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RESEARCH ARTICLE
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States of America, 4 Department of Medicine, University of Cincinnati, Research Services, Veterans Affairs
Medical Center, Cincinnati, Ohio, United States of America, 5 Division of Nephrology, David Geffen School
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Abstract
The bicarbonate transport activities of Slc26a1, Slc26a6 and Slc26a7 are essential to physi-

ological processes in multiple organs. Although mutations of Slc26a1, Slc26a6 and

Slc26a7 have not been linked to any human diseases, disruption of Slc26a1, Slc26a6 or

Slc26a7 expression in animals causes severe dysregulation of acid-base balance and dis-

order of anion homeostasis. Amelogenesis, especially the enamel formation during matura-

tion stage, requires complex pH regulation mechanisms based on ion transport. The

disruption of stage-specific ion transporters frequently results in enamel pathosis in animals.

Here we present evidence that Slc26a1, Slc26a6 and Slc26a7 are highly expressed in

rodent incisor ameloblasts during maturation-stage tooth development. In maturation-stage

ameloblasts, Slc26a1, Slc26a6 and Slc26a7 show a similar cellular distribution as the cystic

fibrosis transmembrane conductance regulator (Cftr) to the apical region of cytoplasmic

membrane, and the distribution of Slc26a7 is also seen in the cytoplasmic/subapical region,

presumably on the lysosomal membrane. We have also examined Slc26a1 and Slc26a7
null mice, and although no overt abnormal enamel phenotypes were observed in Slc26a1-/-

or Slc26a7-/- animals, absence of Slc26a1 or Slc26a7 results in up-regulation of Cftr, Ca2,
Slc4a4, Slc4a9 and Slc26a9, all of which are involved in pH homeostasis, indicating that

this might be a compensatory mechanism used by ameloblasts cells in the absence of

Slc26 genes. Together, our data show that Slc26a1, Slc26a6 and Slc26a7 are novel partici-

pants in the extracellular transport of bicarbonate during enamel maturation, and that their

functional roles may be achieved by forming interaction units with Cftr.
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Introduction
Enamel development involves two major functional stages, secretory and maturation [1]. In
the secretory stage, ameloblasts synthesize and secrete a number of structural Enamel Matrix
Proteins (EMPs) [2–4]. The enamel matrix during the secretory stage is maintained at near-
neutral pH conditions in a protein-rich environment. During the maturation stage, the extra-
cellular pH varies considerably, ranging from neutral to acidic conditions, with a return to a
more physiologic pH level at the end of maturation stage [4,5]. Changes in extracellular pH val-
ues require sophisticated regulatory mechanisms by ameloblasts, so as to maintain the acid-
base balance in the microenvironment surrounding the apical pole to sustain crystal nucleation
and growth [6]. In addition, extracellular EMPs at the maturation-stage are internalized by
ameloblasts and degraded through endosome-lysosome pathways [7,8]. Regulation of intracel-
lular pH is also required during endocytosis to create an acidic luminal environment for hydro-
lytic enzyme activation [9]. Although there is still uncertainty about the exact temporal and
spatial working model of pH regulation during amelogenesis [2,3,6,10,11], the involvement of
carbonic anhydrases (CAs), cystic fibrosis conductance transmembrane conductance regulator
(CFTR), Chloride Channels (CLCNs), Solute Carrier family 4 (SLC4s) and Solute Carrier fam-
ily 9 (SLC9s) in ameloblast-mediated pH homeostasis has been widely accepted [2,7,12–32].

The SLC26 gene family encodes multifunctional anion exchangers and anion channels with
a broad range of substrates [33]. In mammals, this family consists of 11 genes,
SLC26A1-SLC26A11. Based on our previous genome-wide miRNA and mRNA expression pro-
filing of the enamel organ cells in rats [34], Slc26a1, Slc26a6 and Slc26a7 are the only members
among the Slc26a gene family whose transcripts are significantly up-regulated during matura-
tion-stage enamel formation when compared to secretory-stage [34]. Slc26a1, Slc26a6 and
Slc26a7, which code for the proteins Sat1, Pat1 and Sut2 respectively, all exhibit chloride/bicar-
bonate exchanger activities [35–38]. Mutations in Slc26al, Slc26a6 or Slc26a7 lead to multiple
disorders, such as urolithiasis, hepatotoxicity, distal renal tubular acidosis and impaired gastric
secretion, induced by the disruption of ion homeostasis [39–42]. Enamel maturation involves
pH regulation mediated by multiple ion transport/exchange activities across plasma and endo-
some membranes [2,3,7,8,12–32,43–47]. Thus there is a need to better understand the func-
tional activities of the SLC26A gene family members in amelogenesis.

In the present study, we conducted quantitative real-time PCR and Western blot analyses,
and showed that Slc26a1, Slc26a6 and Slc26a7 are all significantly up-regulated at maturation
stage compared with secretory stage at both the mRNA and protein levels. Based on immuolo-
calization data, we show that in maturation-stage ameloblasts, the gene products of Slc26a1,
Slc26a6 and Slc26a7 localize to the apical region of the cytoplasmic membrane, similar to the
localization pattern of Cftr in maturation-stage ameloblasts. In addition, Slc26a7 is also seen
within the cytoplasmic/subapical region of ameloblasts, presumably on the lysosomal membrane.
From the protein complex pulled down using an antibody to Cftr, we detected Slc26a1, Slc26a6
and Slc26a7 via immunoblotting, suggesting the direct interaction of each of these three Slc26
proteins with Cftr. Compared with wild-type (WT) animals, Slc26a1-/- and Slc26a7-/- animals did
not show any clearly noticeable abnormalities in the mature enamel phenotype (density and
structure). However, many gene transcripts examined by real-time PCR–such as Car2 (carbonic
anhydrase 2), Cftr, Slc4a4/NBCe1, Slc4a9/Ae4, Slc26a9 and Alpl (alkaline phosphatase)–showed
significant up-regulation in the enamel organ cells of Slc26a1-/- and Slc26a7-/- animals when com-
pared to age- and sex-matched wild-type controls. Collectively, these data indicate that Slc26a1,
Slc26a6 and Slc26a7 are actively involved in ion transport related to pH regulation processes dur-
ing enamel maturation and their functional roles may be achieved, at-least in part, by forming
protein supramolecular assemblies by their interactions with Cftr.
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As mentioned above, for the ion channels discussed here the names assigned to the genes
are different from the names assigned to their products. For example Slc4a4, Slc26a1, Slc26a6
and Slc26a7 code for proteins AE2, Sat1, Pat1 and Sut2 respectively. To avoid confusion, in this
paper we will refer to both the genes and their respective gene products (mRNA and protein)
by their official gene ID rather than the product name.

