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ABSTRACT OF THE DISSERTATION

Statistical Mechanics of the Cytoskeleton

by

Shenshen Wang

Doctor of Philosophy in Physics

University of California, San Diego, 2012

Professor Herbert Levine, Chair
Professor Peter G. Wolynes, Co-Chair

The mechanical integrity of eukaryotic cells along with their capability of

dynamic remodeling depends on their cytoskeleton, a structural scaffold made up

of a complex and dense network of filamentous proteins spanning the cytoplasm.

Active force generation within the cytoskeletal networks by molecular motors is

ultimately powered by the consumption of chemical energy and conversion of that

energy into mechanical work. The resulting functional movements range from

the collective cell migration in epithelial tissues responsible for wound healing

to the changes of cell shape that occur during muscle contraction, as well as all

the internal structural rearrangements essential for cell division. The role of the

cytoskeleton as a dynamic versatile mesoscale “muscle”, whose passive and ac-

xiii



tive performance is both highly heterogeneous in space and time and intimately

linked to diverse biological functions, allows it to serve as a sensitive indicator

for the health and developmental state of the cell. By approaching this natural

nonequilibrium many-body system from a variety of perspectives, researchers have

made major progress toward understanding the cytoskeleton’s unusual mechan-

ical, dynamical and structural properties. Yet a unifying framework capable of

capturing both the dynamics of active pattern formation and the emergence of

spontaneous collective motion, that allows one to predict the dependence of the

model’s control parameters on motor properties, is still needed. In the following we

construct a microscopic model and provide a theoretical framework to investigate

the intricate interplay between local force generation, network architecture and

collective motor action. This framework is able to accommodate both regular and

heterogeneous pattern formation, as well as arrested coarsening and macroscopic

contraction in a unified manner, through the notion of motor-driven effective in-

teractions. Moreover a systematic expansion scheme combined with a variational

stability analysis yields a threshold strength of motor kicking noise, below which

the motorized system behaves as if it were at an effective equilibrium, but with a

nontrivial effective temperature. Above the threshold, however, collective directed

motion emerges spontaneously. Computer simulations support the theoretical pre-

dictions and highlight the essential role played in large-scale contraction by spatial

correlation in motor kicking events.
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Chapter 1

Introduction

Biological versatility is most vividly illustrated by a crawling cell pushing

its way through a pore or around an obstacle. This occurs while the cell constantly

changes its shape and elasticity to adapt to a complex and fluctuating environment.

Underlying this remarkable active mechanical performance is the ability of an eu-

karyotic cell to maintain its mechanical integrity and to reorganize rapidly the local

structure and mechanical properties of its cytoskeleton [1]. The cytoskeleton is a

dense and complex meshwork of biopolymers spanning the cytoplasm. It mainly

consists of three classes of filamentous proteins having distinct stiffness: F-actin,

microtubules and intermediate filaments. These proteins are further organized

into higher-order assemblies by a myriad of auxiliary proteins such as crosslinkers,

bundlers, capping and severing proteins, which bind to the scaffolding elements.

The regulation of the kinetics of these binding proteins, the polymerization and

depolymerization processes of the filaments and the action of molecular motors

turn the cytoskeleton from a static carcass into a dynamic protean muscle.

A substantial specialization of the various constituents of the cytoskeleton

seems to be instrumental for the cytoskeleton to fulfill its diverse tasks. In cell

motility, there is the most complex orchestrated interplay of many different con-

stituents of the actin cytoskeleton which works independently of the nucleus and

most organelles of the cell. This is dramatically illustrated by the way chopped-off

lamellipodia (sheet-like extensions at the cell periphery) retain their motility [2],

and by the way invasive bacteria and viruses exploit parts of this cellular machin-
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ery for their own propulsion [3]. In vitro reconstitution of “functional modules”

[4] (assemblies of purified subunits) of increasing complexity seems a natural in-

termediate step in a bottom-up reassembly of living matter [5]. This approach

is a promising way to resolve the mutually conflicting demands for simplicity, re-

quired for systematic and quantitative studies, and the need for a sufficient degree

of complexity that allows a faithful representation of biological functions. The

study of such simplified model systems should lead to a better understanding of

the formation and stability of more complex structures of biological relevance.

Physical studies concentrating on the mechanical properties of cells have

been useful in elucidating the synergies of generic physical mechanisms and specific

biological regulation in establishing the overall mechanical behavior of biological

cells. A remarkable universality has been revealed in the viscoelastic responses of

reconstituted networks and of whole cells of different types over a wide range of

timescales, reminiscent of soft glassy materials [6, 7, 8]. Meanwhile, the overall

cell stiffness has been shown to be highly sensitive to cytoskeletal dysfunction, a

connection which validates the use of cell shape and stiffness as efficient and reliable

detectors of some diseases such as cancer [9]. On the other hand, functionally

relevant heterogeneities exemplify the specificity of biochemical signaling events.

One remarkable demonstration is provided by the formation of filopodia (finger-

like extensions of cytoplasm sent out by the cell in motion at its leading edge), in

which the local activation of various actin-binding proteins enables the dynamic

generation of highly localized meso-structures [10, 11].

Cytoskeletal networks play a major role in many developmental processes,

ranging from cytokinesis and cell motility to wound healing and tissue morphogen-

esis. Unlike macroscopic machines, within the active cellular materials there is no

clear distinction between the force generators and the structural elements. Rather,

the force-generating motor proteins are mixed with the elementary building blocks

of cell structure on a molecular scale. An important motor-filament assembly—the

microtubule-kinesin system—forms well-focused mitotic spindle poles. These are

driven by a polarity sorting mechanism [12, 13] to accomplish high-accuracy seg-

regation of replicated chromosomes into daughter cells. Networks of filamentous
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actin (F-actin) and the type-II myosin motors have been identified as the major

components of the cellular contractile machinery. Walking on the structural scaf-

fold provided by an actin network, myosin-II motors themselves self-assemble into

bipolar minifilaments that generate sustained sliding of neighboring actin filaments

relative to each other. By carrying out such correlated motions the minifilaments

reorganize the actin networks and generate tension ultimately powered by ATP

hydrolysis. The formation and coalescence of actomyosin condensates to exert

contractile forces have been seen in contractile rings driving cytokinesis [14, 15]

and wound healing [16], and in contractile networks that deform epithelial cell

layers in developing embryos [17, 18] and drive polarizing cortical flows [19, 20].

Cytoskeletal networks self-organize into highly dynamic and heterogeneous

functional patterns from the interplay between active force generation by molecu-

lar motors and passive dissipation of energy in the crowded cellular interior. The

formation and dynamics of contractile structures are manifested in pulsed con-

tractions of an actomyosin network that drive epithelial sheet deformation during

morphogenesis [21]. Such actomyosin aggregates also are responsible for a multi-

stage coarsening process that occurs in a bottom-up model system for contractility

[22]. In reconstituted filament-motor assemblies there arise some comparatively

regular patterns such as asters, in which stiff filaments or filament bundles radiate

from a common center, that resemble the mitotic spindles formed in dividing cells.

On the other hand, irregular heterogeneous cluster structures have also been seen

both in the actomyosin networks of C. elegans embryos [23] and in the minimal in

vitro network model [24]. Understanding the dynamics of these pattern formation

processes remains a challenge to statistical mechanical theory.

In addition to the formation of quasi-steady functional patterns, sponta-

neous directed motion driven by active processes is also just as crucial to biology, if

not more so. Such motion is only possible because the cell is a far-from-equilibrium

many-body system. Oscillations of the mitotic spindle during cell division [25] and

cytoplasmic streaming [26] dramatically illustrate the nonequilibrium nature of

cellular dynamics and the collective motion of a myriad of constituents. Sustained

spontaneous collective motion is quite remarkable in many-body physics. Super-
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fluidity and superconductivity are examples of metastable states of motion made

possible by quantum statistics. The biological example provided by the cytoskele-

ton is seemingly quite different, leading not to infinitely long-lived states but to

ones that go away when the cell is depleted of fuel. Nevertheless, like the quantum

examples, the motion of the cytoskeleton is an emergent many-body phenomenon

reflecting broken symmetries. Design principles for controlling artificial active ma-

terials can be learned by exploring the origin of collective directed motion for

systems of many interacting biomacromolecules with motor-driven processes.

On the basis of recent experiments with simplified/reconstituted cytoskele-

tal networks, a number of theoretical models have emerged. These models con-

sider, on the one hand, treating the system simply as one-component entangled

solutions [27, 28] that have a surprisingly rich viscoelastic response. On the other

hand, systems can be modeled as permanently crosslinked filamentous networks

[29, 30, 31, 32, 33] which exhibit a universal nonlinear stiffening [34] at low to

intermediate strains, as well as negative normal stresses [35] under shear being

attributable to the asymmetric load responses of individual filaments. Ideas of

nematic liquid crystal physics have been introduced to explain bundle formation

as a structural phase transition due to liquid crystal ordering [36]. By counting the

number of effective degrees of freedom, researchers have also shown that additional

bending constraints yield a lower rigidity percolation threshold by eliminating some

of the otherwise allowed rotational (soft) modes [37, 38]. Unlike the cytoskeleton,

however, all these model systems are equilibrium materials.

Various models have been developed for active systems kept far from equi-

librium by a permanent supply of mechanical energy. Many theoretical works on

the cytoskeleton start from microscopic considerations at the molecular level and

show how the interactions between the filaments and molecular motors can lead

to the active behavior observed on macroscopic scales. This, of course, requires

a good knowledge at the molecular level of the filament-motor coupling. Kruse

and Jülicher [39, 40, 41] have proposed a model for the dynamics of actin bundles

which leads to an expression for the tension inside the bundle and also predicts

bundle instabilities. Marchetti and Liverpool [42, 43] as well as others have ex-
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tended this approach to higher dimensions and studied in particular instabilities of

the isotropic homogeneous filament distribution. To this end effective descriptions

on macroscopic scales were derived from the microscopic equations.

Rather than beginning from a microscopic model, the hydrodynamic theory

starts on macroscopic scales. Thinking of the cytoskeleton as an active polar gel

allows the construction of hydrodynamic-like continuum theories. This approach

circumvents the difficulties due to the nonequilibrium nature of the dynamics by

modeling the gels at a coarse-grained level, subsuming all the intricate details into

a set of phenomenological parameters. The equations of motion for the internal

stresses as well as for local order-parameter-like quantities are constructed using

generic symmetry arguments. The nonequilibrium nature of the problem is re-

flected in the fact that such equations of motion do not derive from an underlying

free energy. This macroscopic approach has been successfully applied to systems as

diverse as biological membranes [44], self-propelled colloidal objects [45, 46], bac-

terial colonies [47] and bird flocks [48]. In the context of the cytoskeleton, these

theories have revealed the possibility of the spontaneous generation of flow in an

active polar film [49] and the formation of defect structures such as vortices and

asters [50]. The main limitation of the hydrodynamic theory is that this theory in-

eluctably considers only large length scales and long time scales. Moreover, the rate

and strength of motor-induced force exchange among the filaments is controlled by

phenomenological parameters whose dependence on biochemical motor activity is

not known. Relating model parameters to microstructures remains a challenging

theoretical task. In this dissertation I attempt to construct a microscopic model

and provide a unifying theoretical framework capable of capturing both the active

pattern formation and the emergence of spontaneous collective motion, with an

explicit dependence of the control parameters on the motor properties.

The “cat’s cradle” model [51] was introduced by Shen and Wolynes to study

the statistical mechanics of a collection of buckling bonds connecting point nodes

sitting on a regular lattice. Here I extend the model to treat the cytoskeleton as

a crosslinked amorphous network of nonlinear elastic filaments with excluded vol-

ume. The nonlinear elasticity of individual filaments allows them to stiffen under
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strain thereby preventing large deformations that could threaten tissue integrity.

On the other hand, the buckling instability under compressive load is essential

for large-scale contraction that makes possible wound healing and morphogenesis.

Rather than keep track of the filament degrees of freedom based on the contour of

the filaments using a continuum description, we follow the motion of the crosslinks

or the nodes of the network. This model encodes the effect of the filaments (i.e.

their asymmetric load response) via the pairwise interaction between the bonded

nodes. A hard-sphere repulsion between all the node pairs accounts for the ex-

cluded volume of the filaments and binding protein aggregates. The caging effect

due to repulsive neighbors comes into play at high concentrations of the nodes and

is essential for the glassy dynamics observed experimentally [7, 8].

Motors do not explicitly enter our model; instead, they are exemplified

as generating kicks on the motorized crosslinks or nodes. Spatially uncorrelated

kicks on individual nodes imitate the effects of unidirectional stepping of processive

motors (e.g. kinesin) along the filament tracks (e.g. microtubules). Spatially anti-

correlated kicks on motor-bonded node pairs, in contrast, mimic the myosin-driven

relative sliding of neighboring actin filaments, in which the nodes on either filament

are pulled toward each other. It will be shown that uncorrelated isotropic kicks

are responsible for a transition that leads to streaming flows as seen in Drosophila

oocyte where the cytoskeleton is driven by kinesin motors [52]. On the other hand,

spatial anti-correlation in motor kicks is shown to be crucial for there to be active

contractility as is observed in actomyosin networks in vitro [53] and in vivo [21].

Our coarse-grained models are completely microscopic but they bear some

resemblance to the macroscopic approach adopted by Levine and MacKintosh

[54, 55] that introduces force dipoles into an elastic continuum where motor unbind-

ing kinetics leads to enhanced low-frequency stress fluctuations. In the microscopic

model the network connectivity and motor distribution over the bonds of the net-

work are quenched once initially assigned, so that the nonequilibrium dynamics

and structures predicted by our model arise solely from the intrinsic activity of mo-

tors firmly built into the network driving correlated motions stochastically. This

assumption is in line with the fact that the in vitro structures are irreversibly
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assembled because many protein factors found in vivo that allow fast pattern re-

newals are left out of the reconstitution. Thus disassembly of contractile structures

and the transient action of actin crosslinking proteins, while important in vivo, are

absent in the simplified in vitro systems. Our model highlights the key role played

by the motor susceptibility, a parameter that characterizes how sensitively the

motors respond to imposed forces. The coupling between motor kinetics and the

structure leads to a double-way feedback: Motor action induces structural changes

of the network; these changes in turn modify the local mechanical environment

of the motors, again, changing the load-dependent motor response. Despite being

constructed in the context of the cytoskeleton, this model may have wide impli-

cations for variety of systems having nonlinear interactions and mechanochemical

coupling, since motors and nodes can represent different objects in different cir-

cumstances.

Chapter 2 explores the interplay between nonlinear elasticity of individual

filaments and the tunable network architecture and how this interplay establishes

equilibrium cytoskeletal mechanics. Mean field theories are used to determine the

Debye-Waller factor of localized particles. Combining these results with a density

functional formulation for the free energy allows us to identify diverse thermody-

namically stable mechanical phases the model cytoskeleton can take on and the

possible transitions between them. These transitions are controlled by biophysical

parameters in the microscopic model. The equivalence of our approach and the

replica method in spin glass theory makes possible an estimation of the glass tran-

sition densities using the concept of configurational entropy, whose smallness in

value indicates the paucity of possible configurational states and thus monitors a

deep descent into the glassy regime. A martensite-like structural phase also arises

from instability of homogeneous states in a floppy network. This heterogeneous

pattern is characterized by adjacent spatial domains with uncorrelated orientations

of net motion, as confirmed by molecular dynamics simulations.

Having achieved some understanding of the equilibrium phase behavior of

the model cytoskeleton, we enquire as to how the nonequilibrium fluctuations and

responses due to active processes can be captured by generalized thermodynamic
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concepts. In chapter 3 we pursue this possibility by using a master equation

description for active matter in which motors power configurational changes as

in the cytoskeleton. A systematic expansion of the many-body master equation

yields a description of the steady state and low-frequency responses in terms of an

effective temperature. The effective temperature not only allows a simple rescaling

of the equilibrium phase diagrams to be used for nonequilibrium motorized systems,

it also suggests a description of aging in active matter which has become kinetically

jammed.

Partially inspired by cytoplasmic streaming, in which a collective particle

flow circulating matter and information all over the cell arises driven by motor-

generated active stresses, we consider the question in general: How does the col-

lective motor action which is stochastic in nature give rise to spontaneous directed

motion reflecting broken symmetries? We attempt to address this question in

chapter 4 by pursuing the systematic expansion of the many-body master equa-

tion to higher order in step size of motor kicks. Mean field theories and variational

stability analysis reveal a threshold motor kick size for such collective flow: Sys-

tems driven by small-step motors can be described by an effective temperature

and are thus quiescent, above the threshold, however, streaming flow emerges

spontaneously. Depending on network architecture and motor susceptibility, inho-

mogeneous and oscillating patterns may also arise. Motors that respond with a

negative susceptibility lead to an apparent negative temperature system in which

beautiful structures form resembling the asters seen in cell division. The proposed

mechanism for collective directed motion is robust to various forms of interactions,

as long as three generic conditions are fulfilled: (1) broken translational symmetry

and the corresponding elastic restoring force providing the rigidity of the macro-

scopic state; (2) sufficiently strong agitation triggering dynamic instability about

the quiescent state; (3) coupling between chemical kinetics of the active elements

and the forces exerted on them that promotes cooperativity and thus coherence

in motion. This mechanism might be responsible for cortical flow on subcellular

scale and relevant for collective cell migration in multicellular tissues.

Active contractility in actomyosin networks observed both in vitro and in
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vivo drew our attention to the possibility that spatial correlation in motor kicking

events would dramatically modify the structural development and dynamics of the

cytoskeleton. Chapter 5 presents a microscopic model that incorporates two es-

sential aspects of actomyosin self-organization: the asymmetric load responses of

individual actin filaments and the anti-correlated motor-driven events mimicking

myosin-induced filament sliding. This model is shown to capture the formation

and dynamics of contractile structures and is shown to agree with the observed de-

pendence of active contractility on microscopic parameters, in particular, that con-

tractility occurs only above a threshold motor concentration and within a window

of network connectivity. In silico realization of this model vividly demonstrates

how cooperative action of load-resisting motors in a force-percolating structure

integrates local buckling events into a global contractile state via an active coars-

ening process, in contrast to the flow transition driven by uncorrelated kicks of

susceptible motors.

Chapter 6 provides a theoretical framework to investigate the intricate in-

terplay between local force generation, network connectivity, and collective action

of molecular motors. This framework is capable of accommodating both regular

and heterogeneous pattern formation, arrested coarsening and macroscopic con-

traction in a unified manner. Simulation studies confirm the theoretical picture

that a nonequilibrium many-body system driven by correlated motor kicks can

behave as if it were at an effective equilibrium, but with modified interactions that

account for the correlation of the motor-driven motions of the actively bonded

nodes. The notion of effective interaction provides a natural explanation for the

diverse forms of active patterning: An effective short-range attraction drives the

aggregation and coalescence of actomyosin condensates, whereas an effective re-

pulsion allows the formation of sustained aster patterns.

Our theory is not yet a final theory of everything “cytoskeletal”. So I close

by discussing some immediate extensions and pointing out future opportunities in

chapter 7.

Even though we have not provided all the answers, we hope these studies

help sharpen the questions and nucleate starting points for further investigations.
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Chapter 2

The interplay of nonlinearity and

architecture in equilibrium

cytoskeletal mechanics

2.1 Introduction

The cytoskeleton is a crowded network of dynamic filamentous protein poly-

mers that collaborate with diverse binding proteins and molecular motors to form

nature’s most marvellous active material [1]. All eukaryotic cells are known to con-

tain a well-developed cytoskeleton, and even bacteria have been found to contain a

diverse set of proteins capable of forming structural filaments [2]. Actin is a major

constituent of the cytoskeletal network that participates in such widely differing

processes as blood clotting, egg fertilization, intestinal absorption and tumor inva-

sion. A common theme of many substantial experimental efforts [3, 4, 5, 6, 7] is the

role of actin filaments in maintaining cell architecture and generating movement.

In vitro, actin can polymerize to form long rigid filaments (F-actin), with a

diameter around 7 nm and contour length up to 20 µm. The in vivo cytoskeletal

network, however, is regulated and controlled not only by the concentration of F-

actin, but also by accessory proteins that bind to F-actin. Nature provides a host

of actin-binding proteins (ABPs) with versatile functions that offer the necessary
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variations for the part actin has to play [8]: Cross-linking proteins form filament

bundles or isotropic gels, whereas capping proteins and/or filament-severing pro-

teins regulate actin polymerization under specific salt conditions and thus control

the average length of F-actin. Experiments show, for example, that actin-binding

protein functions to stabilize cortical actin in vivo and is required for efficient cell

locomotion [9]. Rheological experiments on simplified networks and living cells

demonstrate that even the most basic mechanical properties of cytoskeletal mate-

rials are sensitive to specific architectural details, including filament and cross-link

density, connectivity, and orientation [10].

Unlike flexible polymers, where changes in cross-link density typically do not

markedly affect the elasticity, small changes in the concentration of cross-linking

actin-binding proteins do dramatically alter the elasticity of F-actin networks [11].

As materials, in vitro networks of cytoskeletal filaments exhibit several unusual

mechanical properties, including a highly nonlinear elastic response [7, 12] and

negative normal stresses [13]. Another noteworthy observation is the buckling of

actin stress fibers that occurs upon rapid shortening [14], which demonstrates the

instability of a prestressed actin network under compression.

A refined experimental route to understanding cytoskeletal structures in

terms of their molecular components is to reconstitute these structures from puri-

fied proteins. In vitro reconstitution provides the capability to study the emergence

of micrometer-scale function from numerous molecular-scale interactions. A recent

reconstitution of contractility in a simplified model system, composed of purified

F-actin, muscle myosin II motors and α-actinin cross-linkers, has shown that con-

tractility occurs above a threshold motor concentration (one myosin filament for

every 30 actin filaments) and within a window of cross-link concentrations (90−270

α-actinin dimers per actin filament) [15]. It is somewhat unexpected that at high

cross-link densities the bundled networks do not contract on the experimental

timescale of an hour. This seems to imply a dramatic slow-down of cytoskeletal

kinetics due to the steric constraints associated with increasing crowding.

The cytoskeleton in different organisms or even during different stages of

the cell cycle exhibits a rich variety of viscoelastic properties [16, 17]. To ac-
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commodate both the adaptive behavior of dynamic remodeling, and the ability to

stabilize and be resistant to deformation, the cytoskeleton should exhibit at least

two mechanical phases: a plastic/fluid phase for internal reorganization of the cell,

and an elastic/solid phase for mechanical support and tension transmission.

In contrast to the strain-stiffening behavior [18] in response to a sustained

stretching of cells or reconstituted cross-linked actin gels, measurements on the

responses to a transient stretching in the living cells [19] demonstrate that the

cell will fluidize in response to the stretch, but will resolidify subsequent to this

fluidization. This ability seems to be insensitive to molecular details, and instead

only depends on the proximity of the thermodynamic conditions of the cell to a

solid-like state before the stretch. This observation implied that in addition to

specific signalling pathways, some response mechanisms are most likely controlled

by non-specific actions of a slowly evolving network of physical forces. On the

other hand, the universal behavior observed in the osmotically compressed cell

[20] highlighted the crowding-induced stiffening of the cytoplasm as the solid vol-

ume fraction is sufficiently high, and suggested an analogy to the colloidal glass

transition.

In an attempt to understand the interplay between the individual filament

properties and network architecture, we study in this paper the equilibrium prop-

erties of a model cytoskeleton as an amorphous network of rigidly cross-linked

nonlinear strings which also contains nodes with excluded volume. We incorporate

the nonlinearity of interaction due to bucklable filaments into the force law, and

characterize the cytoskeletal architecture by cross-link density and network connec-

tivity. A mean-field level investigation, within the framework of the self-consistent

phonon method and a density functional formulation, reveals a diversity of me-

chanical phases and a number of possible transitions in between which can be

controlled by biophysical parameters. This phase diagram may shed light on our

understanding of cytoskeletal remodeling in response to mechanical or chemical

stimuli. We also show the possibility of a glass transition in this model system and

how the network connectivity modulates the transition densities.
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2.2 Model and method

2.2.1 Model

We model the F-actin bundles as individual nonlinear elastic strings; they

are capable of resisting tensile forces by stretching (beyond the relaxed length Le),

but are unstable under compression so that these forces may cause the strings

to buckle. The actin-binding proteins bundle and crosslink F-actin to form an

amorphous network. To account for the excluded volume of F-actin and the ABP

aggregates, to the lowest order, we model the network as being crosslinked by

hard “beads”; each bead serves as a compact rigid subunit that concentrates the

volume of the F-actin and ABP aggregates centered on that bead. The network

elasticity then comes from the remaining inter-bead F-actin molecules which are

now taken to be volumeless. To higher order, the elasticity within the beads

can also be included by introducing softness in the repulsion. In this way we

effectively decompose the inter-bead interaction into purely excluded volume and

nonlinear elastic contributions, and the model potential energy V (r) between a

nearest-neighbor pair of beads is given by

βV (r) = AΘ(d− r) +
βγ

2
(r − Le)

2Θ(r − Le) , (2.1)

where Θ(x) is the Heaviside step function. The limit A → ∞ indicates the hard-

sphere (HS) repulsion, while γ measures the rigidity of the inter-bead F-actin.

Temperature dependence enters this model only via the combination βγ where

β = 1/kBT . Here d denotes the HS diameter of the beads and Le marks the onset

of elasticity. Thus Le > d define a buckling regime (d < r < Le) where no load

is imposed. We show a sketch of the model system (Fig. 2.1a) and a schematic of

the nonlinear interaction (Fig. 2.1b).

We incorporate the filament nonlinearity to the extent that it effectively

encodes the asymmetric response of the filaments to stretch and to compression; in

this sense, our model is more “coarse-grained” than the well-studied “semi-flexible

fiber” model [21]; the latter treats the bending degrees of freedom of F-actin based

on the contour of the filaments using a continuum description. This bending
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(a) (b)

Figure 2.1: Illustrations of the model system and the nonlinear interaction. (a)
The beads (blue spheres) interconnect the F-actin (red straight or green squiggly
lines) into an amorphous network. Red straight lines stand for tense/stretched
bonds and green squiggly lines for loose/buckled bonds. The arbitrarily chosen
central particle (yellow-stared) is connected with its nearest neighbors within the
first shell of the radial distribution function (the dotted purple circle). (b) Nearest-
neighbor interaction versus radial separation.

effect, stated in our language of inter-bead interaction, essentially introduces a

finite resistance/restoring force to compression in our originally buckling regime.

It can be easily incorporated, yet we do not expect any qualitative modification

on the mean-field level predictions made by our current model.

Similar buckling bonds were used to study the statistical mechanics of a

“cat’s cradle” built on a regular lattice by two of us several years ago [22]. Here we

also include a HS repulsion to account for the excluded volume of the F-actin and

ABP aggregates, and also assume the cytoskeleton adopts an aperiodic amorphous

structure characteristic of the disorder of biological cytoskeletal networks. Thus

in our model system, localization is achieved not only at a high concentration

of beads via hard-core repulsions (topological caging), but also will occur upon

network expansion due to bond stretching. The interplay between the nonlinearity

of interaction due to bucklable bonds and the network architecture renders the

thermodynamic state diagram nontrivial in terms of diverse mechanical phases.

These equilibrium phases include persistent uniform liquid-like states, regions with

a coexistence of frozen and liquid phases, and the possibility of a martensitic-like

phase transition that signals a spontaneous symmetry breaking.
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The average length of F-actin in an in vitro network can be adjusted by

controlling the concentration of capping proteins (for example the concentration of

gelsolin); a higher molar ratio of capping protein to actin results in shorter F-actin

on average. Increasing the crosslink concentration promotes the formation of F-

actin and ABP aggregates [23], and in turn increases the bead density. The bead

density determines the average spacing between the beads, or equivalently, the

average end-to-end distance of F-actin (r). When r < Le the elasticity of the fiber

is entropic in origin, whereas the intrinsic elastic modulus of the fiber dominates

when r > Le. The effective stiffness of the interbead F-actin (βγ) is also variable;

it is enhanced when filaments are bundled together to form structures with larger

diameters [24]. Thermal fluctuations play a smaller role as filaments become stiffer.

To get a feeling about how the relevant biophysical parameters work out

in our model system, we can first estimate the bead density ρ from experimental

actin concentration. The typical actin concentration used for in vitro networks is

23.8µM which, if we assume the actin monomers to be spheres of diameter 5nm,

corresponds to a volume fraction of 0.9×10−3. The ABPs take up negligibly small

volume compared to that taken up by actin. We further take the bead size to be

1µm and the F-actin as slender rods of cross section 5nm× 5nm, then if each bead

concentrates five F-actin of length 6µm, ρ = 1.2 is needed to reach the given volume

fraction; if five F-actin of length 10µm per bead then ρ = 0.9 (taking the bead

diameter d to be the length unit). Thus ρ is adjustable, ranging from 0.1 to 1.4,

by varying actin concentration and/or crosslinking properties. Since the filament

aggregates are not perfectly dense-packed within the bead, they only take up a

portion of the assumed bead volume; the modeled hard-sphere repulsion between

the beads may overestimate the excluded volume effect. Yet the qualitative phase

behavior of this model system should not be altered. In a first approximation,

the cytoskeleton determines the mechanical properties of a cell; since the elastic

modulus of a cell is in the range of 103 Pa, the corresponding effective stiffness βγ

is then estimated to be between 1 and 10 as converted into our model parameters.

(The characteristic bead size is d = 1µm.)
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2.2.2 Mean field approximations and the self consistent

phonon (SCP) method

Instead of treating the bending degrees of freedom of F-actin directly, we

focus on the motion of individual beads, located on the vertices of the network, in

order to find the nonlinear elasticity as the bead density is varied. In the mean-field

spirit, we tag a given bead as the central particle, and study its stability/response

to the local mechanical environment.

We build the model system on top of an amorphous structure. In contrast

to a regular lattice that usually has a unique equilibrium configuration as well as

a definite coordination number for a specific lattice structure, amorphous systems

must be appropriately averaged over non-vibrational disorder in the lattice which

we take as quenched. A further mean-field approximation will be made in the

present analysis to avoid detailing the configurational complexity of a random

network. We will summarize the underlying topology of the amorphous solid in an

assumed isotropic pair distribution function g(r) for the fiducial configurations of

the system. Such a treatment has also been used for molecular structural glasses.

