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Optimizing Fuel Consumption and Pollutant Emissions in
Truck Routing with Parking Availability Prediction and
Working Hours Constraints

EXECUTIVE SUMMARY

According to the U.S. Environment Protection Agency (EPA, 2018), the U.S. Transportation
sector is responsible for 28% of the US's greenhouse gas emissions, 23% of which are caused by
medium- and heavy-duty trucks. This means that 6.4% of all greenhouse gas emissions in the
U.S. are generated by trucks. Furthermore, this issue is not particular to the U.S.A. The
European Union faces a similar problem, with almost 5% of their CO, emissions originating from
heavy-duty vehicles (Gregor, 2018). Considering the continuous growth of the trucking industry,
it is clear the importance of developing more efficient ways reduce trucks' pollutant emissions.
However, when it comes to the trucking industry, ‘green' routing studies do not consider other
important practical factors, like working hours regulations and parking availability. Due to
parking shortages, routes and schedules that do not account for parking availability may lead to
last-minute changes that make them more polluting than expected. Similarly, working hours
regulations influence the timing of required rest stops, which may force drivers to deviate from
initially selected routes and schedules with negative consequences to fuel consumption and
emissions. Several fuel and emissions optimization problems have been treated in the
literature, and we have developed regulation-compliant and parking-aware truck scheduling
methods in previous projects, but the intersection of these problems is still a research gap.
Currently, we still lack a model able to generate solutions with reduced environmental cost, yet
accounting for practical constraints. This project's objective is to integrate fuel and emissions
optimization, parking information, and regulation-aware scheduling to develop models able to
better describe the practical constraints faced by drivers in realistic scenarios. We study
methods for long-haul truck planning that generate regulation-compliant, parking-aware and
environmentally friendly routes and schedules.

We extend the shortest path and truck driver scheduling problem model developed in a
previous project (Vital & loannou, 2021a) to include controllable travel speed and time-
dependent speed limits, and use a non-linear speed dependent fuel consumption model to
optimize fuel consumption and pollutant emissions. When studying the trade-offs between
prioritizing emissions reduction or trip duration, we found that although focusing on emissions
reduction can increase trip duration significantly, this impact is greatly reduced when
considering scenarios with limited parking availability. The scenarios studied showed reductions
of up to 5-8% on average CO; emissions, which come at the cost of increases on average trip
duration and average trip cost. However, results showed a large variance. Time-dependent
instances with high priority set to reducing emissions showed an average increase in trip
duration higher than 40% when parking is abundant, but lower than 20% when parking is
scarce. At times prioritizing emissions might be too costly, but this cost is also influenced by the
region's parking infrastructure conditions. These results illustrate the importance of improving
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the models used to evaluate the impact of any policy and investment decisions. The proposed
model can help estimate the level of emissions reduction that can be expected for different
regions and types of vehicles, at what cost, and how they are affected by the region's truck
parking infrastructure. We also present a cost lower bound that combines HOS requirements
with information on optimal speeds for particular cost functions, and can be used to
significantly speed-up problem solution in deterministic scenarios.

Afterwards, we considered the case of stochastic parking availability, as opposed to the
deterministic time-windows considered initially. The resource-constrained shortest path
formulation was further extended to model drivers possible recourse actions when unable to
find parking and the ensuing costs. We used this formulation to study how the solutions are
affected by the level of information provided to drivers. We found that ignoring uncertainty in
parking availability results in inconsistent performance even when restricting parking to periods
when probability of finding parking is high. Furthermore, results might not reflect the used cost
function's intent, e.g., minimizing illegal parking events and/or the priority assigned to
emissions reduction. Giving drivers full information about the probability of finding parking at
any time/location significantly improves performance and reduces illegal parking-related risks,
but also substantially increases problem complexity and computation time. Using full
information regarding parking availability but restricting the parking times to high availability
time-windows can reduce complexity while maintaining consistent, although reduced,
performance.

Truck parking is a critical issue in the USA, and it can have a significant impact on the
environment and industry costs. Integrating truck parking information in the planning process
can mitigate this issue by recommending safer, more efficient itineraries to drivers. Although, in
general, parking availability is uncertain and we cannot guarantee a parking space, by including
this uncertainty in the model users can better manage the risks.
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Introduction

According to the U.S. Environment Protection Agency (EPA, 2018), the U.S. Transportation
sector is responsible for 28% of the US’s greenhouse gas emissions, 23% of which are caused by
medium- and heavy-duty trucks. This means that 6.4% of all greenhouse gas emissions in the
U.S. are generated by trucks. Furthermore, this issue is not particular to the U.S.A. The
European Union faces a similar problem, with almost 5% of their CO, emissions originating from
heavy-duty vehicles (Gregor, 2018). The European Commission proposed, in 2018, targets for
the reduction of emissions in new heavy-duty vehicles, showing that there is a growing concern
with the topic (Gregor, 2018). Similar measures have already been adopted by the state of
California as an effort to improve its fleet’s efficiency and curb CO; emissions. Although
California was able to reach its total emissions reduction targets early by pushing for the usage
of renewable energy and greener technologies, the emissions caused by the transportation
sector keep rising, and heavy-duty vehicles still count for around 8% of the state’s CO;
emissions (Barboza & Lange, 2018). Considering the continuous growth of the trucking industry,
it is clear the importance of developing more efficient ways of using the trucks, trying to reduce
their emissions as much as possible.

The problem of trying to minimize the fuel/energy consumption and pollutants emissions in the
transportation sector is not new. Several studies have approached this topic both for passenger
vehicles and trucks. A survey on ‘green’ vehicle routing can be found in (Eglese & Bektas, 2014),
which gives an overview of the types of models used for fuel consumption and emissions, and
of the different variants of the vehicle routing problem which involve environmental factors.
Multiple models have been developed to estimate the fuel consumption and pollutants
emissions based on different factors and targeting the usage on problems of different scales.
Some models consider only the average speed of the car, as the one used in (Van De Hoef et al.,
2015), but more precise models may consider the vehicle load (Zhang et al., 2015), road incline,
and if the vehicle is accelerating, decelerating or cruising (Demir et al., 2011). Reference (Demir
et al., 2011) presents a comparison of different fuel consumption models. These models are
then used to give an environmental aspect to transportation problems. These problems can be
divided based on their time-dependency (time-dependent traffic conditions or not), choice of
decision variables (route, number of vehicles, travel speed, departure time, etc) and choice of
cost function (only environmental factors or multi-objective). The problem presented in (Zhang
et al., 2015) considers the impact of load and speed on carbon emissions and fuel consumption.
Simulation results showed fuel consumption reductions of up to 18%. The traffic conditions are
not considered, so the proposed model is time-independent. Also, the speed is taken as a
parameter of the road, not as a decision variable for the model, so the model can choose to use
a faster or slower road when convenient, but it cannot tell the driver to drive slower than the
road ‘regular’ speed. In (Van De Hoef et al., 2015), the speed is used as a decision variable to
optimize fuel consumption during the trip and to facilitate the organization of truck platoons.
Although the treated problem is a routing problem, the fuel consumption optimization is only
performed after a shortest path has been chosen for each vehicle. At this point it turns into a
scheduling problem, as the route is given. Other variants of the problem consider time-
dependent traffic conditions on the road networks (Franceschetti et al., 2013) or the impact of
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different idling options used when resting (Kog et al., 2016). Several studies targeted the
benefits of truck platoons (Van De Hoef et al., 2015), (Agriesti et al., 2018; Tsugawa, 2014;
Tsugawa et al., 2016), showing that it is possible to achieve fuel consumption reductions in the
range of 5%-15% depending on platoon speed, gap between trucks and position of the truck
inside the platoon.

The problem is that most of these fuel/emissions-efficient models do not address important
practical constraints of the trucking industry, i.e. working hours or Hours-of-Service (HOS)
regulations and parking availability. These factors are particularly important to long-haul truck
drivers, which are usually not the focus of these studies. In (Kog et al., 2016), the author
considered the working hour regulations and included an environmental cost based on the
emissions generated by truck idling depending on the equipment installed in the truck and the
one available at the parking location. However, this model did not consider the possibility to
optimize the emissions/fuel by controlling the speed of the vehicle, and also did not consider
traffic conditions. In most cases, the studies focused on the trucking industry which consider
working hours regulations and, to a certain extent, parking focus on the monetary costs directly
accrued by the trucking company. Thus the objective function usually considers only the total
trip duration (Asvin Goel, 2012; Kok et al., 2011), or a function of the total trip duration and the
working time or travel distance (Rancourt et al., 2013). There are studies on the combined
routing and scheduling problem, and studies focused only on scheduling, but it is the scheduling
problem the one responsible for the practical feasibility of the solutions when subject to
regulations and parking availability. Some methods allow the driver to rest at any point during
the route (Asvin Goel & Irnich, 2017; Asvin Goel & Vidal, 2014; Kok, Meyer, et al., 2010;
Rancourt et al., 2013; Xu et al., 2003), not considering the need for an appropriate rest location,
others only allow the driver to rest at truck stops and/or client locations (Asvin Goel, 2012; Kog
et al., 2016; Kok et al., 2011). Most studies do not consider time-dependent travel times,
however there are still some that do (Kok et al., 2011; Kok, Hans, et al., 2010; Shah, 2008).

