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Abstract

The Symphony of Alignment: Ensuring Fairness and Mitigating Bias in

Foundation Models

by

Jialu Wang

Foundation models are poised to revolutionize decision-making across various domains,

but their reliance on historical data can perpetuate and amplify existing biases. This

risk of reinforcing societal stereotypes through biased outputs underscores the critical

need to evaluate and mitigate biases in these models to ensure their responsible and

ethical use. In this dissertation, we delve into three critical challenges in ensuring fair-

ness and mitigating bias in foundation models and AI systems. It comprises three main

contributions: (1) An exploration of fair learning under uncertainty, particularly when

sensitive attributes are corrupted. The research proposes noise-resistant fair Empirical

Risk Minimization approaches and a novel method for detecting groups with higher

noise levels in labels. (2) An investigation into fairness and bias in multimodal appli-

cations of foundation models, including image search, multilingual text retrieval, and

text-to-image generation. The study develops new intervention methods for mitigating

gender bias in image search, reveals intrinsic trade-offs in multilingual fairness, and

introduces association test in text-to-image generations. (3) The development of fair-

ness influence functions to quantify the impact of individual data examples on model

xv



fairness. This approach offers insights into machine unlearning, with efficient approxi-

mation techniques for large-scale applications. Ultimately, the thesis strives to advance

the understanding of fairness in foundation models through the development of both

theoretical frameworks and practical evaluations for responsible AI.
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Chapter 1

Introduction

1.1 Motivation

Foundation models, also known as large AI models, are pre-trained on vast

amount of data and empower a wide range of applications. These large-scale artificial

intelligence models are poised to revolutionize digital decision-making process across

various domains, including recommender systems, credit scoring, and medical treat-

ments. The effectiveness of foundation models stems from their analysis of historical

data. However, this reliance on past information can be problematic when the training

data contains biases or errors. In such cases, the models may inadvertently perpetuate

and amplify these flaws, raising concerns about fairness and ethics. For example, when

interacting with large language models, users may receive responses that reflect societal

stereotypes related to gender, race, religion, and other sensitive topics. The dissemina-

1



tion of such biased information risks reinforcing these stereotypes in human’s minds. In

consequence, it is crucial to evaluate and mitigate such biases to ensure the responsible

usage of foundation models.

Despite recent advances in related areas, the field of machine learning still faces

numerous challenges on multiple fronts.

Ensuring Fairness in an Uncertain World. Many current machine learning meth-

ods assume that historical data is clean and accurate. However, in reality, model de-

velopers often only have access to biased datasets. It is therefore crucial to develop

techniques that can mitigate biases stemming from unreliable or uninformative labels.

Bridging the Gap to Multi-Modal Foundation Models. Algorithmic fairness

has been conceptualized and evaluated primarily in the context of classification tasks.

However, with rapid development of AI models, this narrow focus is becoming increas-

ingly inadequate. Modern foundation models, which serve as the basis for numerous AI

applications, are trained on and capable of processing a diverse array of data modalities,

including but not limited to text, images, audio, and video. This multi-modal nature of

contemporary AI systems presents new challenges in ensuring and evaluating fairness

across a broad spectrum of downstream applications.

Lacking the Interpretation from a Data-Centric Viewpoint. While recent ma-

chine learning literature has produced numerous in-processing methods for bias mitiga-

2



tion in AI systems, a critical gap remains in our understanding of these interventions

from a data-centric perspective. The application of these techniques without a compre-

hensive grasp of how biased data samples influence model behavior can yield unreliable

or even counterproductive results. This challenge is exacerbated by the emergence of

foundation models, which introduce unprecedented complexities to the fairness land-

scape. These large-scale models pose a significant risk of memorizing training examples

verbatim, including those tainted with biases. More alarmingly, due to their immense

scale and training methodologies, foundation models may not merely reflect existing

biases but potentially amplify them, creating a magnified echo chamber of unfairness.

This underscores the urgent need for a deeper, data-centric approach to understanding

and mitigating bias in AI systems, particularly navigating the specific corrupted data

instances.

1.2 Overview of Results

This thesis aims to address the aforementioned challenges as follows:

In Chapter 2, we explore the challenge of fair learning in scenarios with im-

perfect information, specifically focusing on cases where sensitive attributes may be

corrupted. In realistic applications, such as criminal justice and evaluating loan applica-

tions, labels are often contaminated by human biases against a certain protected group.

Our research reveals, through both theoretical analysis and empirical evidence, that

3



blindly enforcing parity constraints without considering noisy labels can be detrimen-

tal. These findings underscore the critical importance of accounting for noise and bias

when performing Empirical Risk Minimization (ERM) subject to fairness constraints.

To address these issues, we developed two noise-resistant fair ERM approaches. The

core concept involves constructing unbiased estimators for both loss functions and fair-

ness constraints. Additionally, we prototype a method that strategically increases noise

levels to balance disparities and further mitigate biases. We propose a novel detection

method that identifies groups of labels likely to suffer from higher noise levels without

relying on ground truth information. Our experimental results demonstrate that the

aforementioned harms can indeed manifest in practice when using real datasets. The

insights forewarn decision-makers that improperly mitigating unfairness might do harm

on the clean groups. Our two fairness-aware solutions are an important step toward

addressing this problem.

Chapter 3 explores fairness and bias in three key applications of foundation

models: image search, multilingual text retrieval, and text-to-image generation. Our

research aims to establish a unified framework for evaluating fairness and bias across

both image and text modalities, extending traditional fairness criteria beyond their orig-

inal classification context into these modern, multimodal domains. In addressing image

search, we introduce two novel intervention methods: an in-processing approach and

a post-processing technique, both designed to mitigate biases in search results. These

methods demonstrate practical strategies for enhancing fairness in visual information

4



retrieval systems. Our investigation into multilingual text retrieval reveals a fundamen-

tal tension in fairness objectives. We demonstrate the impossibility of simultaneously

achieving both individual fairness and group fairness in this context, highlighting the

complex trade-offs inherent in multilingual AI systems. For text-to-image generation,

our research focuses on state-of-the-art diffusion models. We provide evidence of bias

amplification in these models, illustrating how existing biases can be exacerbated in

the process of generating images from textual descriptions. This chapter represents

a significant step towards understanding and addressing fairness issues in multimodal

AI applications. Our findings not only shed light on the challenges of ensuring fair-

ness across different modalities but also offer insights into potential solutions and areas

requiring further research in the rapidly evolving field of multimodal AI.

Chapter 4 delves into the application of influence functions as a means to quan-

tify the impact of individual data examples on model fairness. Our result introduces a

novel family of fairness influence functions, designed to measure the change in fairness

metrics when a specific training example is counterfactually removed from the training

data. Influence function allows for a granular understanding of each data point’s con-

tribution to the overall fairness of the model. As the direct application, we show that

such influence function can be used in coreset selection, noise detection, and machine

unlearning. To address the computational complexity of influence functions, we develop

efficient approximation techniques, making the approach feasible for large-scale datasets

and complex foundation models. Recognizing that direct access to model parameters

5



is not always possible, we propose methods to estimate fairness influence functions in

scenarios where only model predictions are available.

6



Chapter 2

Fair Classification with Imperfect

Information

2.1 Motivation

Machine learning classifiers can perpetuate and amplify existing systemic in-

justices in society. Notable examples include discrepancies in allocation of medical care

to patients on the basis of race [OPVM19] and significant disparities in predicting recidi-

vism rates for African-American defendants [ALMK16a, Cho17a], and more [VBC18,

PF16, BG18a]. A number of techniques have been developed in order to mitigate

bias in machine learning classifiers [ZVRG17, FFM+15a, HPS16a, ABD+18a, MW18,

CHKV19]. Typically, these methods consider populations with groups corresponding to

a set of protected sensitive attributes, such as race or gender. The classifier is then re-

7



quired to exhibit similar behavior across all groups [ZVRG17, HPS16a, Cho17a, KC09].

This can be done by imposing equality of true positive rate or true negative rate condi-

tioned on group membership. These are called “fairness,” or parity constraints.

Many of these methods assume the availability of clean and accurate labels.

However, this is often not the case. In fact, bias in data is particularly pertinent to label

corruption. To make things worse, the accuracy of available labels is often strongly in-

fluenced by whether a person falls within a protected group, and these discrepancies can

have significant and often life-altering outcomes. For example, it has been shown that la-

bels for criminal activity generated via crowdsourcing are systematically biased against

certain racial groups [DF18]. As another example, both women and lower-income indi-

viduals often receive significantly less accurate diagnoses for cancer and other ailments

than men, due to imbalance in the sample population of medical trials [GTYS18], and

due to bias from doctor treatment [Bra16]. Similar discrepancies arise in the accuracy of

mathematical aptitude evaluations for males and females in primary school [LHPL10],

and it has long been known that an employer’s evaluation of a resume will be influenced

by the perceived ethnic origin of an applicant’s name [BM04]. Moreover, studies show

that people of all races use and sell illegal drugs at remarkably similar rates, but in

some states, black male have been admitted to prison on drug charges at rates twenty

to fifty times greater than those of white men [Ale12]. The structure and magnitude

of group-specific label noise can dramatically affect the performance and fairness of a

classifier. To see this, we consider the following examples.
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Group A Group B Pooled

(x1, x2), y +1 −1 f∗A +1 −1 f∗B +1 −1 f∗fair

(0, 0), − 1 0 25 −1 70 30 +1 70 55 +1

(0, 1), − 1 0 25 −1 70 30 +1 70 55 −1

(1, 0), + 1 25 0 +1 100 0 +1 125 0 +1

(1, 1), + 1 25 0 +1 100 0 +1 125 0 −1

Example 2.1 Consider training classifiers using data from two groups Z ∈ {A,B}

with homogeneous data distributions Pr(Y = +1 | X = x, Z = A) = Pr(Y = +1|X =

x, Z = B), where x = [x1, x2] is a 2-dimensional feature vector. In this setting, the

Bayes-optimal classifiers for group A and B (denoted as f∗A and f∗B respectively) will

obey any parity constraint. However, suppose group a has a set of clean labels, while

group b has clean labels when the ground truth is y = +1 but there is a 70% chance

that corrupting noise will cause the observed label to be flipped from the true value

when y = −1. In this case, f∗fair trained on both groups achieves perceived equal True

Positive Rates (TPR) (50%) between the two groups and is the best one to do so - this

indeed hurts group a’s prediction performance (as opposed to 100% accuracy before),

but the labels in group a are not affected by noise.

Example 2.2 Consider training classifiers using data from two groups Z ∈ {A,B}

with heterogeneous data distributions Pr(Y = +1 | X = x, Z = A) = Pr(Y = +1 |
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X = x, Z = B). Suppose group A has a set of clean labels, while one quarter of group

B’s labels are incorrect. We denote the Bayes-optimal classifiers for A and B as f∗A

and f∗B respectively and they obey any parity constraint. The classifier f∗fair trained on

the observed corrupted data is subject to equal TPR constraint for both groups. Note

that f∗fair on the pooled data output +1 for (0, 1) and -1 for (1, 0) because equal TPR

constraint is enforced. In this case, the TPRs for both groups are 50%. If the classifier

output -1 for (0, 1) and +1 for (1, 0) instead, the TPR for group A is 100% while the

TPR for group B is only 50%, which violates the equal TPR constraint. However, f∗fair

has a higher TPR (2/3: 200 correct predictions out of 300 true +1 labels) on B than on

A (1/2: 100 correct predictions out of 200 true +1 labels) when evaluated on the clean

data.

Group A Group B Pooled

(x1, x2), (yA, yB) +1 −1 f∗A +1 −1 f∗B +1 −1 f∗fair

(0, 0), (−1,−1) 0 100 −1 75 225 −1 75 325 −1

(0, 1), (−1,+1) 0 100 −1 75 25 +1 75 125 +1

(1, 0), (+1,+1) 100 0 +1 75 25 +1 175 25 −1

(1, 1), (+1,+1) 100 0 +1 75 25 +1 175 25 +1

To sum up, the above examples has delivered two important messages:

1. Enforcing fairness constraints without accounting for group-specific label noise can
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harm the accuracy of the classifier for the group whose labels have been accurate

recorded. We remark that although [BS19] has considered the single-group noise

setting and demonstrated that fairness interventions could aid in reducing the

error caused by label bias, our observation demonstrates a special case where

potential harm occurs.

2. A classifier may appear to achieve parity when it does not. Furthermore, imposing

a parity constraint might actually make everyone worse off.

In this chapter, we look at the problem of fair classification from data whose

labels are corrupted, such that the error rates of corruption are group-dependent. Sev-

eral recent works deal with fair classification with noisy labels [JN19, LZMV19, BS19].

In particular, it has been shown that fairness constraints on the noisy training labels

can be beneficial when the label noise is homogeneous across the different groups that

are to be protected [BS19]. More recently, [FCG20] shows that how the true fairness

rates, such as TPR, are related to observed quantities with respect to noise parame-

ters. Our work complements these results: we show that enforcing fairness constraints

when training on data with noisy labels produces a classifier that violates the fairness

constraints as measured with respect to the clean data. We then provide a fair empir-

ical risk minimization (ERM) framework that handles heterogenous label noise. Our

framework uses an estimation procedure that infers the knowledge of group-dependent

noise in the training data and applies this knowledge using bias removal techniques, thus
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eliminating the effects of noisy labels in both the objective function and the fairness

constraints in expectation.

2.2 Enforcing Fairness Constraints on Noisy Labels Can

be Harmful

We start with a dataset with n examples (xi, yi, zi)
n
i=1, where each example

consists of a feature vector xi = (1, xi,1, . . . , xi,d) ∈ Rd+1, a label yi ∈ {+1,−1}, and a

group attribute zi ∈ Z. We assume that there are m = |Z| ≥ 2 groups.

Example 2.1 illustrated how blindly imposing parity constraints on the cor-

rupted labels could reduce the classifier’s accuracy for unaffected groups. We aim to

establish a theoretical basis for investigating the potential harms caused by label errors.

Without loss of generality, we present our results in settings where we wish to train a

classifier with equal true positive rates (TPR) across groups. Similar derivations hold

for other related constraints (e.g., the ones as linear combinations of the entries in the

confusion matrix), such as equal false positive rates (FPR), and equal balance error

(BER). We use the following shorthand to denote different measures of performance,

including TPR and FPR, computed for each group using the true labels y and the noisy
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labels ỹ, where y, ỹ ∈ {+1,−1}:

TPRz := Pr(f(X) = +1 | Y = +1, Z = z)

FPRz := Pr(f(X) = +1 | Y = −1, Z = z)

T̃PRz := Pr(f(X) = +1 | Ỹ = +1, Z = z)

F̃PRz := Pr(f(X) = +1 | Ỹ = −1, Z = z)

(2.1)

We consider a classification problem with two identical groups z and z′ where

samples from group z have uncorrupted labels while samples from group z′ have noisy

labels. A noisy label ỹ corresponds to a true label y that may have been flipped based

on noise rate 0 ≤ ϵ+z + ϵ−z < 1 (as a function of true label y). More precisely, we assume

that the noise rates vary based on the true label y as well as the group attribute z:

ϵ+z = Pr(Ỹ = −1 | Y = +1, Z = z), (2.2)

ϵ−z = Pr(Ỹ = +1 | Y = −1, Z = z) (2.3)

That is, the observed training labels are generated as:

ỹi =


yi w.p. 1− ϵsign(yi)zi ,

−yi w.p. ϵ
sign(yi)
zi .

We next show that the label noise presented in group z′ can harm the clean

group z when enforcing parity constraints.

Theorem 2.1. Consider a setting with two identical groups Z = z and Z = z′. Group

z has clean labels, i.e., ϵ+z = ϵ−z = 0. Group z′ suffers from symmetric noise ϵ+z′ =
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ϵ−z′ = e > 0. In this setting, a classifier trained subject to the equal TPR constraint

T̃PRz = T̃PRz′ leads to an uninformative classifier that TPRz = FPRz.

Table 2.1: Label noise harms accuracy.

Metrics Groups f ffair

TPR
female 97.12% ⇒ 96.44%

male 92.40% ⇒ 98.26%

FPR
female 53.35% ⇒ 78.11%

male 46.81% ⇒ 84.32%

Accuracy
female 91.62% ⇒ 88.32%

male 80.39% ⇒ 72.97%

We empirically examine the above observation on the Adult dataset from

UCI Machine Learning repository [DG17a]. There are two sensitive groups, Z =

{male, female}, in this data set. We inject symmetric noise ϵ+ = ϵ− = 0.3 into la-

bels for members of the female group. Then, we train two classifiers: f , which is

trained without any fairness constraints, and ffair, which is trained with the imposition

of equal TPR using the reduction method [ABD+18a]. As is shown in Table 2.1, the

empirical results mirror Theorem 2.1. When the difference between ffair’s TPR for the

two groups becomes small (less than 2%), ffair’s TPR and FPR become close together,

and the accuracy decreases significantly. The above trends hold even when we try to
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equalize TPR and FPR together across groups. We notice that the two groups are not

strictly identical in the Adult dataset, but our example implies that there exists dan-

gerous cases where enforcing fairness constraints can harm classifier accuracy for the

group with uncorrupted labels.

Our second message, as illustrated in Example 2.2, is that training fair classi-

fiers using noisy labels may lead to a false impression of fairness. This arises when the

fairness constraints are satisfied over the noisy labels while being violated over the clean

labels. Before proceeding, we require extending Proposition 16 of [MVROW15] into

the situation with group-dependent label noise. We note that a similar result appears

in [SBH13].

Lemma 2.2. For each group z we have that

TPRz =(1− ϵ+z ) · T̃PRz + ϵ+z · F̃PRz (2.4)

FPRz =ϵ−z · T̃PRz + (1− ϵ−z ) · F̃PRz (2.5)

We also note that, in the special case where all groups suffer from an identical

rate of label corruption, the learner can be oblivious to the specific error rates:

Theorem 2.3. Consider a classification problem with noisy labels where the noise rates

are independent of group membership, so that ϵ+z = ϵ+z′ and ϵ
−
z = ϵ−z′ ∀z, z

′ ∈ Z. Then it

follows that TPRz = TPRz′ ∀z, z′ ∈ Z, if equal odds (equalizing both TPR and FPR)

on the noisy labels is imposed.
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The proof follows by applying the assumption of equal error rates and equal

odds on the noisy labels with Lemma 2.2. However, things break down in the general

case. If we impose equal odds across groups on a learner that is unaware of the labels’

noisiness (i.e. whenever T̃PRz = T̃PRz′), then:

Theorem 2.4. Assume that a classifier is subject to equal odds in the presence of

group-dependent label noise. Then for any two groups z, z′ ∈ Z, we have

|TPRz −TPRz′ | = |T̃PRz − F̃PRz| · |ϵ+z − ϵ+z′ |,

|FPRz −FPRz′ | = |T̃PRz − F̃PRz| · |ϵ−z − ϵ−z′ |.

Unless the classifier is random on the noisy training data, i.e., T̃PRz = F̃PRz, it is

impossible to satisfy equal odds over the clean data whenever ϵ+z ̸= ϵ+z′ and ϵ
−
z ̸= ϵ−z′.

The proof follows by a direct application of Lemma 2.2. Theorem 2.4 implies

that the true fairness violation is proportional to the difference in error rates across the

different sub-groups. We offer two remarks. First, if the error rates are systematically

biased towards a particular group, then a perceived fair classifier will lead to unequal

odds. Second, the above bias will be reinforced when the trained model is more accurate

on noisy data; a more accurate model will lead to a larger difference in |T̃PRz − F̃PRz|.
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Table 2.2: Surrogate constraints for surrogate loss.

Metric F̂z(f)

TPR (1− ϵ+z ) · T̂PRz + ϵ+z · F̂PRz

FPR ϵ−z · T̂PRz + (1− ϵ−z ) · F̂PRz

Equal Odds both TPR and FPR

2.3 Fair ERM with Noisy Labels

In this section, we describe two noise-tolerant and fair ERM solutions that

address the combined challenges of heterogeneous and group-dependent label noise.

Both the surrogate loss and group-weighted peer loss approaches for handling noisy

labels rely on estimations of the label noise.

2.3.1 A Surrogate Loss Approach

As we shall see, training an unmodified loss function using the noisy labels ỹi

corrupts the model in a manner that cannot be addressed via post-hoc correction. Thus,

a natural resolution is to modify the loss function itself. This modified loss function is

called a surrogate loss.

Bias removal surrogate loss functions. Bias removal via a surrogate loss is a

popular approach to handling label noise [NDRT13]. The original loss function ℓ(·) is

replaced with a surrogate loss function ℓ̃(·) that “corrects” for noise in the labels in
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expectation. Formally, the surrogate loss is chosen so that the cost of mis-classifying an

element xi with true label yi is equivalent to the expected loss value that arises from

using noisy label ỹi. Thus, we want to find a surrogate loss ℓ̃ such that:

ℓ(f(x), y) = EỸ [ℓ̃(f(x), Ỹ ) | Y = y] (2.6)

for all x and y. When the noise depends on the label value, the function given by

ℓ̃(f(xi), ỹi = +1) :=
(1− ϵ−zi)ℓ(f(xi),+1)− ϵ+ziℓ(f(xi),−1)

1− ϵ+zi − ϵ−zi
, (2.7)

ℓ̃(f(xi), ỹi = −1) :=
(1− ϵ+zi)ℓ(f(xi),−1)− ϵ−ziℓ(f(xi),+1)

1− ϵ+zi − ϵ+zi
. (2.8)

satisfies the above property, as shown by Lemma 1 in [NDRT13]. A classifier f min-

imizing the surrogate loss on noisy data ℓ̃(X, Ỹ ) will minimize the loss on clean data

ℓ(X,Y ) in expectation. This property allows us to perform model selection on a noisy

validation set, and one could choose the model that performs better on the validation

set to deploy.

Surrogate fairness constraints. We will also need to modify the fairness constraints

to account for the effects of noise. Our method of doing so is inspired by the surrogate

loss that we need to work with an unbiased estimate of the fairness constraints. For

the case of binary classification, we can express the surrogate measures of group-based

fairness constraints using Lemma 2.2.

We use Equation (2.7) and Equation (2.8) to define our surrogate loss functions

ℓ̃z(f(xi), ỹi = +1), and ℓ̃z(f(xi), ỹi = −1). Furthermore, define the empirical TPR and
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Table 2.3: Surrogate constraints for group weighted peer loss

Metric F̂z(f)

TPR Pr(f(X) = +1|Z = z) + ∆z
2 (T̂PRz − F̂PRz)

FPR Pr(f(X) = +1|Z = z)− ∆z
2 (T̂PRz − F̂PRz)

Equal Odds both TPR and FPR

FPR over the noisy labels as follows:

T̂PRz(f) =
#(f(xi) = +1, ỹi = +1, zi = z)

#(ỹi = +1, zi = z)
(2.9)

F̂PRz(f) =
#(f(xi) = +1, ỹi = −1, zi = z)

#(ỹi = −1, zi = z)
(2.10)

We then define our surrogate fairness measures F̂z(f) using only noisy data, as detailed

in Table 2.2. Our noise-resistant fair ERM states as follows:

min
f∈H

n∑
i=1

ℓ̃(f(xi), ỹi)

s.t. |F̂z(f)− F̂z′(f)| ≤ δ, ∀z, z′. (2.11)

2.3.2 Group Weighted Peer Loss Approach

The developed peer loss function partially circumvents the issue of noise rate

estimation [LG20]. The peer loss requires less prior knowledge of the noise rates for

each class. It is defined as:

ℓpeer(f(xi), ỹi) := ℓ (f(xi), ỹi)− α · ℓ (f(xi1), ỹi2) , (2.12)
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where

α = 1− (1− ϵ− − ϵ+) · Pr(Y = +1)− Pr(Y = −1)

Pr(Ỹ = +1)− Pr(Ỹ = −1)

is a parameter to balance the instances for each label, and where i1 and i2 are uniformly

and randomly selected samples from Iz/{i} (i.e., “peer” samples which inspired the name

peer loss as noted in [LG20]). Although the noise parameters explicitly appear in the

definition of α, only the knowledge of ∆ := 1 − ϵ− − ϵ+ is needed. In practice, we

could tune α as a hyper-parameter during training. This loss function has the following

important property, proven in Lemma 3 of [LG20]:

ED̃z
[ℓpeer(f(X), Ỹ )] = ∆z · EDz [ℓpeer(f(X), Y )], (2.13)

where D̃z denotes the noisy distribution for group z and ∆z = 1 − ϵ−z − ϵ+z . Adapting

the peer loss function to labels with group dependent noise requires accounting for

the differing values of ∆z. We do so by re-weighting Equation (2.12) to obtain our

group-weighted peer loss ℓgp:

ℓgp(f(xi), ỹi) :=
1

∆zi

(ℓ(f(xi), ỹi)− α · ℓ (f(xi1), ỹi2)) . (2.14)

When class is balanced for every group z, i.e., PrZ=z(Y = +1) = PrZ=z(Y = −1) = 1
2 ,

the parameter α is exactly 1. In this case, the expected group-weighted peer loss on

the noisy distribution D̃ is the same as the expected uncorrected loss ℓ on the true

distribution D. More precisely:
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Theorem 2.5. For all group dependent noise rates ϵ−z and ϵ+z satisfying ϵ−z + ϵ+z < 1,

taking ℓ(·) as the 0-1 loss 1(·) and when PrZ=z(Y = +1) = PrZ=z(Y = −1) = 1
2 ,

ED̃[ℓgp(f(X), Ỹ )] = ED[ℓ(f(X), Y ]− 1

2
. (2.15)

Peer-based surrogate fairness constraints. We acquire the following result in

order to create group-aware surrogate constraints:

Lemma 2.6. True TPR and FPR relate to T̃PRz, F̃PRz defined on the noisy labels as

follows:

TPRz = Pr(f(X) = +1|Z = z) + ∆z · (T̃PRz − F̃PRz) · Pr(Y = −1|Z = z) (2.16)

FPRz = Pr(f(X) = +1|Z = z)−∆z · (T̃PRz − F̃PRz) · Pr(Y = +1|Z = z) (2.17)

Lemma 2.6 allows us to derive the appropriate surrogate fairness constraints

for the peer loss, displayed in Table 2.3. Note that we have assumed that the datasest

is balanced for each group; i.e., ∀z ∈ Z Pr(Y = +1 | Z = z) = 1
2 . If the data is

imbalanced, we will require knowing the marginal prior Pr(Y = +1 | Z = z).