Materials and Methods

Animals
All vertebrate animal studies complied with Institutional and Federal guidelines. For real-time
PCR, western blot and co-immunoprecipitation analyses, we obtained RNA and protein sam-
ples from the enamel organs lining the surface of rat (Wistar Hannover, 4-week, 100–110g)
incisors, because the reference line separating the secretory- and the maturation-stage enamel
organs has been well documented in rats [3,43] (Fig 1). The subsequent immunohistochemistry
and immunofluorescence detection of target gene products were also conducted on sections of
rat mandibles. Slc26a1+/- mice were purchased from the Jackson Laboratory (stock # 012892)
[39]. Slc26a1-/- mice were generated by breeding heterozygous (Slc26a1+/-) parents. Slc26a7+/-

mice were a kind gift from Dr. Manoocher Soleimani [42], and bred in an identical manner to
the Slc26a1mutants. Although Slc26a7 null animals have been documented to show distal
renal tubular acidosis and impaired gastric acid secretion, they were still reported to exhibited
normal growth and survival compared to their WT littermates [42]. Both Slc26a1-/- and
Slc26a7-/- mice are viable, fertile and normal in physical size compared with their WT and het-
erozygous littermates. Slc26a1-/- and Slc26a7-/- animals were genotyped by PCR using primers
designed in earlier studies [39,42].

Rat tissue dissection, RNA extraction & real-time PCR analysis
For semi-quantifying the expression of Slc26a1, Slc26a6 and Slc26a7 mRNA, secretory-stage
and maturation-stage RNA samples were obtained from the enamel organs of rat incisors.

Fig 1. Reference lines for animal dissection. A. In 4-week-old rats, the secretory- (S) and maturation-stage
(M) enamel organs along the enamel surface of mandibular incisor are separated by the reference line
between the first and the second molar [3,43]. B. Two reference lines were used to partition secretory-stage
(S) frommaturation-stage (M) enamel organ. The first reference line, vertical to the inferior border of
mandibular cortical bone, divided the mesial-distal width of the first molar into halves. The second reference
line, also vertical to the inferior to the bony border of the mandible, was located between the second and the
third molar.

doi:10.1371/journal.pone.0144703.g001
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Four 4-week old Wistar Hannover rats, each weighing 100–110g, were sacrificed for their man-
dibles. The rat mandibles were kept in liquid nitrogen overnight and then lyophilized for over
24 hours. After removing the cortical bone enclosing the incisors, the exposed multi-cellular
layers along the enamel surface were collected into RNase-free Eppendorf tubes. Details regard-
ing the dissection procedures were described previously [43,44]. The total RNA was extracted
separately from secretory-stage and maturation-stage enamel organs using the miRNeasy Mini
Kit (Qiagen, Valencia, CA, USA). The RNA sample from each of the four rats was also pro-
cessed separately. cDNA used for real-time PCR analysis was synthesized using the miScript II
RT Kit with miScript HiFlex Buffer (Qiagen). In order to check the accuracy of dissection, the
expression of two stage-specific genes, Odam (highly expressed during maturation stage) and
Enam (highly expressed during secretory stage), were each subjected to real-time PCR analysis
[24,43] before proceeding to examining Slc26a1, Slc26a6 and Slc26a7, and other related gene
transcript profiles. Real-time PCR reactions were performed on the CFX96 TouchTM Real-
Time PCR Detection System (Bio-rad Life Sciences, Hercules, CA) with iQ SYBR1 Green
supermix (Bio-rad Life Science) and rat-specific primers (S1 Table). The raw data acquired
were in the form of Ct values, which were normalized to the Ct values of Actb (β-actin). The
ΔΔCt method was used to calculate the fold changes in the expression of Slc26a1, Slc26a6 and
Slc26a7 (maturation stage relative to secretory stage) [48,49]. Two-tailed Student’s t tests were
used to examine potential differences in the expression levels of Slc26a1, Slc26a6 and Slc26a7
transcripts between secretory- and maturation-stage (α = 0.05). Data were analyzed using IBM
SPSS Statistics 22.0 software (IBM Corporation, Armonk, NY, USA).

Mouse tissue dissection, cDNA analysis and real-time PCR
The mandibles were isolated from 4-week Slc26a1+/+ and Slc26a1-/-, and Slc26a7+/+ and
Slc26a7-/- mice. The mandibles were then processed separately using the same procedures as
those used for rat mandibles [43,44]. For RNA extraction from mouse mandibles, we used dif-
ferent reference lines from those used for the extraction from rat mandibles (Fig 1). On the lin-
gual side of the mouse hemi-mandible, the first reference line, vertical to the inferior border of
mandibular cortical bone, cut approximately half of the mesial-distal width of the first molar.
The second reference line, also vertical to the inferior to the bony border of the mandible, was
located between the second and the third molar (Fig 1). We collected the multi-cellular layers
on the surface of incisor enamel mesially of the first reference line as maturation-stage-derived
enamel organ and the tissues distally of the second reference line as secretory-stage-derived
enamel organ (Fig 1). The dissected RNA samples from secretory and maturation stages were
validated by detecting the stage-specific expression of Odam and Enam (relative to Actb) using
real-time PCR. cDNA used for real-time PCR analysis was prepared using the miScript II RT
Kit with miScript HiFlex Buffer (Qiagen). Real-time PCR reactions were performed on the
CFX96 TouchTM Real-Time PCR Detection System (Bio-rad Life Sciences) with iQ SYBR1
Green supermix (Bio-rad Life Science) and mouse-specific primers (S1 Table). In order to ver-
ify that there were no intact transcripts of Slc26a1 or Slc26a7 in the maturation-stage enamel
organs of mutant animals, PCR reactions were conducted using the maturation-stage cDNA
template and self-designed primers. The sequences of the primers were: Slc26a1 Forward 5`-
cctggatattgcaaagccttcag-3`, Slc26a1 Reverse 5`-gaatcctgggaagggtcaaagc-3`(product 524 bp);
Slc26a7 Forward: 5`-cgggagcaaagaggaaaaag-3`, Slc26a7 Reverse: 5`-gtaagcaggaatgtggcactg-3`
(product 520 bp). The PCR reactions were set as follows: for Slc26a1, 94°C initial denaturation
(10 min), 35 cycles at 95°C (1 min), 59°C (1 min), 72°C (1 min), 72°C (8 min, final extension),
followed by a return to 4°C; for Slc26a7, 94°C initial denaturation (10 min), 35 cycles at 95°C
(1 min), 58°C (1 min), 72°C (1 min), 72°C (8 min, final extension), followed by a return to 4°C.
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No PCR products with expected sizes were generated in mutant animals. In addition, real-time
PCR reactions were performed to detect the expression changes of the genes that are or might
be involved in maturation-stage regulation (S1 and S2 Tables) [7,8,12–32,43–53], using mouse-
specific primers (S1 Table) and cDNA samples from Slc26a1+/+, Slc26a1-/-, Slc26a7+/+ and
Slc26a7-/- animals separately. The procedures of data analysis for real-time PCR were as
described above for rat tissue analysis. The relative expression levels of each gene were evalu-
ated between the Slc26a1+/+ and Slc26a1-/- animals and between the Slc26a7+/+ and Slc26a7-/-

animals using two-tailed Student’s t tests in IBM SPSS Statistics 22.0 (α = 0.05).