A part of this problem which is still overlooked most of the time is the issue of parking
availability. Most models assume that any valid parking location will always be free, which is
unrealistic as appropriate truck parking is an issue both in the U.S.A. (U.S. Department of
Transportation, 2015) and in Europe (SETPOS Consortium, 2009). In (Vital & loannou, 2019,
2020), Vital and loannou studied the problem of including both parking availability information
and HOS regulations in the planning of long-haul transportation, but those studies do not cover
fuel consumption and emissions. Several variants of the two sides of this problem,
fuel/emissions optimization and scheduling with working hours regulations, have been studied.
Currently, what we lack is a model that can integrate both sides. A model able to generate
solutions with reduced environmental cost, but that are still feasible in practice. In this project,
we address this research gap by extending the shortest path and truck driver scheduling
problem under parking availability constraints (Vital & loannou, 2021a), which focused on the
working hours regulations and parking availability constraints, to consider the impact of traffic
conditions and different travel speeds in the fuel consumption and pollutants emissions of the
trucks, as well as how uncertainties in the parking availability affect the problem's solutions.
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This report is organized as follows: Section Related Work reviews related work. Section USA’s
Hours of Service Regulations describes the HOS regulation considered. Section Problem
Description describes the problem being studied. Section Model presents the model used to
represent the problem. Section Dynamic Programming Formulation and Rollout Algorithm
describes the dynamic programming formulation used to solve the problem. Section Parking
Availability Uncertainty extends the model to consider stochastic parking availability. Section
Experiments presents the experiments and results. Section Feasibility of Commercialization and
possible model extensions discusses the system's commercialization potential. Section
Conclusion presents the conclusion.

Related Work

Time-dependent Shortest Path Problem

The time-dependent shortest path problem was first studied by Cooke and Halsey (1966)
(Cooke & Halsey, 1966), who extended bellman's equations to time-dependent networks and
presented an dynamic programming solution for the discrete time problem. Since then,
polynomial time solutions have been proposed for networks with the FIFO (first in, first out)
property, i.e., one cannot arrive earlier at the end of an arc by departing later. (Kaufman &
Smith, 2007) proves that, in problems where the network has the FIFO property the complexity
of labeling algorithms for time-dependent networks is the same as for static networks. The
FIFO assumption holds in practice for many networks, including transportation networks. Most
algorithms proposed for the time-dependent shortest path problem are based on the Dijkstra
and A* algorithms often studied for the static problem (Dean, 2004; Dell’Amico et al., 2008;
Delling, 2011; Ferone et al., 2017; Nannicini et al., 2008; Ziliaskopoulos & Mahmassani, 1993).
(Ziliaskopoulos & Mahmassani, 1993) proposed an algorithm to calculate simultaneously all the
shortest paths from all nodes to a given destination node and for every discrete time step in a
network with time-dependent arc costs. They presented a label correcting method that uses a
bottom-up dynamic programming approach to calculate shortest paths. The problem does not
assume FIFO networks. In (Dean, 2001), Dean studies the theoretical properties of time-
dependent shortest path problems, and presents serial and parallel algorithms for the problem
of calculating the earliest arrival time at one or more nodes in FIFO networks. In (Zhao et al.,
2008), Zhao generalizes the A* algorithm for time dependent networks. The algorithm
correctness is guaranteed if the used time-dependent estimator functions satisfy the proposed
sufficient conditions. The landmark based ALT algorithm is also extended to the time-
dependent case. Landmarks with precalculated optimal travel times to every node (at every
time) are used to estimate lower bounds for the travel times from every node to the
destination. These lower bounds satisfy the sufficient conditions proposed and are used in the
A* algorithm to guide the exploration of the search space, improving performance. In
(Nannicini et al., 2008), Nannicini et al. present a bidirectional search method that is also based
on ALT algorithms. In (Delling, 2011), Delling presents a time-dependent version of the SHARC
algorithm, which uses preprocessing routines based on highways hierarchies (Sanders &
Schultes, 2006) and arc-flags (Lauther, 2004) to speed-up a Dijkstra-based algorithm.
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Another important consideration is whether waiting at nodes is allowed. In (Orda & Rom,
1990), Orda & Rom showed that if waiting is allowed, then a shortest path can be found in
polynomial time even without the FIFO assumption. However, if waiting is not allowed and the
network does not have the FIFO property, the problem is NP-hard (Orda & Rom, 1990). Later,
Foschini et al studied in detail the complexity of the arrival time function and of algorithms
searching for a minimum delay path (Foschini et al., 2011). Omer and Poss (Omer & Poss, 2020)
proposed a polynomial time algorithm for the case when wait times are allowed at all nodes,
but when those wait times are not considered in the cost function. The algorithm calculates the
shortest paths while iteratively increasing the maximum allowed total wait time. The authors
used FIFO network and piece-wise linear travel time assumptions to prove that an optimum
solution can be found while testing only a finite number of total wait times. The length of the
sequence of wait times that need to be considered depends on the total number of breakpoints
of all travel time functions. The sequence of wait times to be tested is chosen so that shortest
paths passing through each node can be written as a concatenation of a shortest path found in
the previous iteration, the wait time increase for the current iteration, and a path to the
destination without waits. The problem addressed does not consider time-windows, the only
constraint is on total waiting time.

(Huang et al., 2017) uses a time-delay neural network with the same topology as the road
network to calculate the shortest path to a given destination node when travel time between
nodes is defined by piecewise constant functions. The time complexity depends on the product
of the number of time-windows needed to describe the travel time functions, and on the
shortest path's arrival time at the destination node (in time steps). This is an interesting line of
research, as, compared to methods based on Dijkstra and A*, the time complexity is not as
affected by the network size.

Most studies focus on minimizing trip duration, arrival time or driving time. However, in
practice, those are not the only relevant objectives. For example, the transportation companies
might want to minimize fuel consumption, emissions, safety risks, or monetary costs. These
types of objective functions may not satisfy FIFO assumptions and can be more problematic to
deal with, as studied in (Orda & Rom, 1991). (Orda & Rom, 1991) showed that in some time-
dependent minimum weight path problems there is no finite optimal path, and proposed
conditions for the existence of finite optimal paths. (Cooper & Cowlagi, 2018) study path
planning under time-dependent cost functions modeled as a spatiotemporal scalar field. As an
example, they mention that minimizing a weighted sum of travel duration and exposure to
traffic might be useful in reducing emissions-related health risks to long-haul truck drivers. They
study the effects of allowing waiting under scalar fields defined by linear combinations of
Gaussian functions and propose local conditions to prune search trees used by graph search
algorithms. In (He et al., 2020), He et al. study problem variants where a subset of nodes has
penalties for waiting or where there is a limit on the total waiting time at a subset of nodes.
They proved that some variants are NP-Hard and proposed polynomial time algorithms for the
ones that are not. In (Cai et al., 1997), Cai et al. consider node-dependent upper-bounds on the
waiting time at each node.
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The work on time-dependent shortest paths problems with constraints is limited. The most
common constraints considered are applied to the waiting time, as in (Cai et al., 1997; He et al.,
2020), or total trip duration (Wenting & Xiaogiang, 2007). (Sherali et al., 2003) addresses time-
dependent label-constrained shortest path problems which restrict the structure of acceptable
paths. Besides the usual setup for shortest path problems, each arc is ascribed a label, and the
acceptable label sequences are defined by a ‘language'. For example, the labels can represent
travel modes, such as walk, drive, and bus, and the language can specify that only paths using at
most 2 labels (travel modes) are acceptable. Although variants with time-window constraints
are common for the static shortest path problem that is not the case for the time-dependent
version. In (Spliet et al., 2018), Spliet et al. studied a problem variant with time-window
constraints in the context of a routing problem. Spliet et al. presented an exact labeling
algorithm and a heuristic tabu search algorithm for the shortest path problem with a capacity
constraint, time-dependent travel times, time window constraints on both the nodes and on
the arcs, and linear node costs. The labeling algorithm was based on the algorithm proposed by
(loachim et al., 1998) for a similar variant, where the travel time is not time-dependent, but
nodes have time-windows and time-dependent costs. (Mayerle et al., 2020) studied the time-
dependent shortest path problem under time-window and hours-of-service regulation
constraints, where the solution represents not only a path, but also a schedule specifying for
how long the driver must rest at each location. They define a state-graph where each node is a
certain stoppage configuration and present a Dijkstra-based algorithm with a pruning heuristic
to find good solutions. A related problem was studied in (Kok et al., 2011), where Kok et al.
presented an integer linear programming formulation for the time-dependent truck driver
scheduling problem. Although their formulation considers a fixed path, it can be used as a post-
processing step for shortest path or vehicle routing problems under time-window and hours-of-
service regulation constraints.