We merely require knowledge of ∆z for each z in order to define ℓgp and

F̂z(f). This is a weaker requirement compared to knowing the error rates (which will

carry estimation of two parameters for each group). We indeed see our group peer loss

approach performs more stably as compared to the surrogate loss approach introduced

in last subsection when using noisy estimates of the noise rates. With group-weighted

peer loss function and surrogate fairness constraints, we are able to perform a fair ERM
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as detailed in Equaltion (2.11) by replacing ℓ̃ with ℓgp and the corresponding F̂z(f)

term.

2.4 Error Rates Estimation and its Impact

We employ “confident learning” to perform noise rate estimation [NJC21]. The

first step is to pre-train a classifier fpre over the noisy labels directly and learn a noisy

predicted probability

p̂(y;x, z) = Pr(fpre(x) = y|Z = z).

Then, for each pair of classes k, l ∈ {+1,−1}, we define the subset of samples:

X̂ŷ=k,z := {xi | ỹi = k, i ∈ Iz},

X̂ŷ=k,y=l,z := {xi | ỹi = k, p̂(y = l;xi, z) ≥ tl,z, i ∈ Iz},

where tl,z = 1

|X̂ŷ=l,z |

∑
x∈X̂ŷ=l,z

p̂(ŷ = l;x, z) is the expected self-confidence probability

for class l and group z. Using the above quantities, we estimate the group-aware joint

probability Q̂ỹ=k,y=l,z = Pr(Ỹ = k, Y = l, Z = z) over the noisy labels ỹ and clean

labels y with:

Q̂ỹ=k,y=l,z =

|X̂ỹ=k,y=l,z |∑
l |X̂ỹ=k,y=l,z |

· |X̂ỹ=k,z|∑
k,l

(
|X̂ỹ=k,y=l,z |∑
l |X̂ỹ=k,y=l,z |

· |X̂ỹ=k,z|
) (2.18)
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We use the marginals of estimated joint to compute the noise parameter estimates for

each group z:

ϵ̂+z =
Q̂ỹ=−1,y=+1,z

Q̂ỹ=−1,y=+1,z + Q̂ỹ=+1,y=+1,z

,

ϵ̂−z =
Q̂ỹ=+1,y=−1,z

Q̂ỹ=+1,y=−1,z + Q̂ỹ=−1,y=−1,z

(2.19)

To estimate ∆z, we simply substitute ϵ̂−z and ϵ̂+z for ϵ−z and ϵ+z in the equation for ∆z.

As a byproduct, we could estimate the marginal priors Pr(Y = +1|Z = z) by

Q̂ỹ=+1,y=+1,z + Q̂ỹ=−1,y=+1,z

Q̂ỹ=+1,y=+1,z + Q̂ỹ=−1,y=+1,z + Q̂ỹ=−1,y=+1,z + Q̂ỹ=−1,y=−1,z

(2.20)

Effects of noisy estimates. It is important to quantify the impact of the noise rate

estimation error on the accuracy and fairness of the resulting classifier. We first note

that, for any η, τ > 0, the law of large numbers implies that taking sufficiently many

samples from D will ensure that the following holds for all z with probability at least

1− η:

max
{ ∣∣ϵ̂+z − ϵ+z ∣∣ , ∣∣∣ ϵ̂+z

1−ϵ̂+z −ϵ̂−z
− ϵ+z

1−ϵ+z −ϵ−z

∣∣∣,∣∣ϵ̂−z − ϵ−z ∣∣ , ∣∣∣ 1−ϵ̂−z
1−ϵ̂+z −ϵ̂−z

− 1−ϵ−z
1−ϵ+z −ϵ−z

∣∣∣} ≤ τ. (2.21)

Denote by ℓ̂(·) the surrogate loss function defined using the estimated noises

{ϵ̂+z , ϵ̂−z }, and let

f̂∗ = arg min
f∈H

N∑
i=1

ℓ̂(f(xi), ỹi), f̃∗ = arg min
f∈H

N∑
i=1

ℓ̃(f(xi), ỹi) (2.22)

We have the following result:
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Theorem 2.7. For every η, τ > 0 there exists N such that

1

N
·

N∑
i=1

ℓ̃(f̂∗(xi), ỹi)−
1

N
·

N∑
i=1

ℓ̃(f̃∗(xi), ỹi) ≤ 4τ · ℓ̄ (2.23)

with probability at least 1− η, where ℓ̄ := max ℓ.

Because the fairness constraints F̂z(f) are linear in ϵ+z , ϵ
−
z s, the additional

fairness violations incurred due to the noisy estimates of the error rates will also be

linear in τ too. Similar observations hold when using the estimated ∆̃z in the peer loss.

2.5 Equalizing Error Rates Improves Fairness Guarantee

Group-dependent label noise rates can exacerbate unfairness when fairness

constraints are directly applied to noisy labels. Addressing these fairness issues re-

quires knowledge of the label noise rates. While existing literature offers data cleaning

solutions, learners typically need to estimate unknown noise rates through various pro-

cedures [ZSL21, NJC21, PRM+17]. It’s important to note that misspecifying these

noise rates can introduce additional learning errors, particularly when the label noise

is asymmetric. Conversely, equalizing error rates by increasing the noise rate for the

lower group, despite reducing the overall informativeness of training labels, is generally

considered more manageable — one can always do so by randomly flipping a portion of

labels. As shown in Theorem 2.3, loss correction procedures become unnecessary when

the noise rates are balanced.
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We assume that the error rates are balanced across classes:

ϵ+z = ϵ−z = ez (2.24)

Resampling the noisy data examples such that Pr(Ỹ = +1 | Z = z) = Pr(Ỹ = −1 | Z =

z) = 0.5, z ∈ {a, b}, we derive the following relationship:

Lemma 2.8. TPRz and FPRz relate to T̃PRz, F̃PRz as follows:

TPRz =
ez · T̃PRz − (1− ez) · F̃PRz

2ez − 1
(2.25)

FPRz =
ez · F̃PRz − (1− ez) · T̃PRz

2ez − 1
(2.26)

Denote by ẽa, ẽb (both < 0.5) the estimated noise rates of ea, eb that we have

access to. Suppose we suffer from the following mis-specifications:

errM := min{erra := |ẽa − ea|, errb := |ẽb − eb|}. (2.27)

Denote the corrected TPR and FPR using T̃PR and F̃PR with estimated ẽa, ẽb as

TPRc
z(h) =

ẽz · T̃PRz(h)− (1− ẽz) · F̃PRz(h)

2ẽz − 1
(2.28)

FPRc
z(h) =

ẽz · F̃PRz(h)− (1− ẽz) · T̃PRz(h)

2ẽz − 1
(2.29)

Theorem 2.9 establishes possible fairness violation due to noise rates mis-specification

errM:

Theorem 2.9. Equalizing TPRc
z(h) & FPRc

z(h) for group a, b leads to following possible
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fairness violation:

|TPRa(h)− TPRb(h)| ≥ errM ·

∣∣∣∣∣ T̃PRa(h)

(2ea − 1)(2ẽa − 1)
− errb

erra

T̃PRb(h)

(2eb − 1)(2ẽb − 1)

∣∣∣∣∣ ,
|FPRa(h)− FPRb(h)| ≥ errM ·

∣∣∣∣∣ F̃PRa(h)

(2ea − 1)(2ẽa − 1)
− errb

erra

F̃PRb(h)

(2eb − 1)(2ẽb − 1)

∣∣∣∣∣ .
But as a consequence of Lemma 2.8, we immediately know that

Theorem 2.10. Whenever ea = eb, equalizing T̃PR and F̃PR suffices to equalizing the

true TPR and FPR.

The technical problem is that we would not know which protected group are

suffering from higher noise, and again we would not have the ground truth labels to

verify any possible hypothesis. We first present the following definition:

Definition 1 (Clusterability). We say the dataset D satisfies 2-NN clusterability if each

instance x shares the same true label class with its two nearest neighbors measured by

∥x− x′∥2.

For the rest of the section, we will assume that D satisfies 2-NN clusterability.

2-NN was similarly introduced in a recent work [ZSL21] and has been shown to be a

requirement that is mild to satisfy. Now we define the following two quantities that are

central to the development of our idea. For an arbitrary instance x1 with noisy label

ỹ1, denote the noisy labels for two nearest neighbor instances of x1 as ỹ2, ỹ3. Define the

following agreement measures:
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Definition 2 (2-NN Agreements). Let ỹ1 denote the noisy label for a randomly selected

instance x1. ỹ2, ỹ3 are the noisy labels of x1’s 2-NN instances (measured by ||x−x′||2).

Positive Agreements PAD := Pr(ỹ1 = ỹ2 = ỹ3 = +1 | z = a) (2.30)

Negative Agreements NAD := Pr(ỹ1 = ỹ2 = ỹ3 = +1 | z = b) (2.31)

The agreement measures the likelihood of the neighbor data points “agreeing”

on the same label. Now we will first sub-sample the noisy distribution and compute

PAD,NAD:

• Step 1: Sample data examples such that the data examples are balanced across

protected groups. Denote this resampled distribution as D⋄.

• Step 2: Compute NAD⋄ and PAD⋄ by Definition 2.

Theorem 2.11. When ea, eb < 0.5 and D satisfies 2-NN clusterability, PAD⋄ ,NAD⋄

relate to ea, eb as follows:

PAD⋄ −NAD⋄ = 2(0.5− ea)(0.5− eb)(ea − eb). (2.32)

Then if PAD⋄ > NAD⋄, we know that ea < eb; otherwise ea > eb. If PAD⋄ = NAD⋄,

then ea = eb.

We show that randomly flipping Ỹ from groups with the smaller noise rates

by a small probability ϵ monotonically decreases the gap between noise rates |ea − eb|.

Without the loss of generality suppose ea < eb, and we will only flip the labels from

group a (but not flipping the ones from group b).
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Proposition 2.12. Denote by Ŷ as the flipped version of Ỹ : Pr(Ŷ ̸= Ỹ ) = ϵ, and

êa := Pr(Ŷ ̸=| Z = a), êb := Pr(Ŷ ̸= Y | Z = b). We have:

êa = (1− ea) · ϵ+ ea, êb = (1− ϵ) · eb (2.33)

Further, the new gap between the noise rates of the flipped label Ŷ is a monotonic

function of ϵ:

êb − êa = eb − ea − (1− ea + eb) · ϵ. (2.34)

Since 1−ea +eb > 0, when ϵ is small, the above derivation shows the effective-

ness in reducing the noise rate gap eb − ea by randomly flipping the noisy labels that

correspond to the class with lower noise rate. The only remaining question is how to

find the optimal ϵ such that êb − êa = 0. Calling Theorem 9, we know

PAD⋄ −NAD⋄ = 2(0.5− ê+)(0.5− ê−)(ê− − ê+). (2.35)

Denote by

f(ϵ) := 0.5 · (PAD⋄ −NAD⋄). (2.36)

As shown in Figure 2.1, it is easy to derive the three solutions for f(ϵ) = 0 (setting each

of the terms to 0)

ϵ1 = 1− 0.5

eb
< 0 (2.37)

ϵ2 =
eb − ea

1− ea + eb
(2.38)

ϵ3 =
0.5− ea
1− ea

(2.39)

28



Note that ϵ2 = eb−ea
1−ea+eb

< (eb−ea)+(1−ea−eb)
(1−ea+eb)+(1−ea−eb)

= 1−2ea
2(1−ea)

= ϵ3, and ϵ3 will lead to an

uninformative state where êa = 0.5. Therefore ϵ2 is our target root.

Figure 2.1: Agreement gap PA−NA varies for different ϵ. There are only two positive
roots for PA−NA = 0. The less one results in êa = êb.

The monotonicity of f(ϵ) from 0 to ϵ2 suggests using a binary search to find

an appropriate ϵ. We start with two flipping parameters ϵl < ϵr, which induce synthetic

datasets Dl and Dr. The gaps of the counted agreements are Cl = PADl
− NADl

and Cr = PADr − NADr , where Cl > 0 > Cr. In each iteration, we test a new flip

parameter ϵmid = (ϵl + ϵr)/2. If the resulting gap Cmid falls within a threshold γ, i.e.,

−γ ≤ Cmid ≤ γ, we return the labels flipped by ϵmid. Otherwise, we update the values

of ϵl and ϵr according to the sign of Cmid: if Cmid < 0, we set ϵr ← ϵmid,Dr ← Dmid

(reducing ϵr); otherwise ϵl ← ϵmid,Dl ← Dmid (increasing ϵl). We propose Noise+ in

Algorithm 1. We initialize ϵr = 0.3, which empirically works in various noise settings. If

this fails, we can grid search different ϵ values (e.g., 0.1, 0.2) that satisfy Cr < 0 as the
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initial ϵr. Note that Algorithm 1 assumes e+ < e−; the implementation is symmetric

for e+ > e−.

Our algorithm is well-suited for loss functions that don’t require prior knowl-

edge of noise rates. While standard cross-entropy (CE) is certainly applicable, various

robust loss functions are also excellent candidates. A particularly promising option is

the recently introduced peer loss function [liu2019peer]. This function doesn’t necessi-

tate specifying noise rates and has been further adapted into a group-weighted peer loss

for fairness constraints in Section 2.3.2. We believe this loss function aligns especially

well with our algorithm’s objectives.

2.6 Experiments

Due to the difficulty of acquiring real world datasets with known label cor-

ruption characteristics, we artificially synthesize the datasets with a noise generation

step. These controlled experiments help us understand the robustness of our approaches

under different noise scenarios.

2.6.1 Experimental Setup

Dataset We evaluate our methods as well as other baseline methods on five datasets:

• Adult, the Adult dataset from the UCI ML Repository with males and females

as the protected groups [DG17a].
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Table 2.4: Dataset statistic and parameters.

Dataset Source Number of data examples n Fairness Tolerance δ Sensitive Groups
Noise Rates

ϵ− ϵ+

adult UCI [DG17a] 32561 2%
female 0.45 0.15

male 0.35 0.55

arrest COMPAS [ALMK16a] 6644 5%
white 0.40 0.30

black 0.15 0.25

arrest COMPAS [ALMK16a] 6644 5%

white male 0.45 0.10

black male 0.10 0.35

white female 0.35 0.45

black female 0.55 0.25

violent COMPAS [ALMK16a] 5278 5%

white male 0.45 0.10

black male 0.10 0.35

white female 0.35 0.45

black female 0.55 0.25

German UCI [DG17a] 1000 2%
female 0.45 0.15

male 0.35 0.55

law LSAC [Wig98] 18692 2%
white 0.45 0.15

black 0.35 0.55

• Arrest and Violent, the COMPAS recidivism dataset for arrest and violent crime

statistics, with race (restricted to white and black) and gender as the sensitive

attributes [ALMK16a].

• German, the German credit dataset from UCI ML Repository with gender as the

sensitive attribute [DG17a].

• Law, a subset of the original data set from LSAC with race (restricted to black

and white) as the sensitive attribute [Wig98].

Table 2.4 describes the dataset statistics and parameters used in the experi-
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ments. We chose to apply a diverse set of noise parameters to the different subgroups.

The fairness tolerance δ and noise parameters ϵ for Adult, German and Law data sets

are identical, but they are different from Arrest and Violent data sets because Arrest

and Violent data sets contain more protected groups. We make this choice mainly for

the baseline models to obtain meaningful results to compare with.

Noise generation We randomly split the clean dataset D = {(xi, yi, zi)}ni=1 into a

training set and a test set in a ratio of 80 to 20. We add asymmetric label noises to

the training dataset, and leave the test data untouched for verification purposes. For

each sensitive group z ∈ Z, we randomly flip the clean label y with probability ϵ−z if its

value is −1, and we flip the clean label with probability ϵ+z if it’s +1. After injecting

this noise, we use the same training set and test set to benchmark all the methods.

Methods. For all of the methods above, we use logistic regression to perform classi-

fication and leverage the reduction approach as proposed in [ABD+18a] for solving our

constrained optimization problem. We evaluate the performance of several methods:

• Clean, in which the classifier is trained on the clean data subject to the equal

odds constraint

• Corrupt, which directly trains the classifier on the corrupted data subject to the

equal odds fairness constraint

• Surrogate Loss, which uses the surrogate loss approach described in Section 2.3.1
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• Group Peer Loss, which uses the group weighted peer loss approach to train a

fair classifier on the corrupted training set.

The Corrupt baseline gives us a sense about the harm caused by the unawareness of

the labels’ noise, and the clean baseline shows the biases contained in the datasets.

We set the same maximum fairness violation δ for all the methods on the same

dataset during training. As there are more sensitive groups on arrest and violent

datasets, we set δ = 5% on these datasets and δ = 2% on the other datasets. We report

metrics for each of the above methods averaged over five runs.

Computing Infrastructure We conducted all the experiments on a 3 GHz 6-Core

Intel Core i5 CPU. The running time for Surrogate Loss is about 10 minutes, while

the running time for Group Peer Loss could be over 30 minutes.

Tuning α in Peer Loss The performance of our group weighted peer loss is highly

influenced by the hyperparameter α. Recall that

ED̃z
[ℓgp(f(X), Ỹ )] = EDz [ℓgp(f(X), Y )]

We split 10% of data examples in the train set for validation and found the optimal α

using grid search. The range of α we searched varied between 0.0 to 2.0. We observed

that both the accuracy and fairness violation on the validation set exhibit the same

trends on the test set. In practice, the group weighted peer loss with α = 0.3 achieves

the best performance on the Adult dataset.
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Table 2.5: Overview of group-based performance metrics for all methods on 5 data
sets. We highlight the best values achieved for fairness violation and accuracy in green
and the worst in red. m is the number of sensitive groups, ϵ̄ is the average of error
rates over all the groups and all label classes ϵ+z , ϵ

−
z s. true indicates training with true

noise parameters and estimated indicates training with estimated noise parameters. The
values after ± are the standard deviation.

Surrogate Loss Group Peer Loss

Dataset Metrics Avg. ϵ̄ Clean Corrupt true estimated true estimated

Adult

m = 2

violation

accuracy
0.38

0.47%

83.76%

8.36± 1.36%

76.08± 2.49%

1.46± 0.50%

81.16± 3.41%

1.39± 0.80%

75.99± 7.45%

1.18± 0.63%

77.00± 2.52%

1.69± 0.86%

75.13± 5.15%

Arrest

m = 2

violation

accuracy
0.28

2.27%

65.16%

2.98± 0.74%

60.72± 0.66%

0.54± 0.27%

61.7± 3.23%

0.36± 0.24%

62.3± 5.30%

1.78± 0.89%

63.81± 3.35%

1.05± 0.55%

65.31± 3.41%

Arrest

m = 4

violation

accuracy
0.34

5.89%

66.0%

12.93± 0.95%

53.7± 1.82%

0.88± 0.27%

65.7± 2.92%

2.48± 1.42%

58.8± 4.96%

1.36± 0.69%

60.27± 2.90%

1.40± 0.36%

57.56± 2.96%

Violent

m = 4

violation

accuracy
0.34

0.37%

60.18%

7.16± 0.80%

52.2± 0.23%

4.81± 0.70%

53.14± 4.91%

7.76± 1.02%

55.4± 0.71%

2.06± 0.81%

55.64± 4.88%

0.68± 0.28%

52.7± 0.57%

German

m = 2

violation

accuracy
0.38

0.68%

74.5%

2.68± 0.32%

70.5± 0.00%

11.79± 3.87%

68.5± 4.27%

11.08± 2.16%

71.5± 2.53%

0.00± 0.00%

70.0± 0.71%

1.64± 0.32%

70.5± 2.53%

Law

m = 2

violation

accuracy
0.38

0.6%

90.67%

2.74± 0.12%

90.16± 0.79%

0.36± 0.08%

90.26± 0.48%

1.98± 1.16%

89.92± 2.86%

0.03± 0.02%

90.32± 0.10%

0.57± 0.12%

90.29± 0.20%

2.6.2 Results

We present an overview of the performance for each method on the test set in

Table 2.5. We compare the two fair ERM approaches using both the true and estimated

noise rates. The metrics we report include violation, the maximum difference in TPR

and FPR between groups z, z′ ∈ Z, and accuracy, the accuracy achieved on test set.
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We make the following observations about our results. First, both of the

two fair ERM approaches in Section 2.3 produce classifiers that are more effective at

mitigating unfairness than a classifier that is naively trained on the corrupted data.

In particular, the group weighted peer loss approach achieves almost 0% viola-

tion on the German and law data sets, when given the true noise parameters. The only

noticeable worse case arises when applying the surrogate loss approach to the German

dataset. This may be due to the high variance of the German dataset, which has fewer

than 1000 samples.

Second, as expected, models trained using our proposed fair ERM methods do

not achieve the same level of accuracy as a model that is fit using clean labels. However,

our models are typically more accurate than the model fit directly to the corrupted

data. For example, on the arrest data set with four protected groups, the surrogate

loss approach achieves a similar accuracy to the classifier trained on clean data while

incurring an even smaller fairness violation. Third, Our methods perform similarly well

when trained using both the true and with the estimated noise parameters, indicating

that the noise estimation procedures are effective. On arrest and violent datasets,

our methods with estimated noise parameters even perform better than those with true

parameters. This is probably due to the biases and noise in these datasets. Finally, our

fair ERM frameworks adapt well to multiple sensitive groups, as demonstrated by the

good performance on the Arrest and Violent data sets.
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Table 2.6: We show how different levels of symmetric noise ϵ− = ϵ+ = ϵ affect the
classifiers’ performance on adult dataset. SL: Surrogate Loss. GPL: Group Peer Loss.
We highlight substantial improvement of fairness in green and sever violation in red.

Noise ϵ Metric Clean Corrupt SL GPL

0.1
violation 0.47% 3.91% 5.15% 1.41%

accuracy 83.76% 83.22% 82.73% 82.71%

0.2
violation 0.47% 3.83% 3.98% 1.49%

accuracy 83.75% 82.08% 82.54% 82.16%

0.3
violation 0.47% 7.23% 3.63% 1.22%

accuracy 83.76% 81.36% 82.01% 81.24%

0.4
violation 0.47% 5.14% 1.13% 3.1%

accuracy 83.76% 79.58% 80.62% 80.21%

2.6.3 Impact of noise levels on classifier performance.

We present the results of varying noise rate on the adult data set (with two

groups) in Table 2.6. We only add symmetric noise to female group and keep the male

group clean. ERM is generally robust to symmetric noises when a significant subset of

the data is clean (one group in our example), so we do not expect significant accuracy

improvement from our methods. We focus on how fairness violation reduces. Observe

that, comparing to training with clean data, training on corrupted data substantially

increases fairness violations, even for relatively low noise rates. The SL and GPL
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columns show that our fair ERM approaches can effectively mitigate the biases. This

holds true even when increasing the noise rate.

2.6.4 Insights on running on data directly, without adding additional

noise

We evaluate our algorithm on the clean adult and arrest datasets as shown

in Table 2.7. On the arrest dataset, our methods achieve a similar performance of

accuracy compared with the Clean baseline, but we do observe a consistent drop of fair-

ness violations on the arrest dataset. The fairness violation of our methods on adult

dataset is not as good as that of Clean baseline. This fact may imply the possibility

that the arrest dataset contains more human biases in labels than the adult dataset.

The small drop in accuracy and (sometimes) in fairness is due to the additional noise

estimation step, which introduces another layer of complication - this is the price we

pay for dealing with potentially highly noisy labels.

2.7 Comparison to Related Works

A great deal of research has been devoted to fair classification in general,

including fair classification under statistical constraints [ZVRG17, FFM+15a, HPS16a,

ABD+18a], decoupled training with preference guarantees [ZVGRG17b, DIKL18, LMC18,

ULP19, CHKV19], and preventing gerrymandering [KNRW17], among many others
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Table 2.7: We examine the performance of our methods on the clean adult and arrest

datasets. Clean: train a fair classifier directly with equal odds constraint. SL: Surrogate
Loss with estimated noise parameters. GPL: Group Peer Loss with estimated noise
parameters. The values after ± are the standard deviation.

adult arrest

Method accuracy violation accuracy violation

Clean 83.76± 0.0 0.47± 0.0 65.46± 0.0 4.46± 0.0

SL 76.97± 0.24 3.51± 0.24 63.07± 0.44 2.90± 0.72

GPL 81.20± 0.19 3.76± 0.19 64.98± 0.40 1.85± 0.36

[MW18, CJS18].

In this work, we specifically focus on fairness in the presence of biased and

group-dependent noisy training labels. Our work contributes to the fair classification

literature by introducing robust methods for dealing with heterogeneous label noise. We

also provide insight into the effects of noise being present in the labels. Our work paral-

lels others’ on fair classification with noisy labels [JN19, BS19]. Ours differs primarily in

two main respects. First, existing works often assume knowledge of the noise generation

process. Second, previous works have only considered noise rates that are homogeneous

across different groups. We consider a more realistic setting, where different groups

might suffer different levels of bias, and therefore reach very different conclusions. Mit-

igating bias is substantially more challenging in our setting. Nevertheless, our results

could generalized prior work when the noise is assumed constant across groups, or only
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one group is assumed to have noise.

Both of our fair ERM approaches extend the literature on learning with noisy

data [AL88a, MS13, NDRT13, FV14, Sco15, MVROW15, LT16, PRM+17, CLS19]. Our

first uses surrogate loss functions based on [NDRT13] to create unbiased estimators of

the fairness constraints. This first approach requires knowledge of the noise parameters.

Our second approach relaxes this assumption by extending the work of [LG20] to account

for both biases in the fairness constraints and for group specific label noise.