Immunoperoxidase immunohistochemistry (IHC)
Wistar Hannover rats (100–110g body weight, 4 weeks old) were sacrificed for their mandibles.
The hemi-mandibles were then fixed in 4% paraformaldehyde (PFA) at 4°C overnight. 10%
EDTA (pH 7.4) was used to decalcify the samples for 10–12 weeks. 8μm sagittal sections were
prepared from paraffin-embedded samples. After the tissue sections were dewaxed and rehy-
drated, endogenous peroxidase was blocked by 0.3% H2O2 in methanol. Sections were blocked
by 1% bovine serum albumin (BSA) in PBS (1X, pH 7.4) and incubated overnight with the pri-
mary antibodies against Slc26a1, Slc26a6 or Slc26a7 (antibody sources are listed in Table 1).
Tissue sections were counter-stained using Mayer`s hematoxylin after an 3-Amino-9-ethylcar-
bazole (AEC)/ 3, 3'-diaminobenzidine (DAB) staining kit was applied (Table 1). Negative con-
trols were sagittal sections subjected to all staining procedures but with no antibodies added.

Co-localization analysis by Immunofluorescence (IF)
With the purpose of clarifying the localization of Slc26a1, Slc26a6 and Slc26a7 within the
milieu of maturation-stage ameloblasts, we conducted immunofluorescence (IF) to co-localize
Slc26a1, Slc26a6 and Slc26a7 with other gene products–Ae2, Lamp1, and Cftr–whose localiza-
tion in ameloblasts have been previously reported [7,8,13–15,18,24,26,46,53]. The protocols of
preparing tissue sections for IF were the same as those used for immunoperoxidase IHC. BSA-
blocked tissue sections were incubated overnight with different combinations of primary anti-
bodies: Slc26a1 x Ae2; Slc26a1 x Lamp1; Slc26a6 x Ae2; Slc26a6 x Lamp1; Slc26a7 x Ae2;
Slc26a7 x Lamp1; and Slc26a7 x Cftr (Table 1). The co-localization analysis was not conducted

Table 1. Antibodies used for western blot, immunoperoxidase immunostaining, immunofluorescence and co-immunoprecipitation analyses.

Manufacturer (catalog #) Gene product detected Application

Proteintech (10708-1-AP) Slc26a1 (rat) immunohistochemistry (dilution 1:300)

Santa Cruz Biotechnology (sc-132090) Slc26a1 (rat) immunofluorescence (dilution 1:400)

western blot/co-immunoprecipitation (dilution 1:100)

Abcam (ab99559) Slc26a6 (rat) Immunohistochemistry (dilution 1:5000)

Santa Cruz Biotechnology (sc-26728) Slc26a6 (rat) Immunofluorescence (dilution 1:100)

western blot/co-immunoprecipitation (dilution 1:100)

Santa Cruz Biotechnology (sc-53960) Slc26a7 (rat) immunohistochemistry (dilution 1:100)

Abcam (ab65367) Slc26a7 (rat) immunofluorescence (dilution 1:300)

western blot/co-immunoprecipitation (dilution 1:1000)

Abcam (ab42687) Ae2 (rat) immunofluorescence (dilution 1:100)

Abcam (ab24170) Lamp1 (rat) immunofluorescence (dilution 1:1000)

Santa Cruz Biotechnology (sc-8909) Cftr (rat) immunofluorescence (dilution 1:100)

co-immunoprecipitation (amount 1μg)

Abcam (ab6276) Actb (rat) western blot (dilution 1:3000)

doi:10.1371/journal.pone.0144703.t001

SLCAGenes in Functional Ameloblasts

PLOS ONE | DOI:10.1371/journal.pone.0144703 December 15, 2015 5 / 23



for the combinations of Slc26a1 x Cftr, or Slc26a6 x Cftr, as the antibodies to Slc26a1, Slc26a6
and Cftr were all goat-derived and therefore not suitable (Table 1), and no commercially avail-
able non-goat-derived Cftr antibodies suitable for rodent tissues could be identified. All tissue
sections used for co-localization analyses were stained with DAPI (Vector Laboratories; Cata-
log # H-1200) before the cover slips were added.

Western blot analysis
Protein samples were obtained from three Wistar Hannover rats (100–110g body weight, 4
weeks old, n = 3). After the animals were euthanized and decapitated, the mandibles were dis-
sected and isolated immediately. We used the reference line between the first and the second
molar to discriminate secretory-stage from maturation-stage enamel organ [3,43] (Fig 1). The
bony structures enclosing the incisor were removed and the enamel organs along the enamel
surface were collected to analyze secretory stage and maturation stage separately. The samples
were added to pre-cooled Eppendorf tubes containing RIPA Lysis and Extraction buffer
(Thermo Fisher Scientific Inc., Rockford, IL, USA; Catalog # 89901) mixed with Halt Protease
Inhibitors Cocktail (Thermo Fisher Scientific; Catalog # 78429). The samples were homoge-
nized with a pestle (on ice), kept on ice for 30min and centrifuged at 16,000rpm for 15min
while being maintained at 4°C. The supernatant was collected and quantified using a BCA Pro-
tein Assay Kit (Thermo Fisher Scientific; Catalog # 23225). Protein extracts were also obtained
from rat kidneys to serve as controls. The samples were mixed with LDS Sample Loading Buffer
(Thermo Fisher Scientific; Catalog # 84788), heated for 10 min at 95°C, and loaded on mini-
gels (15μg per well) (Thermo Fisher Scientific; NuPAGE1Novex1 10% Bis-Tris Protein
Gels, Catalog # NP0315BOX). Electrophoresis was carried out at 120V for 2–2.5 h, and gels
were electrotransferred to nitrocellulose membrane at a constant current of 0.1A for 2h. The
blots were then blocked by 5% non-fat milk powder in Tris Buffered Saline (TBS) for 1 h at
room temperature, and incubated overnight with primary antibodies to Slc26a1, Slc26a6,
Slc26a7 and β-actin (internal control), separately (Table 1). After appropriate HRP-conjugated
secondary antibodies were applied for 2 h at room temperature, the blots were washed and
developed with substrate kits (Thermo Fisher Scientific; SuperSignal West Pico Chemilumines-
cent Substrate, Catalog # 34077; SuperSignal West Femto Maximum Sensitivity Substrate, Cat-
alog # 34095). The immunoblotting experiment was conducted using the protein samples from
each animal separately. Quantification of the relative intensity of the bands was conducted
using NIH ImageJ software version 1.48. Mann-Whitney U test was used to detect the potential
difference in protein-level gene expression between secretory- and maturation stage enamel
formation (IBM SPSS Statistics 22.0, α = 0.05).

