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Abstract

The Generalized External Order, and Applications to Zonotopal Algebra
by
Bryan R. Gillespie
Doctor of Philosophy in Mathematics
University of California, Berkeley
Professor Olga Holtz, Chair

Extrapolating from the work of Las Vergnas on the external active order for matroid
bases, and inspired by the structure of Lenz’s forward exchange matroids in the theory of
zonotopal algebra, we develop the combinatorial theory of the generalized external order.
This partial ordering on the independent sets of an ordered matroid is a supersolvable join-
distributive lattice which is a refinement of the geometric lattice of flats, and is fundamentally
derived from the classical notion of matroid activity. We uniquely classify the lattices which
occur as the external order of an ordered matroid, and we explore the intricate structure of the
lattice’s downward covering relations, as well as its behavior under deletion and contraction
of the underlying matroid.

We then apply this theory to improve our understanding of certain constructions in
zonotopal algebra. We first explain the fundamental link between zonotopal algebra and the
external order by characterizing Lenz’s forward exchange matroids in terms of the external
order. Next we describe the behavior of Lenz’s zonotopal D-basis polynomials under taking
directional derivatives, and we use this understanding to provide a new algebraic construction
for these polynomials. The construction in particular provides the first known algorithm for
computing these polynomials which is computationally tractible for inputs of moderate size.
Finally, we provide an explicit construction for the zonotopal P-basis polynomials for the
internal and semi-internal settings.
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Chapter 1

Introduction

The theory of zonotopal algebra studies the characteristics and applications of certain finite-
dimensional polynomial vector spaces, and related annihilating ideals, which are derived from
the structure of particular combinatorial and geometric objects formed from a finite ordered
list of vectors. The theory lies at an interface between several starkly contrasting mathemat-
ical disciplines, especially approximation theory, commutative algebra, and matroid theory,
and wide-ranging connections have been found with topics in enumerative combinatorics,
representation theory, and discrete geometry.

Zonotopal algebra has at its foundation a collection of ideas in numerical analysis and
approximation theory that were developed in the 1980s and early 90s, in works such as [1, 9,
10, 11, 17, 19, 16]. In these works, the central zonotopal spaces were discovered in relation
to the approximation of multivariate functions by so-called (exponential) box splines, and
as the solutions of certain classes of multivariate differential and difference equations.

The central zonotopal spaces lie in the real polynomial ring IT = R[zy, .. ., x|, and consist
of two finite-dimensional polynomial vector spaces D(X) and P(X), and two related ideals
Z(X) and J(X) which are constructed from the columns of a d x n matrix X. The D-space,
also known as the Dahmen-Michelli space, is the space of polynomials spanned by the local
polynomial pieces of the box spline associated with the matrix X. It can be realized as the
differential kernel or Macaulay inverse system of the J-ideal, an ideal generated by products
of linear forms corresponding with the cocircuits of the linear independence matroid of the
columns of X.

The P-space is defined using the notion of matroid activity of bases of X, and acts as the
dual vector space of the D-space under the identification p — (p, -), where (-, -) : TIxII — R
denotes the differential bilinear form given by (p, q) = (p((’?)q)‘xzo, and where p(0) is the
differential operator obtained from p by replacing each variable x; with the operator 0/dx;.
This space is realized as the differential kernel of the Z-ideal, a power ideal generated by
certain powers of linear forms corresponding to orthogonal vectors of the hyperplanes spanned
by column vectors of X.

The D- and P-spaces in particular each contain a unique interpolating polynomial for
any function defined on the vertex set of certain hyperplane arrangements associated with



CHAPTER 1. INTRODUCTION 2

the matrix X, a property known as correctness. In addition, the Dahmen-Michelli space
has a simple construction in terms of the least map, an operator introduced in [11] which
plays an important role in interpolation theory. Furthermore, relations dual to these can
be developed with respect to generic vertex sets for the zonotope of X, which is formed by
taking the Minkowski sum of the segments [0, z] = {tz : t € [0,1]} for the column vectors
x of X. Tt is from this geometric connection (and related combinatorial structure) that the
name zonotopal algebra is derived.

Figure 1.1: A hyperplane arrangement and corresponding dual zonotope of the matrix X.

Particularly in the last decade, the area of zonotopal algebra has witnessed a resurgence
of interest, with applications and generalizations of the theory emerging in a variety of new
directions. In [38], Sturmfels and Xu study sagbi bases of Cox-Nagata rings, and discuss
an algebraic generalization of the zonotopal spaces called zonotopal Cox rings which can
be described as subalgebras of particular Cox-Nagata rings. In [33], Luca Moci generalizes
some of the results of zonotopal algebra regarding hyperplane arrangements to a discrete
setting related to the geometry of toric arrangements. In [12, 13, 14], De Concini, Processi
and Vergne explore connections between zonotopal spaces, vector partition functions, and
the index theory of transversally elliptic operators. Very recently, Gleb Nenashiv in [34]
classifies up to isomorphism the quotient algebras associated with certain zonotopal ideals.

In their seminal work [23], Holtz and Ron produced a surprising generalization of the
theory by defining new spaces, the external and the internal zonotopal spaces, which exhibit
characteristics analogous to those of the central spaces, with corresponding interpretations
in terms of polynomial interpolation and differential equations. The existence of such a
generalization was not expected, but it begged the question of whether the two new cases
were isolated instances, or whether a more general theory was yet to be formulated.

In the following years, additional generalizations of the zonotopal spaces were indeed
discovered. In [4], Ardila and Postnikov explored combinatorial and geometric structure in
power ideals which yielded insight into the nature of the Z-ideals and P-spaces. In [24],
Holtz, Ron and Xu introduced the semi-external and semi-internal zonotopal spaces, which
give a discrete collection of spaces interpolating between the central and the external and
internal zonotopal spaces respectively. In [29], Lenz gave a construction which integrated
ideas from both of the preceding works to introduce a hierarchy of spaces which extend
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beyond the external spaces by raising the powers of generators in the Z-ideal, but which also
encompass the discrete interpolation exhibited by the semi-external spaces of [24]. In [31],
Li and Ron presented a further generalization which is parametrized by certain extensions
of the collection of matroid bases associated with the matrix X.

The most sweeping generalization of zonotopal spaces to date was introduced by Lenz in
[30]. In this work, Lenz isolated a combinatorial structure, the forward exchange matroid,
which captures certain matroid properties which are important to the behavior of zonotopal
spaces. A collection of generalized zonotopal spaces can be defined for each forward exchange
matroid, and in his exposition, Lenz shows that these generalized spaces include as particular
instances all of the zonotopal spaces mentioned above, with the exception of the internal and
semi-internal P-spaces and Z-ideals.

This last point in particular has been something of a mystery. Lenz’s generalized zono-
topal spaces seem to capture the correct structure of the zonotopal D-spaces and J-ideals,
as well as key duality properties between the D-spaces and the P-spaces. However, the
definition of the generalized P-space fails to capture the behavior of zonotopal spaces in
one key respect: the generalized P-space is not always equal to the differential kernel of the
generalized Z-ideal. Even worse, for some forward exchange matroids the P-space can fail
to be closed under taking derivatives, which implies that it is not equal to the differential
kernel of any homogeneous ideal.

The source of this difficulty can be observed even in the construction of the classical
internal P-space by Holtz and Ron in [23]. In their construction, they begin as a first step
with the P-space corresponding with Lenz’s forward exchange P-space. However, in order
to produce a space which satisfies the requisite differential properties, their construction
requires a separate abstract, and rather nontrivial, manipulation, which is described in the
proof of their Theorem 5.7, and is discussed just prior to their Corollary 5.11. The same
complication arises in the semi-internal setting, and more broadly, a fundamental difficulty
seems to exist in defining zonotopal spaces where the P- and D-spaces are smaller than the
central analogues.

To better understand this difficulty as well as other subtle aspects of the zonotopal spaces,
we introduce and develop in this thesis the combinatorial theory of the generalized external
order of an ordered matroid. If M = (FE,I) is a matroid with independent sets I and ordered
ground set E, then the external order <! is a partial ordering on I which is a refinement
of the geometric lattice of flats of M, and which has the structure of a supersolvable join-
distributive lattice. It is formed by ordering independent sets I by inclusion of their sets
EP(I) of externally passive elements, and these externally passive sets in particular form the
feasible sets of an antimatroid, a particular class of greedoid. Dually, the complements of
these sets give the convex sets of a convexr geometry, a discrete abstraction of the notion of
convexity.

This generalized external order is an extension of a poset introduced by Michel Las
Vergnas in [27]. In this work, Las Vergnas defines the external order for the bases of M,
producing a poset on the bases which is nearly a lattice, and which is extended to a lattice
by introducing an extra minimal element. The generalized external order can be realized
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Independent sets I: EPx(I):

0 1234
3 1 2 124 234 134
| / | >< \ pd \ ><

ANV \/\/
\ / \@/

1101
X—(o11o)

Figure 1.2: The generalized order <}, on independent sets I of the column vectors of a
matrix X, and the corresponding externally passive sets EPx ([).

by appropriately assembling copies of Las Vergnas’s order for each flat in the lattice of flats
of M. The resulting natural object exhibits stronger lattice theoretic properties, and in
particular provides a new refinement of the classical connection between matroid theory and
lattice theory via the geometric lattice of flats.

After defining the generalized external order and characterizing its fundamental proper-
ties, we obtain the following classification for the orderings which come about as the external
order of some ordered matroid.

Theorem. A finite lattice L is isomorphic to the external order <! of an ordered matroid
if and only if it is join-distributive, matroidal, and S, EL-shellable.

Join-distributivity of a lattice is a class intermediate between semimodular and distribu-
tive lattices, and in particular such lattices are “locally Boolean” in a certain sense. S,, EL
(or “edge lexicographic”) shellability of a lattice is equivalent to the well-known notion of
supersolvability, introduced by Stanley in [37], and in particular implies shellability of the
lattice’s order complex. Finally, a lattice is called matroidal if the covering rank function r,
counting the number of lattice elements covering a given element is decreasing and satisfies
the semimodular inequality

re(@ Ay) +re(rVy) <re(w) +re(y)

for all pairs of elements x and .

After defining and classifying the external order, we explore some of its more interesting
combinatorial properties. The operations of deletion and contraction on an ordered matroid
induce corresponding operations on the external order, and we describe the nontrivial con-
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nections that exist between these operations and deletion and contraction operations which
have been defined in the theory of antimatroids.

The upward covering relations of an independent set I in the external order are simple to
describe, and correspond directly with the elements of /. The downward covering relations,
on the other hand, do not exhibit such regular behavior. To better understand these down-
ward covering relations, we introduce a new operator on subsets of an ordered matroid, the
spread operator. If M is a matroid with ordered ground set E, then for A C F and x € F,
define

Spry(z) =span({a € A : a >z} Ux) \span({a € A : a > x}).

Thus the spread operator gives the collection of elements which are additionally spanned by
adding x to the set of elements from A which lie after it in the ordering of E. The definition
is based on a construction used by Lenz in [30], and captures fundamental information
about matroid activity. We use it to define a certain canonical passive exchange operator
er : EP(I) — I associated with each independent set, and we characterize the order structure
of the independent sets obtained from canonical passive exchanges. In particular, it is shown
that the independent sets covered by I in the external order are among those obtained by
canonical passive exchanges, thus offering a satisfactory description of the downward covering
relations.

With regards to the theory of zonotopal algebra, the generalized external order provides
a richly structured way to understand Lenz’s construction of forward exchange matroids.
Specifically, Lenz defined a forward exchange matroid as a matroid M with bases B, along
with a collection B’ C B satisfying a defining condition called the forward exchange property.
We express the forward exchange property in elementary terms using the external order,
characterizing it as follows:

Theorem. A collection of bases B' C B satisfies the forward exchange property if and only if
it is downward closed in the external order. That is, if B € B' and B' <!, B, then B’ € B'.

ext

More broadly, the combinatorial structure of the external order provides a concrete com-
binatorial framing for many of the constructions in zonotopal algebra. We present several
applications of this outlook which revolve around forming a better understanding of certain
canonical bases of the zonotopal P- and D-spaces in several settings. In the central setting,
the spaces P(X) and D(X) are spanned respectively by polynomials which we denote P%
and D3, which are indexed by the bases of X. These polynomials in particular are closely
related to the bases of the zonotopal P- and D-spaces in other zonotopal settings, so a com-
binatorial understanding of these polynomials provides insight into much of the zonotopal
theory.

One difficulty in the theory of zonotopal algebra has been to understand in a combinato-
rial way the behavior of the D-spaces and their corresponding basis polynomials. We show
that the directional derivatives of the D-basis polynomials D are explicitly described by
the local structure of the external order around the basis B. Specifically,



CHAPTER 1. INTRODUCTION 6

Proposition. If B C X is a basis, and b € B, then

6,(0)Dp = Z (b5 Dpr,

B’'=B\buz

where the sum is over bases B’ covered by B in the external order. Here, ¢, € II denotes
the linear form dual to b, and [b]%, denotes the x-coordinate of b represented in terms of the
basis B'.

We additionally describe a direct algebraic construction for the polynomials Dy, which
works by induction on the size of the matrix X using simple linear projection operations
in certain polynomial subspaces. In particular, our understanding of the differential prop-
erties of the D-polynomials plays a key role in deducing the final simplified form of the
projection operation. The construction also produces a practical algorithm for computing
the D-polynomials which is the first such which is computationally tractable for matrices of
moderate size. (For more details, refer to Section 4.4.)

Returning to the difficulties surrounding the internal and semi-internal P-spaces, we
take a first step in understanding the unusual behavior in these settings by presenting a
new description for the semi-internal P-basis polynomials in terms of a certain explicit
projection operator. In light of the fact that the semi-internal spaces are defined using the
notion of internal matroid activity, it is not surprising that the arguments involved in this
characterization relate to the external order on the dual matroid of the matrix X. We
conjecture that similar techniques could be used to provide an improved definition for the
generalized zonotopal P-spaces of broader classes of forward exchange matroids, which will
satisfy the differential properties exhibited by the other existing spaces.

The upcoming chapters are organized as follows. In Chapter 2, we begin by reviewing
necessary background in the areas of matroid theory and zonotopal algebra.

In Chapter 3, we define and characterize the generalized external order, in particular
presenting its lattice-theoretic classification in Theorem 3. In Section 3.4 we describe the
behavior of the external order under the operations of matroid deletion and contraction,
and in Section 3.5 we develop the theory of the spread operator and use it to describe the
canonical passive exchanges and downward covering relations in the ordering.

In Chapter 4, we present our applications of the generalized external order to zonotopal
algebra. Section 4.1 characterizes the precise relation between the external order and Lenz’s
forward exchange matroids. In Section 4.2 we describe the canonical P- and D-space basis
polynomials, we give a uniform description for the bases of the central, external, internal,
semi-external, and semi-internal settings, and we explore further properties exhibited by the
P- and D-polynomials. In Section 4.3 we characterize the behavior of the D-polynomials
under directional derivatives, and in Section 4.4 we present a recursive algebraic construction
of the D-polynomials, which is summarized in its simplest form in Theorem 6. In Section
4.5 we give a construction of the canonical semi-internal P-space basis polynomials in terms
of explicit projection operators.
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Finally, in Appendix A, we give an overview, usage examples, and implementation details
of a new Python software library for interacting with the external order and zonotopal spaces
using the SageMath open-source mathematics software system. Section A.1 deals with the
OrderedMatroid class, which in particular provides a method to construct the external order
of a desired ordered matroid. Section A.2 deals with a utility class PolynomialFreeModule
which simplifies working with the vector space structure of polynomial rings in Sage. Last,
Section A.3 discusses classes which compute ideal generators of the Z- and [J- ideals and
canonical bases of the P- and D-spaces for the central, external, and internal zonotopal
settings.



Chapter 2

Background

In the following, we review some of the concepts and theory that will be needed as back-
ground for the developments in the following chapters, and give additional references for
further reading. Section 2.1 reviews basic notions related to matroids, antimatroids, and
join-distributive lattices which are necessary for the development of the generalized external
order in Chapter 3. Section 2.2 gives an introduction to the theory of zonotopal algebra,
and summarizes the constructions of several variants of the zonotopal spaces which will be
the subject of study in Chapter 4.

2.1 Matroids and Antimatroids

Throughout Chapter 3 will be studying the relations between several objects in the areas of
lattice theory and discrete geometry, for which significant theory has been developed. We
provide a brief review of relevant background here, and refer the reader to standard sources
for additional details. The material in this section is adapted from the author’s exposition
in [21], Section 2.

For general matroid notions, Oxley [35] is comprehensive, and for concepts related to
matroid activity, Bjorner [7] gives a concise overview. For the topics of greedoids and an-
timatroids, our primary references are Bjorner and Ziegler’s survey [8], as well as the book
[26] by Korte, Lovasz and Schrader. General lattice theory is developed in detail in Stanley
[36], Chapter 3, and the literature on join-distributive lattices is discussed in some detail in
the introduction of Czédli [15].

Matroids

To begin, we define matroids, a combinatorial object which generalizes both the concept of
linear independence of vectors in a vector space, and the concept of cycle-freeness of edge
sets in a graph. The basic object of interest is the set system.
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Definition 2.1.1. If F is a finite set, a set system is a pair (E, F) where F is a nonempty
collection of subsets of E. We will sometimes refer to F as a set system when we don’t need
to emphasize the ground set.

A common notation in the study of finite set systems is to use a string of lower-case
characters or numbers to refer to a small finite set. For instance, if a,b € E are elements of
a ground set, then the string ab denotes the set {a,b}. If A C F, then A U ab denotes the
set AU {a,b}. In practice this notation enhances rather than confounds communication, so
we will adopt it in the present work when the meaning is clear from the context.

We can now define matroids in terms of their collections of “independent sets” as follows.

Definition 2.1.2. A set system M = (E,I) is called a matroid if

e If I elland J C I, then J € I; and

e For I, J €l if |I| > |J|, then there is an element = € I such that JUx € L.
A set in I is called an independent set of the matroid M.

The first property above is called the hereditary property for a set system, and the
second is called the matroid independence exchange axiom.

The independence axioms for matroids are one of many different equivalent definitions
of matroids frequently called “cryptomorphisms”. Among the classical cryptomorphisms are
axiom systems for bases, circuits, rank functions, closure operators, and the greedy algorithm.
A fluent understanding of the definitions of these concepts and the relations between them
will be helpful in the remainder of this work, and is explored in detail in [35] Chapter 1.

A pair of constructions which will be used frequently are the basic circuit and basic bond.

Definition 2.1.3. Let M = (E,I) be a matroid, and let B be a basis of M. For x ¢ B,
define cip/ (B, x) the basic circuit of z in B to be the unique circuit contained in B U z.

Dually, for b € B define boy (B, b) the basic cocircuit or basic bond of b in B to be
the unique cocircuit contained in (E'\ B) U b.

A classical characterization of the basic circuit and basic bond is given by the following
lemma.

Lemma 2.1.4. Let M be a matroid with a basis B, and let b € B and v ¢ B. Then the
following are equivalent:

e beci(B, 1)
e = € bo(B,b)
e B\bUx is a basis of M

For notational convenience, we extend the definition of basic circuits and basic cocircuits
in the following way.
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Definition 2.1.5. Let M be a matroid, let I € I(M), and denote F' = span(I). For z € F\I,
define
ci(Z,z) = cip, (1, x),

and for y € I, define
bo(I,y) = boum|.(1,y).

For elements outside of F'| neither of these expressions are defined.

A concept of fundamental importance in the remainder of this work is the notion of
matroid activity.

Definition 2.1.6. An ordered matroid is a matroid M = (E,I) along with a total order <
on the ground set £. We will frequently refer to M as an ordered matroid without specifying
the order when no ambiguity arises.

Definition 2.1.7. Let M = (E,I) be an ordered matroid, and let B be a basis of M. For
x € E\ B, we call x externally active with respect to B if x is the minimum element of the
basic circuit ci(B, ), and externally passive otherwise. For b € B, we call b internally
active with respect to B if b is the minimum element of the basic cocircuit bo(B,b), and
internally passive otherwise.

We denote the sets of externally active and externally passive elements with respect to
a basis B by EA/(B) and EP,/(B), and the sets of internally active and internally passive
elements by 1A/ (B) and 1Py, (B).

Note in particular that the internal and external activities are dual notions. If M* is the
dual matroid of M, then EA,/(B) = 1A+ (E \ B), and similarly for the other sets.

Historically, the most important property of the notions of matroid activity is that they
generate an important algebraic invariant of matroids called the Tutte polynomial.

Proposition 2.1.8. Given an ordered matroid M, the Tutte polynomial of M 1is given by
Ty(z,y) = Z g TAB)y IBAMB)]
BeB(M)
and is independent of the ordering of M.

The Tutte polynomial is what is called the universal Tutte-Grothendieck invariant for
the class of all matroids, and in particular it encodes a breadth of combinatorial data corre-
sponding to a matroid.

Greedoids

Greedoids are a generalization of matroids which capture the structure necessary for the
matroid greedy algorithm to apply. The generalization gives rise to a rich hierarchy of
subclasses, including matroids, which are outlined in exquisite detail in [8], Figure 8.5.
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Definition 2.1.9. A set sytem G = (E, F) is called a greedoid if

e For every non-empty X € F, there is an € X such that X \ z € F’; and

e For XY € F,if | X]| > |V, then there is an element z € X such that Y Uz € F.
A set in F is called a feasible set of the greedoid E.

The first property above is a weakening of the matroid hereditary property called ac-
cessibility, and the second property above is exactly the matroid independence exchange
axiom, which we sometimes will call the greedoid exchange axiom for clarity.

Antimatroids and Convex Geometries

For our discussion, the most important subclass of greedoids aside from matroids is the
antimatroids, defined by:

Definition 2.1.10. A set system (E, F) is called an antimatroid if
e F is a greedoid; and
o if X CY aresetsin Fanda € F\Y with X Ua € F, then Y Ua € F.

The second property in this definition is called the interval property without upper
bounds. Antimatroids as set system of feasible sets can be formulated in a variety of
equivalent manners, and we will state for reference several of these which will also be useful.

Proposition 2.1.11 ([8], Proposition 8.2.7). If F is a set system, then the following condi-
tions are equivalent.

e F is an antimatroid,
e F is accessible, and closed under taking unions; and
e () € F, and F satisfies the exchange axiom that if X, Y are sets in F such that X Y,
then there is an element v € X \'Y such that Y Uz € F.
Independent Sets, Circuits and Cocircuits

As with matroids, the theory of antimatroids admits a number of cryptomorphic definitions,
which include a theory of rooted circuits and a dual theory of rooted cocircuits. For
more details, see [8] Section 8.7.C as well as [26] Section 3.3.

Definition 2.1.12. If (E, F) is a set system and A C E, define the trace F: A by
F:A={XNA:XeF}.

If F is a greedoid, then A C E is called free or independent if F: A = 24, If A is not
independent, it is called dependent.
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Definition 2.1.13. If (E, F) is a set system and A € F, then the feasible extensions of
A are the elements of
I'(A) ={z e E\A: AUz € F}.

The following lemma relates freeness to feasible extensions, and follows directly from
Lemma 3.1 of [26].

Lemma 2.1.14. If (E,F) is an antimatroid, then X C E is independent if and only if it is
equal to the feasible extensions I'(A) of some feasible set A € F.

Of particular note is that the collection of independent sets of an antimatroid is closed
under taking subsets, and thus forms a simplicial complex as a set system. We will discuss
more properties of independent sets and their relationship with feasible sets of an antimatroid
in Section 3.1.

The cryptomorphisms of rooted circuits and rooted cocircuits are presented in terms of
rooted sets:

Definition 2.1.15. If A is a set and a € A, then the pair (A, a) is called a rooted set with
root a. In this case, we may equivalently refer to A as a rooted set if the root is clear from
context.

Now we can define the circuits of an antimatroid.

Definition 2.1.16. A circuit of an antimatroid (£, F) is a minimal dependent subset of
E.

In particular, the following holds for circuits of an antimatroid.

Proposition 2.1.17 ([8]). If (E,F) is an antimatroid and C' C E, then there is a unique
element a € C such that F:C = 2°\ {{a}}. We call the rooted set (C,a) a rooted circuit
of F.

Let C(F) denote the collection of rooted circuits of an antimatroid F. Rooted circuits
give a cryptomorphism for antimatroids due to the following fundamental result.

Proposition 2.1.18 ([8], Proposition 8.7.11). Let (E,F) be an antimatroid and A C E.
Then A is feasible if an only if C N A # {a} for every rooted circuit (C,a).

That is, an antimatroid is fully determined by its collection of rooted circuits. Further,
we can axiomatize the rooted families which give rise to an antimatroid.

Proposition 2.1.19 ([8], Theorem 8.7.12). Let C be a family of rooted subsets of a finite set
E. Then C is the family of rooted circuits of an antimatroid if an only if the following two
axioms are satisfied:

(CI1) If (Cy,a) € C, then there is no rooted set (Co,a) € C with Cy C CY.



CHAPTER 2. BACKGROUND 13

(CI2) If (C1,a1),(Cy,a2) € C and ay € Cy \ ag, then there is a rooted set (Cs,as) € C with
03 QC’luCg\al.

Bjorner and Ziegler noted that these axioms bear a curious resemblance to the circuit
axioms for matroids, and we will see in Section 3.2 that this resemblance is not superficial.

A second cryptomorphism for antimatroids is their rooted cocircuits, which form a certain
type of dual to their rooted circuits.

Definition 2.1.20. If (E, F) is an antimatroid and F' € F, then an element a € F' is called
an endpoint of F'if F'\a € F. If ' € F has a single endpoint a, then we call F' a cocircuit,
and we call the rooted set (F,a) a rooted cocircuit of F. Equivalently, (F,a) is a rooted
cocircuit iff ' € F is minimal containing a. We denote by C*(F) the collection of rooted
cocircuits of an antimatroid F.

In many places in the literature, antimatroid cocircuits are also called paths, but we use
the name cocircuit to emphasize their duality with antimatroid circuits. The descriptive
power of these rooted sets is exemplified by the following lemma.

Lemma 2.1.21 ([26], Lemma 3.12). If (E,F) is an antimatroid and A C E, then A is
feasible if and only if it is a union of cocircuits. If A has k endpoints {ay,...,a}, then A
is a union of k cocircuits {Aq, ..., Ax}, where the root of each A; is a;.

In particular, this shows that the cocircuits of an antimatroid also uniquely determine the
feasible sets. As with circuits, there is also an axiomatic characterization of the set systems
which form the collection of rooted cocircuits of an antimatroid.

Proposition 2.1.22. Let C* C {(D,a) : D C E,a € D} be a family of rooted subsets of a
finite set E. Then C* is the family of rooted cocircuits of an antimatroid (E, F) if an only if
the following two axioms are satisfied:

(CC1) If (Dy,a) € C*, then there is no rooted set (Dy,a) € C* with Dy C D.

(CC2) If (Dy,a1) € C* and ay € Dy \ a1, then there is a rooted set (Dg,a3) € C* with
D2 Q D1 \ aq.

Since rooted circuits and rooted cocircuits suffice to specify an antimatroid, when con-
venient we will sometimes denote an antimatroid using these rooted set systems, as a pair
(E,C) or (E,C*).

Finally, we describe the duality which relates the circuits and cocircuits of an antimatroid.

Definition 2.1.23. If F is a finite set and i/ is a collection of subsets of F, then U is called
a clutter if no set in U is contained in another. If U is a clutter, then the blocker of i,
denoted B(U) is the collection of minimal subsets

BU) =min{V C E : VNU is nonempty for each U € U} .
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A basic result of blockers is that the operation of taking blockers is an involution on
clutters.