Truck Driver Scheduling Problem

The inclusion of HOS rules in scheduling algorithms, the truck driver scheduling problem (TDSP),
was approached in many studies in recent years (Archetti & Savelsbergh, 2009; A. Goel, 2010;
Asvin Goel, 2012; Asvin Goel & Kok, 2012; Kog et al., 2016; Vital & loannou, 2019). Multiple
regulations have been considered, including ones from the United States (Asvin Goel & Kok,
2012), Europe (A. Goel, 2010) and Canada (Asvin Goel & Rousseau, 2011). Furthermore, it is
often studied as part of a vehicle routing and truck driver scheduling problem (VRTDSP) (Gaddy
et al., 2018; Asvin Goel & Vidal, 2014; Kog et al., 2018; Kok et al., 2011; Kok, Hans, et al., 2010;
Rancourt et al., 2013), which is a variant of the vehicle routing problem (VRP) that accounts for
HOS rules, and, less commonly, it is studied in the context of shortest path problems (SPP)
(Drex! & Prescott-Gagnon, 2010; Asvin Goel & Irnich, 2017; Mayerle et al., 2020). Besides the
particular methods used, the differences between problems treated in the literature usually
relate to the following aspects: regulation considered, optimality of the solutions, parking
restrictions, cost function, and main problem (TDSP, VRP or SPP). We are most interested in
how they approached parking restrictions and path planning.
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Although truck parking is currently a critical issue, it is often overlooked in the literature, with
many methods not even restricting parking to appropriate facilities. In (Archetti & Savelsbergh,
2009), Archetti et al. considered the problem of determining whether a sequence of n full
truckload transportation requests is feasible given a set of HOS regulations and pick-up time-
windows. The proposed method allows drivers to park anywhere and finds a feasible schedule
in 0(n3) time. In (A. Goel, 2010), Goel considered a similar problem using the European
regulations, and in (Asvin Goel & Kok, 2012), presented an algorithm to find feasible schedules
to visit n locations using the US regulations in 0(n?) time. However, these methods assumed
that drivers could park anywhere, which is not valid in practice. This assumption is also present
in (Drex| & Prescott-Gagnon, 2010; Asvin Goel & Irnich, 2017; Asvin Goel & Vidal, 2014; Kok,
Meyer, et al., 2010; Rancourt et al., 2013). In (Asvin Goel, 2012), Goel presented a mixed
integer programming (MIP) formulation and a dynamic programming algorithm for the TDSP
that restricts parking to client locations and calculates a schedule with minimum trip duration.
Rest areas were modeled as clients with zero service time and unbounded time-windows.
Similar MIP models were used in (Kog et al., 2016; Kok et al., 2011; Vital & loannou, 2019),
focusing on different aspects of the problem but keeping parking restricted to appropriate
facilities. In (Kok et al., 2011), Kok et al. addressed the issue of traffic congestion by considering
time-dependent travel times and proposed a heuristic approach to integrate the TDSP model
into a VRP method. In (Kog et al., 2016), Kog et al. approached the environmental impact
caused by truck idling and how it is affected by the truck's equipment and rest areas'
infrastructure. The drivers can only park at rest areas, which have different types of
infrastructure available. Early arrival is allowed at client locations, but it does not count as off-
duty time. The cost function accounts for the type of idling used in each stop given the
equipment installed on the truck and the infrastructure available at each rest area. This method
was later used as a base for a VRTDSP algorithm with the same focus (Kog et al., 2018). In (Vital
& loannou, 2019), Vital and loannou approached the issue of truck parking availability and US
HOS rules for long trips. Their model considered a single client trip, which hinders drivers'
ability to plan consecutive trips. Parking was restricted to rest areas, and parking availability
was modeled as time-window constraints for each rest area. Each rest area's availability time-
windows take effect only if a stop is scheduled for that particular location. Due to the focus on
parking availability issues, the model assumed that parking is unavailable outside of the delivery
time-window and did not allow early arrival at the client or rest areas. As short-term staging
due to warehouse or terminal hours is a source of truck parking demand (Cambridge
Systematics, 2019; U.S. Department of Transportation, 2015), we see the restriction on early
arrivals (also included in our model) as an important distinction when considering truck parking
shortages. This study is the only one that considered time-dependent parking availability in the
TDSP. Nevertheless, as (Vital & loannou, 2019) addresses only the scheduling problem, it does
not account for alternative paths or parking locations that require a detour to be reached. This
limitation motivates the other aspect of our work: path planning.
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The inclusion of parking constraints and HOS regulations when determining the shortest path
between locations is relevant not only to individual drivers that need to plan their itineraries,
but also to carriers and other stakeholders that need to estimate operational costs and allocate
resources. Hence why we are interested in the shortest path problem with resource constraints
(SPPRC) that lies between the TDSP and the VRTDSP. VRTDSP methods assume that the shortest
path between any two clients is known (and independent of the current status of the HOS
constraints), and use TSDP algorithms to calculate the cost of each route generated. The rest
areas considered in these problems are located along these known shortest paths. If the driver
is allowed to rest anywhere or only at client locations, this assumption does not affect the route
cost. However, when parking is restricted and rest areas are considered, the minimum cost
path between two clients will depend on the location of every reachable rest area and the HOS
constraints' status at the departure time from the client. The inclusion of parking availability
constraints makes it even more important to consider alternative paths and rest areas. When
parking is scarce at the usual routes, it may be cost-effective to take a slightly longer path if it
has better parking conditions. Failing to consider how parking availability and HOS constraints
affect the shortest path between clients may cause planners to underestimate the trip's
duration and cost. This inaccuracy can upset operations planning as well as fair driver
remuneration (depending on how wages are determined). The issue is aggravated when drivers
lack the flexibility to adjust their route, as some of the drivers surveyed in (Sun et al., 2013). In
this case, the driver is limited to taking a sub-optimal route, further increasing the difference
between estimated and actual trip cost and duration.

The shortest path problem with resource constraints (SPPRC) often appears in column
generation solutions to the VRP (Costa et al., 2019) and several approaches have been
proposed for its variants (Asvin Goel & Irnich, 2017; Horvath & Kis, 2016; Irnich & Desaulniers,
2005; Lozano et al., 2016; Pugliese & Guerriero, 2013). The SPPRC is often solved through
dynamic programming-based labeling algorithms, applying tailored dominance rules and bound
estimates to identify and discard inferior paths. SPPRC formulations and algorithms are tailored
to their own problem variants and may not be directly applicable to other problems. Hence the
need to develop tailored methods for the SPPRC in the context of HOS regulations and parking
availability constraints. However, the number of studies using SPPRC formulations in the
context of HOS-compliant planning is very limited. In (Drex| & Prescott-Gagnon, 2010), Drex|
and Prescott-Gagnon present a SPPRC formulation to the problem of finding HOS-compliant
routes and schedules, and propose exact and heuristic labeling algorithms. In (Asvin Goel &
Irnich, 2017), Goel and Irnich propose an exact method for the VRTDSP using a branch and price
algorithm where a SPPRC is used to generate HOS-compliant routes and their costs. An auxiliary
network is used to model drivers' possible activities, but parking locations are not considered.
Even though they consider HOS regulations, both (Asvin Goel & Irnich, 2017) and (Drex| &
Prescott-Gagnon, 2010) assume that drivers may stop and rest anywhere on a route. This
limitation is partially addressed in (Mayerle et al., 2020), where Mayerle et al. study the impact
of Brazilian regulations in the planning of long-haul full truckload shipments. Differently from
(Drex! & Prescott-Gagnon, 2010; Asvin Goel & Irnich, 2017), this study is not aimed at deciding
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which clients to visit and in what order for a VRTDSP, but at how changes to HOS rules affect
the best path to reach a client. They use a labeling algorithm and pruning heuristics to optimize
the path a truck takes to reach a single client, while scheduling stops at allowed locations to
satisfy regulations. Their model includes some time-restrictions to all rest stops by restricting
departure times at the beginning of each work day, as well as the start time of lunch breaks.
However, they also overlook the question of whether those parking locations will be available
at the desired times. In addition, it shares the same single client limitation as (Vital & loannou,
2019).

USA’s Hours of Service Regulations

The USA HOS regulation restricts for how long drivers can drive/work, and how long they
should rest before being allowed to drive again. We refer to the off-duty periods required by
the regulation based on their minimum duration: breaks (0.5 h), daily rests (10 h) and weekly
rests (34 h). The USA HOS regulation can be summarized as follows (Federal Motor Carrier
Safety Administration, 2021):

e 11-hour Driving Time Limit: A driver may drive at most 11 hours between 2 consecutive
daily rests.

e 14-Hour Elapsed Time Limit: A driver cannot drive after 14 hours have elapsed since the
last daily rest ended.

e Rest Breaks: A driver must take a break after 8 cumulative hours of driving time. Recent
changes in the regulation allow this constraint to be satisfied by any non-driving period
of 30 consecutive minutes.

e 60-Hour Limit: A driver cannot drive after having been on duty for 60 hours in any
period of 7 consecutive days. The 7 days period can be reset by taking a weekly rest.