Recent work on fair classification with imperfect data shows how to emulate

noiseless fair classification by appropriately re-scaling the fairness tolerance with the

noise but is only restricted to class-conditional random noise without considering group

difference [LZMV19]. Most of the reported results are for the cases with noisy sensitive

attributes but not the labels (despite that the authors provided discussions to how the

two problems are related). The surrogate fairness constraints in our paper could be

viewed as an extension of their method. Nonetheless, our work is more general, as we

consider the more sophisticated settings with group-dependent label noise. [GCFW18b]

explores the use of proxy variables when the sensitive attributes are missing. Lastly,

[FCG20] also provides some insights on correcting for observed predictive bias might

further increase outcome disparities but is concerned with fairness evaluation rather

than learning. In contrast with their work, we simplify the assumption on instance-

dependent noise into group-dependent, and further develop two fair ERM approaches

in terms of the unbiased estimators.
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Algorithm 1 Noise+: A binary search algorithm for balancing noise rates.

Require: γ > 0, ϵl = 0, ϵr = 0.3

Resample a balanced set D⋄ from D̃;

Initialize Dl = D⋄, Dr = Flip(D⋄, ϵr);

Estimate PADl
, PADr , NADl

, NADr .

while PADl
−NADl

> γ and PADr −NADr < −γ do

ϵmid ← (ϵl + ϵr)/2,Dmid ← Flip(D⋄, ϵmid);

Estimate PADmid
and NADmid

;

if PADmid
−NADmid

< −γ then

/* ϵmid is at the right of the root */

ϵr ← ϵmid,Dr ← Dmid;

PADr ← PADmid
, NADr ← NADmid

;

else if PADmid
−NADmid

> γ then

/* ϵmid is at the left of the root */

ϵl ← ϵmid,Dl ← Dmid;

PADl
← PADmid

, NADl
← NADmid

;

else

return D̂ = Flip(D̃, (ϵl + ϵr)/2);

end if

end while

return unsuccessful;
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Chapter 3

Fairness in Multi-modality

3.1 Mitigating Gender Bias in Image Search

3.1.1 Motivating Example

Internet information is shaping people’s minds. The algorithmic processes

behind modern search engines, with extensive use of machine learning, have great power

to determine users’ access to information [ERV+15]. These information systems are

biased when results are systematically slanted in unfair discrimination against protected

groups [FN96].

Gender bias is a severe fairness issue in image search. Figure 3.1 shows an

example: given a gender-neutral natural language query “a person is cooking”, only 2

out of 10 images retrieved by an image search model [RKH+21] depict females, while

equalized exposure for male and female is expected. Such gender-biased search results

41



Figure 3.1: Gender bias in image search. We show the top-10 retrieved images for
searching “a person is cooking” on the Flickr30K [YLHH14a] test set using a state-of-
the-art model [RKH+21]. Despite the gender-neutral query, only 2 out of 10 images are
depicting female cooking.

are harmful to society as they change people’s cognition and worsen gender stereo-

types [KMM15]. Mitigating gender bias in image search is imperative for social good.

In this section, we formally develop a framework for quantifying gender bias

in image search results, where text queries in English are made gender-neutral, and

gender-balanced search images are expected for models to retrieve. To evaluate model

fairness, we use the normalized difference between masculine and feminine images in

the retrieved results to represent gender bias. We diagnose the gender bias of two

primary families of multimodal models for image search: (1) the specialized models

that are often trained on in-domain datasets to perform text-image retrieval, and (2)

the general-purpose representation models that are pre-trained on massive image and

text data available online and can be applied to image search. Our analysis on MS-
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COCO [LMB+14] and Flickr30K [YLHH14a] datasets reveals that both types of models

lead to serious gender bias issues (e.g., nearly 70% of the retrieved images are masculine

images).

To mitigate gender bias in image search, we propose two novel debiasing so-

lutions for both model families. The specialized in-domain training methods such as

SCAN [LCH+18] often adopt contrastive learning to enforce image-text matching by

maximizing the margin between positive and negative image-text pairs. However, the

gender distribution in the training data is typically imbalanced, which results in unfair

model training. Thus we introduce a fair sampling (FairSample) method to alleviate

the gender imbalance during training without modifying the training data.

Our second solution aims at debiasing the large, pre-trained multimodal rep-

resentation models, which effectively learn pre-trained image and text representations to

accomplish down-stream applications [BHB19, CRC+20a, CKNH20a, GCL+20, CLY+20,

RKH+21]. We examine whether the representative CLIP model [RKH+21] embeds hu-

man biases into multimodal representations when they are applied to the task of image

search. Furthermore, we propose a novel post-processing feature clipping approach, clip,

that effectively prunes out features highly correlated with gender based on their mutual

information to reduce the gender bias induced by multimodal representations. The clip

method does not require any training and is compatible with various pre-trained models.

We evaluate both debiasing approaches on MS-COCO and Flickr30K and find

that, on both benchmarks, the proposed approaches significantly reduce the gender bias
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exhibited by SCAN and CLIP models when evaluated on the gender-neutral corpora,

yielding fairer and more gender-balanced search results. In addition, we evaluate the

similarity bias of the CLIP model in realistic image search results for occupations on

the internet, and observe that the post-processing methods mitigate the discrepancy

between gender groups by a large margin.

Our contributions are four-fold: (1) we diagnose a unique gender bias in im-

age search, especially for gender-neutral text queries; (2) we introduce a fair sampling

method to mitigate gender bias during model training; (3) we also propose a novel

post-processing clip method to debias pre-trained multimodal representation models;

(4) we conduct extensive experiments to analyze the prevalent bias in existing models

and demonstrate the effectiveness of our debiasing methods.

3.1.2 Formulation

In an image search system, text queries may be either gender-neutral or gender-

specific. Intuitively, when we search for a gender-neutral query like “a person is cook-

ing”, we expect a fair model returning approximately equal proportions of images de-

picting men and women. For gender-specific queries, an unbiased image search system is

supposed to exclude images with mis-specified gender information. This intention aligns

with seeking more accurate search results and would be much different from the scope

of measuring gender bias in gender-neutral cases. Therefore, we focus on identifying

and quantifying gender bias when only searching for gender-neutral text queries.
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Given a text query provided by the users, the goal of an image search system

is to retrieve the matching images from the curated images. In the domain of multi-

modality, given the dataset {(vn, cn)}Nn=1 with N image-text pairs, the task of image

search aims at matching every image v based on the providing text c. We use V =

{vn}Nn=1 to denote the image set and C = {cn}Nn=1 to denote the text set. Given a text

query c ∈ C and an image v ∈ V, image retrieval models often predict the similarity

score S(v, c) between the image and text. One general solution is to embed the image

and text into a high-dimensional representation space and compute a proper distance

metric, such as Euclidean distance or cosine similarity, between vectors [WSL+14]. We

take cosine similarity for an example:

S(v, c) =
v⃗ · c⃗
∥v⃗∥∥c⃗∥

s.t. v⃗ = image encoder(v)

c⃗ = text encoder(c)

(3.1)

The image search system outputs a set of top-K retrieved imagesRK(c) with the highest

similarity scores. In this work, we assume that when evaluating on test data, ∀c ∈ C,

the text query c is written in gender-neutral language.

The situations of image search results are complex: there might be no people,

one person, or more than one person in the images. Let g(v) ∈ {male, female, neutral}

represent the gender attribute of an image v. Note that in this study gender refers to

biological sex [Lar17]. We use the following rules to determine g(v): g(v) = male when
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there are only men in the image, g(v) = female when there are only women in the image,

otherwise g(v) = neutral.

Portraits in image search results with different gender attributes often receive

unequal exposure. Inspired by [KMM15] and [ZWY+17], we measure gender bias in

image search by comparing the proportions of masculine and feminine images in search

results. Given the set of retrieved images RK(c), we count the images depicting males

and females

Nmale =
∑

v∈RK(c)

1[g(v) = male], (3.2)

Nfemale =
∑

v∈RK(c)

1[g(v) = female], (3.3)

and define the gender bias metric as:

∆K(c) =


0, if Nmale +Nfemale = 0

Nmale−Nfemale
Nmale+Nfemale

, otherwise

(3.4)

We don’t take absolute values for measuring the direction of skewness, i.e., if ∆K(c) > 0

it skews towards males. Note that a similar definition of gender bias Nmale
Nmale+Nfemale

in

[ZWY+17] is equivalent to (1 + ∆(c))/2. But our definition of gender bias considers the

special case when none of the retrieved images are gender-specific, i.e., Nmale+Nfemale =

0. For the whole test set, we measure the mean difference over all the text queries:

Bias@K =
1

|C|
∑
c∈C

∆K(c) (3.5)

46



3.1.3 Methodology

There are two fashions of multimodal models for the image search task. One is

to build a specialized model that could embed image and text into representation vec-

tors with measurable similarity scores. The other is to use general-purpose image-text

representations pre-trained on sufficiently big data and compute a particular distance

metric. We focus on two representative models, SCAN [LCH+18] and CLIP [RKH+21],

for both fashions. For the first fashion, we propose an in-processing learning approach

to ameliorate the unfairness caused by imbalanced gender distribution in training ex-

amples. This approach builds on contrastive learning but extends with a fair sampling

step. The in-processing solution requires full training on in-domain data examples. For

the second fashion, we propose a post-processing feature clipping technique to mitigate

bias from an information-theoretical perspective. This approach is compatible with

pre-trained models and is light to implement without repeating training steps.

3.1.3.1 In-processing Debiasing: Fair Sampling

Image search models in the first fashion are often trained under the contrastive

learning framework [LHS20]. For our in-processing debiasing approach, we now explain

the two primary components, contrastive learning and fair sampling, within our context.

Contrastive Learning We start by formally introducing the standard contrastive

learning framework commonly used in previous works [LCH+18, CDL20] for image-
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text retrieval. Given a batch of N image-text pairs B = {(vn, cn)}Nn=1, the model

aims to maximize the similarity scores of matched image-text pairs (positive pairs)

while minimizing that of mismatched pairs (negative pairs). The representative SCAN

model [LCH+18], denoted as S(v, c) outputting a similarity score between image and

text, is optimized with a standard hinge-based triplet loss:

Li−t =
∑

(v,c)∈B

[γ − S(v, c) + S(v, c̃)]+ (3.6)

Lt−i =
∑

(v,c)∈B

[γ − S(v, c) + S(ṽ, c)]+ (3.7)

where γ is the margin, ṽ and c̃ are negative examples, and [·]+ denotes the ramp function.

Li−t corresponds to image-to-text retrieval, while Lt−i corresponds to text-to-image

retrieval (or image search). Common negative sampling strategy includes selecting all

the negatives [HWW17], selecting hard negatives of highest similarity scores in the mini-

batch [FFKF18], and selecting hard negatives from the whole training data [CDL20].

Minimizing the margin-based triplet loss will make positive image-text pairs closer to

each other than other negative samples in the joint embedding space.

Fair Sampling One major issue in the contrastive learning framework is that the

gender distribution in a batch of image-text pairs is typically imbalanced. Hence, the

negative samples will slant towards the majority group, leading to systematic discrim-

ination. To address this problem, we propose a fair sampling strategy. We split the

batch of image-text pairs into masculine and feminine pairs based on the image’s gen-
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der attribute:

Vmale = {v | g(v) = male, (v, c) ∈ B} (3.8)

Vfemale = {v | g(v) = female, (v, c) ∈ B} (3.9)

Vneutral = {v | g(v) = neutral, (v, c) ∈ B} (3.10)

For every positive image and text pair (v, c) ∈ B, we identify the gender information

contained in the query c. If the natural language query is gender-neutral, we sample a

negative image from the set of male and female images with probability 1
2 , respectively.

Otherwise, we keep the primitive negative sampling selection strategy for keeping the

model’s generalization on gender-specific queries. Let B∗ be the batch of gender-neutral

image-text pairs, the image search loss with fair sampling is:

Lfairt−i =
∑

(v,c)∈B∗

(
1

2
Ev̄∈Vmale

[γ − S(v, c) + S(v̄, c)]+ +
1

2
Ev̄∈Vfemale

[γ − S(v, c) + S(v̄, c)]+)

+
∑

(v,c)∈B/B∗

[γ − S(v, c) + S(ṽ, c)]+ (3.11)

Empirically, we find that if we thoroughly apply the Fair Sampling strategy, the recall

performance drops too much. To obtain a better tradeoff, we use a weight α to combine

the objectives

αLfairt−i + (1− α)Lt−i (3.12)

as the final text-to-image loss function. We do not alter the sentence retrieval loss Li−t

during training for preserving generalization.
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3.1.3.2 Post-processing Debiasing: Feature Clipping based on Mutual In-

formation

Pre-training methods have shown promising zero-shot performance on exten-

sive NLP and computer vision benchmarks. The recently introduced CLIP model [RKH+21]

was pre-trained on an enormous amount of image-text pairs found across the internet

to connect text and images. CLIP can encode image and text into d-dimensional em-

bedding vectors, based on which we can use cosine similarity to quantify the similarity

of image and text pairs. In this work, we find that the pre-trained CLIP model reaches

the state-of-the-art performance but exhibits large gender bias due to training on un-

curated image-text pairs collected from the internet. Although [RKH+21] released the

pre-trained CLIP model, the training process is almost unreproducible due to limitations

on computational costs and massive training data.

In order to avoid re-training of the CLIP model, we introduce a novel post-

processing mechanism to mitigate the representation bias in the CLIP model. We

propose to “clip” the dimensions of feature embeddings that are highly correlated with

gender information. This idea is motivated by the fact that an unbiased retrieve im-

plies the independence between the covariates (active features) and sensitive attributes

(gender) [BHN19]. Clipping the highly correlating covariates will return us a relatively

independent and neutral set of training data that does not encode hidden gender bias.

The proposed clip algorithm is demonstrated in Algorithm 2, and we explain
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Algorithm 2 clip algorithm

Require: Index set Ω = {1, ..., d}, number of clipped features 0 ≤ m < d

Z ← ∅;

for i = 1 to d do

Estimate mutual information I(Vi; g(V ));

end for

for j = 1 to m do

z ← arg max{I(Vi; g(V )) : i ∈ Ω/Z};

Z ← Z ∪ {z};

end for

return Index set of clipped features Z

the key steps below. Let Ω = {1, ..., d} be the full index set. We use V = VΩ =

[V1, V2, ..., Vd] to represent the variable of d-dimensional encoding image vectors and

g(V ) ∈ {male, female,neutral} to represent the corresponding gender attribute. The

goal is to output the index set Z of clipped covariates that reduce the dependence

between representations VΩ/Z and gender attributes g(V ). We measure the correla-

tion between each dimension Vi and gender attribute g(V ) by estimating their mutual

information I(Vi; g(V )) [GKOV17]:

I(VI ; g(V )) = DKL( Pr
(Vi,g(V ))

∥Pr
Vi

⊗ Pr
g(V )

) (3.13)

where DKL is the KL divergence [KL51], Pr(Vi,g(V )) indicates the joint distribution, PrVi
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and Prg(V ) indicate their marginals. Next, we greedily clip m covariates with highest

mutual information, and construct (d−m)-dimensional embedding vectors VΩ/Z . m is

a hyper-parameter that we will experimentally find to best trade-off accuracy and the

reduced gender bias, and we show how the selection of m affects the performance later.

To project text representations, denoted by variable C, into the same embedding space,

we also apply the index set Z to obtain clipped text embedding vectors CΩ/Z .

The clipped image and text representations, denoted by v⃗∗ and c⃗∗, will have a

relatively low correlation with gender attributes due to the “loss” of mutual information.

Then we compute the cosine similarity between image and text by substituting v⃗∗ and

c⃗∗ into Equation (3.1):

S(v, c) =
v⃗∗ · c⃗∗

∥v⃗∗∥∥c⃗∗∥
(3.14)

Finally, we rank the images based on the cosine similarity between the clipped repre-

sentations.

3.1.4 Experiments

3.1.4.1 Datasets

We evaluate our approaches on the standard MS-COCO [CFL+15] and Flickr30K [YLHH14a]

datasets. Following [KFF17] and [FFKF18], we split MS-COCO captions dataset into

113,287 training images, 5,000 validation images and 5,000 test images.1 Each image

corresponds to 5 human-annotated captions. We report the results on the test set

1The data is available at cocodataset.org.
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Before Pre-processing After Pre-processing

A man with a red helmet on a small moped on

a dirt road.

A person with a red helmet on a small moped

on a dirt road.

A little girl is getting ready to blow out a candle

on a small dessert.

A little child is getting ready to blow out a can-

dle on a small dessert.

A female surfboarder dressed in black holding

a white surfboard.

A surfboarder dressed in black holding a white

surfboard.

A group of young men and women sitting at

a table.

A group of young people sitting at a table.

Table 3.1: Samples of the constructed gender-neutral captions. For evaluation, we
convert gender-specific captions to gender-neutral ones by replacing or removing the
gender-specific words.

by averaging over five folds of 1K test images or evaluating the full 5K test images.

Flickr30K consists of 31,000 images collected from Flickr.2 Following the same split of

[KFF17, LCH+18], we select 1,000 images for validation, 1,000 images for testing, and

the rest of the images for training.

Identifying Gender Attributes of Images Sensitive attributes such as gender are

often not explicitly annotated in large-scale datasets such as MS-COCO and Flickr30K,

but we observe that implicit gender attributes of images can be extracted from their

associated human-annotated captions. Therefore, we pre-define a set of masculine words

and a set of feminine words. Following [ZWY+17] and [BHDR18] we use the ground-

2The data is available at http://bryanplummer.com/Flickr30kEntities/.
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truth annotated captions to identify the gender attributes of images. An image will

be labeled as “male” if at least one of its captions contains masculine words and no

captions include feminine words. Similarly, an image will be labeled as “female” if at

least one of its captions contains feminine words and no captions include masculine

words. Otherwise, the image will be labeled as “gender-neutral”.
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(a) MS-COCO 1K Test Set.
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(b) MS-COCO 5K Test Set.
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(c) Flick30K Test Set.

Figure 3.2: Gender bias analysis with different top-K results.

3.1.4.2 Models

We compare the fairness performance of the following approaches:

1. SCAN [LCH+18]: we use the official implementation for training and evaluation3.

2. FairSample: we apply the fair sampling method proposed in Section 3.1.3.1 to the

SCAN framework and adopt the same hyper-parameters suggested by [LCH+18]

for training.

3The code is available at https://github.com/kuanghuei/SCAN.
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3. CLIP [RKH+21]: we use the pre-trained CLIP model released by OpenAI.4 The

model uses a Vision Transformer [DBK+21a] as the image encoder and a masked

self-attention Transformer [VSP+17] as the text encoder. The original model

produces 500-dimensional image and text vectors.

4. CLIP-clip: we apply the feature pruning algorithm in Section 3.1.3.2 to the image

and text features generated by the CLIP model. We set m = 100 and clip the

image and text representations into 400-dimensional vectors.

Note that SCAN and FairSample are trained and tested on the in-domain MS-COCO

and Flickr30K datasets, while the pre-trained CLIP model is directly tested on MS-

COCO and Flickr30K test sets without fine-tuning on their training sets (same for

CLIP-clip as it simply drops CLIP features).

3.1.4.3 Evaluation

Gender-Neutral Text Queries In this study, we focus on equalizing the search re-

sults of gender-neutral text queries. In addition to the existing gender-neutral captions

in the test sets, we pre-process those gender-specific captions to construct a purely

gender-neutral test corpus to guarantee a fair and large-scale evaluation. For every

caption, we identify all these gender-specific words and remove or replace them with

corresponding gender-neutral words. We show some pre-processing examples in Ta-

ble 3.1.
4The pre-trained model is available at https://github.com/openai/CLIP.
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Metrics We employ the fairness metric in Equation (3.5), Bias@K, to measure the

gender bias among the top-K images. In addition, following standard practice, we

measure the retrieval performance by Recall@K, defined as the fraction of queries for

which the correct image is retrieved among the top-K images.

3.1.4.4 Main Results on MS-COCO & Flickr30K

We report the results comparing our debiasing methods and the baseline meth-

ods in Table 3.2.

Model Bias Although the pre-trained CLIP model is evaluated without fine-tuning,

we observe that it achieves a comparable recall performance with the SCAN model on

MS-COCO and dominates the Flickr30K dataset. However, both models suffer from

severe gender bias. Especially, the Bias@10 of the SCAN model on Flickr30K is 0.3960,

meaning nearly 70% of the retrieved gender-specific images portray men and only 30%

portray women. Similarly, the CLIP model achieves 0.2648 gender bias on MS-COCO

1K test set, indicating about 6.4 out of 10 retrieved images portray men while about 3.6

out of 10 portray women. Given that all of the testing text queries are gender-neutral,

this result shows that severe implicit gender bias exists in image search models.

Debiasing Effectiveness As shown in Table 3.2, both the in-processing sampling

strategy FairSample and the post-processing feature pruning algorithm clip consistently

mitigate the gender bias on test data. For instance, among the top-10 search images,

56



Gender Bias↓ Recall↑

Dataset Method Bias@1 Bias@5 Bias@10 Recall@1 Recall@5 Recall@10

COCO1K

SCAN .1250 .2044 .2506 47.7 82.0 91.0

FairSample .1140 .1951 .2347 49.7 82.5 90.9

CLIP .0900 .2024 .2648 48.2 77.9 88.0

CLIP-clip .0670 .1541 .2057 46.1 75.2 86.0

COCO5K

SCAN .1379 .2133 .2484 25.4 54.1 67.8

FairSample .1133 .1916 .2288 26.8 55.3 68.5

CLIP .0770 .1750 .2131 28.7 53.9 64.7

CLIP-clip .0672 .1474 .1611 27.3 50.8 62.0

Flickr30K

SCAN .1098 .3341 .3960 41.4 69.9 79.1

FairSample .0744 .2699 .3537 35.8 67.5 77.7

CLIP .1150 .3150 .3586 67.2 89.1 93.6

CLIP-clip .0960 .2746 .2951 63.9 85.4 91.3

Table 3.2: Results on MS-COCO (1K and 5K) and Flickr30K test sets. We compare
the baseline models (SCAN [LCH+18] and CLIP [RKH+21]) and our debiasing methods
(FairSample and CLIP-clip) on both the gender bias metric Bias@K and the retrieval
metric Recall@K.

SCAN with FairSample reduces gender bias from 0.3960 to 0.3537 (decreased by 10.7%)

on Flickr30K. Using the clipped CLIP features for image search (CLIP-clip), the gender

bias drops from 0.2648 to 0.2057 (22.3%) on MS-COCO 1K, from 0.2131 to 0.1611

(24.4%) on MS-COCO 5K, and from 0.3586 to 0.2951 (17.7%) on Flickr30K. For the

57



tradeoff, CLIP-clip sacrifices the recall performance slightly (from 93.6% Recall@10

to 91.3% on Flickr30K). On the other hand, SCAN with FairSample even achieves a

comparable recall performance with SCAN.

3.1.4.5 Gender Bias at Different Top-K Results

We plot how gender bias varies across different values of K (1-10) for all the

compared methods in Figure 3.2. We observe that when K < 5, the gender bias has a

higher variance due to the inadequate retrieved images. When K ≥ 5, the curves tend

to be flat. This result indicates that Bias@10 is more recommended than Bias@1 for

measuring gender bias as it is more stable. It is also noticeable that CLIP-clip achieves

the best fairness performance in terms of Bias@10 consistently on all three test sets

compared to the other models.

3.1.4.6 Tradeoff between Recall and Bias

There is an inherent tradeoff between fairness and accuracy in fair machine

learning [ZG19b]. To achieve the best recall-bias tradeoff in our methods, we further

examine the effect of the controlling hyper-parameters: the weight α in FairSampling

and the number of clipped dimensions m in CLIP-clip.

Figure 3.3 demonstrates the recall-bias curve with the fair sampling weight

α ∈ [0, 1]. Models of higher recall often suffer higher gender bias, but the fairness

improvement outweighs the recall performance drop in FairSample models. For example,
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(b) Flickr30K test set.

Figure 3.3: The Pareto frontier of recall-bias tradeoff curve for FairSample on MS-
COCO 1K and Flickr30K

the model fully trained with fair sampling (α = 1) has the lowest bias and drops the

recall performance the most—it relatively reduces 22.5% Bias@10 but only decreases

10.9% Recall@10 on Flickr30K. We choose α = 0.4 for the final model, which has a

better tradeoff in retaining the recall performance.

As shown in Figure 3.4, we set the range of the clipping dimension m between

100 and 400 on MS-COCO 1K. We find that clipping too many covariates (1) harms the

expressiveness of image and text representations (Recall@1 drops from 46.1% to 11.3%,

Recall@5 drops from 75.2% to 25.4%, and Recall@10 drops from 86.0% to 34.2%), and

(2) causes high standard deviation in gender bias. In light of the harm on expressiveness,

we select m = 100 for conventional use.
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Figure 3.4: Effect of the number of clipped dimensions m on performance of recall and
bias on MS-COCO 1K.

3.1.5 Evaluation on Internet Image Search

The aforementioned evaluation results on MS-COCO and Flickr30K datasets

are limited that they rely on gender labels extracted from human captions. In this sense,

it is important to measure the gender biases on a benchmark where the gender labels

are identified by crowd annotators. To this end, we further evaluate on the occupation

dataset [KMM15], which collects top 100 Google Image Search results for each gender-

neutral occupation search term.5 Each image is associated with the crowd-sourced

gender attribute of the participant portrayed in the image. Inspired by [BHDR18] and

[TDL+20], we measure the gender bias by computing the difference of expected cosine

similarity between male and female occupational images. Given an occupation o, the

5The data is available at https://github.com/mjskay/gender-in-image-search.
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Figure 3.5: Gender bias evaluation of internet image search results on occupations.
We visualize the similarity biases on 18 occupations. indicates the occupation is
biased towards males and indicates it is biased towards females. The clip algorithm
mitigates gender bias for a variety of occupations.
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similarity bias is formulated as

Bias = Ev∈Vo
male

S(v, o)− Ev∈Vo
female

S(v, o) (3.15)

where Vomale and Vofemale are the sets of images for occupation o, labeled as “male” and

“female”.

Figure 3.5 demonstrates the absolute similarity bias of CLIP and CLIP-clip on

the occupation dataset for 18 occupations. We observe that the CLIP model exhibits

severe similarity discrepancy for some occupations, including telemarketer, chemist, and

housekeeper, while the clip algorithm alleviates this problem effectively. Note that for

doctor and police officer, the CLIP-clip model exaggerates the similarity discrepancy,

but the similarity bias is still less than 0.01. In general, CLIP-clip is effective for

mitigating similarity bias and obtains a 42.3% lower mean absolute bias of the 100

occupations than the CLIP model (0.0064 vs. 0.0111).