Lemma 2.1.24. For any clutter U, the blocker V = B(U) is a clutter, and B(V) = U.

In particular, this involution provides the essential connection between antimatroid cir-
cuits and cocircuits.

Definition 2.1.25. If A is a collection of rooted subsets of a ground set F and z € E, let
A, denote the collection of sets {A\ z : (A, z) € A}.

Proposition 2.1.26. Let (E,F) be an antimatroid with circuits and cocircuits C and C*
respectively. Then for each x € E, we have that C, and C; are clutters, and C; is the blocker
of C, and vice versa.

Minors

Finally, we will recall two notions of minors which may be defined respectively for greedoids
and for antimatroids. First, we give the standard definitions of deletion and contraction for
general greedoids.

Definition 2.1.27. If G = (E,F) is a greedoid and A C FE, then the greedoid deletion
G\ A is the set system (E\ A, F \ A), where

F\A={FCE\A:FeF).
The greedoid contraction G / A is the set system (E \ A, F'/ A) where
F/A={FCE\A:FUA€cF}.

A greedoid deletion G\ A is always a greedoid, while in general a greedoid contraction
G/ A is a greedoid only when A is feasible, as otherwise () is not included in the resulting
set system.

A greedoid minor is a deletion of a contraction of a greedoid. Aside from the limitation
that the contracting set is feasible, greedoid minors behave like matroid minors in that the
deletion and contraction operations commute with themselves and each other.

We provide these definitions for arbitrary greedoids primarily for background and context.
For antimatroids in particular, there is an alternate formulation of minors based on rooted
circuits which will be central to the discussion in Section 3.4.

Definition 2.1.28. If A = (E,C) is an antimatroid with rooted circuits C and A C E, then
the antimatroid deletion A\ A is the pair (E'\ A,C \ A) where

C\A={(Cx): (C,x)eC,CNS=0}.
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The antimatroid contraction A/ A is the pair (E'\ A,C/ A) where
C/A=min{(C\ S,z) : (C,z) eC,x ¢ S},

and where min R for a collection R of rooted sets denotes the subcollection of those which
are (non-strictly) minimal under inclusion as non-rooted sets.

In particular, these deletion and contraction operations produce antimatroids, and also
behave like matroid minors.

Proposition 2.1.29 ([18], Propositions 12 and 14). If A = (E,F) is an antimatroid and
ACE, then A/ A and A\ A are antimatroids. If A, B C E are disjoint, then

o (ANA\B=(A\B)\ 4
* (A\NA)/B=(A/B)\A
* (A/A)/B=(A/B)/A

An antimatroid minor may then be defined as a deletion of a contraction of an antima-
troid. Although not immediately obvious from the circuit definition, these operations may
also be characterized in the following way in terms of antimatroid feasible sets.

Proposition 2.1.30. If (E,F) is an antimatroid and A C E, then
o F\ A is given by the trace F:(E \ A)
o F /A is given by the greedoid deletion F/A={F € F : FNA= {0}

Antimatroid deletion by a set A can in general be thought of as collapsing the edges
of the antimatroid Hasse diagram whose labels for the natural edge labeling (see Definition
3.1.1) are elements of A.

Lattice Theory

We now review necessary background on the class of posets called join-distributive lattices,
which fundamentally connect antimatroids with lattice theory. To begin, we briefly review
some standard definitions of lattice theory, as discussed in [36], Chapter 3.

Definition 2.1.31. A partially ordered set or poset is a set P along with a binary
relation < satisfying

o Reflexibity: For all x € P, x < x
o Antisymmetry: For z,y € P, if xt <y and y < z, then x = y.

o Transitivity: For z,y,z € P, if x <y and y < 2z, then z < 2.
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A poset P is called finite if the set P is finite, and locally finite if any interval
[z,y] ={2z€ P :2<z2<y}

is finite. If z,y € P are elements such that x < y and there is no element z such that
x < z < y, then we say that y covers z, and write y >x. We will denote by Cov(P) C P x P
the set of covering pairs of P,

Cov(P) = {(z,y) : v <y}.
Lattices are a particular type of poset which admits meets and joins of poset elements.

Definition 2.1.32. If (P, <) is a poset, then for z,y € P, an element z € P is called a least
upper bound of x and y if z > x and z > y and for any w € P satisfying w > x and w > y
we have w > z. As usual, a least upper bound of x and y is unique, and is denoted x V v,
or “r join y”. A greatest lower bound of x and y is defined similarly, and the unique
greatest lower bound of x and y is denoted x A y, or “xr meet y”.

A poset P is called a lattice if each pair of elements x,y € P has a least upper bound
and a greatest lower bound.

The meet and join operations of a lattice are commutative, associative, and idempotent.
If z,y are lattice elements, we additionally have

ez A(zVy =zV(zAy) ==z
e s Ny=cziffavy=yiff x <y.

If a lattice L is finite (and nonempty), then we additionally note the existence of a
minimal element 0 and a maximal element 1, such that 0 < x and x <1 for every x € L.

The theory of matroids is classically related to lattice theory by considering the collection
of flats of a matroid (sets F' such that cl(F') = F'), which form a type of lattice called a
geometric lattice.

Definition 2.1.33. A lattice L is called semimodular or upper semimodular if for all
x,y € Lyif x>x Ay, then zVy>uy.

Definition 2.1.34. If L is a finite lattice, then an atom of L is an element x € L such that
x > 0. We say that L is atomistic if every element can be expressed as the join of some
collection of atoms.

Definition 2.1.35. A lattice L is called a geometric lattice if it is semimodular and
atomistic.

If M is a matroid, let F (M) denote the poset of flats of M ordered by inclusion. We say
that M is simple if it has no circuits of size 1 or 2. The connection between matroids and
geometric lattices is then given by the following.
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Proposition 2.1.36. If M is a matroid, then F (M) is a geometric lattice, and any geometric
lattice is isomorphic to F (M) for some matroid M. Further, if L is a geometric lattice, then
there exists a unique simple matroid M (up to isomorphism) such that L = F(M).

We will see as a central result in Chapter 3 that a new class of lattices, the matroidal
join-distributive lattices, form a a refinement of the geometric lattice of flats of a matroid
which encodes the isomorphism class of an arbitrary matroid.

The class of join-distributive lattices in particular has been extensively studied in relation
to greedoid theory and abstract convexity theory. We now review relevant definitions and
structural properties, following the exposition of [15].

Definition 2.1.37. A lattice L is called meet semidistributive if it satisfies the meet
semidistributive law, that for all x,y € L and for any z € L, if xt A 2z = y A z, then the
common value of these meets is (z V y) A z.

Definition 2.1.38. Given a lattice L, an element x € L is called meet-irreducible if it
is covered by exactly one element of L, and is called join-irreducible if it covers exactly
one element of L. We denote the set of meet-irreducibles of L by MI(L), and the set of
join-irreducibles of L by JI(L).

Definition 2.1.39. Given a lattice L and an element x € L, an irredundant meet de-
composition of z is a representation x = A'Y with Y C MI(L) such that = # A Y’ for any
proper subset Y’ of Y. The lattice L is said to have unique meet-irreducible decompo-
sitions if each z € L has a unique irredundant meet-decomposition.

Definition 2.1.40. If z € L is a member of a locally finite lattice, let j(x) denote the join
of all elements covering x.

Using this terminology, we can define join-distributive lattices and give several equivalent
formulations which will be variously useful for our discussion.

Definition 2.1.41. A finite lattice is called join distributive if it is semimodular and
meet-semidistributive.

Proposition 2.1.42 ([15], Proposition 2.1). For a finite lattice L, the following are equiva-
lent.

1. L 1is join-distributive
2. L has unique meet-irreducible decompositions
3. For each x € L, the interval [x, j(z)] is a boolean lattice

4. The length of each maximal chain in L is equal to |MI(L)]|.
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The most important property of join-distributive lattices for our purposes is a remarkable
correspondence with antimatroids, very similar to the correspondence of Birkhoft’s represen-
tation theorem for finite distributive lattices.

Definition 2.1.43 ([8]). Given a finite join-distributive lattice L, let F(L) denote the set
system which is the image of the map T : L — 2MI(5) given by

T:x—{yeMIL) : y#z}.

Proposition 2.1.44 ([8], Theorem 8.7.6). T is a poset isomorphism from L to F (L) ordered
by inclusion, and joins in L correspond to unions in F(L). F(L) is an antimatroid with
ground set MI(L), and the poset F of feasible sets of any antimatroid, ordered by inclusion,
forms a join-distributive lattice.

Figure 2.1 demonstrates the application of this map to produce an antimatroid from a
join-distributive lattice.

. 12345
VRN /N
4 5 1235 1234
1/ / \2 235/ \123/ \134
/3\ 2‘3/ 1‘2 \1‘3
NSNS \2/ \1/
NS \@/

Figure 2.1: The T map applied to a join-distributive lattice with labeled meet irreducibles

The primary consequence of this correspondence is that join-distributive lattices are
essentially equivalent to antimatroids: 7' gives a one-to-one correspondence between join-
distributive lattices and antimatroids F which have no loops, or equivalently, for which the
ground set E is covered by the feasible sets of F.

Explicitly, if F is an antimatroid with ground set ' = (Jpcz F, let L(F) denote the join-
distributive lattice formed by the feasible sets of F under set inclusion. Then the elements
of E are in bijection with the meet irreducibles of L(F) by the map = — S,, where S, € F
is the unique meet irreducible in L(F) covered by (S, Ux) € F. This bijection of ground
sets induces a canonical isomorphism between F and T'(L(F)).

In general, we will allow for antimatroids with loops. This introduces a slight ambiguity
in the equivalence between antimatroids and join-distributive lattices, as an antimatroid with
loops has the same feasible sets and associated join-distributive lattice as a corresponding
antimatroid with loops removed. This should not cause confusion in practice, however, so we
will often refer to general antimatroids and join-distributive lattices interchangeably, keeping
this subtlety in mind.
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2.2 Zonotopal Algebra

We now present definitions and fundamental results in the theory of zonotopal algebra which
will necessary for the developments undertaken in Chapter 4. The material in this section is
primarily derived from [23], [24] and [30], and Holtz and Ron’s exposition in [23] in particular
gives an excellent overview of the broader connections of the theory.

One detail important to mention before we proceed is that throughout this section and
Chapter 4, we will be adopting an ordering convention that is common in the zonotopal
algebra literature, but which is unusual in other settings. Specifically, when discussing
matroid activity, we will use definitions that correspond with the standard definitions in
matroid theory, but using the reverse ordering on the ground set. For instance, we will say
that an element x in an ordered matroid is externally active with respect to a basis B if it
is mazimal in the fundamental circuit ci(B, z). This does not have a substantive impact on
any relevant structure of matroid activity, but it does mean that an extra ordering reversal
is necessary when referencing e.g. material in Chapter 3 on the external order.

Polynomial Spaces and the Differential Bilinear Form

The central objects of the theory are certain spaces of polynomials which are related by
a differential action. We now recall the basic concepts, and we set notation for use later.
For the material related to differential kernels, we follow in somewhat simplified form the
exposition of [23], Section 2.5.

Throughout this work we will be working with vectors in the real vector space R?, and
will assume as background standard notions and notations of linear algebra, such as vector
space spans, subspaces, sums and direct sums, coordinates, projections, inner products, etc.
Particular notation that will be used throughout Chapter 4 is for coordinates with respect
to a fixed basis: if B C R? is a basis of R? and b € B, then for z € R?, we write [z]% to
denote the b-coordinate of x represented in terms of the basis B.

In the following, we will use IT to denote symmetric algebra Rxz1, ..., x4] of R%. If I C I
is an ideal generated by a set @), we will write I = Ideal(Q)). Additionally denote the
algebraic variety Var([) of I by

Var(I) = {v € R? : p(v) =0forallpel}.

Linear forms and products of linear forms in II play an extensive role in zonotopal algebra,
so we will adopt the following notation to simplify working with them. If v = (vy,...,vq) €
R?, then denote by ¢, the homogeneous linear polynomial

l, = Z V; ;.
If S C R?is a finite collection of vectors, let g denote the product

és = HEU

vES
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Another construction fundamental to the theory is the differential operator derived from
a polynomial, as well as the corresponding differential pairing.

Definition 2.2.1. If p € II is a real multivariate polynomial, then let p(d) denote the
differential operator

p(9) :=p(0/0zy,...,0/0xq).
If ¢ € TI, additionally define the pairing (p, q) by

(0, @) = (p(D)q)],_,-

The pairing (-, -) is a bilinear form on II, which we will refer to as the differential bi-
linear form. It is symmetric and nondegenerate, and the monomials x* form an orthogonal
basis of II. Considering the homogeneous linear polynomials as an embedding of R¢ into
its symmetric algebra II, the bilinear form gives a canonical extension of the standard inner
product to II.

A simple but important property of the bilinear form is the fact that multiplication and
differentiation by a polynomial are adjoint operators:

Lemma 2.2.2. If py,ps,q € 11, then

(gp1, p2) = (p1, q(9)p2).

For polynomials which are products of linear forms, repeated applications of the product
rule for derivatives allows us to describe the behavior of the differential bilinear form as an
explicit sum.

Lemma 2.2.3. If p; = Hle 651) and ps = Hle 552), where El(-j) € I1 are homogeneous linear
polynomials, then

<p1, p2> = Z <€§1)7 65;2()2‘)>7

[

where the sum is over all permutations o € Sy.

When a particular linear form has higher multiplicity in a product, the above represen-
tation allows us to deduce a simpler sufficient condition for polynomial orthogonality.

Lemma 2.2.4. Let p = Hle ¢; be a product of linear forms. If ¢ = €% is a power of a single
linear form, then (p, q¢) = 0 iff at least one of the linear forms {; are orthogonal to (. If
q = lqy where qo € 11 is homogeneous of degree k — j, then (p, q) = 0 if at least k — j + 1 of
the linear forms ¢; are orthogonal to £.

A more general characterization of the above orthogonality is given in Lemma 2.2.10 in
terms of the notion of the linear support of a polynomial or collection of polynomials.
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Linear Support of Polynomial Subspaces

We now introduce terminology to describe polynomial subrings of IT = Rz, . . ., z,] identified
with linear subspaces of the ambient vector space R? and we describe the interactions
between such subrings and the differential bilinear form. The material is related to the
classical commutative algebra notion of polynomial apolarity (see for instance [25]), but our
discussion here is self-contained.

Definition 2.2.5. If U C R? is a subspace, let II;; denote the polynomial subring of II given
by
Iy = R[(, : u e U].

Equivalently, by linear algebra considerations, if S C U is any spanning set, then
HU :R[gu Tu € S]

These linear polynomial subrings relate to the underlying vector space geometry of R? in
a straightforward fashion.

Lemma 2.2.6. If x € Il and U C R? is a subspace, then x € Iy if and only if £,(0)x = 0
for each v € U+,

Proof. Denote V = U+, and let By, By be orthonormal bases of U and V respectively, so
that B = By U By is an orthonormal basis of R%. Then z can be represented uniquely as a
sum of monomials in the variables ¢,, b € B, and in particular, x € Il if and only if this
representation does not include any monomials with the linear forms /¢,, v € By. The result
then follows from the product rule applied to the monomials of this representation, and the
fact that £,(9)¢, = (v, u) for vectors u,v € R% O

Lemma 2.2.7. If Uy, Uy C R? are subspaces, then
[ ] HU1 N HU2 == r[UlﬁU2
o Iy, + 1y, =1y, 1u,

Proof. By Lemma 2.2.6, z € Iy, N1y, if and only if £,(d)x = 0 for each v € Uit U U3, and
hence by linearity for each v € Uit +Us" = (U;NUy)*. This is true if and only if 2 € Iy, s, .
The second equality holds similarly. O

We now introduce notation to describe the minimum linear polynomial subring in which
a given collection of polynomials can be represented. This notion will be useful for inductive
constructions involving lower-dimensional zonotopal spaces, which are only properly defined
as zero-dimensional ideals and their kernels in appropriate polynomial subrings.

Definition 2.2.8. If S C II, define the linear support of S, denoted Supp(S), as the
minimum subspace U C R? such that S C Il .
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Lemma 2.2.9. If SCIl and V = {v € R? : {,(d)z =0 for x € S}, then Supp(S) = V*.

Proof. By Lemma 2.2.6, U = V* satisfies S C Il;. If U’ is another subspace such that
S C Iy, then again by Lemma 2.2.6, we have £,(9)z = 0 for x € S and v € V' := (U’)*. In
particular, V/ C V', which implies that U’ O U. This shows that U is minimal with S C I,
and thus is equal to Supp(S). ]

Distinguishing polynomials by their linear supports in particular is frequently useful for
simplifying the differential action of one polynomial on another.

Lemma 2.2.10. Suppose p, q1,q2 € 11, and Supp(p) C Supp(q1)*. Then

p(0)(01g2) = @1p(9)go.

Proof. This is trivial when p is a constant. When p is a linear form, this follows by the
derivative product rule, noting that p(d)g; = 0 in this case by Lemma 2.2.9. For general

p, note that p can be written as a polynomial in the variables {¢,} where by, ..., b, form
a basis of Supp(p). Thus the identity follows for monomials in this representation of p by
induction on the degree, and then for p itself by linearity. O

Differential Kernels

Let I C II be an ideal, and let II' denote the dual space of linear functionals on IT. The
space II' can be realized as the space of formal power series R[[z1, z, . .., x4]], where a power
series ¢ is identified with the differential operation (g, -). In particular, with respect to this
identification, the exponential map e, : t + exp(a - t) for a fixed vector a € R? plays the
important role of the evaluation functional d,:

(€as P) = p(a) = dap.

We will be concerned with a particular subset of the annihilator in IT" of the ideal I called
the differential kernel, or just kernel, ker I of I:

ker I .= {e.p : {eap, q) = 0 for all ¢ € I, where o € Var(I), p € I1}.

In general the set ker I is a proper subset of the annihilator of I, in particular because
it consists only of exponential polynomials which in particular are absolutely convergent as
power series. However, the collection still has the property that it distinguishes between
ideals in II, so that

(ker[')L ={pell : (f,p)=0forall fekerl}=1I.

We will in particular be concerned with ideals which are zero-dimensional or Artinian,
meaning their variety Var(/) is a finite collection of points, or equivalently that the quotient
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ring I1/1 is finite-dimensional as an R-vector space. In this case, ker [ is a finite-dimensional
space with dimension equal to that of IT/1.

The most important setting for our purposes is when [ is additionally homogeneous, so
that Var(I) = {0}. In this case, the following gives a refined characterization of the kernel
in terms of differential operators.

Lemma 2.2.11. Let I C II be a zero-dimensional homogeneous ideal generated by a set ().
Then
ker [ ={pell : ¢(O)p=0 forallq € Q}.

For non-homogeneous ideals, a rich duality exists between the kernel operator and the
least and most maps, which map a polynomial (or power series for the least map) to re-
spectively its lowest or highest degree homogeneous part. This duality is what enables the
fundamental connection of the zonotopal spaces to interpolation theory, but the details are
omitted here as they will not be needed for the developments of this dissertation. More
information and additional references may be found in [23], Sections 2.4 and 2.5.

Zonotopal Spaces

We now have the tools and terminology needed to define the zonotopal spaces. In the
following, let X denote a d x n real matrix, which is frequently thought of as an ordered
multiset of column vectors in R?. We will define several variants of four polynomial spaces,
each consisting of two polynomial ideals Z and 7, and two finite-dimensional polynomial
subspaces P and D. The ideal 7 is in most cases a power ideal, i.e. is generated by powers
of linear forms, and the ideal J is generated by products of linear forms which are related to
the matroid combinatorics of the columns of X. The spaces P and D are differential kernels
of the ideals Z and J respectively, and each have dimension given by the size of a collection
of bases of X which depends on the variant in question.

The following definition summarizes some of the main algebraic properties shared by the
zonotopal spaces in different settings.

Definition 2.2.12. Let Z and J be zero-dimensional homogeneous ideals in II, and let P
and D be vector subspaces of II. We say that the collection (Z, J, P, D) is zonotopal if it
satisfies the following properties.

. JeP=IeD=11
2. P=kerZ, and D = ker J
3. D acts as the dual to P under the identification ¢ — (g, -)

For a zonotopal collection of spaces, we additionally can conclude that 7&D = TP =11,
and that D and P have identical Hilbert series. Algebraically, the J ideal and P space can
be thought of as lying in one polynomial space while the Z ideal and P space lies in the dual
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polynomial space under identification using the differential bilinear form. The distinction is
not important for our purposes, so we will adopt the convention of [23] and consider all four
spaces as lying in the same polynomial ring.

We now give definitions for the variants of zonotopal spaces which will be discussed
throughout Chapter 4. We will use the following common notation throughout. Let U denote
the column space of X, and let M (X) denote the matroid whose ground set is the columns of
X, and whose independent sets are the collections of columns that are linearly independent.
We will frequently refer to X and M (X) synonymously, as the matroid structure of X is of
central importance in the constructions of zonotopal spaces. Then B(X) and I(X) denote
the bases and independent sets of X respectively, and we let F(X) denote the hyperplanes
(sometimes referred to as facet hyperplanes) of X, which are the flats H with r(H) =
r(X)— 1.

For each H € F(X), let nx(H) be a unit length normal vector of H in the column space
U, and let n3y denote the linear form ¢, y). Additionally let m(H) denote the cardinality of
the cocircuit complementary to H, that is, m(H) = |X \ H|. Finally, if S C 2%, define the
S-long subsets of X by

L(X,8) ={Y CX :YNS#(Q for each S € S},
and the S-short subsets of X by
S(X,8) ={Y C X : Y is disjoint from some S € S}.

The B(X)-long sets are the dependent sets in the dual matroid of X (the codependent sets)
while the B(X)-short sets are the independent sets of the dual matroid of X (the coinde-
pendent sets), so the S-long and short sets can be thought of as certain extensions of these
notions.

As a general remark, note that the definitions of zonotopal spaces in many places in the
literature assume that the underlying matrix X is of full rank. For our purposes, it will be
convenient to remove this restriction and work with relative zonotopal spaces. This amounts
to taking the standard full-rank construction thinking of X as a full-rank matrix with respect
to its column space U. The underlying polynomial space is then the linear polynomial
subring Il;;, which should be represented in terms of generating variables corresponding to
an orthonormal basis of U to preserve relevant geometric structure. This introduces a slight
clash of notation, as the usual definitions of zonotopal spaces are typically degenerate in the
case when X is not of full rank. This should not cause confusion in our usage.

The central zonotopal spaces are defined using the (central) long and short sets
L(X)=L(X,B(X)) and S(X) = S(X,B(X)), and are given by the following.

Definition 2.2.13 ([23] Section 3). The central zonotopal spaces are defined by

m(H)

o Z(X) = Ideal ((ng) He ]-"(X))

e J(X) :=Ideal ({y : Y € L(X)) =1Ideal (¢ : D is a cocircuit of X)
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e P(X) =span (ly : Y € S(X))
e D(X)={pell : {y¢(0)p=0, forevery Y € L(X)} = ker J(X)

To define the external zonotopal spaces, let B, denote an ordered collection of
vectors in R? which form a basis of the column space of X, which we will call the extending
basis, and let X’ denote the matrix (or ordered collection) obtained by appending the
ordered column vectors in By to the end of X.

Additionally, for each independent set I € I(X), let ex(I) denote the greedy extension
of I to a basis of X' using elements of B, and let B, (X) denote the set of external
bases, given by B, (X) = {ex(!) : [ € I(X)}. Finally, let L (X) = L(X',B, (X)) and
S (X) = S(X,I(X)) =2%.

Definition 2.2.14 ([23] Section 4). The exzternal zonotopal spaces are defined by
o 7.(X) :=Ideal ((ng)m(m+1 cH e .7-"(X)>
o J.(X):=Ideal (¢y : Y € Li(X))
e Po(X) =span (fy : Y C X) =span ({y : Y € S (X))
e D.(X)={pell : {y(0)p=0, forevery Y € L, (X)} =ker 7, (X)

The external spaces are generalized to the semi-external zonotopal spaces by intro-
ducing an extra parameter, given by a family of independent sets of X. Let O denote a
collection of flats of X which is upward closed with respect to inclusion:

If FeOand F' D F, then F' € O.

Now let I' C I(X) denote the collection of independent sets whose span lies in O. Let
B, (X,I') denote the set of semi-external bases, given by B, (X,I') :== {ex([) : I € I'}, and
let L (X,T') = L(X" B, (X,T') and S, (X, ') := S(X,I'). If F is a flat of X, let F'* denote
the orthogonal complement of span(F') in the ambient space U, and if ) is a collection of
polynomials let Q) denote the degree j homogeneous polynomials in Q. Finally, let O’
denote the flats of X not contained in O, given by O’ = {span() : I € I(X) \I'}.

Definition 2.2.15 ([24] Section 2.2). The semi-external zonotopal spaces are defined by
e 7. (X)) =T (X) + Ideal{(HFL)(lx\FD : Fe (’)’}
o J.(X,T'):=1Ideal (¢y : Y € Ly(X,T))
o PL(X,I') ==span ({y : Y € S (X,I'))

e D.(X,I')={pell : {y(0)p=0, forevery Y € L, (X,I')} = ker T, (X,T)
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This definition in particular has the property that it interpolates between the central
and the external definitions, where the central spaces appear for the choice I' = B(X), and
the external spaces appear for the choice I' = I(X). Interestingly, the semi-external ideal
Z.(X,I') may not always be a power ideal, in contrast with the central and the external
cases. In [24] the authors study additional restrictions on the collection I" which ensure that
the semi-external Z-ideal is a power ideal.

The internal zonotopal spaces are defined using the notion of internal activity of a
matroid basis. If B C X is a basis and b € B, then b is said to be internally active with
respect to B if it is externally active with respect to X \ B considered as a basis in the dual
matroid of X. More concretely, b is internally active if it is the maximal element in the
fundamental cocircuit box(B,b). (As a reminder, this is the reverse ordering convention of
the most standard definition of this notion.)

We call a basis B an internal basis if B has no internally active elements, and we denote
the collection of internal bases of X by B_(X). Additionally, we define the barely long
subsets of X by L_(X) = L(X,B_(X)).

Definition 2.2.16 ([23] Section 5). The internal zonotopal spaces are defined by

m(H)

e 7 (X) :=Ideal ((ng) ' He ]-“(X))

o J_(X):=Ideal (¢y : Y € L_(X))
e P_(X) = ey PIX \2)
e D (X)={pell : {4(0)p=0, forevery Y € L_(X)} = ker J_(X)

The internal spaces are generalized to the semi-internal zonotopal spaces by specify-
ing an additional independent set I;,; C X chosen greedily from the elements at the end of
X, so that [, is lex maximal among independent sets of X of its rank. More specifically, if
x = min ([ ), then we require that for any y > x in X \ Iy, we have that y is spanned by
the elements of I,y larger than it.

Additionally define the semi-internal bases B_ (X, [;;;) and the semi-internal facet
hyperplanes F (X, I;,;) by

B_(X, Iint) = {B € B(X) : B has no internally active element in I}
F<X7[int) = {H € .F(X) . Iint {(Z H}

We call a cocircuit D semi-internal if D = X \ H for H € F(X, Is), and we define the
collection L_ (X, Iiy) of Iin-long sets by L (X, Iiy) = L(X,B_(X, Iin))-

Definition 2.2.17 ([24], Section 3.2). The semi-internal zonotopal spaces are defined by

o T (X, Ii) = Ideal ({n’g(m—l; He F(X, Jim)} U {n’gwﬁ He F(X)\ F(X, [int)}>
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o J(X, i) =1deal (¢y : Y € L_(X, Lint))
o P(X, Iine) = yer,, P(X \ 2)
e D (X, Iin) ={pell : by (0)p=0, forevery Y € L_(X, [iny)} = ker T_ (X, Lint)

The semi-internal spaces in particular interpolate between the central and the internal
spaces, where the central spaces are recovered by the choice of I, = (), and the internal
spaces are recovered by the choice of I;; as the lex maximal basis of X.

