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A bstract

Inin nite-date madek the reavad de nitias ofthe payc®s ofF nite pare
1olo strateges imply disartinuos \valbation. A aodingly, in the aosace
of trading restrictias, abittace resuls when in nite trading strateges are
admitied- W e prgpoe an allermatine that is free of these prdbbEms. T he
altermative producss a cleerer;, ifmare abstiact, treatmentt of ecpui ibrium in
“nendal madek in in nitedate ssttings- W e arsider the bearing of the re-
Mvised treaimatt an the theary of ratianal speaulative bubbles and equnalent
martincalke messures -

1 Introduction!

In finite settings there is no ambiguity about the definition of portfolio payoffs: at
any event the payoff of a given portfolio strategy equals the value of the portfolio
chosen at the immediately preceding event minus the value of the portfolio chosen
at that event. In infinite settings, however, this definition of payofts is sometimes
inapplicable?, and when it is applicable its appropriateness is not as clear. For
example, under the definition just presented the payoff of a portfolio strategy that is
self-financing at every date—that is, where the payoff is zero at every date—is zero.
Where did the value represented by the initial cost of the portfolio go?

In continuous-time models where there is no terminal date the received definition
of the portfolio payoff is precisely analogous to the finite-time definition just stated.
In particular, the definition in the continuous-time case has in common with the
definition in the discrete-time case the property that the payoff of a self-financing
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24 s seen below, when there is an in nite rumber of dales and alko a terminal date, evats atthe
terminal date may have noimmediate predecesssars -




portfolio strategy is zero. In continuous-time models where there is a terminal date
(the usual case) the payoff of any portfolio strategy at the terminal date is defined
via a stochastic integral when that integral is well-defined, and via a pointwise limit
when the integral is undefined.

The latter specification also has problems of interpretation, as exemplified by the
doubling strategy, a portfolio trading strategy that apparently produces an arbitrage.
The existence of such arbitrages has led many analysts to conclude that models
with infinite time have equilibria only in the presence of trading restrictions, so that
arbitrage either is ruled out or is limited in scale. These trading restrictions greatly
complicate the analysis of such models, as we will see below.

We propose an alternative definition of the payoffs of infinite portfolio strategies,
one that does not result in arbitrage even in the absence of trading restrictions.
Accordingly, there is no need to introduce trading restrictions, although one can still
do so if desired. For this reason the alternative definition produces a much cleaner,
although somewhat more abstract, treatment of equilibrium in infinite-date models
than the received definition.

We also show how the alternative definition affects the analysis of rational bubbles.
Finally, we demonstrate that the revised definition allows a concise demonstration of
when equivalent martingale measures do and do not exist.

2 Payoffs as Pointwise Limits

Assume that time is infinite and countable?, and therefore that it can be indexed by
the natural numbers. Under this specification the setting assumes an infinite horizon
if there exists no terminal date, or a finite horizon if there exists a terminal date T In
the infinite horizon case time is interpreted as 0,1, 2, 3, ...,; in the finite horizon case
it may be interpreted as 0,1/2,3/4,7/8, ..., 1, for example, in which case the horizon
occurs at date T = 1. The latter specification is analogous to the continuous-time
setting, in which there exists an infinite number of trading dates, but (usually) there
also exists a last date.

Uncertainty is represented by a probability space (€2, F, 1), where Fis a o-algebra
on {2 and p is a probability measure on F and an event tree with a finite number
of events (subsets of 2) at each date. There is a single event £, at date 0. Agents
trade n securities at each node of the event tree, where n is finite. In this setting
finite portfolio strategies are representable as finitely nonzero sequences © = 9(¢)g,
where 6(§) is an n-tuple in which the i-th element represents the holding of security
i at event £.4
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The payoff X = frg(¢)gof a finite portfolio strategy is defined at all events (other
than the initial event and, in the finite-horizon case, events at T') by
h i

ze(§) =7(£) 0(€7) 1 0(6) (1)

when the securities pay no dividends. Here £ is the event that immediately precedes
¢ and 7(&) is the n-tuple of security prices at event £.  In the finite-horizon case,
payoffs at T are given by (1) with 6(§) = 0. The initial cost of © is m(£,)0(&,), where
& is the root node.

Portfolio strategies representable by infinitely nonzero sequences are infinite port-
folio strategies. The question is how to define their payoffs. Established practice
is different in the case of an infinite horizon vs. a finite horizon. Because in the
infinite-horizon case every event other than £, has an immediate predecessor, (1) can
be interpreted as applying to infinite as well as finite portfolio strategies (Santos and
Woodford [34], Huang and Werner [23], for example), and the usual practice is to do
so. This specification has the implication that the payoff of any self-financing infinite
portfolio strategy (a portfolio strategy for which xg(£) = 0 at every event ¢) is zero.