Co-immunoprecipitation (Co-IP)
Maturation-stage enamel organ protein samples were obtained using the procedures described
above, and were then lysed in 1xTBS with 1% Triton-100. After being pre-cleared by 20ul A/G
agarose beads at 4°C for 1 h, the protein samples (50–100μg) were incubated with 1μg of pri-
mary antibody to Cftr (Table 1) at 4°C for 1 h, while being gently agitated. The samples were
then mixed with 20μl A/G agarose beads and kept at 4°C overnight. The beads were washed
extensively with Tris buffer (50mM Tris, 0.1% NP-40, pH 7.4), and the bound proteins were
subject to Western blot analyses with the primary antibodies against Slc26a1, Slc26a6 and
Slc26a7 (separately), and the appropriate secondary antibody (Table 1). Protocols for Western
blot analysis have been described previously. Positive and negative controls were set up simul-
taneously with the experimental groups. The positive control was the pre-cleared total protein
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without subsequent immunoprecipitation procedures, while the negative control was prepared
by skipping the step of applying the primary antibody against Cftr.

Micro-CT analysis
Mandibles were isolated from 8-week-old Slc26a1-/- and Slc26a7-/- mice and their respective
age-matched WT littermates. Four animals from each group were analyzed (n = 4 per group).
The hemi-mandibles were air-dried for at least 7 days before micro-CT (μCT) analyses were
conducted. The samples were scanned with a Siemens MicroCAT II at the Molecular Imaging
Center of the University of Southern California. The acquisition settings were documented as
previously described [30]. The reconstruction and the subsequent calculation of the relative
density of fully mature enamel and dentin were performed with Amira 3D Visualization and
Analysis Software 5.4.3 (FEI Visualization Science Group, Burlington, MA, USA). Two-tailed
Student’s t tests were used to evaluate the potential statistical differences in the relative density
and the thickness of enamel between Slc26a1-/- and their WT littermate controls, and Slc26a7-/-

and their WT littermate controls, using IBM SPSS Statistics 22.0 (α = 0.05).

Scanning electron microscopy (SEM), energy-dispersive X-ray
spectroscopy (EDS) and hardness test
The hemi-mandibles used for SEM and microindentation analyses were extracted from
8-week-old Slc26a1-/- and Slc26a7-/- mice and their respective age-matched WT littermates
(n = 6 per group). The samples were prepared and scanned as previously documented [23,30].
EDS was conducted on JEOL JSM-7001F to analyze the elemental composition of Slc26a1-/-

and Slc26a7-/- enamel, with an accelerating voltage of 10 kV. The differences in atomic percent
(At%) of elements Ca, P, O, C, Cl, Na and Mg between mutant (Slc26a1-/- and Slc26a7-/-) and
wild-type enamel were detected using two-tailed Student’s t tests in IBM SPSS Statistics 22.0
(n = 6 per group, α = 0.05).

Results

Up-regulation of Slc26a1, Slc26a6 and Slc26a7 during enamel
maturation
Based on our previous genome-wide miRNA and mRNA transcriptome analyses using RNA
samples extracted from the secretory- and maturation-stage enamel organs of 4-week-old rat
mandibular incisors, we showed that among all the Slc26 gene family members, Slc26a1,
Slc26a6 and Slc26a7 are the only three that are differentially expressed between the two devel-
opmental stages (Table 2). In this current study we conducted real-time PCR analysis using the
same RNA samples used previously for genome-wide mRNA transcriptome analysis [34]. We
verified that Slc26a1, Slc26a6 and Slc26a7 were all significantly up-regulated at the mRNA level
during maturation-stage tooth development (relative to secretory stage) (P<0.05; Fig 2), which
is consistent with the results obtained from prior microarray analysis [34] (Table 2). The aver-
age fold changes for Slc26a1, Slc26a6 and Slc26a7 were ~ 15.4, ~ 3.9 and ~ 8.1, respectively (Fig
2). In order to assess Slc26a1, Slc26a6 and Slc26a7 protein expression levels, we performed
Western blot analysis using protein samples obtained from secretory- and maturation-stage
enamel organs of rat mandibular incisors, as well as from rat kidney (as a reference control tis-
sue). At the protein level, Slc26a1, Slc26a6 and Slc26a7 all exhibited higher expression during
maturation stage when compared to secretory stage (Fig 3, P<0.05). The average fold changes
in the protein expression levels of Slc26a1, Slc26a6 and Slc26a7 were ~1.6, ~6.1, ~4.2, respec-
tively (Fig 3), which were not as great as those calculated at mRNA levels with the exception of
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Slc26a6 (Fig 2), but there was a consistent directional change (mRNA and protein) for all three
genes. In addition, Slc26a1 and Slc26a6 showed higher protein abundance in maturation-stage
enamel organ than in kidney, while the trend was the opposite for Slc26a7 (Fig 3).

Localization of Slc26a1, Slc26a6 and Slc26a7 in the enamel organ
Using sagittal sections prepared from 4-week-old rat mandibles, immunoperoxidase immunos-
taining was performed to clarify the expression patterns of Slc26a1, Slc26a6 and Slc26a7 in

Table 2. Average fold changes of Slc26 gene family members duringmaturation stage relative to
secretory stage based on genome-wide mRNA transcriptome analysis. (N/A, expression not detected;
α = 0.05).

