study the gene’s function (Winograd and Ceman, 2012; Winograd 

et al., 2008). Here, we observed a correlative link between FMR1 expression and how well the 

animal copied its tutor’s song, a novel association that could be reasonably hypothesized given 

the speech and language phenotype associated with FMR1 deficiency in humans. A key strength 

of WGCNA is the ability to query the network around genes known to be associated with a trait. 

FMR1’s close network neighbors included ATF2 which has been associated with learning but has 

no prior link to vocal behavior. Further investigation into the learning-related modules is likely 

to reveal pathways fundamental to procedurally learned behavior. 

 To identify those molecules that may interact at this particular developmental time point 

and brain region, we selected MAPK11 – a likely FoxP2 target (Enard et al., 2009) and the gene 
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with the greatest significance to learning – to further investigate as an entry point to the pathways 

underlying learning behavior. Local neighborhood analysis of MAPK11 in the coexpression 

network revealed high topological overlap with many strongly connected members of green 

learning-related module, including the hub gene ATF2. ATF2 is a phosphorylation target of 

MAPK11 and part of an evolutionarily-conserved pathway for learning and memory (Guan et al., 

2003). This phosphorylation enhances ATF2 histone-acetyltransferase activity (Enslen et al., 

1998; Stein et al., 1997). A known enzymatic substrate of ATF2 is histone H2B (Kawasaki et al., 

2000), a member of the blue song production module that is positively correlated to singing. To 

probe for additional protein-protein interactions such as these, we mined the STRING database 

using song production and learning-related module members, then prioritized the interactions 

based on the network properties and/or behavioral significance of the input genes. A prioritized 

list of interactions and a complex network emerged, highlighting genes based on their 

coexpression network importance and/or the number of protein level interactions in the database 

(Figure 7, Supplementary file 5). 

 While there are differences in overall gene expression between the juvenile and adult 

brain, the context within which genes express, that is, their connectivity, is drastically altered, 

especially in the learning-related modules. Changes in connectivity are not necessarily indicative 

of changes in the absolute level of a gene’s expression, as evidenced by the comparisons between 

Area X and VSP (Figure 4D) or juvenile and adult Area X (Figure 5D), where expression levels 

correlate positively but connectivity does not. These data support the idea that the coexpression 

patterns, and thereby the genes’ connectivity and network importance, contribute to the transition 

from a state of learning to a state of non-learning. 
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 In using connectivity as a measure of network importance and protein interaction as a 

measure of functional biological output, the protein interaction landscape underlying learned 

vocal behavior shifts across the two developmental time points analyzed here. For example, the 

local interaction network around green module hub ATF2 (defined as all those neighbors within 

two steps and with high confidence of protein interaction) is composed of well-connected genes 

in the learning-related and song production modules (Figure 8C, top). Moreover, the connections 

to learning-related genes are, themselves, inputs to well-connected network hubs. As the juvenile 

crosses over into adulthood, the connectivity of many of the learning-related genes, like ATF2, 

dramatically decreases. As part of the same process, the adjacencies between genes in the 

interaction network shift such that a connection to a learning-related gene is no longer one with a 

hub (Figure 8C, bottom). This shift in network importance may present a pattern underlying song 

maintenance rather than song learning, and potentially the closure of the critical period in which 

the bird can change its song. 

 To understand the mechanisms underlying the transition between the two learning states, 

our data highlight the importance of the network position of a gene. To enable vocal plasticity 

after critical period closure, a goal critically relevant to social and communication disorders, 

manipulations that coordinate gene expression such that poorly connected genes are 

reestablished as network hubs are likely required. Tools to accomplish a goal such as this do not 

yet exist, but the pathways prioritized and presented here provide a framework for teasing out 

testable components. 

 In sum, we have described the Area X transcriptome at a developmentally significant 

point in the vocal learning process and provided context for it in terms of aging and brain region 

specificity. We suggest numerous coexpression and protein level interactions that our data 
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indicate are significant to vocal learning. Due to the large amount of data generated by this study, 

we provide interactive graphics describing the coexpression and protein interaction networks as a 

supplement to the figures and tables in the manuscript. These, and the compiled descriptive 

statistics are hosted at (https://www.ibp.ucla.edu/research/white/genenetwork.html). We 

encourage exploration of these datasets to confirm or refute their validity and to provide the 

molecule-to-behavior links suggested herein. 
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Figures  

Figure A1. Overexpression of FoxP2 isoforms. 