In the case of a finite horizon, (1) does not define the payout at T, the events at
T not having immediate predecessors. In the continuous-time literature the practice
is to specify a portfolio’s payoff at T either via a stochastic integral or, if that is
undefined, as the pointwise limit of the portfolio’s value at ¢ as t approaches T
(Duffie [9], Appendix D). We will provisionally carry over the latter specification
to the discrete-time case.

In order to attain a symmetric treatment of the infinite-horizon and finite-horizon
cases we will modify the specification of payoffs in the infinite-horizon case so as to
render the treatment the same as in the finite-horizon case. We do this by appending
a date called 1 in the infinite-horizon case and defining the payoffs of infinite portfolio
strategies so as to include payoffs at 1 . This component of the payoff is defined to
equal the limit of the portfolio value at t as t approaches 1 , exactly as in the finite-
horizon case (with 1 in the infinite-horizon case replacing T in the finite-horizon

case).
To assure the existence of the payoff under the alternative definition it is necessary
to provide some additional structure. Let L? be the set of adapted stochastic

processes X for which KXK, defined by

X #1/10
k\k = E b4 (2)
t

is finite. Here z; is the date-t component of X; that is, the random variable that
takes values x(,) at the events £, occurring at date ¢.

In the absence of arbitrage in finite portfolio strategies, there exists a state price
deflator M, a strictly positive adapted process such that the initial cost m(£,)0(&,)



of any finite portfolio strategy © equals the expectation of its summed payoff valued
using M:
#
X
m(£0)0(&) =E  xmy (3)

t

where m; is the date-t component of M.

Following Fisher and Gilles [13], suppose that M 2 L? for some p, and consider
©9, the set of infinitely nonzero portfolio strategies © that are mapped by (1) to
elements of LY, where

1 1

» + . 1. (4)
Since M 2 L? and X 2 LY, it follows that Y = M X 2 L, implying that the image
X of © 207 under (1) has finite value under (3).

Here Y can be interpreted as resulting from applying a numeraire change to X,

so as to measure in units of date-0 value. Since, from (3),
#
X
m(£0)0(&o) = E Yt (5)
t
where y; is the date-t component of Y, we have that the date-0 value of any positive
Y equals its norm. Note that we are not characterizing X or Y as the payoff of O,
except when O is a finite portfolio strategy.

Let v; be the date-t value of portfolio strategy © 2 09, measured in units of
date-0 value (i.e., v; = m#ym;), and (in this section) let vy, be the pointwise limit of
vy as t approaches 1 | assuming the limit exists (the limit always exists for portfolio
strategies with nonnegative payoffs at each date ¢, since v; is positive and finite at
each t, and decreases with t).

Payoffs of infinite portfolio strategies © are denoted (Y, v ) in the infinite horizon
case, and (Y, vg) in the finite-horizon case, whenever the limit exists.?

2.1 Local Martingales and Martingales

Define LP as the space of random variables v with finite norm, where the norm is
defined by

ok = [EJod)"” . (6)
A stochastic process V' = fi,g defined on (0, 1,2, ..., 1) is a local martingale if

v, 2 L} (7)

SIn ader o situate paycss of nite partiolio strateges as a gedal cese of paya®s of in nie
portiolio strateges, ae waud replbe X = £4,60; where X, @) is de ned by (), by  ;0), ad
smibrlywith Y :




and

V¢ = Et('Uq—) (8)
fort,7 210,1,2,...gand 7 _ t. It is a martingale if in addition

v = Fi(vso). (9)

A self-financing infinite portfolio strategy is an infinite portfolio strategy for which
Y = 0, so that its payoff measured in units of date-0 value equals (0,v,,) for some
random variable v,, (hereafter the exposition assumes an infinite-horizon setting for
convenience). For a self-financing portfolio strategy, V' = fi,Q is a local martingale.
Therefore the martingale convergence theorem (see, for example, Chung and Williams
[6]) guarantees the existence of vy, = lim; . (v;) as an element of L.

3 Discontinuous Valuation

The fact that V' is a local martingale implies that the random variables v; have
common expectation. As the martingale convergence theorem makes clear, it does
not necessarily follow that v, has the same expectation as the v;. Therefore V may
not be a martingale. However, under the additional restriction that V' is uniformly
integrable (or if any of a variety of other conditions is satisfied) then E(vy,) = E(v;)
for all ¢, so that V' is a martingale. In that case F(vy), the date-0 value of the
limiting payoff, equals the initial cost of the infinite portfolio strategy with payoft
(0,Vs0)-

However, the uniform integrability condition may not be satisfied. If it is not,
the v; may converge (pointwise almost everywhere) to the payoff of a finite-horizon
portfolio strategy with different initial cost, since when uniform integrability fails the
expectation of the limit is not necessarily equal to the limit of the expectations. In
that case, valuation of finite portfolio strategies is discontinuous in the topology of
pointwise convergence.