Concerning the definition of [, in [24] it is assumed when defining the semi-internal
spaces that [, consists of the last |Ijy| elements of X, so that [y, forms a pure suffix of
the columns of X, and the proofs there are conditioned on this assumption. However, the
definitions reduce to those for the standard internal spaces whenever I is a basis, without
the additional requirement that I, consist of a suffix of X. We thus present definitions
without the extra assumption on [, and note that it is expected that the basic facts and
theory of the semi-internal spaces are still valid in this slightly more general context.

One oddity of the definitions for both the internal and the semi-internal spaces is the
indirect presentation of the P-spaces as an intersection of central P-spaces corresponding
to submatrices of X. In Corollary 4.5.11 we give an alternate characterization of the semi-
internal P-space which matches the format of the central and external definitions, using an
appropriate notion of short subsets and a new projection operation.

The spaces defined so far constitute what we call the classical zonotopal spaces (the
central, external, and internal spaces), and the semi-classical zonotopal spaces (the semi-
external and semi-internal space). A primary characteristic of these spaces is that they each
satisfy the collection of basic properties required of zonotopal spaces:

Proposition 2.2.18 ([23, 24|). The central, external, semi-external, internal, and semi-
internal zonotopal spaces all form zonotopal collections in the sense of Definition 2.2.12.

Another essential characteristic which we do not emphasize here is that all of the above
spaces can be interpreted as spaces of polynomials correct (a notion in interpolation theory)
with respect to certain vertex sets derived from hyperplane arrangements and zonotopes
underlying the matrix X. These connections are explored in more detail in [23] and [24].

We now define the forward exchange or generalized zonotopal spaces, defined by
Lenz in [30] to broadly generalize the zonotopal spaces defined above, as well as others. The
spaces are defined in terms of a combinatorial object called a forward exchange matroid.

Definition 2.2.19. Let M = (E,B) denote a matroid with ground set E and bases B. If
B’ C B, we say that B’ satisfies the forward exchange property if for any basis B € B
and any x externally passive with respect to B we have that the basis B’ given by

B' = B\ max(ci(B,z)) Uz

is also contained in B’. If B’ satisfies the forward exchange property, then we call the triple
(E,B,B') a forward exchange matroid.
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Additionally, define the generalized cocircuits of a forward exchange matroid as follows.

Definition 2.2.20. If M = (E,B,B') is a forward exchange matroid, then the generalized
cocircuits of M, or B'-cocircuits, are given by the minimal sets (under inclusion) in the
collection L(E,B') ={Y CE : YN B # () for each B € B'}.

In Section 4.1 we relate forward exchange matroids and generalized cocircuits to the
generalized external order, which is explored in depth in Chapter 3.

In the following, let B’ denote a subset of B(X) which satisfies the forward exchange prop-
erty. Additionally, recalling that U denotes the column span of X, for n € U \ {0} let H(n)
denote the hyperplane orthogonal to n in U, and let m(B', ) := maxgep |EP(B) \ H(n)|-

Definition 2.2.21 ([30], Section 7). The forward exzchange zonotopal spaces are defined by
o I(X,B) = Ideal (zz“B"")“ neU\ {0})

e J(X,B') :=Ideal (¢y : Y € L(X,B')) =Ideal (¢y : Y is a B'-cocircuit)
e P(X,B') :=span ({y : Y = EP(B) for B € B)
e D(X,B)={pell: {y(0)p =0 for each B'-cocircuit} = ker J(X,B’)

These definitions in particular give the central, external, and semi-external zonotopal
spaces when specialized to B(X), B, (X) and B (X,I'), each collection of which satisfies the
forward exchange property. They also give the J-ideal and the D-space for the internal and
semi-internal cases when specialized to B_(X) and B_ (X, [;,), but notably, not the Z-ideal
and P-space.

General forward exchange zonotopal spaces satisfy some, but not all, of the properties
typically expected of zonotopal spaces, summarized in the following.

Proposition 2.2.22. IfZ, J, P and D denote the forward exchange zonotopal spaces as-
sociated with a forward exchange matroid M = (X,B,B’), then

e JOP=II
e D=kerJ
o D acts as the dual to P under the identification q — (g, -)

In particular, the forward exchange P-space, which should be the differential kernel of a
homogeneous ideal Z, is not always even closed under differentiation, a necessary condition
for being a differential kernel of this kind. The forward exchange ideal as defined is the
only power ideal for which the relation P = ker Z could hold, but in general we can only be
assured that P C kerZ.

Despite these difficulties, many of the properties required for zonotopal spaces are satisfied
by these definitions, and we conjecture that a modification of the forward exchange P-space
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construction may yield a space with improved properties. As a first step in understanding
what such a construction might look like, in Section 4.5 we characterize the difference between
the semi-internal P-space and the corresponding forward exchange P-space for the semi-
internal bases.
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Chapter 3

The Generalized External Order

The classical notion of matroid activity plays an important role in understanding funda-
mental properties of a matroid, including the h-vector of its independence complex and the
matroid Tutte polynomial. In 2001, Michel Las Vergnas introduced another structure de-
rived from matroid activity, a collection of partial orders on the bases of a matroid which he
called the active orders [27]. These orders elegantly connect matroid activity to a system
of basis exchange operations, and are closely related to the broken circuit complex and the
Orlik-Solomon algebra of a matroid.

In [2] and [3], the combinatorial structure of these active orders arises in relation to the
initial ideal of certain projective varieties derived from affine linear spaces. In the theory
of zonotopal algebra, the active orders connect to Lenz’s forward exchange matroids
[30], where the bases associated with a forward exchange matroid satisfy axioms which are
equivalent to their forming a downward closed set in the external order.

In this chapter we will define a generalization of Las Vergnas’s external order which
extends the order to the independent sets of a matroid. If M is an ordered matroid, we
define for each independent set I a set of externally passive elements, EPy/(I), using a
general definition given in [27]. The external order can be generalized to independent sets
by the following.

Definition. If I and J are independent sets of the ordered matroid M, then we define the
generalized external order <. by

I <ext J iff EPy(I) 2 EPy(J).

By [27], Proposition 3.1, this is equivalent to Las Vergnas’s ordering in the case where [
and J are two bases. For a variety of technical reasons, throughout this exposition we will
instead work with the reverse of this ordering:

1<, Jiff EPy (1) CEPy(J).

—ext

Whenever we refer to the “external order” throughout this work, we will be referring to
this reversed order unless otherwise noted. We use distinct notation for these two orders
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to reduce ambiguity, particularly because there are other contexts in which Las Vergnas’s
original ordering convention fits more naturally with existing literature.

By associating each independent set with its corresponding set of externally passive
elements, we define a set system Feoy, .= {EP(I) : I € I(M)}, and show:

Theorem. If M is an ordered matroid, then the set system Feyy of externally passive sets
of M is an antimatroid.

An antimatroid is a special class of greedoid which appears particularly in connection
with convexity theory. Specifically, associated with any antimatroid is a convex closure
operator, a closure operator on the ground set which combinatorially abstracts the operation
of taking a convex hull, in the same way that a matroid closure operator abstracts the
operation of taking a linear span. The convex closure operator on an ordered matroid
derived from F.; in particular bears a strong similarity to the convex closure operator for
oriented matroids, which were first explored by Las Vergnas in [28].

In a 1985 survey paper [20], American mathematicians Paul Edelman and Robert Jamison
noted:

The authors have previously referred to these objects by the cacophonous name
of ‘antimatroids’. We hope there is time to rectify this and that Gresham’s Law
does not apply to mathematical nomenclature.

In the intervening 30 years, the name nevertheless appears to have become ensconced in
the mathematical literature. However, in light of our Theorem 1 and other structural results
of antimatroids, the name is perhaps not so poorly chosen, as the generalized external order
provides an explicit connection between antimatroids and their combinatorial namesake.

The characterization of Fy as an antimatroid further allows us to connect the external
order with the large existing literature on lattice theory. The feasible sets of an antimatroid
have a highly structured inclusion ordering called a join-distributive lattice®, which is thus
inherited by the generalized external order. Moreover, the poset is in fact a refinement of
the geometric lattice of flats associated with the matroid M, obtained by suitably combining
copies of Las Vergnas’s original external order for the different flats of M.

Figure 3.1 compares Las Vergnas’s external order with the generalized order for the linear
matroid represented by the columns of the matrix

1101
X‘{0110}’

where the numbers 1 through 4 indicate the column number, labeled from left to right.
Las Vergnas’s original construction required the inclusion of an additional zero element
(the ‘x” in Figure 3.1) in order to form a proper lattice structure. In the generalized order,

'In fact, join-distributive lattices are essentially equivalent to antimatroids via a construction similar to
that of Birkhoff’s representation theorem.
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Bases B: Independent sets I: EPx(I):
1234

/\ /\\ P N

124 234 134

/\/ \/\>< \/\X

\/\/ \/\/

* 23 24 4 3
N\ / A4
34 0

Figure 3.1: Las Vergnas’s external order <. on bases B, the generalized order <!, on
independent sets I, and the corresponding externally passive sets EPx (/). Note that Las
Vergnas’s order embeds in the generalized order (in bold) in reversed orientation.

bases whose meet in the original order would have been the extra zero element instead are
joined at an independent set of lower rank.

The fact that the external order comes from an antimatroid allows us to describe features
of the lattice structure combinatorially. In addition, using results of Gordon and McMahon
[22] for general greedoids, we are able to further derive the following explicit partition of the
boolean lattice.

Proposition. If M is an ordered matroid with ground set E, then the intervals
(1,1 UEA(I)] for I independent

form a partition of the boolean lattice 2F.

This partition bears a resemblance to the well-known partition of Crapo, described in
[7], and in fact it can be shown that this partition is a proper refinement of Crapo’s.

Another main purpose of this chapter is to discuss the way in which the external orders fit
into the context of antimatroids and join-distributive lattices. To refine our understanding,
we characterize a proper subclass of the join-distributive lattices which we call matroidal
join-distributive lattices.

Definition. Given a lattice L and an element x € L, let r.(z) denote the number of elements
in L which cover z. A join-distributive lattice L is called matroidal if r, is decreasing in L,
and it satisfies the semimodular inequality

re(x ANy) +re(zVy) <re(x) +re(y).

For an element x of a join-distributive lattice L, one can associate a set I(x) called the
independent set corresponding with z. If L is the external order lattice of an ordered
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matroid M, then the I operator recovers the matroid independent sets of M. Even for an
arbitrary join-distributive lattice, the collection of independent sets is closed under taking
subsets, and thus forms a simplicial complex. This join-distributive independence complex
in fact provides an alternate characterization of matroidal join-distributive lattices.

Theorem. A join-distributive lattice L is matroidal if and only if its independent sets are
those of a matrouid.

In particular, this shows that the external order of an ordered matroid is a matroidal join-
distributive lattice. This result goes a long way towards understanding where the external
order sits among all join-distributive lattices, but surprisingly, there are matroidal join-
distributive lattices which are not an external order. If we denote the class of join-distributive
lattices by JD, the class of matroidal join-distributive lattices by MJD, and the class of
lattices derived from the external order by EO, then

EO € MJD C JD.

Figure 3.2 in Section 3.3 gives an example of a lattice in MJD but not EO, and Figure 2.1
in Section 2.1 gives an example of a lattice in JD but not MJD.

A further refinement is necessary to precisely classify the lattices isomorphic to an ex-
ternal order, and that refinement comes from the notion of edge lexicographic or EL-
shellability. A graded poset P is EL-shellable if its Hasse diagram admits a labeling of its
edges by integers which satisfies certain lexicographic comparability conditions on unrefin-
able chains. EL-shellability of a graded poset implies shellability of its order complex, and
the notion has been widely studied for different classes of posets.

The external order is EL-shellable, and in fact it satisfies a stronger property called S,
EL-shellability. We study how S,, EL-shellability relates to antimatroids, and we show
that

Theorem. A finite lattice L is isomorphic to the external order <% . of an ordered matroid
if and only if it is join-distributive, matroidal, and S, EL-shellable.

McNamara introduced S,, EL-shellability in [32] as a way to characterize the supersolvable
lattices of Stanley [37], and in particular, he proved that the two properties are equivalent.
This implies that one may replace “S, EL-shellable” with “supersolvable” in the above
classification of the external order.

The remainder of the document is structured as follows. Section 3.1 develops techni-
cal results relating feasible and independent sets of join-distributive lattices. Section 3.2
constructs the generalized external order and explores its structure and connections with
greedoid theory, characterizes matroidal join-distributive lattices, and relates them to .S,
EL-shellability. Section 3.4 relates the deletion and contraction operations of matroids and
antimatroids. Finally, Section 3.5 explores the downward covering relations of the external
order in terms of the newly defined spread operator.
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We note that the majority of the work in this chapter is based on the author’s exposition
in [21], which has been submitted to the Electronic Journal of Combinatorics for publication.
The primary exception to this is Section 3.5, which is new material that has not previously
been disseminated.

3.1 Feasible and Independent Sets of
Join-distributive Lattices

Before embarking on the main new results of this chapter, we develop some theory in the
realm of antimatroids and join-distributive lattices which will be useful later. Our aim is
to explore the robust connections between the independent sets and the feasible sets of an
antimatroid, so we will work in the equivalent context of join-distributive lattices, which
provide a more symmetric way to represent these set systems.

To begin, we give some notation to describe covering relations and independent sets in
join-distributive lattices.

Definition 3.1.1. Let L be a join-distributive lattice. Recall from Definition 2.1.43 the map
T : L — 2M) which maps L to its associated antimatroid, and let e : Cov(L) — MI(L)
denote the natural edge labeling, given by e : (z,y) — T(y) \ T'(z). Such set differences
are singletons, hence the map is well-defined into MI(L).

Definition 3.1.2. If z € L is an element of a join-distributive lattice, let I(z) denote the
set of elements

I(z) ={e(x,y) : ye€ L,(z,y) € Cov(L)},
and let J(z) denote the set of elements

J(z) = {e(w,x) : we L, (wz)e Cov(L)}.

I(x) is the independent set associated to x, and is equal to the independent set of
feasible extensions of 7'(x) in the antimatroid corresponding to L. We adopt the following
additional notation.

Definition 3.1.3. If L is a join-distributive lattice,

o Let F(L) = (MI(L),{T'(x) : € L}) denote the (loopless) antimatroid associated with
L

o Let I(L) ={I(z) : x € L} denote collection of independent sets of L

e Let C(L) denote the collection of rooted circuits of F(L), which we interchangeably
refer to as the rooted circuits of L
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Notice that I(x) is disjoint from T'(z), and J(z) is a subset of T'(x). The meet-irreducible
elements x € MI(L) are characterized by the condition |I(x)| = 1, in which case I(z) = {z}.
The join-irreducible elements y € JI(L) are characterized by the condition |J(z)| = 1, and
in particular correspond with the rooted cocircuits of F(L).

Of particular importance is the following:

Lemma 3.1.4. For x,y € L elements of a join-distributive lattice, T'(z) has empty inter-
section with 1(y) if and only if v < y.

Proof. If x <y, then T'(x) C T(y). If a € I(y) NT(x), then a is a member of both I(y) and
T(y), contradicting disjointness.

Otherwise, x V y > y. In particular, there is a covering element y, for some a € I(y)
such that T'(y,) = T(y)Ua, and y, < xVy. Thusa € T(y,) CT(zVy)=T(x)UT(y), so
because a ¢ T(y) we conclude that a € T'(z) N I(y). O

Corollary 3.1.5. The map I : L — I(L) is one-to-one.

Proof. If x,y € L satisty I(z) = I(y), then T'(x) N I(y) = T(y) N I(x) = 0, so x < y and
y <. 0

In particular, an element of a join-distributive lattice is uniquely identified with its cor-
responding independent set. In fact, this property characterizes the antimatroids among all
greedoids.

Proposition 3.1.6. A greedoid (E,F) is an antimatroid if and only if the feasible extension
operator I' : A— {x € E\ A : AUz € F} is one-to-one.

Proof. The forward direction is just restating Corollary 3.1.5 in the context of antimatroids.
So suppose that F is a greedoid and the map I' is one-to-one.

To see that F is an antimatroid, we prove that it satisfies the interval property without
upper bounds. As a base case, suppose A, B € F with B = AUz for some = ¢ A. If
AUy € F for some y ¢ B, we want to show that BUy € F as well.

Suppose this is not the case, so that BUy = AUxy ¢ F. Then we will show that AUz
and A Uy are mapped to the same set under I'. To this end, suppose that z € I'(A U x) for
some z, so that AU xzz € F.

Then in particular, |A Uy| < |AU zz|, so by the greedoid exchange axiom we know there
is an element w € (AU xz2) \ (AUvy) = 2z such that AU yw € F. However, by assumption
we know that AU xy ¢ F, so we must have w = z. Then AUyz € F,s0 z € '(AUy).

This implies that I'(A U x) C I'(AUy). A symmetric argument proves the reverse
inclusion, so we see that I' maps the two sets to the same independent set, a contradiction.
We conclude that in this context, BUy = AUxy € F.

In general if A, B € F with A C B, then by repeatedly applying the greedoid exchange
axiom, there is a sequence of covering sets A; € F with

A=Ay C A C---C A =B,
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where A;,1 = A; Ux; for some x; € E. The interval property without upper bounds follows
by inducting on the length of this chain using the previous base case. O

As mentioned previously, the independent sets of an antimatroid are closed under taking
subsets, and so form a simplicial complex. In terms of the lattice structure of L, we get a
stronger fact, that the inclusion order on the complex embeds in L in the following way. If
A €1(L), let x4 denote the corresponding lattice element I~1(A).

Lemma 3.1.7. If J is an independent set of a join-distributive lattice L, and I C J, then I
18 independent, and x; > ;.

Proof. 1If I C J, there is a lattice element z ; > x; such that I C J’. This follows because if
a € J\I, then by definition of independent sets, there is a covering element x ;> ; such that
T(x;)\T(z;) = {a}. In particular, because L is join-distributive, the interval [z, j(z ;)] is
boolean, and so j(x ;) > j(x). Noting that for any x € L the relation I(x) = T'(j(x))\ T (x)
holds, we have

J' =T\ T(xy) 2 T([G))\ (T(zs)Va) = J\a2 1.

Since L is of finite length, repeated applications of the above must terminate, producing
a saturated chain whose greatest element is i for an independent set K satisfying K D [
but not K 2 I. Hence I = K is independent, and x; > x;. O

We now state and prove some additional lemmas concerning independent sets of join-
distributive lattices which will be useful in later sections.

Lemma 3.1.8. If x <y in a join-distributive lattice L, then I(x) C I(y) UT (y).

Proof. Suppose that a € I(z), and a ¢ T(y). Then there is an element x, > x such that
T(z,) = T(x) Ua, and by the antimatroid interval property without upper bounds, there
must be an element y, € L such that T'(y,) = T(y) Ua, and so we have y, >y. We conclude
that a € I(y). O

Lemma 3.1.9. If I, J are independent sets of a join-distributive lattice L, then if xy Nxy =
rx for K independent, then K C T U J.

Proof. Let a € K, and suppose that a ¢ 1UJ. Since xx < x;,z;, we know that a € TUT (x;)
and a € JUT (x;). Thus since a is in neither  nor J, we can conclude that a € T'(z;)NT'(x ;).

However, since a € K, there exists K’ independent such that T'(zg/) = T(xx) Ua. Since
T(xg) CTI)NT(J)and a € T(I)NT(J), we have that T(xx) CT(I)NT(J). We see now
that v < rg < x7, 2y, and this contradicts the claim that xg is the meet of x; and z;. [

If A C MI(L), let x4 denote the meet of all elements x; for I C A independent. The
element x4 € L is equal to zx for some independent set K, and by induction on Lemma
3.1.9, we have that K C A. Let I(A) denote this independent set, and note that if A is itself
independent, then /(A) = A by Lemma 3.1.7.
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Lemma 3.1.10. If A, B C MI(L), then xa V 25 < Tanp, and x4 N xp < Taup.

Proof. For the first inequality, let I be independent with I C AN B, and note that I C A
and I C B, so x4 < z; and zp < z;. In particular, x4 V xp < xy, so since this holds for
arbitrary I C AN B, it is also true for the meet of all such elements, hence x4 Vg < xanB.

For the second inequality, let I be independent with I C AU B, and let [y = I N A, and
I, = 1IN B. By Lemma 3.1.7 both I; and I, are independent, and they satisfy z,,x;, > x;.
Thus x;, A zy, > x5, and in fact we will see that x;, Az, = z;.

If K isindependent with xx = x;, Axy,, then by Lemma 3.1.9, we have that K C IyUl, =
I. For a € I, suppose without loss of generality that a € [;. In particular, a ¢ T'(zy,), and
this implies a ¢ T'(x) because x;, > xx. But by Lemma 3.1.8, since xx > x;, we have that
I C KUT(zk), and so we conclude that a € K. Since a € I was arbitrary, we thus have
I C K, so the two sets are equal.

Finally, note that since x;, Az, =y and I C A, I, C B, we have that 24 A xp < x;.
Since I was chosen arbitrarily in AU B, we conclude x4 A x5 < x4uB. O

3.2 Definition and Fundamental Properties

In [27], Michel Las Vergnas defined partial orderings on the bases of an ordered matroid
which are derived from the notion of matroid activity. His external order, defined in terms
of matroid external activity, is the starting point for the coming developments.

Definition 3.2.1 ([27]). Let M be an ordered matroid. Then Las Vergnas’s external
order on the set of bases of M is defined by

By <ext B iff EP(B;) 2 EP(By).

The poset obtained by this definition depends on the ordering associated with M, but
has some suggestive properties, summarized in the following.

Proposition 3.2.2. Let M = (E,I) be an ordered matroid, and let P = (B(M), <;,.) be
the external order on the bases of M. Let L denote the poset P with an additional minimal
element O added to the ground set. Then

e P is a graded poset, graded by |EP(B)]

e Two bases By and Bs satisfy a covering relation By < By in P iff By = By \ bU a,
where b € By, and a is the mazimal element of bo(By,b) externally active with respect
to By. In this case, EP(By) = EP(B;)Ub

o [ is a lattice with combinatorially defined meet and join operators

A dual order, the internal order, can be derived from the external order on the dual
ordered matroid M*, and has analogous properties.
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The Generalized External Order

In the same paper, Las Vergnas defined a generalized notion of matroid activity which will
be the key to generalizing the external order.

Definition 3.2.3. Let M = (E,I) be an ordered matroid, and let A C E. Then we say
that x € E is M-active with respect to A if there is a circuit C' of M with z € C C AUz

such that z is the smallest element of C. We denote the set of such M-active elements by
Actyr(A), and define

1. EAy(A) = Actyr(A)\ A

2. EPy(A) == (E\ A)\ EAp(A)
3. TAy(A) = Acty-(E\ A)N A
4. TPy (A) == A\ IAy(A)

In particular, the above definition reduces to the classical definition of matroid activity
when A is chosen to be a basis of M.

One of the primary properties of external activity that allows the construction of the
external lattice on bases is the fact that the map

B — EP(B)

is one-to-one. This characteristic fails spectacularly for the generalized definition of external
activity. However, when we restrict our attention to independent sets, the situation is better.

Lemma 3.2.4. Let M = (E,L) be an ordered matroid, and let I € 1. Then if F' is the flat
spanned by I, we have
Actyr (1) = Actpg, ().

Proof. Suppose that « € Acty,.(I). Then z € F, and there is a circuit C' of M|p such that
x € C CTUx and z is the smallest element of C'. However, the circuits of M| are just the
circuits of M which are contained in F, so in particular we have that C' is also a circuit of
M, which shows that = € Acty/ ().

Now suppose that x € Acty/ (). Then there is a circuit C' of M such that z € C C Uz
and z is the smallest element of C'. In particular, we have that C'\ z is an independent
subset of F.

If x ¢ F, then we would have x ¢ span(C'\ z), which would imply that C' = (C'\ z) Uz
is independent, a contradiction. Thus it must be the case that x € F. This means that
C C IUx C F, so this implies that C is also a circuit of M|r. Since C still satisfies the
conditions required by the definition of activity in M|r, we conclude that x € Acty,. (). O

In particular, we have the following.
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Corollary 3.2.5. If M = (E,1) is an ordered matroid and I € I with F' = span([), then
EPy (1) = EPy (1)U (B F),

and in particular,

F =span(E \ EPy/(1)).

Proof. The first equality follows directly from the above lemma, noting that Acty,(I) =
Actyy. (1) € F. The second equality follows because

I CE\EPy(I)CF.
O
Corollary 3.2.6. If M is an ordered matroid, then the map EPy : 1 — 2F is one-to-one.

Proof. From previous theory we know that EP is one-to-one when restricted to the bases
of a matroid. Now let I,J be distinct independent sets of M, with F; = span(I) and
Fjy =span(J). If F; # Fj, then by the above lemma,

span(E \ EPy (1)) = F; # Fj = span(E \ EP/(J)).

Thus in this case the two passive sets cannot be equal.
If F1 = F}, call this common spanning flat F'. Then I and J are distinct bases of the
restriction matroid M|p. This gives that EP ), (1) # EP . (J), so

EPy (1) = EP (1) U (E'\ F) # EP . (J) U (E\ F) = EPy(J)
because the unions with (E \ F') are disjoint unions. O

With this result in mind, we extend Las Vergnas’s external order to the independent sets
of an ordered matroid.

Definition 3.2.7. Let M be an ordered matroid. Then the external order on the inde-
pendent sets of M is defined by

I <exe I iff EP(I) D EP(I).

In particular, because EP restricted to the bases of M is the same as the classical definition
used by Las Vergnas, the original external order on the bases of M appears as a subposet
of this generalization. As noted in the introduction, for technical convenience we will work
with the reverse of this order,

I <%, I iff EP(I,) € EP(Iy).

ext

Whenever we refer to the external order, we will be referring to the reversed order <7, unless
otherwise noted.

To understand the properties of the generalized external order, we will relate the notion
of matroid external activity to an analogous notion for antimatroids, as follows. We first
note that the rooted circuits of an antimatroid can be thought of as minimal obstructions
to extending feasible sets.
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Lemma 3.2.8. Let (E,F) be an antimatroid with associated join-distributive lattice L, let
x €L, andleta € E\T(x). Then a € I(x) if and only if each rooted circuit (C,a) of F has
nonempty intersection with T'(x).

Proof. 1f a € I(x), then T'(z) Ua is a feasible set. If a rooted circuit (C,a) is disjoint from
T(x), then the intersection of C' with T'(z) U a is equal to the singleton set {a}. However,
this violates the definition from Proposition 2.1.17 of the root of a rooted circuit.

On the other hand, if each rooted circuit (C,a) has nonempty intersection with T'(x),
then the intersection of C' with T'(x) U a is not equal to the singleton set {a}, and so by
Proposition 2.1.18, we have that T'(x) Ua € F, so a € I(x). O

A consequence of this fact is that the rooted circuits of an antimatroid allow us to recover
the feasible set associated to a given independent set without reference to any other global
structure of the antimatroid.