We then define nearest neighbors as those beads that sit within the “first shell”,

i.e., up to the first minimum of the equilibrium radial distribution function g(r),

and assume that interaction only exists between nearest-neighbor pairs.

For liquids above the melting point, gHS is well described by the Percus-

Yevick approximation; the Verlet-Weis correction improves the behavior of g(r)

near the core and dampens its oscillations at large r, giving accurate modifica-

tions especially at high densities [25]. We follow the procedures of Verlet and

Weis, and note that coordination number in an amorphous structure depends on

particle concentration, because the amplitude and phase of the oscillations in ra-

dial distribution vary with number density/packing fraction of the particles (See

Fig. 2.2(a)). As shown in Fig. 2.2(b), an increasing number of nearest neighbors

are accommodated within the first shell when particles are packed denser. This

increase is almost linear when ρ is low, and slows down as ρ approaches 0.6; the

modest increase above densities of 0.8 is bounded by the random close packing

value of the coordination number which is around 14.
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(a) (b)

Figure 2.2: (a)Radial distribution function g(R) vs the radial separation R for a
series of particle density ρ. As density increases, oscillatory amplitude gets larger
along with a phase shift toward the core. (b)Coordination number vs particle
density.

In the context of our model network, the amorphous topology effectively

contains the physical aspects of bond breaking and/or ABP detachment upon

network expansion. These aspects were absent in the lattice setting which was

studied earlier: as the density of beads decreases (or equivalently as the network

expands), coordination number drops off resulting in a smaller number of interact-

ing neighbors or an effectively weaker network connectivity, even though the bond

connections between each nearest-neighbor pair are assumed to be permanent at

each given bead density.

As an approach of thermal stability analysis in an equilibrium system, the

SCP theory was first developed to treat the anharmonic effects of hard-sphere

crystals. The basic idea is to introduce a reference harmonic system, and then

obtain the effective potential felt by each tagged particle, by averaging the pair

interaction over the assumed Gaussian fluctuations from all its neighbors. This

procedure should give back the assumed harmonic potential of the typical particle.

The resulting coupled set of self-consistent equations allows an iterative scheme to

determine the generally site-dependent force constants. Among several schemes,

Fixman’s SCP method based on a systematic expansion in Hermite functions has

proven an efficient and especially robust procedure [26]. Recently, this technique
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has been applied to network glasses [27], and also by two of us to study motorized

particle assembly [28] to analyze the far-from-equilibrium dynamics like that of the

living protoplasm using a local feedback scheme.

We apply the SCP method to quantify the responses of various mechanical

phases under varying physical conditions. At low concentration of beads, the ef-

fective attraction due to stretched springs dominates, thus the tagged particles are

localized by“bond trapping”; whereas in the high concentration limit, HS repulsion

dominates and results in a glassy/jammed state owing to “topological caging”. To

investigate both localized phases and the intermediate states that bridge the tran-

sition, we make a Gaussian local density profile ansatz with a single parameter,

i.e. we describe the time-averaged density configuration as a sum of Gaussians

representing thermal vibrations of particles about the fiducial sites

ρ(r⃗) =
∑
i

(αi

π

)3/2
e−αi(r⃗−R⃗)

2

. (2.2)

In the present work, the force constants (inverse mean squared displacements or

localization strengths) {αi} will all be taken to be equal, but it is not difficult to

allow spatial variation [29], i.e., dependence on the index i.

In the independent-oscillator version of the SCP theory, the effective po-

tential between two interacting particles is given by

e−βV eff (|r⃗−R⃗′|;α) =
(α
π

)3/2 ∫
dr⃗′e−β 1

2
V (r⃗−r⃗′)e−α(r⃗′−R⃗′)2 , (2.3)

which may be explicitly written as

e−βV eff (R;α) =

√
α

π

1

R

∫ ∞

0

dwwe−
1
2
βV (w)

×
[
e−α(w−R)2 − e−α(w+R)2

]
. (2.4)

Here, R denotes the averaged equilibrium separation between interacting particles,

and α represents the homogeneous localization strength.

Taylor expansion of the effective interaction up to the second order gives a

self-consistent relation for α:

α =
ρ

6

∫
“1st shell”

d3R⃗ g(ρ,R)Tr
[
∇∇βV eff (R,α)

]
, (2.5)
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or

α =
2π

3
ρ

∫ R∗

1

dRR2g(ρ,R)∇2βV eff (R,α) . (2.6)

Here R∗ marks the position of the first minimum of the radial distribution function

g(R). The HS diameter d, as the lower limit, is taken to be the unit of length.

2.2.3 Thermodynamic ramifications of our model system

We shall show in a moment that in our model system—a rigidly cross-linked

nonlinear-elastic network—there exist at least two different localized phases: one

modestly localized phase describes the weakly trapped motion due to bond stretch-

ing. We refer to this state as the “liquid-like state”, in view of its considerable

mobility and small localization strength (αliq). The other more strongly localized

state corresponds to the jammed motion within topological cages of neighbors.

This solution depicts a “glassy state” exhibiting highly restricted vibrations (αgl).

Traditionally, microscopic treatments of liquids take the view that since

the liquid structure is dominated by repulsive forces, it is desirable to develop

perturbation theories based on a HS reference system and then find the optimal

parameters for it. In this spirit, the Helmholtz free energy can be obtained by

adding a first-order perturbation to the free energy of the corresponding HS system.

On the other hand, the Carnahan-Starling equation of state gives accurate values

of the reference free energy at moderately high densities. In sum, the free energy

for the liquid-like state is given by

fliq ≡ βAliq

N
=
(
ln ρΛ3 − 1

)
+

∫ η

0

(ZCS(η
′)− 1)

dη′

η′

+ ρ

∫
1st shell

dR⃗ g(η,R)

×
[
βV eff

model(R,αliq; βγ, Le)− βV eff
HS (R,αliq)

]
. (2.7)

Here the first term gives the entropic cost when all the nearest-neighbor pairs are

bonded, with Λ denoting the thermal wavelength. The second term is the excess

free energy of the HS reference system where the compressibility factor Z is given

by Carnahan-Starling(CS) equation of state. The last term involves the energetic
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contributions from the attraction due to bond stretching; note the HS part is

carefully deducted.

We use SCP theory to describe the free energy of glassy configurations

[30, 31]. The expression we use for an individual glassy configuration is

fgl ≡ βAgl

N
= ρ

∫
1st shell

dR⃗ g(ρ,R)βV eff
model(R,αgl; βγ, Le)

+ {3
2
ln

(
αglΛ

2

π

)
− 3 ln

[
erf(

√
αglD)

]
} − δf. (2.8)

Here the first integral gives the “on-site” free energy after double averaging over

thermal fluctuations and over topological disorder. The second term (inside the

curly bracket) comes from −(1/N) ln

[
Zp ·

(∫
|wi|≤D

dw⃗e−αw2
)N]

which accounts

for the effect of cell constraint; Zp represents the momentum part of the partition

function, and we choose a cubic cell with side length D ≡ ρ−1/3/2 for conve-

nience. Finally, δf (taken to be 0.224) is a numerical correction to the entropy of

HS crystal system near face-centered-cubic (fcc) close packing obtained via SCP

approximation, which then gives extremely accurate free energies near melting.

The pressure can be evaluated by numerically differentiating the liquid free

energy:

p = ρ2
(

∂

∂ρ
fliq

)
T,N

kBT. (2.9)

Random first order transition theory identifies the configurational entropy

with the difference between the free energy of the highly localized glass solution

and the liquid, i.e.
Sc(ρ, β)

NkB
= ∆f = fgl − fliq (2.10)

Another interesting quantity that can be evaluated within the SCP theory

is the number of force-bearing bonds, i.e., those that have a length exceeding the

elasticity onset Le. In three dimensions, the structure-dependent probability for

a single bond to be elastically stretched (or equivalently, the fraction of stretched

bonds, in the mean field context) is given by

q3(α,R) =

∫
|r⃗|>Le

dr⃗
(α
π

)3/2
e−α(r⃗−R⃗)2 , (2.11)
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or

q3(α,R) =

√
α

π

1

R

∫ ∞

Le

dr r
[
e−α(r−R)2 − e−α(r+R)2

]
. (2.12)

The number of stretched bonds can then be obtained by averaging over non-

vibrational disorders, i.e. configurational degrees of freedom:

q3(α, ρ) = ρ

∫
1st shell

dR⃗ g(ρ,R)q3(α,R). (2.13)

This double integral accounts both for the contributions from the fluctuation of

individual bonds (small α indicates strong fluctuation) and from fluctuations in the

underlying topological structure (short Le enlarges the radial range that contains

stretched “fiducial bonds”).

2.3 Numerical investigations

2.3.1 Localization strength

The fundamental quantity that characterizes the diverse mechanical phases

in our model is the localization strength, or the force constant of the emergent

Einstein oscillator, α. We may plot α against bead density ρ and/or effective

stiffness βγ of the F-actin. We measure lengths and energies in units of d and β,

then the corresponding dimensionless quantities are taken to be ρ∗ ≡ ρd3 = ρ and

γ∗ ≡ βγd2 = βγ. We start with several representative one dimensional plots that

come from vertical slices of the two dimensional α-surface, and we first focus on

the liquid-like solution which is absent in the pure HS system.

Referring to Fig. 2.2(a), we observe that the first shell (R∗) of the radial

distribution shrinks from 1.95 to 1.3 as the bead density increases from 0.2 to 1.2.

When Le < R∗, the separation (R∗ − Le) determines how many nearest-neighbor

fiducial sites are found beyond Le and on-average have tense bonds; in this case,

both the underlying topology and thermal fluctuations contribute to the localiza-

tion. On the other hand, however, if Le > R∗, all fiducial sites of nearest neighbors

fall inside the sphere of radius Le and on-average result in buckled strings; in this

case fluctuations are the only source of stretching and thus of localization. This
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(a) (b)

Figure 2.3: Liquidlike localization strength αliq versus bead density ρ. (a) For
γ∗ = 2 with Le = 1.2 (blue), 1.5 (green), 1.8 (red); (b) for Le = 1.8 with γ∗ =
2 (red), 10 (green), 30 (blue).

information is also encoded in the threshold density ρth beyond which a stable αliq

solution no longer exists. In sum, longer onset length leads to weaker overall local-

ization as well as lower threshold density, as shown in Fig. 2.3(a). A similar effect

is produced by low rigidity γ as can be seen in Fig. 2.3(b); since smaller γ indicates

a broader and shallower confining well in which particles are more loosely teth-

ered thus being less localized, and the corresponding liquid-like solution becomes

unstable at lower ρth.
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Figure 2.4: Liquidlike localization strength versus bead density for Le = 1.2 with
βγ = 2, 10, 30. Liquid-like solution is still distinct at βγ = 2, whereas a rapid
crossover to glassy behavior occurs for βγ = 10, 30.

The compromise between the number of contributing neighbors and the

degree of stretching produces a non-monotonic density dependence of αliq at a
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given Le, and the most efficient localization is achieved at an intermediate density

around 0.6. At ρ < 0.6, the individual bonds become less likely to be stretched

as the beads pack more densely, whereas the total number of bonded neighbors

increases much faster with increasing density, the combined effect thus leads to

a stronger localization as density grows. On the other side when ρ ≥ 0.6, the

number of bonded neighbors almost saturates, while the thinner first shell of g(r)

indicates less tightly stretching or deeper buckling as density increases, whereby

the localization strength decays accordingly.

Note that this non-monotonic density dependence only occurs for a suffi-

ciently long Le or in the low-βγ regime for a short Le. For sufficiently high βγ

liquid-like solutions are no longer distinct, instead a rapid crossover to high-α

solutions is observed, as is exhibited in Fig. 2.4.

2.3.2 Thermodynamics

q3—role of localization

Recall that q3 explicitly counts the average number of tensely bonded neigh-

bors. Its dependence on elasticity comes from the self-consistently determined

localization strength α and the intrinsic cutoff Le for a bond to be stretched.

For a given ρ, more elastically-bonded neighbors become available as Le drops

(Fig. 2.5(a), bottom to top) and/or γ∗ decreases (Fig. 2.5(b), bottom to top). For

a moderate γ∗, the number of stretched bonds increases with bead density for

various Le as long as stable liquid-like solution exists (Fig. 2.5(a)); at high γ∗,

however, close to the most localized regime for individual beads, even though the

coordination number still gently increases, the weak fluctuation (high α) strongly

suppresses bond stretching, thus leading to an intermediate decline of q3 in its

ρ-dependence, as seen in γ∗ = 10, 30 cases (Fig. 2.5(b)).

Free energy profile—consistency with SCP theory

As can be seen when we compare Fig. 2.6 with the corresponding curves

in Fig. 2.3(b), the minima on the free energy profile F (α) for the liquid-like state
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(a) (b)

Figure 2.5: Average number of stretched bonds q3 vs bead density ρ. (a) γ∗ = 2
for Le = 1.2, 1.5, 1.8 (top to bottom); (b) Le = 1.8 for γ∗ = 2, 10, 30 (top to
bottom).

coincide with the corresponding αliq solutions obtained via the SCP method. As the

bead density increases, the overall profile shifts upward. At a given density (ρ = 0.6

here), raising Le (Fig. 2.7(a)) or lowering γ
∗ (Fig. 2.7(b)) causes the liquid-like state

to be increasingly favorable (deeper and sharper valley) with lower localization

strength (bottom of valley being shifted leftward). As expected, γ∗ only markedly

affects the low-α regime (α ≤ 10), since when particles are sufficiently localized

(due to short Le or high ρ), bond stiffness only plays a minor role in altering the

interaction strength. In contrast, varying Le not only modulates the low-α regime,

but causes a nearly uniform upshift of the high-α portion of F (α); this observation

is consistent with our previous statement that when thermal fluctuations are weak

(high α) topology dominates; shorter elasticity onset Le indicates more stretched

bonds at a given density and thus enhanced interaction.

Pressure

We plot pressure versus bead density with γ∗ = 2 for a series of onset

lengths in Fig. 2.8. At the low-density end, most of the bonds are stretched and

the system tends to shrink, resulting in a very low pressure. At the opposite end,

in a densely packed system HS repulsion takes over the major role; the steeply in-

creasing pressure reflects the rising difficulty in rearrangement and the consequent
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Figure 2.6: Free energy fliq versus the order parameter—localization strength α
with Le = 1.8, βγ = 30 for ρ = 0.2–1.2 (bottom to top). As the bead density ρ
increases, the overall profile shifts upward with the valley indicating the equilibrium
solution αliq.
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Figure 2.7: Free energy versus localization strength. (a) γ∗ = 2 for Le =
1.2, 1.5, 1.8 (top to bottom); (b) Le = 1.8 for γ∗ = 2, 10, 30 (bottom to top).

soaring resistance to compression. In contrast with the nearly universal behav-

ior at both extremal-ends, parameter-sensitive features emerge in the intermediate

density regime, where shorter Le enhances the effective attraction and thus lowers

the pressure of the system. In particular, a non-monotonic behavior is observed to

occur for pliable springs (low γ∗) with early onset (short Le), as is exhibited for

the case of Le = 1.2.

It is natural to expect the possibility of a negative pressure at a modest bead

concentration in view of the tendency of the network to shrink due to attraction.

We plot in the inset of Fig. 2.8 the contribution of attraction (pattr) to the total
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Figure 2.8: Pressure versus bead concentration for soft strings (βγ = 2) with
various onset lengths Le = 1.2, 1.3, 1.4, 1.5 (bottom to top). Main plot: total
pressure; inset: pressure due to attraction.

pressure (ptot) for several onset lengths, and pattr does indeed exhibit a negative

valley at intermediate concentrations. It is clearly seen that a short onset length

is necessary for a notable contribution from attraction and thus for the emergence

of this non-monotonic behavior of the total pressure.

On the other hand, the negative contribution owing to attraction is even-

tually overwhelmed by the positive part due to a more rapid increase in repulsion

as ρ increases, and the total pressure (ptot) remains positive over the whole den-

sity range. This behavior is originated from the specific form of the free energy

functional that we have used for the model system, where the correction due to

attraction enters as a perturbation to the dominating repulsive part. This result

might require modification to better accommodate the low-concentration regime

where attraction becomes important. Another reason for this behavior may be re-

lated to the g(r) we have used for the radial distribution which drops sharply when

move away from the core; bonding effects might lead to a fatter tail of g(r) and

an enhanced contribution from attraction. Nevertheless, we feel these insufficien-

cies of the approximations should not modify the mechanical and thermodynamic

properties qualitatively.

The thermodynamic considerations discussed above help with understand-

ing of the physics underlying the predicted phase behavior in terms of the order

parameter α. We will discuss these in detail next.
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2.3.3 State diagram

Overview

In our model network, we assume permanent bond connections between the

nearest-neighbor pairs. The interplay between these intrinsic constraints and the

thermal fluctuations gives rise to an inhomogeneous distribution of tensile forces

throughout the network. Such force heterogeneity exhibits as a (uniform) non-

vanishing tethering strength in our mean field context. This explains the prediction

that a completely ergodic fluid phase, which is allowed for the pure hard-sphere

system with short-range attraction and that has strictly diffusive behavior for long

times i.e. α → 0 as t → ∞, never occurs for the equilibrium network structure;

the lack of utter freedom in locomotion leads to a finite α over the whole span of

bead concentrations.

There exist two characteristic densities in our model system: the threshold

density ρth above which the homogeneous liquid-like solution is no longer stable,

and the critical density ρcr which signals the emergence of a glassy state. These

densities help define the boundaries between diverse mechanical phases:

• ρ < ρth, ρcr: only αliq exists, which describes the liquid-like loosely

tethered phase;

• ρth < ρ < ρcr: the mean-field αliq is no longer stable, and the glassy

state has not yet occurred; bifurcation to a low-α solution may occur, exhibiting

a symmetry broken phase which we shall call the “martensitic-like” (ML) phase;

• ρcr < ρ < ρth: both αliq and αgl exist, depicting the transition state with

presumably coexisting phases that implies a macroscopic number of configurational

degrees of freedom for structural rearrangements.

• ρ > ρth, ρcr: the repulsive-glass phase dominates.

Features of the various phases

Our SCP calculation has found five distinct phases in our model system: the

liquid-like (LL) phase, the crossover (CO) phase, the repulsive-glass (RG) phase,

the multiple-solution (MS) phase, and a martensitic-like (ML) phase.
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♢ the liquid-like (LL) phase and crossover (CO) phase

We choose two particular onset lengths based on their position with respect

to the boundary of the nearest-neighbor shell.

For Le = 1.8, this cutoff stands outside the nearest-neighbor shell for ρ : 0.2–

1.2, which means that almost all the “fiducial bonds”, i.e. bonds that connect

fiducial sites of nearest neighbors, are buckled, and become more floppy as bead

density grows; in this situation once the coordination number saturates at ρ ≃ 0.6,

increasingly deeper buckling results in a decrease in αliq as ρ increases. Owing to

the overall buckling of the bonds, higher bond stiffness and thus smaller fluctua-

tions lead to a smaller probability for the bonds to tense up, and an even steeper

drop in αliq occurs as density increases (Fig. 2.3(b)). Therefore, the distinct liquid-

like solutions persist over the whole γ∗-range of interest (as long as ρ ≤ ρth) for

the case of a long onset length.

For the case of Le = 1.2, however, since this cutoff remains inside the

nearest-neighbor shell all the way through ρ : 0.2–1.2, there always exists a frac-

tion of fiducial bonds being stretched beyond their relaxed length. In this situation

the descending branch of αliq at intermediate densities only occurs for very soft

springs, i.e. in the low-γ∗ regime. Furthermore, taking advantage of the persis-

tent fraction of stretched (fiducial) bonds, sufficient stiffness beyond a thresh-

old value (marked by the phase boundary ρ
CO

) would help enhance localization,

and facilitates a smooth crossover from elasticity-dependent liquid-like behavior

to geometry-dominant glassy behavior (as seen in Fig. 2.4); we shall refer to the

states showing such behavior as being in a “crossover” (CO) phase.

♢ the repulsive-glass (RG) phase

Current simulations performed on increasingly longer timescales make it

possible to compare the equilibrium properties based on the present theoretical pre-

dictions with simulation outcomes in the long-time limit. To investigate the long-

term fate of attractive glasses, simulations of glassy arrest in hard-core particles

with short-range attraction [32] were performed over a waiting-time-independent

window of up to 106 MD units, which is a few orders of magnitude longer than

those reached by previous experiments or simulations (∼ 103 MD units). They
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found that even if the short-range attraction generates a transient plateau in the

time-evolution of the calculated mean-squared displacement (i.e. inverse α) owing

to breaking and reforming of nearest-neighbor “bonds”, the long-time behavior

of “bonded” and “nonbonded” repulsive glasses converges, suggesting that in the

long run particles are ultimately confined by their topological cage of neighbors.

Our equilibrium calculation on a long-range-attractive HS system consis-

tently shows that as long as the (nearly-universal) critical density is reached, there

would emerge the repulsive-glass behavior being almost independent of the attrac-

tive strength γ∗. Such independence is found for various onset lengths.

♢ the multiple-solution (MS) phase

The simultaneous presence of distinct αliq and αgl solutions, according to

the SCP analysis, implies a non-vanishing configurational entropy in this phase

region. This further signifies the availability of configurational degrees of freedom

for structural rearrangement. As shown in previous examples, a longer onset length

(Le = 1.8) allows for distinct αliq solutions over a larger βγ range and thus allows

the system to explore more energetically favorable configurations; on the other

hand, the emergence of crossover behavior at moderate βγ and the consequent

shrinkage of the MS regime induced by early onset of elasticity (Le = 1.2) suggests

a rapid loss of configurational entropy as bonds become stiffer.

♢ the martensitic-like (ML) phase

As verified by our SCP calculation, a completely ergodic fluid phase, pre-

sented by a sticky HS system with weak attraction at a low density, does not occur

for an elastically bonded HS system, so that α is always finite. Yet finite local-

ization strength does not ensure a homogeneous structure. In our model system,

with a large elasticity onset Le (compared to the lattice spacing) and a low bond

stiffness γ∗, bifurcation in αliq takes place before the emergence of glassy behavior

(i.e. below ρcr) and may allow the existence of a spatial-symmetry-broken phase

characterized by a stable pair of liquid-like solutions. The occurrence of bifurcation

was also found in an earlier study by Shen and Wolynes with a pure “cat’s cradle”

built on a regular lattice. The possibility of self-generated spatial heterogeneity

associated with such a mechanical instability makes it interesting to study what
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kind of structural phase such a destabilized system would actually develop into,

and to quantify the associated conformational changes. The resultant mechani-

cal/structural phase might be related to the orientational order often observed in

F-actin networks of the cytoskeleton.

We performed explicit molecular dynamics (MD) simulations on a body-

centered-cubic (BCC) network of n3 unit cells with pure nonlinear elasticity, as de-

scribed by the HamiltonianH = 1
2

∑
i

∑
<j>

1
2
γ (|−→ri −−→rj | − Le)

2
Θ(|−→ri −−→rj | − Le) .

Here i,j label the nodes and ⟨· · ·⟩ represents sum over nearest neighbors; γ denotes

bond stiffness and Le elasticity onset as before. The bipartite nature of the BCC

structure allows us to divide the original BCC network into two interpenetrating

simple-cubic (SC) subnetworks (see an illustration of the subnetwork division in

Fig. 2.9(a)) , so that each node on one subnetwork interacts with its 8 neighbors

on the other subnetwork, and the neighbor list never changes.

The quality of the motion—whether it is oscillatory or monotonic—depends

on the relative contribution of the inertial forces (that tend to produce oscillations)

and the viscous forces (that tend to damp the oscillations out). It turns out that

inertial forces are usually very small at the microscopic and molecular levels, so that

the overdamped limit usually applies [1]. We thus carried out the simulations with

stochastic dynamics in the overdamped limit as described by the Langevin equation

dr⃗i/dt = (1/Γ)f⃗i(t) + η⃗i(t). Here f⃗ represents the deterministic force due to the

nonlinear elastic interaction, and the force exerted by the fluid particles divides

into two parts: the average viscous force −Γv⃗ and a random force ζ⃗(t) ≡ Γη⃗(t)

whose time average is zero. We assume a Gaussian white noise that satisfies

⟨ηi(t)ηj(t′)⟩ = 2Dδijδ(t − t′). As usual, Γ and D denote the drag coefficient and

diffusion constant, respectively. Lengths are expressed in units of Le. We applied

periodic boundary conditions.

We first show the evolution of the mean squared displacement (MSD) with

respect to the initial equilibrium positions of the nodes. We simulated a system

of size 53 with soft bonds (b ≡ βγ = 1) at a low temperature (β = 30). When the

elasticity onset Le is comparable with the initial mesh size, R, of both subnetworks,

elastic stretching is immediately felt as soon as thermal buffeting displaces any of
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the nodes from their equilibrium locations, and therefore, the whole network just

wiggles about the underlying BCC lattice, which defines the unique minimum of

the system’s energy landscape. As shown in Fig. 2.9(b), in this case the two

subnetworks act in a concerted manner with their mean squared displacements

fluctuating almost “in phase”, suggesting the whole BCC network does not show

symmetry breaking.

(a) (b)

Figure 2.9: (a)An illustration of the subnetwork division. The bipartite nature
of the original BCC lattice allows for separation of one SC subnetwork (red) from
the other (blue). Each node on one subnetwork (blue sphere) interacts with its 8
neighboring nodes (red spheres) on the other subnetwork. (b)The MSD of both
subnetworks (n = 5) versus simulation time in MD units for a moderate elasticity
onset to mean separation ratio Le/R = 1. Γ = 50, β = 30.

When the system parameters are modified to be in the regime of bifurcation

by increasing the Le/R ratio to 10 (other parameters unchanged), however, the

MSD exhibits a much larger average amplitude (after a steady value is reached)

and stronger fluctuations around it; furthermore, the two subnetworks fluctuate

in a correlated manner but are almost completely out of phase with each other,

see Fig. 2.10(a). In this case, the initial network presents no elastic constraints on

the nodes, thus the system is free to expand until it reaches a steady size where

the mean separation between the bonded neighbors is comparable with the length

for elasticity onset; the correlated fluctuations result from alternate distortions

between the subnetworks within a system of moderate size as 53. As we enlarge

the system to n = 10 (Fig. 2.10(b)), the steady amplitude of MSD maintains
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(a) (b)

Figure 2.10: Effect of the system size on the behavior of MSD in the regime of
bifurcation. Both: Le/R = 10,Γ = 50, β = 30. (a) n = 5; (b) n = 10.

(
√
MSD ∼ 0.6 stretching could occur under thermal driving), yet the fluctuations

about the average become much weaker.

The above observation raises the intriguing possibility of a “martensitic-

like” phase consisting of (frustrated) domains with (complementary) distortions.

To examine further this possibility, we also queried vectorial information about

the directions of motion (lost in MSD) by examining the evolution of displace-

ment vectors. We divided the simulation cell evenly along each initial dimension

to get 8 domains each with the same number of nodes, and traced the subsequent

motion within each domain. We chose a time window tMD = 4000–6000 after

the steady size was reached, and used the running time averaged position of the

nodes as the reference with respect to which the displacements were defined. We

present in Fig. 2.11 the bulk-averaged (left column) and domain-averaged (right

column) displacement components. The evolution of the displacement vectors in

these two cases shows several contrasting features. First, the maximal amplitude

of the domain-averaged displacements is about one order of magnitude larger than

the maximal amplitude of the bulk-averaged displacements. Second, the bulk-

averaged displacements of the two subnetworks are exactly oriented in the opposi-

tion directions with essentially the same amplitude, whereas in individual domains

two subnetworks move almost in the same direction yet with different amplitudes.

These two contrasting features support the picture of localized distortions with
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different orientations in different domains. In addition, the peak value of the dis-

placement amplitude occurs at different times for different domains, which suggests

“frustration” between the domains.

(a)

(f)

(e)

(d)

(b)

(c)

Figure 2.11: The bulk-averaged and domain-averaged displacement components
for both subnetworks. n = 10, Le/R = 10,Γ = 50, β = 30. (a)-(c) average over
the whole simulated region; (d)-(f) average over one of the 8 domains. (a)(d) x
component; (b)(e) y component; (c)(f) z component.

To roughly estimate the domain size and to quantify the orientational cor-

relation within the domains, we made equal-width shells centered at each node

(the diameter of the outermost shell was taken to be equal to the box size of the

simulated system), and computed two measures: (1) the average projection of di-

rector (i.e. the unit vector of the corresponding displacement) in each shell onto

that of the central node, and then averaged over all possible central nodes. In
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mathematical terms, we monitor Pm(t) ≡ (1/N)
∑N

i=1 r̂i(t) ·
(

1
Nm

∑Nm

jm=1 r̂jm(t)
)
,

where N is the total number of nodes and Nm the number of nodes within the

mth shell of the central node; r̂i and r̂jm are instantaneous directors of the central

and in-shell nodes, respectively; (2) the average tensor product of directors con-

structed as Qm(t) ≡ (1/N)
∑N

i=1 (r̂i(t) · ŷ)
(

1
Nm

∑Nm

jm=1 (ŷ · r̂jm(t))
)
, where ŷ is the

unit vector pointing from the instantaneous position of node i to that of node jm.

This measure thus reflects the degree of alignment of two directors along the line

connecting their positions.

(a)

(c) (d)

(b)

Figure 2.12: The evolution of two measures of the orientational correlation for
both subnetworks. n = 10, Le/R = 10,Γ = 50, β = 30. (upper) the average
director projection P for 2 shells (a) and 4 shells (b); (lower) the average tensor
product of directors Q for 2 shells (c) and 4 shells (d). In each panel, shown from
top to bottom are values of the measure from the inner to the outer shell(s);
red/magenta denotes subnetwork 1, and blue/cyan denotes subnetwork 2.

We show in Fig. 2.12 the evolution of these two measures for the cases of

2 shells (left column) and 4 shells (right column). The average director projection

P , in each shell, fluctuates about a steady value, which decays from around 0.2 to

0.05 as we go from the inner to the outer shell in the case of 2 shells (panel (a)).
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This spatial decay in average P indicates that the domain size is roughly half of the

box size, i.e., 5 times the initial lattice spacing. As expected, the fluctuations in P

become weaker for outer shells due to the larger number of nodes to be averaged

over; this trend is clearly exhibited in the case of 4 shells (panel (b)).