 

(A) Schematics show full-length (FoxP2.FL) and 10+ (FoxP2.10+) isoforms. Regions whose 

transcripts were targeted by the complementary riboprobes are shown in red. (B) Left panel 

depicts experimental design to test for isoform-specific expression in vivo. Middle and right 

images depict two sections from the same female brain. For purposes of validation only, the 
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bird’s right hemisphere (shown on left) was injected with an AAV expressing FoxP2.FL while 

the left hemisphere was injected with the FoxP2.10+ construct. Two weeks post-injection, robust 

signals were observed in the striatopallidum of both hemispheres using the mid probe but only in 

the hemisphere injected with the FoxP2.FL construct using the 3’ probe. Signals reflect both the 

endogenous FoxP2 expression pattern (Teramitsu and White, 2006; Teramitsu et al., 2004; 

Teramitsu et al., 2010) as well as enhanced levels due to viral-driven expression. (C) FoxP2 

expression quantified by qRT-PCR in juvenile males that were bilaterally injected with one of 

the constructs at 35d using primers that identify both isoforms (left graph) or only the FoxP2.10+ 

isoform (right graph). Using the former primers, enhanced expression is observed in the 

FoxP2.FL (grey; 126.5 ± 13.53%; n = 6) and FoxP2.10+ (red; 162.4 ± 26.77%; n = 6) groups 

relative to levels of birds that received the GFP control construct (green; 100 ± 7.54%; n = 7). 

Using the ‘FoxP2.10+ Only’ primers, enhanced expression is only observed in the FoxP2.10+ 

group (red; 279 ± 52.69%; n = 6) vs. the FoxP2.FL (grey; 126.16 ± 24.61%; n = 6) and GFP 

(green; 100 ± 22.95%; n = 7). Values represent percentage relative to GFP ±SEM. * and # denote 

p=0.031 and p=0.084, respectively, of an unpaired two-tailed bootstrap test. (D) A cell in the 

zebra finch striatopallidum expressing GFP (indicating viral transduction; green), endogenous 

FoxP2 as revealed by an antibody directed to the C-terminus (red), and Xpress-FoxP2.10+ 

revealed by an antibody to the Xpress tag (cyan). The Xpress signal is reminiscent of FoxP2.10+ 

aggresomes observed by Vernes et al. (Vernes et al., 2006). Orthogonal views of the cell are 

presented below. Scale bar = 5 µM. 
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Figure A2. Overexpression of FoxP2 Isoforms affect song learning and/or song variability  
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(A) Timeline of experimental procedures relative to critical periods in song development. (B) 

Schematic illustrates NS-UD or UD-UD experiments performed on adjacent days. (C) The effect 

size of two hours of UD singing on syllable CV was calculated using the formula (NS-

UD)/(NS + UD) after an NS-UD, UD-UD experiment performed at ~60d and 61d as in (B). 

Overexpression of FoxP2.FL (grey bars; n = 16 syllables; Duration = −0.059 ± 0.029; 

AM = −0.010 ± 0.028; Entropy = −0.038 ± 0.04) diminishes singing induced variability relative 

to that seen in GFP-expressing controls (green bars; n = 9 syllables; Duration = −0.128 ± 0.071; 

AM = −0.065 ± 0.035; Entropy = −0.091 ± 0.034). In contrast, overexpression of FoxP2.10+ (red 

bars; n = 13 syllables; Duration = 0.070 ± 0.054; AM = 0.088 ± 0.047; Entropy = 0.048 ± 0.029) 

leads to a singing-induced state of relative invariability. Values and bar heights represent the 

average effect size for all syllables within the virus construct group ±SEM. * denotes significant 

result in one-way ANOVA (Duration: F(2,35) = 3.95, p=0.028; AM: F(2,35) = 3.96, p=0.028; 

Entropy: F(2,35) = 3.63, p=0.037) and Tukey’s HSD post-hoc test (p<0.05). (D) Learning curves 

plot the relationship between percentage similarity to tutor as a function of time. Animals 

overexpressing GFP (green; letter ‘B’; n = 7 birds;~65 d similarity = 67.2 ± 6.64%) or 

FoxP2.10+ (red, letter ‘A’; n = 5 birds;~65 d similarity = 75.8 ± 2%) learn significantly better 

than those overexpressing FoxP2.FL (grey, letter ‘C’; n = 5 birds;~65 d similarity = 44.3 ± 

10.1%). Values are mean ±SEM. Data are binned by day (top panel; bold points represent group 

mean and shifted smaller points are individual birds) or by individuals (bottom panel). 