3.2 Multilingual Fairness

3.2.1 How Do We Assess Fairness for Pre-trained Multilingual and

Multimodal Representations?

Recently pre-trained vision-and-language representations [LBPL19, TB19, SZC+20,

LDF+20, CLY+20, LYL+20, GCL+20, YTY+21, DJ21, RKH+21, CLTB21] have re-

ceived a surge of attention. Such pre-trained multimodal representations have shown

great capabilities of bridging images and natural language on the downstream tasks,
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including image captioning [LRN19], image retrieval [VJS+19], visual QA [ZPZ+20],

text-to-image generation [RPG+21], etc. While it is commonly recognized that the

multimodal representations trained on English corpora can be generalized to multilin-

gualism by cross-lingual alignment [LC19, CKG+20], recent studies criticize that the

multilingual textual representations do not learn equally high-quality representations

for all the languages [WD20], especially for low-resource languages. [HRS+20] empha-

size the need for general-purpose representations to seek equal performance across all

languages. However, there is still a lack of a nuanced understanding of how multilingual

representations fare on vision-and-language benchmarks.

This section provides a novel perspective for analyzing the principles of multi-

lingual fairness in multimodal representations from two aspects. First, existing frame-

works for measuring multilingual biases usually emulate text sources in different lan-

guages, which may have ambiguous meanings in varied contexts [GBH+20]. In contrast,

we leverage visual grounding as the anchor to bridge text in different languages—text

snippets in different languages but with similar semantics should be equitably relevant

to the same images. Second, we equate a language as an aggregated group of individ-

uals (e.g., French as a group of French sentences) in the terminology of fairness. As

[CD21] has pointed out, “each language has a distinct identity, defined by its vocabu-

lary, syntactic structure, its typological features, amount of available resources, and so

on.” The notions of fairness, such as individual fairness [DHP+12a] and group fair-

ness [ZWS+13, Cho17b, HPS16b, ZLL22], can be naturally adapted by comparing the
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multimodal model’s treatment across languages.

Therefore, we introduce two fairness notions: multilingual individual fairness

presumes similar outcomes between similar language expressions grounding on the same

images; multilingual group fairness postulates that multimodal models should induce

similar predictive performance across different languages. These fairness notions are

formalized to compare the multimodal model’s treatment of one language versus another

for either the individual target or the aggregated group.

3.2.2 Multilingual Individual Fairness

For an ideal multilingual vision-and-language model, text descriptions in dif-

ferent languages referring to similar semantic meanings should be equally similar or

dissimilar to the same grounding images. We note that there are no language expres-

sions that are perfectly identical to each other in real-world scenarios due to linguistic

features. Nevertheless, at least in a normal vision-and-language task, multilingual mod-

els are desired to impose equal treatment to different languages. For instance, “this is

a cat” (in English) and “das ist eine Katze” (in German) should be similarly related to

an image of a cat in image-text retrieval. This intuition aligns with individual fairness

in a multilingual manner. In this section, we investigate to what degree multilingual

representations are individually fair.

Individual fairness requires that similar people should be treated similarly

[DHP+12a]. In our multilingual setting, we require that the text snippets expressing
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similar semantics in different languages should be similarly related to the same images.

Taking the Euclidean distance function to measure the distance between text features,

we can define α-multilingual individual fairness by:

Definition 3 (Multilingual Individual Fairness). Given a set of image-text pairs {(I, T )},

a multimodal model M satisfies α-multilingual individual fairness if for all (I, T ), for

languages L and L′:

|S(I, T (L))− S(I, T (L′))| ≤ α∥b ∗ t(L) − b ∗ t(L′)∥

where b ∗ t(L) is the textual representation vector yielded by M in language L.

Here, α is a parameter to control the ratio of similarity gap to the text feature

vectors’ distance, and smaller α indicates the model is individually fairer. Note that

the similarity gap is at most 2, because the range of cosine similarity is [0, 1]. In general

settings, S(I, T ) is measured by the cosine similarity between the encoded visual vector

b ∗ v and textual vector b ∗ t.

Lemma 3.1. Denote Oρ(b ∗ t) = {b ∗x | ∥b ∗x−b ∗ t∥ ≤ ρ} to be a closed ball of radius

ρ > 0 and center b ∗ t. Then for any visual representation vector b ∗ v,

sup
b∗t(L

′)∈Oρ(b∗t(L))

0≤ρ<∥b∗t(L)∥

|S(b∗v, b∗t(L′))−S(b∗v, b∗t(L))| ≤

√
2(1−

√
1− (

ρ

∥b ∗ t(L)∥
)2) (3.16)

where S(·, ·) denotes the cosine similarity, b∗ t(L) and b∗ t(L′) are textual representation

vectors for languages L and L′, respectively.
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Lemma 3.1 implies that when the distance between multilingual textual rep-

resentation vectors is bounded, the similarity with images can be bounded in terms

of their distance. It is worth noting that the bounds are independent of the visual

representation vectors. Nevertheless, the form of upper bound in Lemma !3.1 is a bit

sophisticated, and can be simplified when ρ≪ ∥b ∗ t(L)∥.

Theorem 3.2. When ∥b ∗ t(L′) − b ∗ t(L)∥ ≪ ∥b ∗ t(L)∥,

|S(b ∗ v, b ∗ t(L′))− S(b ∗ v, b ∗ t(L))| ⪅ ∥b ∗ t
(L′) − b ∗ t(L)∥
∥b ∗ t(L)∥

.

Theorem 3.2 is a direct application of Lemma 3.1 when the distance between

multilingual vectors is small enough, and extends in many natural cases to approximate

the multilingual individual fairness with α ≈ 1
∥b∗t(L)∥ . Theorem 3.2 implicates to what

degree the multimodal model satisfies individual fairness when text snippets are well

aligned between different languages.

3.2.2.1 Evaluation

The theoretical analysis on multilingual individual fairness implies that the

ratio of similarity difference to their text feature distance can be bounded by the re-

ciprocal of the length of text feature vectors. To verify the implication, we conduct

experiments on the Multi30K dataset [EFSS16].

Dataset. The Multi30K dataset [EFSS16] contains 31,014 Flickr30K [YLHH14b] im-

ages and composes the translation and the independent portions of English-German cap-
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Figure 3.6: We empirically examine how does the multilingual CLIP fare on the trans-
lation and the independent portions. We also evaluate the accuracy disparity for image-
text matching, and find out that the independent portion incurs huge accuracy disparity
compared with the translation portion.

tion pairs. The German translations were collected from professional English-German

translators by translating the English captions without seeing the images, one per im-

age. The independent portion was independently annotated by German crowdworkers

after seeing the images instead of English captions, five per image. Hence, the translated

captions are strongly aligned in both languages, while the independent descriptions may

have distinct context. We use 1,000 test images for our evaluation. For the independent

portion, we select the first English caption and the first German caption of the five to

pair with the image for a fair comparison.

Results. We embed each English-German caption pair into textual representation

vectors and the corresponding image into visual representation vectors. We compute

the Euclidean distance between English-German text features, as well as the cosine

similarity with respect to the image features. We plot their cross-lingual gap on the

translation and the independent portions in Figure 3.6. For both portions, the blue
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dashed lines represent the empirical upper bounds of the ratio between similarity gap

and text feature distance.

Unsurprisingly, we find out that the English-German captions are more closely

aligned on the translation portion (the average textual feature distance is 1.86) than

the independent portion (average distance is 5.69). The similarity gaps regarding the

translation portion are below 0.06 in general, and those regarding the independent

portion are above 0.10 for many instances. The reason is apparent: translated captions

have more similar semantics owning to the professional text-to-text translations, while

independent captions have more diverse expressions of the same images, even if they

might refer to the same content.

On the other hand, we observe that the slopes of blue dashed lines for trans-

lation and independent portions are approximate to each other, i.e., the empirical α for

both portions are similar. This fact implies that the multilingual CLIP model evaluated

on two different text corpora share a similar level of individual fairness, even though the

cross-lingual similarity gaps are quite different. We also note that the empirical upper

bound of α are much smaller than the theoretical upper bound 1
∥b∗t(L)∥ in Theorem 3.2.

Although we have verified that multilingual multimodal representations satisfy

similar individual fairness, we demonstrate that they violate group fairness by evaluat-

ing their image-text matching accuracy. We find out that English captions dominate

the Top-1 image-text matching accuracy over German captions, with 4.8% higher on

the translation portion and 22.9% higher on the independent portion. This observation
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Figure 3.7: Race, gender, and age classification accuracy across different languages.

delivers an important message for researchers who are interested in learning fair rep-

resentations [RBFV20]: individual fairness does not flatly prevent accuracy disparity

among different languages [Bin20].

3.2.3 Multilingual Group Fairness

Distinct from individual fairness, multilingual group fairness appeals to the

idea that multimodal models should achieve equivalent predictive performance across

different languages. From the perspective of representations, it is hard to carry out this

demand without well-defined tasks and metrics. Hence it is natural to ask how to define

group fairness in this scenario properly? In this section, we shall answer this question

by equating language as a unique dimension of group membership relating to the text

modality. We formulate the criteria by equalizing the accuracy rates over different

languages. We also observe that images are often connected to people in protected or

unprotected groups. Given the image-text pairs, we consider the accuracy disparity
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across different languages conditioning the subgroup of images.

3.2.3.1 Equality of Accuracy across Languages

Given a dataset D consisting of ground-truth image-text pairs {(Ii, Ti)} and

each text can be in different languages. The goal of a multimodal model M is to predict

the similarity S(Ii, Tj) for any image Ii and text Tj . Then the model matches T̂i for

images Ii by selecting the text with highest similarity scores, i.e., T̂i = arg maxj S(Ii, Tj).

Acc(M) =
1

|D|
∑
D
1[T̂i = Ti] (3.17)

We use the superscript (L) to indicate the accuracy Acc(L) is evaluated in language L.

Next, we take language as group membership and define multilingual accuracy parity

by equalizing accuracy across languages.

Definition 4 (multilingual accuracy parity). A multimodal model M satisfies multi-

lingual accuracy parity if Acc(L)(M) = Acc(L
′)(M) for all languages L, L′.

In practice, it is impossible to achieve accuracy parity for all languages. Fol-

lowing [HRS+20], we use

GapM (L,L′) = |Acc(L)(M)− Acc(L
′)(M)| (3.18)

to represent the cross-lingual gap for model M .
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3.2.3.2 When Language Meets Groups in Images

The above discussion on group fairness considers language as the sole group

membership. In the real-world image and text applications, the people portrayed in

the images are often associated with protected groups. For instance, the face attribute

dataset [LLWT15a] contains sensitive attributes, such as race, age and gender. Let G

denote the group membership of images and Da denote the subset of data examples D

given G = a. The accuracy of a multimodal model evaluated on the images of subgroup

a is defined as

Acca(M) =
1

|Da|
∑
Da

1[T̂i = Ti] (3.19)

When language is connected to images of different groups, we can define accuracy dis-

parity between group a and group b with respect to model M within language L as

Disp
(L)
M (a, b) = |Acc(L)a (M)− Acc

(L)
b (M)| (3.20)

Disp represents the group rate gap in a single language. Mirroring multilingual accuracy

parity, we can define the multilingual group rate parity as below.

Definition 5 (multilingual group rate parity). A multi-modal model M satisfies mul-

tilingual group rate parity if Disp
(L)
M (a, b) = Disp

(L′)
M (a, b) with respect to groups a, b

associated with images for all languages.

Definition 4 and Definition 5 evaluate the fairness of multilingual representa-

tions from diverse aspects. More broadly, we may be interested in the accuracy gap
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between different combinations of languages and groups. A common case is that there

are only two protected groups (e.g. female and male, young and old). Let pa = |Da|
|D|

and pb = |Db|
|D| represent the population proportions of group a and group b respectively,

satisfying pa + pb = 1. Then we can decompose the cross-lingual cross-group accuracy

disparity as below:

Proposition 3.3. When there are only two protected groups a and b, the following

inequality holds for any two languages L and L′

|Acc(L)a − Acc
(L′)
b | ≤ Gap(L,L′) + pb · Disp(L)(a, b) + pa · Disp(L

′)(a, b) (3.21)

Proposition 3.3 guarantees that the accuracy disparity between any combina-

tions of languages and protected groups can be upper bounded by a variety of factors,

and implicates that we only need to focus on cross-lingual gap and group rate gap

measures to assess multilingual group fairness. In what follows, we will take a closer

look at how the multilingual CLIP model performs with compositions of languages and

protected groups under these fairness criteria.

3.2.3.3 Evaluation on Multilingual Accuracy Disparity

Dataset. FairFace [KJ21] is a face attribute dataset for the balanced race, gender, and

age groups. It categorizes gender into two groups, including female and male, and race

into seven groups, including White, Black, Indian, East Asian, Southeast Asian, Middle

Eastern, and Latino. For ages, we categorize the raw labels into five groups: infants
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(0–2), children and adolescents (2–19), adults (20–49), middle age adults (50–69), and

seniors (more than 70). We follow their original data split and select the validation set

consisting of 10,940 face images for evaluation.

Languages. We analyze the multilingual group fairness for 8 languages: Chinese

(zh), English (en), French (fr), German (de), Japanese (ja), Russian (ru), Spanish (es),

and Turkish (tr). We select English as the pivot language and write natural language

prompts in English. Then we translate them into other languages: we first use Google

Translate and then recruit native speakers to rate the prompts and fix any potential

errors on Amazon Mechanical Turk. The rationale for only using English as the pivot

language is that the multilingual CLIP [CE21] selects English as the pivot language for

aligning multilingual text embeddings.

Text Prompts. Following [RKH+21], we construct the text prompt by the template

“A photo of a {label} person”. Concretely, for gender classification, we construct the

text prompt “A photo of a woman” when the gender attribute is female, and construct

“A photo of a man” otherwise. For race classification, we construct the text prompt

by “A photo of a(n) {race} person”. Note that Indian actually refers to South Asian

ethnic groups in the Fairface race taxonomy [KJ21] but it can refer to Native Americans

as well. To avoid ambiguity, we replace “Indian” by “South Eastern” to construct the

prompts. For age classification, we notice that the age attributes in Fairface dataset
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are numeric values and use the template “A photo of a person aged {age} years” to

construct text prompts.

Results. We probe the multilingual accuracy disparity for race classification, gender

classification, and age classification, as shown in Figure 3.7. We use two different pre-

trained image encoders for extracting visual representation vectors, including Vision

Transformer [DBK+21b] and ResNet-50 [HZRS16]. We observe that:

Cross-lingual gap varies across different protected groups. The pre-

dictive accuracy for gender classification is consistently higher than 90% across all the

languages. In contrast, the multimodal model has relatively poor performance and

more considerable variance for race and age classification. Furthermore, race classifi-

cation yields 24.66% accuracy disparity and age classification yields 34.47% accuracy

disparity for Vision Transformer. This implies that the huge disparity may result from

the poor predictive performance of the model.

Visual representations affect accuracy disparity. For race classification,

Vision Transformer features generally achieve higher accuracy across all languages than

ResNet-50 (34.82% vs. 26.83% on average) except for Russian. The standard deviation

of Vision Transformer is higher than ResNet-50 (8.18% vs. 7.34%). The maximal

accuracy gap for Vision Transformer is 30.40% between German and Spanish, while the

maximal accuracy gap for ResNet-50 is 23.12% between German and French. For gender

classification, Vision Transformer dominantly achieves higher accuracy and incurs less

74



accuracy gap. For age classification, the accuracy is moderately low for all languages.

However, Vision Transformer has 63.1% accuracy in Chinese while only 25.8% accuracy

in German, exaggerating the accuracy gap between languages.

In Table 3.3, we present the complete results of Figure 3.8 by compositions of

gender and race groups across different languages.

3.2.3.4 Evaluation on Multilingual Group Rate Disparity

We evaluate multilingual group rate disparity for gender classification on Fair-

face dataset. We follow the same setup as described in Section 3.2.3.3 and measure the

gender gap given by Equation (3.20), where a is the composition of male and various

race groups, b is the composition of female and various race groups. We try to answer

the following research questions:

How do gender gaps differ across protected groups? We plot the gender

accuracy gap across different languages and racial groups in Figure 3.8. It is clearly

shown that Black and Southeast Asian groups dominantly exhibit larger gender gaps

than other groups. We also observe that French has a similar performance with English.

We conjecture this is because English and French share the same alphabet and similar

syntactic structures. Besides, as shown in Table 3.3, English and French have the largest

race inequality regarding gender gap—nearly zero gender gaps for White but near the

maximal gaps for Black.

Are gender gaps amplified for different languages when compared
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Figure 3.8: Gender accuracy gap across different languages and racial groups. Black
and Southeast Asian people face significant larger gender gaps than other racial groups
in most languages.

with English? We report the accuracy gap on gender classification of FairFace images

by race groups across different languages in Table 3.3. We take English as the pivot

language and examine whether the accuracy gaps by race groups are amplified for other

languages. Compared with English, accuracy gaps for White and Middle Eastern groups

are generally amplified for other languages. On the other hand, accuracy gaps are
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Table 3.3: Gender classification accuracy of FairFace images by race groups across
different languages.

East Southeast Middle

Language Gender White Black Indian Asian Asian Eastern Latino Average

English Female 95.1 90.9 94.5 95.2 96.0 96.0 94.2 94.6

Male 95.2 83.5 90.4 92.7 89.0 96.7 93.2 91.5

Disp 0.1 7.4 4.1 2.5 7.0 0.7 1.0 3.0

German Female 93.8 90.1 94.0 94.2 95.0 95.5 93.9 93.8

Male 95.6 85.4 92.0 93.6 89.8 97.2 93.9 92.5

Disp 1.9 4.7 1.9 0.6 5.2 1.7 0.1 1.3

French Female 95.0 90.4 94.6 95.0 96.3 95.7 94.2 94.5

Male 95.0 84.0 90.0 92.1 87.8 96.3 93.3 91.2

Disp 0.0 6.4 4.6 2.8 8.6 0.6 0.9 3.2

Japanese Female 94.5 90.6 94.4 94.7 95.7 95.7 94.1 94.2

Male 95.3 84.0 91.5 93.4 89.1 96.6 93.4 91.9

Disp 0.8 6.6 2.9 1.3 6.6 0.8 0.7 2.3

Turkish Female 93.9 90.0 93.8 94.6 95.3 95.5 94.1 93.9

Male 95.6 85.2 92.0 93.8 89.5 96.9 93.9 92.4

Disp 1.8 4.7 1.8 0.7 5.8 1.5 0.1 1.4

Russian Female 93.0 88.4 93.1 93.4 94.6 95.2 93.4 93.0

Male 96.4 87.6 93.2 94.5 92.0 97.5 95.0 93.7

Disp 3.4 0.8 0.2 1.1 2.6 2.3 1.6 0.7

Spainish Female 94.1 90.5 94.4 95.1 95.6 95.5 94.2 94.2

Male 95.5 84.4 91.2 93.2 89.4 96.8 93.7 92.0

Disp 1.5 6.1 3.1 1.9 6.2 1.3 0.5 2.2

Chinese Female 93.9 90.1 94.1 94.8 95.4 95.5 94.2 94.0

Male 95.5 84.9 91.8 93.7 89.5 96.9 93.9 92.3

Disp 1.7 5.2 2.3 1.1 5.9 1.5 0.3 1.7

generally mitigated for groups including Black, Indian, East Asian, Southeast Asian,

and Latino groups. The averaged cross-lingual gaps are mitigated for all the languages

except for French.

We also evaluate multilingual group rate disparity for age classification. We

composite gender and age as the group membership. We plot the age classification
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accuracy by female and male groups across different languages in Figure 3.9. The blue

bars indicate that the male group has higher accuracy than the female group, while the

orange bars indicate that the female group has higher accuracy than the male group.

The heights of bars represent the accuracy gaps between male and female groups. In

general, the male group has higher accuracy than the female group. Especially, adults

(20–49 years old) consistently suffer huge gender gaps across all the languages, with the

largest gap 52.2% for Japanese. It is worth noting that the numerals to express ages are
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Figure 3.9: Age classification accuracy across female and male groups for different
languages. The blue bars indicate that the male group has higher accuracy than the
female group, while orange bars indicate that the female group has higher accuracy.
The heights of bars represent the accuracy gaps between male and female groups.

identical in text prompts for different languages, e.g., “a person aged 20 to 49 years” in

English versus “eine Person im Alter von 20 bis 49 Jahren” in German. This controlled

experiment helps us better understand whether the identical numeric digits have distinct
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meanings in multilingual contexts. As shown in Figure 3.9, although text prompts in

different languages share the same numerals of ages, the yielding accuracy exhibits

significant disparity across languages. One prominent example is that the predictive

accuracy for infants (0–2 years old) is 5.8% for English and 2.6% for French, but 89.4%

for German and 91.6% for Japanese, implying the presence of significant cross-lingual

accuracy gaps.

3.3 Text-to-Image Association Test

3.3.1 Motivating Example

Recent progress on generative image models has centered around utilizing text

prompts to produce high quality images that closely align with the provided natural

language descriptions [RDN+22, NDR+22, SCS+22, YXK+22, CZB+23]. Easy access

to these models, notably the open-sourced Stable Diffusion model [RBL+22], has made

it possible to develop them for a wide range of downstream applications at scale, such

as generating stock photos [Rae22], and creating creative prototypes and digital assets

[Ope22].

The success of text-to-image generation was enabled by the availability and

accessibility of massive image-text paired datasets scraped from the web [SBV+22].

However, it has been shown that data obtained by these curations may contain human

biases in various ways [BPK21]. Selection bias occurs when the data is not properly
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Figure 3.10: Text-to-Image Association Test (T2IAT) procedure. We instantiate
the proposed bias test on Gender-Science. We use the text prompt “A photo of a child
studying astronomy” to generate neutral images. Then we substitute “child” with
feminine and masculine words and generate attribute-specific images. We calculate the
average difference in the distance between the neutral and attribute-specific images as
a measure of association.

collected from a diverse set of data sources, or the sources themselves do not properly

represent groups of populations of interest. For example, it is reported that near half

of the data samples of ImageNet came from the United States, while China and India,

the two most populous countries in the world, were the contributors of only a small

portion of the images [SHB+17]. It is important to be aware that the generative models

trained on such datasets may replicate and perpetuate the biases in the generated images

[WBC22].

Our work seeks to quantify the implicit human biases in text-to-image gener-

ative models. A large body of literature has identified the social biases pertaining to
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gender and skin tone by analyzing the distribution of generated images across different

social groups [BYMC22, CZB22]. These bias metrics build on the assumption that each

generated image only associates with a single protected group of interest. However,

in reality, the images might not belong to any of the protected groups when there is

no discernible human subject or the appearances of the detectable human subjects are

blurred and unclear. Moreover, the images may belong to multiple demographic groups

when more than one human subjects are present in the image. Therefore, these bias

measures can easily fail to detect the subtle differences between the visual concepts

reified in the images and the attributes they are associated with.

Unlike previous studies, our work aims to provide a nuanced understanding

on more complex stereotypical biases in image generations than the straightforward

demographic biases. Examples of the complex stereotypes includes: there is a belief

that boys are inherently more talented at math, while girls are more adept at language

[NSS+09]; people with lighter skin tones are more likely to be appeared in home or hotel

scenes, while people with dark skin tones are more likely to co-occur with object groups

like vehicle [WNR20]. We investigate how these biases will be reified and quantified in

machine generated images, with a special focus on valence (association with negative or

unpleasant vs. positive or pleasant concepts) and stereotypical biases.

In this section, we propose the Text-to-Image Association Test (T2IAT), a

systematic approach to measure the implicit biases of image generations between target

concepts and attributes (see Figure 3.10). One benefit of our bias test procedure is
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that it is not limited to specific demographic attributes. Rather, the bias test can be

applied to a wide range of concepts and attributes, as long as the observed discrepancy

between them can be justified as stereotyping biases by the model owners and users. For

use cases, we conduct 8 image generation bias tests and the results of the tests exhibit

various human-like biases at different significance levels as previously documented in

social psychology.

We summarize our contribution as two-fold: first, we provide a generic test

procedure to detect valence and stereotypical biases in image generation models. Second,

we extensively conduct a variety of bias tests to provide evidence for the existence of

such complex biases along with significance levels.

3.3.2 Approach

In this work, we adapt the Implicit Association Test (IAT) in social psychology

to the task of text-to-image generation. We will first introduce the long history of

association tests. But existing bias tests are primarily focusing on word embeddings.

Therefore, we present the Text-to-Image Association Test (T2IAT), which quantifies

the human biases in images generated by text-to-image generation models.

3.3.2.1 Implicit Association Test

In social psychology, the Implicit Association Test (IAT) introduced by [GMS98]

is an assessment of implicit attitudes and stereotypes where the test subjects are held un-
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consciously, such as associations between concepts (e.g . people in light/dark skin color)

and evaluations (e.g . pleasant/unpleasant) or stereotypes. In general, IAT can be cate-

gorized into valence IATs, in which concepts are tested for association with positive or

negative valence, and stereotype IATs, in which concepts are tested for association with

stereotypical attributes (e.g . “male” vs. “female”). During a typical IAT test procedure,

the participants will be presented with a series of stimuli (e.g ., pictures of black and

white faces, words related to gay and straight people) and are asked to categorize them

as quickly and accurately as possible using a set of response keys (e.g., ”pleasant” or

”unpleasant” for valence evaluations, ”family” or ”career” for stereotypes). The IAT

score is interpreted based on the difference in response times for a series of categorization

tasks with different stimuli and attributes, and higher scores indicate stronger implicit

biases. For example, the Gender-Career IAT indicates that people are more likely to

associate women with family and men with careers.