Lemma 3.2.9. Let (E,F) be an antimatroid with associated join-distributive lattice L, and
let x € L. Then

T(x)={ac E\I(z) : C € I(x)Ua for any (C,a) € C(F)}.

Proof. Let Ty(x) denote the set in the right side of the equality, and let a be an arbitrary
element in £\ I(z). If a ¢ To(x), then there is a rooted circuit (C,a) € C such that
C C I(z) Ua. But then C'\ a C I(x), so C NT(x) is either {a} if a € T'(z) or empty
if a ¢ T'(x). By Proposition 2.1.18, since T'(xz) € F, we see that C' N T (z) # {a}, so we
conclude that in this case, a ¢ T'(x). Thus T'(x) C Ty(z).

Now suppose that a € To(x). If I(z) Ua is independent, say I(y) = I(x) U a, then by
Lemma 3.1.7 we know that x > y, so by Lemma 3.1.8, I(y) C I(x)UT(x), and thus a € T'(x).

If I(x)Ua is not independent, it contains a rooted circuit (C,b) € C. Since any subset of
I(x) is independent and thus not a circuit, we must have that a € C. However, a cannot be
the root of C' because in this case C' C I(z) U a violates the fact that a € Ty(z). However,
if b # a then b € I(z), so by Lemma 3.2.8 we have that C' N T'(z) is nonempty. Since
all elements of C aside from a are in I(z) which is disjoint from T'(z), we conclude that
a € T(z). Thus To(z) C T'(x) as well. O

In light of this lemma, it makes sense to define the external activity in an antimatroid as
follows.

Definition 3.2.10. Let (E,F) be an antimatroid with rooted circuits C, and let I be an
independent set. Then for a € E'\ I, we say that a is externally active with respect to I
if there exists a rooted circuit (C,a) € C such that C' C I Ua. Otherwise we say that a is
externally passive.

We denote the active elements of F by EAx(I), and the passive elements by EP z(I),
where the subscripts may be omitted if there is no risk of ambiguity. If L is a join-distributive
lattice, then EA;(z) and EPp(x) denote the active and passive elements of I(z) in the
associated antimatroid F(L).
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In particular, for x € L a join-distributive lattice, Lemma 3.2.9 shows that T'(z) is the
set of externally passive elements of I(z).
We can now connect the external order with the theory of antimatroids.

Proposition 3.2.11. If M is an ordered matroid, then the collection of rooted sets
C =Coxt(M) = {(C,min(C)) : C€C(M)}
satisfies the axioms of rooted antimatroid circuits.

Proof. For axiom (CI1), note that if (Cy,a) and (Cs,a) are in C, then C; and Cj are circuits
of M, and thus C; is not a proper subset of Cy by properties of matroid circuits.

For axiom (CI2), suppose (C1,a1),(Cy,a2) € C with a; € Cy \ ay. By definition of C we
know that a; = min(C}) and as = min(Cy), so in particular we know that a; > as, and
a9 ¢ Cl.

Note that matroid circuits satisty the following strong elimination axiom: If C4,Cy are
circuits with a; € C1 NCy and ay € Cy \ C4, then there is a circuit Cy5 C (C7UCy) \ a3 which
contains as.

Applying this elimination axiom to our present circuits, we obtain a matroid circuit
C3 C (C1UCy)\ ay with as € C5. ag is minimal in C7 UCy, so this implies that as = min(Cs),
and (C3,aq) € C. Thus C satisfies axiom (CI2) as well. O

Proposition 3.2.11 allows us to conclude the following structural characterization of the
generalized external order.

Definition 3.2.12. If M is an ordered matroid, let
Fext = -Fext<M) = {EPM<I) I e ]I(M)} .

Theorem 1. If M is an ordered matroid, then Fex (M) is the collection of feasible sets of
the antimatroid with rooted circuits Coxy(M).

Proof. Denote M = (E,I). By Proposition 3.2.11, Ce(M) forms the rooted circuits of
an antimatroid (F,F). Let L be the associated join-distributive lattice. By definition of
antimatroid circuits as minimal dependent sets, we have that I(L) = I so that the sets
I(x),x € L are in correspondence with the matroid independent sets of M.

By Lemma 3.2.9, any element x € L has

T(x)=EPp(z)={a€c E\I(x) : C € I(x)Ua for any (C,a) € Coxt(M)}.

In particular, we can see that EPp(z) = EPy(I(z)) for each z € L, and so the feasible set
of F associated with each independent set I(x) is given by the set of (matroid) externally
passive elements of I(x). Thus the feasible sets of F are exactly the sets in Fey (M), as we
wished to show. O
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A further consequence of this argument is that the independent set associated with
each feasible set EP (1) in Fext (M) is in fact 1. Following from this correspondence with
antimatroids, we may apply Proposition 2.1.44 to obtain the following.

Corollary 3.2.13. If M = (E,1Q) is an ordered matroid, then the external order <% . on 1 is

€
a join-distributive lattice. Meet-irreducible sets in the lattice correspond with the non-loops

of E, and joins correspond to taking unions of externally passive sets.

Combinatorial Structure

Using the antimatroid structure of the generalized external order, we are able to prove a
variety of properties of the poset, many of which generalize the properties enjoyed by the
classical order on matroid bases. In the following, M = (E,I) denotes an ordered matroid.

Lemma 3.2.14. The following basic properties hold for independent sets and externally
passive sets tn M.

1. IfI,J €1, then I <!, J if and only if EP(I)NJ =10
2. IfI,J €l and J 2 I, then J <l 1
9. IfI,Jel, then INJCIUJ

Proof. The three parts are restatements of Lemmas 3.1.4, 3.1.7 and 3.1.9 respectively in the
context of the generalized external order. O]

Lemma 3.2.15. If M = (E,I) is an ordered matroid, I € I, and a € E \ EP(I), the set
EP(I)Ua is the set of externally passive elements of some independent set iff a € I.

Proof. Let L be the join-distributive lattice associated with the antimatroid Fe (M), and
let € L be the element with I(z) = I. Then I(z) is the set of feasible extensions of
T(x) = EP(I), so EP(I) U a is feasible in Fet (M) iff a € I(z) = I. The result follows
because the feasible sets are exactly the sets of externally passive elements. O]

We now characterize the covering relations in the external order.

Definition 3.2.16. For an ordered matroid M, if I us independent and a € I, define the
active chain of a in [ to be the set

ch(Z,a) = EAp (1) Nbo(L,a).

Proposition 3.2.17. Let M be an ordered matroid, and let I € I(M). Then for each a € I,
define the independent set J, by

e [fch(I,a) is nonempty, J, = I \ a Umax(ch(/,a)).
o [fch(I,a) is empty, J, =1\ a.
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For each a € I, we have EP(J,) = EP(I) U a, and thus the sets J, are the independent sets
covering I in the external order.

Proof. Let a € I, and denote F' = span([/), Iy = I \ a, and Fjy = span(/y).

From Lemma 3.2.15 we know that there exists an independent set J such that EP(J) =
EP(I)Ua. Since E'\ F C EP(I) and EP(J) NJ = ), we have that J C F.

Using the antimatroid interval property without upper bounds, with the fact that inde-
pendent sets are the sets of antimatroid feasible extensions, we know that Iy C J. Thus
since J is independent and contained in F'| either J = Iy, or J = I Ub for some b € bo([, a).
In the latter case, since b € J, b ¢ EP(J) = EP(I) U a, so this implies that b is an element
of the active chain ch(7,a).

If ch(I, a) is empty, then we must be in the first case above, so J = I'\ a = J, as desired.

If ch(I, a) is nonempty, let ¢ be its maximal element, which in particular is in F'\ Fp, and
is not in EP(I)Ua. On one hand, suppose that J = I,. Then F'\span(J) = F'\ Fy, C EP(J),
so ¢ € EP(J), and this implies that EP(J) # EP (/) U a, a contradiction.

On the other hand, suppose that J = Iy U for some ¢’ € ch(I,a), ¢ < c¢. Then because
¢ ¢ Fy, we must have ci(J',¢) € Iy Uc, so ¢ € ci(J',¢). This implies that ¢ is externally
passive since ¢’ < ¢, so again EP(J) # EP(I) U a.

Since there is only one remaining possibility for J, we conclude that J = I'\aUc = J,. O

The downward covering relations are somewhat more complicated to describe in general,
but a particular covering always exists.

Lemma 3.2.18. Let M be an ordered matroid. If I is independent and x = min(EP(I)),
then there is an independent set J such that EP(J) = EP(I) \ z.

Proof. 1f x ¢ span([), then let J = I Ux. Then the active chain ch(J, z) is empty, so from
Proposition 3.2.17, EP(J) = EP(I) \ .

If = € span([]), then let y = min(ci(/,x)), and let J =1\ yUz. Then ci(J,y) = ci(I, z),
so since y < x, we have that y is externally active with respect to J, and in particular is
contained in the active chain ch(J, z).

In fact, we can show that y = max(ch(J,z)). If this were not the case, then there is an
element z > y with z € EA(J) Nbo(J,x). Then z € bo(J,z) = bo(/,y), which means that
x €ci(J,z) and y € ci(I, z). Since z € EA(J), we have z < z, and since z > y we have that
z € EP(I). This contradicts the assumption that x was minimal in EP([]).

We conclude that y = max(ch(J,x)), so again by Proposition 3.2.17, we have that
EP(J) = EP(I) \ . O
Corollary 3.2.19. If M = (E,1) is an ordered matroid and I, J € 1 satisfy I <’ J, then I

—ext

1s lexicographically greater than or equal to J, where prefixes are considered small.

Proof. This follows because ch(7, x) consists only of elements smaller than x, so any covering
relation corresponds with either a replacement of an element with a smaller one, or with
removal of an element entirely. O
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We can give explicit combinatorial formulations for the meet and join of independent sets
in the external order.

Lemma 3.2.20. If A C E, then the lex mazimal basis B of M \ A satisfies EP(B) C A. If
I >, B for some independent set I, then EP(I)\ A is nonempty.

ext

Proof. Suppose € EP(B)\ A. Then the element y = min(ci(B, z)) is an element of B, and
the basis B’ = B\ y Uz gives a basis in M \ A which is lex greater than B, a contradiction.
Thus EP(B) C A.

If I >%, B, then there is an independent set J <%, I which covers B, so that EP(J) =

EP(B)Uxz for some z € E. However, such a J exists exactly when x € B, so since B C E'\ A,
we have x ¢ A. Thus EP(]) \ A is nonempty. O

Proposition 3.2.21. The minimum element of the external order is the lex maximal basis
of M, and the maximum element of the external order is the empty set. If I,J € 1, then
meets and joins in the external order are described by

o [ A J is the lex maximal basis of M \ (EP(I) N EP(J))
o [V J is the lex mazimal basis of M \ (EP(I) UEP(J))

Proof. The proof is by repeated application of Lemma 3.2.20. The lex maximal basis B of
M = M\ 0 has EP(B) C ), so B is the minimum element in the external order. Likewise,
EP(() is the ground set of M minus any loops (which are never externally passive), so () is
the maximum element.

To characterize meets, let K be the lex maximal basis of M \ (EP(I) N EP(J)). Then
EP(K) C EP(I) NEP(J), so we have that K </ I A J. Further, if K’ > K, then EP(K’)
contains an element outside of EP(I) N EP(J), which shows that K’ is not less than one of
I or J. Since K <}, I, J and no larger independent set is, we conclude that K =1 A J.

To characterize joins, let K be the lex maximal basis of M \ (EP(I) U EP(J)), so that
EP(K) C EP(/) UEP(J). By properties of antimatroids, EP(I v J) = EP(I) U EP(J), so
in particular, we have K <! IV J. If this relation is not equality however, we note that
EP(I Vv J) contains an element outside of EP(I) UEP(.J), which is a contradiction. Thus we

must have equality, so K =1V J. O
From this we also conclude
Corollary 3.2.22. [ is the lex mazimal basis of M \ EP(I) for any independent set I.

As a further consequence, we obtain the following partition of the boolean lattice into
boolean subintervals.

Proposition 3.2.23. If M is an ordered matroid with ground set E, then the intervals
[I,I UEA(I)] for I independent

form a partition of the boolean lattice 2F.



CHAPTER 3. THE GENERALIZED EXTERNAL ORDER 45

This partition resembles the classic partition of Crapo (see for instance [7]), and in fact,
it can be shown that this partition is a refinement of Crapo’s. Gordon and McMahon [22]
mention that the existence of such a partition is implied by their Theorem 2.5 applied to
matroid independent sets, and this explicit form can be proved by first generalizing the idea
of their Proposition 2.6 to external activity for arbitrary independent sets. Interestingly, an
independent proof is obtained by instead applying Theorem 2.5 to the antimatroid Fexi (M ).
This gives the interval partition

[EP(I), E '\ I] for I independent,

and the desired interval partition is obtained from this by taking set complements. The
details of these proofs are omitted.

Finally, we note that the external order is a refinement of the geometric lattice of flats
of the associated matroid.

Proposition 3.2.24. The natural map from the external order <}, on M to the geomet-
ric lattice of flats of M given by I w span(l) is surjective and monotone decreasing. In
particular, the external order on M is a refinement of the geometric lattice of flats of M.

Proof. Suppose I and J are independent with I <! J. In particular, EP(/) contains all

elements outside of span(/), and by Lemma 3.2.14, we also have EP(I) N J = (). Thus
J C span(I), so we conclude span(.J) C span([). O

Note in particular that the classical ordering convention <. which is consistent with
Las Vergnas’s original definition then gives an order preserving surjection onto the geometric
lattice of flats of a matroid. This is a significant reason why in some contexts the classical
order convention, rather than the reverse, may be more convenient.

3.3 Lattice Theoretic Classification

With the external order identified as a join-distributive lattice, a natural question which
arises is to classify the lattices this construction produces. To do so, we will need to incor-
porate two main ideas.

First, we will define the subclass of matroidal join-distributive lattices which characterizes
the join-distributive lattices whose independent are those of a matroid. Second, we will
identify a property, S, EL-shellability, which ensures a certain order consistency condition
for the roots of circuits.

We will see in Theorem 3 that these two lattice-theoretic properties, which are satisfied by
the external order, are in fact enough to characterize the lattices isomorphic to the external
order of an ordered matroid.
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Matroidal Join-distributive Lattices

The most apparent connection between the external order and the underlying ordered ma-
troid is in the equality of the matroid and antimatroid independent sets. We now define the
class of matroidal join-distributive lattices to further explore this connection.

Definition 3.3.1. If L is a join-distributive lattice, define the covering rank function r,
of L by
re:x— [I(z)],

counting the number of elements in L which cover z.

Definition 3.3.2. We call a join-distributive lattice L matroidal if the covering rank func-
tion 7. is decreasing, and satisfies the semimodular inequality

re(z ANy) +re(rVy) <re(r) +re(y).

Proposition 3.3.3. If L is a matroidal join-distributive lattice, then I(L) is the collection
of independent sets of a matroid with ground set MI(L).

Proof. For notational convenience, let I = I(L) and let £ = MI(L). We will show that the
function 7 : 2% — Z-, defined by

r(A) =max{|I| : I €, I C A}

is a matroid rank function on 2 whose independent sets are I.

Both the fact that 0 < r(A) < |A| for any subset A and that r(A) < r(B) for subsets
A C B C FE are clear from the definition of . Thus all that remains is to prove the
semimodular inequality

r(AUB)+r(ANB) <r(A) +r(B)

for any subsets A, B C F.
Recall that for arbitrary A C E, we denote by x4 the meet of the elements

Iy ={z; : I C Aisindependent},

In general, x4 is equal to a minimal element x; with I C A independent, and since r, is
decreasing in L, covering rank is maximized in [4 by x;. This means that I is a maximal
size independent subset of A, so we conclude that r(A) = r.(z4).

Now for A, B C E, by Lemma 3.1.10 we know 24 A xp < xaup and x4 V 5 < TanB.
Thus with the semimodular inequality for . and because r. is a decreasing function, we have

r(AUB)+r(ANB) =r.(zaup) + re(Tans)
<rdxaNzg)+r(raVap)

<7e(za) +re(TB)
=r(A)+r(B).
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Thus r satisfies the semimodular inequality.

Finally, note that if A is independent, then r(A) = |A|, and if A is not independent, then
the independent subsets of A are proper, so r(A) < |A|. Thus the sets A € I are exactly
the subsets of E for which r(A) = |A], and so I is the set of independent sets of the matroid
with rank function r. O

With a little more work, we can also prove the converse of this statement: a join-
distributive lattice whose independent sets form a matroid is itself matroidal. To this end,
a few additional lemmas will be useful.

Definition 3.3.4. Let L be a join distributive lattice whose independent sets are the inde-
pendent sets of a matroid. Then for x € L, let F, denote the matroid flat cl(T'(x)°).

Lemma 3.3.5. If L is a join-distributive lattice whose independent sets are the independent
sets of a matroid M, then for any x € L, the independent set I(x) is a basis of F,. In
particular, r.(z) = |I(x)| = r(Fy).

Proof. Since I(z) C T(x)°, we have I(x) C F, for any xz, so suppose there is an z € L
such that I(z) doesn’t span F,. In particular, by properties of matroids there is an element
a € T(x)°\ I(x) such that I(z) U a is independent in M, and since I(L) = I(M), there
is an element y € L with I(y) = I(x) Ua. By Lemma 3.1.7, we have y < z, and by
Lemma 3.1.8, this means that I(y) C I(z) UT(x). However, this is a contradiction since
a€T(x)\I(x). O

Lemma 3.3.6. Let L be a join-distributive lattice whose independent sets are the independent
sets of a matroid M. If x,y € L satisfy I(x) 2 I(y), then the elements of T(y) \ T(x) lie
outside of F.

Proof. If © = y this is vacuously true, so suppose = # y. By Lemma 3.1.7, we have x < y,
so there is a sequence of elements © = 25 < z; < -+ - < 2z, = y with edge labels a; = e(z;_1, 2;).
In particular, T'(y) \ T'(x) = {a1, ..., ax}.

For each i, a; € I(z;_1). If a; were in I(y) for some 7, then we would have a; € T(z;) C
T(y), so in particular this contradicts disjointness of T'(y) and I(y). By induction using
Lemma 3.1.8, we see that I(z;) O I(y) for each i. Thus the sets I(y) Ua; C I(z_1) are
independent, and a; ¢ cl(I(y)) for each . The conclusion follows from Lemma 3.3.5. O

Lemma 3.3.7. Let L be a join-distributive lattice whose independent sets are the independent
sets of a matroid M. If x,y € L, then

e F,, CF,NF,

o Fypny =cl(F, UF),)
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Proof. For the first relation, note that T'(z V y) = T(z) U T(y), so
Fayy = (T(x) UT(y))*) = l(T(x)° N T(y)) € cl(T(2)) Nel(T(y)°) = Fe O Fy.
For the second, begin by noticing that T'(x A y) C T(x) NT(y), so
Fony = l(T(x Ay)) 2 d(T(2) NT(y)*) = (T (2)° UT(y)) = cl(F: UF,).

Let Gypy = cl(F, UF,), and suppose the containment Fj,, D Gyp, is proper. Then since
I(z Ay) is a basis for F,,,, we have I(x A y) \ G;ay is nonempty, containing an element a.
Then there exists z € L with I(z) = I(z Ay) \ a, and by Lemma 3.1.7, we have z > z A y.

Since a lies outside of Gy, we know that I(z) = I(x A y) \ a has span F, DO Gpy, SO
in particular F, contains both F, and F,. By Lemma 3.3.6, since I(z A y) D I(z), we know
that T'(z) \ T'(z A y) contains only elements outside of F,. However, since F,, F,, C F,, we

have
T()\T(xNy) CF; CF;NF; CT(x)NT(y).

Noting that T'(z A y) C T(x) N T(y), we further conclude that T'(z) C T'(x) N T(y), and
thus 2 < o A'y. This contradicts z > x A y, so we see that the inclusion Fy,, 2 Gp, must
be equality as desired. O

Finally, we can prove the converse to Proposition 3.3.3.

Proposition 3.3.8. Let L be a join-distributive lattice. If I(L) is the collection of indepen-
dent sets of a matroid, then L is matroidal.

Proof. Suppose that x <y in L, so that T'(z) C T'(y). Then in particular, F, = cl(T'(x)) 2
c(T'(y)°) = F,, so

re(x) = r(Fy) > r(F,) =r(y),
and thus r. is decreasing. To prove that r. satisfies the semimodular inequality, we appeal

to the corresponding inequality for matroid rank functions. Using Lemmas 3.3.5 and 3.3.7,
we have

re(x ANy) +re(xVy) =1(Fony) +17(Fovy)
UF)))+r(F,NE)

< r(cl(F,
=r(F,UF,)+r(F,NFE,)

< r(F) +r(F)

= re(r) + 7e(y)-

Gathering the above results, we have proven the following.

Theorem 2. A join-distributive lattice L is matroidal if and only if I(L) is the collection of
independent sets of a matroid.
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It is clear from this result that the generalized external order for an ordered matroid M
gives a matroidal join-distributive lattice. A natural question to address, then, is whether
all matroidal join-distributive lattices arise as the external order for some ordering of their
underlying matroid. In fact, this question can be answered in the negative, as the following
counterexample demonstrates.

Ezample. Consider the antimatroid on ground set E = {a,b,c,d} whose feasible sets are
F = {0,d,c,bd, cd,ac,abd, bed, acd, abc}. The Hasse diagram for the corresponding join-
distributive lattice appears in Figure 3.2.

In particular, the collection of independent sets of this antimatroid is the uniform matroid
U? of rank 2 on 4 elements. Suppose this were the external order with respect to some total
ordering < on FE. In this case, we observe that

e q is active with respect to I = be, so a is smallest in the basic circuit ci(be, a) = abe
e b is active with respect to I = ad, so b is smallest in the basic circuit ci(ad,b) = abd

But this implies that both ¢ < b and b < a, a contradiction. Thus this matroidal join-
distributive lattice cannot come from a total ordering on the ground set F.

abed 0

/c//a/ \b\\d\ // \\

abd bed acd abe

\a\bd/C/ \b\ /a/ \d\ /b/ \ / \ / \ /

cd /ac
\ / N\

VAN \ / \ /
d\ /C be ad
N/ \ /

0 cd

Figure 3.2: Feasible sets of F with edge labels, and corresponding independent sets

The External Order and S, EL-labelings

To bridge the gap between matroidal join-distributive lattices and the external order, we
will need one more key notion, a combinatorial construction on a graded poset called an .S,
EL-labeling, or snelling.

Definition 3.3.9. If P is a finite poset, then a map A : Cov(P) — Z on the covering pairs
of P is called an edge labeling of P.



CHAPTER 3. THE GENERALIZED EXTERNAL ORDER 50

If m is an unrefinable chain x¢y < z; < --- < x; in P, then the sequence

A(m) = (A (zo, x1), M1, 22), . ., MTp_1, Tk))

is called the label sequence of m, and an unrefinable chain m is called increasing if A\(m)
is increasing.

Definition 3.3.10. If P is a finite graded poset, then an edge labeling A is called an edge
lexicographic or EL-labeling if

e Any interval [z,y] C P has a unique increasing maximal chain mq

e Any other maximal chain in [z, y] has edge labels which are lex greater than the edge
labels of mg

The existence of an EL-labeling on a poset P in particular implies that the order complex
of P is shellable, and this is the application for which the notion was introduced by Bjorner
in [6]. In particular, a poset which admits an EL-labeling is called EL-shellable.

EL-labelings are not sufficiently rigid to capture the combinatorial property we are trying
to isolate, but the following strengthening, first introduced by McNamara in [32], couples
well with the set system structure of antimatroids.

Definition 3.3.11. An EL-labeling on a finite graded poset P is called an S,, EL-labeling or
snelling if the label sequence A\(m) of any maximal chain in P is additionally a permutation
of the integers 1 to n. A poset which admits an .S,, EL-labeling is called S,, EL-shellable.

We proceed to relate S,, EL-labelings of join-distributive lattices to the following useful
property for antimatroid circuits.

Definition 3.3.12. If (E,F) is an antimatroid with rooted circuits C, we say that F is
confluent if there is an ordering < on the elements of E such that the root of any rooted
circuit C' € C is given by = max<(C). We call such an ordering a confluent ordering for
F. Similarly, a join-distributive lattice is called confluent if its corresponding antimatroid is
confluent.

This definition captures the essential structure that distinguishes the external order from
other matroidal join-distributive lattices. A useful consequence of confluence is that com-
parable feasible sets in a confluent antimatroid have lex comparable independent sets in the
following sense.

Lemma 3.3.13. In a confluent join-distributive lattice L, if v,y € L satisfy x < y, then
I(x) < I(y) in lex ordering, where prefizes of a word S are considered larger than S.
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Proof. If © <y, then T'(y) = T'(z) U a for some a € E = MI(L), and in particular a € I(z).
By Lemma 3.1.8, I(z) \ a C I(y). Since I(y) is the set of elements in E \ T'(y) which are
not the root of a circuit disjoint from 7'(y), any new elements in I(y) \ I(x) are elements b
which are the root of a circuit (C,b) with a € C. Since the ordering on E is confluent, the
root b is maximal in C', so b > a.

This shows that I(y) consists of the elements in I(z) \ a plus a (potentially empty) set of
elements S all of which are larger than a. The ordering I(z) < I(y) follows, and the general
fact for y not covering x follows by induction on the length of a maximal chain between x
and y. O

The main structural result of this section is Proposition 3.3.15, which is similar to the
work of Armstrong in [5] characterizing supersolvable matroids. In fact, our result can be
derived from Armstrong’s Theorem 2.13, which lists several conditions which are equivalent
to S,, EL-shellability of a join-distributive lattice. Our result in particular shows that the
condition “(F,F) is a confluent antimatroid” is also equivalent to the conditions listed in
Armstrong’s theorem.

We provide an independent proof of Proposition 3.3.15 for the reader’s convenience. The
proof has the particular advantage of more directly relating S,, EL-labelings with the natural
labelings of antimatroids without needing to pass through the theory of supersolvable lattices.

We begin by proving the following lemma.

Lemma 3.3.14. Let L be a join-distributive lattice. Then any S, FEL-labeling of L is equiv-
alent to the natural edge labeling of L for some ordering of its labels.

Proof. Let € : Cov(L) — [n| be an S,, EL-labeling of L, and let e : Cov(L) — MI(L) denote
the natural edge labeling of L. First we prove that for any diamond of elements z,y, 2’y € L
as below, we have that e(z,2") = €(y,v).

AN
\./

To see this, suppose that m is a maximal chain of I which includes the covering relations
x <2’ <y, and let m’ be the maximal chain of L which is identical to m except that it
replaces the covering relations x < 2’ < ¢/ with the relations x < y < y’. Then the edge labels
of m and m’ form permutations of [n], and the edge labels below = and above ' in each chain
are identical.

In particular, since both are permutations, the sets of labels {e(z,z’),e(2’,y')} and
{e(z,y),€e(y,y')} are the same, say {a,b} with a < b. Since € is an S, EL-labeling, ex-
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actly one chain in the interval [x,y/] is in increasing order, which means that e gives one of
the two labelings:

b\x/a \ /

In either case, €(x,2") = €(y,v’), as we wished to show.

Now let x, 2" € L be a covering pair, z < 2, let y € MI(L) be the edge label e(z, 2’), and
let ¥’ be the unique element covering y in L. We will show that in this case, e(x, z') = €(y, v').