Discontinuous valuation of finite portfolio strategies implies existence of arbitrage
when infinite portfolio strategies are included. To see this, suppose that V' converges
pointwise to v, almost everywhere, where v, is the payoft of a finite portfolio strategy,
but E(v;) 6 E(vy). Now consider the finite portfolio strategy with date-t payoff
Vs 1 Vs, and construct the associated infinite portfolio strategy by letting ¢ go to
infinity. This portfolio strategy has zero payoff since v; converges to v, but since
E(v) 6 E(vs), its initial cost is nonzero. Therefore the law of one price fails, and
this portfolio strategy or its negative is an arbitrage.



3.1 Example

The doubling strategy and the “suicide strategy” (as Harrison and Pliska [20] called
the negative of the doubling strategy) are familiar examples of the failure of the law
of one price that results from discontinuous valuation. Suppose that at each date ¢
an agent can buy without cost #; shares of a gamble each share of which produces a
payoff of +1 or §1 with equal probability. The trading strategy is to keep playing,
doubling the bet at each stage, until the first win occurs, at which time the agent
stops betting. After ¢t rounds the value v; of the doubling strategy is

8
= 1 with probability 1 2~
(10)

Ut - > . .
- 1 §2' with probability 27

The expectation of this payoff is, of course, zero, as it must be because the initial
cost of the portfolio strategy is zero and the gamble in each round is fair. However,
the payoff converges pointwise to 1 almost surely, an arbitrage. Note here that V is
not uniformly integrable.

A uniform lower bound on wealth rules out the doubling strategy (Dybvig and
Huang [11]), but permits a suicide strategy, in which an agent gambles until his first
loss rather than his first win. This strategy produces a loss almost everywhere.

3.2 Critique

Defining the payoffs of infinite-horizon portfolio strategies as pointwise limits makes
mathematical sense, but it is not clear that doing so makes economic sense. In the
case of the doubling strategy, the prospect of not winning after ¢ rounds contributes
27t § 1 (the product of 1 § 2° and 27%) to the expected payoff of the finite dou-
bling strategy. This converges to §l. Despite this, the prospect of never winning
contributes nothing to the expected payoff of the infinite-horizon doubling strategy.
Thus the fact that the probability of never winning goes to zero trumps the fact that
the payoff in the event of not winning goes to §l1, this despite the fact that the
product of the two converges to jl.

Agents are modeled as believing that the opportunity to gamble with each other
forever enables each of them to produce wealth out of nothing. Is it obvious that
people are that irrational?

In a curious passage discussing the doubling strategy, Delbaen and Schachermayer
([8], p- 465), observed that the player who

doubles his bet until the first time he wins .... has an almost sure win

However, his accumulated losses are not bounded below. Everybody,
especially the casino boss, knows that this is a very risky way of winning
1 ECU.



They then argue from this that the doubling strategy has to be ruled out via trading
restrictions. What is curious about the passage is that under the received mathemat-
ical treatment—defining the limiting payoff via pointwise convergence—the strategy,
like any arbitrage, is modeled as in fact having no risk of loss, and it is attractive to
risk-averse investors precisely for that reason. Rather than motivating imposition
of trading restrictions, Delbaen and Schachermayer, apparently without realizing it,
are in fact expressing doubts about the received mathematical treatment, which rep-
resents as riskless the payoff of a gambling strategy that, according to them, is far
from riskless.

When the analysis involves an infinite number of states rather than dates, most
economists understand that notions of convergence are very much at issue. For
example, issues similar to those discussed here arise in the Arbitrage Pricing The-
ory of Ross [31], [32]: analysts assume absence of “approximate arbitrage” so as to
avoid introducing arbitrage when defining payoffs of diversified portfolios—usually
implicitly, it is true—as limits of payoffs of finite portfolios. They (sometimes) state
explicitly that by absence of approximate arbitrage they mean continuity in the mean-
square norm. Nevertheless, when the commodity index set represents time rather
than states of nature, “convergence” always seems to mean “pointwise convergence”.
This is so despite the inconvenient fact that, under this specification, valuation nec-
essarily involves discontinuity, which economists find difficult to motivate in other
contexts.

4 Trading Restrictions

In the absence of trading restrictions, existence of arbitrage implies nonexistence of
optimal portfolios (when agents prefer more to less), so it cannot occur in equilibrium .
A variety of trading restrictions may be used to create an environment in which agents
have optimal portfolios.® These restrictions complicate the analysis of valuation to
different degrees and in different ways.

4.1 Portfolio Restrictions Implying Linear Valuation

In the simplest case the assumed restrictions leave the portfolio space as a linear
space, but one on which valuation of payoffs of feasible finite portfolio strategies is
(pointwise) continuous, so that inclusion of infinite portfolio strategies does not induce
arbitrage. When the portfolio space is a linear space, there are two implications:
(1) there can be no arbitrage in equilibrium, and (2) valuation is linear, just as in
the finite-date case in the absence of trading restrictions.