IAT was adapted to the field of natural language processing by measuring the

associations between different words or concepts for language models [CBN17b]. Specif-

ically, a systematic method, Word Embedding Association Test (WEAT), is proposed

to measure a wide range of human-like biases by comparing the cosine similarity of word

embeddings between verbal stimuli and attributes. More recently, WEAT was extended

to compare the similarity between embedding vectors for text prompts instead of words

[MWB+19, BDC20, GC21b].
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3.3.2.2 Text-to-Image Association Test

We borrow the terminology of association test from [CBN17b] to describe our

proposed bias test procedure. Consider two sets of target concepts X and Y like science

and art, and two sets of attribute concepts A and B like men and women. The null

hypothesis is that, regardless of the attributes, there is no difference in the association

between the sets of images generated with the target concepts. In the context of Gender-

Science bias test, the null hypothesis is saying that no matter whether the text prompts

describe science or arts, the generative models should output images that are equally

associated with women and men. We note that in such a gender stereotype setting,

a näıve way to measure association is to count the numbers of men and women who

appeared in the generated images. This simplified measure reduces the fairness criteria

to ensure that the image generation should contain the equal size of pictures depicting

women and men, which has been adopted in many prior works [TSZ20, BYMC22].

To validate the significance of the null hypothesis, we design a standard sta-

tistical hypothesis test procedure, as shown in Figure 3.10. The key challenge is how

to measure the association for one target concept X with the attributes A and B, re-

spectively. Our strategy is first to compose neutral text prompts about X that do

not mention either A or B. The idea is that the images generated with these neutral

prompts should not be affected by the attributes but will be skewed towards them due

to the possible implicit stereotyping biases in the generative model. We then include the
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attributes in the prompts and generate attribute-guided images. The distance between

the neutral and attribute-guided images can be used to measure the association between

the concepts and the attributes.

More specifically, we construct text prompts that are based on the target

concepts, with or without the attributes. Let X and Y denote the neutral prompts

related to the target concepts X and Y, respectively. Similarly, we use XA to represent

the set of text prompts that are created by editing X with a set of attribute modifiers

A corresponding to the attribute A. We feed these text prompts into the text-to-image

generative model and use G(·) to denote the set of generated images with input prompts.

For ease of notation, we use lowercase letters to represent the image samples and those

accented with right arrows to represent the vector representations of the images. We

consider the following test statistics:

• Differential association measures the difference of the association between the

target concepts with the attributes.

S(X,Y,A,B) = Ex∈G(X)Asc(x,XA, XB)− Ey∈G(Y )Asc(y, Y A, Y B) (3.22)

Here Asc(x,XA, XB) is the association for one sample image with the attributes,

i.e.,

Asc(x,XA, XB) = Ea∈G(XA) cos(ax,aa)− Eb∈G(XB) cos(ax,ab) (3.23)

In Eq (3.23), cos(·, ·) is the distance measure between images. While there are

several different methods for measuring the distance between images, we choose to
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compute the cosine similarity between image embedding vectors that are generated

with pre-trained vision encoders. During our experimental evaluation, we follow

the fashion and use the vision encoder of CLIP model [RKH+21] for convenience.

• p-value is a measure of the likelihood that a random permutation of the target

concepts would produce a greater difference than the sample means. To perform

the permutation test, we randomly split the set X ∪ Y into two partitions X̃ and

Ỹ of equal size. Note that the prompts in X̃ might be related to concept Y and

those in Ỹ might be related to concept X . The p-value of such a permutation test

is given by

p = Pr
(
|S(X̃, Ỹ , A,B)| > |S(X,Y,A,B)|

)
(3.24)

The p-value represents the degree to which the differential association is statisti-

cally significant. In practice, we simulate 1000 runs of the random permutation

to compute the p-value for the sake of efficiency.

• Effect size d is a normalized measure of how separated the distributions of the

associations between two target concepts are. We adopt the Cohen’s d to compute

the effect size by

d =
Ex[Asc(x,XA, XB)]− Ey[Asc(y, Y A, Y B)]

s
(3.25)

where s is the pooled standard deviation for the samples of Asc(x,XA, XB) and

Asc(y, Y A, Y B). According to Cohen, effect size is classified as small (d = 0.2),

medium (d = 0.5), and large (d ≥ 0.8).
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We present the whole bias test procedure in Algorithm 3. The defined bias

measures the degree to which the generations of the target concepts exhibit a preference

towards one attribute over another. One qualitative example is provided in the first

column of Figure 3.11. Although the prompt of those figures does not specify gender,

almost all of the generated images for science and career are depicting boys.

Algorithm 3 Bias test procedure

Input: concepts X and Y , attributes A and B.

Output: S(X,Y,A,B), p, d.

1: Construct a set of neutral prompts related to the concepts X and Y . Then construct

attribute guided prompts for attributes A and B, respectively.

2: For Z ∈ {X,Y }, generate the sets of images G(Z), G(ZA) and G(ZB) from the text

prompts.

3: Compute S(X,Y,A,B) using Eq (3.22).

4: Run the permutation test to compute the p-value by Eq (3.24).

5: Compute the effect size d by Eq (3.25).

3.3.3 Association Test Results

3.3.3.1 Experimental Setup

Concepts and Text Prompts We replicate 8 bias tests for text-to-image generative

models, including 6 valence tests: Flowers vs. Insects, Musical Instruments vs. Weapons,

Judaism vs. Christianity, European American vs. African American, light skin vs. dark
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skin, and straight vs. gay; and 2 stereotype tests: science vs. arts and career vs. family.

Each bias test includes two target concepts and two valence or stereotypical attributes.

Following [GMS98], we adopt the same set of verbal stimuli for each of the concepts

and attributes. For valence tests, the evaluation attributes are pleasant and unpleasant.

For stereotype tests, the stereotyping attributes are male and female.

We systematically compose a set of representative text prompts with the col-

lection of verbal stimuli for each pair of compared target concepts and attributes. The

constructed text prompts will be fed into the diffusion model to generate images.

Generative Models For our initial evaluation, we use the Stable Diffusion model

stable-diffusion-2-1 [RBL+22]. We adopt the standard parameters as provided in

the Huggingface’s API to generate 10 images of size 512 × 512 for each text prompt,

yielding hundreds of images for each concept. Through practical testing, we determined

that this number of generations produces accurate estimates of the evaluated metrics

with a high level of confidence. The number of denoising steps is set to 50 and the

guidance scale is set to 7.5. The model uses OpenCLIP-ViT/H [RKH+21] to encode text

descriptions.

3.3.3.2 Valence Tests

Flowers and Insects We begin by exploring the non-offensive stereotypes about

flowers and insects, as these do not involve any demographic groups. The original IAT
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Figure 3.11: Examples of generated images. Images in the first row are generated
with the text prompts describing science or career, while images in the second row
are generated with the text prompts describing arts or family. The first column of
images are generated with neutral prompts, without adding any gender-specific words.
The second and third columns of images are generated with gender-specific prompts by
appending gendered words to the corresponding neutral prompts.

finding found that most people take less responding time to associate flowers with words

that have pleasant meanings and insects with words that have unpleasant meanings

[GMS98]. To replicate this test, we use the same set of verbal stimuli for flowers and

insects categories that were used in the IAT test. We construct the text prompt “a

photo of {flower/insect}” to generate images without any valence interventions. In

parallel, we append the words expressing pleasant or unpleasant attitudes after the

constructed prompt to generate the images with positive or negative valence. Examples

of generated images can be seen in Figure 3.11. We report the evaluated differential

association S(X,Y,A,B), p-value, and effect size d in Table 3.4. To estimate the p-

value, we perform the permutation test for 1,000 runs and find out that there is no

other permutation of images that can yield a higher association score, indicating that
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Concept X Concept Y Attribute A Attribute B Association Score p-value effect size d

Flower Insect Pleasant Unpleasant 0.033 < 1e−3 1.492

Musical Instrument Weapon Pleasant Unpleasant 0.015 0.118 0.528

European American African American Pleasant Unpleasant 0.011 0.270 0.323

Light skin Dark skin Pleasant Unpleasant -0.025 0.019 -1.237

Straight Gay Pleasant Unpleasant 0.033 0.003 1.113

Judaism Christianity Pleasant Unpleasant -0.003 0.442 -0.099

Science Arts Male Female 0.019 0.200 0.193

Careers Family Male Female 0.026 < 1e−3 0.639

Table 3.4: Evaluated association scores, p-values, and effect size for 8 bias
tests. The larger absolute values of association score and effect size indicate a large
bias. Smaller p-value indicates the test result is more significant.

the p-value is less than 1e−3. We note that an effect size of 0.8 generally indicates

a strong association between concepts, and the effect size of 1.492 found in this test

suggests that flowers are significantly more strongly associated with a positive valence,

while insects are more strongly associated with a negative valence. Our observation

demonstrates that human-like biases are universal in image generation models even

when the concepts used are not associated with any social concerns.

Musical Instruments and Weapons To further understand the presence of implicit

biases associated with text-prompt-generated images between non-offensive stereotypes,

we perform the test on another set of non-offensive stereotypes of musical instruments

and weapons by using the verbal stimuli for the original IAT test. Similar to our
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test on flowers and insects, we first generated images only on the object itself, with

the text prompt “a picture of {musical instrument/weapon}”, then we modified the

text prompts to include pleasant and unpleasant attitudes, and, finally, generated im-

ages with positive or negative valence. We report the evaluated differential association

S(X,Y,A,B), p-value, and effect size d in Table 3.4. The differential association score

of 0.015 indicates that there is little difference in the association between our target

concepts of musical instruments and weapons and the attributes of pleasant and un-

pleasant. We retrieved an effect size of 0.528, which implies that musical instruments

have a much stronger association with a positive valence, and instead, weapons show a

stronger association with a negative valence.

Judaism and Christianity We also perform the valence test on the concepts con-

cerning religion, particularly Judaism and Christianity. Consistent with the tests on

the previously mentioned concepts, we have two sets of text prompts constructed with

the verbal stimuli that are used in the IAT test for Judaism and Christianity and for

Pleasant and Unpleasant. The first set comes without valence intervention, only us-

ing the provided verbal stimuli for Judaism and Christianity. The second set of text

prompts incorporates terms linked to pleasant and unpleasant attitudes. We derived

images based on the different sets of prompts constructed. The valence test for this

set of concepts yields a very small effect size, −0.099, suggesting that humans hold a

rather neutral attitude towards Judaism and Christianity, only with a slight pleasant-
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ness towards Christianity and a little unpleasantness towards Judaism. The differential

association score of −0.003 demonstrates a tiny difference in the association between

the two religions of Judaism and Christianity and the two social attitudes of pleas-

antness and unpleasantness. Our finding overturns the religion stereotype previously

documented in IAT tests.

European American and African American In this valence test, we seek to

explore the implicit racial stereotypes, besides non-harmful stereotypes, of European

Americans and African Americans. From the original IAT paper, two sets of com-

mon European American and African American names are provided, and the result

from our test shows that it is much easier to associate European American names with

words that suggest a pleasant attitude and African American names with words that

imply an unpleasant attitude. In our test, we continue to use the verbal stimuli for

European American and African American names retrieved from [Tzi18] to construct

our text prompts. For the text-prompt-generated images that are not valence-related,

we use the text prompt “a portrait of {European American name/African American

name}”. Meanwhile, we create valence-related text prompt by including terms that em-

body pleasant and unpleasant attitudes. We recognize that there is an inconspicuous

association between European American and pleasant terms and that between African

American and unpleasant terms from the value of effect size of 0.323. The differential

score of 0.011 shows a subtle association between the concepts of European American
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and African American and the attributes of pleasant and unpleasant.

Light Skin and Dark Skin This valence test reveals the hostile biases towards

humans with light skin and dark skin in the same racial group. We use the verbal

stimuli collected by Project Implicit, a project initiated by [NSH+07], that aims to

educate people on biases. Following the pattern of our purposed test, we create a

set of text prompts without valence for both light skin and dark skin and another

set of text prompts that consider the valence attributes of pleasant and unpleasant.

We calculate the differential association S(X,Y,A,B), p-value, and effect size d of the

images generated based on the text prompts we constructed. We obtain a considerably

large effect size of −1.237, indicating that light skin is much more closely associated with

an unpleasant attribute, and dark skin, on the other hand, has a strong association with

a pleasant attribute. In addition, we have a moderate p-value, 0.019, which way exceeds

the statistically significant value of 0.05.

Straight and Gay We examine the implicit bias towards sexuality in this valence

test that targets the concepts of straight and gay. Text prompts that do not contain the

factor of valence are created, along with those composed with pleasant and unpleasant

attitudes using the method as other valence tests. By running through text-to-image

generative models, corresponding images are produced. We receive the effect size of

1.113, which is much bigger than the defined large effect size value of 0.8. It suggests
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that the association between the concept of straight and the attribute of pleasant is

significantly strong and that of gay and the attribute of unpleasant is tremendously

strong as well. We also note that the p-value is 0.003, which is lower than 0.005.

The valence tests show that not only non-harmful human biases, but also

hostile stereotypical biases such as inter-racial, intra-racial, and sexual biases exist in

the text-to-image generative models.

3.3.3.3 Stereotype Tests

We conduct two gender-related stereotypical tests: gender-science and gender-

career tests.

Science and Art We use the text prompt “a person studying {science/art}” for

image generations. To generate images associated with male and female attributes, we

modify the “person” with gender-specific words, such as “woman”, “girl”, “man”, “boy”,

etc. The evaluated effect size of 0.193 is small, and demonstrates that the distribution

of the association scores does not differ too much. In addition, the p-value of 0.200 is

relatively large. This bias test demonstrates that the evaluated generative model does

not contain bias towards science and art as is documented in human biases.

Career and Family The original IAT test has found that females are more associated

with family and males with career [NBG02]. To replicate this test with image genera-

tions, we use the template of text prompts “a person focusing on {career / family}” to
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generate images. We find that the effect size of 0.639 is relatively large and the p-value

is less than < 1e−3, indicating career is significantly more strongly associated with male

than female.

3.3.3.4 Gender Stereotype in Occupations

Prior work has demonstrated that text prompts pertaining to occupations may

lead the model to reconstruct social disparities regarding gender and racial groups, even

though they make no mention of such demographic attributes [BKD+22]. We are also

interested in how the generated images are skewed towards women and men, assessed

by their association scores with gender.

We collect the list of common occupation titles from the U.S. Bureau of La-

bor Statistics6. For each occupation title, we construct the gender-neutral text prompt

“A photo of a {occupation}”, and gender-specific versions by amending gendered de-

scriptions. For each occupation, we use Stable Diffusion to generate 100 gender-neutral

images, 100 masculine images, and 100 feminine images, respectively. We use Eq. (3.23)

to calculate the association score between occupation and gender attributes.

We plot the distribution of association scores, and the quartiles, for eight

different occupations in Figure 3.12. The figure shows that the 0.75 quantiles of asso-

ciation scores for computer programmers and pharmacists are higher than the others

by a large margin, indicating that these occupations are more strongly associated with

6https://www.bls.gov/oes/current/oes_stru.htm
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men. Conversely, the mean association scores for elementary school teachers, librari-

ans, announcers, and chemists are negative, indicating that these occupations are more

strongly associated with women. The association score for chef and police is neutral,

suggesting that there is insufficient evidence to establish a stereotype.

Concept Attribute Score

Flowers Pleasant vs. Unpleasant 1.00

Insects Pleasant vs. Unpleasant 0.15

Musical Instrument Pleasant vs. Unpleasant 0.90

Weapon Pleasant vs. Unpleasant 0.05

Science Male vs. Female 0.75

Arts Male vs. Female 0.30

Careers Male vs. Female 0.75

Family Male vs. Female 0.40

Table 3.5: Human evaluation results. For each pair of concept and attributes, we
report the fraction of images that are chosen as being more closely associated with
pleasant or male attributes. We find out that the machine-rated association scores can
properly represent human’s perceptions.

Stereotype Amplification Do images generated by the diffusion model amplify the

implicit stereotypes in the textual representations used to guide image generation?

Specifically, we examine occupational images and calculate the association scores be-
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tween the text prompts by substituting the text embeddings of CLIP into Eq. (3.23)

and Eq. (3.22). We then compare these associations for text prompts to the associations

for the generated images to investigate whether the biases are amplified.

Figure 3.13 demonstrates the stereotype amplification between text prompts

and generated images. For each occupation, we use an arrow to represent the change

of associations on the axis of gender. We observe that the associations are amplified

on a large scale for most occupations. In particular, the textual association between

a computer programmer and gender is only −0.0039 but enlarged to 0.0186 for im-

ages. Similar amplifications are observed for elementary school teachers, librarians, and

chemists. For the occupation of chef, the association of text prompts is skewed towards

females, while the association of images is skewed towards males.

Comparison to Human Evaluation We recruit university students to evaluate the

generated images and compare how the perceptions of human differ with the machine-

evaluated association scores. Specifically, for each set of concepts, we ask three student

participants to view 20 images generated with neutral prompts and choose which valence

or stereotypical attribute is more closely associated. We report the fraction of images

that are chosen as being more closely associated with pleasant or male attributes. As

shown in Table 3.5, the human’s preference of association aligns with the strength of

our association scores. For flowers vs. insects and musical instruments vs. weapon,

humans mostly prefer to associate flowers and musical instruments with pleasant while
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insects and weapons with unpleasant. For science vs. arts and career vs. family, we

find that the significance of the bias is reduced. The Kendall’s τ coefficient between

the machine-evaluated and human-rated scores is 0.55, indicating that the association

scores can properly represent human’s perceptions.
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Figure 3.12: Gender stereotype in occupation. For each occupation, we compare
the association score with gender and plot their distribution. The x-axis represents the
extent to which the generated images are associated with male or female. Our analysis
suggests that computer programmers and pharmacists are more strongly associated with
man, while elementary school teachers, librarians and announcers are more strongly
associated with woman.
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Figure 3.13: Stereotype amplification. For each occupation, we compare the asso-
ciation scores for generated images to the association scores for the text prompts. The
association scores for the text prompts are represented by the tails of the arrows, and
the association scores for the images are represented by the heads of the arrows.
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Chapter 4

Fairness Influence Function

4.1 Motivation

Despite the successes of algorithmic treatments proposed in the fairness com-

munity, the question of why a particular “fair” training process leads to a more fair

model remains less addressed. The explanation for the above why question is essential in

improving user trustworthiness in the models and often regulated by legal requirements

[Nin17]. There has been a recent surge of interest in explaining algorithmic fairness.

Much of the work chose to quantify the importance of the input feature variables used

to make fair decisions [LL17, SN20, MOS21]. This line of research makes explanations

on the population level, as the importance measures are quantified statistically over the

entire subset of instances.

Nevertheless, the impact of fairness constraints on individual instances is rarely
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discussed. Our central inquiry is how each individual training instance influences the

model decisions when a fairness constraint is imposed. Demystifying and characterizing

the influence of individual instances subject to fairness constraints is important and

opens up the possibility of auditing a machine learning model at the instance level.

Among other potentials, we believe that such understanding might help with developing

preprocessing solutions to mitigate bias by emphasizing more on instances that have a

high influence on fairness.

To this end, we borrow the idea from recent literature on influence function

[STY17], which has largely focused on approximating the effect of training examples in

prediction accuracy rather than fairness constraints. Concretely, an influence function

characterizes the change of model predictions compared to the counterfactual that one

training example is removed. We instantiate the change, due to the penalty of disparity,

on prominent fairness criteria that have been widely applied in the community. We

illustrate that the influence scores can be potentially applied to mitigate the unfairness

by pruning less influential examples on a synthetic setting. We implement this idea on

different domains including tabular data, images and natural language.

4.2 Influence Function

We will consider the problem of predicting a target binary label y based on

its corresponding feature vector x under fairness constraints with respect to sensitive
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Table 4.1: Examples of fairness measures.

Fairness Criteria Measure ψ(f)

Demographic Parity
∑

g∈Z |Pr(f(x) = +1 | z = g)− Pr(f(x) = +1)|

Equal TPR
∑

a∈Z |Pr(f(x) = +1 | z = a, y = +1)− Pr(f(x) = +1 | y = +1)|

Equal FPR
∑

a∈Z |Pr(f(x) = +1 | z = a, y = −1)− Pr(f(x) = +1 | y = −1)|

Equal Odds
∑

a∈Z
∑

b∈Y |Pr(f(x) = +1 | z = a, y = b)− Pr(f(x) = +1 | y = b)|

attributes z. We assume that the data points (x, y, z) are drawn from an unknown

underlying distribution D over X × Y × Z. X ∈ Rd is d-dimensional instance space,

Y ∈ {−1,+1} is the label space, and Z ∈ {0, 1, . . . ,m − 1} is the (sensitive) attribute

space. Here we assume that sensitive attribute is a categorical variable regarding m

sensitive groups. The goal of fair classification is to find a classifier f : X → R with

the property that it minimizes expected true loss err(f) while mitigating a certain

measure of fairness violation ψ(f). We assume that the model f is parameterized by

a vector θ = [θ1, θ2, ..., θp] of size p. Thereby err(f) = E(x,y)∼D[ℓ(f(x;θ), y)], where

the expectation is respect to the true underlying distribution D and ℓ(·, ·) is the loss

function. We show exemplary fairness metrics ψ(·) in Table 4.1, including demographic

parity [Cho17a, JHF+22], equality of opportunity [HPS16c], among many others. With-

out loss of generality, f(x) induces the prediction rule 2·1[f(x) ≥ 0]−1, where 1[·] is the

indicator function. Denote by F the family of classifiers, we can express the objective
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of the learning problem as

min
f∈F

err(f), s.t. ψ(f) ≤ µ, (4.1)

where µ is a tolerance parameter for fairness violations. Let D = {(xi, yi, zi)}ni=1 denote

n data examples sampled from true data distribution D. In this case, the empirical

loss is êrr(f) = 1
n

∑
(xi,yi,zi)∈D ℓ(f(xi), yi). Due to the fact that ψ(f) is non-convex and

non-differentiable in general, practically we will use a surrogate ϕ(f) to approximate

it. Let ϕ̂(·) denote the empirical version of ϕ(·), then the Empirical Risk Minimization

(ERM) problem is defined as

min
f∈F

êrr(f), s.t. ϕ̂(f) ≤ µ. (4.2)

This work aims to discuss the influence of a certain training example (xi, yi, zi) on a

target example (xj , yj , zj), when fairness constraints are imposed to the classifier f . Let

fD represent the model f trained over the whole dataset D and fD/{i} represent the

counterfactual model f trained over the dataset D by excluding the training example

(xi, yi, zi). The influence function with respect to the output of classifier f is defined as

inflf (D, i, j) := fD/{i}(xj)− fD(xj) (4.3)

Note that j may be either a training point j ∈ D or a test point outside D.

4.2.1 Influence Function in Unconstrained Learning

We start by considering the unconstrained classification setting when parity

constraints are not imposed in the learning objective. Recall that the standard Empirical
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Risk Minimization (ERM) problem is

min
θ

1

n

n∑
i=1

ℓ(f(xi;θ), yi) (4.4)

where θ is the parameters of model f . We assume that θ evolves through the following

gradient flow along time t:

∂θ

∂t
= − 1

n
∇ℓ(f(xi;θ), yi) (4.5)

Let θ0 denote the final parameter of classifier f trained on the whole set D. To track

the influence of an observed instance i, we hypothesis the update of parameter θ with

respect to instance i is recovered by one counterfactual step of gradient descent with a

weight of − 1
n and a learning rate of η. This process can also be regarded as inverting

the gradient flow of Equation 4.5 with a small time step ∆t = η. Next, to compute the

output of model f on the target example j, we may Taylor expand f around θ0

f(xj ;θ)− f(xj ;θ0) ≈
∂f(xj ;θ0)

∂θ
(θ − θ0) (by Taylor series expansion)

=
∂f(xj ;θ0)

∂θ

(
−η ∂θ

∂t

∣∣∣∣
θ=θ0

)
(by inverting gradient flow)

=
η

n

∂f(xj ;θ0)

∂θ
∇ℓ(f(xi;θ0), yi) (by substituting Equation 4.5)

=
η

n

∂f(xj ;θ0)

∂θ

∂ℓ(f(xi;θ0), yi)

∂f

∂f(xi;θ0)

∂θ
(by chain rule)

=
η

n

∂f(xj ;θ0)

∂θ

∂f(xi;θ0)

∂θ

∂ℓ(w, yi)

∂w

∣∣∣∣
w=f(xi;θ0)

(4.6)
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In the language of kernel methods, the product of ∂f(xi;θ)/∂θ and ∂f(xj ;θ)/∂θ is

named Neural Tangent Kernel (NTK) [JGH18]

Θ(xi, xj ;θ) =
∂f(xj ;θ)

∂θ

∂f(xi;θ)

∂θ
=
∑
p

∂f(xj ;θ)

∂θp

∂f(xi;θ)

∂θp
(4.7)

NTK describes the evolution of deep neural networks during the learning dynamics.

Substituting the NTK in Equation 4.7 into Equation 4.6 and combining Equation 4.3,

we obtain the following close-form statement:

Lemma 4.1. In unconstrained learning, the influence function of training example i

subject to the prediction of f on the target example j is

inflf (D, i, j) ≈ η

n
Θ(xi, xj ;θ0)

∂ℓ(w, yi)

∂w

∣∣∣∣
w=f(xi;θ0)

(4.8)

Equation 4.8 mimics the first-order approximation in [PLKS20] with a focus

on tracking the change on model output instead of the change on loss.

4.2.2 Influence Function in Constrained Learning

In classification problems, the outcome of an algorithm may be skewed towards

certain protected groups, such as gender and ethnicity. While the definitions of fairness

are controversial, researchers commonly impose the parity constraints like demographic

parity [Cho17a] and equal opportunity [HPS16c] for fairness-aware learning. A large

number of approaches have been well studied to mitigate the disparity, which in general

can be categorized into pre-processing, in-processing, and post-processing algorithms.
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Pre-processing algorithms [KC12, FFM+15b, CWV+17] usually reweigh the training

instances, resulting in the influence scores will also be scaled by a instance-dependent

weight factor. Post-Processing algorithms [HPS16c] will not alter the learning objective,

thus the influence function of training examples stays unchanged.