We do not consider the sleeper berth provision, which allows daily rests to be split. And, for the
60-hour limit, instead of restricting the on-duty time over any period of 7 consecutive days, the
on-duty time between two consecutive weekly rests was restricted to 60 hours.

Problem Description

In this project, we first address a “green' variant of the SPTDSP-PA (shortest path and truck
driver scheduling problem with parking availability constraints) (Vital & loannou, 2021a). This
variant differs mainly by the inclusion of fuel consumption in the objective function, the usage
of travel speed as a decision variable (in order to control fuel consumption), and for considering
time-dependent traffic conditions. Then, to make the model more realistic, section Parking
Availability Uncertainty extends it to include uncertainty in parking availability. In practice, it is
impossible to be certain about the future parking availability of any location during planning.
Therefore, we include this uncertainty in the model and study its effect on the solutions
depending on the information provided to drivers/planners.

The problem consists of planning the path and schedule for a truck starting at an origin location
and visiting an ordered list of clients, where the last client is referred to as the destination. Each
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client has a fixed non-negative service time, and time-window constraints restricting the
vehicle's arrival time. The schedule must comply with HOS (Hours-of-Service) regulations, which
impose restrictions on how long the driver can work or drive without resting, and the minimum
duration of rests (rests of different durations satisfy different restrictions). Drivers can rest only
at rest areas, but arrival time at rest area nodes is also subject to time-window constraints
(representing parking availability). The problem is solved over a simplified road network that
includes only the main routes the truck can take between two consecutive client locations, and
the rest areas around them. The simplified road network is defined as an acyclic directed graph
G = (V,A), where V is the set of nodes of the graph and A is the set of edges. The vehicle
consumes fuel when driving or idling. We consider the consumption model for diesel trucks
defined in section Consumption Model. The driving consumption rate is described by a non-
linear speed-dependent function, and the idling consumption rate is taken as constant. Each
road section (i,j) € A has a fixed length d;; and a time-dependent allowed speed range
[si} (v), si‘“j (t)], thus setting the allowed travel time to %,% . The average travel speed can be
ij °ij
adjusted within the allowed range to control the travel time and energy consumption. We
assume that the speed profiles are defined such that all edges satisfy FIFO assumptions when
considering only one of the speed limits.

During long trips, HOS regulations require drivers to rest along the way. Rest stops are
restricted to rest areas and their minimum durations are defined by the regulation. We do not
allow for rests to be taken at client locations. However, note that service times longer than
30min can reset the 8h driving limit constraint despite counting as on-duty time for other
constraints. Each parking location has a set of time-windows representing the intervals when
parking spaces are expected to be available. These time-windows restrict the vehicle's arrival
time. The vehicle is not allowed to arrive early and wait. The regulation sets a minimum
duration for the rest stops, but it does not set a maximum duration, so the driver is allowed to
extend the stay when convenient. Similarly, each client has a set of time-windows constraints
and a service time, which define when the truck can arrive at the client and the duration of
stay. However, drivers cannot extend the service time at the client. As rest areas are not
required stops, the graph G is built so that rest areas can be bypassed. Clients are mandatory
stops, so all considered routes go through the client nodes.

As this project addresses the issue of emissions reduction, we want this to be reflected in our
objective function. We take as objective function a linear combination of trip duration and fuel
consumption. The trip duration term accounts for driver wages and operational costs (excluding
fuel), whereas the fuel term accounts for fuel and emissions costs. The emissions costs can be
seen both as some kind of carbon pricing, or simply the level of importance attached to
reducing emissions as opposed to reducing trip duration. Consider the following cost function
for a decision of duration &:

g(8) = {0‘5 + Buel(ue/8), if driving

(a+ By +0)94, 0.W. (1)
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where a is the trucks hourly operational cost (excluding fuel) and [ is the cost per unit of
fuel/energy. For non-driving decisions, y is the hourly idling fuel consumption, 6 represents
hourly costs incurred while stopped from sources other than idle fuel consumption and
operational costs. For driving decisions, 1, is the length of the road segment considered, and
{(v) is the fuel consumption per unit of distance. This cost function considers both time and

fuel related costs, and their relative importance can be adjusted using the parameters a, {3, and
0.

Model

The problem was formulated as a resource constrained shortest path problem as in (Vital &
loannou, 2021a). The formulation uses an auxiliary network to explicitly model drivers'
activities. Time and the counters associated with the different HOS regulations are treated as
resources. Time is subject to time-window constraints at client and rest area nodes. Each HOS-
related resource has a different upper limit, and depending on the activity being performed,
these resources can increase (by the activity’s duration), keep their current value, or be reset to
zero. For example, a resource tracking driving time is not affected by edges representing service
time at a client; a resource tracking the elapsed time since the last 10h rest (daily rest) will
increase during a 30min stop (break), but will be reset to zero during a daily rest.

At the origin, client locations and rest areas, drivers perform non-driving activities. These nodes
are expanded according to the subnetworks in Figure 1, forming an extended network G’ =
(V', A") that includes non-driving activities explicitly in the graph. Each edge has its activity
indicated below the arrow. Edges that have a fixed duration have their duration indicated
above the arrow. The incoming/outgoing edges of the subnetwork are the incoming/outgoing
edges of the node being expanded. The duration of edges representing rest extensions (edges
marked with 8's in Figure 1a) was already controllable in (Vital & loannou, 2021a). When speed
optimization is included, the duration of driving edges will be controllable within a given range,
and in the time-dependent case, the range of allowed speed varies with time.
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Figure 1. Sub-networks used to model non-driving activities.

System Equations

We consider the system’s state as being a vector x;, = (v, 6)), where 6;, =

(2, m2, nk, ¥k, YY) containing the truck’s current location (v, € V') and the current resource
values (8;). The resources are responsible for tracking the HOS restrictions, and arrival time at
each node. The resources used are:

e 1% Arrival time at current location

e 1P: Accumulated driving time since last break

e n":Elapsed time since last daily rest

e Y": Accumulated driving time since last daily rest

e ™: Accumulated on-duty time since last weekly rest

The evolution of the system is described by x,.; = f(xx, 1) , where xy, is the current state,
X+1 is the next state, and u,, is the decision taken. The decision u;, is composed by an edge

e = (Vy, Vp41) € A', with length py,, and a duration &y, included in e;s allowed duration set.
When dealing with edges related to driving, this set is defined by the length and allowed speed
values of ej,. The function f(x;, u;) defines how each element of x}, is affected by a decision
Uy, and the resulting next state x . As different activities have different impacts on each
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resource, each edge of the extended network has an activity assigned to it. Table 1 shows how
the resources are updated depending on the activity. The functions fd, 5, fb, fr, f¥and f°
describe the update rules for activities drive, service, break, daily rest, weekly rest and
departure, respectively. Figure 1 shows how the activities are assigned to each edge. Note that
nP’s and f?’s definitions differ from (Vital & loannou, 2020) due to recent changes in the
regulation. Now the 8h limit is applied to driving time instead of elapsed time, and any non-
driving period longer than 30 minutes can satisfy this constraint.

Table 1. Resource Extension Functions

fd fs fb fr ]cw fO

Met1 = i + B
0, ifé, >ty 0
Mot = M + S { nk, 0.W. r
Moy = M + B 0 nh
Yhyy = YL + 6 Vi 0 Wi
w

Yy, = Yic + 0k Yy 0 |y

Consumption Model

The fuel consumption depends on the activity being considered, so we separate the model in
driving, and idling. The model parameters considered are listed in Table 2.

Driving

We used the model presented by Wang and Rakha in (Wang & Rakha, 2017). More specifically,
the parameters used are the ones for a convex model of a Freightliner/FLD 120, year 2001,
labeled as “"HDDT8" in their paper. The model first estimates the vehicle's power demand due
to resistance forces acting on the vehicle, then estimates the consumption rate based on the
power demand. We consider the average travel speed over each road section, and terms
relative to acceleration and road grade were omitted. This model characterizes fuel
consumption as a second-order polynomial function of the power demand, as follows:

pAC v (2)
Pp(v) = (25.9; v?2 + mgCr(c,v + c2)> 36007,
3600 (3)

{p(w) = (ap + a; Pp(v) + aZPD(v)Z)T

where Pj,(v) represents the power demand (kW), and {,(v) represents the fuel consumption
per distance ( L/km ). Cp is the drag coefficient (unitless). Cr, c; and ¢, are the rolling
resistance parameters (unitless), ng is the driveline efficiency (unitless), o, o; and a, are
vehicle-specific model coefficients calibrated in (Wang & Rakha, 2017) using empirical data. The
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air density (kg/m?3) is given by p, and the acceleration due to gravity is given by g . The terms

v, m and A represent the truck's speed (km/h), mass (kg) and frontal area (m?),

respectively.