6See H uang and W amer [23] or a greral disassian of trading restrictias in disaete-time
sequarttial equi ibrium -



With regard to (1), absence of arbitrage again follows from the fact that when
portfolios lie in a linear space any arbitrage could be operated on an arbitrary scale,
implying nonexistence of optimal portfolio strategies. With regard to (2), valuation
is linear because if there existed payoffs x and y such that the price of z + y exceeded
the price of x plus the price of y, there would exist an obvious arbitrage: sell z + y
short and buy x and y separately. The reverse transaction is indicated if the price of
x + y were less than the price of x plus the price of y. A similar arbitrage would be
profitable if the price of a units of  equaled anything other than « times the price
of z.

The reasoning in the preceding paragraph required that the set of feasible port-
folios be a linear space, but does not require that the dimension of the portfolio
or payoff spaces be finite. Therefore when the set of feasible portfolios is a linear
space we have linear valuation even in the infinite case. However, it does not follow
from this that the price of every security can be expressed as a linear function of its
dividends. The reason is that linearity applies only to payoffs of feasible portfolio
strategies. Depending on the trading restrictions, the portfolio strategy of buying
a security and holding it forever may not be in the feasible set. If not, there is no
reason to presume that the price of that security will necessarily depend linearly on
its dividends.

4.1.1 Example

An example of a portfolio restriction that leaves the portfolio space as a linear space is
that feasible portfolio strategies must have zero present value of asymptotic indebt-
edness. Again, doubling strategies are infeasible under this restriction. Further,
under this restriction the portfolio choice set is a linear space, so there exists a linear
functional that values payoffs. Magill and Quinzii [27], [28] showed that this specifi-
cation allows the existence of bubbles in equilibrium that cannot be arbitraged away.
In the case of money, the portfolio strategy of selling money short and rolling over
the position forever is infeasible since it involves nonzero asymptotic indebtedness.

4.2 Portfolio Restrictions Implying Nonlinear Valuation

The trading restrictions that are imposed to assure continuous valuation may be such
that the set of feasible portfolios is not a linear space. For example, suppose that
a lower bound is imposed on security holdings; a prohibition on short sales is the
obvious example. Even in that case valuation may be linear. This is the case if, for
example, the assumed trading restrictions are never binding at equilibrium portfolio
strategies.”

D ybvigandH uang[11 Jshoned thata baer baund an wealth eliminates arbitrage in a setting
that assumed nearvalliatian Ma a risknautial prdosbi ity messure (that is, a setting in which
partiolio \vales equal sSmp e epected paycss). V alatian Ma a riskeneutral praoebi ity messure




However, in general matters are more complicated. = When the set of feasible
portfolios is not a linear space, discontinuous valuation can occur in equilibrium
as long as the resulting arbitrages on infinite-horizon portfolio strategies cannot be
operated on an arbitrary scale (Huang and Werner [23]).® Besides possibly implying
discontinuous valuation, portfolio restrictions that result in a portfolio set that is not
a linear space complicate the analysis of valuation. First, the law of one price may
fail, as long as the implied arbitrage can be operated only on a limited scale. For
example, under short sale restrictions a zero-payoff asset may have a positive price
in equilibrium, since the trading restrictions may imply that the resulting arbitrage
can be operated only on a finite scale.

When different portfolio strategies produce the same payoff at different initial
costs, the question arises what exactly one means by the value of a payoff. As
in the finite case (LeRoy and Werner [24], Ch. 7), the value of a payoff is most
usefully defined as the cost of the portfolio that produces that payoff at minimum
cost, since under increasing preferences that is the portfolio that utility-maximizing
agents will choose. So defined, the portfolio valuation functional may or may not
be linear (Huang and Werner [23]). Further, valuation may not even be positive.
For example, if portfolio constraints allow operation of a Ponzi scheme on a limited
scale, the zero payoff can be obtained at negative initial price, which is inconsistent
with positive valuation. For further discussion of valuation in sequential models see
Luttmer [26], Santos and Woodford [34] and Huang [21].

5 Payoffs as Weak™ Limits

The difficulties discussed above—discontinuous valuation of finite portfolio strate-
gies, implying the existence of arbitrage when payoffs of infinite portfolio strategies
are modeled as limits of payoffs of finite portfolio strategies—are all consequences of
working with pointwise limits. The principal argument in favor of pointwise conver-
gence is that it is tractable, although why that argument appears decisive as regards
time but not uncertainty is unclear, as discussed in Subsection 3.2. In the remainder
of this paper the date-infinity payoffs v, of infinite portfolio strategies will be taken
as weak™ limits of nets of portfolio values v;, instead of as pointwise limits. We will
see that making this change has many attractive consequences.”
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8Seel R oy ad W emer[24] p- 36 ora nitestate eamplke ofamadel in whidh e ibrium
asetprias imply edstence ofa imited arbitrace-

T he remainder of this paper presumes sane knorkedce of functiaal anabysis. || udh of the
rebant material is summarized in¢ illss[15] 6 illesad Ll Roy [l 7] [18 ]ad Fsherad 6 ilks
[L3]in a atext \ery doe 1o that of the presat pgper-  Formare extanded and mare rigoraus
disassian, sseR oydn (3334 Eprantis and B ader{l } D utfad and Sdwartz [1( Jand B heskaraR eo
adB heskaraR a0[30 }

In the disassion to Dl whenever there exdsts an isanetric isocnaphiam betneen tho fTunctian
Foaass, we willl not distinguish betneen the tho.  Far eample, the space of nom-aottinuas




The values v; of self-financing infinite portfolio strategies lie in L, so it is nat-
ural to consider replacing pointwise convergence with convergence in the L' norm.
However, with this change there is no assurance that the limiting payoff exists. For
example, in the case of the doubling strategy considered in Section 3.1, fv;g diverges
in the L! norm, implying the unsatisfactory outcome that the doubling strategy is
not a well-defined portfolio strategy.