To see this, note that z < y, and let m be a maximal chain between z and y, given by
rT=zyg<z <---<z=y. If k=0, then x = y and the desired relation holds trivially.
Otherwise, by the interval property without upper bounds, there exist elements z. > z; with
e(z;, #,) =y, and we observe a parallel chain m’ given by 2’ = 2{ < z; <--- <z, =y'. Then
each pair of coverings z; < z; and 241 < z;,; form a diamond of elements as in the previous
argument, and so €(z;, 2;) = €(zi11, 2, ) for each i. This shows that e(x,2") = €(y,v').

Finally, let m now denote the unique increasing maximal chain of L in the labeling e,
given by 0 = zp < 2y < --- < x, = 1. In particular, since the labels of m are an increasing
permutation of [n|, we have that e(x;_1,x;) = i for each i. Then each covering in this chain
corresponds with the meet irreducible y; = e(z;_1, z;), which is covered by a unique element
y.. By the above argument, €(y;, y}) = €(z;, z}) =i as well.

In particular, this implies that for any covering relation x < 2z’ in L, the label e(z,2’)
is given by the label €(y;,y!) = i, where e(x,2') = y;. Thus e(z,2") = p(e(z,2’)) for the
bijection ¢ : MI(L) — [n] given by y; — i, and we see that € is equivalent to e under the
ordering induced by ¢. O

Applying this lemma, we can demonstrate the equivalence of confluence and S, EL-
shellability for join-distributive lattices. We will prove in two parts the following:

Proposition 3.3.15. A join-distributive lattice is S, EL-shellable if and only if it is conflu-
ent.

Lemma 3.3.16. If L is a confluent antimatroid, then the natural edge labeling of L is an
S, EL-labeling for any confluent ordering.

Proof. Fix a confluent ordering of F = MI(L), and as usual, let e : Cov(L) — E denote the
natural edge labeling of L. The fact that the sequence of labels of any maximal chain gives
a permutation of E is clear from the fact that the union of the edge labels of a maximal
chain is equal to E' = T'(1).



CHAPTER 3. THE GENERALIZED EXTERNAL ORDER 53

Thus it is sufficient to show that every interval [x,y] has a unique increasing maximal
chain. Further, since the edge labels of any maximal chain in [z,y]| are a permutation of
T(y) \ T(z) and determine the chain uniquely, it is enough to prove that there is a chain
whose edge labels are the increasing sequence of the elements of T'(y) \ T'(z).

For this, we proceed by induction on the size of T'(y) \ T'(z). If x = y, then the empty
chain is sufficient, so suppose that < y, and let a = min(7'(y) \ T'(x)).

For any z € [z,y|, we have that I(z) is lex greater than or equal to I(x) in the sense
of Lemma 3.3.13. Further, if we denote J = I(z) \ T'(y), then we have J C I(z) by the
antimatroid interval property without upper bounds.

Thus the smallest element of lexicographic divergence between I(x) and I(z) must be an
element b of I(z) NT(y) which is contained in I(z) but not in I(z). In particular we have
beT(y)\T(x). Since a is smallest in T'(y) \ T'(x), if a ¢ I(x), then the smallest element of
divergence between I(x) and I(z) is larger than a, so a ¢ I(z).

However, this holds for any z € [z,y], so if it were the case that a ¢ I(x), then we would
conclude that there are no edges in [z, y] labeled by a, which would imply that a ¢ T'(y), a
contradiction. Thus we must have a € I(x).

In particular, this means that there is an element 2’ covering x such that 7'(z') = T'(z)Ua,
and by induction, there is a unique increasing chain in the interval [2/,y], whose labels are
the increasing permutation of the elements in 7'(y) \ (7'(x) Ua). Appending this chain to the
covering relation x < 2’ gives an increasing chain in [z, y], and completes the proof. O]

Lemma 3.3.17. If L is a non-confluent join-distributive lattice, then L is not S, FEL-
shellable.

Proof. Let (E,F) be the associated antimatroid of L, and suppose that L is non-confluent.
Then for any ordering of E, there is a rooted circuit C' whose root is not maximal in C'.
Suppose that nevertheless, L is S,, EL-shellable. By Lemma 3.3.14, an S,, EL-labeling
corresponds with the natural labeling e : Cov — E for some ordering of E. With respect to
that ordering, there is a rooted circuit (C,a) of F such that a # max(C).
Let b = max(C). By Proposition 2.1.26, the stem C'\ a of C is in the blocker for the
clutter of stems

Cr={D\a : (D,a) an antimatroid cocircuit of F}.

In particular, since a blocker consists of the minimal sets intersecting each set in a clutter,
we have that (C'\ @) \ b is not in the blocker of C}, and so some antimatroid cocircuit (D, a)
must include b in its stem D \ a.

In particular, D is feasible and corresponds with a join-irreducible element of L where
the single feasible set covered by D is D \ a. If x € L satisfies T'(x) = D, then any chain m
given by 0 = z5 < 21 < --- < 2, = x has edge labels which are a permutation of the elements
of D.

Further, since the only feasible set covered by D is D \ a, we have that e(zx_1, zx) = a.
This implies that a comes after b in the sequence of edge labels of m, and so m is not an
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increasing chain. This contradicts the fact that in an S,, EL-labeling, any interval must have
a unique increasing maximal chain. We conclude that no S,, EL-labeling exists, and so a
join-distributive lattice which is non-confluent is not S,, EL-shellable. O

Finally, Proposition 3.3.15 allows us to classify the matroidal join-distributive lattices
which are the external order for a matroid. Specifically, it is immediate that a matroidal
join-distributive lattice L is the external order of an ordered matroid iff it is confluent, in
which case the underlying matroid may be ordered by the reverse of any confluent ordering
of L. Thus we immediately conclude

Corollary 3.3.18. A matroidal join-distributive lattice L with corresponding matroid M is
the external order for some ordering of M if and only if L is S,, EL-shellable.

Aggregating our results to this point, we can now state a complete characterization of
lattices corresponding with the external order of an ordered matroid.

Theorem 3. A finite lattice L is isomorphic to the external order <., of an ordered matroid

if and only if it is join-distributive, matroidal, and S, EL-shellable.

3.4 Deletion and Contraction

We continue by exploring a correspondence between the deletion and contraction operations
of matroids and antimatroids which is introduced by the external order construction. In the
following, let (£, F) denote an antimatroid, and unless otherwise noted, for A C E let F\ A
and F / A denote antimatroid deletion and contraction, as defined in Section 2.1.

Definition 3.4.1. We call an element a € E an extending element of F if a is the root
of any circuit of F which contains it. We say that A C E is an extending set of F if there
is an ordering A = {ay,...,ax} such that a; is an extending element of F \ {a1,...,a;_1} for
each 1.

It is not hard to show that an antimatroid (E,F) is confluent (cf. Section 3.3) if and
only if £ is an extending set. The following lemma relates antimatroid deletion with the
standard greedoid deletion and contraction operations.

Lemma 3.4.2. If A € F is a feasible set, then the antimatroid deletion F \ A is equal to
the greedoid contraction F | A. If A is an extending set of F, then the antimatroid deletion
F\ A is equal to the greedoid deletion F \ A.

The first part of this lemma is discussed in [18], Section 4, but we will prove both parts
here for completeness.

Proof. Because antimatroid and greedoid minors satisfy the usual commutativity properties
of minors, in each case it is sufficient to prove the lemma when A = {a} is a singleton set.
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If A= {a} is a feasible set, then F\ A = {F\a : F € F}. On the other hand, the
greedoid contraction by {a} consists of all sets G C E such that G Ua € F. In particular,
the feasible sets F' containing a correspond with the feasible sets G = F'\ a in the greedoid
contraction, so any feasible set in the greedoid contraction is also feasible in the antimatroid
deletion.

The remaining feasible sets in the antimatroid deletion are sets F' € F with a ¢ F. For
these sets, note that because () C F and () may be extended to {a}, we see by the antimatroid
interval property without upper bounds that F'Ua € F as well. Thus F' = F\a = (FUa)\a
is also feasible in the greedoid contraction.

Now suppose A = {a} where a is an extending element of F. One consequence of being
an extending element is that for any feasible set F, if a € F, then F' \ a is feasible.

To see this, let F' € F be a feasible set containing a, and suppose that F'\ a ¢ F. Then
there exists a rooted circuit (C,z) such that (F'\ @) N C = {z}, and in particular, we have
that the root z is not equal to a. Because a is an extending element, we conclude that
a ¢ C. However, this means that FF N C = {z} as well, so we conclude that F is not feasible,
a contradiction.

From this we see that the antimatroid deletion F\ A = {F \ a : F € F} is given by the
feasible sets of F which don’t contain a. This is exactly the greedoid deletion by {a}. O

Note that for A feasible, it follows directly that F \ A corresponds with the the interval
[A, E] in F via the map F'— F U A. For A extending, it follows that E \ A is feasible, and
F\ A is equal to the interval [, E'\ A] in F.

We now show that matroid and antimatroid deletion are in exact correspondence for
matroidal antimatroids.

Proposition 3.4.3. Suppose that F is matroidal with associated matroid M. Then for
A C E, the antimatroid deletion F \ A is matroidal with associated matroid M \ A. If
F = Fext(M) for an ordered matroid M, then F \ A = Fexe(M \ A), where the order on
M\ A is induced by the order on M.

Proof. Recall that the circuits of an antimatroid are the minimal non-independent sets, so
an antimatroid is matroidal with associated matroid M iff its circuits are the circuits of M.
Now let C denote the collection of rooted circuits of F. Then the circuits of F \ a are
given by
C\a={CeC:Cn{a}=0}.

Forgetting the roots, these are exactly the circuits of M \ a, so we conclude that F \ a is
matroidal with associated matroid M \ a.

Remembering the roots, if M is ordered then F = Fo (M) iff every circuit C' of F has
root z = min(C'). This property is preserved by restricting to a subset of the circuits, so we
see that if F = Fox(M), then F\ a = Foxe(M \ a). O
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Antimatroid contractions do not behave as nicely as deletions with respect to matroid
structure — in many cases, contraction does not even preserve the property of being ma-
troidal! However, for certain contraction sets the situation is still favorable.

Proposition 3.4.4. Suppose that F is matroidal with associated matroid M .

o [or A feasible, the antimatroid contraction F | A is matroidal with associated matroid

M' =M/ A.

o For A extending, the antimatroid contraction F | A is matroidal with associated ma-
troid M' = M\ A.

For either case, if F = Fe(M) for an ordered matroid M, then F | A = Feu(M'), where
the order on M’ is induced by the order on M.

Proof. As in Lemma 3.4.2, it is sufficient to prove these cases when A = {a} is a singleton
set because of commutativity properties of minors.

If A= {a} is a feasible set, then ANC # {a} for any rooted circuit C, and so a is never
the root of a circuit of F. In particular, this means that

C(F/a)=min{(C\a,x): (C,x) e C(F)}.

The circuits of M /a are exactly the underlying sets of the rooted circuits of F /a, so
we conclude that F /a is matroidal with associated matroid M /a. If M is ordered and
F = Fext(M), then any rooted circuit (C’,z) of F /a corresponds with a rooted circuit
(C,z) of F, where C" = C'\ a. Since F = Fext(M), we have x = min(C'), and since x # a,
we have also that = min(C”), so the root of each circuit of F /a is the minimal element of
the circuit. This implies that F /a = Fex (M / a) for the induced order on M /a.

If A= {a} for a an extending element of F, then a is the root of any circuit containing
it. In particular this means that

C(F/a)=min{(C\a,z): (C,x) € C(F),x # a}
={(C,z) : (C,z) €C(F),a ¢ C}=C(F\a).

Thus in this case, F /a = F \ a, and the result follows from Proposition 3.4.3. O]

Although antimatroid contraction doesn’t preserve matroid structure for arbitrary con-
traction sets, if F is the external order for an ordered matroid, the resulting set system is
related nicely to the external orders for the corresponding matroid deletion and contraction.
We start with two lemmas, one due to Dietrich, and the other a short technical lemma on
matroid deletions.

Lemma 3.4.5 ([18], Lemma 13). If (C,z) € C(F) and A C E with x ¢ A, then there exists
a rooted circuit (C',z) € C(F /] A) with C' C C'\ A.
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Lemma 3.4.6. Let M be a matroid on ground set E, and let A C E. If C € C(M), then
for each x € C'\ A, there exists C' € C(M |/ A) with C" C C and x € C'.

Proof. We induct on the size of A. If A = (), then the lemma holds trivially. Now suppose
that |A| > 1, and let a € A. We will apply a result from [35] Exercise 3.1.3, which states
that

e If a € C, then either a is a loop or C'\ a is a circuit of M /a
e If a ¢ C, then C is a union of circuits of M /a

Let C' € C, assume without loss of generality that C'\ A is nonempty, and let x € C'\ A.
Suppose first that a € C. If a were a loop, this would imply C' = {a}, which contradicts
our assumption that C'\ A is nonempty. By the above, we now have that C'\ a is a circuit
of M /a. In particular, z € (C'\ a) \ (A \ a), so by induction there exists a circuit C’ of
M/A=(M/a)/(A\ a)such that ¢’ C C'\ a C C and = € C’. Thus the lemma holds.
Now suppose that a ¢ C. Then C' is a union of circuits of M /a, so in particular there
is a circuit C" € C(M /a) with C" C C' and x € C’. Inductively there exists a circuit C” of
M/A=(M/a)/(A\a)such that z € C" and C” C ¢’ C C. This completes the proof. [J

Using these lemmas, we prove the following.

Proposition 3.4.7. Let M be an ordered matroid with ground set E, and suppose F =
Fext(M) is the external order for M. Then for A C E, we have

Fet(M ) A) CF/AC Fou(M\ A).

Proof. We begin with the left inclusion. Suppose that F' C E'\ A is not feasible in F / A, so
that there exists a rooted circuit (C,z) of F /A such that F N C = x. Then in particular,
C = Cy \ A for a rooted circuit (Cy, z) € C(F) with x ¢ A.

Since F = Fext(M), the set Cp is a circuit of M, and x = min(Cp). By Lemma 3.4.6,
there exists a circuit ¢’ € C(M / A) with C" C Cy\ A = C and z € C’. Since x = min(Cy),
we also have z = min(C"), so (C”,z) is a rooted circuit of Fext(M / A). In particular we see
that C' N F = {x}, so we conclude that F' is also not feasible in Fe(M / A).

For the right inclusion, suppose that F' C E \ A is not feasible in Fe (M \ A), so that
there exists a rooted circuit (C, x) of Fext(M \ A) with C disjoint from A and FNC = z.

Then (C,z) € C(F), and by Lemma 3.4.5, there is a circuit (C’",z) € C(F /A) with
C' C C\ A=C. In particular, F N C" = x, so we conclude that F is also not feasible in
F /A O

3.5 Passive Exchanges and Downward Covering
Relations

We conclude this chapter by discussing a more subtle structure which emerges in the external
order relating to the downward covering relations and basis exchanges with externally passive
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elements. We begin with a few elementary matroid-theoretic observations which will be
useful.

Lemma 3.5.1. Let B, B’ C E be bases with B' = B\ bUx for someb € B and x € E'\ B.
Then

e ci(B,z) = ci(B,b)
e bo(B,b) =bo(B',x)
Proof. For the first statement, note that B U x = B’ U b, so since the two fundamental

circuits are the unique circuits contained in these unions, they must be identical. The
second statement is the dual of the first. O

Lemma 3.5.2. Let B, B’ C F be bases with B' = B\ bUx for someb e B and x € E'\ B.
Further, let by € B and let xy € E'\ B.

o [fby ¢ ci(B,x) (equiv. x ¢ bo(B,by)), then bo(B’,by) = bo(B,by).
o [fxg ¢ bo(B,b) (equiv. b ¢ ci(B,x)), then ci(B’, xy) = ci(B, xo).

Proof. For the first statement, note that since by ¢ ci(B,z), we can decompose B into
disjoint parts
B =byU (ci(B,z)\ z)UU.

Then since B’ = B\ bU z is a basis, we have b € ci(B, x), so we further have
B'=B\bUz =byU (ci(B,z)\b) UU.

Then since ci(B,z) \ b and ci(B,z) \  have the same span, we see that span(B’\ by) =
span(B \ by), whence equality of the basic cocircuits.
The second statement is the dual of the first. m

Additionally recall the following classical lemma concerning the intersections of circuits
with the complement of a flat. Sometimes this result is formulated in a slightly weaker form
in terms of circuits and cocircuits.

Lemma 3.5.3. If C C E is a circuit and F' C E is a flat, then |C'\ F| # 1.

Proof. Suppose |C'\ F| = 1, and let x be the singleton element in this difference. We have
x € span(C'\ x) = span(C') since C' is a minimal dependent set, but the fact that C'\ z C F
means that span(C'\ ) C F, so we also conclude that the span does not contain z, a
contradiction. O

We now introduce an operator on the elements of a matroid which allows us to refine the
notion of matroid activity and describe in detail the way that arbitrary exchange operations
in matroids relate to the external order. The following notation will be used broadly.
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Notation. If A C F and = € E, we define A., to be the set {a € A : a > x}. Similar
notation will be used for other conditions specifying a subset of A filtered by a condition.
Such usage should be clear from its context.

In the following, for technical convenience, we will make use of an additional formal
symbol “m” which will play the formal role of “one or more minimal matroid ground set
elements in general position for £”. In particular, we will often consider the disjoint union
E Um, which we consider as an ordered set with m < x for each « € E. Thus in particular,
we have the notation F.,, = E.

We now define the spread operator.

Definition 3.5.4. For each A C E, define the spread operator Spr,: £ Um — 2F by

Spr a(7) = span(A-, 7) \ span(A-.,)

for x € F, and
Spr,(m) = E'\ span(A).

In general terms, the spread operator describes the “ordered contribution” from greatest
to least of an element = to the span of A. A first observation about the operator is the
following.

Lemma 3.5.5. Ifx € EUm and A, B C E with span(A-,) = span(Bs,), then Spr,(z) =
Spry(z).

We will be particularly interested in the case when A is an independent set.
Lemma 3.5.6. Let [ C E be independent, and let x € E. Then

1. The collection {Spr;(a) : a € I} forms a partition of span(I) with a the unique element
of I contained in each set Spr;(a).

2. If x € Spry(a) for a € I, then x is externally active if x < a, and externally passive if
x> a.

Proof. 1f I = {ay,...,a;} where the elements are ordered by index, then if A; denotes the
flat

)

4= span(ls,,), 1<i<k
"] span(1), i=0

then
A C A1 C - C A

In particular, Spr;(a;) = A;_1 \ A; for each i, so these sets partition A, = span(I), and
a; € Spry(a;).

Next, note that for x € span(/) \ I, the element a € I for which x € Spr;(a) is the
smallest element of I which is needed to span x, which in particular is the smallest element



CHAPTER 3. THE GENERALIZED EXTERNAL ORDER 60

of I in the (relative) fundamental circuit ci(/,z). The element x is externally active iff it is
the minimal element of ci(/, z), hence x is externally active if z < a, and externally passive
if z > a. O

Since Spr;(m) = E \ span(/), we can extend the partition above to a partition of the
whole ground set E by

We will denote the unique element a € I Um for which « € Spr;(a) by pr(z). The above
condition for matroid activity can then be restated as x € EP(I) iff x > p;(x), and x € EA(I)
iff x < pr(x). We adopt the convention p;(m) = m, even though we do not include m as an
element of Spr;(m).

We additionally introduce the following notation for the restriction of this decomposition
to the externally passive elements of an independent set.

Definition 3.5.7. Let I C E be independent, and suppose x € EF'Um. Then let
EP.(I) := Spr;(z) N E<,.

In particular,
EP.(I) = Spr;(m)N E = E \ span(]).

By Lemma 3.5.6, note that EP,(I) = EP(I) N Spr;(a) for a € I, which consists of
the externally passive elements in span(/) whose fundamental circuit ci(/,x) has minimal
element a. In particular, we obtain the decomposition

EP(I)= | J EP.(]).

aelUum

Remark. Similar definitions and a similar decomposition could be made with respect to the
externally active elements of an independent set. However, this decomposition does not
yield as much insight due to the underlying antimatroid structure of matroid activity. Since
antimatroids may be formulated in terms of rooted circuits, the root (minimal element) of
a given circuit holds particular combinatorial significance. For elements in EP, (), a gives
the root of their corresponding fundamental circuit (or m if they are not spanned by I),
and thus the sets EP,(I) decompose the externally passive elements of I according to these
fundamental circuit roots.

However, an externally active element is by definition the root of its own fundamental
circuit, so the element a € I for which = € Spr;(a) represents the smallest element of I in
the fundamental circuit ci(I, z), which in particular is not the root of the circuit. In terms of
antimatroid combinatorics, this means that a is not distinguishable in particular among the
other non-root elements in I Nci(Z,x), so partitioning externally active elements according
to this parameter is not interesting on the level of rooted circuits.
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We now define a class of single-element exchanges between elements of an independent
set and externally passive elements.

Definition 3.5.8. For I C E an independent set, define a map ¢;: EP(I) — I by

(2) IUz\a, z€EP,I)foraecl
erlxr) = .
! IUz,  z€EPu(])

We call /(z) the canonical passive exchange of z with /. Sometimes we will extend the
domain of ¢; to include I, in which case e;(a) = I for any a € I.

The fact that £;(x) is an independent set is immediate from the definition. We also see
that the spread operator is preserved under this class of exchange in some cases.

Lemma 3.5.9. Let I C E be independent, x € E\EA(I), and a = p;(x). Ify is an element
of EUm with y >z ory < a, then Spr,,,(y) = Spr;(y).

Proof. Let J denote er(z). If z € I the identity is trivial since J = I, so suppose that
x € EP(I). In particular, this implies that x > a and J=, = I,.

If y > x, then because Js, = I~,, we also have J., = I.,. By Lemma 3.5.5, this implies
that Spr(y) = Spr;(y).

On the other hand, if y < a, then a must be an element of I, so x € span(/) and
a = min(ci(Z, z)). In particular, letting U = I, \ ci({, x), we can write [-, = UUci({,z)\ =
and Js, = U Uci(/,z) \ a. Since these sets have the same span as U Uci(I, z), we see again
by Lemma 3.5.5 that Spr;(y) = Spr;(y). O

We next explore a useful structure underlying an ordered independent set which is re-
vealed by inclusion relations between spread sets. As expected, the situation is not interesting
for externally active elements.

Lemma 3.5.10. If [ C E is independent and x € E, then x € EA(I) if and only if
Spr;(z) = 0.

Proof. Note that an element x € F is externally active iff x € I and x is minimal in ci(/, z),
which is the case exactly when x is spanned by the elements of I greater than it. In this
case, span(/l~, Ux) = span([s,), so Spr;(z) = 0. O]

On the other hand, a significantly richer structure is observed for the externally passive
elements.

Lemma 3.5.11. Let [ C E be independent, and let x,y € E\ EA(I). We have
1. Ifa € IUm, then x € Spr;(a) if and only if Spr;(x) C Spr;(a).

2. Ify € Spr(x), then pr(y) = pi(x).
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3. If y >z, then y € Spr;(x) if and only if Spr;(y) C Spr;(z).
4. Ify <z, then y € Spr;(z) implies Spr;(y) 2 Spr;(z).

Proof. To begin, note that if x € E \ EA(]), then Spr;(x) is nonempty, and in particular,
x € Spry(x). From this, the reverse direction of part 1 is immediate since we have x €
Spr;(z) € Spry(a).

For the forward direction of part 1, we will divide the argument into two cases, a = m and
a € 1. First suppose that a = m, so that € Spr;(m) = E \ span(/). Let J =¢;(z) = [ Uz,
so that in particular Spr;(x) = Spr;(z) by Lemma 3.5.9. If y € Spr;(z) with y # =, then
y € span(J), and x € ci(J,y). In particular, y ¢ span(J \ x) = span(I), so we also have
y € Spr;(m), which proves the inclusion.

Now suppose a € I, so that x € Spr;(a) C span([). If x € I, then we must have x = a
since a is the only element of I in Spr;(a), which of course gives the desired inclusion.

If x ¢ I, then we have a = min(ci(/,x)). To show that Spr;(z) C Spr;(a), we will show
that (i) Spr;(z) C span(/s, U a), and (ii) Spr;(z) is disjoint from span(/~,), from which the
inclusion follows directly.

For (i), note that

Spr;(z) C span(/~, Uzx) C span(/s, Ux) = span(/s, Ua),

where the last equality follows because both I, Ux and I-,U a contain all but one element
of ci(I, z), and thus have the same span as I-, U az.

For (ii), suppose that Spr;(z) contains an element y € span(/-,). In particular, y # =
since x ¢ span([ls,). Letting J = ¢;(z), we have € J, and by Lemma 3.5.9, Spr;(z) =
Spr;(x). Since y € Spr;(z) with y # z, we have y € span(J) \ J and x = min(ci(J,y) \ y).
Then

ci(Jyy) C Js, Uy = I, Uxy C I, Uzy.

However, this implies that ci(J,y) \ span(/s,) = x, so the intersection of a circuit with the
complement of a flat in particular has exactly one element. This contradicts Lemma 3.5.3,
so we conclude that Spr;(z) must be disjoint from span(/s,).

For part 2, let a = p;(z). Since x € Spr;(a), we have Spr;(z) C Spr;(a) by part 1. Thus
if y € Spr;(x), then y € Spr;(a), so p;(y) = a.

For part 3, apply part 1 to the independent set J = £;(x), noting in particular that
x € J, and that Spr;(y) = Spr;(y) and Spr,(z) = Spr;(z) by Lemma 3.5.9.

For part 4, suppose that y < x and y € Spr;(x). Letting J = ¢;(z), we have Spr;(z) =
Spr;(z) by Lemma 3.5.9, so y € Spr,(x). In particular, y € span(J), and x > y is the minimal
element of J in ci(J,y). This means that ci(J,y) is contained in J-, Uxy = I, Uy, so in
particular, « € span(/s, Uy) C span(ls, Uy).

Suppose by way of contradiction that x € span(/s,) as well, and let a = p;(z) € I. Then
since y € Spr;(z) we have p;(y) = pr(x) = a by part 2. However, notice that we have a > y
because = ¢ span(ls,) but z € span([-,), so we see by Lemma 3.5.6 that y is externally
active. This contradicts y € E \ EA(I), so we conclude = ¢ span(/-,). Since we've shown
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x € span([-, Uy), we thus have x € Spr;(y), and by part 3, we obtain Spr;(z) C Spr;(y) as
desired. 0

Lemma 3.5.12. Let I C FE be independent, v € E\ EA(I), and a = p;(x). Ify € EUm
with pr(y) # a, then Spr,, ,y(y) 2 Spr;(y).

Proof. Let J denote ¢;(x), and let @’ = pr(y). If x € I or if @’ = m, then the desired
inclusion is immediate, so assume that x € EP([) and ¢’ # m. From Lemma 3.5.9 we know
that Spr;(y) = Spr;(y) when y > x or y < a, so assume also that > y > a. In particular,
this implies J», = I, U x.

Now suppose z € Spr;(y). By Lemma 3.5.11 part 2, we have p;(z) = o’. Further, since

span(Js, Uy) = span(ls, Uzy) 2 span(ls, Uy),

we have z € span(Js, Uy). To show that z € Spr;(y), we thus only need to show that
z ¢ span(Js,) = span(/-, U z).

Suppose first that a = m, so that J = I Uz. Since p;(z) = a’ # m, we have z € span(]),
and in particular, ci(J, z) = ci({, z) does not contain x. If we had z € span(/-, Ux), then
this would imply ci(J, z) C I., Uz, and thus that ci(.J, z) C I., since = ¢ ci(J/, z). But this
means z € span(/s,), which contradicts z € Spr;(y). Thus z ¢ span(/-, U z) = span(Js,),
so we conclude that z € Spr;(y).