In contrast to the positive steady value of P in all shells, the average tensor

product of directors Q becomes negative for the outer shell(s) (lower panels of

Fig. 2.12). Since Q encodes the angular location of the in-shell node relative to

the central node, a negative value of Q implies the two directors point in the op-

posite directions along the line that connects them. A stronger opposite alignment

would give a more negative Q value. Q thus serves as an indicator of the loss in

orientational correlation. Also, negative Qs are smaller in amplitude than positive

Qs.

To make the situation more apparent, we visualized the ensemble-averaged

displacement vectors at different angles and different distances from the central

node for the case of 2 shells (Fig. 2.13). We took the ensemble-averaged direction

of motion of the central node as reference. Within the first shell (colored in pink)

the average displacement in any angular range gives a positive projection on the

reference direction, in other words, the displacement field is anisotropic and the

movements occur mainly along the same direction as that of the central node.

The aligned movement is most significant near the “equator”. The displacement

vectors in the second shell (colored in blue), however, no longer exhibit a preferred

orientation, instead they reorient considerably. Close to the “south pole”, the

outward movements are almost perpendicular to the reference direction, whereas

small inward movements occur near the “north pole”. The spatial decay in orien-

tational correlation is thus apparently observable and consistent with the features

exhibited by our correlation measures.

In sum, in addition to the multiple solution regime which may be related

to the saddle point solution pictured as ergodic droplets formed against a glassy

background in a finite-range system, our mean-field level calculation also predicts

a parameter regime where nonlinear-elasticity-induced spatial inhomogeneity is

exhibited through a “martensitic-like” phase with local oriented distortions.
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Figure 2.13: Average displacement vectors (purple arrows) at different angles
and different distances (inner and outer shells) from the central node (red sphere).
Shown for one cross section of the spherical region.

Typical examples

We plot the 2D surfaces of αliq and αgl against ρ∗(=ρ) and γ∗(=βγ) at a

given Le to examine how these physical parameters modulate the phase boundaries.

The contour maps are also projected on the bottom as reference for the upcoming

state diagrams. We choose two particular values of the elasticity onset Le that

characterize typical tense networks (Le = 1.2) and floppy networks (Le = 1.8).

5

0

2

4

1

3

(a) (b)

Figure 2.14: 2D surface of localization strength over the parameter space ex-
tended by bead density (ρ∗) and elastic stiffness (γ∗) in the case of Le = 1.8
characterized by mostly floppy bonds. Here ρ∗ runs through 0.1 to 1.4 and γ∗

ranges from 1 to 30. We show the α surface and its contour map for liquid-like (a)
and glassy (b) solutions. The color scheme indicates the relative measure of the α
values; the highest value within a given range is colored as bright yellow and the
lowest as black.
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We start with Le = 1.8 case. For this relatively long onset length, liquid-

like and glassy solutions are quite distinct over the whole parameter space. As can

be seen from Fig. 2.14(a), the liquid-like localization strength takes on a “hump”

shape along the ρ-axis peaking around ρ = 0.6, and elevates smoothly in the γ∗

direction. However, the stable αliq solution terminates at a sharp boundary defined

by ρth(γ
∗, Le) beyond which the mean field αliq solution becomes destabilized. This

instability region, located in the high-ρ low-γ∗ corner, presents a quasi-triangular

shape which indicates the increased need of stiffer bonds to stabilize the loosely

arrested state as density increases. The ML phase may arise as a possible conse-

quence of this (elastic-)nonlinearity-induced mechanical instability. On the other

hand, αgl emerges at ρcr ≃ 1. The values of the critical density and of αgl are nearly

independent of γ∗, as shown in Fig. 2.14(b); such stiffness-independence arises from

takeover of the dominant role by HS repulsion in reconfiguring a densely packed

system.

The corresponding state diagram on ρ-γ∗ plane is displayed in Fig. 2.15(a).

The trajectories marked by ρth (blue curve) and ρcr (dashed line) unambiguously

divide the state space into four distinct phase regions: distinct liquid-like (ρ <

ρth, ρcr) and glassy (ρ > ρth, ρcr) phases locate at the opposite corners diagonally,

while the rest of the space naturally divides into the ML and the MS phases

depending on whether γ∗ < γ∗
c (ρth < ρcr) or γ∗ > γ∗

c (ρth > ρcr), respectively.

For a given Le, ρth increases with γ∗ whereas ρcr is topologically determined,

consequently when γ∗ < γ∗
c and ρth < ρ < ρcr, the region of the ML phase narrows

down as γ∗ increases due to decreasing (ρcr − ρth) until it disappears at γ∗ = γ∗
c

(ρth = ρcr); when γ∗ > γ∗
c and ρcr < ρ < ρth, the MS phase takes over and broadens

as γ∗ rises because of growing (ρth − ρcr).

In addition to the four types of phases exhibited by the floppy network (Le =

1.8), the state diagram for the tense network (Le = 1.2) presents a novel phase

boundary separating out a large region featuring a crossover behavior. When

we compare the 2D surface for αliq with that for αgl over the whole parameter

plane, we find that they almost coincide except for a stripe-shaped region in the

low-γ∗ high-ρ∗ corner. When we zoom in on this region (contour map shown in
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Fig. 2.16(d)) that peels off the smoothly ascending α-surface (see upper panels of

Fig. 2.16), we observe that the diagram appears like a “squeezed version” of that for

the Le = 1.8 case; namely, αliq also exhibits a non-monotonic density dependence,

and ρth locates the stability limit of such mean-field solution at each γ∗. As for

the glassy state, however, αgl proceeds with its γ∗-independent behavior as soon

as the density exceeds ρcr ≃ 1 (see Fig. 2.16(c)). Therefore, similar to what was

seen for the case of Le = 1.8, this stripe-shaped region presents LL, MS and RG

phases. Noteworthy is that short Le dramatically reduces the region corresponding

to the MS phase, indicating a rapid loss of the configurational degrees of freedom

(upon bond stiffness increase). Moreover, the ML phase doesn’t emerge for tense

networks since the instability is avoided by early elasticity onset.

Beyond the upper boundary of this stripe-shaped phase region, the α-

surface gently mounts up toward the high-γ∗ high-ρ∗ direction and smoothly crossovers

from the elasticity sensitive behavior to the glass-like behavior as ρcr is approached;

consequently, in this crossover regime ρcr no longer marks a clear transition bound-

ary. The resultant state diagram is presented in Fig. 2.15(b).

Characteristic densities

Due to the bonding constraints inherent in a network structure, the stabi-

lized state in our model always possesses a finite localization strength, i.e. α > 0.

Thus in this case the dynamical transition density ρcr (or called ρA as in litera-

ture), rather than being the lowest density to give a non-zero α as occurred in pure

or sticky HS systems, is defined as the lowest density to trigger persistent high-α

solutions over the whole γ∗ range of interest. In our model system, ρcr signals the

emergence of an extensive number of glassy metastable states, yet does not mark

the termination of bonding effect.

While the SCP theory alone allows us to find ρA, the “Kauzmann density”,

ρK , at which the Helmholtz free energies of the liquid-like and glassy phases match

and the configurational entropy ceases to be extensive also relies on the specific

form of the free energy functionals we use for these two types of states. The

ratio ρA/ρK dimensionlessly characterizes the thermodynamic aspects. To connect
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to the kinetic laboratory glass transition, we note the laboratory transition is

defined to occur when the viscosity reaches 104 Poise. Random first order transition

(RFOT) theory predicts this to be when the configurational entropy is about 1.0 kB

per particle. To translate our thermodynamic results to the laboratory transition

density, we will therefore mean by ρG the density where the liquid and glass free

energies differ by 1.0 kBT per particle. Despite the universality of configurational

entropy at laboratory transition experimentally confirmed in a wide variety of

molecular glasses, this universality must be examined further to see if it is valid

in the cytoskeletal system which is an active biological material. Here we just use

this fiducial entropy to discuss the qualitative features of our model system.

Possible transitions

Visual inspection shows that the phase partition in the upper portion (γ∗ >

γ∗
c ) of Le = 1.8 state diagram exhibits qualitatively identical behavior to that found

near the bottom of the stripe-shaped phase region in the diagram of Le = 1.2 case,

again indicating that high γ∗ and short Le are comparably competent for making

effectively more tense bonds. In this regime, melting from RG via MS region to

LL state is expected as ρ is lowered passing ρth and ρcr in succession. As for the

lower section (γ∗ < γ∗
c ) of Le = 1.8 diagram, upon increasing density, original

homogeneous LL phase becomes destabilized and develops into the proposed ML

phase where spatial heterogeneity develops, until finally the RG phase takes the

lead. At the crossing point, i.e. γ∗ = γ∗
c , RG melts into LL state without going via

any intermediate phase. In the case of Le = 1.2, as we go across the phase boundary

ρ
CO

by increasing density, the CO state would transform into the MS phase whereby

the distinction between the two types of arrested states with different mechanisms

of localization is recovered.

The effective bond stiffness can be varied by manipulating the crosslinking

and/or bundling properties or by changing the temperature. Some general features

can be extracted from the presented state diagrams, that is high elastic stiffness

tends to (1) stabilize the LL state and (2) facilitate the crossover to glassy behavior.

The first effect is quite explicit in Le = 1.8 case: as γ∗ increases, the elastic-
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nonlinearity-induced ML phase evolves into LL state with a single stable αliq when

ρ < ρcr, whereas purely RG state develops into the MS state when ρ > ρcr. The

second effect is clear in Le = 1.2 case; starting either from distinct LL state or

from the MS phase, the system would end up with CO behavior as long as γ∗

transcends the phase boundary γ∗
CO

(ρ) (inversion of ρ
CO

(γ∗)).

Actually the parameter-modulated transformation of the phase behavior in

terms of the order parameter α can be directly detected in αtagged versus αneighbor

plots, which explicitly show the emergence and disappearance of, as well as transi-

tions among, various fixed points under the parameter control. In other words, the

phase boundaries essentially indicate switching between different fixed point struc-

tures of the self-consistent equations. For example, the ρ
CO

boundary marks the

disappearance of the lowest-α fixed point: in LL→CO case, modest discontinuity

in α value arises from stability shift to a newly established fixed point in proxim-

ity; while a considerable jump in α value is observed in MS→CO case, since no

intermediate fixed point develops, the high-α fixed point becomes the only stable

attractor. Across the γ∗
th(ρ) (inversion of ρth(γ

∗)) boundary from below, the ini-

tially bifurcation-generating unstable fixed point becomes stabilized by enhanced

stiffness.

In addition to the information obtained from the mechanical stability, the

integrated thermodynamic characteristics are more informative of the glassy as-

pects. In the direction of vitrification, kinetic laboratory glass transition is ex-

pected at ρG in view of the landscape-dominated transport mechanism triggered

at ρA and the presence of extensively many possible frozen-in states [33, 34, 35].

Whereas the Kauzmann density ρK , at which the configurational entropy ceases

to be extensive and the glassy configurations are no longer metastable, indicates a

thermodynamic transition that ultimately may underlie the kinetic arrest. Though

hard to achieve on practical timescale, ρK does provide a mean-field estimate of

how dense the liquid can be below which a glass transition would be forced to

intervene to avoid the entropy crisis [36].
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Bonded-fraction dependence of mechanical and thermodynamical prop-

erties

So far, we have implicitly assumed that all the nearest-neighbor pairs are

bonded, i.e. the network is fully connected and there are no free beads at all. In

biological fact, however, apart from the fibrous cytoskeletal network, there also ex-

ists a colloidal suspension of protein molecules (including detached ABPs, recycled

actin monomers, etc.) that contributes equally, if not more, to the crowding inte-

rior of a cell, and thus to the excluded volume effect. We mimic such a suspension

of molecules simply as a collection of free beads, in which is immersed the nonlinear

elastic fiber network which is anchored on the bonded beads. In our mean-field

context, the fraction of bonded beads against the free ones is equivalent to the

probability for a nearest-neighbor pair to be bonded. We assign an independent

parameter Pb ∈ (0, 1] to indicate this bonded fraction or network connectivity, and

assume Pb to be independent of the overall bead density and the effective bond

stiffness to purify its influence.

The self-consistent equation to determine α and the expressions of fliq and

fgl are modified accordingly:

α =
ρ

6

∫
1st shell

d3R⃗ g(ρ,R)

{
Pb Tr

[
∇∇βV eff

model(R,α; βγ, Le)
]

+ (1− Pb)Tr
[
∇∇βV eff

HS (R,α)
]}

, (2.14)

fliq = Pb

[
3

2
ln

(
αliqΛ

2

πe

)
− 1

]
+ (1− Pb)

(
ln ρΛ3 − 1

)
+

∫ η

0

(ZCS(η
′)− 1)

dη′

η′

+ Pb ρ

∫
1st shell

d3R⃗ g(η,R)
[
βV eff

model(R,αliq; βγ, Le)− βV eff
HS (R,αliq)

]
,

(2.15)
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fgl = Pb ρ

∫
1st shell

d3R⃗ g(ρ,R)βV eff
model(R,αgl; βγ, Le)

+ (1− Pb) ρ

∫
1st shell

d3R⃗ g(ρ,R)βV eff
HS (R,αgl)

+

{
3

2
ln

(
αglΛ

2

π

)
− 3 ln

[
erf(

√
αglD)

]}
− δf. (2.16)

In equations for α and fgl, Pb and (1 − Pb) lead the effective potential be-

tween bonded and non-bonded pairs, respectively; and the influence due to bonded

fraction change on the cell constraint term (i.e. the second order term in the ef-

fective potential expansion) is contained in the self-consistently determined αgl.

As for fliq, the bonded fraction not only modifies the bonding correction to the

HS interaction, it also separates the bonded from non-bonded contributions to

the entropy cost: for free particles ln ρΛ3 − 1 should suffice to describe the den-

sity dependence of the entropy cost, whereas we use 3
2
ln (αliqΛ

2/πe) − 1 for the

bonded beads. Notice the fact that as bonds melt (i.e.Pb decreases), increasing

translational symmetry would lower the entropy cost to localize the density waves.

We shall show that the logarithmic dependence on αliq used here could at least

qualitatively incorporate this feature. Moreover, the bonding entropy due to var-

ious choices of bonded pairs among nearest neighbors is not explicitly included,

since only the difference between fgl and fliq matters for current purposes. It is

easily seen that as Pb → 1 our earlier expressions for a fully connected network

(Eqs. (2.5)(2.7)(2.8)) are recovered.

We show in Fig. 2.17 and Fig. 2.18 the state diagrams at Pb = 0.8 and

Pb = 0.5 for both typical networks. The corresponding contour maps of αliq and

αgl solutions (not shown here) indicate that the behavior of the liquid-like local-

ization strength is not qualitatively affected by changing the bonded fraction, and

the glassy solutions are almost quantitatively intact. Yet the transition bound-

aries are significantly shifted as the bonded fraction varies. For the floppy net-

work (Fig. 2.17), as Pb decreases, the slower increase of ρth with γ∗ (which implies

a lower destabilization density for the liquid-like solution) yields a shrinking MS

region and enlarged RG and possibly ML regions. This behavior can be understood
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as arising from the fact that weaker network connectivity makes the stabilization

via “bond trapping” less efficient. In the tense network (Fig. 2.18), as the bonded

fraction drops, both ρth and ρ
CO

boundaries shift upward resulting in an extension

of both MS and RG regions into a higher γ∗ regime. This observation implies a

higher bond stiffness is needed to stabilize the liquid-like solutions so as to trig-

ger the crossover to glassy behavior. As for the dynamical transition density ρA

(i.e. the critical density ρcr analyzed in earlier sections), it modestly increases with

lowering Pb in the tense network (rises from 0.91 to 0.97 as Pb drops from 1.0

to 0.5) while it remains constant (∼ 1) in the floppy network; concomitantly αA

halves its value (115 → 55) in the tense network while it stays the same (∼ 50) for

the floppy case.

We next examine the variation in thermodynamics due to the change of

bonded fraction. In both networks, ρG and ρK are found to persist upon decrease

in Pb (with the order of ρA < ρG < ρK maintained). In the tense network, ρG and

ρK develop moderate γ∗ dependence and shift toward lower density as Pb decreases,

as shown in Fig. 2.18. In the floppy network, ρG and ρK emerge at considerably

higher γ∗ as Pb drops indicating greater difficulty in stabilizing LL motion, yet

become insensitive to βγ-value thereafter, as seen in Fig. 2.17(a). When Pb is

further lowered to 0.5 (i.e. network being half-connected) transition densities are

absent due to the limited range of βγ shown here (see Fig. 2.17(b)) and would

reappear if we extend βγ sufficiently.

In contrast, if we use ln ρΛ3−1 for both the bonded and non-bonded contri-

butions to the entropy cost, a dramatic change in ρG and ρK is found (not shown

here): when Pb = 0.8, in both networks, ρK is barely above ρA while ρG is entirely

skipped; if Pb is further lowered to 0.5, then fliq > fgl for all ρ ≥ ρA in MS region,

indicating a negative configurational entropy which is not physically meaningful.

Actually in our model the highly-localized glassy motion is insensitive to the degree

of network connectivity since
⟨
βV eff

model(αgl; ρ > ρA; γ
∗, Le)

⟩
≃
⟨
βV eff

HS (αgl; ρ > ρA)
⟩

and
⟨
∇2βV eff

model(αgl; ρ > ρA; γ
∗, Le)

⟩
≃
⟨
∇2βV eff

HS (αgl; ρ > ρA)
⟩
, thus such a signif-

icant drop in transition densities results from an enhanced attractive interaction

in the liquid-like phase due to stronger thermal fluctuations (smaller αliq) induced
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by reduced bond constraints (lower Pb). This energetic enhancement in fliq is

balanced, partly, by the decrease in entropic cost (to localize density wave) when

3
2
ln(αliqΛ

2/πe) − 1 is used, thereby mitigating the bonded-fraction modulation

upon the transition densities, and resulting in a persistent transition possibility

over a large Pb range.

In sum, the overall tendencies are clear: decreases in the bonded fraction

lower the transition densities ρG and ρK implying that the system becomes less

capable of reconfiguring (or easier to become glassy) upon weakening of the net-

work connectivity; in this sense, the model nonlinear-elastic-bonded interaction

encourages liquid-like motion and thereby facilitates more efficient structural re-

arrangements.

2.4 Conclusions

In this paper, we have modeled the cytoskeleton as an amorphous network of

rigidly cross-linked nonlinear-elastic bonds that become tense beyond an intrinsic

onset length and buckle otherwise. We study the equilibrium mechanical properties

of the model system within the framework established by the self-consistent phonon

theory and the free energy functional formulation.

We have obtained an initial understanding of the physical behavior via

the calculation of several representative thermodynamic quantities, and by ex-

amining the state diagram of typical systems. Diverse mechanical properties of

a generic cytoskeleton can be recognized by analyzing the featured phases and

possible transitions: the permanent network structure excludes a completely er-

godic fluid phase, whereas the nonlinearity in the elastic interaction induces spatial

heterogeneity that exhibits through a “martensitic-like” phase with domains of ori-

ented distortions. The probable coexistence of the liquid-like and glassy behavior

implies the capability of making structural rearrangements with varying agility in

response to mechanical stimuli. The effective bond stiffness tends to stabilize the

liquid-like state and facilitates its crossover to glassy behavior, whereas the relative

position of the elasticity onset with respect to the nearest-neighbor shell dramati-
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cally modulates the transition boundaries; the critical density may no longer mark

a sharp transition in certain situations when crossover takes place. In sum, the

elasticity onset length determines all possible mechanical phases within a practical

parameter range, while the bond stiffness decides which transitions occur upon the

variation of cross-link concentration (thus of the bead density).

We further investigated how the bonded fraction or network connectivity

modulates the phase boundaries as well as the thermodynamic terms of the transi-

tion densities (ρG and ρK). We found that decreasing the bonded fraction results

in an upward shift of both ρth and ρ
CO

boundaries, indicating the need for a

higher bond stiffness to compensate for any loss in connectivity, so as to stabilize

the liquid-like motion and to trigger its crossover to glassy behavior; on the other

hand, the expanded multiple-solution phase region allows for a large stiffness range

with extensive configurational degrees of freedom. As for the thermodynamics, the

characteristic densities show little dependence on bond stiffness in floppy networks;

for tense networks, however, ρG and ρK become lower upon enhanced bond stiff-

ness, suggesting decreasing configurational degrees of freedom at a certain density

as bonds stiffen. Further, for a given density, possible glass transition takes place

at a much lower stiffness in tense networks than in floppy ones, while for a certain

bond stiffness, the model system becomes vitrified at a lower bead density as more

bonds tense up.

As exhibited clearly in the tense network, the logarithmic dependence of the

entropy cost (for bonded interaction in the liquid-like phase) on particle localization

strength adopted in our free energy functional contains the feature that as more

bonds form, the kinetic glass transition would occur at a higher density, suggesting

that the nonlinear-elastic-bonded interaction might help resolve local/steric con-

straints and facilitate escape from topological trapping, resulting in a more dense

packing when stuck finally. Fleshing out this conjecture may require coming to

term with finite range consideration; we need to go beyond mean-field level and

consider activated events among various metastable states (probably via “droplet

relaxation” in a mosaic structure [37]). In a biological sense, cells may prefer an

interconnected structural skeleton, not only to maintain their architecture, but to
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realize more efficient structural rearrangements when necessary. As argued by In-

gber, the tensed/prestressed hierarchical networks play a central role in producing

a well-orchestrated multiscale mechanical response [38].

This work provides a general scheme to study macroscopic mechanical

phases in terms of the stability to local mechanical environment, and our cur-

rent equilibrium model sets up a test field for further incorporated features for

a more realistic model, in particular, the motorization effect that makes the sys-

tem active, far from equilibrium and makes it physically distinct from an ordinary

polymer network. It will be interesting to study the interplay of bond constraints

and force-environment-sensitive motors in maintaining the cell’s architecture and

modulating the transition behavior. We also plan to investigate the effect of spatial

heterogeneity and visualize the structural rearrangements by combining analytic

schemes with simulation techniques.

Chapter 2, in full, is a reprint of the material as it appears in the Journal of

Chemical Physics 134 014510 (2011), S. Wang, T. Shen, and P. G. Wolynes. The

dissertation/thesis author was the primary investigator and author of this paper.
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(a)

(b)

Figure 2.15: The state diagrams of a typical floppy network with Le = 1.8 (a) and
a typical tense network with Le = 1.2 (b). These diagrams are constructed against
the corresponding contour maps of liquid-like and glassy solutions, summarizing all
possible phases partitioned by transition boundaries. In the Le = 1.8 diagram, γ∗

c

marks the crossing point of ρth curve (blue) and ρcr (or ρA) line (black dashed). The
“mechanical” diagrams are further integrated with thermodynamic characteristics
— laboratory glass transition density ρG (green dotted line) and Kauzmann density
ρK (red full line). The floppy network exhibits higher ρG and ρK than the tense
network does.
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Figure 2.16: 2D surface and contour map of the localization strength for the
case of Le = 1.2 that features a persistent fraction of tense bonds. Upper panels:
liquid-like solutions up to αliq = 100 (a) and αliq = 350 (b). Both the peeling-off
stripe-shaped region for distinct liquid-like solutions and the smooth crossover to
glassy behavior are explicitly displayed. (d)Amplified contour map for the stripe-
shaped region; (c) glassy solutions over the whole parameter regime.
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(a)

(b)

Figure 2.17: The state diagrams of a typical floppy network (Le = 1.8) with
different bonded fraction. ρK (red) and ρG (green) are defined as former. (a)Pb =
0.8; (b)Pb = 0.5: transition densities are absent due to the limited βγ range shown
here.



55

(a)

(b)

Figure 2.18: The state diagrams of a typical tense network (Le = 1.2) with
different bonded fraction. (a)Pb = 0.8; (b)Pb = 0.5. ρG and ρK become lower as
the bonded fraction decreases.
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Chapter 3

Effective temperature and glassy

dynamics of active matter

At the nanoscale and above we encounter active forms of matter in which

internal or external energy sources supplement passive Brownian motion to allow

large-scale structural rearrangements. Constant agitation by biomolecular mo-

tors and force-generating polymerizations allows the cytoskeleton of eukaryotes to

undergo adaptive dynamical and structural changes in response to environmen-

tal disturbances. Other forms of active matter range from assemblies of entire

microorganisms [1] to collections of artificial microscopic swimmers which are self-

propelled [2, 3] and turbulently agitated active suspensions on the colloidal scale

[4].

In this paper we show that, the steady-state statistical mechanics of these

diverse out-of-equilibrium forms of active matter as well as their low-frequency

fluctuations and responses can be described using the concept of an effective tem-

perature. The notion of effective temperature has been useful in describing passive

glassy systems [5], weakly driven systems such as gently sheared supercooled liq-

uids and glasses [6, 7] and vibrated granular matter [8], driven vortex matter

[9, 10], as well as in approximate theories and simulations of active biological mat-

ter [11, 12, 13, 14].

Modification of the fluctuation-dissipation theorem, signalling the nonequi-

librium nature of the active processes like those in cells, has been directly observed

60
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in the mechanical properties of reconstituted cytoskeletal networks [15, 16]. These

measurements were consistent with an effective temperature nearly 100-fold higher

than the ambient thermal temperature.

In this Communication we will show that on long time scales the effective

temperature for systems with motor-driven active processes can be directly related

to the properties of the motors. We describe the motors as generating a time series

of isotropic kicks leading to a master equation description for the dynamics. By in-

vestigating this master equation in the small kick size limit we obtain an expression

for Teff explicitly depending on the total motor activity and the susceptibility of

the motor dynamics to imposed mechanical forces. Motors lead to an enhanced dif-

fusion for the active system regardless of their susceptibility. Our theory predicts

also a linear relation between the effective diffusion coefficient and the rescaled

effective temperature, which depends on motor susceptibility. Our prediction is

confirmed by recent numerical studies of systems with adamant motors [17].

An important consequence of our analysis is that the effective tempera-

ture allows a simple rescaling of the equilibrium phase diagram to be used for

the nonequilibrium motorized system. We show that the effective temperature

coincides with the results based on previous self-consistent-field calculations [18].

Active matter often is jammed and in a glassy state. The present analysis implies

that Lubchenko-Wolynes aging theory [19] can be taken over to describe jammed

active matter simply by assigning the ambient temperature in that theory to be the

motorized effective temperature and treating the fictive temperature, which mea-

sures the statistical structure of the system, as a history-dependent dynamically

controlled variable as in structural glasses below their glass transition.

We start by following Shen and Wolynes [20] who modeled the stochas-

tic nature of motor kicking via a master equation for the many-body probability

distribution function Ψ({r⃗}, t)
∂

∂t
Ψ({r⃗}, t) = (L̂FP + L̂NE)Ψ({r⃗}, t). (3.1)

Here L̂FP = D0

∑
i ∇i · ∇i −D0β

∑
i ∇i · (−∇iU) is the usual many-body Fokker-

Planck operator describing passive Brownian motion with D0 denoting the thermal

diffusion constant at bath temperature T and β = 1/kBT . Hydrodynamic inter-
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actions can be accounted for by extending the scalar diffusion coefficient D0 to a

diffusion tensor, Dij [21], which depends on the particle configuration. This ex-

tension can be shown to respect the validity of an effective temperature which may

become structure dependent. The gradient of the many-body interaction potential

U({r⃗}) = U(r⃗1, r⃗2, · · · , r⃗n) =
∑

<ij> u(r⃗i−r⃗j) gives the local force thus the thermal

drift motion of individual particles and r⃗i is the position of the ith particle. The

potential U reflects an average over the solvent degrees of freedom and internal

degrees of freedom of the motors and is thus strictly speaking a free energy. The

effect of the nonequilibrium motor processes is summarized by an integral ker-

nel L̂NEΨ({r⃗}, t) =
∫
Πidr⃗′i[K({r⃗′} → {r⃗})Ψ({r⃗′}, t) − K({r⃗} → {r⃗′})Ψ({r⃗}, t)],

where K({r⃗′} → {r⃗}) encodes the probability of transitions between different par-

ticle configurations. The (motor) kicking noise is thus a finite jump process with a

rate that depends on whether the free energy is increased or decreased by a motor

step

k = κ[Θ(∆U) exp(−suβ∆U) + Θ(−∆U) exp(−sdβ∆U)]. (3.2)

Here Θ is the Heaviside step function and ∆U = U
(
r⃗ + l⃗

)
− U (r⃗) is the free

energy change due to the kick identified by a vector l⃗. The kick step size l and the

basal kicking rate κ define the dimensionless motor activity ∆ := κl2/D0 which

is analogous to the Peclet number in turbulent diffusion. This model rate couples

the chemical reactions leading to the motor activity to the local mechanical forces

acting on the motor; the assumed dependence upon instantaneous particle configu-

ration reflects an assumed Markovian character of the dynamics without significant

time delays. This is an idealization of the biochemical mechanism of real motors

that doubtless possess intermediates in their function; such a non-Markovian char-

acter will lead to a frequency-dependence of the effective temperature. Also note

that on time scales shorter than the inverse of the kicking rate, dynamics is gov-

erned by the usual Fokker-Planck part at thermal temperature, much as in collision

models of chemical kinetics [22]. We parametrize the coupling of a motor to the

external forces it must overcome by the motor susceptibility s which may take dif-

ferent values for uphill (su) moves and for downhill (sd) moves. su and sd depend

on the chemical mechanism of the motors. When s → 1 the motors are suscepti-
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ble; they slow down when they go up against mechanical obstacles and accelerate

when they take energetically downhill steps; in contrast s → 0 corresponds to

completely adamant motors which kick at an unperturbed rate being unaware of

the instantaneous free energy landscape. Adamant motors use and waste a lot of

energy.

Explicitly we write

L̂NEΨ({r⃗}, t) = κ
∑
i

∫
dn̂

∫
dr⃗′i

{
δ(r⃗i − r⃗′i − l⃗ )

× w[U(· · · , r⃗′i, · · · )− U(· · · , r⃗i, · · · )]Ψ({r⃗′}, t)

− δ(r⃗i − r⃗′i + l⃗ )w[U(· · · , r⃗i, · · · )− U(· · · , r⃗′i, · · · )]Ψ({r⃗}, t)
}
.

(3.3)

The angular integration denoted by
∫
dn̂ averages over possible directions of kick-

ing. For simplicity we provide results for the isotropic case. Again for simplicity

we assume a fixed step length in the pair of delta functions. Our description of the

rates gives w[Ui−Uf ] = Θ(Uf−Ui) exp[−suβ(Uf−Ui)]+Θ(Ui−Uf ) exp[−sdβ(Uf−
Ui)].