Significantly different groups tested by one-way ANOVA (Bin 1:~40d F(2,11) = 6.06, p=0.016; 

Bin 3:~55d F(2,13) = 6.04, p=0.014; Bin 4:~60d F(2,14) = 9.94, p=0.002; Bin 5:~65d F(2,14) = 

4.76, p=0.026) and Tukey HSD post-hoc test (p<0.05) are denoted by capital and lowercase 
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lettering. (E) Exemplar motifs of a tutor and three of his 65d pupils, each of which was injected 

with a different viral construct at 30d. These examples illustrate the percent similarity depicted in 

panel D. (F) Summary of the learning and variability phenotypes observed after virus injection. 
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Figure A3. WGCNA yields behaviorally relevant modules
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(A) Dendrogram (top) illustrates the topological overlap between genes in the juvenile Area X 

overall network. Modules delineated by automated tree trimming are shown below and are 

depicted by arbitrary colors. Beneath the color bar, gene significances to the quantified behaviors 

(number of motifs sung, tutor similarity, acute variability changes, and overall variability; see 

Results) are indicated by a heatmap wherein red indicates a positive correlation and blue 

indicates a negative correlation (see B for scale). (B) Correlations between module eigengenes 

and each behavior are presented as a heatmap. The Pearson’s ρ and, in parentheses, Student’s 

asymptotic p-values for modules where p≤0.05 are displayed. P-values are uncorrected for 

multiple hypothesis testing but those that pass FDR correction at p≤0.05 are denoted by * (See 

‘Correlation of behavior to gene expression’ in Materials and methods). (C) For all significant 

module-trait correlations, the relationship between gene significance and module membership is 

plotted for each gene in the module. Dashed lines represent the linear regression and the 

Pearson’s ρ (‘cor’) and p-value as determined by Fisher’s z-transformation are indicated above 

each plot. (D) The average whole network connectivity (kTotal) within each module reveals that 

the purple, green, and pink modules are composed of the most strongly connected genes in the 

network. (E) Term significances for the black, darkred, and green modules are indicated for 

disease, gene ontology biological process and molecular function, as well as for pathways for 

categories annotated as ‘neuronal’ in the GeneCards GeneAnalytics software. (F) Network plots 

of the modules presented in panel E where nodes represent genes scaled by the node’s 

intramodular connectivity and edge width displays the topological overlap between genes. 
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Figure A4. Juvenile Area X singing related gene coexpression patterns are not preserved in 

juvenile VSP 
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(A) Dendrogram (top) displays the topological overlap in Area X between genes common to both 

juvenile Area X and VSP networks. Beneath, the module assignments and the gene significances 

for each gene as calculated using expression from VSP (‘V’) or Area X (‘X’) for all behaviors 

are quantified as in Figure 3A. Module colors are consistent with those presented in Figure 3. (B) 

Module preservation (Zsummary) for all modules that were present in both Area X and VSP 

displayed as a function of module eigengene correlation to motifs. Lower and upper dashed 

horizontal lines indicate thresholds for low and high preservation, respectively. (C) Circle plots 

display the adjacencies between the 20 most well-connected genes in the Area X black, cyan, 

green, royalblue, and blue modules. The adjacency between genes is indicated by edge thickness. 

Genes grouped together in the black, cyan, royalblue, and blue song modules in Area X have 

numerous and strong connections. Those connections are weakened or nonexistent in VSP such 

that genes sort into different modules in VSP. In contrast, the green learning-related module 

genes maintain their common grouping and connections in VSP. (D) Raw gene expression is 

tightly correlated between Area X and VSP for the genes in the black, cyan, green, royalblue, 

and blue modules (top). Only the intramodular connectivity of the genes in the green learning-

related module is correlated between Area X and VSP (bottom). Dashed lines represent the linear 

regression. 