Now suppose that a € I, so that J = I Uz \ a, and suppose again that z € span(/, U ).
Then we have

span(/-, Ux) C span(/s, Ux) = span(/s, U a),

where the equality is because both spans contain all but one element of ci(7, ), and thus have
the same span as I-, U ax. Since z € Spr;(a’), we know that z ¢ Spr;(a), so in particular,
we conclude that z € span(/s,). However, since z is in both Spr;(y) and Spr;(a’), we have
that z ¢ span(Is,), but z € span(lsy U d’) = span(/>.) and z ¢ span(/s.). Thus we must
have a < a' < y.

In this case, we conclude that a ¢ ci(I, z) since a’ > a is the minimal element of this
circuit. However, this implies that ci(/, z) = ci(J, z), and in particular, z € Spr;(a’). But
this is a contradiction with our assumption that z € span(J.,) C span(Js,). We conclude
that 2 ¢ span(/-, U z) = span(Js,), and thus that z € Spr;(y). O

We now have the machinery to describe the local structure of the external order beneath
a particular independent set in terms of the spread operator.

Definition 3.5.13. If ] C E is independent, let <; denote the partial order on E \ EA(I)
given by letting = <; y iff z > y and Spr;(z) C Spr;(y).

Lemma 3.5.14. For z,y € E\ EA(I), we have x <; y if and only if v € EP,(I).

Proof. This follows by applying Lemma 3.5.11 part 3, and noting that both the conditions
r <y and x € EP,(I) imply that z > y. O
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Lemma 3.5.15. Let I C E be independent, and suppose x € EP,(I) fora € IUm. Denoting
J = ¢e(x), we have

1. EPy(J) D EPy(I) forad € IUm, d #a
2. EP,(J) = EP,(I) C EP,(I).
3. EP(J) = EP(I)\ {y € EP(I) : y >; z}.

Proof. For part 1, let a’ € TUm with a’ # a. By Lemma 3.5.12, we have Spr(a’) D Spr;(a’),
and thus EP,(J) D EPy(1).

For part 2, the equality EP,(J) = EP,(I) follows from Lemma 3.5.9, and the inclusion
EP.(I) C EP,(I) is given by Lemma 3.5.11 part 1.

For part 3, we consider the activity of the elements of £ according to the decomposition

E=ITUEA(I)U ( U EPa(I)> UEP,(I).

aclUm\a

To prove the desired identity for EP(J), we will need to show that no elements outside
of EP(I) are externally passive with respect to J, and that among the externally passive
elements of I, only the elements in {y € EP(I) : y >; x} are not passive with respect to J.

To this end, first note that if a # m, then ci(/,x) = ci(J,a), so the fact that a =
min(ci(/, z)) implies a is minimal in its fundamental circuit in J, hence is externally active.
Since all elements of I not equal to a are in J, this proves that no element of I is externally
passive with respect to J.

Next suppose that y € EA(I). Then we know that p;(y) € I, that y < p;(y) by Lemma
3.5.6, and that Spr;(y) = () by Lemma 3.5.10. If p(y) = a, then y < a, so by Lemma 3.5.9 we
have Spr;(y) = Spr;(y) = 0, and we conclude y € EA(J) by Lemma 3.5.10. If p;(y) =a' € I
with @’ # a, then by Lemma 3.5.12, Spr;(a’) O Spr;(a’). In particular, p,;(y) = a’ > vy,
so y € EA(J) by Lemma 3.5.6. We conclude that EA(I) C EA(J), so in particular no
externally active element of [ is externally passive with respect to J.

For the externally passive elements of I, notice that the set {y € EP(I) : y >; x} consists
of elements y with x € EP,(I) C Spr;(y). This implies by Lemma 3.5.11 part 2 that
p1(y) = pr(x) = a for each such y, so y € EP,(I). Notice that by part 1, EP,(I) C EP,(J)
for each @’ € IUm, @’ # a, so the elements of EP,/(I) remain externally passive with respect
to J. Thus to conclude, it is enough to show for y € EP,(I) that y is not externally passive
with respect to J if and only if y >; x.

For the simplest case, if y = x, then y € J is not externally passive with respect to J as
desired. Any other choice of y lies outside of J, so we will proceed to show that if y € EP,(I)
with y # z, then y € EA(J) if and only if y > x.

For the forward direction, suppose y € EP,(I) with y € EA(J). Since y € EP,(I), we
have y > a. We claim also that y < z, and that x € ci(J,y).
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If a = m, then y ¢ span([), but since y is externally active with respect to .J, we have
y € span(J) = span(/ Uz), so = € ci(J,y). If a # m, then a € ci({,y), so y € bo(l,a) =
bo(J,z), and so = € ci(J,y). Thus x € ci(J,y) in either of these cases, so if we had y > =z,
this would imply that y is externally passive with respect to J, a contradiction. We conclude
that y < x as well.

Notice now that since y € EA(J), we have y € span(.Js,) = span(/-, U z). In particular,
ci(J,y) C Jsy Uy, so we have

span(Js,) = span(Js, Uy) = span(Js, Uy \ z) = span(ls, Uy).

Thus this span contains x. However, since © € EP,(I), we have that z ¢ span(ls,) 2
span(/-,). Thus we conclude that x € span(/-, Uy) \ span(/s,) = Spr;(y). By Lemma
3.5.11 part 3, we have Spr;(z) C Spr;(y), and since x > y this shows = <; y.

For the reverse direction, suppose that y € EP,(I) and y >; . Then we have y < z,
Spr;(y) 2 Spr;(z), and pr(y) = a. Letting J' = £;/(y), note that by Lemma 3.5.9, we have
Spr ;. (y) = Spr;(y), so x € Spry(y). In particular, x € span(J’), and y = min(ci(J’, z)).
Noting that x € EP,(J'), we see that ¢y (z) = J'Uxz \ y which in particular is equal to e;(x).
This implies that ci(J,y) = ci(J’,z), so y is minimal in this circuit, and thus is externally
active with respect to J. O

From the above proposition, we obtain the following correspondence with the external
order.

Proposition 3.5.16. Let [ C E be independent. Then

1. If J=1Ux\ a is independent for x € EP(I) and a € I Um, then J <! I if and only
ZfJ = 6[(1]).

2. The canonical passive exchange map €1 is an order embedding of (EP(I), <) into the
external order which preserves covering relations.

3. An independent set J is covered by I in the external order if and only if J = e;(x) for
x € EP(I) mazimal with respect to <;.

Proof. For part 1, let x € EP(I) and a € I Um, and denote J = I Uz \ a. Then J = ¢/(z) if
and only if x € EP,(/), and in this case EP(J) C EP(I) by Lemma 3.5.15 part 3, so J <, I.

Now suppose that J # e7(z), so that x € EP,(I) for some o’ # a. If a = m, then
x € EP,(I) implies that o € span(/), so J = I Ux \ a is not independent. If ' = m, then
x ¢ span(I), so I Uz is independent, and I U x \ a does not span a. In this case, we have
a € EP(J), so in particular, EP(J) € EP(I).

Thus suppose that a,a’ # m. The fact that € EP,/(I) implies that «' = min(ci(Z, z)).
If ' > a, this implies a ¢ ci(I,z), from which we conclude that J is not independent. If
a’ < a, then we have ci(J, a) = ci(I, z), so since a’ < a is minimal in this circuit, this implies
that a € EP(J), hence EP(J) € EP(I) and J £% I.
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For part 2, first suppose that =,y € EP(I) with « £; y. Then by Lemma 3.5.15 part
3, y € EP(e/(x)), but y ¢ EP(e/(y)). In particular EP(g;(x)) € EP(g/(y)), so we have
€r (.CC) ﬁext €r (y)

Next, let 2,y € EP(]) with « <; y. In particular, any element o of EP(/) with a >; y
also satisfies & > x, so we see that EP(e;(x)) C EP(g/(y)) by Lemma 3.5.15 part 3. Thus
in this case, e;(x) <!, er(y).

Finally, suppose further that x <; y is a covering relation, and suppose that J is an
independent set with e;(z) <!, J <! er(y). Since Spr;(x) C Spr;(y), we have pr(z) =
pi(y) = a for some a € I Um. Let J, = ¢;(x) and J, = €/(y), and denote Jy = I \ a, so that
Jo = JoUz and J, = Jy Uy. By the antimatroid interval property without upper bounds,
we have that Jy C J, and since matroid rank is monotone in the external order, we must
have J = Jy U z for some z € EP(I). In particular, J =1\ a Uz with J <}, I, so by part 1
we must have J = g;(2).

But in this case, EP(J) = EP(I) \ {a € EP({) : « >; z} which implies y >; 2, and
EP(J,) = EP(I)\ {a € EP(I) :  >; 2} which implies z >; x. Thus x <; z <; ¥, so since
y covers x, we must have that either J = J, or J = J,. We conclude that J, covers J, in
the external order.

For part 3, suppose first that J <!, I is a covering relation. Then [ is obtained from J by
exchanging some element = € J with a (maximal) externally active element a € bo(J, z), or
by removing x if no such externally active element exists. In the latter case set a = m, and we
then have J = [Ux \ a. By part 1, we see then that J = ¢;(x) for some x € EP(I). If x were
not maximal with respect to <;, then there would be some y >; z, and in particular we would
have EP(J) C EP(I)\ zy by Lemma 3.5.15 part 3. This implies that |EP(J)| < |EP(])| —2,
which contradicts that J <} I is a covering relation. We conclude J = e7(z) for some
<;-maximal element z € EP([).

On the other hand, suppose that J = ¢;(z) for some <;-maximal element x € EP(]).
Then by Lemma 3.5.15 part 3, EP(J) = EP(I) \ {y € EP(I) : y >y 2} = EP(I) \ 2, so we

see that J <7, I is a covering relation. O

—ext

The end result of this discussion is that we have identified a local neighborhood of inde-
pendent sets below an independent set [ in the external order with the externally passive
elements of I via inclusion ordering of the spread sets Spr;(z). An example of this structure
is illustrative.

Ezxample. Let X denote the matrix

10110
X‘<01101)’

and label the columns left to right by the numbers 1 to 5. As usual we will also use X to
denote the ordered collection of columns of this matrix. Under this ordering, the independent
set I = 2 has passive set EP x (/) = 1345. We compute the spread operator of each element
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in X Um as follows.

Spr;(m) = 134
Spr;(1) = 134
Spr;(2) =25
Spr;(3) =3
Spr;(4) = 14
Spr;(5) = 25.

In particular, I/ Um gives the expected partition of X, by Spr;(2) = 25 and Spr;(m) = 134.
For the externally passive elements, we have 5 € EP(I) and 1,3,4 € EP,,(I), so we get the
canonical passive exchanges

er(5) =5

er(1) =12
er(3) =23
er(4) = 24.

In particular, these canonical passive exchange independent sets are ordered in the external
order according to inclusion ordering of their spread sets, as illustrated in Figure 3.3.

External order: Spread sets:

Figure 3.3: The external order of X with the passive exchange neighborhood of I in bold,
and the corresponding spread sets associated with the elements of I Um and EP(I).
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Chapter 4

Applications to Zonotopal Algebra

Having defined the generalized external order and developed some of its fundamental com-
binatorial properties, we turn now to the theory of zonotopal algebra. In this chapter, we
describe the fundamental connection between the external order and the combinatorial struc-
ture of zonotopal spaces, and we leverage this connection to improve our understanding of
the canonical bases of the zonotopal P- and D-spaces in several settings.

Relevant background in zonotopal algebra is reviewed in Section 2.2. Recall that we
will be adopting a convention for matroid activity which is common to the zonotopal algebra
literature but uncommon elsewhere: the groundset ordering used for activity in this chapter is
reversed from the usual convention. For instance, we will say that an element x in an ordered
matroid is externally active with respect to a basis B if it is mazimal in the fundamental
circuit ci(B,z). This does not substantially change the way that matroid activity behaves,
but when referencing material from Chapter 3 or Section 2.1, the ordering on the ground set
typically needs to be reversed.

In Section 4.1, we begin by providing a direct correspondence between Lenz’s forward
exchange matroids and the structure of the external order, in particular characterizing the
forward exchange property and generalized cocircuits. This lays the groundwork for later
applications.

In Section 4.2, we review the two classes of polynomials, the P-polynomials and the D-
polynomials; which are used to produce canonical bases for the zonotopal P- and D-spaces,
and we summarize the form of these bases in the classical and semi-classical zonotopal
settings. The section serves to frame various known notions and structural results for later
reference, but we also present a characterization of the canonical D-bases for the internal and
semi-internal settings which does not seem to have been addressed explicitly in the literature
before.

In Section 4.3 we give a simple description of the behavior of D-polynomials under differ-
ential operators, and in Section 4.4 we present a new recursive algebraic construction for these
polynomials. The latter provides the first practical algorithm to compute the D-polynomials
which is computationally tractible for matrices of moderate size.

Finally, in Section 4.5 we give a new elementary characterization for the adjusted P-
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polynomials which form the canonical bases of the internal and semi-internal P-spaces. The
characterization is given by a simple projection operation on some of the linear forms in the
defining products of the P-polynomials, and in particular this gives an explicit construction
for these canonical basis polynomials.

4.1 Forward Exchange Matroids and the External
Order

Recall from Section 2.2 that in [30], Lenz defines a class of combinatorial objects called
forward exchange matroids which capture certain structural properties of ordered matroids
which are relevant to the construction of zonotopal spaces. The properties defining these
objects can be conveniently restated in terms of the theory of canonical passive exchanges
developed in Section 3.5, as follows.

Definition 4.1.1. Let M be an ordered matroid with ground set £ and bases B. If B’ C B,
then we say that B’ satisfies the forward exchange property if for every B € B’, and for
every x € EP(B), the canonical passive exchange eg(x) is also in B’. In this case, the triple
(E,B,B) is called a forward exchange matroid.

In light of the fact that ep(z) <}, B and the canonical passive exchanges include all bases
covered by B in the external order, the forward exchange property can be reformulated simply

in terms of the external order.

Theorem 4. A collection of bases B' C B satisfies the forward exchange property if and
only if it is downward closed in the external order. That is, if B € B' and B' <} B, then
B eB.

We additionally can relate the notion of generalized cocircuits of a forward exchange
matroid to the external order. For notational convenience, we extend Definition 2.2.20 to
allow for arbitrary collections of independent sets.

Definition 4.1.2. If T’ is a collection of independent sets of a matroid, then a set D C F
is called a generalized I'-cocircuit, or just an I'-cocircuit, if D is inclusion-minimal with
DNI#(forevery [ €T

When a collection B’ of bases satisfies the forward exchange property, or more generally
when a collection I' of independent sets is downward closed in the external order, we can
give a succinct description for the corresponding generalized cocircuits.

Proposition 4.1.3. Let I be a collection of independent sets in the ordered matroid M =
(E, 1) which are downward closed in the external order. Then D C E is a generalized cocircuit
with respect to I if and only if it is equal to EP(J) for a <! -minimal set J in T\ T'.

—ext
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Proof. Suppose first that J is an independent set with J ¢ I'. Then because the external
order is an antimatroid with feasible sets given by externally passive sets, we know by Lemma
3.1.4 that EP(J) has nonempty intersection with any I € I since J €5, I.

Now if additionally J is <}  -minimal outside of I', we will argue that EP(.J) is a gener-
alized cocircuit with respect to I' by showing that EP(J) is minimal among sets intersecting
every set in I,

To see this, let x € EP(J). Then the canonical passive exchange independent set J' =
es(z) gives an independent set containing x which is less than J in the external order, and
such that J'\ x C J. In particular, since J is <} -minimal outside of I, we have J' € I', and
J'NEP(J) = {z}. Thus we see that EP(J) \ z does not intersect every basis in I', and since
x € EP(J) was arbitrary, we see that EP(J) is minimal intersecting all bases in I, hence is
a generalized cocircuit for I'.

This proves one direction. Now suppose that D C E' is a generalized cocircuit for I'. We
will identify the particular independent set whose externally passive elements are given by
D. If I = (, then we must have D = () = EP(B,) where By is the lex minimal basis of E.
So suppose that I’ is nonempty, so D is nonempty.

Now let Iy denote the lex minimal basis of E, so that EP(Iy) = (). In particular since I’ is
nonempty, it must contain Iy. Now if I; € I, define I, as follows. Let x € I;ND, which exists
because D has nonempty intersection with every set in I'; and let I;; be the independent
set covering I; in the external order with edge label z, so that EP(/;;,) = EP(l;) U .

As long as I;;1 lies in I'; this construction can be repeated. In particular, for every i, we
have |EP(1;)| = ¢, and EP(I;) C D. Now let j be the first index such that I; ¢ I'. The fact
that [; ¢ I' implies by the preceding discussion that EP(I;) has nonempty intersection with
every set in I'. Thus if EP(/;) is a strict subset of D, then this contradicts the assumption that
D is minimal among sets intersecting every set in I'. Thus we must have that D = EP(/;).

Finally, if I; were not <} ,-minimal among independent sets outside of I, then there would

—ext

be another independent set J < I; with J ¢ I', and in particular EP(J) C EP(/;) = D.
However, again by the above, EP(J) has nonempty intersection with each basis in I, so
again this contradicts the fact that D is minimal with respect to this property. We conclude

that D is of the required form. m

As a consequence of this characterization, we can give an alternate formulation of the
generalized J-ideal in terms of externally passive sets.

Corollary 4.1.4. If (X,B,B’) is a forward exchange matroid, then
J(X,B’) = Ideal {EEP(I) : I C X independent, I ¢ B'} )

Proof. Recall that J(X,B’) is defined as the ideal generated by the polynomials ¢, where
D is a generalized B’-cocircuit. By Proposition 4.1.3, a set D is a generalized B’-cocircuit if
and only if D = EP([) for an independent set I which is <} ,-minimal outside of B’. Thus

any generator {p of J(X,B’) is of the form lgp(y) for some I ¢ B’. On the other hand, if
I is any independent set outside of B', then I > . I for a minimal independent set outside
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of B’, and in particular EP(I) O EP(/y). This implies that ¢gp(s,) divides ¢gp(s), and since
Cep(1y) is a generator of J(X,B'), we see that fgp(py lies in this ideal. O

In the next section we will discuss how the polynomials /gp(;) play an important role in
various parts of zonotopal algebra, in particular forming the canonical bases of the zonotopal
P-spaces in many settings.

4.2 Canonical Basis Polynomials

In the following, we will recall the definitions of the canonical polynomial bases of the
classical zonotopal P and D spaces, and give simpler characterizations of the bases for
several zonotopal settings. We begin by introducing notation for a class of polynomials that
is used extensively.

Definition 4.2.1. If I C X is independent, let PIX denote the polynomial (gp () given by
the product of linear forms from the set of externally passive elements of I with respect to
X. We call the polynomial P; a P-polynomial. When the matrix X is clear from context,
the superscript will sometimes be omitted.

In [23], the notation Q; is used for the polynomial P;*, and the notation X (/) is used
for the set EPx(I) of externally passive elements.

Recall that the central, external, internal, semi-external, and semi-internal P and D
spaces are dual under the action of the polynomial differential bilinear form. In each of these
classical settings, a canonical polynomial basis exists for the P space, and we will denote
these bases by By, Bf;i, B3, B;),(LH,, and B;),(f’im respectively.

Proposition 4.2.2 (Classical P-space Bases, [23]). The following sets of polynomials are
vector space bases of their corresponding zonotopal P-spaces.

e Central case: By = {Pg : Be IB%(X)}

o External case: By = {PF : I el(X)} ={P} : BeB.(X)}

e Internal case: By = {ﬁg : Be ]B%,(X)}

o Semi-external case: By = {P¥ :Tel'}={P} : BeB.(X,T)}
e Semi-internal case: Bg’li““ = {ﬁg’h‘“ : BeB_(X, [int)}

We call these bases the canonical zonotopal P-space bases of X.
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In the internal case, the polynomial 15,;35 is defined by
ﬁg = Pg — fBa

where fz € J_(X) is a unique polynomial such that P¥ € P_(X). The structure of these
polynomials, which were defined abstractly in [23], Section 5, has been to this point poorly
understood. In Section 3 of [24], the semi-internal polynomials ﬁg Tt are shown to exhibit
a corresponding structure for an appropriate polynomial fz in the semi-internal [J-ideal. In
Section 4.5 we will give an explicit construction for these polynomials in matroid-theoretic
terms.

The duality of the P and D spaces in particular induces a canonical polynomial basis for
each D space, whose elements are dual to polynomials of the corresponding P basis. These
D space bases are defined and developed in [30], and in particular are constructed explicitly
in terms of a class of functions called multivariate splines.

Definition 4.2.3. If B C X is a basis, let DX denote the polynomial of D(X) which is
dual to P& under the differential bilinear form. We call the polynomial D3 a central
D-polynomial. The matrix X may sometimes be omitted from this notation when the
meaning is clear from context.

In addition, it will be convenient to extend the above definition to include independent
sets which span a hyperplane in X.

Notation. If H C X is a hyperplane, as usual let n(H) be a unit normal vector of H in the
column space of X, and let n3y denote the linear form ¢, ;). Additionally, let Ix(X) denote
the collection of independent sets spanning a (facet) hyperplane in X,

Ir(X)={l€l(X) : r(I) =r(X)—1}.

Definition 4.2.4. Let I € [(X) with H = span(/), let D = X \ H denote the complemen-
tary cocircuit of H, and let

cy = |D|! H Ly, nyy) = (nﬁ)'Dl(a) lp.

deD

Define .
DY = — (nﬁ)lD‘ DI
CH

We call the polynomial Dy a boundary D-polynomial.

It is an interesting structural property of the zonotopal spaces that the P polynomials
may be naturally defined over arbitrary independent sets, but there is an inherent problem
in attempting to define the D polynomials similarly. This is reflected in the fact noted by
23] that D (X) depends not only on the matrix X, but also on the extending basis Bext.
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In particular, without referencing a choice of extending basis, there is no way to canonically
define D for all independent sets I so that the polynomials {D;{ I el(X )} give a dual
basis of Bz, .

We distinguish between the central and boundary D-polynomials because they play dis-
tinct roles with respect to the zonotopal spaces. However, a key unifying feature of the two
types is the following duality with the P-polynomials.

Lemma 4.2.5. If [, I’ C X are independent with I' € B(X) UlL£(X), then

1, I=T
X X )
<PI7DI’ :{0 [7&]"

Proof. First suppose that I’ is a basis. If I is a basis, then the identity follows by the
definition of D3 as the dual polynomial in D(X) of P;X. If I is not a basis, then P € J(X)
since it is divisible by £x\g for any hyperplane H containing I. In particular, since DY €
D(X) = ker J(X), we have PX(0)Dy = 0, whence the bilinear form is zero.

Now suppose that I’ € Ix(X) with H = span(I’). If I ¢ H, then I contains an element
in X \ H, so [EP(/)| <|X \ H|— 1. In particular,

1 X\H
Di¥(@)P* = —-Df'(0) (n§) ™" (0) tow,

However, nﬁ(@) kills any linear form corresponding to a vector in H, so since at most

| X'\ H| — 1 linear forms in fgp(y lie outside of H, we see by direct computation of the
derivative with the product rule that this derivative is zero, and likewise for the bilinear
form.

Finally, suppose that I C H. In this case, we have EPx(I) = (X \ H) UEPg(I), where
in particular, EPz(I) C H. We can then compute the derivative D3 (9)P;* as

1 X\H
Dy (9) P = aDﬁ (9) (nfrfr)‘ V@) Cx\ulep (1)

1 |X\H|
= ((nﬁ) (3)EX\H) (D7 (9)lep ) = D (D) P
Here, we can split the differential operator because the action of ny(9) kills the linear forms
from EPy(I), as they correspond to vectors in H. From the above, we see that the derivative

is zero when I # I’ by the preceding argument, considering I’ as a basis of H. When [ = I,
we have by definition of Dff that D (0)Pfl = (Df, Pf') =1. O

Using the central D-polynomials, we can describe the canonical bases for the classical
zonotopal D-spaces. For notation, we will denote the canonical dual bases of the central,
external, and internal D-spaces by By, By, and By, respectively, and of the semi-external

and semi-internal D-spaces by Bgf/ and Bg’_li“‘. These bases are given explicitly by the
following.
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Proposition 4.2.6. The canonical zonotopal D-space bases are given by the following
sets of polynomials.

e Central case: By = {Dy : B € B(X)}

External case: By, = {D¥" : BeB.(X)}

Internal case: By = {Dx : BeB_(X)}

Semi-external case: Bgf’ ={D3 : BeB,(X,I)}
o Semi-internal case: By'™ = {D¥ : BEB_(X,Ii)}

The fact that the above canonical D-bases are all given in terms of the unmodified
central D-polynomials is somewhat surprising, as it contrasts with the situation for the P-
bases, which differ from the P-polynomials in the internal and semi-internal cases. The
characterization is given directly for the central, external and semi-external cases by the
following proposition, which summarizes arguments of Lenz in [30], Sections 7 and 8.

Proposition 4.2.7 ([30]). Let B’ denote the collection either of central, external, internal,
semi-external, or semi-internal bases of X, and let Y denote X for the central, internal, and
semi-internal cases, and X U By for the external and semi-external cases, where Beyy 15 the
extending basis. Then:

e B’ satisfies the forward exchange property as a collection of bases of Y.

o The zonotopal [J-ideal and D-space of the corresponding case are given by the corre-
sponding forward exchange constructions J(Y,B') and D(Y,B').

e The collection of polynomials {Dg : Be B'} forms a basis of D(Y,B') which is dual
to the collection {Pg . Be B’} under the differential bilinear form.

The internal and semi-internal cases of Proposition 4.2.6 are not directly implied by this
result due to the unusual nature of the canonical P-bases in the internal settings. However,
a few additional observations on the structure of the internal and semi-internal P-basis
polynomials allows us to complete the argument.

Proof of Proposition 4.2.6. The considerations of Proposition 4.2.7 prove Proposition 4.2.6
for the central, external, and semi-external cases due to the fact that in these cases, the
zonotopal P-space is given by the span of polynomials {Pg . BelW }, and thus the polyno-
mials {Dg . BelW } lie in the corresponding D-space and are dual to the canonical P-space
basis.

For the internal and semi-internal cases, some extra work is necessary. In these settings,
we still know from Proposition 4.2.7 that the polynomials {Dg : BeBW } lie in the appro-
priate zonotopal D-space. However, the canonical basis polynomials for the corresponding



CHAPTER 4. APPLICATIONS TO ZONOTOPAL ALGEBRA 75

zonotopal P-spaces are in general different from PY, so we need to argue that the polynomials
DY are still dual to the canonical bases.

For notation, let ﬁg denote the internal or semi-internal P-basis polynomial associated
with B € B/, given by P for the internal case, and Py for the semi-internal case. In [23]

and [24], it is shown that P} can be represented as a sum of the form P} + Jg, where Jp is
an appropriate polynomial in the corresponding zonotopal [J-ideal J(Y,B’). In particular,
for bases B, B’ € B, we have

(D}, Py) = (DY, Py + Ju) = (D}, Ph) + Dy, Jw) = (D}, P}),

where the last equality follows because DY € D(Y,B') = ker J(Y,B’), so any polynomial in
J(Y,B) kills D}; under the differential bilinear form. Thus the polynomials { D}, : B € B'}

indeed are dual to the canonical P-space basis {]32-; : BeB } O

Next we show that the boundary D-polynomials and corresponding P-polynomials give
a convenient generating set for the central ideals Z(X) and J(X).

Lemma 4.2.8. The central zonotopal Z- and J-ideals are given by

Z(X) =Ideal {D : I € I5(X)},
J(X) =Ideal { P} : T € I£(X)}.