In this work, we primarily focus on the influence function in the in-processing

treatment frameworks [CJW+19, ZVGRG17a, WGOS17, ABD+18b, Nar18a, SKG+19,

KAS11]. In such fashion, the fair classification problem are generally formulated as a

constrained optimization problem as Equation 4.1. The common solution is to impose

the penalty of fairness violations ψ(f) as a regularization term. The constrained risk

minimization problem thus becomes

min
f∈F

err(f) + λψ(f) (4.9)

where in above λ is a regularizer that controls the trade-off between fairness and

accuracy. Note λ is not necessary static, e.g., in some game-theoretic approaches

[ABD+18b, Nar18a, CJW+19, CJS19], the value of λ will be dynamically chosen. We

notice that while the empirical ψ(f) is often involving the rates related to indicator

function, it might be infeasible to solve the constrained ERM problem. For instance,

demographic parity, as mentioned in Table 4.1, requires that different protected groups

have an equal acceptance rate. The acceptance rate for group a ∈ Z is given by

Pr(f(x) ≥ 0 | z = a) =

∑
i 1[f(xi) ≥ 0, zi = a]∑

i 1[zi = a]
(4.10)

Since non-differentiable indicator function cannot be directly optimized by gradient-
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based algorithms, researchers often substitute the direct fairness measure ψ(f) by a

differentiable surrogate ϕ(f). In consequence, the constrained ERM problem is

min
θ

1

n

n∑
i=1

ℓ(f(xi;θ), yi) + λϕ̂(f) (4.11)

We make the following decomposability assumption:

Assumption 1 (Decomposability). The empirical surrogate of fairness measure ϕ̂(f)

can be decomposed into

ϕ̂(f) =
1

n

n∑
i=1

ϕ̂(f, i), (4.12)

where in above each ϕ̂(f, i) is only related to the instance i and independent of other

instances j ̸= i.

Assumption 1 guarantees that the influence of one training example i will not

be entangled with the influence of another training example j. Following an analogous

derivation to Equation 4.6, we obtain the kernelized influence function

Lemma 4.2. When the empirical fairness measure ϕ̂(·) satisfies the decomposability

assumption, the influence function of training example i with respect to the prediction

of f on the target j can be expressed as

inflf (D, i, j) ≈ η

n
Θ(xi, xj ;θ0)

∂ℓ(w, yi)

∂w

∣∣∣∣
w=f(xi;θ0)︸ ︷︷ ︸

influence of loss

+λ
η

n
Θ(xi, xj ;θ0)

∂ϕ̂(f, i)

∂f

∣∣∣∣∣
f(xi;θ0)︸ ︷︷ ︸

influence of fairness constraint

Lemma 4.2 presents that the general expression of influence function can be

decoupled by the influence subject to accuracy (the first term) and that subject to parity

constraint (the second term).
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However, the situation will be more complicated when we are concerned about

the influence function subject to loss. In this constrained setting,

inflℓ(D, i, j) = ℓ(f(xj ;θ, yj)− ℓ(f(xj ;θ0), yj)

≈ ∂ℓ(w, yj)

∂w

∣∣∣∣
w=f(xj ;θ0)

(f(xj ;θ)− f(xj ;θ0))

≈ η

n

∂ℓ(w, yj)

∂w

∣∣∣∣
w=f(xj ;θ0)

Θ(xi, xj ;θ0)

 ∂ℓ(w, yi)

∂w

∣∣∣∣
w=f(xi;θ0)

+ λ
∂ϕ̂(f, i)

∂f

∣∣∣∣∣
f(xi;θ0)


(4.13)

Equation 4.13 implies the intrinsic tension between accuracy and fairness — when the

signs of ∂ℓ(f(xi), yi)/∂f and ∂ϕ̂(f, i)
/
∂f are opposite, the influence of parity con-

straint will contradict with that of loss.

4.3 Influence Function through Smooth Approximation

In this section, we will take a closer look at the specific influence functions

for several commonly used surrogate constraints. Since the influence induced by loss

is independent of the expressions for fairness constraint, we will ignore the first term

in Equation 4.2 and focus on the second term throughout this section. We define the

pairwise influence score subject to fairness constraint as

S(i, j) := λ
η

n
Θ(xi, xj ;θ0)

∂ϕ̂(f, i)

∂f

∣∣∣∣∣
f(xi;θ0)

(4.14)

In what follows, we will instantiate S(i, j) on three regularized fairness constraints.
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4.3.1 Relaxed Constraint

Throughout this part, we assume that the sensitive attribute is binary, i.e.,

Z ∈ {0, 1}. The technique of relaxing fairness constraints was introduced in [MCPZ18].

We will analyse the influence of relaxed constraints, including demographic parity and

equality of opportunity as below.

Demographic Parity. [MCPZ18] propose to replace the demographic parity metric

ψ(f) = |Pr(f(x;θ) ≥ 0 | z = 1)− Pr(f(x;θ) ≥ 0 | z = 0)| (4.15)

by a relaxed measure

ϕ(f) = |E[f(x;θ) · 1[z = 1]]− E[f(x;θ) · 1[z = 0]]| (4.16)

Without loss of generality, we assume that the group z = 1 is more favorable than the

group z = 0 such that E[f(x;θ)1[z = 1]] ≥ E[f(x;θ)1[z = 0]] during the last step of

optimization. We construct a group-dependent factor αz := 1[z = 1] − 1[z = 0] by

assigning α0 = −1 and α1 = +1. Then we can eliminate the absolute value notation in

the ϕ̂(f) as follows:

ϕ̂(f) =
1

n

n∑
i=1

f(xi;θ)(1[zi = 1]− 1[zi = 0])

=
1

n

n∑
i=1

αzif(xi;θ) (4.17)
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Equation 4.17 is saying the relaxed demographic parity constraint satisfies the decom-

posability assumption with

ϕ̂(f, i) = αzif(xi;θ) (4.18)

Applying Lemma 4.2, we obtain the influence of demographic parity constraint for a

training example i on the target example j

SDP(i, j) = λ
η

n
αziΘ(xi, xj ;θ0) (4.19)

The above derivation presumes that the quantity inside the absolute value notation in

Equation 4.16 is non-negative. In the opposite scenario where group z = 0 is more

favorable, we only need to reverse the sign of αz to apply Equation 4.19. We note that

in some cases, the sign of the quantity will flip after one-step optimization, violating

this assumption.

Equality of Opportunity. For ease of notation, we define the utilities of True Posi-

tive Rate (TPR) and False Positive Rate (FPR) for each group z ∈ Z as

TPRz := Pr(f(x) ≥ 0 | z = z, y = 1) (4.20)

FPRz := Pr(f(x) ≥ 0 | z = z, y = 0) (4.21)

For the equal TPR measure ψ(f) = |TPR1−TPR0 |, we may relax it by

ϕ(f) = |E[f(x;θ) · 1[z = 1, y = 1]]− E[f(x;θ) · 1[z = 0, y = 1]]| (4.22)
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Without loss of generality, we assume that the group z = 1 has a higher utility such

that the quantity within the absolute value notation is positive. We may construct the

group-dependent factor

αz,y := 1[z = 1, y = 1]− 1[z = 0, y = 1]

by assigning α0,1 = −1, α1,1 = +1, and αz,−1 = 0 for z ∈ {0, 1}. Then we may

decompose ϕ̂(f) into

ϕ̂(f) =
1

n

n∑
i=1

f(xi;θ)1[yi = 1](1[zi = 1]− 1[zi = 0]) (4.23)

The above equation satisfies the decomposability assumption with

ϕ̂(f, i) = αzi,yif(xi;θ).

Applying Lemma 4.2 again, we obtain the influence of equal TPR constraint

STPR(i, j) = λ
η

n
αzi,yiΘ(xi, xj ;θ0) (4.24)

For the equal FPR measure ψ(f) = |FPR1−FPR0 |, we may relax it by

ϕ(f) = |E[f(x;θ) · 1[z = 1, y = −1]]− E[f(x;θ) · 1[z = 0, y = −1]]| (4.25)

Likewise, we still assume the group z = 1 has a higher utility. We construct the factor

α̃z,y := 1[z = 1, y = −1]− 1[z = 0, y = −1]

by assigning α̃0,−1 = −1, α̃1,−1 = +1, and α̃z,+1 = 0 for z ∈ {0, 1}. Following the similar

deduction, we may verify the relaxed equal FPR measure satisfies the decomposability
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assumption. Then we can obtain the influence of equal FPR constraint as

SFPR(i, j) = λ
η

n
α̃zi,yiΘ(xi, xj ;θ0) (4.26)

In the opposite scenario when group z = 0 has a higher utility of either TPR or FPR,

we may reverse the sign of αz,y or α̃z,y, respectively. Finally, imposing equal odds

constraint is identical to imposing equal TPR and equal FPR simultaneously, implying

the following equality holds:

SEO = STPR + SFPR (4.27)

Corollary 4.3. When one group has higher utilities (TPR and FPR) than the other

group, the influence of imposing equal odds SEO(i, j) is equivalent to that of imposing

demographic parity SDP(i, j).

4.3.2 Covariance as Constraint

Another common approach is to reduce the covariance between the group mem-

bership z and the encoded feature f(x;θ) [ZVGRG17a, WGOS17]. Formally, the co-

variance is defined by

Cov(z, f(x)) = E[z · f(x;θ)]− E[z] · E[f(x;θ)] (4.28)

Then the empirical fairness measure is the absolute value of covariance

ϕ̂(f) =

∣∣∣∣∣ 1n
n∑

i=1

zif(xi;θ)− (
1

n

n∑
i=1

zi) · (
1

n

n∑
i=1

f(xi;θ))

∣∣∣∣∣ (4.29)
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Since we can observe the whole training set, the mean value of group membership can be

calculated by z̄ = 1
n

∑n
i=1 zi. As a result, we can decompose the covariance as follows:

ϕ̂(f) = | 1
n

n∑
i=1

(zi − z̄)f(xi;θ)|

=
1

n

n∑
i=1

βi(zi − z̄)f(xi;θ) (4.30)

where βi ∈ {−1,+1} is an instance-dependent parameter. Then the covariance con-

straint satisfies the decomposability assumption by taking

ϕ̂(f, i) = βi(zi − z̄)f(xi;θ), βi ∈ {−1,+1}. (4.31)

Finally, the influence score induced by the covariance constraint in Equation 4.29 is

Scov(i, j) = λ
η

n
βi(zi − z̄)Θ(xi, xj ;θ0) (4.32)

In this kernelized expression, the pairwise influence score is neatly represented as NTK

scaled by an instance weight βi(zi − z̄).

Connection to Relaxed Constraint. We may connect the influence function of the

covariance approach to that of the relaxation approach in a popular situation where

there are only two sensitive groups.

Corollary 4.4. When sensitive attribute z is binary, the influence score of covariance

is half of the influence of relaxed demographic parity.

|Z| = 2 =⇒ Scov(i, j) =
1

2
SDP(i, j)
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4.3.3 Information Theoretic Algorithms

The demographic parity constraint can be interpreted as the independence of

prediction f(x) and group membership z. Denoted by I(f(x); z) the mutual information

between f(x) and z, the independence condition f(x) ⊥⊥ z implies I(f(x); z) = 0. In

consequence, a number of algorithms [SKG+19, GFDS21, BNBR20] propose to adopt the

bounds of mutual information I(f(x); z) as the empirical fairness measure. We consider

approximating mutual information by MINE [BBR+18a, vdOLV18] as an example.

ϕ̂(f) =
1

n

n∑
i=1

log
exp g(f(xi), zi)

1
n

∑n
k=1 exp g(f(xi), zk)

(4.33)

where the function g(·, ·) is parameterized by a neural network. In this case, ϕ̂(f)

satisfies the decomposability assumption by straightly taking

ϕ̂(f, i) = log
exp g(f(xi), zi)

1
n

∑n
k=1 exp g(f(xi), zk)

(4.34)

Although the denominator inside the logarithm in Equation 4.34 contains the sum over

all the zk in the training set, we can always calculated the sum when we know the prior

distribution of the categorical variable z. Taking the derivative of ϕ̂(f, i), the influence

of MINE constraint is given by

SMINE(i, j) = λ
η

n
Θ(xi, xj ;θ0) ·

∂G

∂w

∣∣∣∣
w=f(xi;θ)

where G = g(w, zi)−
1

n

n∑
k=1

g(w, zk)

(4.35)

Connection to Covariance. In a special case when g(f(x;θ), z) = zf(x;θ), we have

∂fg(f(x;θ), z) = z. Substitute the partial derivative back into Equation 4.35, the influ-
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ence of MINE reduces to the influence of covariance measure λ η
nαi(zi − z̄)Θ(xi, xj ;θ0).

However, it is very likely that the influence scores of MINE and covariance are much dif-

ferent, due to the fact that the unknown function g(f(x), z) is parameterized by neural

networks in more generic applications.

4.4 Influence Function through Zeroth-Order Approxima-

tion

Our previous discussion explores how smooth approximation can address the

non-differentiability of fairness constraints. As an alternative approach to circum-

vent direct gradient computation, we propose using a zeroth-order gradient estimator

[FKM05, Sha17, GJZ18]. For ease of notations, we use z = (x, y, z) to represent the

data examples. Following [NS17], the gradient estimate of L(θ, z) can be obtained by

g(θ, z, µ) = d
L(θ + µu, z)− L(θ − µu, z)

2µ
u, u ∼ φ (4.36)

In above equation, d denotes the dimension of the model parameters θ used for high-

dimensional unbiased estimation, µ > 0 is a smoothing radius (hyper-parameter), and φ

is spherically symmetric with Eu∼φ[∥u∥] = 1, where u is a random unit vector u ∈ RD.

Thus, u ∼ φ means some random direction sampled from the unit space φ. For example,

if θ is scalar (d = 1), then u ∈ {−1,+1} with equal probability. Typically, we employ

an unbiased estimate of the gradient over a random pertubation u ∼ φ with smoothing
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radius µ

∇̂θL(θ, z) = Eu∼φ[g(θ, z, µ)] (4.37)

For succinctness, let ϕ(θ, z) denote the fairness constraint of a single training

example zn. Denote the total loss for any example z as L(θ, z) = ℓ(θ, z) + λϕ(θ, z).

When considering the second-order terms in the gradient flow, the kernel function incor-

porates an inverse Hessian matrix term. Combined with a two-point random gradient

estimator, the influence function of training example z subject to the prediction of f

on the target example ztest can be formulated as

înfl(D, z, ztest) ≈ −∇̂θL(θ, ztest)
⊤Ĥ−1∇̂θL(θ, z) (4.38)

4.4.1 Approximating Inverse Hessian Matrix

Computing the inverse Hessian matrix requires O(d3) operations for a model

with d parameters, suggesting a significant computational burden. To address this

challenge, we employ the WoodFisher approximation [SA20], which provides an effi-

cient alternative by approximating the Hessian structure using the Sherman-Morrison

formula.

Fisher Information Matrix. In a probalistic view, the Fisher Information Matrix

(FIM), denoted as F, serves as a way of measuring the amount of information about a

negative log-likelihood for an underlying joint distribution p(x, y|θ) parameterized by
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model parameters θ. The Fisher Information Matrix is defined as:

F(θ) := Ep(x,y|θ)

[
∇θ log p(x, y|θ)∇θ log p(x, y|θ)⊤

]
(4.39)

Typically, under the assumption of maximum likelihood estimation (MLE) or when

the loss function is a negative log-likelihood function, it can be easily proved that the

observed Fisher information matrix is equivalent to the negative Hessian matrix for the

model prediction, i.e.,

E [H(θ)] = −F(θ) (4.40)

In practice, it’s a common approach to estimate the Fisher matrix by employing its

empirical counterpart. The formulation of this empirical Fisher matrix can be presented

as

F̂ =
1

N

N∑
n=1

∇θL(θ, zn)∇θL(θ, zn)⊤

≈ 1

N

N∑
n=1

∇̂θL(θ,θn)∇̂θL(θ,θn)⊤ (4.41)

where the first equality holds due to the assumption that the loss function is a negative

log-likelihood function. When there is no confusion, we use the Fisher matrix F and

the Hessian matrix H interchangeably.

WoodFisher Approximation. We define

ĝn = ∇̂θL(θ, zn) (4.42)
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Leveraging the structure of the empirical Fisher matrix, we can derive the following

recursive equation to estimate the inverse of the Hessian matrix following [SA20]:

Ĥn+1 = Ĥn +
1

N
ĝn+1ĝ

⊤
n+1,

Ĥ−1
n+1 = Ĥ−1

n −
Ĥ−1

n ĝn+1ĝ
⊤
n+1Ĥ

−1
n

N + ĝ⊤
n+1Ĥ

−1
n ĝn+1

,

(4.43)

where Ĥ−1
0 = κ−1Id and κ denotes the dampening term. Eq (4.43) mainly follows the

Sherman-Morrison formula, which provides an efficient way to update the inverse of a

matrix when a rank-one modification is applied, avoiding the need to recompute the

entire inverse matrix.

4.4.2 Proposed Algorithm

Now we are ready to present Algorithm 4 for approximating the influence func-

tion using zeroth-order gradient estimation, where explicit gradient computations are

infeasible. The core of Algorithm 4 revolves around iteratively updating the inverse

Hessian through the Sherman-Morisson formula. A crucial aspect of this method is

its reliance solely on first-order gradients of the loss function ∇θL(θ, ·). To estimate

the gradients without direct access to model parameters, we employ a two-point ran-

dom gradient estimator in the ZOGradEstimator procedure to estimate gradients.

This subroutine executes multiple iterations, each involving random perturbations to

the model parameters. By utilizing finite differences, it approximates the gradient di-

rection, thereby enabling the estimation of influence without requiring direct gradient
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calculations.

4.5 Estimating the Aggregated Influence Score

In this section, we intend to discuss the expected influence of a training example

on the whole data distribution. We will focus on the changes of empirical fairness

constraints ϕ̂(f) when a data point (xi, yi, zi) is excluded in the training set or not.

Suppose that ϕ̂(f) satisfies the decomposability assumption. We define the realized

influence score of a training example i aggregated over the whole data distribution D as

S(i) :=

∫
(xj ,yj ,zj)∈D

∂ϕ̂(f, j)

∂f
S(i, j) dPr(xj , yj , zj) (4.44)

S(i) takes into account the change on ϕ̂(f) by applying the first-order approximation

again for each test point j. In practice, the model f can only observe finite data

examples in D that are drawn from the underlying distribution D. We estimate the

influence score of a training example i over the training set D.

S(i) :=
1

n

n∑
i=1

∂ϕ̂(f, j)

∂f
S(i, j) (4.45)

We wonder how the measure of S(i) deviates from S(i).

Theorem 4.5 (Generalization Bound). With probability at least 1− ϵ,

S(i)− S(i) ≤ O

√ log 1
ϵ

2n

 (4.46)
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Figure 4.1: A toy example to interpret the influence scores of fairness. Left: The optimal
classifier is 1[x ≥ 0]. Four curves in different colors represent the distributions for each
(z, y) combination. The blue area and green area represent the violation of demographic
parity. The data examples with low influence scores of fairness constraints are around
x = 0. Right: When we down-weight the examples around x = 0, the optimal classifier
will be perturbed towards right. Since the sum of blue area and green area decreases,
the violation of demographic parity is mitigated.

Interpreting Influence Scores on Synthetic Data. We consider a synthetic ex-

ample as visualized in Figure 4.1 to illustrate why our influence scores help with iden-

tifying instances that affect the fairness. We assume that the individual examples are

independently drawn from an underlying normal distribution corresponding to the label

y ∈ {−1,+1} and group membership z ∈ {0, 1}, i.e., xz,y ∼ N(µz,y, σ). We assume that

µ0,−1 < µ1,−1 < 0 < µ0,+1 < µ1,+1. Suppose that we train a linear model f(x) = w·x+b,

and the obtained classifier is 1[f(x) >= 0] which reduces to 1[x >= 0] for our toy ex-

ample. Then we have the following proposition:

Proposition 4.6. In our considered setting, if we down-weight the training examples

with smaller absolute fairness influence scores, the model will tend to mitigate the vio-

lation of demographic parity.
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Proposition 4.6 informs us that we can mitigate the unfairness by up-weighting

the data instances with higher influence scores, or equivalently by removing some low-

influence training points.

4.6 Empirical Evaluations

In this section, we examine the influence score subject to parity constraints on

three different application domains: tabular data, images and natural language.
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Figure 4.2: Data pruning results on Adult dataset.
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Figure 4.3: Data pruning results on CelebA dataset.
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Figure 4.4: Data pruning results on Jigsaw dataset.

4.6.1 Setup

We adopt the evaluation protocol that has been widely used by the previous

papers on interpreting the impact of data examples. The basic idea is to train a model

on a subset of training data by removing the less influential examples [PGD21]. In

particular, we assess the performance of three data prune strategies: (1) random, which

randomly selects a subset of training examples; (2) prune by fairness, which removes

the data examples in the ascending order of the absolute values of aggregated influence

scores subject to fairness as described in Equation 4.45; (3) prune by accuracy, which

removes the data examples in the descending order of absolute influence scores in terms

of the loss. The influence score is equivalent to the first order approximate proposed

in [PLKS20]. For the three strategies above, a model pre-trained on the whole training

set will be used to estimate the influence scores of training examples with the direct

application of Equation 4.45. We then execute the data prune procedure and impose

the relaxed demographic parity in Equation 4.16 to train a fair model.
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We compare the performance of pruning by influence scores with following

optimization algorithms that regularize the constraint:

• ERM, which trains the model directly without imposing fairness constraints.

• lfatr [MCPZ18], which regularizes the model with relaxed constraint as given in

Equation 4.17.

• reduction [ABD+18b], which reduces the constrained optimization to a cost-sensitive

learning problem.

We used the Adam optimizer with a learning rate of 0.001 to train all the models.

We used γ = 1 for models requiring the regularizer parameter of fairness constraints.

Any other hyperparameters keep the same among the compared methods. We report

two metrics: the accuracy evaluated on test set and the difference of acceptance rates

between groups as fairness violation.

4.6.2 Result on Tabular Data

Firstly, we work with multi-layer perceptron (MLP) trained on the Adult

dataset [DG17b]. We select sex, including female and male, as the sensitive attribute.

We resample the dataset to balance the class and group membership. The MLP model

is a two-layer ReLU network with hidden size 64. We train the model 5 times with dif-

ferent random seeds to report the mean and standard deviation of accuracy and fairness

metrics. In each trial, the dataset is randomly split into a training and a test set in a
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ratio of 80 to 20. We compare the performance of prune by fairness in Figure 4.2 and

find it has a similar fairness-accuracy trade-off with the reduction approach. To gain

further insights, we further plot how the size of pruned training examples affects the

accuracy and fairness metrics for three prune strategies. Not surprisingly, the random

baseline remains a high fairness violation with a large accuracy drop when the data

size decreases. In contrast, prune by fairness has a similar accuracy with pruning by

accuracy when the data size is greater than 20% and mitigates the fairness violation

by a large margin when the data size is less than 40%. We also notice that prune by

fairness anomalously has a high fairness violation when the data size is less than 10%.

We conjecture such a small size of training data does not contain sufficient information,

leading to the significant performance degradation. These observations suggest that we

may obtain the best trade-off with a subset of only 20%–40% of training data.

4.6.3 Result on Images

Next, we train a ResNet-18 network [HZRS15] on the CelebA face attribute

dataset [LLWT15a]. We select smiling as binary classification target and gender as the

sensitive attribute. The left figure in Figure 4.3 shows the trade-off between accuracy

and fairness violation for each baseline method. We explore how the size of pruned

training examples affects the accuracy and fairness metrics in right two figures in Figure

4.3. Again, the accuracy of prune by fairness has a similar trend with that of prune by

accuracy when data size is larger than 20%, but drops strikingly with much smaller data
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size. On the other hand, prune by fairness mitigates the fairness violation straightly

when data size decreases.

4.6.4 Result on Natural Language

Lastly, we consider Jigsaw Comment Toxicity Classification [Jig18] with text

data. We select race as the sensitive attribute in our evaluation. We use pre-trained

BERT [DCLT19b] to encode each raw comment text into a 768-dimensional textual

representation vector and train a two-layer neural network to perform classification.

We report the experimental result in Figure 4.4. The left figure shows that prune by

fairness has a mimic performance with lfatr while preserving smaller standard deviation.

The middle figure shows that prune by accuracy keeps a relatively high accuracy when

a large subset of training examples are removed. In comparison, both prune by fairness

and random prune failed to make informative prediction when the data size is below

20%. The right figure implies that prune by fairness is capable of mitigating bias.

This result cautions that we need to carefully account for the price of a fair classifier,

particularly in this application domain.
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Algorithm 4 Approximating Influence Function with Zeroth-Order Gradient Estima-

tion

Input: data samples D = {zn}Nn=1, target training example z, test example ztest, loss

function L, model parameter θ at size d, perturbation scale µ, dampening term κ.

1: Initialize Ĥ−1 ← κ−1Id.

2: for all zn ∈ D do

3: g ← ZOGradEstimator(θ, zn)

4: Ĥ−1 ← Ĥ−1 − Ĥ−1gg⊤Ĥ−1/(N + g⊤Ĥ−1g)

5: end for

6: ∇̂θL(θ, ztest)← ZOGradEstimator(θ, ztest)

7: ∇̂θL(θ, z)← ZOGradEstimator(θ, z)

8: infl(D, z, ztest)← −∇̂θL(θ, ztest)
⊤Ĥ−1

N ∇̂θL(θ, z)

9: return infl(D, z, ztest)

10: procedure ZOGradEstimator(θ, z)

11: for t = {1, . . . , T} do

12: Randomly sample ut ∼ N (0, 1) at size d.

13: gt ← ut · [L(z,θ + µut)− L(z,θ − µut)]/2µ

14: end for

15: ∇̂θL(θ, z)← 1
T

∑T
t=1 gt

16: return ∇̂θL(θ, z)

17: end procedure
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Chapter 5

Conclusion and Future Works

5.1 Conclusion

In this dissertation, we explore three crucial aspects of promoting fairness

in foundation models. First, we examine scenarios where certain subgroups have less

accurate feature and label information compared to others. Our research reveals that

applying standard bias mitigation techniques without considering these data quality

disparities can inadvertently increase outcome inequality. We propose novel methods

to address unfairness while accounting for data uncertainty. Second, we extend current

state-of-the-art fairness techniques, typically focused on classification problems, to a

broader range of multi-modal AI applications. We propose new fairness metrics to

measure and quantify the biases when images are connected to text. Third, we highlight

the critical importance of detecting and addressing potentially harmful instances within
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training datasets to improve overall model fairness.