Gene symbol Fold changes P values

Slc26a1 39.8 0.000031

Slc26a2 -1.2 0.368

Slc26a3 1.2 0.391

Slc26a4 1.0 0.825

Slc26a5 1.1 0.711

Slc26a6 5.4 0.00016

Slc26a7 7.8 0.00013

Slc26a8 1.1 0.8

Slc26a9 -1.1 0.263

Slc26a10 N/A N/A

Slc26a11 -1.5 0.278

doi:10.1371/journal.pone.0144703.t002

Fig 2. Real-time PCR analysis of Slc26a1, Slc26a6 and Slc26a7 expression during amelogenesis. The
expression levels of Slc26a1, Slc26a6 and Slc26a7 were normalized to those of Beta-Actin and are
presented in fold changes. The expression levels of Slc26a1, Slc26a6 and Slc26a7 were up-regulated by
~10.0, ~4.1 and ~15.3 fold, respectively, at maturation stage relative to secretory stage.

doi:10.1371/journal.pone.0144703.g002
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both secretory- and maturation-stage enamel organs. At secretory stage, Slc26a1 was mainly
localized to the basal membrane of ameloblasts (Fig 4A). The localization of Slc26a6 within the
secretory-stage enamel organ seemed to be more diverse than Slc26a1; it is expressed at both
the basal membrane and apical membrane of ameloblasts (Fig 4D). The expression of Slc26a7
was barely detected by IHC in secretory-stage enamel organs (Fig G). In maturation-stage
enamel organ cells Slc26a1, Slc26a6 and Slc26a7 were all expressed in both the ameloblasts and
the papillary layer (Fig 4B, 4C, 4E, 4F, 4H and 4I), but the relative expression patterns varied.
For Slc26a1, higher expression was observed in papillary layer than in ameloblasts (Fig 4B and
4C). In maturation-stage ameloblasts, Slc26a1 was localized to the apical and/or subapical
domains of the cytoplasmic membrane (Fig 4B and 4C). The relative distribution of Slc26a6 in
maturation-stage enamel organ cells differed from Slc26a1, with higher expression of Slc26a6
observed in the ameloblasts rather than in the papillary layer (Fig 4E and 4F). The localization
of Slc26a6 in ameloblasts also varied between smooth-ended ameloblasts (SA) and ruffle-
ended ameloblasts (RA), with a greater apical concentration of Slc26a6 seen in SA (Fig 4E com-
pared to 4F). Slc26a7 is expressed both in the ameloblasts and papillary layer (Fig 4H and 4I)
with a greater apical concentration seen in SA when compared to RA (Fig 4H compared to 4I).

With the purpose of acquiring deeper insight into the localization of Slc26a1, Slc26a6 and
Slc26a7 in maturation-stage ameloblasts, we conducted dual immunofluorescence (IF) to
establish the spatial localization of each of these three genes with respect to Slc4a2/Ae2, Lamp1
and Cftr. The expression patterns of Ae2, Lamp1 and Cftr during enamel maturation have
been previously studied [2,8,13,14,18,26]. Based on the IF analysis, we showed that Slc26a1 and
Slc26a6 exhibit similar distribution patterns during maturation stage, when they are both local-
ized to the apical/subapical region of ameloblasts (Fig 5A–5D). Slc26a7 expression is localized
to the apical/subapical membrane and the membrane of cytoplasmic vesicles of maturation-
stage ameloblasts (Fig 5E, 5F and 5G). These data for Slc26a1, Slc26a6 and Slc26a7 are consis-
tent with the observations seen in IHC (Fig 4). In ameloblasts the spatial localization of Ae2 is
at the lateral membrane (Fig 5A, 5C and 5G), and Lamp1 is localized to the peri-nuclear region

Fig 3. Western blot analysis of Slc26a1, Slc26a6 and Slc26a7. A1-C1. Protein-level expression of
Slc26a1, Slc26a6 and Slc26a7 was detected by western blot analysis using samples obtained from both
secretory- and maturation-stage enamel organs (4-week-old rat incisors). Protein samples extracted from
kidney (4-week-old rat) were used as reference controls. The molecular weights for Slc26a1, Slc26a6 and
Slc26a7 are 75kDa, 90kDa and 72kDa, respectively. Beta-Actin served as the control for sample loading.
A2-C2. The intensities of the bands (relative to Beta-Actin) were measured using ImageJ. The average fold
changes of Slc26a1, Slc26a6 and Slc26a7 at the protein level were ~1.6, ~6.1, ~4.2, respectively.

doi:10.1371/journal.pone.0144703.g003
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within the cytoplasm (Fig 5B, 5D and 5F). Cftr is localized to the apical membrane of matura-
tion-stage ameloblasts (Fig 5G) [13]. Taken together, our data show that Cftr, Slc26a1 and
Slc26a6 show significant colocalization patterns in maturation-stage ameloblasts.

Slc26a1, Slc26a6 and Slc26a7 interact with Cftr
As we have shown, Slc26a1, Slc26a6, Slc26a7 and Cftr are all localized to the apical membrane
of maturation-stage ameloblasts (Figs 4 and 5). To investigate the hypothesis that the similarity
in the expression patterns of Slc26a1, Slc26a6 and Slc26a7 to that of Cftr on the apical

Fig 4. Immunoperoxidase immunostaining of Slc26a1, Slc26a6 and Slc26a7 in secretory- and
maturation-stage enamel organ. Immunostaining procedures were applied to the sagittal sections prepared
from paraffin-embedded 4-week-old rat mandibles. A. Slc26a1 in secretory-stage ameloblasts (S); B.
Slc26a1 in smooth-ended ameloblasts at maturation stage (M-SA); C. Slc26a1 in ruffle-ended ameloblasts at
maturation stage (M-RA); D. Slc26a6 in secretory-stage ameloblasts (S); E. Slc26a6 in smooth-ended
ameloblasts at maturation stage (M-SA); F. Slc26a6 in ruffle-ended ameloblasts at maturation stage (M-RA);
G. Slc26a7 in secretory-stage ameloblasts (S); H. Slc26a7 in smooth-ended ameloblasts at maturation stage
(M-SA); I. Slc26a7 in ruffle-ended ameloblasts at maturation stage (M-RA); J-L. The sections that were
incubated without antibodies served as negative controls for immunostaining. All images were collected
under 20x magnification. Scale bar shown in Panel J (50μm). Slc26a1, Slc26a6 and Slc26a7 all showed
expression on the apical membrane and/or within subapical cytoplasmic region (double black arrows).
Positive staining in other regions was indicated by double black asterisks. SI—Stratum intermedium; Am—

Ameloblast; ES—Enamel space; CT—Connective tissue; PL—Papillary layer.

doi:10.1371/journal.pone.0144703.g004
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membrane of ameloblasts during enamel maturation may involve a direct physical interaction,
we conducted co-immunoprecipitation (Co-IP) assays using protein samples obtained from
maturation-stage enamel organs. We confirmed that from the protein complex pulled down by
anti-Cftr antibody, Slc26a1, Slc26a6 and Slc26a7 are all able to be detected by the correspond-
ing antibodies separately (Fig 6), indicating that there exist protein-protein interactions
between Cftr and each of the three SLC26 genes studied. Positive and negative controls were
included in the co-IP assays (Fig 6).