In particular, the standard generators of these ideals are given by the above polynomials for
the independent sets {Iy : H € F(X)} where Iy is the lex minimal basis of H.

Proof. For Z(X), note that the polynomials (nﬁ)‘X\m for H € F(X) form the standard
generating set for Z(X), so since all of the polynomials D are divisible by one of these
generators, they are members of the ideal. Further, if [, is the lex minimal basis of a
hyperplane H, then Dg = 1 by duality with the corresponding polynomial P}g , SO Di‘; gives
a scalar multiple of the standard generator (nﬁ)'x\m of Z(X). This shows that all of Z(X)
is generated by the polynomials Dy

For J(X), if I € [x(X) with span(/) = H, then X \ H C EP(I), so the J-ideal
generator {x\y divides P, which thus lies in J(X). If I, is the lex minimal basis of H,
then EP(Iy) = X \ H, so P} is the standard generator {x\g of P(X). This in particular
shows that all of 7 (X)) is generated by the polynomials P}*. O

To refer to the standard generators of the central zonotopal ideals, we will sometimes use
the notation Dy and P to refer to the corresponding generators fo{ and PI)}(I as above.
Specifically,

D = () ™",

and
Py =lx\u.
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A useful property of the P- and D-polynomials is that much of their structure is preserved
by extending X with a new vector.

Lemma 4.2.9. If x € R? lies in the column space of X' and X U x denotes the collection
obtained by appending x to X as the final element, then for any basis B C X, we have

XUx X
PB _P37

and
D3"" = Dj.

In particular, B C BXY" and By C BxY". The remaining polynomials of B not con-
tained in B are of the form Pi® where I € 1x(X) spans a hyperplane avoiding x, and

XUx _ X
PIUx _PI .

Proof. For the inclusion of P-basis polynomials, let B be a basis of X. In particular, we have
EPx(B) = EPx,(B) since «x is larger than every element of B hence is externally active,
and the activity of elements in X with respect to B is not changed by appending a largest
vector to X. This implies that P = PXY", which is thus a member of BXY".

Additionally, note that if PFY* € BXY"\ B, then z € B since otherwise PXY" is covered
by the previous case. In this case, the elements passive with respect to B in X U x are
the same as those passive with respect to B \ = in X, since any element of X outside of
span(B \ ) is passive in both cases, and any element in span(B \ z) has activity unchanged
by adding x. Since EPxy,(B) = EP,(B \ ), we thus have PF“* = PJ . The bases of this
type correspond with the independent sets I C X which span a hyperplane avoiding x.

For the inclusion of the D-basis polynomials, first note that 7 (X) 2 J(XUx) because any
cocircuit of X Ux contains a cocircuit of X. In particular, this implies D(X) = ker J(X) C
J(X Uz)=D(X Ux), so it is sufficient to show that for any basis B of X, the polynomial
D3 is dual under the differential bilinear form to PFY* in B3,

Thus let B C X Uz be a basis. If z ¢ B, then B’ is a basis of X, and thus PXY" = PX,
and (D7, PY") = 0p . If x € B', then EPy,(B’') = EPx (B’ \ z), so P§"" = Pg,\x. In
particular, since B"\ z € [x(X), we have Pg,\x € J(X), and (Dg, PFY") = 0. Thus we
conclude that D3 is dual to P5"% in P(X), and so D% = D", O

In the above we argue that the new polynomials of BX“" not already contained in BX
consist of the P-polynomials corresponding to independent sets I € Ix(X) which span a
hyperplane avoiding x. Absent from the lemma is a corresponding statement about the
polynomials in BxY* \ B3, and this is because the boundary D-polynomials of X are not in
general contained in D(X Uxz). However, we know from Lemma 4.2.5 that these polynomials
do at least act dually to the corresponding P-polynomials. This property will be fundamental
for Section 4.4, where the boundary D-polynomials of X will be used as the starting point
for constructing the new central D-polynomials of X U .

L An analogous statement is straightforward to state and prove when x increases the rank of X.
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4.3 Differential Structure of Central D-Polynomials

We now use the structure of the external order to give a simple description of the behavior of
central D-polynomials under differential operators. Recall that [z]% denotes the b-coordinate
of a vector x with respect to a basis B. The main result is the following.

Proposition 4.3.1. If B C X s a basis, and b € B, then
60D =Y [b3Dp, (4.1)

B’'=B\buz
where the sum is over bases B’ covered by B in the external order.

Proof. Since D(X) is closed under derivatives in R?, ¢,(9)Dp can be represented as a linear
combination of the polynomials Dpg/ for B’ a basis of X. Further, since the polynomials in
B are homogeneous of degree given by their rank in the external order <* ., we note that

—ext?

0y(0)Dp is spanned by the polynomials Dp/ for B’ of <* ,-rank one less than that of B.
Suppose B" = {b},..., b} is such a basis, and let

C(B/) = <PB/, @b(a)DB>

denote the Dp/ coordinate of ¢,(0)Dp. Representing b in the basis B as b =), [b]lg,b;, in
particular we have
&) = (Py, 6,(9)Ds) = (4P, D) = > b5 {ly Prr, D).

)

In the last expression, we can write £y Ppr = fgp(pnup,- In particular, the set EP(B’) U b
is the passive set corresponding to the independent set I; which covers B’ in the external
order with label b}, and so this polynomial can be written as P;,. By Lemma 4.2.5,

1, I,=B
<PL;7-DB>: )
0, I, #B

so in particular, <€b;PB/, DB> is nonzero only if I; = B.
Suppose now that ¢Z) is nonzero. The above implies that B’ is covered by B in the
external order, is of the form B’ = B\ by U b; for some by € B and some j, and that

B = [b]%.

To complete the proof, we need to show that by = b. If this were not the case, then this
would imply that b € B’ so in particular

% 1, b=
I:b:le/ = / :
0, b.#b
However, under our assumptions, b;- #+ b, so this implies that %) = [b]g, = 0, giving a
contradiction. O]
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As a result of this derivative formula, we additionally obtain the following corollaries.

Corollary 4.3.2. If B C X is a basis and v a vector, then (,(0)Dp is a linear combination
of the polynomials D where B <!, B.

ext

Proof. Represent v in terms of the basis B, and apply Proposition 4.3.1. O

Corollary 4.3.3. Let B C X be a basis, and denote B?) = {b € B : EPy(B) is nonempty}.
Then

1. If b € B, then £,(0)Dp is nonzero if and only if b € B®),
2. The polynomials (€,(0)Dp)yepw are linearly independent.
3. The linear support of D is given by Supp(Dg) = span(B \ B®)*.

Proof. By Proposition 3.5.16, B covers a basis B’ with edge label b if and only if B’ = eg(x)
for an element € EP,(B) which is maximal with respect to the ordering <p of Definition
3.5.13. Such a basis therefore exists iff EP,(B) is nonempty, or when b € B®). Proposition
4.3.1 gives the summation formula

60D =Y B Du

B'=B\bUz

so in particular the summation is nonempty if and only if b € B®). Since the summation
is over linearly independent polynomials Dpg/, the sum is nonzero iff any of the coefficients
[b]3 are nonzero. However, if B’ = B\ bU z for some x and B’ <, B, then b € bo(B', z),
so the coefficient [b]%, is nonzero. Since this is true for any such basis B’, we conclude that
,(0) D is nonzero exactly when b € B®).

For the second part, notice that each basis polynomial Dp/ for B’ <%, B appears with
nonzero coefficient in the summation formula for £,(9) Dy for exactly one b € B®), so the
sums of polynomials ¢,(0)Dp are linearly independent.

For the third part, note that since the vectors v for which ¢,(0)Dp = 0 are exactly those
which can be represented as a linear combination of vectors in B\ B®), we have from Lemma

2.2.9 that Supp(Dp) = span(B \ BP)*+. O

We also obtain a more refined orthogonality result between P- and D-polynomials on the
level of derivatives.

Lemma 4.3.4. Let I, B C X with I independent and B a basis. Then P;(0)Dg is nonzero
if and only of I <}, B.

Proof. First suppose that I <!, B. In particular, this means that P; divides Pg, so we have
Pg(0) = P;(9) f(9) for some polynomial f. If P;(9)Dp = 0, this would imply

1 = (P, Dp) = P3(d)Dy = f(9)Pr(9)Dy = 0.
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For the reverse direction, suppose I £% B. We proceed by induction on the rank of B
in the external order. Because I £

ot B, the meet By = I A B in the external order is strictly
less than I.
I/ <>k

Let I’ be an independent set with By <%, I’ <’ I. In particular, we also have I' £* B
so there exists an element b € BNEP(I’). Since I’ >}, By, b is the unique element in EP (I’ )
which is not in EP(By) C EP(B), and in particular, this implies that b € By.

By Proposition 4.3.1, ¢,(0)Dp is a linear combination of the polynomials Dg/ where

B' <!, Band b¢ B'. Then we have
P1(0)Dp = g(9)Pr(9)Dp
= 9(9) P, (9)6,(9) D
= 9(0)P5,(0) Y [l Ds
B/'=B\buz
=9(0) Y [P (0)Dp.
B'=B\bUz

where g = P;/Pp = lgp(r)\ep(r)- For B’ as in the summation, suppose By <! B’. In this
case, since b € By and b ¢ EP(B’) C EP(B), by the antimatroid interval property Without
upper bounds, this would imply that b € B’, a contradiction. Thus we find that By €%, B’

for each of the B’. By induction, since the rank of B" in the external order is less than that
of B, we have that Pg,(0)Dp = 0 for each B’, and thus that the derivative P;(0)Dp must

be zero. O

As a particular consequence of the preceding result, we obtain an alternate proof for the
result argued by Lenz in [30] that the central D-polynomials of a forward exchange matroid
lie in the corresponding generalized D-space.

Corollary 4.3.5. If (X,B,B’) is a forward exchange matroid, then
{Dy : BeB'} C D(X,B).

Proof. By Proposition 4.1.3, the generalized cocircuits of B’ are given by the sets EP(7),
where [ is a <! ,-minimal independent set not contained in B’. In particular, the generators
of J(X,B') are given by the polynomials P; for these independent sets.

If B € B, then for I ¢ B', we have I €% B because B’ is downward closed in the external
order. Then by Lemma 4.3.4, P;(0)Dp = 0. Since this is true in particular for all of the

generators Py of J(X,B'), we see that Dp € ker J(X,B') = D(X,B’). O

4.4 Recursive Construction for the Central D-Basis

A practical difficulty which currently exists with regards to zonotopal D-spaces is that there is
no direct algebraic construction for the central D-polynomials. In the following, we present
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such a construction, which inductively builds the central D-polynomials of a matrix X U
x by modifying the boundary D-polynomials of X to produce corresponding central D-
polynomials of X Uzx. In particular, the elementary and inductive nature of the construction
provides a practical recursive method for computing D-polynomials of explicitly defined
matrices. In Appendix A, we will demonstrate the usage of a concrete implementation
of this algorithm written in Python for use with the SageMath open-source mathematics
software system.

We begin by introducing some notation describing certain decompositions of polynomial
spaces into subpolynomial spaces, and we discuss some related technical properties.

Definition 4.4.1. If @) is a vector subspace of Il with linear support U = Supp(Q), let
v1,...,v, € Ut be an orthonormal basis, and let 1; = ¢,, for each i. Then define

Q[yl,...,yk] = Q@R R[yl,...,yk].

The space Qy1, . . ., yx) is naturally identified with the polynomials of the form }_ g.y®
where « denotes a multi-index and ¢, € . In general, this space can be endowed with the
differential action of Ry, ..., yx] on the corresponding polynomials, given by

po(q®p) = q @ (po(9)p).

In addition, if @) is closed under taking partial derivatives, then this action can be extended
to a differential action of II via

Po(q®p) = (po(0)q ® p) + (¢ @ po(0)p).

If we think of py € Rlys,...,yx] and ¢ @ p € Qlyi, ..., yx| as polynomials in II, then it
follows from orthogonality conditions and Lemma 2.2.10 that the differential operator py(9)
applied to ¢ ® p acts exactly as the first differential action defined above. Specifically, if we
decompose ¢ ® p as a polynomial in variables y; with coefficients in @), the operator py(0)
acts as if the QQ-coefficients were constants.

For the following lemma, let () and R both denote vector subspaces of I with common
support U, and again let yy,...,yr denote linear forms corresponding to an orthonormal
basis of U+. Suppose further that R is identified with the dual space @' via the mapping
r > (r, -), and let (g;, r;); denote dual vector space bases of @) and R, so that (g;, ;) = d;;.
The spaces we have in mind for this result are of course the zonotopal D- and P-spaces with
their corresponding canonical bases, but we will state lemma more generally.

Lemma 4.4.2. If p € Qly1, ..., yx|, then the y-constant term of p is zero iff

<pv ri> =0

for each i. More generally, if 3 is a multi-index, then the y® term of p is zero iff

{p, y’r;) =0.
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Proof. For the first part, note that since r; € IIy, any polynomial divisible by y; for some ¢
is killed by the operation (-, r;), as

(Yipo, ri) = (po, ¥:(0)ri) = 0.

In particular, in terms of its monomial representation p = " ¢,y®, we have that

<P, Ti) = <QO7 7“z'>.

Since qp € @, we have that gy = 0 iff (qo, ;) = 0 for each i, as we wanted to show.
For a general multi-index 3, notice that

{p, y’ri) = (Y (O)p, 1s).

In particular, the y-constant term of 3°(9)p is a scalar multiple of gz, the y” coefficient of p.
The result then follows from the previous case. O

For the remainder of the section, we will adopt the following notation. Let X be a d xn
real matrix, let z € R, and let X Uz denote the dx (n+1) matrix obtained by appending z as
an additional column on the right of X. Additionally, let H C X denote a fixed hyperplane
of X, and let n denote the linear form ny corresponding to a unit normal vector of H.

We continue with a technical lemma which describes a locality property that will be

useful for working with boundary D-polynomials.

Lemma 4.4.3. If H' is a hyperplane of X with H' # H, then for any polynomial q €

D(H) .
! (P50)(@) = 0.

Proof. 1t is sufficient to prove (Pj},(9))(n*d) = 0 for a monomial dn*, with d € D(H) and
k> 0.

The polynomial P}, is the product of linear forms corresponding to the vectors in the
cocircuit C'= X \ H'. Expand the above derivative using the product rule, we have

(e (0)(dn") = Z ler(0)d - Lener (D).

c'ce

In any nonzero term in this expansion, every linear form from a vector in H \ H' must
be included in C’, since the derivative of n by ¢}, for any vector h € H is zero. In particular,
C'" must contain some cocircuit of H: since the the rank of elements of H' in H is strictly
less than the rank of H, the complement H \ H' is the complement of a proper flat in H and
thus contains an H-cocircuit. This implies ¢c» € J(H), so since d is in D(H ), the derivative
Lo (0)d is 0. O

Next we introduce the fundamental operation which we will use for the recursive con-
struction of the central D-polynomials.
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Lemma 4.4.4. Let f be a homogeneous polynomial of degree m, and let qr € D(H)[n] with
n* | f(8)qr. Define the projection qpi1 of qi by

k¢ pH
(aw, 0" FPIY)
G == Y s e DL

Then qry1 € D(H)[n), and n** | f(9)qr+1.

Proof. The fact that g1 is in D(H)[n] is clear from its defining equation. To see that
n** | £(0)qri1, we apply Lemma 4.4.2 for D(H)[n]. Letting J € B(H), we have

{fD)au1, 1°P) = (qrsr, n° [P}

k H
G, N fP m
=G 1) - S e e ot 20

I€B(H)
U, N FP)
= (qu n*FPIY = Y <nm+kfnkf>> (™ 0 f)ér
IEB(H) ’

= {qr, " fP]") = {ax, n" fP]") = 0.

From this we conclude that the n* coefficient of f(9)qr,1 in D(H)[n] is zero. We have that n*
additionally divides f(9)n™** DH for each I by elementary considerations, so we can see that
n* divides f(0)qr,1 by distributing the differential operation over the defining expression of
qr+1- Thus the coefficient of ° in f(9)qr1 is likewise zero for i < k, so we can conclude that

1] F(O) gk 0
We can now present the recursive construction for the central D-polynomials of X U x.
bpanX(I())

Suppose that for each Iy C X independent, we have computed the polynomial D)
By Lemma 4.2.9, we have that

DspanX (o) _ DspanXUz(Io)
Iy Iy

D?panXUI(I) where I € X Uz is an independent

We thus need to compute the polynomials
set containing x.

To simplify notation, assume without loss of generality that [ is a basis of X U x, and
denote this basis by B. For lower rank independent sets, the construction is the same,
restricting attention to the relative zonotopal spaces of the submatrix of X whose columns
lie in spany (). Since we assume « € B, let B = IyUx where Iy € Ix(X). Let H now denote
the hyperplane spanned by Iy, and let 1 denote the normal linear form n2. Additionally, let
f denote the generator PFY* of J(X U z) corresponding with the hyperplane H, which is
given by {(xuznm. Let m = |(X Ux)\ H| denote the degree of f.

Now inductively define polynomials ¢;, i > 0 as follows. Let

1

qo = D;g = —nm_ng
CH
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be the boundary D-polynomial of Iy, which is an element of Z(X), and define

<Qi7 77ifPIJLI> mti H
Qiv1 = q; — Z i INH i H n DI . (42)
IeB(H) (nmiD, nf P

We then have the following.

Theorem 5. The sequence (q;) stabilizes at entry qi, where k = deg (D) = |[EPy(Io)|, and
the stabilizing polynomial g, is equal to the central D-polynomial DXY*.

Proof. As noted in Lemma 4.2.5, ¢y = ng acts dually to P]f among the D- and P-polynomial
generators of Z(X U z) and J (X Uz). Since each polynomial ™ D¥ is divisible by ™ =
D% these polynomials are elements of Z(X U x), and thus act trivially on polynomials in
P(X Uz). In particular, this implies that the action of each ¢; on P(X U x) is the same as
that of gy, so each ¢; acts as the dual of Plf = PZY in Bp(X Ux).

By induction, each polynomial ¢; lies in D(H)[n], so by Lemma 4.4.3, P#°"(9)q; = 0 for
any hyperplane H' # H. We will show additionally that f(9)qx = Pj“*(9)qx = 0, which
thus implies that ¢, € D(X U z).

To this end, we prove by induction that ¢; is homogeneous of degree k + m — 1 and
satisfies ' | f(9)q;. This is clearly the case for qo. If ¢; satisfies ' | f(0)g;, then by Lemma
4.4.4, 0" | £(9)qis1 as desired. To see that ;41 is homogeneous of degree k +m — 1, note
that the expression

is a differential bilinear form of two homogeneous polynomials, and thus is nonzero only
when their degrees are the same. In particular, this requires that

deg(P;') = deg(g;) — deg(n'f) =k — 1 —1.

For each I € B(H) contributing nontrivially to the sum in the definition of ¢; |1, we conclude
that ™™ DH has degree (m +4) + (k —1—14) = k+m — 1, and so the summation for ¢;,,
is again homogeneous of degree k +m — 1.

A further consequence of this argument is that all of the terms in the summation for ¢; 1
are zero when ¢ > k, so ¢;11 = ¢; for 1 > k, and we see that the sequence stabilizes.

Finally, to see that ¢, € D(X Ux), note now that g is homogeneous of degree k+m — 1,
and satisfies n* | f(9)q. In particular, f(9)g is homogeneous of degree k — 1, so in order
for n* to divide this expression, the derivative must be zero. We conclude that f(9)q, =
PEP(0)qr =0, s0 qx € D(X U ).

Finally, note that since g, € D(X Ux) and acts as the dual of P = P5%" in Bp(X Ux),
we conclude that gy is in fact the basis polynomial D" in Bp(X U z). O

Thus for any new independent set I = Iy U x introduced by appending x to X, we
can apply this construction to extend the polynomial Df;o to the polynomial D where
Fy = spany (Iy) and F' = spany,,(I). This allows us to compute the central D-polynomials
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associated to each independent set of X U x. To construct the central D-polynomials from
scratch for a matrix X and all of its flats, it is then sufficient to apply the construction
successively for each prefix of the columns of X.

Next, we will use the differential properties of central D-polynomials explored in Section
4.3 to simplify the computation of the polynomials ¢;, and eventual to provide a streamlined

linear-algebraic method to compute the new central D-polynomials of X U x.
For the following, let D, (H) denote the linear span of {D¥ : I € B(H), I <% I}

Lemma 4.4.5. For each i, the polynomial q; is an element of Dy, (H)[n]. In particular, the
defining summation of q; from Equation 4.2 can be taken over independent sets I € B(H)
with I <*_ 1.

—ext

Proof. We argue by induction on ¢. For ¢ = 0 the statement is obvious by the definition of
o, so suppose the statement holds for some ¢ > 0. We need to argue that if I € B(H) with
I &% . Iy, then the inner product <ql-, n'fPH > is zero. To this end, decompose the polynomial

n'f as a polynomial in TTx[n],
nf=>Y i,
J

where p; € Iy for each j = 0,...,deg(n’'f). In particular, we can write
{qi, 0" fPIY = (" [)O)as, PIT).

Then the expression (1’ f)0)g; can be expanded as
= (S Jom =3 350

Since p; € Iy for each j, it acts directly on the Dy, (H )-components of ¢; (as a polynomial
in Dy, (H)[n]), which by Corollary 4.3.2 yields polynomials Which are again in Dy (H). The

177 (0) operator on the other hand acts as the partial derwatlve - for polynomials in I1y[n],
treating the coefficients in 15 as constants. In particular, it also preserves membership in
Dr,(H)ln).

Thus we conclude that (n°f))q; remains in Dy, (H)[n]. In particular, for each monomial
n'DY, we have that (n'D¥, Pf') is nonzero only when J = I and | = 0. Since (r'f)9)g; can
be represented as a linear combination of monomials o' D¥ with J <* | I, the inner product
(' f)0)gi, Py = (g, 0 fP}") is zero when I £, I
We conclude that the expression <qz, n'fPH > can be nonzero only when I <!, Iy, and
thus that g¢;41 lies in Dy (H)[n]. This completes the inductive argument, and the fact that
the summation in Equation 4.2 can be taken over just the independent sets I <¥ . I, then

—ext
follows from the form of the polynomials ¢;. O

—ext

Finally, using this result, we can give an alternate construction for the polynomial DX
in terms of an elementary linear-algebraic computation. Specifically, we know from Lemma
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4.4.5 that DY = q; lies in Dy, (H)[n], and since this polynomial is homogeneous, it is given
by a unique linear combination of the linearly independent polynomials

(g HODI L [ <x I, j(I) = deg(DY) — deg(DI)} .

—ext

In the above, ™" DH = ;i) DX and this is in Z(X Uz) for every I <, Iy (for which
J(I) > 1). We thus see that the only component of the linear combination contributing to
the inner product (DY, P¥Y") =1 is the scalar multiple of n™ ' DI which must thus be
given by DIBO , since this polynomial has inner product 1 with P5 = PZY" by Lemma 4.2.5.

The remaining coefficients of the linear combination can be determined by the property
that f(9)DXY* = 0, noting that the linear combination satisfying this property is unique
because the sum Z(X Ux) 4+ D(X Ux) is direct. To compute these coefficients explicitly, it
is sufficient to determine the linear combination of the polynomials P *(9) (/"' D}*) equal

to Py Y (9)Dj;. Summarizing, we have the following.

Theorem 6. There exists a unique solution in the parameters (ay), I € B(H) with I <! Iy,

ext
for the equation
> [ PE@) (D) | = PF @)D,

1<k  Io

ext

For these values of o, we have

Dy =Dy — > am"DY.
1<k . Ip

ext

4.5 Explicit Construction for the Internal and
Semi-internal P-Bases

We now provide an explicit construction for the semi-internal zonotopal P-space basis poly-
nomials, which in particular includes the internal basis polynomials of B as a special case.
The construction revolves around certain projection operations on the externally passive
elements of a basis.

Definition 4.5.1. If B C X is a basis and I C B, then let 7P : R? — R? denote the
orthogonal projection map in the basis B onto span(/), that is, so that

B, o )y, bel
(77 (2)]5 = {0’ b &

We now define the internal projection operator, which will provide us with a concrete
description of the relation between the polynomials Pg and the canonical basis of P_ (X, Ijn)-

Definition 4.5.2. Let B € B_(X, [;;;) be a semi-internal basis, and let A C X \ B. For
x € A, let B (z) denote the collection of elements b € B such that
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e © = max(bo(B,b))
e bo(B,b)\bC A
e span(B\ b) € F(X, i)

Define the semi-internal projection of A with respect to B to be the collection

rPlm(A) = {ﬂ'g\bg(x) (x) : x € A}.

Note that in particular since the independent set I, is chosen greedily from the end of X,
the properties defining & (z) imply that if this set is nonempty, then z € L. It is clear from
the definition that a basis element b € B is contained in at most one set «&(z). Additionally,
we note that b is contained in some such set iff bo(B,b) \ b C A, and the maximal element
x = max(bo(B, b)) satisfies x € I;y; and x # b.

We now argue that for a fixed set A, the choice of basis B disjoint from A does not
change the semi-internal projection of A.

Lemma 4.5.3. If A C X and B,B' C X are bases disjoint from A, then 72" (A) =
B' I,
T int (A)

Proof. Let 2 € A. We begin by arguing that (5 (z) = /5 (x), and that span(B \ §(z)) =
span(B’\ (& (z)).

If b € 5 (z) for some b € B, then we have that A D bo(B,b) \ b. Because B’ is a basis, it
doesn’t lie in the hyperplane X \ bo(B,b), so since it is disjoint from A, it must contain b.
Since no other element of B’ lies in bo(B, b), the remaining elements must lie in span(B \ b).
This means that bo(B’,b) = bo(B, b), so it is straightforward that b € /5 (z).

By repeating this argument for each b € J5(z), we see that (5 (x) C (5 (x), and that
B'\ 5 (x) C span(B \ /5(z)). By a symmetric argument, we have that .5 (x) = /% (z) and
B\ (5 () C span(B’\ (& (2)), and hence we have the desired equality of linear spans.

Finally, note that the elements Wg\LB (x)(x) in the definition of 7% (A) are determined
A

by the flat B\ 5 (x) and the vectors in B which lie outside of the flat. Since these parameters

are identical for both B and B’, we see that the projection maps Wg\LB(m)(X) = Wg,\ a )(x)
it vy (z

are identical, and thus that 7%= (4) = 72" (4). O

From this fact, we are able to define a semi-internal projection operator independent of
the choice of basis.

Definition 4.5.4. If A C X is a coindependent set, that is, a set which avoids some basis,
let wlmt(A) == 727" (A), where B is any basis disjoint from A.

The algorithm for this projection operation for a set A can be informally described by
the following. “When A contains all elements of a semi-internal cocircuit except an element
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b which is not maximal, project the maximal element 2 onto the complementary hyperplane
using b.”

We now define the polynomials which we will show form the canonical basis of the semi-
internal zonotopal spaces.

Definition 4.5.5. If B C X is a basis, note that EP(B) avoids B and thus is coindependent,
and define s
EP(B, Iy) = 7' (EP(B)),

and let
AXaIin PO .
P = lap(p 1)
We will argue that ]3;( fimt g in fact equal to the canonical semi-internal basis polynomial
P;" using the following characterization, which is a consequence of the discussion in [24]
following the proof of their Lemma 3.6.