When “idling', we consider a fixed consumption rate F; (L/h). Service time at clients is

considered idling time.

Table 2. Model Parameters

Parameter Description Value
Cp (Wang & Rakha, 2017) coefficient of drag 0.78

Cr (Wang & Rakha, 2017) coefficient of rolling resistance 1.25E-3
c1 (Wang & Rakha, 2017) coefficient of rolling resistance 0.0328
c2 (Wang & Rakha, 2017) coefficient of rolling resistance 4.575
nd (Wang & Rakha, 2017) driveline efficiency 0.94

m (kg) (Wang & Rakha, 2017) truck’s total mass 3.6E4
A (m?2) (Wang & Rakha, 2017) truck’s frontal area 10

ao (Wang & Rakha, 2017) vehicle-specific model coefficient 2.16E-3
a1 (Wang & Rakha, 2017) vehicle-specific model coefficient 7.98E-5
a2 (Wang & Rakha, 2017) vehicle-specific model coefficient 1.0E-8
Fi(L/h) (U.S. Department of Energy, 2015) idling fuel consumption 3
g(m/s2) (Wang & Rakha, 2017) gravity 9.8066
p(kg/m3) (Sripad & Viswanathan, 2017) air density 1.2256
Pd(kg/L) (Argonne National Laboratory, COz emission factor for diesel 3.13

2020; U.S. Energy Information
Administration, 2016)

Dynamic Programming Formulation and Rollout Algorithm

Let J(x)) be the minimum cost to go from state x;, to the destination, and X, the set of feasible
states at the destination node. This cost-to-go function is defined as:

J(Ox) = {

0, if Xk S Xd
)g(xk;u) +](f(xk,u)),o.w.

(4)

where g(x;,u) is the cost accrued by decision u at state x;, and U(x;,) is the set of decisions
u for which f(x;,u) is a feasible state. A state is considered feasible if all resources are within
their respective feasible ranges. If U(x},) is empty, we say that the destination cannot be
reached from x;, and J(x;,) is infinite. The choice of g(-) determines what is being minimized. In
this project, we use the cost function (1), which combines fuel and trip duration costs.
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Although any node has only a finite number of outgoing edges, the decision space U(x) can
have uncountably many elements if the allowed duration set of one or more of these edges is a
continuous interval. In order to mitigate this issue, we first propagate the constraints of each
node to all upstream nodes. This reduces the feasible space at each node and the decision
space to be considered for each decision. During execution, the algorithm uses the
preprocessed feasible ranges to generate a reduced decision space, which is then discretized,
generating a finite set of decisions. Nevertheless, due to the curse of dimensionality, this
approach does not scale well for large instances. Using a coarse decision space discretization
can bring significant improvements to computation time, but will also cause the cost to
deteriorate. Therefore, we use a rollout algorithm (Bertsekas, 2017) to find suboptimal
solutions while keeping the computational demand in check. The general idea is to use the cost
obtained from applying a base policy as an approximate cost function, then use this
approximation to generate a one-step lookahead policy. One-step lookahead policies choose
the decision that minimizes the following expression:

min g(xk'uk) +j(f(xkruk)) (5)

uR€U(xg)

where J(x,) is the approximated cost-to-go of state x. Let the policy T be a function that
returns a feasible decision Tt(x;) € U(x,,) for every state x. J.(xy) is the cost-to-go when the
policy T is used to take decisions at every state, and it can be described as:

0,ifx; € X4

,g(xk; n(xk)) +]1t (f(xk,rr(xk))) ,  O.W, (6)

]n(xk) = {

In this project, we used J(x) = J.(x), where T is the policy generated by solving the problem
with a coarser discretization of the decision space. The strategy used to propagate constraints is
included in Section Constraint Propagation and Feasible Decision Space. Section Graph
Preprocessing describes how the graphs were preprocessed to reduce issues with short links.
Section Analytical Solutions and Section Cost Lower Bound show, respectively, analytical
solutions and cost lower bounds that can be used to speed-up the algorithm.

Constraint Propagation and Feasible Decision Space

Consider the following expression describes how the states are updated:

Xiv1 = f (e, up), u; € Ui(x;) c U; (7)

Let F; represent the set of feasible states at node v;. We define U;(x;) as:
Ui(x) = {u € Uy f(xpu) € Fiyq} (8)

When choosing the decisions to test, we can either sample U; and check the feasibility of each
decision or calculate the feasible decision space with an inverse function f~1(F;,, x;) that
returns the elements of U; that can generate a next state in F; 4. In this case, F;,; refers to the
set of feasible next states, i.e., U; (vivj)ear F;. As most edges update the resources by adding its

duration to the current resource, in general this operation consists of shifting the intervals
representing the constraint for each resource, then taking the intersection between all of them,
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e.g. if the next node has a time-window [10,15] and the current time is 5, then the decision
duration must be in the interval [5,10] to be feasible. Different resources will generate different
intervals, and feasible decisions must satisfy all of them.

Originally, F; represents only the feasibility regarding the local constraints at node v;, however,
if we consider constraints from other nodes, we may be able to reduce F;, and consequently
reduce U;(x;). Each node’s local constraints can be propagated downstream and upstream to
reduce other nodes’ feasible spaces.

Let F* (Fi, Fj, Ul-(-)) represent a function that returns which states in F] can be reached from
Fi, i.e.,

F* (Fi’ F}', Ul()) = {x] € F}-|Elxi € Fi' Jdu € Ui(xi), f(xi,U.) = x]} (9)
The set R]’-‘ of states that can be reached at node v; is given by:

R}‘ = U F* (:R;kf F}'r Ui ()) (10)
i, (vi,vj)EA
R}‘ can be overly complex due to the coupling between resources, so we try to approximate it

by propagating the constraints for each resource separately. Let Fi(r) be the projection of F; on
the axis representing resource r, and f(r) the component of f that defines the evolution of

resource 7. Let F (™ (Fi, F, Ul-(-)) be a function that returns which values of resource r can be

reached at node v; starting from a state in F;, defined as follows:

FO(F, F,0,00) = {27 e F713x7 € £, 3u e Ui(xp), O (x7u) =} (1)

Let ﬁj approximate R]’-‘ as follows:

Ry = 1_[ (?(” (%o F, Ui(')))
=[] U = (12)

T j, (vivj)ea
where R; ; is the approximation accounting only for the constraints of upstream node v;, and
Ri,jm is its projection on the axis representing resource r. Note that, for a given v; , if 3r such
that F™ (ﬁi, E;, Ul-(-)) = @, then R;; = @. That s, if states from v; cannot satisfy the
constraints for 1 or more resources, then v; will not be counted when calculating the reachable

states at v;. Furthermore, the edge (vl-, vj) can be removed from the problem. At the origin
node we have that R} = R, where R, is the set of possible initial states.
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Backward propagation follows the same general idea as forward propagation. Let F; be the
reduced feasible space, i.e. the set of states x; € F; able to generate feasible solutions given
downstream constraints. Like how we calculated U;(x;), we need a function B (Fi, F;, Ul-(-))
that can calculate the values of x; at node v; that can lead to at least one feasible state x; at
one of the successors v; , i.e,

B (Fi,Fj, Ui(')) = {x; € F;|3u € U;(x)), f(x;,u) € F} (13)
However, this function is hard to compute and generates complex regions that will require
more space to store, and more time to check during execution. Therefore, we calculate

separate regions for each resource and use it to generate an approximate reduced feasible
state space F; as follows:

c™ (Fi’ F;, Ui(')) {xl.(r) € Fi(r)|5|u € U;(xy), f(r) (xi(r),u) € F}(r)}

R=[1eo @ Bo0)
=]l U s

roj, (vi,vj)EA

AsinR; ;, F"i,j is the empty set if any resource constraint cannot be satisfied. In this case, the
edge (vl-, vj) can be removed from the graph as it cannot appear in a feasible solution. We do
the forward propagation before the backward, so, at the destination node v,,, we have that

F, = E, = R,,. For example, if a node v; has a time-window [10,15] and the edge (i, j) can
have a duration in the interval [2,5], then v; must be visited in the time-window

[10 — 5,15 — 2] = [5,13]. If a different edge (v;, v;) generated a propagated time-window of
[7,17] on v;, we would consider the union of both time-windows, i.e., [5,17]. Then we would
take the intersection of v;’s original time-window, say [0,15], and the time-windows obtained
from propagating downstream constraints to obtain an estimated feasible time-window of
[5,17]. Note that the interval [5,15] can be divided into an interval feasible for paths passing
through v;, [5,13], and one feasible for paths through v, [7,15]. The same can happen to
other resource constraints. Therefore, it is possible that a state in £; only satisfies the time-
window for a certain path but satisfies the HOS resource constraints only for a different path.
As all constraints are satisfied by some path, the state is included in F"i , but, in practice, that
state cannot generate feasible successors. So, we have that F; might contain states that cannot
satisfy downstream solutions, i.e., F; S F; € F;. Figure 2 shows a 2D example of the difference
between reduced feasible state space F; and its approximation F"i. The blue region in Figure 2b
belongs to F;, but not to F;.
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(a) Blue dashed line: correct feasible space. (b) Blue dashed line: approximate feasible
space. Blue region: infeasible.