From a high-level perspective, the second part of our work establishes method-

ologies for measuring fairness in foundation models across both image and text modali-

ties. The first part presents approaches to mitigate unfairness and bias, with particular

emphasis on handling uncertainty. The last part of our work on fairness influence func-

tion provides a robust framework for auditing the quality of dataset. Notably, the

proposed zeroth-order approximation technique offers a computationally efficient ap-

proach for large-scale foundation models by eliminating the need for direct gradient

computation.

This dissertation provides valuable insights for machine learning practitioners,

researchers, and policymakers considering the implementation of foundation models.

The proposed technical solutions and approaches are particularly relevant when dealing

with training data that exhibits significant disparity. By addressing these challenges,

the research provides practical tools and methodologies to enhance the equitable per-

formance of AI systems, even when confronted with biased or problematic observations.

Ultimately, it serves as a valuable resource to harness the power of AI while upholding

principles of fairness and equality; it contributes to the ongoing effort to create more

just and inclusive systems for responsible AI; it aligns technological advancements with

ethical considerations and societal values of humans.
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5.2 Future Works

We separate the potential future works on the relevant chapters in this thesis:

From Chapter 2 Our current work primarily focuses on static environments, with-

out considering the dynamic interplay between human subjects and policy makers. In

real-world applications, machine learning policies and populations continuously adapt

to each other, resulting in shifts in the underlying data distribution and evolving deci-

sion landscapes. This mutual adaptation presents significant challenges for maintaining

fairness in the long run. Future research includes exploring how to achieve long-term

fairness without compromising model utility, particularly in these dynamic environments

where both decision policies and populations evolve. This research direction is highly

related with the literature of performative prediction, dynamic fairness or long-term

fairness.

From Chapter 3 Our current multimodal fairness measures are task-specific. In con-

trast, future research should aim to develop a unified framework capable of evaluating

fairness across diverse tasks. Moreover, the current fairness measures heavily relied on

human-crafted tasks or text prompts. We envision developing automatic benchmarks

that can comprehensively evaluate the fairness for flexible group definitions. One possi-

ble approach is to apply generative AI models to enhance the magnitude and dimension

of fairness benchmarks.

130



From Chapter 4 While our current influence function framework mainly focuses on

classification models, the rise of generative AI necessitates extending these analytical

techniques to generative models. Two particularly promising directions are understand-

ing the impacts of training data on diffusion models and large language models. The

key theoretical extension involves shifting the counterfactual analysis from the condi-

tional probability Pr(Y | X) to the joint probability distribution Pr(X,Y ). Through

analogous mathematical analysis, we can derive explicit expressions for influence func-

tions in generative models. Another interesting topic is, the current influence function

focuses on the impact of individual training instances. For large language models, the

inputs are sequence of text tokens. Then a natural research question arises: how do

we measure the influence of these sequence-level tokens on the large language models’

outputs? Addressing this research question will benefit understanding how changing the

text prompts may affect the model’s outputs. We emphasize that influence functions

serve as powerful tools for multiple critical applications: protecting from data poison-

ing attacks, enhancing data privacy and security, analyzing the memorization effects of

specific training examples, and etc.
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[MCK19] Jérémie Mary, Clément Calauzènes, and Noureddine El Karoui. Fairness-

aware learning for continuous attributes and treatments. In Kamalika

Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th

International Conference on Machine Learning, ICML 2019, 9-15 June

2019, Long Beach, California, USA, volume 97 of Proceedings of Machine

Learning Research, pages 4382–4391. PMLR, 2019.

[MCPZ18] David Madras, Elliot Creager, Toniann Pitassi, and Richard S. Zemel.

Learning adversarially fair and transferable representations. CoRR,

abs/1802.06309, 2018.

[MKK21] Aditya Mogadala, Marimuthu Kalimuthu, and Dietrich Klakow. Trends

in integration of vision and language research: A survey of tasks, datasets,

and methods. J. Artif. Int. Res., 71:1183–1317, sep 2021.

[MOS21] Masayoshi Mase, Art B. Owen, and Benjamin B. Seiler. Cohort shapley

value for algorithmic fairness. ArXiv, abs/2105.07168, 2021.

[MPDR21] Nicholas Meade, Elinor Poole-Dayan, and Siva Reddy. An empirical sur-

vey of the effectiveness of debiasing techniques for pre-trained language

models. arXiv preprint arXiv:2110.08527, 2021.

165



[MS13] N. Manwani and P. S. Sastry. Noise tolerance under risk minimization.

IEEE Transactions on Cybernetics, 43(3):1146–1151, 2013.

[MSD19] Varun Manjunatha, Nirat Saini, and Larry S. Davis. Explicit bias discov-

ery in visual question answering models. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), June

2019.

[MSHJ20] Marco Morik, Ashudeep Singh, Jessica Hong, and Thorsten Joachims.

Controlling Fairness and Bias in Dynamic Learning-to-Rank, page

429–438. Association for Computing Machinery, New York, NY, USA,

2020.

[MVROW15] Aditya Menon, Brendan Van Rooyen, Cheng Soon Ong, and Bob

Williamson. Learning from corrupted binary labels via class-probability

estimation. In International Conference on Machine Learning, pages 125–

134, 2015.

[MW18] Aditya Krishna Menon and Robert C. Williamson. The cost of fairness in

binary classification. In Sorelle A. Friedler and Christo Wilson, editors,

Conference on Fairness, Accountability and Transparency, FAT 2018, 23-

24 February 2018, New York, NY, USA, volume 81 of Proceedings of

Machine Learning Research, pages 107–118. PMLR, 2018.

166



[MWB+19] Chandler May, Alex Wang, Shikha Bordia, Samuel R. Bowman, and

Rachel Rudinger. On measuring social biases in sentence encoders. In

Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technolo-

gies, Volume 1 (Long and Short Papers), pages 622–628, Minneapolis,

Minnesota, June 2019. Association for Computational Linguistics.

[MWZ+19a] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy

Vasserman, Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and

Timnit Gebru. Model cards for model reporting. In Proceedings of the

Conference on Fairness, Accountability, and Transparency, FAT* ’19,

page 220–229, New York, NY, USA, 2019. Association for Computing

Machinery.

[MWZ+19b] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy

Vasserman, Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and

Timnit Gebru. Model cards for model reporting. In Proceedings of the

Conference on Fairness, Accountability, and Transparency, FAT* ’19,

page 220–229, New York, NY, USA, 2019. Association for Computing

Machinery.

[MYCBT19] Thomas Manzini, Lim Yao Chong, Alan W Black, and Yulia Tsvetkov.

Black is to criminal as caucasian is to police: Detecting and removing

167



multiclass bias in word embeddings. In Proceedings of the 2019 Confer-

ence of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), pages 615–621, Minneapolis, Minnesota, June 2019. Association

for Computational Linguistics.

[Nar18a] Harikrishna Narasimhan. Learning with complex loss functions and con-

straints. In Amos Storkey and Fernando Perez-Cruz, editors, Proceedings

of the Twenty-First International Conference on Artificial Intelligence

and Statistics, volume 84 of Proceedings of Machine Learning Research,

pages 1646–1654. PMLR, 09–11 Apr 2018.

[Nar18b] Arvind Narayanan. Translation tutorial: 21 fairness definitions and their

politics. In Proc. Conf. Fairness Accountability Transp., 2018.

[NBG02] Brian A. Nosek, Mahzarin R. Banaji, and Anthony G Greenwald. Har-

vesting implicit group attitudes and beliefs from a demonstration web

site. Group Dynamics: Theory, Research, and Practice, 6:101–115, 2002.

[NBR20] Moin Nadeem, Anna Bethke, and Siva Reddy. Stereoset: Measur-

ing stereotypical bias in pretrained language models. arXiv preprint

arXiv:2004.09456, 2020.

[NDR+22] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav

168



Shyam, Pamela Mishkin, Bob Mcgrew, Ilya Sutskever, and Mark Chen.

GLIDE: Towards photorealistic image generation and editing with text-

guided diffusion models. In Kamalika Chaudhuri, Stefanie Jegelka,

Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceed-

ings of the 39th International Conference on Machine Learning, volume

162 of Proceedings of Machine Learning Research, pages 16784–16804.

PMLR, 17–23 Jul 2022.

[NDRT13] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and

Ambuj Tewari. Learning with noisy labels. In C. J. C. Burges, L. Bottou,

M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances

in Neural Information Processing Systems 26, pages 1196–1204. Curran

Associates, Inc., 2013.

[Nin17] Ninth Circuit Jury Instructions Committee. Manual of Model Civil Jury

Instructions for the Ninth Circuit, chapter 11. St. Paul, Minn. :West

Publishing, 2017.

[NJC21] Curtis G Northcutt, Lu Jiang, and Isaac L Chuang. Confident learning:

Estimating uncertainty in dataset labels. Journal of Artificial Intelligence

Research, 2021.

[NS17] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimiza-

169



tion of convex functions. Foundations of Computational Mathematics,

17:527–566, 2017.

[NSH+07] Brian A. Nosek, Frederick L. Smyth, Jeffrey Jay Hansen, Thierry Devos,

Nicole M. Lindner, Kate A Ranganath, Colin Tucker Smith, Kristina R.

Olson, and Dolly Chugh. Pervasiveness and correlates of implicit attitudes

and stereotypes. European Review of Social Psychology, 18:36 – 88, 2007.

[NSS+09] Brian A. Nosek, Frederick L. Smyth, Natarajan Sriram, Nicole M. Lind-

ner, Thierry Devos, Alfonso Ayala, Yoav Bar-Anan, Robin Bergh, Hua-

jian Cai, Karen Gonsalkorale, Selin Kesebir, Norbert Maliszewski, Félix

Neto, Eero Olli, Jaihyun Park, Konrad Schnabel, Kimihiro Shiomura,

Bogdan Tudor Tulbure, Reinout W. Wiers, Mónika Somogyi, Nazar

Akrami, Bo Ekehammar, Michelangelo Vianello, Mahzarin R. Banaji, and

Anthony G Greenwald. National differences in gender–science stereotypes

predict national sex differences in science and math achievement. Pro-

ceedings of the National Academy of Sciences, 106:10593 – 10597, 2009.

[NVBB20] Nikita Nangia, Clara Vania, Rasika Bhalerao, and Samuel R Bowman.

Crows-pairs: A challenge dataset for measuring social biases in masked

language models. arXiv preprint arXiv:2010.00133, 2020.

[OBC17] Jahna Otterbacher, Jo Bates, and Paul Clough. Competent Men and

Warm Women: Gender Stereotypes and Backlash in Image Search Re-

170



sults, page 6620–6631. Association for Computing Machinery, New York,

NY, USA, 2017.

[Ope22] OpenAI. https://openai.com/blog/dall-e-2-extending-creativity/, July

2022.

[OPVM19] Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mul-

lainathan. Dissecting racial bias in an algorithm used to manage the

health of populations. Science, 366(6464):447–453, 2019.

[PF16] Alice B Popejoy and Stephanie M Fullerton. Genomics is failing on di-

versity. Nature News, 538(7624):161, 2016.

[PFS21] Stephen R. Pfohl, Agata Foryciarz, and Nigam Haresh Shah. An empir-

ical characterization of fair machine learning for clinical risk prediction.

Journal of biomedical informatics, page 103621, 2021.

[PGD21] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep

learning on a data diet: Finding important examples early in training. In

A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,

Advances in Neural Information Processing Systems, 2021.

[PLKS20] Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundarara-

jan. Estimating training data influence by tracing gradient descent. In

H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, ed-

171



itors, Advances in Neural Information Processing Systems, volume 33,

pages 19920–19930. Curran Associates, Inc., 2020.

[PMSY21] Felix Petersen, Debarghya Mukherjee, Yuekai Sun, and Mikhail

Yurochkin. Post-processing for individual fairness. In A. Beygelzimer,

Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in

Neural Information Processing Systems, 2021.

[PRM+17] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock,

and Lizhen Qu. Making deep neural networks robust to label noise: A

loss correction approach. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,

2017, pages 2233–2241. IEEE Computer Society, 2017.

[PRW+17] Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q.

Weinberger. On fairness and calibration. In Proceedings of the 31st Inter-

national Conference on Neural Information Processing Systems, NIPS’17,

page 5684–5693, Red Hook, NY, USA, 2017. Curran Associates Inc.

[PSG19] Telmo Pires, Eva Schlinger, and Dan Garrette. How multilingual is mul-

tilingual BERT? In Proceedings of the 57th Annual Meeting of the Asso-

ciation for Computational Linguistics, pages 4996–5001, Florence, Italy,

July 2019. Association for Computational Linguistics.

172



[PW17] Yury Polyanskiy and Y. Wu. Strong data-processing inequalities for chan-

nels and bayesian networks. arXiv: Information Theory, pages 211–249,

2017.

[Rae22] Nina Raemont. Adobe stock to allow ai-generated images on its service,

December 2022.

[RBFV20] Anian Ruoss, Mislav Balunovic, Marc Fischer, and Martin Vechev. Learn-

ing certified individually fair representations. In Advances in Neural In-

formation Processing Systems 33, 2020.

[RBKL20] Manish Raghavan, Solon Barocas, Jon Kleinberg, and Karen Levy. Miti-

gating bias in algorithmic hiring: Evaluating claims and practices. In Pro-

ceedings of the 2020 Conference on Fairness, Accountability, and Trans-

parency, FAT* ’20, page 469–481, New York, NY, USA, 2020. Association

for Computing Machinery.

[RBL+22] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser,

and Björn Ommer. High-resolution image synthesis with latent diffusion

models. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 10684–10695, 2022.

[RDN+22] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark

173



Chen. Hierarchical text-conditional image generation with clip latents,

2022.

[RKB21] Candace Ross, B. Katz, and Andrei Barbu. Measuring social biases in

grounded vision and language embeddings. In NAACL, 2021.

[RKH+21] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel

Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin,

Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable

visual models from natural language supervision. In Marina Meila and

Tong Zhang, editors, Proceedings of the 38th International Conference

on Machine Learning, volume 139 of Proceedings of Machine Learning

Research, pages 8748–8763. PMLR, 18–24 Jul 2021.

[RPG+21] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss,

Alec Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image

generation. In Marina Meila and Tong Zhang, editors, Proceedings of

the 38th International Conference on Machine Learning, volume 139 of

Proceedings of Machine Learning Research, pages 8821–8831. PMLR, 18–

24 Jul 2021.

[RT15] Mohammad Sadegh Rasooli and Joel R. Tetreault. Yara parser: A

fast and accurate dependency parser. Computing Research Repository,

arXiv:1503.06733, 2015. version 2.

174



[SA20] Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order

approximation for neural network compression. In H. Larochelle, M. Ran-

zato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural

Information Processing Systems, volume 33, pages 18098–18109. Curran

Associates, Inc., 2020.

[SB21] Tejas Srinivasan and Yonatan Bisk. Worst of both worlds: Biases com-

pound in pre-trained vision-and-language models. ArXiv, abs/2104.08666,

2021.

[SBDK23] Patrick Schramowski, Manuel Brack, Björn Deiseroth, and Kristian Ker-

sting. Safe latent diffusion: Mitigating inappropriate degeneration in

diffusion models. In IEEE/CVF Conference on Computer Vision and

Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24,

2023, pages 22522–22531. IEEE, 2023.

[SBH13] Clayton Scott, Gilles Blanchard, and Gregory Handy. Classification with

asymmetric label noise: Consistency and maximal denoising. ArXiv,

abs/1303.1208, 2013.

[SBV+22] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon,

Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton

Mullis, Mitchell Wortsman, Patrick Schramowski, Srivatsa Kundurthy,

Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia

175



Jitsev. Laion-5b: An open large-scale dataset for training next generation

image-text models. ArXiv, abs/2210.08402, 2022.

[SC21a] Ryan Steed and Aylin Caliskan. Image representations learned with

unsupervised pre-training contain human-like biases. In Conference on

Fairness, Accountability, and Transparency (FAccT ’21), New York, NY,

USA, 23–24 Feb 2021.

[SC21b] Ryan Steed and Aylin Caliskan. Image representations learned with un-

supervised pre-training contain human-like biases. In Proceedings of the

2021 ACM conference on fairness, accountability, and transparency, pages

701–713, 2021.

[SCIF20] Vivek K. Singh, Mary Chayko, Raj Inamdar, and Diana Floegel. Fe-

male librarians and male computer programmers? gender bias in occu-

pational images on digital media platforms. J. Assoc. Inf. Sci. Technol.,

71(11):1281–1294, 2020.

[Sco15] Clayton Scott. A rate of convergence for mixture proportion estima-

tion, with application to learning from noisy labels. In Guy Lebanon

and S. V. N. Vishwanathan, editors, Proceedings of the Eighteenth Inter-

national Conference on Artificial Intelligence and Statistics, AISTATS

2015, San Diego, California, USA, May 9-12, 2015, volume 38 of JMLR

Workshop and Conference Proceedings. JMLR.org, 2015.

176



[SCS+22] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang,

Emily Denton, Seyed Kamyar Seyed Ghasemipour, Raphael Gontijo-

Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan Ho, David J. Fleet,

and Mohammad Norouzi. Photorealistic text-to-image diffusion mod-

els with deep language understanding. In Alice H. Oh, Alekh Agarwal,

Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural In-

formation Processing Systems, 2022.

[SGP+22] Prasanna Sattigeri, Soumya Ghosh, Inkit Padhi, Pierre Dognin, and

Kush R. Varshney. Fair infinitesimal jackknife: Mitigating the influence

of biased training data points without refitting. In Alice H. Oh, Alekh

Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in

Neural Information Processing Systems, 2022.

[Sha17] Ohad Shamir. An optimal algorithm for bandit and zero-order con-

vex optimization with two-point feedback. J. Mach. Learn. Res.,

18(1):1703–1713, January 2017.

[SHB+17] Shreya Shankar, Yoni Halpern, Eric Breck, James Atwood, Jimbo Wil-

son, and D. Sculley. No classification without representation: Assessing

geodiversity issues in open data sets for the developing world. arXiv:

Machine Learning, 2017.

[SHF+23] Lukas Struppek, Dominik Hintersdorf, Felix Friedrich, Manuel Brack,

177



Patrick Schramowski, and Kristian Kersting. Exploiting cultural biases

via homoglyphs in text-to-image synthesis, 2023.

[Sid05] Naeem Siddiqi. Credit Risk Scorecards: Developing and Implementing

Intelligent Credit Scoring. Wiley, September 2005.

[SKG+19] Jiaming Song, Pratyusha Kalluri, Aditya Grover, Shengjia Zhao, and

S. Ermon. Learning controllable fair representations. In AISTATS, 2019.

[SL16] J. Skeem and Christopher T. Lowenkamp. Risk, race, recidivism: Predic-

tive bias and disparate impact. Political Economy: Structure & Scope of

Government eJournal, 2016.

[SLYZ23] Zeyang Sha, Zheng Li, Ning Yu, and Yang Zhang. De-fake: Detection and

attribution of fake images generated by text-to-image generation models,

2023.

[SN20] Mukund Sundararajan and Amir Najmi. The many shapley values for
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Appendix A

Proofs

A.1 Proofs for Chapter 2

A.1.1 Proof of Theorem 2.1

Proof. Equality of TPR on the noisy data implies

Pr(f(X) = +1 | Y = +1, Z = z) = Pr(f(X) = +1 | Ỹ = +1, Z = z′). (A.1)

Since the two groups are drawn from the identical distribution, we have for y ∈ {−1,+1},

Pr(f(X) = +1 | Y = y, Z = z) = Pr(f(X) = +1 | Y = y, Z = z′). (A.2)
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Expanding Pr(f(X) = +1 | Y = +1, Z = z′) using law of total probability we have

Pr(f(X) = +1|Y = +1, Z = z′)

= Pr(f(X) = +1| | Ỹ = +1, Y = +1, Z = z′) · Pr(Ỹ = +1 | Y = +1, Z = z′)

+ Pr(f(X) = +1 | Ỹ = −1, Y = +1, Z = z′) · Pr(Ỹ = −1 | Y = +1, Z = z′)

= Pr(f(X) = +1 | Ỹ = +1, Z = z′) · (1− e) + Pr(f(X) = +1 | Ỹ = −1, Z = z′) · e

(A.3)

Combining Equation (A.1) with the above,

Pr(f(X) = +1 | Ỹ = +1, Z = z′)

= Pr(f(X) = +1 | Y = +1, Z = z) (by Equation (A.1))

= Pr(f(X) = +1 | Ỹ = +1, Z = z′) · (1− e) + Pr(f(X) = +1 | Ỹ = −1, Z = z′) · e

(by Equation (A.3))

⇔ Pr(f(X) = +1 | Ỹ = +1, Z = z′) · e

= Pr(f(X) = +1 | Ỹ = −1, Z = z′) · e (A.4)

⇔ Pr(f(X) = +1 | Ỹ = +1, Z = z′) = Pr(f(X) = +1 | Ỹ = −1, Z = z′) (A.5)
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Similarly, we have

Pr(f(X) = +1 | Y = −1, Z = z′)

= Pr(f(X) = +1 | Ỹ = +1, Z = z′) · e

+ Pr(f(X) = +1 | Ỹ = −1, Z = z′) · (1− e)

= Pr(f(X) = +1 | Ỹ = −1, Z = z′) (by Equation (A.5)) (A.6)

Equation (A.5) and (A.6) jointly imply

Pr(f(X) = +1 | Y = −1, Z = z)

= Pr(f(X) = +1 | Y = −1, Z = z′) (by Equation (A.2))

= Pr(f(X) = +1 | Ỹ = −1, Z = z′) (by Equation A.6)

= Pr(f(X) = +1 | Ỹ = +1, Z = z′) (by Equation A.5)

= Pr(f(X) = +1 | Y = +1, Z = z), (by Equation (A.1))

thus completing the proof.
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A.1.2 Proof of Lemma 2.2

Proof. Expanding Pr(f(X) = +1 | Y = +1, Z = z) using law of total probability, we

have

TPRz = Pr(f(X) = +1 | Y = +1, Z = z)

= Pr(f(X) = +1, Ỹ = +1 | Y = +1, Z = z)

+ Pr(f(X) = +1, Ỹ = −1 | Y = +1, Z = z)

= Pr(Ỹ = +1|Y = +1, Z = z) · Pr(f(X) = +1 | Ỹ = +1, Y = +1, Z = z)

+ Pr(Ỹ = −1|Y = +1, Z = z) · Pr(f(X) = +1 | Ỹ = −1, Y = +1, Z = z)

= Pr(Ỹ = +1|Y = +1, Z = z) · Pr(f(X) = +1 | Ỹ = +1, Z = z)

+ Pr(Ỹ = −1|Y = +1, Z = z) · Pr(f(X) = +1 | Ỹ = −1, Z = z)

= (1− ϵ+z ) · T̃PRz + ϵ+z · F̃PRz (A.7)

Note in the above we drop the dependence on Y when conditioning on Ỹ . This is

because f is trained purely on the noisy labels, and Ỹ encodes all the information f has

about Y . A similar derivation holds for FPRz.
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A.1.3 Proof of Theorem 2.4

Proof. Noticing that T̃PRz = T̃PRz′ and F̃PRz = F̃PRz′ (equalizing fairness metrics

on the noisy data) and applying Lemma 2.2, we obtain

|TPRz −TPRz′ | = |((1− ϵ+z ) · T̃PRz + ϵ+z · F̃PRz)− ((1− ϵ+z′) · T̃PRz′ + ϵ+z′ · F̃PRz′)|

= |ϵ+z · (F̃PRz − T̃PRz)− ϵ+z′ · (F̃PRz − T̃PRz)|

= |(ϵ+z − ϵ+z′) · (F̃PRz − T̃PRz)|

= |T̃PRz − F̃PRz| · |ϵ+z − ϵ+z′ |

The argument for FPR is symmetrical:

|FPRz −FPRz′ | = |(ϵ−z · T̃PRz + (1− ϵ−z ) · F̃PRz)− (ϵ−z′ · T̃PRz′ + (1− ϵ+z′) · F̃PRz′)|

= |ϵ−z · (T̃PRz − F̃PRz)− ϵ−z′ · (T̃PRz − F̃PRz)|

= |(ϵ−z − ϵ−z′) · (T̃PRz − F̃PRz)|

= |T̃PRz − F̃PRz| · |ϵ−z − ϵ−z′ |

Therefore

|TPRz −TPRz′ | > 0, |FPRz −FPRz′ | > 0,

when T̃PRz ̸= F̃PRz, ϵ+z ̸= ϵ+z′ , ϵ
−
z ̸= ϵ−z′ .

A.1.4 Proof of Theorem 2.5

Proof. Observe that

ℓgp(f(xi), ỹ) =
1

∆zi

ℓpeer(f(xi), ỹ)
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Taking expectations over noisy data, we have

ED̃[ℓgp(f(X), Ỹ )]

=
1

|I|
·
∑
z∈Z
|Iz| · ED̃z

[ℓgp(f(Xz), Ỹz)]

=
1

|I|
·
∑
z∈Z

|Iz|
∆z
· ED̃z

[ℓpeer(f(Xz), Ỹz)]

=
1

|I|
·
∑
z∈Z

|Iz|
∆z
·∆zEDz [ℓpeer(f(Xz), Yz)] (by Equation (2.13))

= ED[ℓpeer(f(X), Y )] (A.8)

Notice that α = 1 when Pr(Y = +1) = Pr(Y = −1) = 1
2 , the definition of peer loss

function gives

EX,Y [ℓpeer(f(X), Y )] = EX,Y [ℓ(f(X), Y )]− EXEY [ℓ(f(X), Y )] (A.9)

Using the assumption that Pr(Y = +1) = Pr(Y = −1) = 1
2 and the fact that ℓ is 0-1

loss function,

EXEY [ℓ(f(X), Y )] = Pr(Y = +1) · EX [ℓ(f(X),+1)] + Pr(Y = −1) · EX [ℓ(f(X),−1)]

=
1

2
· ℓ(f(X),+1) +

1

2
· ℓ(f(X),+1)

=
1

2
· 1(f(X) ̸= +1) +

1

2
· 1(f(X) ̸= −1)

=
1

2
Pr(f(X) = −1) +

1

2
· Pr(f(X) = +1)

=
1

2
(A.10)
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Combining Equation (A.8), (A.9) and (A.10), we complete the proof

ED̃[ℓgp(f(X), Ỹ )] = ED[ℓ(f(X), Y ]− 1

2
(A.11)

A.1.5 Proof of Lemma 2.6

Proof. Following Lemma 2.2 we have,

TPRz −FPRz = (1− ϵ+z − ϵ−z )(T̃PR− F̃PR) = ∆z · (T̃PR− F̃PR)

Notice that

Pr(f(X) = +1 | Z = z) = Pr(Y = +1 | Z = z) · Pr(f(X) = +1 | Y = +1, Z = z)

+ Pr(Y = −1|Z = z) · Pr(f(X) = +1 | Y = −1, Z = z)

= Pr(Y = +1|Z = z) · TPRz + Pr(Y = −1|Z = z) · FPRz

Solving the two equations above we complete the proof.