Lemma 4.5.6. ﬁg’lim 15 the unique polynomial such that
o PXT e P (X, L), and
° ﬁg’lmt = Pg’lim — fB for a polynomial fg € J_(X, Iin)-

Thus it is enough to prove that that ﬁg Tt gatisfies these two characteristics. We begin
with the first, in slightly more general form.

Proposition 4.5.7. If A C X is coindependent and avoids a semi-internal basis B, then
the polynomial gwli“t(A) lies in P_(X, Lint).

Proof. Let B be a semi-internal basis disjoint from A, so that 7/ (A4) = 775 (A), and
denote A = 72" (A) and p = ¢5z. To prove that p lies in P_(X, finy) = ker Z_(X, fint),
we will show that ¢(0) kills p for each generator g of Z_ (X, [;,;). By the product rule for
derivatives, this is equivalent to showing for each hyperplane H of X that the set Z\ H
contains at most |X \ H| — 1 elements if H is not semi-internal, and at most |X \ H| — 2
elements if H is semi-internal.

To start, fix a hyperplane H C X. In general, the elements of B which lie outside of H
reduce the number of elements that can lie in A\ H since B is disjoint from A. However, the
semi-internal projection may also map elements of ANH outside of H. Let 11 < xg < --- <1y
denote the elements of AN H which are mapped outside of H in A. In particular, we have

‘E\H‘§|X\H|—|B\H|+k (4.3)

Notice that in order for the projection Wg\L B(z) (x;) to lie outside of H, at least one element
A

of /5 (z;) must lie outside of H. Since a basis element can lie in at most one set 5 (x), this
gives the upper bound k < |B\ H|.
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Suppose now that k = |B \ H|. Then exactly one element of B\ H must lie in each set
1B (z;), so denote this element by b;. In particular, we have z; = max(bo(B,b;)) for each
i. Note however that =) ¢ bo(B,b;) for i < k, so in particular, b; ¢ ci(B,zy) for i < k.
This implies that ci(B, zy) \ H = b, but this is the intersection of the circuit ci(B, x)) with
the cocircuit X \ H, and such an intersection cannot be a singleton by Lemma 3.5.3. This

contradiction implies that k£ < |B \ H|, so for any H we have ’E\ H‘ < |X \ H| — 1. This

bound is sufficient for hyperplanes H which are not semi-internal.

Now suppose further that H is semi-internal, and suppose that k = |B\ H| — 1, so that
k 4+ 1 elements of B lie outside of H. As a first case, suppose that £k = 0, so B \ H has
a single element b, and span(B\ b) = H. Since B and H are semi-internal, we have that
b # x = max(bo(B,b)). If bo(B,b)\b C A, then b € .&(z), so WE\LE(I) () € H. Since k = 0,

the elements of AN H all also lie in AN H , so neither b nor x contribute to the collection of
elements in A\ H. We see then that )A \ H‘ < |X \ H| — 2 as desired.

We now show that the above case is actually the only possibility. Suppose by way of
contradiction that k& > 1. In particular, in this case at least one element of B\ H lies in
1B (z;) for each i. Suppose however that .5 (z;) contains two elements of B\ H for some
i <k —1. Then k of the k + 1 elements of B\ H lie in the sets (5 (z;), i < k — 1, and so
in particular for any such basis element b, we have z;, ¢ bo(B,b), and thus b ¢ ci(B, zj).
As argued above, this implies that ci(B, x;) N (X \ H) consists of only the single remaining
element of B\ H, which gives a contradiction.

Thus for i < k — 1, the set (5 (x;) has exactly one element of B\ H, which we denote
by b;. Additionally let by, b € B\ H denote the remaining two elements. We again have
xr ¢ bo(B,b;) and thus b; ¢ ci(B,xy) for i < k — 1. Since at least one of by, b lies in
ci(B, ), and ci(B,xzy) \ H can’t be a single element, we see that ci(B,zx) \ H = {bg,b}.
Since 5 (x},) contains at least one of these two elements, suppose without loss of generality
that by, € 5 (xy).

First suppose that b € (%(x;). In this case, note that the projection operator Wg\ﬂﬁ (=)
maps 7, to a vector I whose basic circuit with respect to B is given by ci(B, zy) \ ¢4 (zy).
We see that the basic circuit ci(B, Zx) then consists of only elements in H, so %y lies in H.
This contradicts the definition of xy.

Now suppose that b ¢ (5(x;). The elements x;, as maximal elements of a cocircuit
complementary to a semi-internal hyperplane, all lie in [;,,;. Since b € ci(B, xy), we have z, €
bo(B,b), so X \ bo(B,b) is a semi-internal hyperplane, and thus span(B\ b) € F(X, Liy).
Since b ¢ (5 (zy), from the definition of this set we must have either z;, # max(bo(B,b)) or
bo(B,b) \ b ¢ A.

If x; # max(bo(B,b)), let x > zj denote this maximal element. Then = ¢ bo(B,b;) for
i < k since x is larger than the maximal element of each of these cocircuits, so b; ¢ ci(B, x)
for each i. This implies that ci(B,z) N (X \ H) = b is a single element, a contradiction.

Thus xj, = max(bo(B, b)), and we must have bo(B,b) \ b € A. Now let y be an element
in bo(B,b) \ b not contained in A. Since b; € (5(z;) for i < k, we have bo(B,b;) \ b; C A.
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Since y ¢ B, this implies y ¢ bo(B,b;) and thus b; ¢ ci(B,y) for each i. Since b € ci(B,y),
we thus have ci(B,y) N (X \ H) = b is a single element, a contradiction.

This is the final case to show that if H is semi-internal and k = |B \ H| — 1, then k = 0.
If k < |B\ H|—1, then by Equation 4.3 above, the desired bound on the size of A\ H holds.
This concludes the proof. n

For the second characteristic of Lemma 4.5.6, we give an explicit representation of the
difference PX — Pg’li“t as a linear combination of polynomials in J_ (X, I;;). Specifically, we
will prove that this difference can be represented as a linear combination of polynomials Py
for bases B’ which are not semi-internal. We begin with the following lemma about certain
exchange operations of matroid bases.

Lemma 4.5.8. Let B C X be a basis, and let b € B such that bo(B,b) \ b C EP(B) and b
is not maximal in bo(B,b). Let x denote the maximal element, and let B' = B\ bUx. Then

1. The set EP(B') is given by EP(B) \ x Ub.

2. In the dual matroid, we have X \ B = ex\p(b) is the dual canonical passive exchange
of b with respect to the dual basis X \ B.

3. IftY € B\ b such that bo(B,V') \ ' C EP(B) and V' is not mazimal in bo(B,V'), and
if ' = max(bo(B, b)) # x, then bo(B’,0') \ v/ C EP(B’), and 2’ = max(bo(B’,V')).

Proof. For part 1, note that since x € bo(B,b), the set B’ is a basis. Further, since z is the
maximal element of bo(B,b) = bo(B’, x), we have that the elements of bo(B’, x) \ z (which
includes b but excludes z) are all externally passive with respect to B’. Finally, for elements
y outside of B spanned by B\ b, the fundament circuit ci(B,y) is unchanged by exchanging
b with x, and so their activity is likewise unchanged.

For part 2, let X* denote the dual matroid of X. Note first that since b is not maximal
in the fundamental cocircuit bo(B,b), we have that b is internally passive, hence externally
passive in X*. In particular, the canonical passive exchange is defined as the exchange of an
externally passive element with the maximal element in its fundamental circuit. In this case,
cix+ (X \ B,b) = box(B,b), so the maximal element of this (dual) circuit is z by assumption.
Thus

ex\p(b) = (X\B)\zUb=X\(BUz\b)=X\B"

Finally, for part 3, suppose first that ¢ bo(B,V’). By Lemma 3.5.2, we have bo(B, V') =
bo(B’, V'), and since b, z ¢ bo(B, V'), this implies by part 1 that bo(B’, ') \ ¥’ C EP(B’).

Now suppose & € bo(B,b'). Since 2’ is maximal in bo(B,b'), we know that 2’ > z,
and in particular since x is maximal in bo(B,b), we know that a’ ¢ bo(B,b). In particular
b ¢ ci(B,z'), so again by Lemma 3.5.2, we have ci(B,z’) = ci(B’,2"). Since V' € ci(B, '),
this implies that 2’ € bo(B', V).

Now note that B\ b’ = B’ \ xb/, so if an element y € X is spanned by B\ bb’, then it
in particular can’t lie in bo(B’,’). This means that bo(B’,0’) C bo(B,b) Ubo(B,b'). Since
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x and 2’ are the respective maximal elements of these fundamental cocircuits and 2’ > =,
this implies that 2’ = max(bo(B’,V')). Further, all of the elements of bo(B,b) U bo(B, V')
except for x and b’ are externally passive in B’ by part 1, and since x ¢ bo(B’, V'), we see
that bo(B’,b") \ I consists of entirely externally passive elements of B’. O

Using this, we can prove the following.

Proposition 4.5.9. If B C X is a semi-internal basis with respect to L, then the polyno-
mial P§ — Pg it con be represented as a linear combination of polynomials P for bases
B¢ B_(X, Liy).

Proof. For notation, let {z1,...,x;} denote the elements = of EP(B) for which the projecting
set (fp () is nonempty, and for each i, let BY denote the elements of t5p ) (2;). Denote
Q = EP(B)\ {z1,...,2;}. Then the set EP(B, ;) = '™ (EP(B)) is obtained by fixing
the elements of (), and by mapping each element z; to its projection x; away from the basis
elements in B®. Namely,

beB(®)
Passing to polynomials, this means that
Alein —
Pprt = EFZTD(B,IM)
=1[¢ ]
TEQ i
ST (- X )
TeQ 7 be B(1)
=[I[6->. > COFT b, I .-
©€Q  SCk] b;e B ics i¢S
i€s
From this form, we see that P¥ — 13§ it can be expressed in terms of polynomials €4

where A C X is a set formed by replacing one or more of the elements z; in EP(B) with a
corresponding projecting basis element b; € Lgp( B) (x;). We argue that such a set A can be
represented as EP(B’) for some non-semi-internal basis B’.

For concreteness, suppose without loss of generality that A is obtained from EP(B) by
replacing z; with b; for ¢ = 1,...,l, where [ > 1, so that A = EP(B) \ {z1,..., 2} U
{b1,...,b}. Further, denote

Ai = EP(B) \ {[El,...,l’i} U{bl,...7bi},

and

B; =B\ {b1,....bi} U{z1,..., 2}
We will prove by induction on ¢ that for 0 < i </,
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e 11,...,x; are internally active in B;
e by € sz(xi/) fori < <1

The base case i = 0 follows by definition, as By = B and Ay = EP(B). Suppose then that
the properties hold for i = j, j < [. In particular, since bj4; € /,fj (x41), we see that b,
and x;4; satisfy the premises of Lemma 4.5.8. Since Bji; = B; \ bj+1 U x4, by part 1 of
this lemma, we have that

EP(Bjt1) = EP(B)) \ @js1 Ubj1 = A; \ 2j11 Ubja = Ajpa.

By Lemma 4.5.8 part 2, we have that X \ Bj4; is the dual canonical passive exchange
ex\B,(bj+1) in the dual matroid of X. In particular, since externally active elements in the
dual matroid correspond with internally active elements in the original matroid, we have that
IA(B;) C IA(Bj41), and that ;4 is internally active in Bjyy. Since zy,...,2; € IA(B)),
this implies that z1,...,z;41 € IA(Bj11).

Finally, if i’ > j+ 1, then by € ij (i) by assumption. In particular, this implies that by
and x; satisfy the premises of Lemma 4.5.8 part 3. Thus we have that bo(B;11,b;) \ by C
EP(Bj41) = Aj1 and zy is maximal in bo(Bji1,by) \ by. Since Lij () is nonempty, we
know that z; € Iy, and this implies that bo(Bj1, by) has nonempty intersection with Iy,
and thus is complementary to a semi-internal hyperplane. From the definition, we have that
by € Lfﬁii(l’y), as desired. This completes the induction.

From this we conclude that A can be represented as the set of externally passive elements
of the basis B; as desired. The fact that this basis is not semi-internal follows because
B, = B\ {by,....b)} U{zy,..., 2y}, and the elements x; are members of [, which are
internally active in B;. O

We finally can conclude the desired equality with the semi-internal P-space basis poly-
nomials.

Theorem 7. If B C X is a semi-internal basis with respect to Iy, then
ﬁg»lint — ﬁgylint.

Proof. By Proposition 4.5.7 using A = EP(B), we see that 13;““" lies in P_(X, [iny). By
Proposition 4.5.9, P% — ﬁg i can be represented as a linear combination of polynomials P,
where B' ¢ B_ (X, I;). By Corollary 4.1.4 and the fact that J_ (X, lins) = J (X, B_(X, int)),
this implies that the difference lies in J_(X, [;y;). By Lemma 4.5.6, ﬁg’h‘“ is the unique
polynomial satisfying these two properties, so the conclusion follows. O]

As a corollary, we use this characterization to describe the semi-internal zonotopal spaces
in terms closer resembling the definitions of the central and external cases in [23].
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Definition 4.5.10. Denote the collection semi-internally short sets by
S_ (X, Iiy) ={Y C X : Y is disjoint from some semi-internal basis} .

Corollary 4.5.11. The semi-internal zonotopal P-space is given by

P_(X, Lint) = span {fﬂ[im(y) 1Y e S_(X)} :

Further, a homogeneous basis for P_(X, Iin) is given by the collection

{ﬁg,hm =l mpB)) : B€B_(X, Ijnt)} )

Proof. The characterization of the homogeneous basis for P_(X, ;) is the content of The-
orem 7.

IfY € S_(X, Iin), then Y is coindependent and avoids a semi-internal basis. By Propo-
sition 4.5.7, this implies that £ 1, () les in P (X, Iing). Since the sets EP(B) for B semi-

internal are in S_ (X [;), the given collection contains the canonical semi-internal basis of
P_(X, i), and thus spans. ]

The elementary nature of the semi-internal projection operator which produces the canon-
ical basis polynomials gives us hope that a better construction for zonotopal P-spaces could
be formulated for a broader class of forward exchange matroids. However, we suspect that
such a construction will rely on a deeper understanding of the interaction between internal
activity and the lattice structure of the external order. Regardless of potential difficulties,
we propose the following imprecise conjecture.

Conjecture. Using a generalization of the semi-internal projection operator, an alterna-
tive forward exchange P-space can be formulated which preserves duality with the forward
exchange D-space, but is generally the kernel of an appropriate forward exchange Z-ideal.
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Appendix A

Software Implementations

A parallel goal of much of the work that went into this dissertation was to produce con-
crete software to compute the classical central, external and internal zonotopal spaces. The
two theoretical challenges to this goal were the unusual structure of the internal P-space
basis polynomials, and the lack of combinatorial knowledge about Lenz’s dual D-space ba-
sis polynomials. Both of these issues were fortunately overcome in the latter sections of
Chapter 4, and a full library of tools is now available for working with the external order
and the classical zonotopal spaces, which can be found at https://github.com/bgillesp/
sage-zonotopal-algebra. The library is written in the Python programming language for
the SageMath open-source mathematics software system. Currently the software is inde-
pendent of the SageMath project, but in the future we plan to integrate the code into the
SageMath libraries.

In this appendix, we will give a high-level overview of the contents of this software library,
with the goal of providing enough detail to make it easy for the casual user of the SageMath
project to get started working with these tools. In addition, we will give usage examples and
select implementation details for the most important modules. The software can logically
be divided into three blocks, which will be discussed respectively in the following sections.

A.1 Ordered Matroids and the External Order

The first block of software involves computations related to ordered matroids and the external
order. This functionality is implemented in the file ordered matroid.py, which in particular
defines a new OrderedMatroid class extending the standard SageMath Matroid class with
functionality related to a total ordering of the ground set.

After opening an interactive Sage prompt in the directory containing the library Python
files, start by constructing an OrderedMatroid object from a standard Matroid object as
follows.

sage: from ordered_matroid import OrderedMatroid
sage: X = Matrix(QQ, C([1, o], [0, 1], [1, 1], [1, 0], [0, 1]]).transpose()
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sage: X
[10110]
(0110 1]

sage: M = Matroid(matrix=X)
sage: OM = OrderedMatroid(M)
sage: OM
Ordered matroid of rank 2 on 5 elements

The groundset of a SageMath Matroid object is already labeled by natural numbers, so
unless otherwise specified using the ordered_groundset keyword, the OrderedMatroid class
uses the ordering induced by this labeling. In this case, the ordering is just the column order
of the matrix X.

The set of elements active with respect to a given input set is computed as follows.

sage: OM.active_elements([2, 4])
frozenset ({0, 13})

sage: OM.active_elements([1, 3, 4])
frozenset ({0, 1, 2})

The active_elements method computes the generalized activity for an arbitrary subset of
the groundset as given in Definition 3.2.3. A priori, the generalized notion of activity requires
us to inspect a potentially very large collection of circuits in the matroid to determine when
certain circuits satisfy the condition needed to make a groundset element active. The fol-
lowing equivalent formulation of generalized activity simplifies the computation extensively.

Definition A.1.1. If M is an ordered matroid with groundset X, and A C X, let I denote
the independent subset of A which is lex maximal among those spanning A. We call the
independent set I the dominant basis of A.

Proposition A.1.2. Suppose M is an ordered matroid with groundset X, and that A C X.
If I is the dominant basis of A, then Acty(A) = Acty(1).

Proof. First suppose x € Acty(I). Then z is the minimal element of a circuit C' C I Uz,
and since I C A, we have C' C AU z. Thus C also demonstrates that x € Acty(A), and
thus we have Acty (1) C Actp(A).

Now suppose that z € Acty(A), so that = is the minimal element of a circuit C C AUz.
If C'\ x contains no elements of A outside of I, then we have C' C I U x which implies
x € Acty(I) as desired. So suppose that C'\ = contains elements of A\ I.

Let a be an element of C' with a € A\ I, and let C' = ci(/,a). Because [ is lex maximal
spanning A, the independent set I \ y U a for any y € C” \ a is lex smaller than I, which
implies that @ is minimal in C’. (This argument in fact shows that A\ I C Acty(1).)

Now notice that a € C N C" and x € C'\ C’. Thus by the strong circuit elimination
axiom, there exists a circuit C” C CUC"\ a with z € C”. Since x is minimal in C, we have
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x < a, and since a is minimal in C’, we see that x is minimal in C” as well. Further, since
C’\ a C I, we have that CUC"\ a contains strictly fewer elements of A\ I than C, and thus
this is also true of C”.

By repeating this process, we will eventually obtain a circuit C* C A Uz with minimal
element x which contains no elements of A\ I. Then C* C I Uz, which implies that
x € Actp(I). We conclude that Acty(A) C Acty(I), and thus we obtain equality. O

Remark. An additional consequence of this argument is that for any set A C X, the interval
[I,1 UEA(I)] of Proposition 3.2.23 which contains A is exactly the interval corresponding
to the independent set I which is the dominant basis of A.

Overall what this means is that active elements of an arbitrary subset A of X can be
computed by first determining the lex maximal spanning independent set of A, and then by
computing the active elements of that independent set.

Returning to the library features, convenience methods for dual ordered matroids (the
dual matroid with identical ordering on the ground set) and ordered matroid minors (stan-
dard matroid minors with induced ordering on the ground set) are implemented.

sage: OM.dual()
Ordered matroid of rank 3 on 5 elements

sage: OM.minor(deletions=[2,3], contractions=[1])
Ordered matroid of rank 1 on 2 elements

Finally, the library provides a method to construct the generalized external order of an
ordered matroid as a SageMath Poset object.

sage: OM.external_order ()
Finite poset containing 14 elements

Given the various choices of conventions and representations of the external order, several
parameters are used to specify which variant of the order is needed:

e The variant parameter describes the ordering convention of the poset, and allows
either of the string values:

— "convex geometry" sets the empty set as the minimal element, giving the order-
ing convention consistent with Las Vergnas’s original formulation of the ordering.
— "antimatroid" sets the empty set as the maximal element, giving the ordering

convention consistent with the writing of this dissertation.

e The representation parameter describes the set system to use as the underlying
representation of the poset, and allows the string values:

— "independent" represents poset elements in terms of their matroid independent
set.



APPENDIX A. SOFTWARE IMPLEMENTATIONS 99

— "passive" represents poset elements in terms of their set of externally passive
elements.

— "convex" represents poset elements in terms of their convex closure, given by the
union of their matroid independent set with their set of externally active elements.

The following gives an example of modified usage of this method using the above param-
eters.

sage: OM.external_order(variant="antimatroid", representation="passive")
Finite poset containing 14 elements

Sage additionally has the ability to render and display Hasse diagrams for finite posets,
often yielding a decent graphical representation for small inputs. This can be accomplished
with the show command of class FinitePoset. For best results with the external order, the
flag string labels=True may be included in the constructor for easy-to-read vertex labels.

A.2 Polynomial Vector Spaces

The second block of software fills a small hole in the functionality of SageMath polynomials
by providing tools to easily work with the vector space structure of polynomial rings. This
functionality is implemented in two files:

e poly free module.py provides the class PolynomialFreeModule which implements a
SageMath CombinatorialFreeModule with a given basis of polynomials, along with
additional conversion utilities.

e monomials.py provides the class Monomials to abstractly represent various classes of
monomials from a polynomial ring.

The features in these files are meant to be lightweight extensions of usual SageMath
linear algebra functionality. The following is a typical example of usage of these classes.

sage: from poly_free_module import PolynomialFreeModule

sage: from monomials import Monomials

sage: P.<x,y> = PolynomialRing(QQ)

sage: basisl = Monomials(P, degree=(0,2))

sage: basisl
Monomials with degree at most 2 in Multivariate Polynomial Ring in x, y
over Rational Field

sage: M1 = PolynomialFreeModule(P, basisl)

sage: list(M1.basis())
[(D, x), (y, x"2), (x*xy), (y°2)]
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sage: v = M1((x+y)~2); v
(y~2) + 2x(xxy) + (x72)
sage: v.to_vector()
(0, 0, 0, 1, 2, 1)
sage: v.to_polynomial ()
X"2 + 2%xxy + y~2

Here we produce a PolynomialFreeModule object M1 whose basis consists of the mono-
mials of Q[xz,y] of degree at most 2. This demonstrates the process of creating an element
of M1, converting it to a vector in terms of the underlying ordered basis, and converting it
back to a standard polynomial object.

The next example demonstrates the use of an arbitrary finite basis of polynomials.

sage: basis2 = (1, x, xty, x"2-x, xX*y + y~°2, y~2)
sage: M2 = PolynomialFreeModule(P, basis?2)
sage: list(M2.basis())

(D, x), x+y), x°2-x), (xkxy +y7°2), (y°2)]
sage: w = M2(1 + x*y); w

(1) - (y72) + (xxy + y~2)
sage: w.to_vector()

(1, 0, 0, 0, 1, -1)
sage: M(1 + xxy~2)

Traceback (most recent call last)

ValueError: Value x*y~2 + 1 is not spanned by the basis polynomials

The primary work of this software is to handle basis exchange operations between a
specified polynomial basis and the standard monomial basis. In practice, this can save a lot
of boilerplate code in settings where it is necessary to work with the vector space structure
of polynomial rings.

A.3 Zonotopal Spaces

The final block of software provides methods for computing polynomial bases and generating
sets for the zonotopal spaces and ideals in the central, external, and internal zonotopal
settings. An object class is defined for each of the three classical zonotopal settings, and
these three classes inherit from a common abstract base class which implements functionality
that is the same for each setting. This is implemented in six Python files:

e central zonotopal algebra.py defines the class CentralZonotopalAlgebra which
implements methods to compute the central zonotopal spaces.
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e external zonotopal_algebra.py defines the class ExternalZonotopalAlgebra which
implements methods to compute the external zonotopal spaces.

e internal zonotopal_algebra.py defines the class InternalZonotopalAlgebra which
implements methods to compute the internal zonotopal spaces.

e abstract_zonotopal_algebra.py defines the class AbstractZonotopalAlgebra which
acts as an abstract base class for the classes of each of the concrete zonotopal settings.

e zonotopal_algebra.py provides a convenience factory method which gives a uniform
interface for constructing any of the currently implemented zonotopal algebra objects.

e poly utils.py implements utility methods for constructing polynomials formed by a
product of linear forms, and for working with polynomials as differential operators.

The following demonstrates the usage of this package to generate the central zonotopal
spaces corresponding with a given matrix.

sage: from zonotopal_algebra import ZonotopalAlgebra
sage: X = Matrix(QQ, [([1, o], [0, 1], [1, 1], [1, 1]1]).transpose()
sage: X
[1 01 1]
(011 1]
sage: Zc = ZonotopalAlgebra(X, variant="central", varNames="xy")
sage: Zc.I_ideal_gens()
[y™3, x73, x72 - 2xxxy + y 2]
sage: Zc.J_ideal_gens()
[x73 + 2%x72%y + x*y~2, Xx"2%y + 2*x*y~2 + y~3, x*y]
sage: list(Zc.P_space_basis().values())
[x"2 + xxy, x, y, x*y + y~2, 1]
sage: list(Zc.D_space_basis().values())
[1/2%x"2, x, y, 1/2*xy"2, 1]

The method D_space_basis gives a complete implementation of the algorithm discussed
in detail in Section 4.4, specifically applying the streamlined formulation of Theorem 6,
and makes use of the previously discussed library code for both the external order and for
polynomial vector space computations.

Note that since the P- and D-space bases are indexed by matroid bases of X, the return
type of the methods P_space_basis and D_space_basis is a python dict object whose keys
represent the index matroid bases of X, and whose values are the corresponding polynomials.

Computation for the external and internal cases is accomplished similarly.

sage: Ze = ZonotopalAlgebra(X, variant="external", varNames="xy")
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sage: Ze.external matrix()
[1 01 1]10]
[0111]0 1]

sage: Ze.I_ideal_gens()

[y~4, x74, x73 - 3*x"2%y + 3*xx*xy~2 - y~3]

sage: Ze.J_ideal_gens()

[x74 + 2xx73%y + X"2%y"2, X"2%y, X"2%y"2 + 2*x*y~3 + y~4]
sage: list(Ze.P_space_basis().values())

[x"2xy + x*y~2,

X"2%y + 2%xx*xy"2 + y©3,

X,

XT3ky + 2%x72%y"2 + x¥y~3,
Y

X3 + 2%x72%y + x*y~2,

X"2 + xxy,

X*y,

X*y + y 2,

1]

sage: list(Ze.D_space_basis().values())

[-1/6%x"3 + 1/2%xxy~2 - 1/3%y"3,
1/6%xy~3,

X,

1/6xx*y~3 - 1/12xy~4,

Yy

1/6%xx73,

1/2%xx"2,

-1/2*%x72 + x*y - 1/2xy"2,
1/2%y~2,

1]

102

The external zonotopal algebra setting automatically selects an extending basis for the
column span of the underlying matrix (the final identity block of Ze.external matrix()
in the above example), but a particular extending basis matrix can be specified using the

externalBasisMatrix parameter.

sage: Zi = ZonotopalAlgebra(X, variant="internal", varNames="xy")

sage: Zi.I_ideal_gens()
[y"2, x72, x - y]

sage: Zi.J_ideal_gens()
[xxy + y~2, x]

sage: list(Zi.P_space_basis().values())

[x +y, 1]
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sage: list(Zi.D_space_basis().values())
ly, 1]

Concluding with two final remarks on implementation, first note that the internal P-space
basis is computed using the semi-internal projection operator of Section 4.5, specialized to the
internal setting. Second, note that the external and internal D-space bases are computed by
first computing an appropriate central D-space basis using the CentralZonotopalAlgebra
class, and then restricting to the elements indexed by the external and internal bases respec-
tively.