 

 

 

 

 

https://elifesciences.org/articles/30649/figures#fig3
https://elifesciences.org/articles/30649/figures#fig3
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Figure A5. Area X song production but not learning-related modules are preserved into 

adulthood 

(A) Dendrogram (top) displays the topological overlap in juvenile Area X between genes 
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common to both juvenile and adult Area X networks. The module assignments and the gene 

significances to motifs in juveniles and adults are presented below. Module colors are consistent 

with those presented in Figure 3. (B) Module preservation (Zsummary) for all modules that were 

present in both juvenile and adult Area X displayed as a function of ME correlation to motifs. 

Lower and upper dashed horizontal lines indicate thresholds for low and high preservation, 

respectively. (C) Circle plots display the adjacencies between the 20 most well-connected genes 

in the juvenile Area X black, cyan, green, royalblue, and blue modules. The adjacency between 

genes are indicated by edge thickness. Genes grouped together in the black, cyan, royalblue, and 

blue song modules in Area X have numerous and strong connections that are mostly maintained 

in adulthood. The densely interconnected green learning-related module genes found in juveniles 

do not maintain these relationships in adulthood. (D) Strong positive correlations between gene 

significance to motifs exist for all modules (top row). Ranked expression values for the genes in 

each module also show positive correlation (middle row). Intramodular connectivity is more 

positively correlated between ages for the black, cyan, royalblue, and blue song production 

modules than for the green learning-related module (bottom row). 

 

 

 

 

 

 

 

 

https://elifesciences.org/articles/30649/figures#fig3
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Figure A6. Gene significance and network position implicate MAPK11 as a molecular entry 

point to vocal learning mechanisms 

 

(A) The 20 genes with the highest to lowest gene significances to tutor similarity (sorted from 

top to bottom) are shown. Each column represents a bird and columns are sorted in order of 

increasing tutor similarity from left to right. Gene expression is scaled such the highest and 

lowest expression across samples have the brightest shade of red or blue, respectively. (B) 

Expression of MAPK11 is replotted, here separated by virus group and then sorted by increasing 

tutor percentage similarity. (C) The FoxP2 binding sequence as annotated by the JASPAR 

database (top) and a potential binding site found in the MAPK11 ‘promoter’. (D) Amplification 
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of genomic DNA (‘Genomic’) with primers for a region of the MAPK11 ‘promoter’ that contains 

a putative FoxP2 binding site enrich a fragment of predicted size (red arrowhead) in the pull-

down lane (FoxP2) but not the control (IgG) lane. (E) MAPK11 and its 10 closest network 

neighbors, including green learning-related module members and hub gene ATF2, as defined by 

topological overlap. 

Figure A7. Protein-level interactions between song production and learning-related module 

genes in juvenile Area X 
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A protein interaction network plot using the STRING database between genes in learning-related 

(darkred, green, greenyellow) and song production (black, blue, darkgreen, orange, royalblue) 

modules. Nodes are scaled by number of connections. Edge width is determined by scaling the 

STRING protein interaction confidence score for the two nodes by the product of each node’s 

intramodular connectivity. Interactions within learning or song production modules are omitted 

for clarity. 

Figure A8. Changes in vocal plasticity state between juvenile and adult birds 
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(A) Schematics depict the juvenile straitopallidum (left) in a ‘plastic’ state in which genes in 

learning-related modules (green) are densely interconnected and of high importance in the 

network. Simultaneously, singing driven gene coexpression patterns (blue) occur in Area X. In 

the adult striatopallidum (right), song production modules (blue) exist as they do in juveniles, but 

the learning-related modules do not and are replaced by coexpression patterns that presumably 

underlie the maintenance of song (red). (B) Area X modules in the juvenile brain are plotted to 

emphasize their preservation in adult Area X (x-axis) and juvenile VSP (y-axis). Points 

representing the module colors are scaled by the module’s absolute correlation to learning (left) 

or the absolute correlation to singing (right), emphasizing the preservation of singing 

coexpression patterns into adulthood and learning coexpression patterns in the juvenile 

striatopallidum. (C) Genes in song production or learning-related modules that are within two 

steps of ATF2 in the high-confidence protein interaction network are shown. Nodes are scaled by 

intramodular connectivity in juveniles (left) or adults (right) with edge width indicative of 

adjacency between genes in the coexpression network. The change in coexpression patterns 

across age groups causes decreased connectivity of many learning-related genes, driving an 

alteration in the network’s landscape which may underlie the transition from song learning to 

song maintenance. 
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