When su = sd = s, one finds even more simply

L̂NEΨ({r⃗}, t) = κ
∑
i

∫
dn̂
{
e−sβ[U(r⃗i)−U(r⃗i−l⃗)]

×Ψ({· · · , r⃗′i = r⃗i − l⃗, · · · }, t)

−e−sβ[U(r⃗i+l⃗)−U(r⃗i)]Ψ({· · · , r⃗i, · · · }, t)
}
. (3.4)

We assume the kicking of different particles at any time is uncorrelated.

To obtain our promised results, we expand the distribution function and

the kinetic rate in powers of l⃗ up to the quadratic order. This immediately leads

to an effective Fokker-Planck equation

∂

∂t
Ψ({r⃗}, t) = Deff

∑
i

{
∇2

iΨ−∇i · [(−∇iβeffU)Ψ]
}
, (3.5)

where

Deff = D0

(
1 +

1

2d

κl2

D0

)
, (3.6)
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(βeff/β)
−1 = Teff/T =

(
1 +

1

2d

κl2

D0

)/(
1 +

s

d

κl2

D0

)
. (3.7)

Here the identity ⟨cos2 θ⟩n̂ = 1/d is used for general spatial dimension d. Rotational

symmetry in motor susceptibility eliminates odd powers in l⃗ upon the angular

integration.

These simple expressions (4.3)–(6.21) valid for general dimensions have

nontrivial implications. First, in the small kick limit (kick step size is small

compared to average particle separation yet the kicking rate can be quite high),

the active system, while far from equilibrium in a strict sense, behaves as if

it is at an effective equilibrium characterized by an effective temperature Teff

which will however be quite different from the thermal temperature T . It fol-

lows that the steady state is described by the effective Boltzmann distribution as

Ψ({r⃗}) ∝ exp[−U({r⃗})/kBTeff]. Second, the approach to effective equilibrium is

governed by an effective diffusion constant Deff (Eq. (6.9)) which is enhanced by

the active processes regardless of the motor adamancy. This is consistent with

recent experimental observation on enhanced cytoplasmic diffusion which plays an

important role in cytoskeletal assembly [16]. Finally, it is clear from Eq. (6.21)

that Teff can be predicted knowing only the motor activity ∆ = κl2/D0 and the

motor susceptibility s; susceptible motors with s > 1/2 yield Teff < T ; more in-

terestingly, for very high motor activity, i.e., ∆ ≫ 1, the effective temperature

diverges as Teff/T ∼ 1/(2s) as s → 0, indicating that intense kicking by adamant

motors leads to a very high effective temperature just as observed in experiments

and simulation studies. In principle motors could have slip bonds [23, 24] leading

to negative s and negative effective temperatures, a situation we will explore in

another publication.

The results are easily generalized to the case of asymmetric susceptibility.

It is not difficult to show that the factor (su − sd) accompanies all the cubic-

and-above odd powers in l⃗ and thus doesn’t modify the effective equilibrium at

quadratic order. Eqs. (4.3)-(6.21) remain intact except for a direct substitution of

(su+sd)/2 for s. The effective temperature depends only on the sum of uphill and

downhill susceptibility, and if su + sd = 1 (i.e. s = 1/2) we have Teff = T .

These predictions can be easily verified using results for various motile sys-
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tems already studied numerically or experimentally. A testable prediction of our

analysis is that Deff/D0 = Teff/T for completely adamant motors with s = 0.

Numerical measurements of both the active diffusion constant and the effective

temperature have been made by Loi et al. [17] for an adamantly motorized semi-

flexible polymer melt simulated using molecular dynamics techniques. Our theo-

retical prediction is plotted in Fig. 3.1 along with their simulation results. The

data points nicely fall on the predicted straight line at low-Teff regime; even at

relatively high Teff (≥ 4T ), only a modest deviation from the slope-1 line occurs

which slowly increases with rising Teff. The deviation is consistent with our scheme

being perturbative in the kick size. There are of course also larger error bars in

numerical experiments for the larger Teff values. It will be interesting to test our

theory for partially susceptible motors experimentally. Since Deff is independent

of s, for a given motor activity ∆, a higher susceptibility yields a lower Teff and

thus a larger slope for the linear relation between Deff/D0 and Teff/T .

Besides this relation our theory suggests Teff should increase quadratically

with the kick step size for adamant motors, just as is experimentally observed for

the dependence on the Peclet number found both in sedimentation experiments

[3] for active colloidal suspensions under gravity, and in a numerical study of an

active polymer melt [17].

In an earlier study of the glassy dynamics of an assembly of motorized par-

ticles Shen and Wolynes [20] pictured the motors as introducing a modification

to the Debye-Waller factors of the localized particles. Their non-Hermitian varia-

tional approach to finding the steady state solution of the master equation turns

out to be equivalent to closures for dynamic moments leading to an expression

of the deviation of the total localization strength α̃ from its mechanical value α

in terms of the motor properties. On the other hand local mechanical feedback

within the self-consistent phonon theory [25] gives back an α for the central parti-

cle that depends on the α̃ of all its neighbors. Combining these two aspects allows

a self-consistent determination of mean-field (α, α̃) solutions and identification of

stability behavior accordingly.

Assuming su = sd = s, the second moment closure given earlier [20] reduces
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Figure 3.1: Rescaled diffusion constant versus rescaled effective temperature for
a motorized semi-flexible polymer melt. The data points (colored symbols) were
converted from Fig. 18 of Ref. [17]. The solid line with slope 1 gives the result
predicted by the present theory.

to a simple expression

α̃− α

α̃
=

(
s− 1

2

)
κl2

dD0

es(s−1)αl2 . (3.8)

Thus for s = 1/2 (Teff = T ) chemical noise does not modify the mechanical stability

(α̃ = α); for s < 1/2 (Teff > T ) stability is weakened (α̃ < α) whereas for s > 1/2

(Teff < T ) stability is enhanced (α̃ > α).

Here we illustrate the connection to glassy dynamics by carrying out a self-

consistent calculation (see Ref. [20] for the detailed procedure) for a motorized

version of the cytoskeletal network modeled as a “cat’s cradle” with excluded

volume [18]. Superimposing the phase diagrams for active and equilibrium cases

over the same parameter ranges as shown in Fig. 3.2 demonstrates that phase

boundaries and characteristic densities scale just as we would predict from the

kick size expansion.

The phase diagram shows diverse mechanical phases and possible transitions

in between depending on the density (ρ) of the constituents and the effective

stiffness (βγ) of the filamentous elements. In particular the coexistence of a loosely-

tethered (LT) mobile phase and a repulsive-glass (RG) phase in the multiple-

solution (MS) regime allows one to estimate the kinetic (ρ
G
) and thermodynamic
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(ρ
K
) glass transition densities by matching the free energies of the mobile and

glassy states.

Tense 

phase

Onset of 

glassy 

solu�on

Crossover

 line

Figure 3.2: Superposed phase diagrams for the equilibrium and active cases for
a cat’s cradle with excluded volume having D0 = 0.025µm2s−1, s = 1, κ = 10 s−1,
and l = 0.05µm. Parameters are comparable to those for a cytoskeleton. The mo-
tor kick size l is much smaller than the typical crosslink separation which is on the
order of 1-10µm. Solid arrows show the changes in characteristic behavior, point-
ing from the phase boundaries and glass transition densities for the equilibrium
case to those for the active case. Above the upper phase boundary (the crossover
line) the system is in the tense phase characterized by a smooth crossover from
the loosely-tethered (LT) phase to the repulsive-glass (RG) phase as the crosslink
density ρ increases. Below the lower phase boundary (marked by ρth) the mobile
phase becomes unstable and only the glassy state can be stabilized. Ref. [18] gives
details of the analysis for the equilibrium case.

With both susceptible (s = 1) and small-size (l = 0.05µm) motor kicks,

the variety of mechanical phases remains intact; but the phase boundaries shift

due to the nonequilibrium effects. The decrease in ρ
A
leads to an enlarged stabil-

ity region for the glassy state, while increases in glass transition densities ρ
G
and

ρ
K

suggest that susceptible motor kicking can help resolve local constraints and

thus allows a deeper descent into the energy landscape, leading to a denser pack-

ing where eventually structural rearrangements become too slow to be observed.

The downward shift of both phase boundaries is simply captured by rescaling

the equilibrium phase diagram with the inverse temperature ratio βeff/β given by

Eq. (6.21). Adamant motor kicking gives rise to the opposite effect heating the
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system above its thermal temperature and reducing the glass transition density.

Therefore equilibrium phase diagrams are still valid in the small kick limit yet with

T being replaced by Teff.

The fact that the master equation precisely reduces to a Fokker-Planck

equation allows us to apply the effective temperature to analyze the dynam-

ics/kinetics of systems that are structurally out-of-equilibrium, i.e., jammed. The

slow relaxation of the cytoskeletal mechanics [26] thus is related to glassy behav-

ior in the aging regime. Quantitatively, jammed cytoskeletal systems should be

described by the aging theory for structural glasses developed by Lubchenko and

Wolynes [19]. It is only necessary to replace in their theory the absolute ambi-

ent temperature which describes vibrations in glasses by the effective temperature

of the motors. The fictive temperature reflecting the statistical structure of the

cytoskeleton will be history dependent. This mapping should make it possible to

predict the dependence on motor properties of the rheology of active matter.

Chapter 3, in full, is a reprint of the material as it appears in the Jour-

nal of Chemical Physics 135 051101 (2011), S. Wang and P. G. Wolynes. The

dissertation/thesis author was the primary investigator and author of this paper.
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Chapter 4

On the spontaneous collective

motion of active matter

4.1 Introduction

Spontaneous directed motion driven by active processes is crucial to bi-

ology. Such motion is only possible because the cell is a far-from-equilibrium

many-body system. The cytoskeleton of eukaryotic cells is built, maintained and

adaptively reorganized through active transport and force generation powered by

ATP hydrolysis. Oscillations of the mitotic spindle during cell division [1] and cy-

toplasmic streaming [2] dramatically illustrate that the cell is not at equilibrium.

Driven motions of cells are also important at higher levels of organization in living

things ranging from mechanosensation [3] to the developmental processes in which

the genetic code unfolds to create a multicellar organism [4]. Sustained sponta-

neous collective motion is quite remarkable in many-body physics. Superfluidity

and superconductivity are examples of metastable states of motion made possible

by quantum statistics. The biological example provided by the cytoskeleton is

seemingly quite different leading not to infinitely long-lived states but to ones that

go away when the cell is depleted of fuel and dies. Nevertheless, like the quantum

examples, the motion of the cytoskeleton is an emergent many-body phenomenon

reflecting broken symmetries.

72
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Here we explore the origin of spontaneous collective motion for systems

of many interacting biomacromolecules with motor-driven active processes using

a systematic perturbative expansion of the many-body master equation treating

nonequilibrium motorized processes. We model the motors as generating a time

series of isotropic kicks on the constituents of a many-body assembly. Earlier

[5] we showed that quite generally the corresponding master equation, when ex-

panded to the lowest order in the kick step size, yields an effective temperature,

Teff, which explicitly depends on the total motor activity and on the way in which

motors respond to imposed forces. A system described by an effective temperature

alone [6, 7, 8] cannot undergo spontaneous directed motion unless it is quantum

mechanical so that spatial and momentum degrees of freedom are coupled by the

uncertainty principle. Pursuing the expansion to higher order, however, reveals the

possible emergence of spontaneous directed collective motion quite generally from

a quiescent homogeneous state, albeit one with rigidity owing to broken transla-

tional symmetry, as in a glass. The underlying dynamic instability is induced by

a sufficiently strong internal agitation in terms of kick step size. This provides

a general mechanism for spontaneous flows in an active assembly of interacting

constituents.

Combining a linear stability analysis with a trial solution of the many-body

master equation allows us to identify possible dynamic phases that depend on the

motor kick step size and susceptibility. We find that for sufficiently large kicks

and high activity, susceptible motors, i.e., motors whose kick rate depends on the

forces exerted on them, can generate spontaneous flow, whereas adamant motors,

indifferent to imposed forces, would merely drive fluidization of an active system.

We have also carried out simulations on a minimal cytoskeleton model incorporat-

ing motor dynamics to compare with our analytical predictions. The simulations

not only verify the predicted phase diagram, but also highlight how the combina-

tion of network connectivity with motor susceptibility determines the formation of

nonequilibrium structures. The simulations show an oscillatory phase separation

at intermediate network connectivity and formation of aster-like patterns/bundle-

connected poles when driven by motors with negative susceptibility, i.e., motors
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that move against the force, energetically uphill. The latter corresponds to a

negative-temperature system where interesting structures emerge much like vortex

condensation in two-dimensional turbulence [9, 10, 11].

We are far from the first to try to understand the physics of spontaneous

collective motion in biology. Jülicher and Prost [12] studied a one-dimensional

stochastic model which assumed an underlying ratchet potential already break-

ing translational symmetry. Motor cooperativity then leads to a dynamical phase

transition to spontaneous directed motion despite the system’s spatial symmetry.

Thinking of the cytoskeleton, an assembly of filamentous polar polymers actively

connected by crosslinkers, as an active polar gel has allowed the construction of con-

tinuum theories, based on conservation laws and symmetry considerations, which

also generate active flows [13, 14, 15, 16]. Pattern formation in active fluids has

also been discussed based on a reaction-diffusion-advection mechanism [17].

4.2 Model

Here we model the stochastic nature of the motor kicking via a master

equation for the many-body probability distribution function Ψ({r⃗}, t) [18, 19]
∂

∂t
Ψ({r⃗}, t) = (L̂FP + L̂NE)Ψ({r⃗}, t). (4.1)

Here L̂FP = D0

∑
i ∇i · ∇i −D0β

∑
i ∇i · (−∇iU) is the usual many-body Fokker-

Planck operator describing passive Brownian motion withD0 denoting the ordinary

diffusion coefficient at ambient temperature T and β = 1/kBT . The gradients of

the many-body interaction potential U({r⃗}) = U(r⃗1, r⃗2, · · · , r⃗n) =
∑

<ij> u(r⃗i− r⃗j)

give the local forces acting on individual particles, where r⃗i is the position of the

ith particle and ⟨· · · ⟩ denotes the nearest neighbor pairs. Note that the potential

U reflects an average over the solvent degrees of freedom and internal degrees of

freedom of the motors and is thus strictly speaking a free energy. The effects

due to nonequilibrium motorized processes are summarized by an integral kernel

L̂NEΨ({r⃗}, t) =
∫
Πidr⃗′i[K({r⃗′} → {r⃗})Ψ({r⃗′}, t)−K({r⃗} → {r⃗′})Ψ({r⃗}, t)], where

K({r⃗′} → {r⃗}) encodes the probability of transitions between different particle

configurations per unit time. Motor kicking noise is a finite jump process with a
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rate that depends on whether the free energy is increased or decreased when a step

is made

k = κ[Θ(∆U) exp(−suβ∆U) + Θ(−∆U) exp(−sdβ∆U)]. (4.2)

Here Θ is the Heaviside step function and ∆U = U
(
r⃗ + l⃗

)
− U (r⃗) is the free

energy change due to the kick identified by a vector l⃗ = ln̂. The kick step size l

and the basal kicking rate κ define the dimensionless motor activity ∆ := κl2/D0,

an analog of the Peclet number in turbulent diffusion. This model rate couples

the chemical reactions leading to the motor activity to the local mechanical forces

acting on the motor being parametrized by the susceptibility s which may take

different values for uphill (su) moves and for downhill (sd) moves depending on the

biochemical mechanism of the motors. When s → 1 the motors are susceptible,

slowing down when they climb up against obstacles and accelerating when they

move energetically downhill; in contrast s → 0 corresponds to completely adamant

motors which kick at a rate unperturbed by the free energy landscape.

4.3 Systematic expansion and stability analysis

To examine the small kick size limit, we first expand the equation in powers

of l⃗ up to the quadratic order. The simplest case, isotropic kicking and symmet-

ric susceptibility (i.e., su = sd = s) leads directly to an effective Fokker-Planck

equation [5]

∂

∂t
Ψ({r⃗}, t) = Deff

∑
i

{
∇2

iΨ−∇i · [(−∇iβeffU)Ψ]
}
, (4.3)

where

Deff = D0

(
1 +

1

2d

κl2

D0

)
, (4.4)

(βeff/β)
−1 = Teff/T =

(
1 +

1

2d

κl2

D0

)/(
1 +

s

d

κl2

D0

)
. (4.5)

These simple expressions (Eqs. 4.3–6.21) valid for general spatial dimensions d

have nontrivial implications. In the small kick limit, the active system, while out

of equilibrium, behaves as if it is at an effective canonical equilibrium characterized

by an effective temperature Teff. The effective diffusion constant Deff (Eq. 6.9) is



76

enhanced by the active processes regardless of motor adamancy, consistent with

recent observations of enhanced cytoplasmic diffusion [20]. Teff (Eq. 6.21) is fully

determined by the motor activity ∆ = κl2/D0 and the motor susceptibility s;

susceptible motors with s > 1/2 yield Teff < T . When motor activity dominates

over thermal noise, i.e., ∆ ≫ 1, the effective temperature diverges as Teff/T ∼
1/(2s) as s → 0. Thus intense kicking by adamant motors leads to a very high

effective temperature just as observed in experiments [21] and simulation studies

[22, 23]. A more detailed discussion can be found in a separate work [5].

To probe the dynamic instability that may give rise to the spontaneous

motion, we must go beyond the effective equilibrium and expand to quartic order

in l obtaining

∂

∂t
Ψ({r⃗}, t) = Deff

∑
i

{
∇2

iΨ−∇i · [(−∇iβeffU)Ψ]
}

+ κl4⟨cos4 θ⟩n̂ ×
∑
i

Fi(∇(m)
i U,∇(n)

i Ψ). (4.6)

The functional Fi is the divergence of a flux, i.e., Fi = −∇i · J⃗a
i , where J⃗a

i is the

probability current due to active events on particle i given by

−J⃗a
i =

1

24
∇3

iΨ+
s

12
∇i

(
∇2

iβUΨ
)
+

s

6
∇iβU∇2

iΨ

+
s2

4
(∇iβU)2∇iΨ+

s3

6
(∇iβU)3Ψ. (4.7)

While at quadratic order in l a motor-driven system exhibits enhanced diffusive

dynamics at an effective equilibrium, at quartic order, a net streaming flow becomes

possible, as in models of nonequilibrium gene switch [24].

In an earlier study of the stability and dynamics of a motorized assem-

bly Shen and Wolynes [18] pictured the motors as introducing a modification to

the Debye-Waller factors of the localized particles. They found an expression

of the deviation of the total localization strength α̃ from its thermal value α in

terms of the motor properties. Thermal self-consistent phonon theory [25] gives

α for a central particle that depends on the α̃ of all its neighbors. Combining

these two aspects allows a self-consistent determination of mean-field (α, α̃) solu-

tions allowing an identification of static stability limits. Assuming su = sd = s,
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the second moment closure [19] reduces to a simple expression (α̃ − α)/α̃ =

(s− 1/2) exp [s(s− 1)αl2]κl2/dD0. Thus for s = 1/2 (Teff = T ) chemical noise

does not modify the mechanical stability (α̃ = α); for s < 1/2 (Teff > T ) stability

is weakened (α̃ < α) whereas for s > 1/2 (Teff < T ) stability is enhanced (α̃ > α).

For spontaneous collective motion there must be a nontrivial dynamic first

moment that indicates a moving fiducial lattice. The second moment still has its

steady-state value describing vibrations about the fiducial configuration. We thus

write down a trial function of the master equation as a collection of Gaussians with

moving centers and a steady variance

Ψ({r⃗i}; α̃) = Πi (α̃/π)
d/2 e−α̃[w⃗i−m⃗i(t)]

2

, (4.8)

where w⃗i = r⃗i − R⃗i denotes the displacement of particle i from its equilibrium

position R⃗i, m⃗i(t) = ⟨w⃗i|Ψ⟩ defines the dynamic first moment of particle i, and

the total localization strength α̃ of individual particles is inversely related to the

second moment.

To account for the neighbor-coupling effects we adopt the coupled -oscillator

expansion of the effective potential, Ve, used earlier by Stoessel and Wolynes

[26]. Here the gradient of the general many-body free energy becomes ∇iβU =∑
j∈n.n.∇i∇iβVe(Rij) · (w⃗i − w⃗j), where Rij = |R⃗i − R⃗j| denotes the equilibrium

separation between the central particle i and its nearest neighbor j. The curvature

then follows ∇2
iβU =

∑
j∈n.n. Tr[∇i∇iβVe(Rij)] = 2dα. The mechanical localiza-

tion strength is defined by α = (1/2d)
∑

j ∇2
Rij

βVe(Rij). Higher order gradients of

βU vanish at this level of coupling. A nonzero α reflects a (possibly amorphous)

state of broken translational invariance, as in a gel. Applying the first moment clo-

sure ∂t⟨w⃗i|Ψ⟩ = ⟨w⃗i|(L̂FP+L̂NE)Ψ⟩ to Eq. 4.6 with the Gaussian ansatz (Eq. 4.8) as

well as the coupled-oscillator expansion of the effective potential leads to coupled

equations for the m⃗i’s.

To investigate the emergence of directed motion, we carry out a linear sta-

bility analysis about the non-moving state (i.e. m⃗i = 0). In view of the biological

relevance of one-dimensional scenarios, such as the filament sliding in motility as-

say [27] and flow in the cell cortex [28], we focus here on the 1D case. Consider a
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spatially varying trial solution of the form

mi(t) = ℜ[m̄ erkt+ikRi ], (4.9)

where m̄ denotes the amplitude of the first moment, k the wavenumber of the spa-

tial modulation and rk the growth rate. Even if kicks are isotropic and the interac-

tion Hamiltonian preserves rotational symmetry, spontaneous symmetry breaking

occurs giving flow in a specific direction.

In the long-wavelength limit one finds

∂tmi =
k2

2

{∑
j

∂2
i βVe(Rij)(Rj −Ri)

2

}
f(l, s;α, α̃)mi, (4.10)

where

f(l, s;α, α̃) = −D0 − sκl2 + s2κl4α

− s3κl4
{
α2

α̃
+

1

4α̃

∑
j

[
∂2
i βVe(Rij)

]2}
. (4.11)

Since ∂tmi = rkmi, the growth rate is proportional to k2f(l, s;α, α̃) up to O(k2).

It follows that a strictly uniform state (k = 0) would not undergo small-amplitude

dynamic instability regardless of the motor activity and susceptibility but the non-

moving state is barely stable in the absence of spatial modulation. Moreover, the

sign of f(l, s;α, α̃) determines the stability behavior for small but finite k. When

the kick step size l is small, f is negative indicating diffusive relaxation towards

the non-moving state. As l increases, instabilities grow: f , thus rk, becomes pos-

itive, signifying a collective flow in a spatially modulated state, when l exceeds a

threshold value lth given by

l2th =

1 +

√
1 + 4αD0

κ

(
1− s

{α
α̃
+ 1

4αα̃

∑
j [∂

2
i βVe(Rij)]

2 })
2(sα)

(
1− s

{α
α̃
+ 1

4αα̃

∑
j [∂

2
i βVe(Rij)]

2 }) . (4.12)

At high motor activity such that α̃ ≫ α and κ ≫ αD0, l
2
th ∼ 1/(sα) + D0/(sκ).

Thus high susceptibility s and kicking rate κ and large α lead to a low instabil-

ity threshold (see Supplementary Fig. 4.6 for a detailed illustration). Note that

assuming a statistically homogeneous structure will remove the i-dependence of f
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and lth. For the case of asymmetric susceptibility (su ̸= sd), the factor (su − sd)

accompanies all the cubic-and-above odd powers in l⃗ in the expansion, leading

to a smaller threshold kick size compared to that for the symmetric case where

corrections start at quartic order in l.

We carried out the self-consistent calculation described earlier on a minimal

model of the cytoskeleton as a cat’s cradle [29, 30] to determine (α, α̃) and used

this to obtain the growth rate for a model network consisting of nonlinear elastic

filaments characterized by relaxed length Le and stretching stiffness βγ built on a

three dimensional random lattice of crosslinks at density ρ. The network connec-

tivity Pc is defined as the fraction of nearest-neighbor pairs of crosslinks connected

by filaments. The unit of length is the average separation between the neighboring

crosslinks.

Pc = 0.2

l*(s)

lth(s)

fluidized

diffusive/

relaxational

flowing
a

Pc = 0.5

l*(s)

lth(s)

fluidized

diffusive/

relaxational

flowing
b

Pc = 1.0

l*(s)

lth(s)

fluidized

diffusive/

relaxational

flowing

c

Figure 4.1: Phase diagram for possible dynamic states. The parameter plane
indicates the motor kick step size l and the motor susceptibility s. The model
cytoskeleton used to obtain α and α̃ is characterized by crosslink density ρ = 0.8,
relaxed length of the filaments Le = 1.2 and stretching stiffness βγ = 5. From panel
(a) to (c), the network connectivity varies with Pc = 0.2, 0.5, and 1, respectively.
D0 = 0.1 and κ = 20. In the flowing regime, there are stable nontrivial (α,α̃)
solutions and positive rk; in the diffusive/relaxational regime, while there are stable
nontrivial (α,α̃) solutions there is a small negative rk; in the fluidized regime, finite
(α,α̃) solutions are unstable. As network connectivity rises, the flowing phase
region expands whereas the fluidized state region shrinks. The logarithm of the
normalized growth rate rk/k

2 for flowing instability is color-coded, showing the
increase of instability with l and s.

In Fig. 4.1 we show the phase diagrams for possible dynamic states as

a function of kick size l and susceptibility s for several values of the network

connectivity. In all the cases, there are two stability boundaries, one for small s
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(s < 1/2), one for large s (s > 1/2). In the low-s regime, as l reaches a critical

value, l∗(s) (blue dotted line), finite solutions for (α, α̃) become unstable, i.e.,

the system becomes fluidized. In the high-s corner, when l exceeds a threshold

value lth (lower boundary of the color-coded region), instability occurs for small

but finite k modes indicating the emergence of modulated flowing states. In this

region, stable finite (α, α̃) solutions exist with α̃ being considerably larger than α,

reflecting the enhancement of stability by susceptible motor kicking. Note that as

motor susceptibility increases, the threshold kick step size decreases. In the rest

of the diagram, α and α̃ are comparable and the negative growth rate indicates

diffusive modes. (Close to detailed balance, s = 1/2, diffusive modes persist over

the entire relevant range of l.)

In the figures, we color-code the logarithm of the normalized growth rate

rk/k
2 for the flow instability; the growth rate increases with l and s. Comparing the

diagrams for different values of connectivity, we see that as Pc increases, the region

corresponding to the fluidized state shrinks, since increasing the number of bond

constraints stabilizes the system against fluidization. On the other hand, the region

corresponding to flow expands toward lower l (and lower s slightly), suggesting that

as the mechanical feedback increases (larger α due to higher Pc), a smaller kick is

able to trigger the flowing instability when the motors are susceptible.

4.4 Simulations

To check these predictions we performed dynamic Monte Carlo [31] simula-

tions on the model cytoskeleton [29, 30]. In these simulations we generated initially

a three-dimensional random lattice of volumeless nodes (mimicking the crosslink-

ing proteins) and connected the nearest-neighbor nodes (defined by the first shell

of the pair distribution function) with nonlinear elastic bonds [30] (mimicking the

filamentous proteins) at a given probability Pc. Thermal steps obey Brownian dy-

namics [32] whereas chemical moves follow the stochastic process defined by the

model kicking statistics (5.1). The simulations reveal an interesting interplay of

network connectivity with the motor susceptibility dramatically affecting struc-
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tural development.

At a relatively high network connectivity, Pc ≃ 0.5 (average coordination

number z ≃ 6), force transmission through the bonds is efficient and the network

structure remains statistically homogeneous in the presence of the motor-driven

processes. Nevertheless, varying motor susceptibility drastically changes the dy-

namics.

Fluidized state: Under completely adamant kicks (s = 0) with a moderately

large step size (l > l∗), nodes rapidly become fluidized. Elastic stretching of the

bonds imposes no constraint on the node motion resulting in vanishing localization

strength and zero net flow (m⃗ = 0). Consequently, as shown in Fig. 4.2a, almost

all the initially floppy bonds (in green) get stretched (in red) and the network

becomes very tense.

initial later

fluidizeda diffusive

initial later

b flowing

initial later

c

Figure 4.2: Network structure for various dynamic phases. (a) Fluidized phase
with s = 0. An initially relaxed (left) network rapidly tenses up (right) under
completely adamant motor kicking. Localization strength of the nodes vanishes
and there is no net flow. (b) Diffusive phase with s = 0.2. Spots of concentrated
tense/floppy filaments are visible. Nodes exhibit enhanced diffusive motion with a
finite localization strength. No spontaneous flow occurs. (c) Flowing phase with
s = 1. Network structure remains homogeneous despite the spontaneous flowing
motion, reflecting the enhanced rigidity of the structure and coherence of motion
by susceptible motor kicking. Le = 1.2, βγ = 5, Pc = 0.5 and l = 0.25. Red lines
stand for tense filaments and green lines for floppy filaments.

Flowing state: At the other extreme, however, under susceptible kicks (s =

1) with above-threshold step size l > lth, a self-sustained flow develops and the

nodes vibrate about a steadily moving fiducial lattice (see Supplementary Fig. 4.7

for statistical characteristics of the flowing state) both for regular lattices and for

random structures. Apparently disorder in the structure, inherent in the quenched

connectivity or dynamically generated through initial random motions, gives rise
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to local force asymmetry. Sufficiently large kicks then trigger dynamic instability of

the quiescent state; the resultant nucleation and propagation of local coordinated

motion, mediated by force transmission and orchestrated by susceptible motor

kicking, finally leads to a global concerted movement of the whole lattice. High

motor susceptibility promotes cooperativity, resulting in “rigidity” of the structure

and coherent collective motion. As can be seen in Fig. 4.2c, the network structure

remains homogenous without significant local distortions.

Diffusive state: When the motors are only moderately susceptible (s : 0.2−
0.5) but not sufficiently cooperative to drive spontaneous flow, the system exhibits

enhanced diffusive relaxation toward the effective equilibrium characterized by Teff,

leading to a homogeneous network structure with modest local density fluctuations.