Figure 2. The green and brown regions are examples of possible feasible regions in a 2D
space. The figures show how the (a) exact and (b) approximate feasible spaces are calculated.

We separate the resource extension functions according to how they affect the resource being
updated. The resource extension functions either add a value to the resource (ADD), maintain
the current resource value (NoEff), or set the resource value to O (RESET). Let e = (vl-, vj) be an
edge, [6.,87] be edge e’s possible durations defined in U;. In the case of static networks, we
use U; directly instead of U;(x). Let [n;,n; ] be the feasible values for resource r at node v;.
The approximate propagation functions described previously are defined as follows for the 3
types of REF:

Forward Propagation

ADD: F™ (Fi, F;, Ui(-)) = [ni + 8.0 + 6210 [n7,nf]
NoEff: F (F,, F, U;(1) = [n7, nf 1[0y} ]

RESET: 7O (F, F,U;() = (03n[ng,1}]

Backward Propagation

ApD: €0 (F,, F, U;()) = [nf = 62,1f — 8.]N7,n¢]
Nokff: € (F,, F, U;()) = [n,n1N[n7 . n} ]

RESET: €™ (Fi, F;, Ul-(-)) = {03N[nj, ]
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When a resource’s feasible range is a set of disjoint intervals, the functions above can be
applied to each interval separately and we take the union of the resulting sets. Note that, in
these REFs, the decision’s duration is directly used to update the resource values. When
energy/fuel consumption is included as a resource, the update value will be a function of the
duration, so the propagation function will depend on the consumption model used.

The reduced decision space is generated following the same idea.

Ui,j(Xi: Ui('), F]) = {u € Ui(Xi)|f(Xi' U) € F‘]} = ﬂ{u € Ui(Xi) f(r)(Xi, U) (S F](I‘)} (15)
Ui (x5, Ui(')r{Fj}) = U Ui (xi, U; (1), F) (16)
i (Vi,Vj)EA'

Let n7; be the current value of resource r. The other symbols are defined as in the previous
section.

ADD: U (2, Ui (), ) = {u € U;e)If P (o u) € 7 = [nf = mymf — mi] N85, 821

o,if n & £
[65,6X], o.w.
®,if 0¢ F”
[65,6X], o.w.

NoEff: U (xy, Uy (), Fy) = {

RESET: Uﬁ?(xb U()F) = {

Analytical Solutions

At nodes where the only possible next stop is the destination it is possible to analytically define
the best decision so that the algorithm does not need to search over the remainder of that
search tree branch. Naturally, the decision depends on the cost function and constraints being
considered in the problem. Although we focus on diesel trucks, the problem formulation is very
similar to the one needed to model battery electric trucks (BET). Therefore, this section
considers the more general case used for BETs. This case can also be used if a limit is imposed
on fuel consumption or emissions (set recharge rates to zero, and use emissions limit as battery
capacity), or if fuel capacity and refueling time need to be considered (non-zero recharge rates,
treating fuel capacity as battery capacity). The RCSPP formulation and REFs for BETs can be
found in (Vital & loannou, 2021b). The solutions for diesel trucks without emissions limits or
refueling concerns can be obtained by ignoring the battery constraint.

Consider the following cost function for a decision of duration §:

_ (a6 + Buel(pe/8), if driving
C(8) = {(a + By + 6)4, 0.W. (17)
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, Where «a is the trucks hourly operational cost (excluding fuel/energy) and S is the cost per unit
of fuel/energy. For non-driving decisions, y is the hourly idling fuel/energy consumption, 6
represents hourly costs incurred while stopped from sources other than idle energy
consumption and operational costs. For driving decisions, p, is the length of the road segment
considered, and {(v) is the fuel/energy consumption per unit of distance. This cost function
considers both time and energy/fuel related costs, and their relative importance can be
adjusted using the parameters a, 5, and 6. In this section, we study the optimal decisions for
the last driving and rest extension decisions.

ac dg(v) dg(v) dv dg(v) pe

—=a+ —=a+ —_—— = —_—

ds P35 Ple =00 @5 Pre =0, 52 (18)

= a — Br? &) =0
d

Cost is minimum for § = %, such that ¥ is the root of v? X _ % Assuming that {(v) is a
convex function, and, consequently, Z—i is monotonically non-decreasing, we can say that
v? %(:) is strictly increasing over (max (0, v"), ©), where v’ satifies L) 0.Asa and S are

dv
e . . d o
positive, ¥ is unique. The function v? % does not depend on the edge, so ¥ can be calculated

beforehand. Let [5, 6] be §’s domain, the optimal decision is given by:

5, if §<o
6=15 if §>6 (19)
5, o.w.

Let p be the recharge rate at the current location, B, the battery charge on arrival at the
current node, §, € [Qo,go] the rest extension to be chosen, and §, € [Qf, Eg] the duration of
the decision at the following edge, which is the last driving edge. The cost from the rest node to
the destination can be written as C(8y,8,) = (a + By + 0)6, + ad, + L. (1e/,). Assume
that, due to the destination node’s resource constraints and the current state’s resource values,
6y + 6y € [Q, 5]. The optimization problem being solved at the last rest decision can be
described as:

mip C(80,6)) = (a+ By + )8y + ad; + PreG(1e/6)) (20)
s.t.: HeG(He/81) — 8op — By < 0 (21)
8o < 8y < 8, (23)
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5 <8, <§ (24)

, Where (21) guarantees that the battery charge is non-negative when arriving at the
destination. (22) restricts the time to reach the destination, and can be related to both HOS and
time-window constraints. (23) and (24) restrict the domains of §, and §, to the reduced
decision space, which is affected by all constraints and the current state. Consider the following
definitions:

Hwv) = v? di(;)
_ u$(w) — By
P(v) = —,0

VC = [(a + By +6) (a - [?H(v))]
Vg = [(=p) (-HW))]

5, H(D) =%

5 H() = —%— y

v, HW)=p

v, HW)=0
v*, HW") P

=0c+,8(p+)/)+9

, Where g, represents constraint (21). H(v) and P (v) are auxiliary functions defined to simplify
the notation and represent, respectively, the derivative of the energy consumption with respect
to §, and the minimum feasible §, given §,. The v’s with different accents are values used in
the solution that can be calculated offline. ¥, ¥, and v* represent, respectively, the speeds at
which the cost gradient VC is perpendicular to (23), (22), and (21). ¥ and ¥ are the speeds at
which (21) is parallel to (22) and (23), respectively. Note that, given a distance p,, each v also
defines a duration &,, e.g. §, = % The accents on the §’s indicate which v generate them.

First, consider the case when (21) is not active (e.g., diesel trucks). The optimum point is given
by:

%o, if 6p+6,2D
8o = min (EO,Q — 94, max(go, D—6,D— 5{;)), 0.w.

9, if Sotd,2D
§,= <{D =0 if (8o + 8, < D) A (8, # &)

min (5{), max@g, Sl, D —QO)), 0.W.
If the point (8, 8,) satisfies (21), then it is optimal. Otherwise, it means that (21) must be

active. In this case, we can define 7 candidate points and the sufficient conditions for them to
be the optimum. The candidate points are given by the point along g; with minimum cost and
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the points where (21) intersects other constraints, and the conditions conditions are derived
from each point’s KKT conditions. Table 3 presents the candidate solutions and their conditions.
Feasibility is a basic necessary condition for any solution, and was thus omitted from the table.
P~1(v) refers to the inverse of P(v) over the domain v € [, ). The points x, and x3,
representing the candidates where (21) and one of the constraints forming (22) intersect, might
be computationally expensive to calculate, so we can leave testing them for last. We can also
use approximate solutions instead of solving it exactly. Note that the conditions are generated
from speeds that can be calculated beforehand. Therefore, we may be able to directly eliminate
some candidate solutions based on §,’s domain.

Table 3. Solution Candidates

Point Condition
xy = (P(v"),6;) -

X2 = (D = 682,62), P(4e/8;) =D — &, 8, <8,<6;

x3 = (D = 85,85), P(e/83) =D — 6 5; <65 <5,
X4 = (QO'P_l(Qo)) 5, <P 1(8) <6,
X5 = (SO'P_l(go)) 83 < P7(8,) < 6,
xe = (P(1e/82), 62) 8, > 5;
%7 = (P(ue/8e), 6e) 5, <6;

Cost Lower Bound

Let A% c A’ represent the set of all arcs with driving as their assigned activity. For every node
pair (p, q@) such that there is a directed path from p to q, let D(p, q), D4(p, q), and D,(p, q)
be, respectively, the minimum travel time (including service time), minimum driving time and
minimum travel distance between nodes p and g with all resource, time-window and HOS
constraints relaxed:

. q) min(4yq), if(p,q) €A
D(p,q) = . .
e (mm(ﬂpk) +D(k, Q)), 0.w.