Enamel phenotypes of Slc26a1 null and Slc26a7 null animals
All teeth prepared for micro-CT and SEM scanning were dissected from 8-week-old animals
(Slc26a1-/-, Slc26a7-/- and their wild-type littermates). Generally, there were no remarkable
differences between the mutant (Slc26a1-/- or Slc26a7-/-) and the wild-type teeth in terms of
gross anatomy, microstructure or hardness of enamel (Figs 7 and 8, Table 3). We used Amira
3D Visualization and Analysis Software 5.4.3 to delineate enamel in scanned teeth and

Fig 5. Co-localization analysis of Slc26a1, Slc26a6, Slc26a7 with Ae2, Lamp1 and Cftr. (A-B) Co-
localization of Slc26a1 with Ae2 and Lamp1 in maturation-stage ameloblasts by confocal microscopy at 63x
magnification. The signals of Slc26a1 were mainly seen on the apical membrane of maturation-stage
ameloblasts (Panels A and B; Green). In contrast, Ae2 was localized to the basolateral membrane (Panel A;
Red) and the basal pole (Panel C; Red), while Lamp1 showed a cytoplasmic and/or peri-nuclear distribution
pattern in ameloblasts (Panel B; Red). The sections were stained with DAPI to highlight the nuclei (Panels A
and B; Blue). (C-D) Co-localization of Slc26a6 with Ae2 and Lamp1 in maturation-stage ameloblasts.
Slc26a6 exhibited a similar expression pattern to that of Slc26a1—on the apical membrane of maturation-
stage ameloblasts (Panels C and D; Green). The fluorescence signals of Ae2 (Panel C; Red) and Lamp1
(Panel D; Red) were used as references. The sections were stained with DAPI to highlight the nuclei (Panels
C and D; Blue). (E-G) Co-localization of Slc26a7 with Ae2, Lamp1 and Cftr in maturation-stage ameloblasts.
The expression of Slc26a7 was found both on the apical membrane and within the cytoplasmic region
(Panels E-G; Green). The fluorescence signals of Slc26a7 partially overlapped with those of Lamp1 (Panel F;
Red) and Cftr (Panel G; Red), rather than Ae2 (Panel E; Red). The sections were stained with DAPI to
highlight the nuclei (Panels E-G; Blue). The images were collected under confocal microscopy (63x
magnification). Scale bar shown in Panel G (10μm).

doi:10.1371/journal.pone.0144703.g005
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calculate its relative density. Moreover, we measured the thickness of enamel of incisors from
3D-reconstructed teeth at the point where the enclosing cortical bone of incisors terminates.
These parameters obtained from Slc26a1-/- and Slc26a7-/- animals were compared separately
with those from wild-types. However, no statistically significant differences were detected
(P>0.05) (Fig 7). Nevertheless, the elemental composition of mutant enamel showed signifi-
cant changes when compared with wild-type enamel. The Atomic percentages (At%) of Cl
increased by ~34% in both Slc26a1-/- (P = 0.012) and Slc26a7-/- (P = 0.035) enamel (Fig 9A–9C
and 9E). There was a decrease of ~24% in the At% of C in Slc26a1-/- enamel (P = 0.028), and
the difference in the At% of C between Slc26a7-/- and wild-type enamel was marginally signifi-
cant (P = 0.078) (Fig 9E). In addition, the At% of Na in Slc26a7-/- enamel also decreased signifi-
cantly (P = 0.028) (Fig 9E).

The means and standard deviations (SD) of enamel and dentin microhardness are listed in
units of GPa for mutant animals and their wild-type littermates. The sample size for each
experimental group was 6, with 10 repetitions used to describe each tooth, and the individual
tooth means were averaged. Differences in hardness between wild type and null animals were
small, if present. It appears that biomechanical function, as measured by hardness, was unaf-
fected by the knockout of a single transporter. Likewise, light microscopy revealed no macro-
or micro-level differences in form, structure or organization between wild-type and null
animals.

Compensatory gene expression in Slc26a1 null and Slc26a7 null
animals
Since we observed no overt abnormalities in mature enamel from either Slc26a1-/- or Slc26a7-/-

animals, we sought to investigate the changes in the expression profiles of genes that have a
similar biological function to the anion exchangers Slc26a1 and Slc26a7 during maturation-
stage enamel formation in mutant animals (complete list of interrogated genes provided in S2
Table). Total RNA samples used for real-time PCR analysis were extracted from the matura-
tion-stage enamel organs of 4-week-old mutants (Slc26a1-/- and Slc26a7-/-) and their age-

Fig 6. Co-immunoprecipitation (Co-IP) assay of Cftr with Slc26a1, Slc26a6 and Slc26a7.Co-IP was
conducted using protein samples extracted from the maturation-stage enamel organs of 4-week-old rat
incisors (50~100 μg initial input). The interaction complexes were pulled down by anti-Cftr antibody (Table 3).
The subsequent western blot analyses were performed using primary antibodies to Slc26a1, Slc26a6 and
Slc26a7 (Table 3). The positive control was the pre-cleared total protein without the following
immunoprecipitation procedures, and the negative control was prepared by skipping the step of applying the
antibody against Cftr.

doi:10.1371/journal.pone.0144703.g006
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matched WT littermates. Among the 41 genes examined, 22 genes showed differential expres-
sion (18 up-regulated and 4 down-regulated) in Slc26a1-/- and/or Slc26a7-/- animals compared
with WT (P<0.05; S2 Table, Figs 10 and 11). Many of the up-regulated genes have been well
characterized as being involved in either pH regulation (i.e., Cftr, Car2, Ae2 and NBCe1) or
endocytosis (i.e., the lysosomal-associated membrane proteins Lamp1, Lamp2, Cd63 and
Cd68, and others such as Clcn7, Rab21 and Ctss) during enamel maturation (Table 3, Fig 10)
[7,8,12–32,43–53]. It is noteworthy that Cftr, Slc4a9/Ae4, Slc26a5 and Slc26a9 exhibited the
largest scales of fold changes (>5) among the up-regulated genes in both mutant animal groups
(S2 Table, Fig 10). These data provide strong evidence that enamel organ cells initiate a com-
pensatory up-regulation of anion exchanger gene expression following the deletion of either

Fig 7. Micro-CT analysis of Slc26a1-/- and Slc26a7-/- mandibles. The mandibles from wild-type, Slc26a1
null and Slc26a7 null animals (at 8 weeks of age) were subject to micro-CT analysis (n = 3). The relative
density and thickness of enamel on the labial incisor where the cortical bone enclosing just begins (A1-C2)
were measured. There was no statistical difference between mutant and wild-type animals with respect to
these two parameters (D-E). (Enamel Em, Dentin De)

doi:10.1371/journal.pone.0144703.g007
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Slc26a1 or Slc26a7. Finally, the expression of some of the SLC4 and Slc26 gene family members
was not detected in the enamel organs of mutant mice strain, namely Slc4a5/NBCe2, Slc26a3,
Slc26a8 and Slc26a10 (S2 Table).