The magnitude of density fluctuations and the tenseness of the network depend

on the susceptibility. At relatively low susceptibility (s ≤ 0.3), homogeneously

distributed spots of concentrated tense or floppy filaments are visible (Fig. 4.2b);

as the susceptibility rises (s ∼ 0.5), density fluctuations get weaker and the network

becomes more homogeneous with a lower degree of stretching, closely resembling

the flowing state (Fig. 4.2c). At relatively high connectivity the simulations thus

verify the possible dynamic phases predicted by the analytical theory.

At intermediate connectivity Pc ≃ 0.3 (z ≃ 3–4) network connectivity is

sufficient for tension percolation yet local force asymmetry becomes significant and

widespread over the network. Now under susceptible motor kicks with a consider-

able step size, dramatic spatial heterogeneity emerges and oscillations of the net-

work in a particular spontaneously chosen spatial direction occur (Fig. 4.3. Appar-

ently the overall tenseness of the structure is reduced by collapsing the network into

clumps at the cost of a few highly stretched inter-clump filaments. Figures 4.3c,d

display the planar clumps where the floppy filaments (in green) concentrate and

which are connected by highly stretched inter-clump bonds (in red). Our previ-

ous analytical mean-field study of an equilibrium nonlinear-elastic network [30]

already suggests the possibility of phase separation in this system at a finite effec-

tive temperature; the pressure exhibits a non-monotonic dependence on the node

concentration leading to mechanical instability of homogeneous states. (Phase sep-
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aration induced by contractile instability has also been predicted for active polar

gels [13].) When confined by boundaries, such as the cell membrane, these oscil-

lating clumps may become stationary wave patterns with a characteristic length

scale of modulation, reminiscent of the mitotic spindles.

a b c d

Figure 4.3: Temporal development of the phase separation. At intermediate con-
nectivity Pc = 0.3 and under susceptible motor kicking (s = 1) with a considerable
step size l = 0.25, the initially homogeneous system (a) phase separates into oscil-
lating clumps and voids (b-d). Notice that the relaxed filaments (green) become
concentrated within the planar clumps as well as the presence of highly stretched
inter-clump filaments (red). Le = 1.2, βγ = 5.

In the presence of susceptible motor kicking (s ≥ 0.6), failure of force

percolation at lower values of the network connectivity Pc ≤ 0.2 (z < 3) also yields

phase separation but without any collective motion. Conversely when there are

too many bond constraints at Pc ≥ 0.6 (z > 7) there are significant mechanical

barriers which seem to slow down flow initiation and to reduce flow speed.

The analytic stability analysis leads to a similar connection between insta-

bility growth and the number of bond constraints via the localization strength of

individual nodes. In Fig. 4.4 we display the two dimensional surface as well as

the contour map of the growth rate rk/k
2 given by Eq. 4.10 in the flowing regime

(rk > 0) as a function of localization strength α and kick size l for a series of sus-

ceptibilities s. Close to detailed balance, i.e., s = 0.5 (panel a), flowing instability

emerges only at very high α and large l, and the growth rate increases with α.

At s = 0.55 (b), a plateau in the growth rate develops at relatively high α. For

susceptible motors with s ≥ 0.6 (c and d), the growth rate has a non-monotonic

dependence on α. As the localization strength of individual constituents increases,

the flow instability first speeds up and then slows down with α. There exists an

optimal localization strength (or network connectivity) for most efficient flow. This
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b

c d

a

Figure 4.4: Dependence of growth rate upon localization strength at different
motor susceptibility. The 2D surface and the contour map of the growth rate
rk/k

2 for flowing instability are displayed over the parameter plane extended by
the localization strength α of individual particles and the motor kick step size l.
D0 = 0.1 and κ = 20. (a) s = 0.5; (b) s = 0.55; (c) s = 0.6; (d) s = 0.7.
For susceptible motors with s ≥ 0.6, the growth rate develops a non-monotonic
dependence on the localization strength at a sufficiently large kick size, suggesting
an optimal strength of mechanical feedback for an efficient flowing motion.

is consistent with simulations.

Biological motors can have slip bonds [33, 34] so that an applied force lowers

the energy barrier for up-hill moves. Slip-bond behavior leads to a negative motor

susceptibility which in turn leads to a negative effective temperature. This implies

an intrinsic thermodynamic instability. We investigated this thermodynamically

unusual situation. We consider the case for su = −1, sd = 0 where motors are

insensitive to energetically downhill slope while they run faster when they go up

against obstacles. Starting with a disordered structure at a high connectivity

(Pc = 0.5), the motorized network rapidly develops into a highly ordered and

tense structure as shown in Fig. 4.5.

This interesting behavior is not hard to understand: due to the negative su,

consistent with the negative effective temperature, the kicks maximize the total

energy by separating the bonded nodes as far as possible from each other. The
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a b

Figure 4.5: Aster-like patterns/Bundle-connected poles formed under kicks of
uphill-prone motors with a negative susceptibility. su = −1, sd = 0; Le = 1.2,
βγ = 5, Pc = 0.5, and l = 0.25. (a) and (b) are snapshots of the system taken at
the same instant from different view angles.

resulting “aster-like” patterns closely resemble those formed by in vitro reconsti-

tuted active gels [35], where unidirectional movement of myosin II motors along

the polar filament tracks toward the aster core (concentrated ‘plus’ ends of actin

filaments) results in considerable stress accumulation at the center, giving rise to

the so-called “novas of asters”. Clearly motor susceptibility dramatically affects

development of nonequilibrium structures.

In sum we have derived an analytical expression for the stability limits of

quiescent active gels and proposed a mechanism for spontaneous collective mo-

tion within a unified theoretical framework. Simulations of a model cytoskeletal

network further highlight that the interplay of network connectivity with motor

susceptibility dramatically affects the formation of nonequilibrium structures: force

percolation and mechano-chemical coupling conspire to drive and maintain spon-

taneous flow, whereas adamant motor kicks promote fluidization. Significant force

imbalance sensed by susceptible motors induces phase separation into oscillating

clumps. Uphill-prone motors with a negative susceptibility give rise to a system at

a negative effective temperature. Aster-like patterns form resembling those seen

in reconstituted active gels.

Chapter 4, in full, is a reprint of the material as it appears in the Proceedings

of the National Academy of Sciences 108 15184-15189 (2011), S. Wang and P. G.

Wolynes. The dissertation/thesis author was the primary investigator and author

of this paper.
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Supplementary figures

Figure 4.6: Dependence of threshold kick step size upon mechanical gradient
α and motor susceptibility s. We plot f(l, s;α, α̃) given by equation (11) in the
main text as a function of kick step size l for κ = 20, D0 = 0.1. The crossing
point of f -curve with l-axis locates lth. (a) From right to left, α = 0.1, 1, 10 and
100; s = 1. lth decreases with increasing α value (dashed arrow), indicating that
strong mechanical feedback facilitates instability onset. (b) For a moderate α value
(α = 5), no instability onset occurs for s ≤ 0.5; only after s reaches approximately
0.6 does an instability emerge and increasing s (dashed arrow) leads to lower lth.
Meanwhile, for a given l, f increases with s, suggesting that more susceptible
motors drive faster flows.
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Figure 4.7: Statistical characteristics for the flowing state. We plot the ensemble-
averaged temporal correlation of displacement fluctuations defined via the correla-
tion function Cδr⃗(tcorr) =

1
tf−t0

∫ tf
t0

dτ [ 1
N

∑N
i=1 δr⃗i(τ)][

1
N

∑N
j=1 δr⃗j(τ + tcorr)], where

δr⃗i(t) = r⃗i(t) − ⟨r⃗i(t)⟩ with the bracket indicating an average over a steady-state
time window. The integral averages the starting time τ over a wide time range (t0,
tf ). Correlations in three orthogonal spatial directions (x: red; y: green; z: blue)
all exhibit periodic oscillations in time (in Monte Carlo units) reflecting the spon-
taneous and coherent flowing motion across the periodic simulation box. Other
correlation measures exhibit consistent oscillatory patterns. Le = 1.2, βγ = 5,
Pc = 0.5; l = 0.25, s = 1.



Chapter 5

Active contractility in actomyosin

networks

5.1 Introduction

Contractile forces are essential for many processes vital to development,

ranging from cytokinesis and cell motility [1] to wound healing and gastrulation [2].

Networks of filamentous actin (F-actin) and the molecular motor, type II myosin

have been identified as the major components of the contractile machinery. The

actin network provides a structural scaffold on which the myosin motors move, pow-

ered by ATP hydrolysis. Actomyosin networks generate contractile forces through

the activity of myosin motors, which themselves assemble into bipolar minifila-

ments that generate sustained sliding of neighboring actin filaments relative to

each other in order to reorganize F-actin networks and generate tension [3]. When

coupled to the cell substrate or using cell-cell adhesions, contractile actomyosin

networks transmit forces to their environment.

In addition to the microtubule-kinesin system, another important filament-

motor assembly in cells that forms well-focused mitotic spindle poles driven by

polarity sorting mechanism [4, 5] to accomplish high-accuracy segregation of du-

plicated chromosomes, actomyosin condensates appear in diverse tissues and or-

ganisms as transient structures that coalesce into still larger arrays that exert
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contractile forces. Examples include the contractile rings driving cytokinesis and

wound healing, and the contractile networks that deform epithelial cell layers in

developing embryos and drive polarizing cortical flows [6, 7].

Some recent theoretical efforts have modeled the contractile actin cortex

as an active polar gel and have derived effective continuum theories within a hy-

drodynamic framework [8, 9, 10, 11, 12, 13]. These macroscopic approaches based

on generic symmetry considerations predict the formation of diverse patterns in

acto-myosin gels such as asters and ring-like structures, which have been observed

in studies in vitro [14].

Recently Bendix and coworkers have reconstituted contractility in a sim-

plified system of F-actin, muscle myosin II motors, and α-actinin crosslinks [15].

The well-controlled nature of this in vitro system allows a systematic study of the

dependence of contractility on microscopic parameters, such as the number and

activity of myosin motors, crosslink density and actin network connectivity. It has

been shown that contractility occurs above a threshold motor concentration and

within a window of crosslink concentrations. Whereas earlier experiments on pu-

rified actomyosin solutions have established that contraction of F-actin networks

by myosin II motors at physiological ATP level requires the presence of F-actin

crosslinks [16, 17], as has been confirmed by recent theoretical work [18], this

newly observed non-monotonic dependence of contraction tendency on crosslink-

ing strength still calls for explanation.

There are two important aspects in actomyosin self-organization: (1) Actin

filaments have a highly asymmetric response to axial loading: They strongly resist

tensile forces but easily buckle under compressive loads of several piconewtons.

The ability to sustain large tension allows the motor-induced stresses to propa-

gate significant distances through the network, whereas the buckling instability

promotes formation of local actomyosin aggregates that coalesce into larger arrays

exerting contractile forces (as exemplified in the spontaneous formation of myosin

foci starting from a uniform distribution in an isotropic actin network [19, 20]).

(2) Motor-induced movements come in correlated pairs: the motor acts on a pair

of parallel filaments to slide them past one another, inducing a pair of equal and



93

oppositely directed moves at the crosslinks which are thus pulled together. Despite

the success of hydrodynamic theories in predicting diverse patterns, a more micro-

scopic model that could capture the nonlinear buckling behavior and the correlated

motor-driven events, both of which are crucial for actomyosin self-organization and

active contractility, is needed.

Here we provide a microscopic dynamic model for active contractility that

combines the motor-driven stochastic processes (modeled as correlated kicks on

motor-bonded crosslinks) with the asymmetric load response of individual actin

filaments. This minimal model will be shown to exhibit the experimentally ob-

served dependence of macroscopic contraction on motor concentration and actin

network connectivity. The model also highlights the key role, in structural de-

velopment, of motor susceptibility, a parameter characterizing how sensitively the

motors respond to imposed forces.

By performing dynamic Monte Carlo simulations, we investigate the forma-

tion and dynamics of nonequilibrium structures in an actomyosin network modeled

as a “cat’s cradle” [21, 22] consisting of crosslinked nonlinear-elastic filaments sub-

ject to anti-correlated kicks on motor-bonded crosslinks (see Fig. 5.1 for a schematic

illustration). We first study how the concentration and susceptibility of motors de-

termine the collective behavior generating diverse patterns. We further construct

a phase diagram for active contractility as a function of motor concentration and

network connectivity at a given motor susceptibility. This diagram identifies the

threshold motor concentrations and contains a window of network connectivity

for active macroscopic contraction, consistent with observation [15]. We also find

that at high connectivity contraction can still occur (at intermediate motor con-

centrations) but only if the excluded volume effect is negligibly small. We finally

compare the structures that develop for systems with correlated kicks to those

when there are only uncorrelated kicks as in our earlier work [23]. In particular,

under uphill-prone motor kicks, the formation of “asters” is replaced by the for-

mation of disordered condensates resulting from an active multistage aggregation

process due to buckling of connected actin structures induced by cooperative anti-

correlated kicks. This prediction receives support from recent in vitro experimental
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studies on how the collective action of myosin motors organizes actin filaments into

contractile structures [20].

Multiple factors that cause dynamic remodeling in cells are clearly absent in

the reconstituted assay [15], such as the disassembly of contractile structures and

the transience of physiological actin cross-linking proteins. In our numerical model,

we likewise assume that network connectivity and motor distribution are quenched

once initially assigned, in line with the fact that in vitro structures are irreversibly

assembled because many in vivo factors allowing fast pattern renewals are left out.

Therefore the nonequilibrium dynamics and structures exhibited in our numerical

study arise solely from the intrinsic activity of motors firmly built into the actin

network driving correlated movements stochastically. This contrasts with the two-

fluid model that treats the cytoskeletal network as an elastic continuum where

motor (un)binding kinetics leads to enhanced low-frequency stress fluctuations

[10]. The discreteness of the power strokes and thus the kick steps in our model

bears relevance to the pulsed contraction observed in actomyosin networks in vivo

[24].

5.2 Model

5.2.1 Model system and dynamic rule

We model the actomyosin network as a cat’s cradle [21, 22] consisting of

nonlinear elastic filaments built on a three dimensional random lattice of volumeless

crosslinks (Fig. 5.1). These nonlinear filaments stretch elastically with effective

stiffness βγ when their contour length r exceeds the relaxed length Le but buckle

and become floppy upon shortening, as described by the pair interaction potential

between bonded neighboring crosslinks βU(r) = Θ(r − Le)βγ(r − Le)
2/2 where

β = 1/kBT and Θ(·) is the Heaviside step function. The assumed weakness of the

excluded volume effect allows large-scale structural rearrangements. We assign

two mean field parameters to characterize the architecture of this filament-motor

assembly: (1) the network connectivity, Pc, which denotes the fraction of nearest-

neighbor pairs of crosslinks bonded by filaments; (2) the motor concentration,
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Pa, which indicates the fraction of active bonds, i.e. those attached by motors

which induce equal and oppositely directed kicks on the connected crosslink pair.

Network connectivity and motor concentration determine the fraction of active

nodes against passive nodes: active nodes have motor-attached bonds and are

subject to anti-correlated kicks with their motor-bonded neighbors whereas passive

nodes have no motor-attached bonds and only undergo Brownian motion.

F-actin 

Myosin-II 

active node 

passive node 

Figure 5.1: Schematic of the model system: A cat’s cradle composed of a three di-
mensional amorphous network of crosslinked nonlinear-elastic bonds (purple lines)
where motor-driven anti-correlated kicks induce pulsed local bond contraction and
node aggregation. Spheres represent nodes/crosslinks and the yellow fuzzy objects
stand for myosin II motor proteins. The size of the nodes and motors is exag-
gerated; excluded volume interaction is not implemented in current simulations.
Red nodes are active nodes having motor-attached bonds. These are subject to
motor kicks. Blue nodes are passive nodes only undergoing Brownian motion. An
enlarged view of a unit of local contraction (circled) shows a pair of motor-bonded
crosslinks undergoing anti-correlated kicks with fixed step size l along the line
connecting their centers where r̂ij is a unit vector pointing from node i to node j.

To mimic the motor-driven filament sliding in actomyosin networks we de-

scribe the motors as generating anti-correlated kicks on pairs of crosslinks along
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their lines of centers. Assuming a fixed kick step size l, consistent with the nearly

periodic structure of the actin filaments, an anti-correlated kick pair acting on

nodes i and j can be represented by (⃗lij, l⃗j i) = l(r̂ij,−r̂ij), where r̂ij is a unit

vector pointing from node i to node j. These anti-correlated kick pairs with equal

size automatically satisfy momentum conservation on the macroscopic scale. Yet

if we include explicitly the aqueous environment in which the actomyosin network

is immersed, hydrodynamic interactions between the nodes via the solvent should

be taken into account. These interactions might modify the current simplified pic-

ture and counteract any motor-induced force imbalance on individual nodes, thus

validating momentum conservation on the microscopic scale.

Dynamical evolution of the many-particle configuration {r⃗i} due to these

motor-driven nonequilibrium processes can be described by a master equation

∂Ψ/∂t = L̂
NE
Ψ for the configurational probability density Ψ({r⃗i}; t) with L̂NEΨ({r⃗}

, t) =
∫
Πidr⃗′i[K({r⃗′} → {r⃗})Ψ({r⃗′}, t)−K({r⃗} → {r⃗′})Ψ({r⃗}, t)] where the inte-

gral kernelK({r⃗′i} → {r⃗i}) encodes the probability of transitions between different

crosslink/node configurations. Our earlier description [23, 25] of the motor kicking

rate, k, still applies to the current case of correlated kicks, i.e.,

k = κ[Θ(∆U) exp(−suβ∆U) + Θ(−∆U) exp(−sdβ∆U)], (5.1)

where κ is the basal kicking rate and su(sd) denotes motor susceptibility to en-

ergetically uphill (downhill) moves, except that the free energy change ∆U now

arises from pairs of displacements. Explicitly we write

L̂
NE
Ψ({r⃗i}; t) =

1

2
κ
∑
i

∑
j

Cij

∫
dr⃗′i

∫
dr⃗′j

×
{
δ(r⃗i − r⃗′i − l⃗ij)δ(r⃗j − r⃗′j + l⃗ij)

× w
[
U(· · · , r⃗′i, · · · , r⃗′j, · · · )− U(· · · , r⃗i, · · · , r⃗j, · · · )

]
Ψ({r⃗′i}; t)

− δ(r⃗i − r⃗′i + l⃗ij)δ(r⃗j − r⃗′j − l⃗ij)

× w
[
U(· · · , r⃗i, · · · , r⃗j, · · · )− U(· · · , r⃗′i, · · · , r⃗′j, · · · )

]
Ψ({r⃗i}; t)

}
.

The factor 1/2 avoids double counting in the summation over all pairs. The quan-

tity Cij, much like an element of a contact map in description of protein structures,
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defines whether the node pair (i, j) is connected by an active bond and thus sub-

ject to anti-correlated displacements (⃗lij,−l⃗ij): Cij = Cji = 1 for motor-bonded

pairs while Cij = Cji = 0 for non-bonded pairs. Our description of the rates gives

w[Ui − Uf ] = Θ(Uf − Ui) exp[−suβ(Uf − Ui)] + Θ(Ui − Uf ) exp[−sdβ(Uf − Ui)].

Assuming symmetric motor susceptibility, i.e. su = sd = s, one finds more

simply

L̂
NE
Ψ({r⃗i}; t) =

1

2
κ
∑
i

∑
j

Cij

×
{
e−sβ[U(r⃗i,r⃗j)−U(r⃗i−l⃗ij ,r⃗j+l⃗ij)]Ψ({· · · , r⃗′i = r⃗i − l⃗ij, · · · , r⃗′j = r⃗j + l⃗ij, · · · }; t)

−e−sβ[U(r⃗i+l⃗ij ,r⃗j−l⃗ij)−U(r⃗i,r⃗j)]Ψ({· · · , r⃗i, · · · , r⃗j, · · · }; t)
}
. (5.2)

We assume that kicks on different node pairs at any time are uncorrelated. The

rates of possible kicking events depend on the instantaneous node configuration

reflecting an assumed Markovian character of the dynamics. There is no angular

average due to the definiteness of kicking directions for a given configuration.

Note that the motor power strokes and thus kick steps are discrete occur-

ring in a stochastic fashion. The correlated motions pull in slack locally while

pulling taut neighboring filaments until a global balance is reached or a macro-

scopic collapse occurs, depending on whether the motors are downhill-prone (with

a large positive s) or load-resisting (with a small or negative s), respectively. The

latter may be relevant to the contractile rachet-like behavior [24] that operates to

incrementally drive cell shape change and deform tissues.

5.2.2 Numerical translation: dynamic Monte Carlo simu-

lation

To realize the finite-jump Markov process described by the (chemical) mas-

ter equation (Eq. 6.6) we performed dynamic Monte Carlo [26] simulations on the

model actomyosin network (Fig. 5.1). In these simulations we generated initially a

three-dimensional random lattice of volumeless nodes (mimicking the crosslinking

proteins) and connected the nearest-neighbor nodes (defined by the first shell of

the pair distribution function) with nonlinear elastic bonds [22] (mimicking the
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actin filaments) at a given probability Pc. We then distributed the myosin motors

uniformly to the bonds at a given probability Pa and obtained an active bond map.

Considering the anti-correlated kicks along individual active bonds as chemical re-

action channels, we adopted a stochastic simulation algorithm [26] to execute the

moves following the stochastic process defined by the model motor kicking noise

(Eq. 5.1). For a sufficiently large system, kicking events on different node pairs are

effectively decoupled (consistent with summing over independent reaction channels

in the master equation). Intermediate thermal moves between successive chemi-

cal moves obey Brownian dynamics [27] implemented via the position Langevin

equation.

The bond properties are given by the elasticity onset or relaxed length of

actin filaments Le = 1.2 and the effective stretch modulus βγ = 2. Since the

relaxed length is larger than the mean node separation (set as the length unit),

the initial homogeneous (but amorphous) network has a considerable fraction of

floppy bonds. We assumed a relatively high basal kicking rate (κ = 0.01) and a

large kick step size (l = 0.2) such that the dimensionless motor activity (defined

as κl2/D0 where D0 is the thermal diffusion constant) is close to 1 and thus the

strength of chemical noise is at least comparable to that of the thermal noise. The

system size is N = 256 and periodic boundary conditions are applied. The relevant

biophysical parameters to vary include network connectivity (Pc) as well as motor

concentration (Pa) and susceptibility (s).

5.3 Main Findings

5.3.1 Role of motor susceptibility and concentration in con-

tractile behavior

We first study how the concentration (Pa) and susceptibility (s) of motors

contribute to the collective behavior. As illustrated in Fig. 5.2, depending on

the specific combinations of Pa and s, distinct nonequilibrium structures emerge.

For a force-percolating network (i.e. one with connectivity beyond the perco-
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Figure 5.2: Illustration of how motor concentration Pa and susceptibility s con-
tribute to their collective behavior. (a) Left: motor-driven aggregation of active
nodes (red spheres) among the passive nodes (blue spheres); right: formation
of dense floppy clumps (concentrated short green lines) inter-connected by tense
bonds (long red lines). Circles mark the corresponding regions of node aggregation
and bond collapse. Pc = 0.2, Pa = 0.5, s = 1. (b) Active nodes tend to “glue”
together passive nodes and their aggregates. Pc = 0.5, Pa = 0.2, s = 0. (c) Mul-
tistage coarsening/aggregation of active condensates driven by high-concentration
(Pa = 1) uphill-prone (s = −0.5) motors. Pc = 0.5. Shown are the temporal
evolution of the node configuration (upper row) and of the corresponding network
structure (lower row).

lation threshold) when partially motorized (Pa < 1) under susceptible (large s)

anti-correlated kicks, the active nodes (those with motor-attached bonds; shown

as red spheres) begin to aggregate and tend to separate from the passive nodes

(those with no active bonds; shown as blue spheres). The left panel of Fig. 5.2a

shows snapshots of both the initial and later node configurations. The correspond-

ing developed network structure (Fig. 5.2a right) exhibits clumps of floppy bonds

(concentrated short green lines) connected by tense bonds (long red lines). The

overall rigidity (i.e. homogeneity on large scales) of the structure is protected by

susceptible motors which tune the balance between local bond contraction and

neighboring bond stretching such that energetically unfavorable tense states are
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avoided. At a low concentration of adamant motors (small s), however, active

nodes and their aggregates tend to “glue” together progressively the passive nodes

and their condensates (Fig. 5.2b). A finite spatial extent of the condensate and a

non-vanishing fraction of taut bonds remain due to the insufficient cooperativity

(low Pa) between local aggregation events. More dramatically, significant spatial

heterogeneity forms when the system is driven by a large number of uphill-prone

motors with negative susceptibility: the cooperative action of load-resisting motors

induces a multistage aggregation and coarsening of the nodes (Fig. 5.2c upper row)

finally leading to a macroscopic contraction of an initially homogeneous network

into a dense clump of buckled filaments (Fig. 5.2c lower row). This multistage

coarsening process involves three steps: (1) local bond contraction and node ag-

gregation giving floppy clumps connected by tense filaments; (2) coarsening of the

aggregates leading to filament alignment and formation of tense bundles; (3) coa-

lescence of the larger aggregates into a single condensate accompanies collapse of

the tense bundles into a floppy clump. The aligned tense bundles formed before

the eventual collapse constitute a taut state that can generate contractile forces.

We will investigate the scenario of motor-driven aggregation and pursue its

analogy to arrested phase separation later. In the present work we will focus on

the regime for macroscopic contraction.

To identify the required motor properties for active contractility, we per-

formed many simulations to obtain the evolution (in Monte Carlo time tMC) of

the statistical characteristics for a series of motor susceptibilities (Fig. 5.5a) and

concentrations (Fig. 5.5b). These measures consistently indicate the existence of

a threshold motor concentration ((Pa)th) and a threshold susceptibility (sth) for

the onset of macroscopic contraction within the simulation time window. When s

is less than sth at an intermediate Pa value (Fig. 5.5a: s ≤ 0.02, Pa = 0.5) or for

Pa > (Pa)th at a small s value (Fig. 5.5b: Pa ≥ 0.3, s = 0), the fraction of taut

bonds drops to essentially zero, indicating that an initially homogeneous perco-

lating network collapses into a floppy clump. More interestingly, the total energy

first rapidly rises and reaches a maximum before falling to zero with the fraction

of taut bonds. This nonmonotonic behavior suggests that the system first works
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against an energy barrier due to the formation of a transient tense state (having

highly stretched bundles induced by adamant or uphill-prone motor kicks), and

then cooperative action of sufficiently load-resisting motors drives the system over

the barrier to allow energetically downhill moves via subsequent coarsening (as

shown in Fig. 5.2c). The rapid increase and saturation of the mean squared dis-

placement (MSD) mirrors the evolution of the fraction of taut bonds and results

from the formation of a single isolated floppy clump. Larger s and/or higher Pa

yields a lower barrier to the collapsed state (as indicated by arrows in Fig. 5.5).

Moreover, lower Pa necessitates having a smaller s to induce macroscopic contrac-

tion. In other words, weaker motor cooperativity requires a stronger load-resisting

tendency to trigger contractile instability. When Pa < (Pa)th and/or s > sth

the structure remains homogeneous except for modest local node aggregation and

network deformation.

5.3.2 State diagram for active contractility: Interplay of

network connectivity and motor cooperativity

We now examine the interplay of network connectivity (Pc) and motor con-

centration (Pa) in forming contractile structures. The equivalence between the

crosslink concentration and the fraction of bonded neighboring crosslinks Pc (both

are proportional to the number of inter-crosslink segments and define the num-

ber of bond constraints), and between the motor concentration and the fraction

of active bonds Pa (both are proportional to the number of crosslinks subject to

motor kicks and determine the spatial cooperativity between motors) allows us to

compare our state diagram constructed on the Pa-Pc plane with the experimental

result [15] shown for the parameter space of concentration ratios [myosin]/[actin]

versus [α-actinin]/[actin].

We present our state diagram showing the dependence of macroscopic con-

tractility on the network connectivity and motor concentration at a small s value

(s = 0.01) in Fig. 5.3. Red crosses denote contractile networks while blue circles

denote non-contractile networks. By “contractile” we mean a complete collapse of

an initially homogeneous network into a floppy clump within 107 MC steps, mon-
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Figure 5.3: State diagram showing the dependence of active contractility on
motor concentration Pa and network connectivity Pc. s = 0.01. Red crosses denote
contractile networks and blue circles denote non-contractile networks. Top row
displays the initial homogeneous network structures with increasing connectivity
Pc and average number of bonded neighbors z. Macroscopic contraction occurs
in the two framed regions: (1) purple open frame: intermediate Pc and above-
threshold Pa; (2) green closed frame: high Pc and intermediate Pa.

itored by the vanishing of total potential energy and the fraction of taut bonds.

On top of the figure, we display the initial network structures for several typical

values of network connectivity Pc with the average number of bonded neighbors z.

As observed experimentally [15], we identify a threshold motor concentration and

a window of network connectivity for active contractility, which define a parameter

region as marked by the purple open frame. The new feature is a small window of

motor concentration for contraction at high connectivity (marked by a green closed

frame). These two aspects vividly demonstrate the interplay of network connec-

tivity and motor concentration for global contraction: at any connectivity beyond
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the percolation threshold (Pc ≥ 0.2), a sufficiently high motor concentration is re-

quired to achieve cooperativity among local contraction events; on the other hand,

since the bond constraints are strong at high connectivity, motor concentration

cannot be too high since force asymmetry (imbalanced tug-of-war) is necessary to

trigger local contraction. In the in vitro experiments [15], no macroscopic contrac-

tion was observed on the hour time scale at high crosslink concentrations. This

observation is not incompatible with our results since inclusion of excluded volume

effects should give a dramatic slow-down of the contractile dynamics owing to jam-

ming and/or glass transition which would account for the absence of observable

contraction on laboratory time scales.