(0, if (p,q) € A"\ A?
Dy(p,q) = {min(dyg), if(n,q) € A

k(pl:lllcl)lgA/(Dd (p' k) + Dd (ky q)); o.Ww.

(0, if (p,q) € A"\ A?
D,(p,q) = < Hoa if (p,q) € A%

k(pl‘T,})lgA,(Df(P, k) + D,(k,q)), o.w.
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If there is no directed path from p to q, then D(p,q) = D,;(p,q) = D,(p,q) = .

Let Dy s(d, Y) represent the minimum duration of a HOS-compliant trip with d driving hours
and initial resource vector i, assuming the driver can rest anywhere, and without considering
service time and time-window constraints, i.e. if a driver were at the beginning of an empty
straight road with length equivalent to d driving hours where he/she can rest anywhere, given
an initial resource vector 1, how long would he/she take to reach the end of the road without
breaking the HOS regulations. A method to calculate Dys(d, ) is described in (Vital &
loannou, 2021a). Let D,(p, q) be the service time required between nodes p and q. If the
objective were simply to minimize trip duration, the lower bound L;,,,- can be calculated as:

Ldur (p' q, 1/)) = DHOS (Dd (p, CI), 1/)) + Ds (p, q)

However, when considering a combination of trip duration and energy/fuel consumption or
emissions as the objective function, the lower bound generated using only the duration term
(aLgur(p, q,)) is too loose and not as useful. Therefore, we need a lower bound on the fuel
consumption/emissions.

Idling cost: Let y the energy/fuel consumption rate when idle (resting or service). A lower
bound on the idling cost is given by:

Lian (0, ¢, %) = (By + 0)(Dros(Da(®, ), %) — Da(®, q) + Ds(p, q)) (25)

Dy is fixed as client visits are mandatory. D, considers the minimum driving time of each edge,
and Dy s(d, ) — d is monotonically increasing in d (required rest time cannot decrease when
driving time increases), so L;4;; is a lower bound on idling cost. Note that if the
cost/consumption parameters for rest and service time are different, the term D, (p, q) will
appear separately multiplying its own parameter.

Driving consumption: Let v,,;, be the minimum travel speed allowed in the network. We
assume that the fuel consumption per time FC(v) is monotonically increasing in the range of
speeds used in the problem, as is the case for the model we use. Therefore, FC (v,,,;,) gives a
lower bound on the energy/fuel consumption rate when driving. A lower bound on the
consumption due to driving is given by:

Lf_drl (pr Q) = 3600 - Fc(vmin)Dd (pr Q)

An alternative is using the minimum travel distance D,(p, ) and the speed v, that minimizes
the fuel consumption per distance, {(v), (or the nearest feasible speed) to generate a
energy/fuel consumption lower bound.

Cost: Consider the cost function defined in (1). A cost lower bound is given by:

Leost1(0q, ) = aLagyr(0, 0, ) + BLr ar1(0, @) + Ligin (0, q,9)
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Note that the driving energy/fuel consumption bound is calculated using the minimum travel
speed, whereas the idling cost and trip duration bounds are calculated using the maximum
travel speed. Therefore, this bound is not tight.

When calculating analytical solutions in Last driving decision, we showed how to calculate the
optimal speed based on energy/fuel and duration costs, and consumption model. We now use
this information to refine the lower bound.

Driving time: Bound 1 used a driving time considering the maximum travel speed. However,
depending on the cost function, the cost increase due to fuel consumption at higher speeds
may exceed savings due to shorter trip duration. Optimal solutions are expected to tend
towards using the optimal speed ¥ (limited by possible increases in required rest time). With
this in mind, we scale the driving time so that it represents the travel time at the optimal speed
(or the nearest feasible speed).

vy, =  max(min(?, Voygey), Vimin)

~ V.
Dap,q) = Dylp,q) —=

t

This scaling assumes that all edges have the same speed limits and optimum speed. An
alternative (but still assuming that all edges have the same optimum speed) would be to use
the length of the minimum length path, D,(p, q), to estimate a lower bound on the driving cost
when traveling with speed v;. A more general approach would be to, when building the graph,
calculate v, for each edge, and store in each edge the travel time and cost associated with v;.
The stored costs can be used to calculate a minimum cost path and its driving time. In both
alternatives, the minimum cost (we refer to it as Lz, ¢os¢ (P, q)) can be used as a lower bound
on the driving related costs (due to both emissions and duration) and we would require only to
complement it with a lower bound on the idling costs (due to both emissions and duration).

It is important to remember that, due to HOS regulations, increasing driving time may end up
increasing required rests. The extra rest time caused by driving time scaling is given by:

A= DHOS(T)d(P» Q),I/J) - ﬁd(P, q) — (DHOS(Dd P, ), ) — Dy(p, Q))

Trip duration and fuel consumption are calculated following the same ideas as Bound 1 but
using the scaled driving time and correcting trip duration and idling time to remove the extra
rest time.

Trip Duration: The trip duration is calculated as follows:
Layr2(0,q,Y) = DHOS(T)d(p' Q)ﬂp) — A+ Ds(p,q)

Idling cost: The idling cost lower bound is given by the same expression as (25) due to the rest
time correction, i.e.,

LidlZ (pr q, l/)) = Lidll(p' q, l/))
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Driving consumption: Energy/fuel consumption due to driving is given by:

[’f_er (p' CI) = 3600 - FC(vt)ﬁd(p' Q)

Cost: A cost lower bound is given by:

Leost2 (00, ¥) = aLgyra (0,4, ¥) + BLf ar2(0, @) + Liaiz(0, 4, Y)

Note that while Ldurz (p, q, llJ) = Ldur(p: q, l/)) and Lf_drz (pr q) = Lf_drl (p' q)r Ldurz and

Ls 4r, are consistent with respect to the travel speed used for their calculation, and use a
speed that minimizes cost (not accounting for mandatory rests). As the rest (idling) time is kept
as the one from the minimum duration path, the rest time is the minimum feasible. Decreasing
L 4.2 would imply that one or more edges are using a speed greater than the optimal, causing
an increase in fuel consumption costs that exceeds the savings in trip duration costs. Similarly,
decreasing Ly 4,,, would cause an increase in trip duration costs, and increase overall cost.
Therefore, L_,4:2 is a lower bound. Each term is not a lower bound for the value it
approximates, but they are calculated so that they generate a cost lower bound. If the driving
cost lower bound Ly, 05 (p, q) is calculated directly, then the cost lower bound is given by:

Lcostz (p: q, l/)) = Ldr_cost(pr CI) + (CZ + )/,B + 9) (DHOS(Dd (p' CI)' l/)) - Dd (p: Q) + Ds(pr CI))

idling time

Graph Preprocessing

In the approximate dynamic programming algorithm used, we store the decision and cost for
several states at each node. Therefore, having a large number of intermediate nodes between
rest areas increases both the number of decisions needed to reach the destination and the
storage space required by the algorithm. Furthermore, when optimizing travel speed to reduce
fuel consumption, the precision with which speed can be adjusted depends on the time
resolution used in the decision space, but also on the length of any given edge. If an edge is too
short, any change in duration might generate a travel speed outside of the allowed range. In
order to reduce the number of nodes in the graph, we use a stop-based graph based on the
road network and remove short edges between nearby rest areas (e.g., only consider rest areas
that are at least 2h away from the current node). By stop-based graph we mean a graph that
directly links possible stop locations (origin, rest areas, clients), analogous to customer-based
graphs used for vehicle routing problems. However, the graph is not complete as each location
is connected only to locations that were downstream in the original road network. As clients
are mandatory stops and have a fixed order, nodes are not directly connected to nodes
downstream of the next client. It can be seen as generating the stop-based graph based on the
subnetworks connecting each pair of consecutive clients, as opposed to using the whole
network directly. Figure 3 shows a graph representing a road network, whereas Figure 4 shows
the stop-based graph that would be generated from that network. As our experiments set the
same speed profile for all edges, each edge (i, j) of the stop-based graph was generated using
the length of the minimum distance path between nodes i and j in the road network and setting
the same speed profile used in the road network. We assume that a stop-based graph is known
or can be obtained by the user, and do not cover the specifics of its construction for general
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networks. Algorithms to construct customer-based graphs for time-dependent road networks
were proposed in (Ben Ticha et al., 2021).