Discussion
During maturation-stage of enamel development, ameloblasts function to remove organic pro-
tein debris from extracellular enamel matrix [7,54] and to deposit inorganic ions into the
enamel area [3], so that the crystal structures in enamel achieve their final width and thickness,
rendering the dental enamel fully mature and functional. In the extracellular matrix, the

Fig 8. SEM images of mature enamel in Slc26a1-/- and Slc26a7-/- animals. The surface of the enamel of
incisor and molars in Slc26a1-/- and Slc26a7-/- animals were similar to those of wild-type animals (A1-B3,
magnification 35x). When the internal structures of enamel (incisor) were observed in coronal section (C1-C3,
magnification 5000x), the enamel frommutant animals showed a mild disruption in rod density and diameter
(C2-C3) compared with wild-type enamel (C1). The arrangement of the enamel rod and inter-rod structures
(incisor) did not seem to be impacted significantly by the deletion of Slc26a1 or Slc26a7 (C1-C3).

doi:10.1371/journal.pone.0144703.g008

Table 3. Enamel and dentin Vickers microhardness of mutant animals.

Enamel, mean (SD) Dentin, mean (SD)

WT (control for Slc26a1 null) 2.3 (0.3) 0.66 (0.02)

Slc26a1 null 2.0 (0.3) 0.62 (0.02)

WT (control for Slc26a7 null) 2.2 (0.1) 0.63 (0.02)

Slc26a7 null 2.5 (0.1) 0.58 (0.02)

doi:10.1371/journal.pone.0144703.t003
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mineral deposition, crystal growth and protease activities are presumed to be highly pH-depen-
dent [3,55], while in the lysosomal lumen, an acidic pH is necessary for the activation of hydrolytic
enzymes and the degradation of internalized macromolecules [7,9,56]. Thus, these two intercon-
nected key processes at maturation stage require the tight control of pH to maintain either luminal
and extracellular acid-base balance, which is mediated by the diffusion of ions across various bio-
logical membranes [2,18]. Although the detailed mechanisms of maturation-stage pH regulation
are yet to be elucidated, previous investigations have suggested the essential role of several genes,
such as CFTR, AE2,NBCe1, CA2, CA6,NHE1 and CLCN7, in enamel maturation [2,7,12–
15,18,20,21,23,25,26,29–32,43,45,46,57]. In this study, we provided experimental evidence to show
that SLC26A1/SAT1, SLC26A6/PAT1 and SLC26A7/SUT2 are novel candidate genes that are
involved in the pH regulation processes during maturation-stage tooth development.

The cellular localization patterns of genes that participate in the pH regulation processes
during enamel maturation have been shown to be quite diverse, which may be direct reflections
of their functional roles. For example, Cftr serves as a chloride channel mainly on the apical
plasma membrane of the maturation-stage ameloblasts, and thus is considered a regulator of

Fig 9. EDS analysis of mature enamel Slc26a1-/- and Slc26a7-/- animals. (A-C) EDS spectrum of mature
enamel in wild-type, Slc26a1-/- and Slc26a7-/- animals (n = 6 per group). (D) No statistically significant
differences were detected in the At% of Ca, P and O between mutant and wild-type enamel. (E) The At% of Cl
increased significantly by ~34% in both Slc26a1-/- (P = 0.012) and Slc26a7-/- (P = 0.035) enamel. There was a
significant decrease in the At% of C in Slc26a1-/- enamel (P = 0.028). A similar difference in the At% of C was
detected between Slc26a7-/- and wild-type enamel, but was only marginally significant (P = 0.078). The At%
of Na in Slc26a7-/- enamel also significantly decreased (P = 0.028).

doi:10.1371/journal.pone.0144703.g009

SLCAGenes in Functional Ameloblasts

PLOS ONE | DOI:10.1371/journal.pone.0144703 December 15, 2015 15 / 23



pH during rapid crystal growth [13] (Figs 6 and 12); NBCe1 and Ae2 localize to the basolateral
membrane of ameloblasts at maturation stage, and the bicarbonate transport activity mediated
by NBCe1 and Ae2 is thought to be critical to intracellular pH homeostasis [14,20,26] (Fig 12);
Clcn7 is identified as being localized to the intracellular organelles, presumably at the late

Fig 10. Up-regulated genes in Slc26a1-/- and Slc26a7-/- animals compared with wild types.Most genes
that showed significant changes in expression were up-regulated (Panels A-S), indicating a compensatory
effect induced by the deletion of Slc26a1 or Slc26a7. The expression values of differentially expressed genes
were normalized to those of Beta-Actin. For all the two-tailed t tests used, the significance level was 0.05.
* <0.05; ** <0.01.

doi:10.1371/journal.pone.0144703.g010
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endosome/lysosomal membrane, suggesting that Clcn7 might help to accumulate protons
within the lumen of these organelles and forms part of the endocytotic apparatus in matura-
tion-stage ameloblasts [7] (Fig 12). According to our results from immunoperoxidase immu-
nostaining and immunofluorescence, the distributions of Slc26a1, Slc26a6 and Slc26a7 are
similar—they all localize to the apical membrane of maturation-stage ameloblasts, and in the
case of Slc26a7, to the subapical and cytoplasmic region (Figs 5 and 6). These data indicate that
the anion exchanger activities of Slc26a1, Slc26a6 and Slc26a7 on the apical membrane of mat-
uration-stage ameloblasts may respond to the intracellular and/or extracellular pH changes,
and regulate pH values by secreting bicarbonate into enamel matrix to neutralize protons (Fig

Fig 11. Downregulated genes in Slc26a1-/- and Slc26a7-/- animals compared with wild types. The
expression values of differentially expressed genes were normalized to those of Beta-Actin. For all the two-
tailed t tests used, the significance level was 0.05. * <0.05; ** <0.01.

doi:10.1371/journal.pone.0144703.g011

Fig 12. Schematic diagram depicting the distribution of major pH regulators in maturation-stage
ameloblasts. Cftr, Slc26a1, Slc26a4, Slc26a6 and Slc26a7 are localized to the apical membrane and
Slc26a1, Slc26a6 and Slc26a7 physically interact with Cftr to form regulation complexes. Slc26a7 is also
found on the endo-lysosomal membrane. Ae2, Nhe1 and NBCe1 are localized basolaterally. Clcn7 is
expressed on the endo-lysosomal membrane. CA2 exhibits intracellular distribution whereas CA6 functions
in extracellular enamel matrix. Lamp1 in this image was used as a marker of late lysosomes.

doi:10.1371/journal.pone.0144703.g012
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12). In addition to the apical membrane, Slc26a7 is also seen in the cytoplasmic region within
maturation-stage ameloblasts (Fig 6E–6G). It is highly possible that the intracellular localiza-
tion of Slc26a7 is to the membranous structures in the early and/or late endo-lysosomal path-
way (Fig 12). This is mainly evidenced by the observations that there are partial overlaps in the
fluorescence signals of Lamp1 (late endo-lysosome-localized [8,58]) and Slc26a7 in co-localiza-
tion assays, and that the overlaps reside in the subapical and middle regions instead of the peri-
nuclear region of the cytosol (Fig 6F). In other functional cell types, the localization of Slc26a7
also demonstrates diversity as observed in maturation-stage ameloblasts. For example, in the
kidney, Slc26a7 co-localizes with AE1 at the basolateral or subapical membrane, and with Tfrc
at the endosomal membrane of A-intercalated cells in the renal outer medullary collecting duct
(OMCD) [35,59]. The distinct distribution pattern of Slc26a7 in maturation-stage ameloblasts
lends support to its potential role in regulating pH within the lysosomal lumen, which might
be similar to that of Clcn7, in addition to the pH regulation presumed to be functioning in
extracellular enamel matrix.