Outside the framed regions, at low motor concentration and/or low con-

nectivity as well as at high motor concentration and high connectivity, there is

no macroscopic contraction. We illustrate the failure of contractility at low con-

nectivity (Fig. 5.6a) or low motor concentration (Fig. 5.5b). For Pc as low as

0.1, the average number of bonded neighbors is no greater than 1, lack of tension

percolation thus prevents global contraction. This becomes more obvious as we in-

crease the motor concentration; an increasing trend of local collapse with rising Pa

value is apparent (Fig. 5.5a), leading to more compact aggregates and disconnected

floppy clumps (several typical spots have been circled for the highest Pa case). At

very low motor concentration Pa = 0.1 (Fig. 5.5b), formation of sparse and small

active-node foci did not dramatically reshape the network, since rare and separate

contraction events are insufficient to trigger global contractile instability.

A quantitative demonstration of the interplay between Pc and Pa is given

in Fig. 5.7. Macroscopic contraction occurs either for high motor concentration

(upper row, Pa = 0.7) at intermediate connectivity (Pc = 0.3, 0.5) or for high

connectivity (lower row, Pc = 0.7) at intermediate motor concentrations (Pa =

0.3, 0.5). Lack of percolation at Pc = 0.1 is signalled by the diffusive behavior of

the mean square node displacement MSD linearly increasing with tMC (red line

indicated by arrow in Fig. 5.7a right panel) since the disconnected aggregates

merely undergo thermal motion. On the other hand, a small steady value for the

MSD at Pa = 0.1 (red line indicated by arrow in Fig. 5.7b right panel) reflects the
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low cooperativity which causes no more than modest local distortions. A balanced

tug-of-war at high Pc and high Pa disfavors even local deformations yielding a

lower fraction of taut bonds, lower energy and smaller MSD as Pa increases. This

can be seen by comparing the measures for Pa = 0.1 and Pa = 0.7 at Pc = 0.7 in

Fig. 5.7b.

5.3.3 Contrast with the case for uncorrelated kicks

Our earlier study of a model cytoskeleton with uncorrelated isotropic kicks

acting on individual nodes [23] revealed that force percolation and mechanochemi-

cal coupling due to susceptible motors can conspire to maintain a spontaneous flow,

whereas adamant motor kicks promote fluidization (characterized by a vanishing

localization strength of the nodes and formation of a disordered tense network).

Under anti-correlated kicks acting along the lines of centers of motor-bonded node

pairs, however, no vectorial flow transition is found even for a very large kick

step size (l ≃ 0.5). This is probably because the restrictiveness of (local) kicking

directions for a given configuration impedes a global concerted net movement of

the whole lattice. Instead, balanced local contraction and neighboring stretch in

the presence of force percolation results in a network of floppy spots connected

by tense filaments which remains homogeneous on large scales and bears some re-

semblance to arrested phase separation occurring in low-packing-fraction physical

gels with strong short-range attractions [28]. At intermediate connectivity, force

imbalance sensed by susceptible motors still induces phase separation into large

floppy clumps connected by taut inter-clump bonds yet oscillations are no longer

found. Fluidization is replaced by global contraction at above-threshold motor

concentration.

When the uncorrelated-kicking system was driven by uphill-prone motors

with negative susceptibility, aster-like patterns formed (Fig. 5.4 left). Instead, now,

multistage coarsening and eventual macroscopic collapse occur (Fig. 5.4 right),

after surmounting a high energy barrier caused by transient tense states with

stretched bundles. Comparing the bond tension patterns for these two cases in

Fig. 5.4, we see that global contraction requires correlated movements that locally
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Uncorrelated kicks Correlated kicks 

Figure 5.4: Aster versus condensate. Pc = 0.5, Pa = 1, s = −0.5. Left: Under
uncorrelated kicks, an initially disordered and homogeneous network self-organizes
into highly tense and ordered “asters”, composed of tense bundles radiating from
the junctions where floppy bonds concentrate (see the zoom-in image). Right:
Driven by anti-correlated kicks, an initially homogeneous force-percolating network
first develops transient tense states consisting of highly-stretched bundles, but then
abruptly collapses into a single floppy clump.

buckle a filament yet impose strain on the bonds at both ends. Without this

correlation the aster pattern cannot collapse. We display in Fig. 5.8 the snapshots

in the course of aster formation which clearly demonstrate that node aggregation

and coarsening leads to progressively more tight filament bundling and bundle

alignment, a mechanism that operates for both the correlated- and uncorrelated-

kick cases.

5.4 Conclusion and Discussion

We have simulated a microscopic model for the actomyosin cytoskeleton as

a motorized cat’s cradle that combines the asymmetric load response of individual

actin filaments with correlated motor-driven events. This model reproduces the

dependence of active contractility on microscopic parameters observed in reconsti-

tuted actomyosin networks. The simulations allow us to identify several necessary

conditions for active contractility: highly asymmetric load responses of the fila-

ments are needed for local contractile behavior under anti-correlated kicks, and
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a minimal network structure beyond percolation threshold is required to propa-

gate local contraction. Sufficiently cooperative load-resisting motors manage to

drive the system through energy-costly intermediate states and incorporate local

buckling events into macroscopic contraction via a multistage coarsening process.

This numerical study provides an explanation for the formation and con-

tractile dynamics of disordered condensed state of actomyosin in vivo. The fact

that such a simplified model is able to mimic cellular self-organization states and

their contractile dynamics suggests that purely physical interactions contribute to

the regulation of cell and tissue morphogenesis. Nevertheless specific biochemical

signaling events [29] certainly contribute to the localized assembly and activation

of myosin foci such as occurs in cleavage furrow during cytokinesis and in wound

borders.

It is clearly necessary in the future to take into account the excluded vol-

ume effect which is expected to dramatically slow the contractile dynamics at high

crosslink concentrations, thus accounting for the failure to see contractility on lab-

oratory time scales. Long-range hydrodynamic interactions between the node pairs

may also change the qualitative physics. Hydrodynamic correlations should facili-

tate propagation of nearby kicking events and break the continuous symmetry so as

to allow spontaneous directed motion with motor-driven hydrodynamics-mediated

pulsed contractions. Finally, in vivo one must incorporate motor attachment and

detachment and crosslink binding and unbinding for complete realism.

Chapter 5, in full, is a reprint of the material as it appears in the Proceedings

of the National Academy of Sciences 109 6446-6451 (2012), S. Wang and P. G.

Wolynes. The dissertation/thesis author was the primary investigator and author

of this paper.
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[5] Nédélec, F., Surrey, T., Maggs, A. C. & Leibler, S. Self-organization of micro-
tubules and motors. Nature 389, 305–308 (1997).

[6] Hird, S. & White, J. Cortical and cytoplasmic flow polarity in early embryonic
cells of Caenorhabditis elegans. J. Cell Biol. 121, 1343–1355 (1993).

[7] Mayer, M., Depken, M., Bois, J. S., Jülicher, F. & Grill, S. W. Anisotropies
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Figure 5.5: Thresholds for active contractility. (a) Evolution of the statistical
measures for a series of motor susceptibilities (s = 0, 0.01, 0.02, 0.05 and 0.1). Pc =
0.5, Pa = 0.5. When s ≤ 0.02 the fraction of taut bonds and the total energy drop
to essentially zero after surmounting an energy barrier due to tense intermediates.
Mean square displacement (MSD) mounts to a plateau as a consequence of the
formation of a single floppy clump. Smaller s yields a higher barrier and faster
collapse (indicated by arrows). (b) Evolution of the measures for a series of motor
concentrations (Pa = 0.1, 0.2, 0.3, 0.4, 0.5 and 1). Pc = 0.5, s = 0. When Pa ≥ 0.3
global contraction occurs. Larger Pa leads to lower barrier and faster collapse
(indicated by arrows).
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Figure 5.6: Illustrations of the failure of contractility at low network connectivity
or low motor concentration. s = 0. (a) Pc = 0.1. Lack of tension percolation
due to low degree of bonding prevents global contraction. As Pa increases (left to
right: Pa = 0.1, 0.5, 0.8 and 1) system exhibits increasing trend of local aggregation
(lower row) resulting in an increased fraction of floppy bonds (upper row). When
driven by high-concentration (Pa = 1) adamant motors, the initially homogeneous
network exhibits local collapses into disconnected clusters of buckled filaments
(circles mark the typical regions). (b) Pa = 0.1, Pc = 0.5. Sparse and modest local
network distortion (upper) and node aggregation (lower) are insufficient to trigger
global contractile instability.
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Interplay of Pc and Pa in macroscopic contraction 
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Figure 5.7: Interplay of network connectivity and motor concentration in macro-
scopic contraction. s = 0.01. (a) Pa = 0.7, Pc = 0.1, 0.3, 0.5, 0.7: contraction
occurs for intermediate Pc. Larger Pc yields higher “barrier” to collapsed state
since more bond constraints results in more intense tug-of-war. (b) Pc = 0.7,
Pa = 0.1, 0.3, 0.5, 0.7: contraction occurs for intermediate Pa. Larger Pa lowers the
barrier since cooperativity between local contraction events is enhanced.



113

Aster formation 

Figure 5.8: Snapshots in the course of aster formation. Upper row shows the bond
structure: filament bundling evolves from loose to tight. Lower row presents the
corresponding node configuration: aggregation toward the corners of the simulation
box becomes progressively more compact. Pc = 0.3, Pa = 1, s = −0.5.



Chapter 6

Tensegrity and motor-driven

effective interactions in a model

cytoskeleton

6.1 Introduction

The mechanical integrity of eukaryotic cells depends on their cytoskeleton.

The cytoskeleton is made up of a dense network of protein filaments spanning the

cytoplasm. Cytoskeletal networks self-organize into highly dynamic and hetero-

geneous patterns from the interplay between active force generation by molecular

motors and passive dissipation of energy in the crowded cellular interior [1]. Under-

standing the dynamics of such pattern formation remains a challenge to statistical

mechanical theory.

Actomyosin networks are the main components of the cellular contractile

machinery essential for processes as diverse as cytokinesis and wound healing.

Walking on the structural scaffold provided by an actin network, myosin-II motors

themselves self-assemble into bipolar minifilaments that generate sustained sliding

of neighboring actin filaments relative to each other. By carrying out this correlated

motion the minifilaments reorganize the filamentous actin networks and generate

tension ultimately powered by ATP hydrolysis. The formation and coalescence

114
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of actomyosin aggregates to exert contractile forces are manifested in pulsed con-

tractions of an actomyosin network that drive epithelial sheet deformation during

morphogenesis [2, 3]. Such aggregates also are responsible for a multistage coars-

ening process that occurs in a bottom-up model system for contractility which has

been reconstituted in vitro [4].

In reconstituted filament-motor assemblies, relatively regular patterns such

as asters, in which stiff filaments or filament bundles radiate from a common center

[5, 6], arise that resemble the mitotic spindles formed in dividing cells. A polarity

sorting mechanism [5] has been proposed to explain the observed pattern. On

the other hand, irregular heterogeneous cluster structures have been seen both in

the actomyosin networks of C. elegans embryos [7] and in the minimal in vitro

network model [8]. In the in vitro system, clusters of various sizes continuously

change via fusion and rupture events but the distribution of cluster sizes remains

steady. Motor-driven filament sliding and a well-tuned connectivity seem to play

a key role in this nonequilibrium steady state.

In the present work, by looking into the intricate interplay between local

force generation, network connectivity and collective motor action, we seek to

provide a theoretical framework that is capable of accommodating both regular

and heterogeneous pattern formation, as well as arrested coarsening and large-

scale contraction in a unified manner. Our microscopic model is a motorized cat’s

cradle [9, 10, 11, 12] which consists of a crosslinked network of nonlinear elastic

filaments where motors generate equal but oppositely directed kicks at motor-

bonded node pairs. This model encodes two essential aspects of actomyosin self-

organization: first that individual actin filaments have highly asymmetric responses

to loading, resisting large tensile forces but easily buckling under compressive loads.

As a consequence, sheared biopolymer networks exhibit negative normal stresses

[13] comparable in magnitude to the shear stress. Secondly the model captures

the fact that motor-induced node movements come in anti-correlated pairs owing

to the bipolar minifilaments. This anti-correlation mimics the relative sliding of

neighboring parallel filaments driven by the attached motors. Both aspects are

crucial to capturing the formation of a disordered condensed state of actomyosin
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aggregates.

Our coarse-grained model is completely microscopic but bears some resem-

blance to the macroscopic approach adopted by Levine and MacKintosh that intro-

duces force dipoles into an elastic continuum [14, 15] where motor unbinding kinet-

ics leads to enhanced low-frequency stress fluctuations. In the microscopic model

the network connectivity and motor distribution over the bonds of the network are

quenched once initially assigned, so that the nonequilibrium dynamics and struc-

tures predicted by our model arise solely from the intrinsic activity of motors firmly

built into the network driving correlated motions stochastically. This assumption is

in line with the fact that the in vitro structures are irreversibly assembled because

many protein factors found in vivo that allow fast pattern renewals are left out of

the reconstitution, such as disassembly of contractile structures and transience of

actin crosslinking proteins. The model highlights the key role in determining the

course of structural development played by the motor susceptibility, a parameter

characterizing how sensitively the motors respond to imposed forces. The coupling

between motor kinetics and the structure leads to a double-way feedback: Motor

action induces structural changes of the network and thus modifies the local me-

chanical environment of the motors, which in turn changes the load-dependent

motor response.

In the same spirit as our earlier work on the statistical mechanics of sys-

tems with uncorrelated kicks on each node [11, 12], we adopt a master equation

description but treat small-step spatially anti-correlated kicks in order to mimic

contractile-ratchet-like [2, 3] incremental deformations of actomyosin networks.

We again obtain an effective Fokker-Planck equation in the small kick limit. But

the correlations lead to local effective temperature Teff and diffusion coefficients

Deff, which now both become tensors and also depend on the instantaneous local

network structure. More interestingly, anti-correlated kicking leads to a modifi-

cation of the bare interaction. Essentially new forces come into play through the

action of the motors. This motor-induced force depends linearly on the motor

activity to quadratic order in kick step size and decays in space as the inverse

distance in three dimensions, resembling a logarithmically growing potential. By
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treating the motor-bonded node pairs as “functional units” and deriving a pair-

level steady-state solution of the effective Fokker-Planck equation, we demonstrate

that the motor-driven anti-correlated movements of actively-bonded nodes give an

additional effective pair potential that exhibits a strong short-range attraction re-

gardless of motor susceptibility. The original interaction is also still present but is

an enhanced or weakened long-range attraction. For motors with negative suscepti-

bility at sufficiently high activity, the dominant interaction is actually a long-range

repulsion. The relative contributions of the various terms yield a diverse range of

steady-state structures. This decoupling scheme in the mean-field spirit also al-

lows us to perform a self-consistent calculation to evaluate quasi-thermodynamic

phase diagrams. A non-monotonic dependence of the pressure (or tension) upon

the node density (under susceptible motor kicks) indicates the possibility of phase

separation.

To test the validity of the analytical approach, we compare the steady-state

structural features found by Brownian dynamics simulations using the effective

temperature and modified potential (both a tensor-parameter formalism and a

pair-level scalar-parameter formalism) obtained from the steady-state solutions,

with the structural features observed in a dynamic Monte Carlo simulation that is

fully consistent with the master equation at thermal temperature and with bare in-

teractions. We find good quantitative agreement suggesting that a non-equilibrium

system driven by small-step correlated motor kicks can be thought of as being at

an effective equilibrium with modified interactions.

The existence of an effective short-range attraction combined with the pre-

dicted tendency for phase separation suggests that the formation of steady hetero-

geneous cluster structures is an example of arrested phase separation [16, 17]. A

force-percolating network consisting of nonlinear elastic fibers attains rigidity when

local collapse induced by the motor-driven short-range attraction balances the con-

comitant neighboring bond stretching. This initially homogeneous network then

develops into dense clumps connected by highly stretched bonds, and simultane-

ously, compact aggregates phase separate from node-poor regions. The coarsening

process stops once a global balance is achieved, and the pertinent dynamic process
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involves phase separation followed by arrest due to bond constraints. Our model

naturally explains the formation of aster patterns through the notion of an effective

repulsion.

6.2 Theory

In our earlier work [11] we showed how an effective temperature describes

steady-state fluctuations and responses of a model cytoskeleton, treated as an

amorphous network of crosslinked nonlinear-elastic filaments, driven by uncorre-

lated motor kicking events. Here we consider anti-correlated kicks. As sketched

in Fig. 6.1, each motor (myosin minifilament) generates a pair of equal but oppo-

sitely directed displacements (red arrows) at the motor-connected crosslinks/nodes

(purple spheres). These anti-correlated kicks mimic the contractile-rachet-like in-

cremental movements due to myosin-driven relative sliding of neighboring actin

filaments [2, 3]. We point out that myosin motors do not explicitly enter our

model; instead, they are exemplified only through the anti-correlated kicks. The

cartoon in Fig. 6.1 illustrates how these kicks are generated: A myosin minifila-

ment attaches to two otherwise unconnected actin filaments and pulls the node

on either filament toward each other. We then assume, for simplicity, that an

implicitly-motor-attached filament/bond connects the node pair, neglecting the

detailed architecture of the motor-filament composite (as seen in the zoom-out

view in Fig. 6.1 top image). Anti-correlated kicks then act on the nodes at the two

ends of such a (motor-attached) active bond.

The asymmetric load response of individual actin filaments is encoded via

a nonlinear-elastic interaction between the bonded nodes, defined by the pair in-

teraction potential βU(r) = Θ(r − Le)βγ(r − Le)
2/2. Here Θ(·) is the Heaviside

step function and βγ gives the effective stretching stiffness of the filaments with

β = 1/kBT . An energy cost arises only when the contour length r of a bond

exceeds its relaxed length Le. We call this interaction a “cat’s cradle” interaction

[9, 10, 11, 12]. For simplicity, we assume that all the bonds, no matter motor-

attached or not, have the same relaxed length. Since the motor-driven forces
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exceed by far the piconewton-threshold of affordable compressive loads, the in-

duced buckling within a percolating actin network gives rise to a tensegrity struc-

ture composed of collapsed and stretched elements (illustrated in Fig. 6.2): In a

permanently crosslinked network of filaments, such as the in vitro reconstituted

networks, active sliding of filaments is constrained by passive crosslinking, in other

words, local filament or bundle contraction is balanced by the stretching of neigh-

boring filaments. An initially homogeneous network typically then develops into

dense floppy clumps (concentrated short green wiggly lines) connected by highly

stretched filaments (long red straight lines). This phenomenon leads to the forma-

tion of disordered actomyosin condensates [4] and can lead to active contractility

[18].

6.2.1 Quadratic expansion of the master equation: effec-

tive equilibrium with modified potential

Fokker-Planck (FP)/Smoluchowski equation for Brownian particles

Consider a collection of N Brownian particles (i.e. nodes of our model

network) labeled with positional coordinates r⃗i (i = 1, · · · , N). For infinitesimal

step Brownian motion, the configurational probability density Ψ({r⃗i}; t) is locally
conserved and thus satisfies a continuity equation ∂Ψ/∂t = −

∑
i∇r⃗i · J⃗i, where J⃗i

is the probability current density along the coordinate of the ith particle.

For Brownian particles the probability current density is linearly related to

the deviation of the configurational probability density from its equilibrium value

J⃗i = −
∑
j

D0
ij({r⃗i}) · (∇jΨ+ βΨ∇jU) . (6.1)

Here U({r⃗i}) is the thermal equilibrium potential of mean force of the system and

β = (kBT )
−1. The equilibrium distribution Ψeq({r⃗i}) is related to U({r⃗i}) accord-

ing to Ψeq({r⃗i}) ∝ exp[−βU({r⃗i})]. The diffusion coefficients D0
ij are functions of

the system’s configuration and satisfy a generalized Einstein relation with the drag

coefficients ζij reading D0
ij = kBT (ζ)

−1
ij , where D0

ij and ζij are 3× 3 matrices for

each (i, j) pair.
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When divided into self-diffusion and coupled-diffusion parts, the FP equa-

tion ∂Ψ/∂t = L̂0
FP
Ψ becomes

∂

∂t
Ψ({r⃗i}; t) =

∑
i

∇i ·D0
ii · (∇iΨ+ βΨ∇iU)

+
∑
i

∑
j ̸=i

∇i ·D0
ij · (∇jΨ+ βΨ∇jU). (6.2)

Note that the double gradient operation acts explicitly as

∇i ·D0
ij · ∇jΨ = (∇i ·D0

ij) · ∇jΨ+D0
ij : ∇i∇jΨ,

∇i ·D0
ij · (βΨ∇jU) = (∇i ·D0

ij) · (βΨ∇jU) +D0
ij : (β∇iΨ∇jU + βΨ∇i∇jU).

(6.3)

Master equation for motor-driven processes: anti-correlated kicks

To mimic the motor-driven filament sliding in actomyosin networks, we de-

scribe the motors as generating anti-correlated kicks on pairs of crosslinks that pull

in slack locally (Fig. 6.1 middle). Since the linear size of the myosin minifilaments is

small compared to the mean separation between the crosslinks, the anti-correlated

moves can be treated as being along the lines of centers. In view of the segmented

structure of the actin filaments, which consist of periodically arranged subunits

of linear size l (Fig. 6.1 bottom), we therefore assume a fixed kick step size l. l

indicates the amplitude of relative node displacements due to a typical contraction

event. Thus an anti-correlated kick pair acting on nodes i and j can be represented

by a pair of displacements along the line of centers (⃗lij, l⃗j i) = l(r̂ij,−r̂ij), where r̂ij

is a unit vector pointing from node i to node j. These anti-correlated kick pairs

with equal size automatically satisfy momentum conservation on the macroscopic

scale. Yet if we include explicitly the aqueous environment in which the cytoskele-

tal network is immersed, hydrodynamic interactions [19] between the nodes via

the solvent should be taken into account. These interactions might modify the

current simplified picture, and counteract any motor-induced force imbalance on

individual nodes, thus validating momentum conservation on the microscopic scale

as well.
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The dynamical evolution of the many-particle configuration {r⃗i} due to

these motor-driven events can be described by a master equation ∂Ψ/∂t = L̂
NE
Ψ

with

L̂
NE
Ψ({r⃗i}; t) =

∫
Πidr⃗′i

[
K({r⃗′i} → {r⃗i})Ψ({r⃗′i}; t)−K({r⃗i} → {r⃗′i})Ψ({r⃗i}; t)

]
,

(6.4)

where the integral kernel K({r⃗′i} → {r⃗i}) encodes the probability of transitions

between different node configurations. Our earlier description [11, 12] of the motor

kicking rate, k, still applies to current case for correlated kicks, i.e.,

k = κ[Θ(∆U) exp(−suβ∆U) + Θ(−∆U) exp(−sdβ∆U)], (6.5)

where κ is the basal kicking rate and su(sd) denotes motor susceptibility to ener-

getically uphill (downhill) moves, except that now the free energy change ∆U is

due to pairs of displacements. Explicitly we write

L̂
NE
Ψ({r⃗i}; t) =

1

2
κ
∑
i

∑
j

Cij

∫
dr⃗′i

∫
dr⃗′j

×
{
δ(r⃗i − r⃗′i − l⃗ij)δ(r⃗j − r⃗′j + l⃗ij)

×w
[
U(· · · , r⃗′i, · · · , r⃗′j, · · · )− U(· · · , r⃗i, · · · , r⃗j, · · · )

]
Ψ({r⃗′i}; t)

−δ(r⃗i − r⃗′i + l⃗ij)δ(r⃗j − r⃗′j − l⃗ij)

×w
[
U(· · · , r⃗i, · · · , r⃗j, · · · )− U(· · · , r⃗′i, · · · , r⃗′j, · · · )

]
Ψ({r⃗i}; t)

}
.

The factor 1/2 avoids double counting in the summation over all pairs. The quan-

tity Cij, much like an element of a contact map in description of protein structures,

defines whether the node pair (i, j) is connected by an active bond and thus sub-

ject to anti-correlated displacements (⃗lij,−l⃗ij): Cij = Cji = 1 for motor-bonded

pairs while Cij = Cji = 0 for non-bonded pairs. Our description of the rates gives

w[Ui − Uf ] = Θ(Uf − Ui) exp[−suβ(Uf − Ui)] + Θ(Ui − Uf ) exp[−sdβ(Uf − Ui)].

Assuming symmetric motor susceptibility, i.e. su = sd = s, one finds more
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simply

L̂
NE
Ψ({r⃗i}; t) =

1

2
κ
∑
i

∑
j

Cij

×
{
e−sβ[U(r⃗i,r⃗j)−U(r⃗i−l⃗ij ,r⃗j+l⃗ij)]Ψ({· · · , r⃗′i = r⃗i − l⃗ij, · · · , r⃗′j = r⃗j + l⃗ij, · · · }; t)

−e−sβ[U(r⃗i+l⃗ij ,r⃗j−l⃗ij)−U(r⃗i,r⃗j)]Ψ({· · · , r⃗i, · · · , r⃗j, · · · }; t)
}
. (6.6)

We assume that kicks on different pairs of nodes at any given time are uncor-

related. The rates of possible kicking events depend on the instantaneous node

configuration reflecting an assumed Markovian character of the motor dynamics.

There is no angular average due to the definiteness of kicking directions for a given

configuration. Note that the motor power strokes and thus the kick steps are dis-

crete occurring in a stochastic fashion. The correlated motions pull in slack locally

while simultaneously pulling taut neighboring filaments until a global balance is

reached or a macroscopic collapse occurs, depending on whether the motors are

downhill prone (with a large positive s) or load-resisting (with a small or negative

s), respectively.

Quadratic expansion of Eq. 6.6 in kick step size l leads to

L̂
NE
Ψ({r⃗i}; t) =

1

2
κl2
∑
i

∑
j

Cij

×
[1
2
r̂ij r̂ij : ∇i∇iΨ+

1

2
r̂ij r̂ij : ∇j∇jΨ− r̂ij r̂ij : ∇i∇jΨ

+sr̂ij r̂ij : ∇iΨ∇iβU + sr̂ij r̂ij : ∇jΨ∇jβU

−sr̂ij r̂ij : ∇iΨ∇jβU − sr̂ij r̂ij : ∇jΨ∇iβU

+s (r̂ij r̂ij : ∇i∇iβU + r̂ij r̂ij : ∇j∇jβU − 2r̂ij r̂ij : ∇i∇jβU)Ψ
]
.

Notice that
∑

i

∑
j Cij r̂ij r̂ij : ∇i∇i =

∑
i

∑
j Cij r̂ij r̂ij : ∇j∇j, the above expression
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can be rewritten as

L̂
NE
Ψ({r⃗i}; t) =

∑
i

[1
2
κl2
∑
j ̸=i

Cij r̂ij r̂ij : ∇i∇iΨ

+ βsκl2
∑
j ̸=i

Cij r̂ij r̂ij : (∇iΨ∇iU +Ψ∇i∇iU)
]

−
∑
i

∑
j ̸=i

[1
2
κl2Cij r̂ij r̂ij : ∇i∇jΨ

+ βsκl2Cij r̂ij r̂ij : (∇iΨ∇jU +Ψ∇i∇jU)
]
. (6.7)

The definitions in Eq. 6.3 allow us to express L̂
NE
Ψ in the form of the divergence of

a flux plus some extra terms which modify the bare interactions as shown below.

Generalized FP equation for motorized systems: effective temperature

and modified potential

By combining the pure Brownian dynamics (Eq. 6.2) with the nonequilib-

rium dynamics due to correlated motor-driven processes up to O(l2) (Eq. 6.7), we

obtain an effective FP equation with effective tensor parameters (Deff and βeff)

and sitewise modified potentials (Umod)

(L̂0
FP

+ L̂
NE
)Ψ({r⃗i}; t) =

∑
i

[
∇i ·Deff

ii · ∇iΨ+∇i ·
(
Deff

ii · βi
eff

)
·
(
Ψ∇iU

i
mod

) ]
+

∑
i

∑
j ̸=i

[
∇i ·Deff

ij · ∇jΨ

+ ∇i ·
(
Deff

ij · βij
eff

)
·
(
Ψ∇jU

j
mod

) ]
. (6.8)

The effective diffusion constants read

Deff
ii = D0

ii +
1

2
κl2
∑
j ̸=i

Cij r̂ij r̂ij, Deff
ij = D0

ij −
1

2
κl2Cij r̂ij r̂ij. (6.9)

The effective temperatures are given by

βi
eff = β

(
D0

ii + sκl2
∑
j ̸=i

Cij r̂ij r̂ij

)
·
(
D0

ii +
1

2
κl2
∑
j ̸=i

Cij r̂ij r̂ij

)−1

,

βij
eff = β

(
D0

ij − sκl2Cij r̂ij r̂ij

)
·
(
D0

ij −
1

2
κl2Cij r̂ij r̂ij

)−1

. (6.10)
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The modified potentials U
i(j)
mod = U + Λi(j) involve the (additive) modifications Λ

that satisfy

−∇iΛ
i = −

[
∇i ·

(1
2
κl2
∑
j ̸=i

Cij r̂ij r̂ij
)]

·
[(
D0

ii + sκl2
∑
j ̸=i

Cij r̂ij r̂ij
)
β
]−1

,

−∇jΛ
j =

[
∇i ·

(1
2
κl2Cij r̂ij r̂ij

)]
·
[(
D0

ij − sκl2Cij r̂ij r̂ij
)
β
]−1

. (6.11)

We assume that the active connectivity described by {Cij} is quenched

once initially assigned and use the identity that ∇j · (r̂ij r̂ij) = −∇i · (r̂ij r̂ij) =

r̂ij(d−1)/rij, where d is the spatial dimension and rij = |r⃗i− r⃗j|, to obtain explicit

expressions.

Several nontrivial features can be read off from the above expressions (Eqs. 6.8–

6.11):

(1) There is a key difference from the simple situation for uncorrelated

isotropic kicks [11, 12]. In that case an average over kicking directions yields

uniform scalars Teff and Deff which are fully determined by the motor proper-

ties (motor susceptibility s and activity defined as ∆ ≡ κl2/D0) regardless of the

specific structure of the system. Under correlated kicks along the lines of cen-

ters, however, both T eff and Deff become local tensors. These tensors depend

on local network structure (relative position of bonded neighbors r⃗ij) and motor

distribution (quenched active connectivity defined by Cij) about the central node

i. The tensorial nature of the effective diffusion coefficients (Deff) and mobility

(µeff ≡ Deff ·βeff) leads to the diffusive flux not aligning with the density gradient

or the drift flux. Motor-induced modifications to the forces (−∇iUmod) and to the

transport coefficients (Deff and µeff) only have longitudinal components since r̂ij r̂ij

essentially serves as a longitudinal projection operator.