Suppose instead that we embed L' in its second topological dual, the space
ba(€2, F p) of signed charges on = Assuming that the net f,g directed by ¢ is
bounded, Alaoglu’s theorem guarantees the existence of convergent subnets in ba.
We will take the limit points v, of such nets as the date-1 payoffs of infinite port-
folio strategies.

The Yosida-Hewitt theorem guarantees that the charge v, is the sum of a measure
component and a pure charge component. The former can be identified with an
element of L', by the Radon-Nikodym theorem. Further, it coincides with the
pointwise limit discussed above (this follows from Fisher and Gilles’ [13] Theorem
A.5). Thus the present treatment differs from that of Section 2 in including the pure
charge component of the limiting payoff. For example, in the context of the doubling
strategy, the limiting payoff consists of the measure 1 plus a pure charge centered on
the event that the agent loses forever.

5.1 Continuous Valuation

Weak* convergence of v; to v,, means that E(zv;) converges to the integral of zv,, for
any ¢ 2 L (see Gilles and LeRoy [18], appendix, for a minimally technical discussion
of integration with respect to a charge).!® Since the functional 1 is an element of L>°,
we have that the values E(v;) of the liquidating payoffs v; converge to the integral of
Uso, SO valuation is continuous. In the context of the doubling strategy the measure
component of the limiting payoff has value 1 and the pure charge component has
value §l. Thus the date-0 value of the limiting payoff—the sum of the values of the
measure component and the pure charge component—equals the initial cost (zero) of
the portfolio strategy.

Continuous valuation of finite portfolio strategies has the attractive feature that
allowing for infinite portfolio strategies does not produce arbitrage: if there existed
an infinite portfolio strategy with positive payoff and negative initial cost, continuity

finctias anl 1 is isonetrically isonaphic © a spae of dargs.  Instead of adgpting notatian
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implies that there would also exist finite portfolio strategies with the same properties,
but this was ruled out in assuming the existence of a state price deflator. For
example, the doubling strategy is not an arbitrage when the limiting payoff is defined
as a weak™ limit because the pure charge component of v, is negative (and, as noted
in the preceding paragraph, has value equal in absolute magnitude to that of the
measure component).

Nonexistence of arbitrage implies that there is no need to impose portfolio restric-
tions although, of course, one can still do so if desired. Thus the canonical model
of finite-time-and-state finance, which specifies unrestricted portfolio strategies, has
a direct counterpart in the infinite case. In contrast, we saw that under pointwise
convergence trading restrictions must be imposed to prevent arbitrage, and the fea-
tures of the model depend critically on what restrictions are adopted (as emphasized
by Huang and Werner [23]). Therefore under pointwise convergence there can be no
canonical model.

In the absence of trading restrictions, portfolio choice sets are linear spaces. Since
with payoffs of infinite portfolio strategies defined as weak* limits there is no need
for trading restrictions, it follows that valuation is linear in the canonical version.
In contrast, we observed in Section 4 above that when payoffs of infinite portfolio
strategies are defined as pointwise limits, the fact that portfolio restrictions must be
imposed implies that in such settings valuation may or may not be linear depending
on the restrictions imposed and whether or not they are binding in equilibrium.

Under most specification of preferences agents do not value consumption at infinity
or T, implying that optimal portfolios will have v, = 0 (Gilles and LeRoy [17] is an
exception). In such cases the most important consequence of the specification of
weak™® convergence in place of pointwise convergence is that it allows greater latitude
in specifying portfolio restrictions, as discussed in the preceding paragraph.

6 Bubbles

The preceding discussion has direct implications for the analysis of (rational) bubbles.
First, we define the fundamental of any portfolio payoff (Y, v) as its stochastic
process component Y. The remaining component v, is the bubble. Correspondingly,
the fundamgptal value of (Y, vy ) is the date-0 value of the fundamental which, from
(5), equals  ; E(y;). The bubble value equals lim;_ ., F(v;).

The definitions of the fundamental and bubble components of portfolio strategies
and the associated values have obvious counterparts for securities: a security’s fun-
damental is the fundamental of the portfolio strategy consisting of buying one share
of that security and holding it forever. The definitions of fundamental value, bubble
and bubble value are similar.