The phenomenon that several ion transporters/channels with similar physiological func-
tions and cellular localizations interact with one another to form united protein complexes has
been reported in multiple areas of biomedical research. In most cases when Cftr interacts with
Slc26s, Cftr seems to serve as a hub for these potential interaction complexes [60–66]. One
example is that Slc26a3, Slc26a6 and Slc9a3r1 co-localize with Cftr in the midpiece of mouse
sperm, and the protein complex formed by Cftr with Slc26a3, Slc26a6 and Slc9a3r1 functions
primarily to mediate transmembrane transport of chloride, which is critical for sperm capacita-
tion [61]. In cochlear outer hair cells (OHCs), the physical interaction between Cftr and
Slc26a5, which is localized to the lateral membrane of OHCs, has potential electrophysiological
significance [64]. Additionally, in human bronchial cell lines, functional CFTR contributes to
the functions of SLC26A9 as an anion conductor [60]. Based on our data from Co-IP, we pre-
sented evidence that physical interactions exist between Cftr and Slc26 gene family members
Slc26a1, Slc26a6 and Slc26a7 in maturation-stage ameloblasts, and the functional complexes
may be localized to the apical membrane where the expression of these genes is identified (Figs
5 and 6 and 12). At this stage, we did not seek to investigate the potential interactions between
Cftr and other important pH regulators, such as Ae2, NBCe1 and Clcn7, mainly because of
their distinct locations within the milieu of the ameloblast (Fig 12). However, it is unreasonable
to rule out the possibility that physical interactions involving Cftr and other related genes do
exist, as these pH regulators may exhibit mobility during ameloblast modulation cycles [21].
Therefore, it could be speculated that Cftr might interact with a broader range of pH regulators,
and that the pH regulation process during enamel maturation might be achieved by the coordi-
nation of functional protein complexes that are far more sophisticated than expected.

Mutations in the pH regulators that have been identified to be functional during enamel
maturation, such as Cftr, Ae2 and NBCe1, often result in severe AI-like enamel/tooth pheno-
types [2,12–15,18,20,23,26,31,32]. In our study, deletion of Slc26a1 and Slc26a7 led to an
increase of Cl and a decrease of C in the elemental composition of enamel matrix (Fig 9E),
which is consistent with our hypothesis about the functional roles of Slc26a1 and Slc26a7 as
anion exchangers of Cl- (intracellular-oriented) and HCO3

- (extracellular-oriented) (Fig 12).
However, no significant abnormalities in mature enamel structures or hardness were observed
in Slc26a1 or Slc26a7 mutant animals (Figs 7 and 8, Table 2), although impaired physiological
functions were documented in other organs [39,42], suggesting that there might be functional
redundancy of Slc26a1 and Slc26a7 during amelogenesis. To investigate this hypothesis, we
conducted real-time PCR reactions to detect potential changes in gene expression in mutant
animals. While a small number of genes were selected for qPCR analysis, the selection was
made based on previous studies showing that these genes or other members within the same
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gene family are involved in ion transport, pH regulation and endocytotic pathways during mat-
uration-stage amelogenesis [2,7,12–18,20–24,26,27,29,31,32,45,47,55]. The results showed that
deletion of Slc26a1 or Slc26a7 induced upregulation of multiple genes with similar functional
roles in maturation-stage pH regulation and endocytotic pathway (Fig 10, S2 Table). The up-
regulated genes can be roughly subdivided into three categories: 1) those that have been rela-
tively well characterized, such as Car2, Cftr, Ae2, NBCe1, Slc26a6, Clcn7, Lamp1-Lamp4, Rab21
and Ctss [2,7,12–18,20–24,26,27,29,31,32,45,47,55]; 2) those that are not expressed/differen-
tially expressed in normal enamel maturation, such as Slc26a2, Slc26a5, Slc26a9 and Ae4 [43];
3) other related genes, such as Alpl and Enam. Based on the features of these up-regulated
genes, it is reasonable to conclude that there were strong compensatory reactions in response
to the deletion of Slc26a1 or Slc26a7 in mutant animals. Absence of enamel phenotypes is
hardly a novel discovery when the genes involved in maturation-stage pH regulation and endo-
cytotic pathway are deleted, and can often be explained by the compensatory effect from other
genes [7,67,68]. A final point to be noted is that compared with wild-type animals, the expres-
sion of Slc26a7 was downregulated by ~5 fold in Slc26a1 null animals (Fig 11, S2 Table). Previ-
ous investigations on Car2 null animals demonstrated that Car2 deficiency decreases the
expression of Slc26a4, Slc26a7 and Ae1 at the mRNA level in kidney collecting ducts [69]. The
authors proposed that changes in the expression patterns of Slc26a4, Slc26a7 and Ae1 might be
attributed to increased level of apoptosis, which could result from disturbance of pH homeosta-
sis induced by Car2 deletion [69]. Similar explanations may or may not apply in case of
decreased Slc26a7 transcripts in Slc26a1 null animals, and the interplay between Slc26a1 and
Slc26a7 during enamel maturation warrants further investigation.

In summary, Slc26a1, Slc26a6 and Slc26a7 participate in maintaining the acid-base balance
during amelogenesis, although deletion of Slc26a1 or Slc26a7 fails to induce abnormalities in
enamel phenotypes. Moreover, Slc26a1, Slc26a6 and Slc26a7 contribute to the formation of
more sophisticated functional complexes involving other stage-specific pH regulatory proteins,
which may shed light on future investigations into the pathophysiological mechanisms of
enamel development and health.

Supporting Information
S1 Table. Rat and mouse specific primers for qPCR and cDNA analyses.
(XLSX)

S2 Table. qPCR analysis of gene expression changes in Slc26a1 null and Slc26a7 null ani-
mals.
(XLSX)
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