(2) Anti-correlation of the myosin-generated kicks at the two ends of the

actin filaments provides a microscopic basis for the anisotropy of actin diffusivity:

The anti-correlated kicks enhance self-diffusion of individual molecules, whereas

they slow the relative coupled diffusion of motor-bonded molecules (Eq. 6.9). Re-

cent experiments [20] indeed have reported that motor activity can give rise to

cytoplasmic motion that has the appearance of diffusion but is significantly en-

hanced in its magnitude. Such “active” cytoplasmic diffusion could enable rapid
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intracellular transport of matter and information.

(3) To quadratic order in kick step size l, it is easy to show:

(a) Both ∇i (Λ
i/kBT ) and ∇j (Λ

j/kBT ) are proportional to κl2/D0. This

indicates that the motor-induced forces depend linearly on the strength of the

kicking noise relative to the thermal noise in small kick limit.

(b) The inverse effective temperature tensor becomes

βi
eff = β

(
D01+ sκl2

∑
j ̸=i

Cij r̂ij r̂ij

)
·
(

1

D0

)(
1− 1

2

κl2

D0

∑
j ̸=i

Cij r̂ij r̂ij +O(l4)

)

= β

[
1+ (s− 1

2
)
κl2

D0

∑
j ̸=i

Cij r̂ij r̂ij

]
+O(l4)

Anti-correlated kick pairs give rise to effective temperature tensors that depend

on local active connectivity, implying that the speed of heat flow in motor-kicking

directions (Cij ̸= 0 thus Teff ̸= T ) is different from energy flux along motor-free

directions (Cij = 0 thus Teff = T ). Along individual active bonds, as for the

uncorrelated kick case, we have Teff < T if s > 1/2 whereas Teff > T if s < 1/2, as

well as the same detailed balance condition that if s = 1/2 then Teff = T .

Therefore the nonequilibrium system driven by small-step anti-correlated

motor kicks may be described by an effective FP (Smoluchowski) equation at local

effective temperature and with modified interaction potential.

6.2.2 Pair-level steady-state solution

We may ask whether it is still possible to obtain an explicit (but perhaps

approximate) steady-state solution to an effective Fokker-Planck equation with

tensor transport coefficients and modified interaction potential. Existence of such

a solution makes possible the mapping of the system to an equilibrium system even

for this nonequilibrium situation with spatially correlated motorized events. This

mapping thus allows the study of rheological properties within a quasi-equilibrium

framework. The main difficulty in making this mapping arises from the tensorial

nature of the effective temperature which depends on local structures.

To approximate the N -body solution, we employ a decoupling scheme that

reduces the problem to finding the steady states for the diffusion of “functional
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units”. We will first study the simplest case for a single pair of motor-bonded

nodes without hydrodynamic interactions, i.e., neglecting the Dij-related terms.

A straightforward calculation leads to an explicit steady-state solution to this two-

body problem.

Consider a pair of nodes located at r⃗1 and r⃗2. For purely Brownian motion,

the 2-body configurational probability density Ψ(r⃗1, r⃗2; t) evolves according to the

bare Fokker-Planck equation ∂Ψ/∂t = L̂0
FP
Ψ with

L̂0
FP
Ψ =

∑
i=1,2

[
∇i ·D0

ii · ∇iΨ+∇i · µ0
ii · ∇iUΨ

]
. (6.12)

Here the mobility tensor is related to the diffusion tensor simply by a multiplica-

tion of the inverse scalar temperature as µ0
ii = βD0

ii. The steady-state solution

thus obeys the usual Boltzmann law Ψ0
ss ∝ exp[−βU(r12)] where the interaction

potential U only depends on the node separation r12 = |r⃗1 − r⃗2| in the absence of

external fields.

The dynamic evolution of a pair due to anti-correlated motor kicks is de-

scribed by a master equation ∂Ψ/∂t = L̂
NE
Ψ with

L̂
NE
Ψ(r⃗1, r⃗2; t) = κC12

{
e−sβ[U(r⃗1,r⃗2)−U(r⃗1−l⃗12,r⃗2+l⃗12)]

× Ψ(r⃗ ′
1 = r⃗1 − l⃗12, r⃗

′
2 = r⃗2 + l⃗12; t)

− e−sβ[U(r⃗1+l⃗12,r⃗2−l⃗12)−U(r⃗1,r⃗2)]Ψ(r⃗1, r⃗2; t)
}

(6.13)

By combining the pure Brownian dynamics (Eq. 6.12) and the motor-driven

dynamics (Eq. 6.13) we obtain in the small kick limit an effective Fokker-Planck

equation characterized by effective diffusion constants, tensor effective temperature

as well as a modified potential

(L̂0
FP

+ L̂
NE
)Ψ(r⃗1, r⃗2; t) =

∑
i=1,2

[
∇i ·Deff

ii · ∇iΨ+∇i · (Deff
ii · βi

eff) · (Ψ∇iU
i
mod)

]
.

(6.14)

In this two-body case, the effective diffusion tensors, up to O(l2), are given by

Deff
11 = D01+ C12

1

2
κl2r̂12r̂12 = D01+ C21

1

2
κl2r̂21r̂21 = Deff

22. (6.15)

The effective mobility tensors, up to O(l2), are given by

µeff
11 = β

(
D01+ C12sκl

2r̂12r̂12
)
= β

(
D01+ C21sκl

2r̂21r̂21
)
= µeff

22. (6.16)
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The tensor effective temperatures thus read

βeff
1 = βeff

2 = β

[
1+ C12

(
s− 1

2

)
κl2

D0

r̂12r̂12

]
+O(l4).

The modifications to the bare forces are central forces that decay in space as 1/r:

−∇1Λ = C12
κl2

βD0

1

r12
r̂12 , −∇2Λ = C21

κl2

βD0

1

r21
r̂21 = − [−∇1Λ] ,

suggesting the following form of the modified potential

Umod(r12) = U(r12) + C12
κl2

D0

kBT ln(r12) + const. (6.17)

For s = 1/2, the effective temperature becomes uniform scalar again βeff = β1.

The steady-state pair solution thus has precisely the form

Ψss(r12) ∝ exp[−βUmod(r12)]

where Umod is given by Eq. 6.17.

For s ̸= 1/2, we have

βeff · [−∇1Umod] = β

[
1+ C12

(
s− 1

2

)
κl2

D0

r̂12r̂12

]
·
(
−∇1U + C12

κl2

βD0

1

r12
r̂12

)
= β

[
1 + C12

(
s− 1

2

)
κl2

D0

]
[−∇1U ] + C12

κl2

D0

1

r12
r̂12 +O(l4)

(6.18)

and

βeff · [−∇2Umod] = −βeff · [−∇1Umod] . (6.19)

Here we have used the identity r̂12(r̂12 · ∇1U) = ∇1U , since ∇1U is parallel to r̂12

in the two-body situation. We see therefore that we still arrive at a steady-state

solution given by

Ψss ∝ exp

{
− β

[
1 + C12

(
s− 1

2

)
κl2

D0

]
U − C12

κl2

D0

ln(r12)

}
≡ exp

[
−β̄effUeff

]
,

(6.20)

where the scalar inverse effective temperature (β̄eff) and the effective interaction

potential (Ueff) are given by

β̄eff = β

[
1 + C12

(
s− 1

2

)
κl2

D0

]
(6.21)
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and

Ueff = U +
C12 (κl

2/D0)

1 + C12(s− 1/2) (κl2/D0)
kBT ln(r12). (6.22)

Since on the pair level the total force is automatically along the line of cen-

ters, T̄eff becomes effectively a scalar. Thus at the pair level the steady states take

a form consistent with our earlier result for uncorrelated isotropic kicks [11] (note

that here is no 1/d factor that arises from the angular average). The modification

to the bare interaction now, however, yields an additional central force which de-

cays in space as 1/r. In the limit of high motor activity, i.e., ∆ ≡ κl2/D0 ≫ 1,

Eq. 6.22 reduces to Ueff − U ≃ kBT ln(r12)/(s − 1/2). We see the motor-induced

forces can be attractive or repulsive depending on whether the motor susceptibility

s is larger or smaller than 1/2, respectively.

The scaled effective pair potential given by β̄effUeff = βU [1 + C12(s− 1/2)∆]+

C12∆ ln(r12) consists of two terms. The first term indicates that the motor action

may enhance or weaken the long-range attraction, arising from the ordinary bond

stretching in the model cytoskeleton. The sign of this effect depends on the sign

of (s − 1/2). The second effect of the anti-correlated motors is an effective con-

finement potential that promotes further contraction even in the buckling regime.

This term is independent of motor susceptibility. Therefore by varying s we may

distinguish the influences of either term.

Fig. 6.3 displays the profile of the effective pair interaction Ueff (Eq. 6.22)

scaled by the effective temperature β̄−1
eff (Eq. 6.21). As shown in panels (a) and

(c), when the motor susceptibility s is varied the long-range interaction becomes

modified but the effective attraction at small separations is not affected. In con-

trast, increasing the motor activity ∆ not only influences interactions at large

distances but also enhances the short-range attraction, as seen in panels (b) and

(d). Notably, at sufficiently high activity, load-resisting motor kicks (s < 0) may

yield a long-range repulsion, i.e. the slope of the β̄effUeff curve becomes negative

at large r (see two lowest curves in panels c and d). As a consequence, an energy

barrier (indicated by the red arrow) appears at intermediate distances, indicating

the tendency for node separation and thus bond stretching that ultimately leads

to aster formation observed in simulations.
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6.2.3 Self-consistent phonon (SCP) calculation: possibility

of phase separation

The pair-level steady-state solution derived above allows us to obtain the

effective pair potential and self consistently determine the Debye-Waller factor

of the localized nodes using the self-consistent phonon (SCP) method [21]. It is

straightforward to derive the effective potential associated with a “cat’s cradle”

with excluded volume [10], i.e., a system where the nonlinear bonds (with an effec-

tive stiffness βγ) stretch elastically when their contour length exceeds the relaxed

length Le but that buckle upon shortening too much. We assume a negligibly small

hard core size (σ) for comparison with simulations. We assign two mean-field pa-

rameters to characterize the network architecture: (1) network connectivity, Pc,

which denotes the fraction of nearest-neighbor pairs that are bonded by filaments;

(2) motor concentration, Pa, which indicates the fraction of active bonds that are

attached by motors and thus induce anti-correlated kicks on the connected node

pairs.

By using the independent oscillator approximation which yields sitewise de-

coupling of the particles, the free energy (due to configurational degrees of freedom)

is expressed as a sum of the effective potentials between the interacting density

clouds

βVeff(|r⃗i − r⃗ f
j |;αj) = − ln

∫
dr⃗jρj(r⃗j)e

− 1
2
βU(r⃗i−r⃗j), (6.23)

which essentially averages the Mayer f-bond, exp [−(1/2)βU(r⃗i − r⃗j)], over the

location of the r⃗j particle with an assumed Gaussian density distribution about

the fiducial position r⃗ f
j

ρ(r⃗j, r⃗
f
j ) =

(αj

π

)d/2
e−αj(r⃗j−r⃗ f

j )2 , (6.24)

where d is the spatial dimension of the system.

Self consistency requires that the effective potential mimics the harmonic

comparison potential. Thus the curvature of the effective potential must coincide

with the phonon frequency or spring constant of the Einstein harmonic oscillators.
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This gives a coupled set of self-consistent equations for {αi}

αi =
1

2d

∑
j

Tr[∇∇Veff(|r⃗ f
i − r⃗ f

j |;αj)]. (6.25)

In the present work the force constants {αi} will be taken to be equal. This is an

effective medium approximation.

For a cat’s cradle with excluded volume and subject to correlated motor

kicks described by the pair-level interaction (Eqs. 6.21–6.22), the effective potential

β̃effṼeff can be expressed as

e−β̃effṼeff(R,α) =

√
α

π

1

R

∫ ∞

0

dww
[
e−α(w−R)2 − e−α(w+R)2

]
× f(w), (6.26)

where the function f(w) encodes the pair interaction depending on whether the

nodes are bonded and whether the bond is motor-attached. f(w) can be written

in terms of the Heaviside step function Θ(x) as follows

f(w) = (1− Pc)Θ(w − σ)

+Pc(1− Pa)
[
Θ(w − σ)Θ(Le − w) + Θ(w − Le)× e−

1
4
βγ(w−Le)2

]
+PcPa

[
Θ(w − σ)Θ(Le − w)× w−∆/2

+Θ(w − Le)× w−∆/2e−
1
4
βγ[1+(s−1/2)∆](w−Le)2

]
. (6.27)

Here the first line denotes the interaction between non-bonded pairs where only

hard-core repulsion enters (σ stands for the hard-core diameter); the second line is

due to the interaction between passively-bonded pairs where elastic bond stretching

takes place beyond Le; the third line accounts for the interaction between actively-

bonded pairs where anti-correlated motor kicks induce an effective attraction even

in the buckling regime (σ < w < Le) and yield an effective bond stiffness that

depends on motor activity and susceptibility.

Fig. 6.4 shows the profile of the effective potential β̃effṼeff(R, α) given by

Eq. 6.26 at various values of motor activity (∆) and susceptibility (s). Panel

(a) illustrates the logarithmically growing potential at small separations due to

motor-induced effective attraction, and the quadratically increasing potential at

large distances due to ordinary bond stretching. Under susceptible motor kicks
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(s = 1), both the short-range and long-range attractions become enhanced as the

motor activity increases. The dashed line marks the location where the elasticity

of individual filaments sets in (i.e. R = Le). A zoom-in view of the small-R region

in panel (a) close to the elasticity onset (shaded region) is presented in panel (b).

This figure clearly shows that the effective average potential increases monotoni-

cally with increasing separation; there is no inflection point or kink in the potential

profile which would kinetically slow binding. Thus no difficulty is expected for ini-

tial aggregation, as evidenced by simulations. For load-resisting motors (panel c),

however, as the motor activity increases, long-range attraction apparently becomes

weakened due to a higher Teff, while the susceptibility-independent short-range at-

traction still gets stronger. No finite α solution can be stabilized when the motor

activity gets too high (∆ > 1), signaling the development of spatial heterogeneity.

Inhomogeneous/Site-dependent α solutions should recover the energy barrier at

high motor activity, as seen for the pair-level solution (Fig.3c and d). We demon-

strate in panel (d) how the effective potential changes with motor susceptibility.

As expected, varying s has little effect on the effective attraction at short dis-

tances (more clearly seen in the inset), yet increasingly susceptible motors greatly

strengthen the long-range attraction.

In our model, given the asymmetric load response of the nonlinear elastic

bonds, the effective attraction between motor-bonded nodes may well drive phase

separation of a force-percolating network into dense clumps against voids, i.e. local

condensates of contracted bonds (analogous to the droplets of the condensed phase)

connected by stretched bonds (associated with surface tension of the droplets), as

sketched in Fig. 6.2. Spontaneous formation of disordered aggregates has indeed

been observed in reconstituted actomyosin systems [4, 18]. Computer simulations

of the model network when subjected to correlated motor kicks also show that sub-

stantial spatial heterogeneity develops when we started from a uniform distribution

of motors over an isotropic network (see Fig. 6.5e for an example).

One thermodynamic indicator of phase separation is a non-monotonic de-

pendence of the pressure upon the density of the constituents. We thus examine

how the pressure varies with the node density using the self-consistently determined
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phonon frequency. To avoid structural complexity we perform the calculations on

regular lattices, yet we expect the same qualitative behavior for random lattices

where an isotropic radial distribution function for the fiducial configurations can

be obtained from simulations. The pressure p for a simple cubic lattice with a

lattice constant R and a total number of N nodes at the ambient temperature T

can be evaluated by numerically differentiating the free energy F as given by

p = − 1

3R2

(
∂

∂R
F

)
T,N

kBT, (6.28)

where F = zβ̃effṼeff(R, α; ∆, s) with coordination number z = 6 for a simple cubic

lattice. The dependence of pressure upon motor properties arises from the effec-

tive interaction encoded through f(w) (Eq. 6.27) and from the self-consistent α

solution.

[Note that since we have ignored the influence of motor-induced effective

interaction on the fiducial structures, the SCP calculation may overestimate the

instability threshold of the homogeneous state in terms of motor susceptibility s.

Nevertheless, given the perturbative nature of the pair solution, any quantitative

deviation should be modest.]

6.3 Simulations

To test the validity of the idea of using local effective temperature along with

a modified potential for the motorized system, we have performed three types of

simulations and compared the resulting steady-state structures. These simulation

models are:

(1) Brownian dynamics simulations using a tensor -parameter Langevin

equation consistent with the effective Fokker-Planck equation (Eq. 6.8)

(2) Brownian dynamics simulations at T̄eff (Eq. 6.21) and with a modified

potential Ueff (Eq. 6.22) using a scalar -parameter Langevin equation based on the

pair-level steady-state solution

(3) Stochastic simulations incorporating anti-correlated kicks along individ-

ual active bonds as chemical reaction channels, at bath temperature T and with

the bare interaction potential U({r⃗i}). This is of course the most realistic model.
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6.3.1 Simulation setup

We investigate a model cytoskeleton that consists of nonlinear elastic fila-

ments subjected to anti-correlated kicks on the motor-bonded node pairs. The bare

interaction U(r) between bonded nearest-neighbor pairs is taken to be of the cat’s

cradle type defined earlier, i.e. βU(r) = Θ(r − Le)βγ(r − Le)
2/2. The assumed

weakness of the excluded volume effect allows large-scale structural rearrangements

to occur rather readily.

We build the model network on a simple cubic lattice to avoid structural

complexity, and connect the nearest-neighbor nodes with nonlinear elastic bonds

at a given probability Pc. Note that despite the regular lattice structure, disorder

is still inherent in the randomness of bond connectivity for a partially connected

network (Pc < 1). In most of the cases that we will study, we assume Pa = 1, i.e.,

all the bonds are motor-attached. The bond connectivity and motor distribution

are quenched once initially assigned; there are no bond or motor rupture events.

We choose the filament relaxed length Le to be larger than the lattice spacing

(set as the length unit in simulations), so that the initial homogeneous network

is completely floppy with no tense bonds at all. The system size is N = 63 and

periodic boundary conditions are applied.

Since we are interested in the steady-state behavior at an effective equilib-

rium, we have chosen a kick step size that is sufficiently small such that higher

order contributions to the l-expansion are not significant. On the other hand, the

kick size is large enough such that the motor-induced effective interaction out-

competes the thermal randomization. What affects the dynamics and structural

development is the dimensionless motor activity or Péclet number ∆ ≡ κl2/D0

which describes the relative strength of the motor kicking noise with respect to the

thermal noise. Since in Brownian dynamics formalisms the motor kicking rate κ

and the kick step size l always appear in combination as κl2, an appropriate kick-

ing rate has been chosen such that ∆ > 1 yet no instability occurs. [In stochastic

simulations, however, a higher basal kicking rate κ yields a faster approach to the

steady state without influencing the steady-state features, since the basal kicking

rate does not affect the relative probability of different kicking events.]
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Brownian dynamics (BD) simulations [22] have been implemented via the

position Langevin equation ∆r⃗i(t) = µi
eff · (−∇iUmod)∆t+ R⃗eff

i (∆t), where R⃗eff
i (∆t)

represents the random motion due to thermal noise. The tensor formalism is

equivalent to the effective Fokker-Planck equation (Eq. 6.8) yet without hydro-

dynamic interactions. The total mobility of node i is given by µi
eff = β(D01 +

sκl2
∑

j Cij r̂ij r̂ij), and the modified interaction force (−∇iUmod) comprises the to-

tal mechanical force (−∇iU) acting on node i and the effective interaction (−∇iΛ)

given by Eq. 6.11. The movement due to motor-induced effective attraction thus

follows µi
eff · (−∇iΛ) = κl2

∑
j Cij r̂ij/rij to quadratic order in l. The scalar formal-

ism, based on the pair-level steady-state solution (Eq. 6.20), sums up the contribu-

tion from individual bonded neighbors j, i.e., µi
eff · (−∇iUmod) →

∑
j µ

ij
eff · F⃗

ij
mod =∑

j β(D0 + Cijsκl
2)F⃗ ij(rij) + κl2

∑
j Cij r̂ij/rij, where F⃗ ij(rij) is the bare interac-

tion force between node i and its bonded neighbor j. The stochastic dynamics

governed by the full master equation (Eq. 6.6) has been realized by implementing

dynamic Monte Carlo simulations [23] that obey the model kinetic rate (Eq. 6.5).

For making comparisons between the various simulation schemes, we en-

sure that all runs utilize the same lattice structure, bond connectivity and motor

properties. Converging steady-state behavior would then validate the picture of an

effective equilibrium at the effective temperature and with the modified interaction

as predicted by the expansion.

6.3.2 Illustrations

Validity of an effective equilibrium and arrested phase separation

An explicit way to test the validity of picturing the non-equilibrium system

driven by small-step motors as being at an effective equilibrium is to compare the

steady-state characteristics resulting from the three types of simulations that we

described above.

At a modest kick step size (l = 0.03), all three simulation schemes lead to

quite similar steady-state behavior despite disparate dynamics toward the steady

state. The structural characteristics include (1) the mean squared node displace-

ment (MSD) with respect to the initial regular configuration and (2) the amplitude
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of the innermost peak of the pair distribution function (PDF) which reflects the

strength of aggregation. The PDF is defined as PDF(r) = Cδn(r, r + δr)/r2δr

where δn(r, r+δr) counts the number of particles within an interval δr at a distance

r from the central particle, and the numeric factor C takes care of normalization.

Both of these measures are almost identical for all the three schemes; they saturate

to the same steady-state plateau value (see Fig. 6.5c, d). The PDF profile in the

main panel of Fig. 6.5d is obtained by averaging over a wide steady-state time

window. Note that the compact aggregation, reflected in the steep rise of the PDF

in the vicinity of the central node (i.e. the dominant peak at the minimum sepa-

ration), results from the motor-induced short-range attraction in addition to the

absence of excluded volume. The inset shows the time evolution of the aggregation

strength. The slight disparity in the potential energy (Fig. 6.5a) and the fraction

of taut bonds (Fig. 6.5b) seen in each simulation might arise from the perturbative

nature of the expansion as well as from the difference in dynamics. As the kick

step size increases we would expect larger deviations. The close resemblance of the

steady-state node configurations and bond structures between different schemes

(Fig. 6.5e) lends explicit support to the equivalence of the three schemes in the

small kick limit, thus validating the picture of an effective equilibrium with modi-

fied interactions.

To demonstrate the arrested phase separation, as anticipated from our the-

ory, the network connectivity has been chosen to be sufficient for tension percola-

tion yet moderate enough to allow considerable local force asymmetry (Pc = 0.4,

i.e. z = 2–3). The initial network is completely floppy (in green) with no tense

bonds (in red) at all and the nodes sit on a simple cubic lattice (Fig. 6.5e left panel).

As shown in the right panels of Fig. 6.5e, under anti-correlated susceptible motor

kicks, the active nodes (those with motor-attached bonds; shown as red spheres)

begin to aggregate and tend to separate from the passive nodes (those with no

motor-attached bonds; shown as blue spheres). The corresponding network struc-

ture exhibits clumps of floppy bonds (concentrated short green lines) connected

by tense bonds (long red lines). The overall rigidity of the structure is protected

by susceptible motors which tune the balance between local bond contraction and
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neighboring bond stretching such that energetically unfavorable tense states are

avoided.

The arrested phase separation builds up as follows: Susceptible motors

enhance the potential gradient via an (s-dependent) effective temperature, since

Teff < T along the kicking direction if s > 1/2. This leads to an enhanced long-

range attraction and thus strengthens the initial trend of aggregation among the

motor-bonded nodes. The motor-induced short-range attraction then efficiently

makes the aggregates become compact, yielding a phase separation of an initially

homogeneous structure into node-rich and node-poor regions. In analogy to the

nucleation of liquid drops within an initially homogeneous gas, where large surface

tension serves as the driving force to form a bulk condensed phase, in our pic-

ture, local aggregates correspond to the droplets of the condensed phase whereas

the stretched bonds connecting the aggregates contribute to the surface tension.

Therefore, an ensuing coarsening process serves to reduce the surface area via coa-

lescence of local aggregates into larger condensates. Once a balance between local

bond contraction and neighboring bond stretching (given a force-percolating net-

work structure) is achieved, the coarsening process stops and the structure does not

evolve any further (as reflected in the plateau of the aggregation strength shown in

Fig. 6.5d inset). The system ends up with an arrested heterogeneous structure with

compact aggregates/dense clumps coexisting with voids/dilute regions (Fig. 6.5e

right panels); only moderate fluctuations about the arrested structures have been

observed. Therefore, local force asymmetry is necessary for the initiation of phase

separation while force percolation is essential for achieving global balance and thus

the eventual arrest.

In Fig. 6.6 we demonstrate how the concentration Pa (and thus the co-

operativity) of susceptible motors (s = 1) affects the tenseness and structural

organization of the network. Parameters are chosen such that the system is in the

regime of arrested phase separation at sufficiently high Pa. Shown in panel (a), the

overall trend of a decrease in the fraction of taut bonds as Pa is raised is apparent.

This results from increasing cooperativity in local force generation. Particularly

noteworthy, however, is the presence of a kink near Pa = 0.7, which separates two
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descending branches (I: Pa = 0.5–0.7 and II: Pa = 0.8–1 as marked in the figure).

In stark contrast, the aggregation strength (i.e. the amplitude of the first peak

of the radial distribution function) exhibits a highly non-monotonic dependence

on Pa, which is sharply peaked at Pa = 0.6 (see panel b). The total energy (not

shown) shows a similar trend as Pa varies. To understand these trends, we visualize

the steady-state bond structures and corresponding node configurations in panel

(c). These simulated configurations reveal two distinct regimes characterized by

different “strategies” to reduce the number of taut bonds: At intermediate motor

concentrations (corresponding to branch I), as Pa rises, an increasing number of

floppy bonds are formed at the aggregation centers, at the cost of fewer but even

more strongly stretched inter-clump filaments due to more compact node aggrega-

tion, as most clearly seen for Pa = 0.6 in panel (c), where the corresponding aggre-

gation strength of nodes reaches its peak value (indicated by arrow). At sufficiently

high motor concentrations (branch II), however, cooperative motor processes tend

to minimize the overall tenseness by buckling as many bonds as possible at the

same time avoiding too strong stretching. The resulting structure is thus rich in

moderately buckled bonds and consists of large floppy clumps connected by sparse

tense bonds (see Pa = 1 case in panel c). The aggregation strength decreases with

increasing Pa in this highly cooperative regime. Such an interesting dependence of

structural development on motor concentration vividly demonstrates the intricate

interplay of local force generation and collective motor action.

Effective attraction

To demonstrate the effect of motor-induced short-range attraction, we choose

a network connectivity that is below the percolation threshold (Pc = 0.2). In the

absence of global force percolation, when driven by spatially anti-correlated mo-

tors kicks, the initially homogeneous and entirely floppy network (Fig. 6.7c upper

left panel) develops into isolated floppy clumps (Fig. 6.7c lower panels), regard-

less of motor susceptibility. Under susceptible motor kicks (s = 1), it becomes

evident that further contractions of the already buckled bonds (with typical spots

marked by circles in Fig. 6.7c lower left panels) arise solely from the effective
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short-range attraction due to motor processes. On the other hand when driven

by load-resisting motors (s = −0.5), the anti-correlation in movements causes col-

lapse of the transiently stretched bonds (Fig. 6.7c lower right panels). Adamant

motor kicks (s = 0) lead to a similar transient structure (with fewer tense bonds

though) and the eventual collapse (Fig. 6.7c lower middle panels). Therefore in a

non-percolating network driven by anti-correlated kicks, despite the very different

dynamics due to differing motor susceptibility, similar steady state structures are

reached. The complete collapse of all the individual clumps is characterized by a

vanishing total potential energy after the initial transients (Fig. 6.7a) and a sig-

nificant aggregation strength that saturates to a steady-state plateau (Fig. 6.7b)

once isolated condensates form.

In contrast, the control run with pure thermal motion presents a consid-

erable fraction of taut bonds (Fig. 6.7c upper right panel) and thus maintains a

finite potential energy (grey curve in Fig. 6.7a). The bond structure and node

configuration remain largely homogeneous, exhibiting modest density fluctuations

and a vanishingly small aggregation strength (grey curve in Fig. 6.7b).

Note that the illustrations for effective attraction shown here are obtained

using fully stochastic simulations. The effective Brownian dynamics schemes give

similar steady state structures composed of isolated floppy clumps only for sus-

ceptible motor kicking. For load-resisting motors that give rise to an effective

long-range repulsion, however, a distinct behavior is seen (detailed below), high-

lighting the significance of correlation in motion for structural development.

Effective repulsion

Another interesting case arises when the motor susceptibility becomes neg-

ative. In this case a negative effective temperature yields an effective repulsion at

sufficiently high motor activity (refer to Eqs. 6.21–6.22). As shown in Fig. 6.8(a),

starting with an entirely floppy network (upper row), enhanced bond stretching

coming from thermally induced fluctuations in bond length giving local force asym-

metries, eventually gives rise to highly tense and ordered aster patterns (lower row)

at steady state. Aster formation occurs when the effective repulsion that promotes
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node separation and thus bond stretching dominates over the effective attraction

that drives the opposite; removal of the short-range effective attraction does not af-

fect aster formation, but indeed does disrupt efficient aggregation (see Fig. 6.11e).

Consistent with our earlier results for uncorrelated kicks [12], the effective Brown-

ian dynamics simulations also give sustained aster patterns. These patterns cannot

collapse due to the absence of pairwise anti-correlation in motion; since at each

move in Brownian dynamics, an individual node sees only an effective potential

due to all its neighbors, the pairwise correlation is virtually lost. Such pairwise

anti-correlation is crucial for active contractility as we showed elsewhere [24]. This

anti-correlation, however, is captured by complete Monte Carlo simulations where

anti-correlated move pairs are treated as reaction channels and executed at each

MC step.

Fig. 6.8 also highlights the architectural and dynamical ingredients required

for the formation of connected tight asters that consist of tense bundles radiating

from the common center. Panel (a) illustrates the necessity of a sufficient network

connectivity for force transmission and bundle compaction; at low connectivity

(Fig. 6.8a left) only individually separate tense bundles are formed. Panel (b)

depicts that a high motor kicking rate is needed to defeat thermal spreading and

thus to facilitate filament or bundle alignment.