The definitions just presented agree with general usage in earlier discussions of
bubbles, except that in most discussions no distinction is drawn between bubble and
bubble value, and similarly for fundamental and fundamental value. Suppression

11



of this distinction in the earlier studies is justified because these studies generally
imposed trading restrictions, implying that asset values are not generally related
linearly to payoffs. Here, however, we do not impose trading restrictions, implying
that valuation is linear.  Therefore portfolio values always have counterparts in
portfolio payoffs, and it is necessary to adopt terminology that distinguishes between
portfolio values and portfolio payoffs.

Several recent discussions of bubbles adopt a framework similar to that set out
here, but define bubbles differently. For example, Loewenstein and Willard [25] im-
plicitly and Fisher and Gilles [13] explicitly identified bubbles with the pure charge
component of vy. In contrast, Clark [7] identified bubbles with the measure com-
ponent of v,,. Both of these alternative definitions entail a departure from received
usage, which identifies fundamental value via the present-value relation (that is, as
the value attributable to payoffs at finite dates). Adhering to received usage, as we
have done, implies identifying bubbles with v.,, rather than either its measure com-
ponent or its pure charge component separately. This is purely a semantic matter,
but it is difficult to see any rationale here for deviating from the received definitions.

Gilles [15] was first to point out the connection between bubbles and charges.
Gilles and LeRoy [16], [17], [18], [19] continued work along these lines. All of these
papers, however, worked exclusively with valuation operators and payoffs spaces, so
that there was no representation of portfolio strategies. Specifically, in Gilles [15]
and Gilles and LeRoy [17] the payoff space was L and valuation operators lay in ba,
while the reverse specification was adopted in Gilles and LeRoy [18]. In the present
analysis we follow Fisher and Gilles [13] in representing bubbles as a component of
portfolio payoffs measured in units of date-0 value (this was implied in working with
Y = M X rather than X). Therefore bubbles are not traceable to either the valuation
operator or the payoff space separately.

The present framework for the analysis of bubbles is superior to that of the earlier
papers. First, it makes explicit the connection between the analysis of bubbles and
the characterization of portfolio payoffs (via pointwise or weak* limits). Second, it
situates bubbles as consequences of portfolio strategies that push their payoffs into
the infinite future, which has no direct connection either with the specification of
payoff spaces or of price systems. Making explicit the connection between bubbles
and portfolio strategies allows integration of the analysis of bubbles into the main-
stream finance literature (for an example in the finance literature of the lack of such
integration, see Sethi [36], where it is pointed out that the present-value relation may
fail; no connection is made there with the economics literature on bubbles).

6.1 Equilibrium Bubbles in Finite-Agent Settings

In recent years a literature has arisen identifying conditions under which bubbles can
and cannot exist in equilibrium. Here we consider the extent to which this analysis
applies when the date-1 components of portfolio payoffs are defined as weak™* limits.
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Our discussion is necessarily informal: as noted above, a major difference between
the two settings is that under pointwise limits portfolio restrictions must be imposed
if arbitrage is to be eliminated, whereas no such restrictions are needed under weak*
limits rather tha pointwise limits. Further, as observed above, the analysis of bubbles
under pointwise limits depends on what restrictions are imposed, implying that there
can exist no canonical analysis of bubbles under pointwise limits. The discussion
below, which does not specify portfolio restrictions, must therefore be regarded as
identifying lines of argument rather than providing rigorous analysis.

It is clear that bubbles always exist in the sense that agents can always construct
self-financing portfolio strategies, and the payoffs of these are bubbles, as we have
seen. However, such portfolios are not optimal under standard characterizations of
preferences. The question is under what conditions agents’ optimal portfolios will or
can have payoffs with bubbles.

The answer to this question is different in finite-agent and infinite-agent settings.
In the early literature on bubbles it was stated flatly that bubbles cannot exist in
finite-agent settings (for example, Tirole [38], Blanchard and Fischer [5]). It is known
now that this conclusion requires qualification. Most obviously, equilibria involving
payoff bubbles can occur when the representative agent’s endowment contains a pure
charge component and agents derive utility from consumption in the infinite future.
However, specifications like this appear, and are, contrived and unrealistic.  As-
sumptions implying that security or portfolio payoffs in the very distant future are
unimportant serve to eliminate bubbles. For example, if payoffs are bounded and
agents discount the future, then bubble values equal zero (Bewley [4], Magill and
Quinzii [28], Santos and Woodford [34], Huang and Werner [22], Stokey, Lucas and
Prescott [37]). This is so because in a finite-agent setting a security can have a
bubble only if some agent’s optimal portfolio strategy has a bubble, and the stated
assumption rules that out.

There exist several other lines of argument that exclude bubbles in some settings:

1. Transversality condition. Several analysts (Obstfeld and Rogoff [29], for exam-
ple) have pointed out that an optimal portfolio strategy can have a bubble only
if a transversality condition is violated. This condition has nothing to do with
how infinite portfolio payoffs are defined, so it applies under both pointwise
and weak™ limits if it applies at all. However, the argument does not apply
universally: some optimization problems do not have necessary transversality
conditions, for example.