A.1.6 Proof of Theorem 2.7

Proof. Define the following risk measures

R̃(f) :=
1

N

N∑
i=1

ℓ̃(f(xi), ỹi)

R̂(f) :=
1

N

N∑
i=1

ℓ̂(f(xi), ỹi)
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First, because of Equation (2.21), we have

R̃(f) =
1

N

N∑
i=1

ℓ̃(f(xi), ỹi)

=
1

N

N∑
i=1

(1− ϵsgn(−ỹi)
zi )ℓ(f(xi), ỹi)− ϵsgn(ỹi)zi ℓ(f(xi),−ỹi)

1− ϵ+zi − ϵ−zi

=
1

N

N∑
i=1

(1− ϵ̂sgn(−ỹi)
zi )ℓ(f(xi), ỹi)− ϵ̂sgn(ỹi)zi ℓ(f(xi),−ỹi)

1− ϵ̂+zi − ϵ̂−zi

+
1

N

N∑
i=1

(
1−ϵ

sgn(−ỹi)
zi

1−ϵ+z −ϵ−z
− 1−ϵ̂

sgn(−ỹi)
zi

1−ϵ̂+z −ϵ̂−z

)
ℓ(f(xi), ỹi)

+
1

N

N∑
i=1

(
ϵsgn(ỹi)

1−ϵ+z −ϵ−z
− ϵ̂sgn(ỹi)

1−ϵ̂+z −ϵ̂−z

)
ℓ(f(xi),−ỹi)

= R̂(f) (by definition of R̂(f))

+
1

N

N∑
i=1

(
1−ϵ

sgn(−ỹi)
zi

1−ϵ+z −ϵ−z
− 1−ϵ̂

sgn(−ỹi)
zi

1−ϵ̂+z −ϵ̂−z

)
ℓ(f(xi), ỹi)

+
1

N

N∑
i=1

(
ϵsgn(ỹi)

1−ϵ+z −ϵ−z
− ϵ̂sgn(ỹi)

1−ϵ̂+z −ϵ̂−z

)
ℓ(f(xi),−ỹi).

Using the error bound in Equation (2.21), we have∣∣∣∣∣ 1

N

N∑
i=1

(
1−ϵ

sgn(−ỹi)
zi

1−ϵ+z −ϵ−z
− 1−ϵ̂

sgn(−ỹi)
zi

1−ϵ̂+z −ϵ̂−z

)
ℓ(f(xi), ỹi) +

(
ϵsgn(ỹi)

1−ϵ+z −ϵ−z
− ϵ̂sgn(ỹi)

1−ϵ̂+z −ϵ̂−z

)
ℓ(f(xi),−ỹi)

∣∣∣∣∣
≤ 1

N

N∑
i=1

∣∣∣∣(1−ϵ
sgn(−ỹi)
zi

1−ϵ+z −ϵ−z
− 1−ϵ̂

sgn(−ỹi)
zi

1−ϵ̂+z −ϵ̂−z

)∣∣∣∣ ℓ(f(xi), ỹi)

+
1

N

N∑
i=1

∣∣∣( ϵsgn(ỹi)

1−ϵ+z −ϵ−z
− ϵ̂sgn(ỹi)

1−ϵ̂+z −ϵ̂−z

)∣∣∣ ℓ(f(xi),−ỹi)

≤ 1

N

N∑
i=1

τ ℓ̄+
1

N

N∑
i=1

τ ℓ̄

= 2τ ℓ̄
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Then we conclude that ∀f

|R̃(f)− R̂(f)| ≤ 2τ ℓ̄ (A.12)

This enables us to obtain the following bound

R̃(f̂∗)− R̃(f̃∗) ≤ R̂(f̂∗) + 2τ ℓ̄− R̃(f̃∗) (by Equation (A.12))

≤ R̂(f̃∗)− R̃(f̃∗) + 2τ ℓ̄

≤ 2τ ℓ̄+ 2τ ℓ̄ (by Equation (A.12))

= 4τ ℓ̄.

where in above the 2nd inequality is due to the optimality f̂∗ wrt R̂(f).

A.1.7 Proof for Lemma 2.8

Proof.

P(h(X) = +1|Ỹ = +1, Z = a) =
P(h(X) = +1, Ỹ = +1|Z = a)

P(Ỹ = +1|Z = a)
(A.13)

Again we do the trick of sampling P(Ỹ = +1|Z = a) to be 0.5, which allows us to focus
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on the numerator.

P(h(X) = +1, Ỹ = +1|Z = a)

= P(h(X) = +1, Ỹ = +1, Y = +1|Z = a)

+ P(h(X) = +1, Ỹ = +1, Y = −1|Z = a)

= P(h(X) = +1, Ỹ = +1|Y = +1, Z = a) · P(Y = +1|Z = a)

+ P(h(X) = +1, Ỹ = +1|Y = −1, Z = a) · P(Y = −1|Z = a)

= P(h(X) = +1|Y = +1, Z = a) · (1− ea) · P(Y = +1|Z = a)

+ P(h(X) = +1|Y = −1, Z = a) · ea · P(Y = −1|Z = a)

(Independence of X and Ỹ given Y )

That is

0.5 · T̃PRa(h) =

TPRa(h) · (1− ea) · P(Y = +1|Z = a) + FPRa(h) · ea · P(Y = −1|Z = a) (A.14)

Similarly for FPR we have

P(h(X) = +1|Ỹ = −1, Z = a) =
P(h(X) = +1, Ỹ = −1|Z = a)

P(Ỹ = −1|Z = a)
(A.15)

Following similar steps as above, the numerator further derives as

P(h(X) = +1, Ỹ = +1|Z = a)

= P(h(X) = +1|Y = −1, Z = a) · (1− ea) · P(Y = +1|Z = a)

+ P(h(X) = +1|Y = +1, Z = a) · ea · P(Y = −1|Z = a)
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That is

0.5 · F̃PRa(h) =

FPRa(h) · (1− ea) · P(Y = +1|Z = a) + TPRa(h) · ea · P(Y = −1|Z = a) (A.16)

When P(Ỹ = +1|Z = a) = P(Ỹ = +1|Z = b) = 0.5, we will also have

0.5 = P(Ỹ = +1|Z = a) = P(Y = +1|Z = a)(1− ea) + P(Y = −1|Z = a)ea (A.17)

which returns us that P(Y = +1|Z = a) = 0.5−ea
1−2ea

:= p = 0.5. Using this knowledge and

solving the linear equations defined by Eqn. (A.14) and (A.16) we have

TPRa(h) =
Ca,1 · T̃PRa(h)− Ca,2 · F̃PRa(h)

ea − 0.5
(A.18)

FPRa(h) =
Ca,1 · F̃PRa(h)− Ca,2 · T̃PRa(h)

ea − 0.5
(A.19)

A.1.8 Proof of Theorem 2.9

Proof. Combining Equation (2.25) and (2.28) we have

|TPRz(h)− TPRc
z(h)|

=

∣∣∣∣∣0.5 · ez · T̃PRz(h)− 0.5(1− ez) · F̃PRz(h)

ez − 0.5
− (A.20)

0.5 · ẽz · T̃PRz(h)− 0.5(1− ẽz) · F̃PRz(h)

ẽz − 0.5

∣∣∣∣∣
=
|ẽz − ez| · T̃PRz(h)

(2ez − 1)(2ẽz − 1)

=
errz · T̃PRz(h)

(2ez − 1)(2ẽz − 1)
. (A.21)
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Recall errz = |ẽz − ez|. The second equality is algebraic - we simply unify the denom-

inator of both quantities and rearrange terms. Then equalizing TPR that TPRc
a(h) =

TPRc
b(h) returns us

|TPRa(h)− TPRb(h)|

=|TPRa(h)− TPRc
a(h) + TPRc

b(h)− TPRb(h)|

≥ ||TPRa(h)− TPRc
a(h)| − |TPRc

b(h)− TPRb(h)||

=

∣∣∣∣∣ erra · T̃PRa(h)

(2ea − 1)(2ẽa − 1)
− errb · T̃PRb(h)

(2eb − 1)(2ẽb − 1)

∣∣∣∣∣ ,
where the last equality is an application of Eqn. (A.21). Then∣∣∣∣∣ erra · T̃PRa(h)

(2ea − 1)(2ẽa − 1)
− errb · T̃PRb(h)

(2eb − 1)(2ẽb − 1)

∣∣∣∣∣
=erra ·

∣∣∣∣∣ T̃PRa(h)

(2ea − 1)(2ẽa − 1)
− errb

erra

T̃PRb(h)

(2eb − 1)(2ẽb − 1)

∣∣∣∣∣
≥errM ·

∣∣∣∣∣ T̃PRa(h)

(2ea − 1)(2ẽa − 1)
− errb

erra

T̃PRb(h)

(2eb − 1)(2ẽb − 1)

∣∣∣∣∣
Similarly,

|FPRz(h)− FPRc
z(h)|

=

∣∣∣∣∣0.5 · ez · F̃PRz(h)− 0.5(1− ez) · T̃PRz(h)

ez − 0.5

− 0.5 · ẽz · F̃PRz(h)− 0.5(1− ẽz) · T̃PRz(h)

ẽz − 0.5

∣∣∣∣∣
=
|ẽz − ez| · F̃PRz(h)

(2ez − 1)(2ẽz − 1)
.

=
errz · F̃PRz(h)

(2ez − 1)(2ẽz − 1)
.
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Then equalizing FPR that FPRc
a(h) = FPRc

b(h) we have

|FPRa(h)− FPRb(h)|

=|FPRa(h)− FPRc
a(h) + FPRc

b(h)− FPRb(h)|

≥ ||FPRa(h)− FPRc
a(h)| − |FPRc

b(h)− FPRb(h)||

≥

∣∣∣∣∣ erra · F̃PRa(h)

(2ea − 1)(2ẽa − 1)
− errb · F̃PRb(h)

(2eb − 1)(2ẽb − 1)

∣∣∣∣∣
≥errM ·

∣∣∣∣∣ F̃PRa(h)

(2ea − 1)(2ẽa − 1)
− errb

erra

F̃PRb(h)

(2eb − 1)(2ẽb − 1)

∣∣∣∣∣ .

A.1.9 Proof of Theorem 2.10

Proof. Easy to show that when ea = eb, Ca,1 = Cb,1 and Ca,2 = Cb,2. Therefore, from

Eqn. (2.25) we know equalizing

T̃PRa(h) = T̃PRb(h), F̃PRa(h) = F̃PRb(h) (A.22)

will also return us

TPRa(h) = TPRb(h), FPRa(h) = FPRb(h) (A.23)
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A.1.10 Proof of Theorem 2.11

Proof. We start with deriving PAD⋄ :

PAD⋄ = P(Ỹ2 = Ỹ3 = +1 | Ỹ1 = +1) =
P(Ỹ1 = Ỹ2 = Ỹ3 = +1)

P(Ỹ1 = +1)

Due to the sampling step, we have P(Ỹ1 = +1) = 0.5 - this allows us to focus on the

denominator:

P(Ỹ1 = Ỹ2 = Ỹ3 = +1)

(1)
= P(Y = +1)

3∏
i=1

P(Ỹi = +1|Y = +1) + P(Y = −1)
3∏

i=1

P(Ỹi = +1|Y = −1)

(2)
= P(Y = +1) · (1− e+)3 + P(Y = −1) · e3−

where in above, (1) uses the 2-NN clusterability of D, and (2) uses the conditional

independence between the noisy labels. Similarly for NAD⋄ we have:

P(Ỹ2 = Ỹ3 = −1|Ỹ1 = −1) =
P(Ỹ1 = Ỹ2 = Ỹ3 = −1)

P(Ỹ1 = −1)

Again we have that P(Ỹ1 = −1) = 0.5, and the numerator derives as

P(Ỹ1 = Ỹ2 = Ỹ3 = −1)

= P(Y = +1)
3∏

i=1

P(Ỹi = −1|Y = +1) + P(Y = −1)
3∏

i=1

P(Ỹi = −1|Y = −1)

= P(Y = +1) · e3+ + P(Y = −1) · (1− e−)3
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Taking the difference (and normalize by 0.5) we have

0.5 · (PAD⋄ −NAD⋄)

= P(Ỹ2 = Ỹ3 = +1|Ỹ1 = +1)− P(Ỹ2 = Ỹ3 = −1|Ỹ1 = −1)

= P(Y = +1)
(
(1− e+)3 − e3+

)
+ P(Y = −1)

(
e3− − (1− e−)3

)
(A.24)

Notice two facts: first we can derive that

(1− e+)3 − e3+ = (1− 2e+)(e2+ − e+ + 1), e3− − (1− e−)3 = −(1− 2e−)(e2− − e− + 1)

Second, we will use the following fact:

0.5 = P(Ỹ = +1) = P(Y = +1)(1− e+) + P(Y = −1)e− (A.25)

from which we solve that P(Y = +1) = 0.5−e−
1−e+−e−

. Symmetrically, P(Y = −1) =

0.5−e+
1−e+−e−

.

Return the above two facts back into Eq (A.24), we have

P(Y = +1)((1− e+)3 − e3+) + P(Y = −1)(e3− − (1− e−)3)

= 2 · (0.5− e+)(0.5− e−)

1− e+ − e−
(
(e2+ − e+ + 1)− (e2− − e− + 1)

)
= 2 · (0.5− e+) · (0.5− e−) · (e− − e+)

completing the proof when e+, e− < 0.5.
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A.1.11 Proof of Proposition 2.12

Proof. Expanding P(Ŷ = −1|Y = +1) using the law of total probability we have

ê+ = P(Ŷ = −1|Y = +1)

= P(Ŷ = −1, Ỹ = +1|Y = +1) + P(Ŷ = −1, Ỹ = −1|Y = +1)

= P(Ŷ = −1|Ỹ = +1, Y = +1) · P(Ỹ = +1|Y = +1)

+ P(Ŷ = −1|Ỹ = −1, Y = +1) · P(Ỹ = −1|Y = +1)

= ϵ · (1− e+) + 1 · e+ (Independence between Ŷ and Y given Ỹ )

= (1− e+) · ϵ+ e+

Similarly,

ê− = P(Ŷ = +1|Y = −1)

= P(Ŷ = +1, Ỹ = +1|Y = −1) + P(Ŷ = +1, Ỹ = −1|Y = −1)

= P(Ŷ = +1|Ỹ = +1, Y = −1) · P(Ỹ = +1|Y = −1)

+ P(Ŷ = +1|Ỹ = −1, Y = −1) · P(Ỹ = −1|Y = −1)

= (1− ϵ) · e−.

The last equality is again due to the independence between Ŷ and Y given Ỹ , as well

as the fact that we do not flip the Ỹ = −1 labels so P(Ŷ = +1|Ỹ = −1, Y = −1) = 0.

Taking the difference we finish the proof.
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A.2 Proofs for Chapter 3

A.2.1 Proof of Lemma 3.1

Proof. Given by the definition of cosine similarity, we have

|S(b ∗ v, b ∗ t(L))− S(b ∗ v, b ∗ t(L′))|

= | b ∗ v · b ∗ t(L)

∥b ∗ v∥∥b ∗ t(L)∥
− b ∗ v · b ∗ t(L′)

∥b ∗ v∥∥b ∗ t(L′)∥
|

=
|b ∗ v · (∥b ∗ t(L′)∥b ∗ t(L) − ∥b ∗ t(L)∥b ∗ t(L′))|

∥b ∗ v∥∥b ∗ t(L)∥∥b ∗ t(L′)∥

(A.26)

From the definition of dot product,

|b ∗ v · (∥b ∗ t(L′)∥b ∗ t(L) − ∥b ∗ t(L)∥b ∗ t(L′))| ≤

∥b ∗ v∥ · ∥(∥b ∗ t(L′)∥b ∗ t(L) − ∥b ∗ t(L)∥b ∗ t(L′))∥ (A.27)

We plug Equation (A.27) into Equation (A.26) and eliminate the variable b ∗ v

|S(b ∗ v, b ∗ t(L))−S(b ∗ v, b ∗ t(L′))| ≤ ∥(∥b ∗ t
(L′)∥b ∗ t(L) − ∥b ∗ t(L)∥b ∗ t(L′))∥
∥b ∗ t(L)∥∥b ∗ t(L′)∥

(A.28)

Let θ denote the angle between b ∗ t(L) and b ∗ t(L′), i.e.,

cos θ =
b ∗ t(L) · b ∗ t(L′)

∥b ∗ t(L)∥∥b ∗ t(L′)∥
, (A.29)

the square of numerator in Equation (A.28) expands as

(∥b ∗ t(L′)∥b ∗ t(L) − ∥b ∗ t(L)∥b ∗ t(L′))2 = 2∥b ∗ t(L)∥2∥b ∗ t(L′)∥2(1− cos θ) (A.30)

Substituting the square root of Equation (A.30) into Equation (A.28), we eliminate the

denominator and obtain

|S(b ∗ v, b ∗ t(L))− S(b ∗ v, b ∗ t(L′))| ≤
√

2(1− cos θ) (A.31)
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Recall that b ∗ t(L′) ∈ Oρ(b ∗ t(L)), we can bound θ by the law of sines

sup
θ
| sin θ| = sup

b∗t(L′)

∥b ∗ t(L′) − b ∗ t(L)∥
∥b ∗ t(L)∥

=
ρ

∥b ∗ t(L)∥
(A.32)

Taking supremums on both sides of Equation (A.31) and combining Equation (A.32),

we complete the proof

sup
b∗t(L

′)∈Oρ(b∗t(L))

0≤ρ<∥b∗t(L)∥

|S(b ∗ v, b ∗ t(L′))− S(b ∗ v, b ∗ t(L))|

≤ sup
θ

√
2(1−

√
1− sin2θ)

=

√
2(1−

√
1− (

ρ

∥b ∗ t(L)∥
)2)

A.2.2 Proof of Theorem 3.2

Proof. Due to Half-Angle Identities, Equation (A.31) derives as

|S(b ∗ v, b ∗ t(L′))− S(b ∗ v, b ∗ t(L))| ≤ 2| sin θ
2
| (A.33)

For sufficiently small θ, i.e., ∥b ∗ t(L′) − b ∗ t(L)∥ ≪ ∥b ∗ t(L)∥, we take the first-order

Taylor approximation

2| sin θ
2
| ≈ |θ| ≈ | sin θ| = ∥b ∗ t

(L′) − b ∗ t(L)∥
∥b ∗ t(L)∥

(A.34)

Combining Equation (A.33) and Equation (A.34) we complete the proof.
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A.2.3 Proof of Proposition 3.3

Proof. Expanding |Acc(L)a − Acc
(L′)
b | by triangle inequality we have

|Acc(L)a − Acc
(L′)
b | = |Acc(L)a − Acc(L) + Acc(L) − Acc(L

′) + Acc(L
′) − Acc

(L′)
b |

≤ |Acc(L)a − Acc(L)|+ |Acc(L) − Acc(L
′)|+ |Acc(L′) − Acc

(L′)
b |

(A.35)

Noticing that Acc(L) = pa · Acc(L)a + pb · Acc
(L)
b and pa + pb = 1, we have

|Acc(L)a − Acc(L)| = pb · |Acc(L)a − Acc
(L)
b |

= pb · Disp(L)(a, b)
(A.36)

Similarly,

|Acc(L′) − Acc
(L′)
b | = pa · |Acc(L

′)
a − Acc

(L′)
b |

= pa · Disp(L)(a, b)
(A.37)

Substituting Equation (3.18), (A.36), and (A.37) into Equation (A.35) we complete the

proof.
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A.3 Proofs for Chapter 4

A.3.1 Proof of Corollary 4.3

Proof. Without loss of generality, we assume group z = 1 has higher utilities than group

z = 0, i.e.,

E[f(x;θ)1[z = 1, y = 1]] ≥ E[f(x;θ)1[z = 0, y = 1]]

E[f(x;θ)1[z = 1, y = 0]] ≥ E[f(x;θ)1[z = 0, y = 0]]

Equal odds indicates equal TPR and equal FPR constraints will be imposed simultane-

ously. Thereby

SEO = STPR + SFPR

= λ
η

n
αzi,yiΘ(xi, xj ;θ0) + λ

η

n
α̃zi,yiΘ(xi, xj ;θ0)

= λ
η

n
αziΘ(xi, xj ;θ0) (by αz = αz,y + α̃z,y)

= SDP

The third equality is due to αz = 1[z = 1]−1[z = 0] = (1[z = 1, y = +1] +1[z = 1, y =

−1])− (1[z = 0, y = +1] + 1[z = 0, y = −1]) = αz,y + α̃z,y.
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A.3.2 Proof of Corollary 4.4:

Proof. When there are only two groups, the covariance measure in Equation 4.29 reduces

to

ϕ̂(f) = | 1
n

n∑
i=1

(zi −
1

2
)f(xi;θ)|

Again, we assume group z = 1 is more favorable than group z = 0 such that

E[f(x;θ)1[z = 1]] ≥ E[f(x;θ)1[z = 0]].

Then we can rewrite the above equation as

ϕ̂(f) =
1

n

n∑
i=1

1

2
f(xi;θ)1[zi = 1]− 1

n

n∑
i=1

1

2
f(xi;θ)1[zi = 0]) ≥ 0

The above ϕ̂(f) is saying the covariance between z and f(x) is non-negative per se, so

we do not need to take the absolute value of it. In other words, ∀i, βi = 1. The final

influence score of covariance thus becomes

Scov(i, j) = λ
η

2n
Θ(xi, xj ;θ0)(1[zi = 1]− 1[zi = 0])

Recall that αi = 1[zi = 1] − 1[zi = 0], we conclude Scov(i, j) = 1
2SDP(i, j). We note

that the connection builds upon the common assumption that group z = 1 has a

higher utility. We can reach the same conclusion in the symmetric situation where

E[f(x;θ)1[z = 1]] < E[f(x;θ)1[z = 0]].

We remark, the coefficient 1
2 arises from encoding the categorical sensitive

variable z into {0, 1} and does not have physical meanings. If z is encoded by {−1,+1}
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instead, the coefficient will be 1 such that SDP = Scov. This property suggests that the

covariance is not a perfect measure of independence, and using mutual information is a

more plausible approach.

A.3.3 Proof of Theorem 4.5

Proof. For any t and any δ > 0,

Pr(S(f, j)− S(f, j) > δ) = Pr(exp{nt (S(f, j)− S(f, j))} > exp{ntδ})

≤ E[exp{nt(S(f, j)− S(f, j))}]
exp{ntδ}

(by Markov’s inequality)

≤ exp

{
1

8
nt2C2 − ntδ

}
(by Hoeffding’s inequality)

In above C is some constant. Since 1
8nC

2t2 − nδt is a quadratic function regarding t,

we may minimize it by taking

∂

∂t

(
1

8
nC2t2 − nδt

)
= 0 =⇒ 1

4
nC2t− nδt = 0

Solving the above equation, we know the quadratic function takes the minimum value

at t = δ
4C2 . Therefore,

Pr (S(f, j)− S(f, j) > δ) ≤ exp

{
−2nδ2

C2

}
Let ϵ = exp

{
−2nδ2

C2

}
, we complete the proof by substituting δ with ϵ

Pr

S(f, j)− S(f, j) > C

√
log 1

ϵ

2n

 ≤ ϵ
=⇒ Pr

S(f, j)− S(f, j) ≤ C

√
log 1

ϵ

2n

 > 1− ϵ
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A.3.4 Proof of Proposition 4.6

Proof. We visualize the considered example in Figure 4.1. The area in blue represents

the false positive examples from group z = 1, while the area in green represents the false

negative examples from group z = 0. The sum of blue area and green area is exactly

representing the acceptance rate difference between group z = 1 and z = 0.

Recall that the model is f(x) = w · x + b, the influence function subject to

relaxed fairness constraint can be computed by Equation 4.19, i.e., S(i, j) = k(zi − z̄) ·

(xi · xj + 1) where k is a constant coefficient corresponding to learning rate η, data size

n and regularizer λ. For each individual example xi, the overall influence score S(i)

consists of two components. The first component

∫
xj∈(−∞,+∞)

k(zj−z̄)·(zi−z̄)·xi·xj dPr(xj) = k(zi−z̄)xi·
∫
xj∈(−∞,+∞)

(zj−z̄)·xj dPr(xj)

is proportional to (zi− z̄)xi since the integral can be treated as a constant. The second

component

∫
xj∈(−∞,+∞)

k(zj − z̄) · (zi − z̄) dPr(xj)

= k(zi − z̄) ·
∫
xj∈(−∞,+∞)

(zj − z̄) dPr(xj) = k(zi − z̄)E[zj − z̄]

becomes 0 due to E[zj ] = z̄ . |S(i)| is then proportional to |xi|, thus the data examples

around x = 0 will have smaller absolute values of influence scores.
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Then we consider the classifier trained by down-weighting the data examples

around x = 0. We show the case when |µ1,−1| < |µ0,+1| in the right figure in Figure

4.1. In this case, the down-weighted negative examples from group z = 1 dominates

the down-weighted positive examples from group z = 0. In consequence, the decision

threshold will be perturbed towards right. Coloring the mis-classified examples again,

we find out the sum of blue and green area has decreased. The case for |µ1,−1| < |µ0,+1|

will be symmetric. In conclusion, we demonstrate that removing training examples with

smaller absolute influence scores is capable of mitigating the fairness violation.
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