Given a stop-based graph, we remove edges that have distance or minimum travel time shorter
than chosen limits, except when one of the edge’s nodes is a client, the origin, or the
destination. In our experiments, the time and distance limits were set to 2h and 100km,
respectively. In addition, as HOS regulations limit driving time, edges with minimum travel time
greater than 8h were also removed. Although it is possible for the fastest path between
locations to vary with time in time-dependent networks, we assume that edge lengths
(distance) are fixed in the stop-based graph.

o R - R o)

Figure 3. Example graph focusing on the road network. Focuses on rest area (nodes with
letter indexes) placement along main roads. Easy to visualize but has a large number of
intermediate nodes (nodes with number indexes).

Figure 4. Stop-based graph generated from Figure 3 to focus on the connection between
possible stops (rest areas, clients, origin, destination). Each possible stop is directly connected
to downstream stops satisfying predetermined conditions. Dashed arrows exemplify edges
that could be removed for being too short or too long.
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Modifications for time-dependent networks

The dynamic programming formulation presented in section Dynamic Programming
Formulation and Rollout Algorithm already represents the decision space as a function of the
state (U(x;)), so it is general enough to represent the time-dependent case and does not need
any modification. However, the analytical solutions, lower bounds and the methods presented
for constraint propagation are described for time-independent networks and need some
clarification.

e Constraint Propagation: Although travel time affects all resources, due to the FIFO
assumption, we focus the modifications on the time resource. Let the function a;;(n;)
represent the arrival time at node j when departing node i at time 1;, and we use an
under-bar to indicate when the minimum speed is being considered, and an over-bar to
indicate when the maximum speed is being considered. During forward propagation, we
replace [n; + &2,nf + 8] by [gij(n{),ﬁij(n{r)]. During backward propagation, we
replace [n; — 8%,nf — 8.1 by [gl-"jl (n{),ai_jl(nf)], the superscript * —1 ' refers to the
inverse function. As we assume that the speed profiles satisfy FIFO assumptions, both
a;;j and a;; are strictly increasing and have unique inverses. For the other (non time)
resources, we simply take 8, and 87 as the lower and upper bounds for the travel time
at any time instant. Another possibility is to use [n;,n;] to calculate the range of
possible travel times for these departure/arrival times. However, this method can only
provide a better range if the interval [n7,n7] is narrow and does not span a wide range
of possible travel times.

e Analytical Solutions: The analytical solution for the last driving decision, described in
section Last driving decision, is not affected by the time-dependent travel time as the
departure time is fixed and known. The last rest extension decision is affected by the
change in travel time, so the one described in section Last rest extension is not valid
anymore. In this case, we did not calculate a new solution, and opted to stop using
analytical solutions for those cases.

e Cost Lower Bound: Similar to the case of HOS constraints propagation, we use the
upper and lower speed bounds over the whole planning period to calculate the bounds
described in section Cost Lower Bound.

Parking Availability Uncertainty

The model presented in section Problem Description considered that parking availability could
be predicted with certainty. However, in practice, there is a certain level of uncertainty in any
prediction, and the longer the prediction horizons the less certain we can be about any
prediction. Therefore, we now model parking availability in a probabilistic way. The previous
formulation represented parking availability as time-windows at each rest area. Two possible
ways of extending this formulation are:

e Stochastic Time-Windows: we assume that there is a continuous time interval within
which parking is guaranteed, but we are unsure of the exact start and end times. The
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time-window's start and end times are given by random variables with known
distribution. Parking availability is defined indirectly, depending on whether the arrival
time falls within that interval or not. So, we would need to consider the probability of
arriving after the start of the time-window, but before its end. The deterministic model
could be seen as an approximation using the expected values of the time-window’s
limits, or values that satisfy some confidence level. This model would ignore the small
occupancy variations that can occur. For example, overnight, most of the parking spaces
are taken by long-term parking. However, unless ALL parking spaces are used for long-
term parking, there will still be some trucks leaving on occasion.

e Stochastic Parking Availability: directly model parking availability as a random variable
with a time-dependent probability distribution, i.e., at any time t , there is a probability
p;(t) of rest area i having an available parking space. In this approach, the probability
of finding parking can be calculated directly, without worrying about how the
distributions of time-windows’ limits interact. The small variations that occur even at
high occupancy periods can be modeled by a very small, but non-zero, probability of
finding parking during that period. The deterministic model can be seen as time-
windows defined by the intervals at which p;(t) exceeds a given threshold.

We take the second approach, modeling stochastic parking availability directly. A new binary
component w, representing whether parking is available at the current location (Yes:1, No:0),
is added to the state definition. This component can be used to control the actions available to
drivers at rest areas, e.g., if parking is available (w = 1), the driver needs to choose for how
long to rest, if the rest area is full, the driver needs to revise the trip plan and decide whether to
search for nearby alternative parking locations or to continue driving. The new state contains
the following information:

e Currentnode(v)

e Time when node was visited (1°)

e Accumulated driving time since last break (n”)

e Elapsed time since last daily rest (n")

e Accumulated driving time since last daily rest (")

e Accumulated on-duty time since last weekly rest (")

e Parking availability (w)

We define the update rule for w asw;,; = f ™ (x;,u;, ») =, where w is a binary random
variable characterized by a probability distribution P(- |x;,u;). As w aims to model the parking
availability at rest areas, it is set to default values at other locations as needed. The dynamic
programming formulation presented before can be updated as follows:
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J'0) = min By {g(ru, )+ (f(x v w)}
(26)

1
= urenul(r}c) Z P(w|x,u) (g(x,u, w)+]J (f(x,u, oo)))
w=0
It is important to note that as we are considering parking availability to be stochastic, it might
be impossible to guarantee parking at all times. As long as the probability of finding parking at
the visited locations is not 1, it is possible for a driver to try to park at every single location
without success until the next location is too far to be reached without exceeding HOS
constraints. Therefore, the model must include what happens in those cases. If the driver
exceeds the HOS limits, the truck’s monitoring equipment might automatically shut down the
truck, and the driver would be stuck somewhere inconvenient for a while. The driver might face
legal penalties, maybe a fine or license suspension. If the driver stops at a road shoulder or
highway ramp, there is an associated risk of causing accidents or being fined. In any case, the
model must consider that such scenarios are possible, what actions can be taken and what are
their consequences/costs.

Recourse Actions

We consider two possible ways for a driver to react when unable to find parking at the current
location: reroute and try to rest at a downstream facility, or look for an alternative parking
location in the surrounding region. Essentially, the driver needs to decide whether it is feasible
to stop later or if they need to stop right away. The deterministic model included three types of
actions at rest areas, each one representing an off-duty period that resets the counter for a
certain set of regulations. In the stochastic model, if parking is available, the same set of actions
is used, but when parking is unavailable, we consider that all 3 rest actions are prohibited.
Instead, we include the actions search and exit:

e Exit: represents the action of leaving the rest area and heading to the next location
without resting, and is connected to the exit node of the rest area in the problem’s
graph representation.

e Search: represents the action of looking for an alternative parking option nearby, and it
leads to the entrance node of an alternative parking location. The alternative parking
location will behave the same way as a regular parking location, except by the fact that
penalty costs will be incurred for its usage.

Figure 5 shows a diagram of the actions available at rest areas after including the recourse
actions. The search action's duration can be used as a time penalty that forces drivers to adjust
the rest of the trip, and it can have cost penalties included in it. Essentially, it is any action that
will lead to having a location to rest without driving to another one of the facilities included in
the graph. For the purpose of calculating fuel consumption, searching is treated as driving at a
user-defined speed. In our experiments, we only apply penalties for the search action if its
duration exceeds the driver's remaining allowed driving time. In this case, we assume that the
driver would need to park at a location even worse than usual in order to avoid HOS violations,
hence incurring some extra penalties (both a fixed penalty and one proportional to the excess
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duration). In the alternative parking locations, we do not include time penalties as that was
already considered in the search edge, but they may have both fixed and variable costs
assigned to them (on top of the usual time and fuel consumption costs). Note that we want to
model the fact that drivers can react to the lack of parking and we use these generic actions to
do so. Whether drivers will drive around for a while looking for parking and then park at a road
shoulder, or will make use of some service to arrange for appropriate parking, depends on the
options available in the region, drivers/companies preferences and the risks/costs involved with
each option. One could even include multiple sets of alternative parking locations and recourse
actions, e.g., one for looking for a road shoulder to park at, and another for using an expensive
service that offers guaranteed parking or driver replacement.

Apply Cost Penalty To Rest
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b o
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\

. X
Exit Rest Area
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Figure 5. Subgraph representing the actions that can be taken at rest areas after inclusion of
recourse actions and alternative parking locations.

Policy

Our objective is to give drivers and planners good recommendations about how to plan their
trips. The policy obtained takes the current state of the system and outputs the decision that
minimizes a certain cost (or whatever estimate we have of that cost). As can be seen in (26), in
the stochastic case we optimize an expected value of the cost function, so the policy cost is a
single value representing that expectation. However, it might be interesting for the user to
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visualize more information about this cost. As shown in (6), to calculate the policy cost we need
to simulate its effect on the system by recursively applying the policy. When doing this, we
generate a decision tree describing how the system evolves under