2. Arbitrage. Some analysts have argued that for a security to have a bubble
would imply existence of an arbitrage opportunity. This is so because in the
presence of a positive bubble an agent could sell short the asset with a bubble,
assuming portfolio restrictions permit this, and hold long an infinite portfolio
consisting of the dividends on the security. This argument presumes pointwise
convergence, since the payoff on a short position in the security and a long
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position in its first n dividend payments converges to zero pointwise. However,
this payoff does not weak™ converge to zero, so the argument does not carry
over to the present setting.

3. Walras’ Law. For a security in positive net supply to have a bubble would
imply a violation of Walras’ Law since agents with a positive endowment of that
security would receive a positive wealth transfer that is not completely offset
by negative wealth transfers on the part of agents with negative endowments
of that security (Santos and Woodford [34], Huang and Werner [22]). This
argument, being unrelated to how payoffs of infinite portfolio strategies are
modeled, carries over to weak™ convergence whenever it applies under pointwise
convergence.

These arguments have led some analysts (Santos and Woodford [34], for example)
to conclude that there is a strong presumption against the existence of bubbles in
finite-agent settings.

6.2 Overlapping Generations

The principal setting for the analysis of bubbles is overlapping generations models
(Tirole [39] and Wallace [40], the latter in the context of monetary economics). The
reason is that overlapping generations models specify an infinite number of heteroge-
neous agents, implying existence of equilibria in which aggregate endowments have
infinite value. In such equilibria Walras’ Law cannot be invoked to show that securi-
ties in positive net supply do not have bubbles.!! Generally there exists a continuum
of equilibria indexed by bubble values (Wallace [40]).

In overlapping generations models as customarily specified, trading restrictions
prevent agents from arbitraging bubbles away, although the trading restrictions are
not always specified explicitly (Tirole [39], for example). Generally it is presumed
that agents can trade only when they are alive, implying that no agent can sell a
bubble short and roll the position over forever, the arbitrage that would otherwise
exploit a positive-valued bubble.

As pointed out above, when payoffs of infinite portfolio strategies are specified
as in this paper, absence of arbitrage in finite portfolio strategies implies absence
of arbitrage, so no trading restrictions need be imposed. It is instructive to think
about overlapping generations models that do not have trading restrictions. First,

1T he rok of Il akes™| an, or bdk thereof, in proving nanexistence of bubblkes in overlgpping
graratias maodeks is similar o its 1ok in proving thategui ibrium allbbcatias are P areto gptimall.-
Sped cally, in™ nite ssetings the proof of P areto qotimality involes the assartion that any allbbcar
o tatis P arctosparior to the equi ibrium alllbcatian must have valle greatier then that ofthe
enpi ibrium albcation, and therefre is inBesibk, by W alies™ . 1Fihe agregate endoamenthes
in nite \vale, this agumatt ik, ad thare gnarally do existP aretos pariar allocatios that are
Basibke.
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in equilibria that have bubbles, these bubbles cannot be arbitraged away: in the
present setting the portfolio strategy consisting of selling one dollar short and rolling
over the position forever has a payoff of (0, j1), as opposed to zero as in the usual
setting. The former is not an arbitrage.

Similarly, nonzero valuation of securities that have a zero dividend is consistent
with linear valuation: it is portfolio payoffs that are valued linearly in the absence
of trading restrictions, not (necessarily) securities’ dividends. Recall that the funda-
mental and bubble on a security were identified with the fundamental and bubble on
the portfolio strategy consisting of buying that security and rolling over the position
forever. This portfolio strategy has payoff (0,1) in the case of money, implying a
fundamental value of zero and a bubble value of 1 even though money has a zero
dividend.

7 Equivalent Martingale Measures

The analysis just presented allow a simple characterization of when equivalent mar-
tingale measures exist: the equivalent martingale measure corresponding to any
numeraire choice exists if the bubble associated with that numeraire has a zero pure
charge component, and only then.

Setting up this result requires some preparation. In finite economies there exists
a correspondence between probability measures and numeraire choices'?: for any
probability measure v that is equivalent to the original measure p there exists a
positive-valued self-financing portfolio strategy with value Z (and zy = 1) such that
V/Z is a v-martingale, and conversely, where V' is the value of any self-financing
portfolio strategy. If the money market account is chosen as the numeraire portfolio
strategy Z, then v is the risk-neutral measure. Dybvig and Ross [12] called this
result the “Fundamental Theorem of Finance”.