Aster formation finds a natural explanation in our model when we use the

notion of the effective long-range repulsion that we have derived. In Fig. 6.9 we

show the mean-field indications, obtained by SCP calculations (described in section

II.C), of how the concentration (Pa) of load-resisting (s = −0.5) motors affects the

long-range interactions. As clearly seen in panel (b), as Pa increases the long-

range attraction due to bond stretching considerably weakens. Accordingly, the

localization strength α of individual nodes (panel a) and the tension (−p) within

the network (panel c) are both strongly suppressed. At Pa = 0.8, the profile of

the effective potential becomes almost flat at large distances (red arrow in panel

b), indicating a vanishing restoring force. Consistently, α becomes vanishingly

small at large R (panel a) and the overall tension decays to zero (red arrow in

panel c), because the bond constraints are hardly felt when load-resisting motors
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counteract the tendency to contract. Yet higher motor concentration still enhances

the effective short-range attraction (small-R region in panel c) as expected.

Effect of motor activity and susceptibility in phase separation: mean-

field indications

By performing the self-consistent phonon calculation, we find mean-field in-

dications for the phase separation observed in the simulations and experiments. In

particular, such calculation allows us to examine how the changes in motor activity

affect the tendency to phase separate which can be tested against simulations. We

choose the length unit to be 100σ (such that the excluded volume effect plays a

negligible role in phase separation) and vary the mean separation R between the

nearest neighbors, i.e. the lattice spacing of the simple cubic lattice.

At sufficiently high motor susceptibility (s > 0 for ∆ = 1; Fig. 6.10b lower

panel), we observe a non-monotonic dependence of the tension (−p), i.e. negative

pressure, on the mean separation R, clearly indicating the necessity of some kind

of phase separation into node-rich and node-poor regions.

For susceptible motors with s = 1 (Fig. 6.10a), varying the motor activity

∆ affects both the short-range (small R) and the long-range (large R) attractions:

increasing motor activity (as indicated by dashed arrows) leads to stronger local-

ization of individual nodes (upper panel) and a larger tension in favor of stronger

aggregation (lower panel). In particular at small R where the bonds are buckled,

effective attraction arising from motor-driven contractions (∼ ∆ log r) dominates,

yielding further aggregation of the loosely connected nodes. This behavior is most

clearly manifested for a sparsely connected network where lack in bond constraints

allows the formation of isolated aggregates, as shown earlier in Fig. 6.7c.

Using Brownian dynamics simulations, we study the dependence of aggre-

gation strength upon motor activity for force-percolating networks (Pc = 0.4). The

statistical measures and steady-state structures (labeled by Teff/T ) are displayed

in Fig. 6.11. Increasing motor kicking rate κ (note ∆ ∝ κ) apparently enhances

the trend toward phase separation (panel d) and promotes stronger aggregation

(panel c and d), supporting the mean-field prediction. Both the fraction of taut
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bonds (panel a) and the total energy (panel b) decrease with increasing kicking

rate due to a lower Teff.

As we pointed out earlier in deriving the effective pair potential, varying

motor susceptibility s affects only the long-range interaction (via Teff), as shown in

Fig. 6.10b. For a given lattice spacing, increasingly susceptible motors (indicated

by dashed arrows) drive stronger attraction (lower panel) and enhance localiza-

tion of individual nodes (upper panel), as well as yield a stronger tendency for

phase separation, as reflected in the increasingly non-monotonic dependence of the

tension on density change as s increases (lower panel).

Self-consistent phonon calculations also allow us to determine a quasi-

thermodynamic stability diagram. In Fig. 6.12 we present the stability diagram

in the Pc-Pa parameter plane for susceptible (s = 1), adamant (s = 0) and load-

resisting (s = −0.5) motors. Below the stability boundaries (colored lines), the

pressure depends non-monotonically on the mean particle separation. This indi-

cates the tendency toward phase separation. Above the boundaries, there are no

stable α solutions , or that the tension (or negative pressure) decreases monotoni-

cally with increasing particle separation. As the motor susceptibility increases, the

instability region (shaded area) expands toward lower Pc and higher Pa, suggest-

ing that susceptible motors promote phase separation. Since motor susceptibility

affects only the long-range interaction via Teff at high Pc, where bond stretching

stabilizes finite α solutions, small or negative s may lead to an effective repulsion

that counteracts the trend of attraction thus eliminating the non-monotonicity in

pressure, or else destabilizes α solutions by offsetting the restoring force. Conse-

quently, the stability boundary at large Pc shifts toward lower Pa as s decreases.

To determine whether the non-monotonicity in pressure indeed corresponds

to phase separation, we need to examine heterogeneous/site-dependent α solutions;

a bimodal distribution of stable α values would then indicate that localized dense

regions phase separate from mobile dilute regions. We hope to investigate this

aspect in an upcoming work and thus provide more quantitative arguments for the

surface tension associated with stretched bonds connecting floppy clumps. Such an

analysis should allow us to determine the “droplet” size for the condensed phase
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when bond-constraint-induced arrest occurs.

To summarize our results in Fig. 6.13 we outline the diverse patterns formed

at various network connectivity (Pc) for susceptible (s > 0) and load-resisting

(s < 0) motors. This figure delineates where there are contrasting results from

complete MC simulations to those obtained from BD simulations using the effec-

tive pair interaction. As we mentioned before, the Monte Carlo schemes explicitly

incorporate pairwise anti-correlation by treating move pairs as reaction channels,

while in the effective Brownian dynamics schemes the total effective potential act-

ing on individual nodes from all the neighbors smears out the pair correlation.

This disparity between the predictions of the two schemes does not affect the

active patterning by susceptible motors (Fig. 6.13a). In that case the effective at-

traction provides the dominant mechanism for aggregation and phase separation.

MC and BD simulations give converging results: Below the percolation threshold

(marked by the vertical line) isolated floppy clumps form, whereas at intermedi-

ate Pc above the threshold arrested phase separation occurs. For load-resisting

motors (Fig. 6.13b), however, correlation in motion plays a key role in structural

development, because in this case an effective long-range repulsion dominates over

the short-range attraction and governs the pattern formation. Anti-correlation in

movements gives rise to collapse of the tense intermediates which is essential for

active contractility/macroscopic contraction [24]. If there is no anti-correlation

collapse does not occur. As a result, the tense bundles (for non-percolating case)

and connected asters (for percolating case) are maintained as long-time steady

state structures. At sufficiently high connectivity, the bond constraints are too

strong to allow significant local force asymmetry, thus a balanced tug-of-war be-

tween motor-attached filaments prevents the formation of heterogeneous cluster

structures, and instead leads to a largely homogeneous structure with moderate

fluctuations (rightmost regime in both panels a and b), regardless of the motor

susceptibility or correlation in motion.

Also we note that the Brownian dynamics simulations for load-resisting

motors exhibit similar behavior to that coming from uncorrelated isotropic kicks

as we studied earlier [12]: Both simulations generate sustained aster patterns that
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do not collapse, exemplifying a negative effective temperature. For susceptible

motors, however, the dependence of Teff and the effective attraction on the instan-

taneous local network structure hinders the system from achieving global concerted

movement. There is thus no spontaneous flow or oscillating behavior that presents

for the uncorrelated kick case [12]. A similar absence of a flow transition has also

been found for a contractile nematic model recently studied analytically [25] and

numerically [26].

6.4 Conclusion and discussion

We are now in a position to recapitulate how the intricate interplay between

local force generation, network connectivity and collective action of motors gives

rise to regular and heterogeneous patterns, arrested coarsening and macroscopic

contraction: A sufficient connectivity is required for forces to percolate so that local

motor-induced stresses and resulting deformations can propagate significant dis-

tances through the network. Given a force-percolating structure, downhill-prone

motors yield heterogeneous/disordered cluster structures, exemplified as an ar-

rested phase separation in the absence of bond or motor rupture events; whereas

load-resisting motors may drive large-scale contraction by surmounting a high en-

ergy barrier constituted by tense intermediates. Anti-correlation in movements is

essential for collapse of the intermediate tense states in approach to the eventual

large-scale contraction; in the absence of correlation in movements, as is the case for

Brownian dynamics simulations and for our earlier studies on uncorrelated kicks

[12], the stretched bundles cannot collapse and no contractile structures result,

thus the aster pattern is maintained as the steady-state structure.

The notion of effective interaction provides a natural explanation for the ag-

gregation and coalescence of actomyosin condensates: enhanced long-range attrac-

tion facilitates initial density fluctuations; effective attraction at short distances

especially in the buckling regime, arising purely from motor-driven contractions,

then promotes efficient aggregation by drawing nearby nodes or condensates even

closer. Whereas an effective repulsion can originate from a negative motor suscep-
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tibility, and in turn a negative effective temperature allows the formation of aster

patterns in the absence of correlation in node movements.

Our finding may suggest a new mechanism for aggregation of active gels:

local force asymmetry and disorder (structurally inherent or thermally generated)

trigger local aggregation which is further enhanced by an effective attraction due

to correlated motor kicks; force percolation combined with the tendency to reduce

surface tension associated with the stretched bonds leads to coarsening of local

aggregates; when the balance between local bond collapse and neighboring bond

stretching is reached, the system forms an arrested structure composed of floppy

clumps connected by tense bonds. The pertinent dynamic process involves phase

separation into node-rich and node-poor regions followed by arrest due to bond

constraints.

We also generalize the concept of effective temperature to non-equilibrium

many-body systems driven by correlated small-step motor kicking events. Explicit

simulation tests lend support to the validity of picturing such systems as being at

an effective equilibrium with modified interactions.

Chapter 6, in full, is a reprint of the material as it appears in the Jour-

nal of Chemical Physics 136 145102 (2012), S. Wang and P. G. Wolynes. The

dissertation/thesis author was the primary investigator and author of this paper.
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Figure 6.1: Schematic illustration of the spatially anti-correlated kicks acting on
motor-bonded node pairs. (Central image) A bipolar myosin minifilament pulls in
slack locally, generating a pair of equal size (l) but oppositely directed displace-
ments (red arrows) at the motor-bonded nodes (purple spheres) along their line of
centers, where r̂ij is a unit vector pointing from node i to node j. Upon zoom-
out, this represents a typical functional unit (marked by a dashed circle in the
top image) that generates incremental contractions within a crosslinked filamen-
tous network. An enlarged view of the actin filament (bottom image) reveals its
segmented structure. The size l of the subunits determines the magnitude of the
relative node displacements due to contraction events of myosin sliding. l is thus
taken to be the step size of anti-correlated kicks in our model.
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crosslink
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Figure 6.2: Cartoon of the tensegrity structure composed of collapsed and
stretched elements. In a crosslinked network of filaments, active filament sliding is
stabilized by passive crosslinking. A tensegrity structure is formed once a global
balance between local contraction and neighboring bond stretching is achieved.
An initially homogeneous network then develops into dense floppy clumps (con-
centrated green wiggly lines) connected by highly stretched filaments (long red
straight lines).
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Figure 6.3: Profile of the modified interaction given by the pair-level steady-
state solution. We plot the effective interaction Ueff (Eq. 6.21) scaled by effective
temperature β̄−1

eff (Eq. 6.22) for various motor activity (∆) and susceptibility (s). At
sufficiently high activity, load-resisting (s = −0.3) motors may yield a long-range
effective repulsion, an energy barrier (indicated by a red arrow in panel d) thus
appears at intermediate distances, suggesting the tendency for node separation
and thus the bond stretching that occurs in aster formation. (a) and (c): s =
1, 0.5, 0,−0.2 and −0.3. (b) and (d): ∆ = 0, 0.5, 1, 2 and 4. Common parameters
are Le = 1.2, βγ = 5, Pc = 0.4, and Pa = 1.
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Figure 6.4: Profile of the effective pair interaction (Eq. 6.26) obtained by the
self-consistent phonon calculation. (a) Susceptible motors (s = 1) with increasing
activity ∆ enhance the long-range attraction and strengthen the short-range effec-
tive attraction. (b) A zoom-in view of the small-R region close to the elasticity
onset (dashed line) in panel (a) showing the absence of kink or inflection point in
the potential profile. (c) Adamant motors (s = −0.3) weaken the long-range at-
traction. No stable α solution is found if the motor activity gets too high (∆ > 1).
(d) Varying motor susceptibility does not affect the short-range effective attrac-
tion (inset), but increasingly susceptible motors (bottom to top) lead to a stronger
long-range attraction. Common parameters are Le = 1.2, βγ = 5, Pc = 0.4, Pa = 1.
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Figure 6.5: Testing the validity of the effective equilibrium approximation: a
comparison of three simulation schemes. Statistical characteristics and steady-
state structures for a partially and randomly connected (Pc = 0.4) network built
on a simple cubic lattice driven by small-step (l = 0.03) susceptible (s = 1) motors
are shown. (a) The potential energy; (b) the fraction of taut bonds; (c) the mean
square node displacement; (d) main: the pair distribution function (PDF) averaged
over a wide steady-state time window; inset: the aggregation strength, which is the
height of the innermost peak of the PDF, versus simulation time; (e) initial (left)
and steady-state (right) node configurations (upper row) and corresponding bond
structures (lower row). The parameters chosen for illustration are Le = 1.2, βγ =
5, Pa = 1, and κ = 1.
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Figure 6.6: The dependence of network tenseness and structure on motor concen-
tration (Pa) obtained by Monte Carlo simulations. The parameters were chosen
such that the system is in the regime of arrested phase separation. (a) The frac-
tion of taut bonds decreases as Pa increases. A kink located around Pa = 0.7
separates two descending branches: (I) Pa = 0.5–0.7 and (II) Pa = 0.8–1. (b) The
aggregation strength exhibits a sharp peak at Pa = 0.7. The error bars in (a) and
(b) depict standard deviations from averages over a steady-state time window of
4×106 Monte Carlo steps. (c) Bond structures and corresponding node configura-
tions at various Pa values are shown, from top to bottom Pa = 0.2, 0.5, 0.6, 0.7 and
1. The arrow indicates the bond structure with the strongest aggregation. The
remaining simulation parameters are Le = 1.2, βγ = 5, Pc = 0.4, l = 0.05, s = 1,
and κ = 0.1.
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Figure 6.7: An illustration of the motor-induced effective attraction for a non-
percolating network (Pc = 0.2) at various motor susceptibilities. (a) The poten-
tial energy; (b) the aggregation strength; (c) initial (upper left) and later node
configurations and bond structures for a control run with pure thermal motion
(upper right), and for motorized systems with s = 1 (lower left), s = 0 (lower
middle) and s = −0.5 (lower right). Despite having different dynamics, simi-
lar steady-state structures with isolated floppy clumps are reached in each case,
regardless of the motor susceptibility. The remaining simulation parameters are
Le = 1.2, βγ = 5, Pa = 1, l = 0.03, and κ = 0.1.
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Figure 6.8: An illustration of the motor-induced effective repulsion caused by
load-resisting (s = −0.5) motors for various network connectivities and motor
kicking rates. (a) Initial (upper) and steady-state (lower) bond structures are
shown at low (left: Pc = 0.2) and at high (right: Pc = 0.6) connectivity with
κ = 1. (b) Node configurations (upper) and corresponding bond structures (lower)
at various motor kicking rates (left to right: κ = 0.1, 0.5, and 1) with Pc = 0.4.
The common set of simulation parameters are given by Le = 1.2, βγ = 5, Pa = 1,
and l = 0.05.
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(a) (b) (c) 

Pa++ 

Figure 6.9: Mean-field predictions of the effect of the concentration (Pa) of
load-resisting (s = −0.5) motors on long-range interactions. (a) The localiza-
tion strength α of individual nodes. The localization at large separation R is
considerably suppressed as Pa increases. (b) The effective potential. Increasing Pa

weakens the long-range attraction; the potential profile actually flattens out (red
arrow) at Pa = 0.8 indicating a vanishing restoring force. (c) The overall tension
(−p) vanishes at large R (red arrow) for high Pa. This suggests the tendency
for contraction is counterbalanced by a motor-induced long-range repulsion. The
simulation parameters are Le = 1.2, βγ = 5, Pc = 0.4 and ∆ = 1.
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Figure 6.10: The effect of motor activity (∆) and susceptibility (s) on phase
separation. Shown are the calculated localization strength α (upper row) and the
tension (−p) (bottom row) as a function of the mean separation R for (a) s = 1
with various motor activities, ∆ = 0, 0.5, 1, 2, and 4 (bottom to top), and (b)
∆ = 1 with various motor susceptibilities, s = −0.3,−0.2, 0, 0.5, and 1 (bottom to
top). The remaining simulation parameters are Le = 1.2, βγ = 5, Pc = 0.4, and
Pa = 1.
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Figure 6.11: The role of motor kicking rate and effective attraction in aggregation.
(a)–(c) Statistical measures for the dynamic and structural development at various
motor kicking rates. Steady-state bond structures (upper) and node configurations
(lower) are shown at increasing motor kicking rates (d): from left to right κ =
0.1, 0.2, 0.5 and 1 (converted into Teff/T ), and for corresponding models without
motor-induced short-range attraction at κ = 1 (e). The remaining simulation
parameters are Le = 1.2, βγ = 5, Pc = 0.4, Pa = 1, s = 1, and l = 0.03.
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Figure 6.12: The stability diagram at various motor susceptibilities. The col-
ored lines represent the stability boundaries, solid red for s = 1, dashed grey for
s = 0 and dotted blue for s = −0.5. Below the stability boundaries the pressure
exhibits a non-monotonic dependence on particle separation indicating the ten-
dency toward phase separation. The instability region (shaded area) extends to
lower Pc and higher Pa as s increases, suggesting that susceptible motors promote
phase separation. The remaining simulation parameters are Le = 1.2, βγ = 5, and
∆ = 1.
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Figure 6.13: Patterns of behavior for susceptible (s > 0) and load-resisting
(s < 0) motors at a high motor concentration. Typical structures generated by
simulations are shown for each situation. The horizontal axis indicates increasing
network connectivity from left to right. The vertical line locates the percolation
threshold. (a) For susceptible motors, effective Brownian dynamics simulations and
Monte Carlo simulations give similar results. At intermediate connectivity above
the percolation threshold, arrested phase separation occurs. (b) For load-resisting
motors, (anti-)correlation plays a key role in the active patterning. Macroscopic
contraction occurs only in the presence of anti-correlation in motion, otherwise
connected asters form that cannot collapse.



Bibliography

[1] Howard, J. Mechanics of Motor Proteins and the Cytoskeleton, (Sinauer As-
soc., Sunderland, MA, 2001).

[2] Martin, A. C., Kaschube, M. & Wieschaus E. F. Pulsed contractions of an
actin-myosin network drive apical constriction. Nature 457, 495–499 (2009).

[3] Mason, F. M. & Martin, A. C. Tuning cell shape change with contractile
ratchets. Curr. Opin. Genet. Dev. 21, 671–679 (2011).

[4] Silva, M. S., Depken, M., Stuhrmann, B., Korsten, M., MacKintosh, F. C. &
Koenderink, G. H. Active multistage coarsening of actin networks driven by
myosin motors. Proc. Natl. Acad. Sci. USA 108, 9408–9413 (2011).
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Chapter 7

Conclusion and outlook

The cytoskeleton is a remarkably rich system. This heterogeneous yet struc-

tured motor-filament assembly bathed in water allows eukaryotic cells to replicate,

repair themselves, move, respond to stimuli, and communicate with their neighbors

in a multicellular organism. We are attempting to discover the concepts needed

to think about the dynamics and structure of this versatile “muscle” of the liv-

ing cell. To this end, we have constructed minimal physical models and asked

rather general questions rather than try to model the cytoskeleton with all its bi-

ological complexity. As shown in the preceding chapters, our microscopic models

that incorporate the essential aspects of biological relevance indeed capture, at

least qualitatively, a rich variety of experimental observations in vitro and in vivo.

These observations range from the formation of diverse functional patterns (such as

sustained asters and heterogeneous condensates) to active contractility and spon-

taneous flow. Moreover, we have demonstrated the validity of using the concepts of

effective temperature and effective motor-induced interactions in describing steady

state and responses of weakly motorized systems in a quasi-equilibrium framework.

Somewhat beyond the range of validity of this description, mean field theories com-

bined with variational stability analysis revealed how active mechanisms allow for

collective directed motion to occur as an emergent phenomenon reflecting broken

symmetries. The rigidity of the macroscopically moving state, rather than being

provided by quantum statistics as for superfluidity and superconductivity, arises

from a cooperative action of load-sensitive active elements supported by a sustained
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energy input in a well-connected structure. Despite these conceptual successes, our

theory is not yet a complete theory for everything “cytoskeletal”. The intricate

biochemistry of real cytoskeleton necessitates a more quantitative account for the

relative roles of physical interactions and biochemically regulated signaling which

act in an intertwined manner. Trying to do this poses new challenges and yet calls

forth new opportunities for theory. In the following I will discuss some possible

extensions of our model and sketch how these immediate next-steps likely have

intriguing consequences and should trigger novel mechanistic thoughts about the

living cell.

In vitro structures studied experimentally are assembled irreversibly be-

cause these reconstitutions lack many of the in vivo protein factors that allow fast

pattern renewals. In line with this fact our current model has assumed quenched

network connectivity and motor distribution over the bonds. Yet the transient ac-

tion of crosslinking proteins and the unbinding kinetics of motor proteins from the

filaments, which must interplay with the intrinsic motor activity, may allow more

efficient remodeling of living cells and lead to rich dynamical behavior described

by several characteristic time scales. By introducing load-dependent bond rupture

rate and motor detachment rate, we may study frequency-dependent rheological

properties of the cytoskeletal network. Such rheological issues include how the

motor kinetics affects the nonlinear elastic responses as well as the low-frequency

stress fluctuations, or whether the balance between active sliding, passive crosslink-

ing and forced unbinding can result in a nonequilibrium steady state exhibiting

quasi-steady patterns.

The matching of times scales for a weak internal or external driving force

with that for the intrinsic structural relaxation also brings the possibility of stochas-

tic resonance [1], in which increased sensitivity of the system to small perturbations

is achieved when an appropriate dose of noise is added. The enhanced response

arises for the synchronization of noise-induced hopping among neighboring states

in a multistable potential with the temporal profile of the weak perturbation. This

information-transmitting phenomenon that exploits the noise in a self-optimizing

manner may play a promising role in functioning of complex systems. By exam-
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ining our systematic expansion scheme for the many-body master equation, we

may look for the signatures of stochastic resonance, mainly delta spikes on the

power spectral density and exponentially decaying peaks (with their orders) in

the residence-time distribution, reflecting the synchronization aspect. The same

principle may also be responsible for a thermal ratchet (i.e. a periodic structure

with spatial asymmetry subjected to thermal noise) to rectify symmetric, unbiased

nonequilibrium fluctuations into a directed current.

It is noted that filament treadmiling [2] also leads to center of mass motion

of the filaments and thus generates discrete “kicks” on the nodes, though in this

case the motor kicking rate would be proportional to the polymerization rate. The

intriguing possibility that our findings may be relevant to treadmiling actomyosin

systems and thus have implications for lamellipodium dynamics can be explored by

extending our current model. The fluctuating cell membrane to which nonequilib-

rium polymerization is coupled might be modeled as a moving mechanical obstacle

that the “polymerization motors” would sense and respond to.

Particles immersed in a fluid excite long-ranged flows as they move, and

similarly move in response to fluid motion. By generating and reacting to a fluid’s

local velocity, particles experience hydrodynamic interactions with each other and

with the walls of their container. It has been shown within a continuum framework

that for active particles in a fluid, such as bacteria or collections of living cells,

many of the large-scale nonequilibrium phenomena described in the literature can

directly arise from the long-range nature of the hydrodynamic interactions among

the active particles [3]. This medium-mediated coupling is not yet included in

our model, but it can easily be done by incorporating an appropriately cross-

correlated diffusion tensor to our Fokker-Planck equation description for Brownian

dynamics. When combined with the correlated motor kicking events, we expect the

hydrodynamic coupling would induce long-range velocity correlations and facilitate

propagation of nearby motor kicks, thus leading to directed motion with pulsed

contractions.

The excluded volume interactions among rod-shaped particles lead to ori-

entational, liquid crystal ordering at high particle concentrations. We may extend



164

the self-consistent phonon theory to account for the spatial anisotropy in the pair

interaction due to the particle shape. Specifically, in addition to the localization

strength for the center of mass of the rods, we will need also to characterize sepa-

rately the mechanical feedback strength for motions parallel and perpendicular to

the long axis of the rods. The resulting self-consistent solutions should correspond

to minima of the Onsager free energy for interacting rods [4].

For “living liquid crystals” composed of self-propelled particles modeled as

orientated force dipoles, self-propulsion has been shown to enhance (by contractile

“pullers”, e.g. algae) or reduce (by extensile “pushers”, e.g. most bacteria) the ef-

fective viscosity of the active particle suspension at zero shear rate [5]. These same

rheological phenomena might be directly related to the sign of motor susceptibil-

ity in our models: susceptible motors with s > 0 lead to Teff < T or equivalently

an enhanced viscosity; meanwhile a positive susceptibility corresponds to an ef-

fective attraction due to contractile subunits. The opposite applies to the s < 0

case. We note that the sign of s can be inferred at the single molecule level from

the lifetime-force curve obtained by pulling experiments on single motor proteins

such as kinesin. Increase (Decrease) in lifetime with increasing applied force would

indicate a positive (negative) susceptibility, corresponding to catch (slip) bond

behavior [6, 7].

In our earlier studies of a model actomyosin network as a motorized cat’s

cradle driven by anti-correlated kicks (Chapter 6), we have observed arrested phase

separation in computer simulations where the motor-induced coarsening process

stops once the local bond collapse balances the neighboring bond stretching. We

have argued that force percolation combined with the trend to reduce surface ten-

sion associated with the stretched bonds leads to coarsening of local aggregates.

We may further inquire as to how to analytically treat the bond constraints. Can

they be characterized by a “stopping” term in the free energy functional that coun-

teracts the tendency for a complete phase separation? One possibility is that sur-

face tension that depends on the network connectivity flips sign as the “droplets”

consisting of collapsed bonds grow up to a critical size. This mean-field level for-

mulation can then be tested by comparing the estimated droplet size with the
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simulation outcome.

In analogy to the force dipoles mimicking the myosin-driven relative slid-

ing of neighboring actin filaments, there also exist torque dipoles [8] imitating the

counter-rotation of two sides of the cell, originated from chiral asymmetry of in-

dividual actin filaments. We may thus introduce into our model anti-correlated

rotations of motorized node pairs around their lines of centers. A similar master

equation description for the active processes then should allow us to investigate the

consequence of collective action of “chiral” motors, such as modifications to the

rotational diffusion of the nodes as well as the possibility of spontaneous organized

motion.

Recent experimental studies of F-actin driven chromosome transport [9]

have suggested a novel intracellular “transport machine”. In this model, force

is generated by isotropic contractile activity distributed rather homogeneously

throughout the F-actin meshwork. Although the intrinsic meshwork contraction

lacks any specific directionality, anchoring of the meshwork to the cell cortex con-

fers directionality to its large-scale motion. Finally, the contractile force is con-

veyed to cargo at least in part by steric entrapment of particles larger than the

effective mesh-size of the network. Notably, in contrast to chromosome transport

by microtubules, where re-establishment of severed microtubule-chromosome con-

nections requires significant time and may result in chromosome loss, transport by

a space-filling F-actin meshwork may be considerably more robust because of the

physical entrapment within an extended meshwork. However, the experimental

attempts to test the involvement of myosin motors in this process have remained

inconclusive to date. We have performed stochastic simulations on a correlatedly

motorized cat’s cradle with free boundaries and observed isotropic contraction of

the network. We may further fix a group of boundary nodes to mimic the mechani-

cal anchoring and see whether an asymmetric contraction which is essential for the

directional transport would indeed occur. Quantitative tests of our model would

be provided by the experimentally measured contraction speed as a function of

the initial distance from the anchoring position, which can readily be measured in

our simulations. Interestingly, it has been seen that the constant poleward speed



166

of each chromosome depends linearly on its initial distance from the pole. This

quantitative aspect would considerably constrain our model. If it turns out to be

true, this finding will support an intriguing possibility that contractile units similar

in structure and composition to those that form quasi-2D networks under the cell

membrane to mediate cytokinesis or cell migration may alternatively organize into

3D F-actin networks to drive intracellular transport.

Despite being developed in the context of the cytoskeleton, our model and

approach may be readily generalized and provide generic insight for a broad class

of systems over a wide span of length scales. Our findings have suggested a robust

mechanism for collective directed motion. The proposed mechanism based on bro-

ken continuous symmetry and dynamic instability of the quiescent state may not

only explain cortical flow on sub-cellular scale, but may also be relevant for collec-

tive cell migration in epithelial layers on multicellular tissue level. Three crucial

aspects in cell migration during wound healing could be encoded in such as model:

(1) how cells sense the stress gradient (captured by a high motor susceptibility); (2)

mechanical communication between neighboring cells (via nonlinear elastic bonds

mimicking adhesive molecules and hard/soft-core repulsion accounting for excluded

volume effect); (3) directed motion (based on mechanochemical coupling in a con-

nected structure). We have shown by stochastic simulations that excluded volume

interaction quantitatively modifies the flow speed, but does not affect the flow

transition. The mechanism for active contractility that we have demonstrated for

a model actomyosin network is likely to work also for blood clots, where platelets

play a similar role to myosin motors and apply internal stresses. Similar principles

apply yet on larger scales.

In summary, through a combination of reconstituted model systems, the-

oretical modeling, and precision measurement techniques applied more and more

also to living cells, we have learned much about fascinating active states of matter,

such as those exhibited by the cytoskeleton. Although the controlled design of

biomechanical functions and biomimetic materials on a micro-assembly line may

remain a distant goal for the foreseeable future, the concrete steps towards its

realization in the laboratory and their theoretical modeling are being addressed
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now. In vitro tests and in silico simulations will enable quantitative studies of func-

tional modules of reduced and well-defined complexity. Yet our understanding of

the physical principles underlying the complex and delocalized biological functions

will always rely on identifying the governing physical mechanisms, with the aid of

coarse-grained analytical models. A closer synergy of theoretical and experimental

physics, detailed numerical modeling, cell biology and biochemistry suggests itself

as a natural avenue for future progress.
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Intracellular transport by an anchored homogeneously contracting F-Actin
meshwork. Curr. Biol. 21, 606–611 (2011).

168