In finite economies the proof is elementary. We have already seen that if v; is the
date-t value of any self-financing portfolio strategy, then in a finite setting m,v, is a
p-martingale:

myvy = Ey(mpur), (11)

where 7' is the terminal date. Now let Z be the value of a positive-valued self-
financing portfolio strategy with initial value 1 that is to be taken as numeraire.
Dividing (11) by mqz; results in
M T Hooq
v Mp2pv v
Y _ g, DrEtre B iy
24 My 2L 2T T
12Far an exellat disassian emphesizing the analytical bere s of an gppropriate numeraire
dxdae, s=6 eman, EIKarau adR odet [l 4}

: (12)
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if v is the measure that has mrzy as its Radon-Nikodym derivative. Therefore V/Z
is a martingale under v. Further, the change-of-measure process m;z; = Ej(mrz7)
is a martingale under y.'3

It is known from a large recent literature (for example, Schachermayer [35], Del-
baen and Schachermayer [8], Back and Pliska [2], Gilles and LeRoy [19] and the papers
cited in these) that neither the necessity nor the sufficiency of this condition extends
to infinite settings, at least in the absence of qualification. We give a simple and
intuitive account of why the Fundamental Theorem of Finance may fail in an infinite
setting.

In infinite time M Z is a local martingale, but it is not necesarily a martingale.
If it is not a martingale, then m;z; does not converge to a random variable with
expectation 1. This is true under both pointwise and weak* convergence: in the
former case m;z; may converge to a random variable with expectation not equal to 1,
while in the latter case m;z; may converge to a charge that has no representation as a
random variable (because it has a nonzero pure charge component). In neither case
does M Z define the Radon-Nikodym derivative associated with a change of measure,
implying that no equivalent martingale measure is associated with Z.

In particular, there exists a risk-neutral measure if and only if the bubble associ-
ated with the money-market account has a zero pure charge component.

7.1 Example

The preceding analysis is illustrated in an example. Consider a representative agent
model in which the agent maximizes

x
27'E In(cy)] - (13)

t=0

The agent’s endowment equals 2!, t = 0, 1,2, ... if the state'* is high at ¢t or at any
date prior to t, and 1 otherwise. The transitions between the high and low states are
governed by a 2 £2 transition matrix with 1/2 in each position, so that the states
are independent and equally likely. The state at date 0, the initial date, is L.

It is easily checked that event prices at date t—the prices of one unit of consump-
tion contingent upon a particular sequence of H’s and L’s up to date t—equal 273
if the state is high at ¢ or at any date prior to ¢, and 272! otherwise. Accordingly,
the state price deflator M—the ratio of event prices to probabilities—is given by

138 axter ad R emie [3]hes a vary aocessibe and intuitive disassian of dnengss ofmessure in
the disaetetime Geee-

144 erewe are notusing the t&rm \ state " in its dynamic programming sanse, sinee tre el of the
agorecaie axdonmaitatany date is notasuH-dentstatistic Torthe past histary ofthe eaonamy up
otatdake.
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8
=272 ifr -t

my = - ) (14)
- 27t otherwise

where 7 is the date of the first high endowment realization. Since the endowment
realization after 7 equals 2 regardless of the state, it is clear that all uncertainty is
resolved at 7. The event that 7 - ¢ has probability 1 j 27 for any ¢.

Note here that, because of the presence of the discount factor in the utility func-
tion (13), the state price deflator declines with ¢.  However, it declines an order
of magnitude faster when 7 - t than otherwise, and this is what gives rise to the
distinctive features of the example.

Let r; be the gross one-period interest rate from ¢ § 1 to ¢t. It is given by

4 if 7<t,
(15)

Tt =

|V /VCXJ

4(14 27471 otherwise

The date-t value b; of the money-market account B, equal to the cumulated value of
one unit of consumption invested at the one-period interest rate and rolled over at
each date, is

8 .
v =220 142 ifr -t

by (16)

Il
<
3
|

=_ _
i=1 - Q% Qﬁzl(l + 27971 otherwise

Define W as the product of M and B. From (14) and (16), W is given by

8 )
S O @2t ifr -t

Wy - mtbt = - (17)
-2 Qle(l + 27971 otherwise.

The process w is a local martingale.!® However, it is not a martingale. To
see this, note that the event that ¢ consecutive realizations of L occur, which has
probability 277, contributes ~¢_,(1427%)~! to E(w;). This term converges to 0.4194,
which therefore equals the date-0 value of the pure charge component of the bubble
Weo. Therefore the expectation of the measure component of w,, equals 0.5806
(=1 §0.4194). The portfolio strategy w is seen to be a suicide strategy.

The foregoing discussion establishes that, despite the absence of arbitrage, there
does not exist a risk-neutral probability measure in this example.

As a local martingale, w; equals the date-t value of a self-financing portfolio strat-
egy. The fundamental value of W is zero and its bubble value is 1. However,
suppose that instead of rolling over the portfolio, the investment is terminated as

Fareanpk, the dated valbeofm is! , its date! \vales alemy =2=3; m =4=3;its date?
valbsaemyy =my =2=3;m y =8=15axdm [ =32=15:
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soon as the first high state occurs.  In that case the fundamental value of W is
0.5806 and its bubble value is 0.4194, agreeing with Loewenstein and Willard’s [25]
terminology. For this portfolio strategy the bubble is a pure charge centered on the
event (L, L, L, ...).
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