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Abstract We give a concise overview of the classification theory of symplectic man-
ifolds equipped with torus actions for which the orbits are symplectic (this is equiv-
alent to the existence of a symplectic principal orbit), and apply this theory to study
the structure of the leaf space induced by the action. In particular we show that
if M is a symplectic manifold on which a torus T acts effectively with symplec-
tic orbits, then the leaf space M/T is a very good orbifold with first Betti number
b1(M/T ) = b1(M) − dimT .

Keywords Symplectic manifold · Torus action · Orbifold · Betti number ·
Lie group · Symplectic orbit · Distribution · Foliation

Mathematics Subject Classification (2000) 53D35 · 53C10

1 Introduction

Let M be a compact and connected smooth manifold, provided with a symplectic
form σ , a smooth closed nowhere degenerate two-form on M . Let T be a torus
which acts smoothly and effectively on M , preserving the symplectic structure. Such
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T -actions are called symplectic, and (M,σ,T ) will be called a symplectic T -
manifold. Two symplectic T -manifolds (M,σ,T ) and (M ′, σ ′, T ) are called isomor-
phic if there exists a T -equivariant diffeomorphism � from M onto M ′ such that σ

is equal to the pull-back �∗(σ ′) of σ ′ by the mapping �.
A well studied type of symplectic torus actions are the so called Hamiltonian

torus actions. A vector field v on M is called Hamiltonian if the contraction ivσ of
σ with v is an exact one-form, that is, there exists a smooth real-valued function f

on M such that Hamilton’s equation ivσ = −df holds. For every element X of the
Lie algebra t of T , the infinitesimal action XM of X on M is a smooth vector field
on M . The T -action preserves the symplectic form if and only if for every X ∈ t

the one-form iXM
σ is closed. The T -action is called Hamiltonian if its infinitesimal

action is Hamiltonian, where the Hamiltonian function f = μX of XM can be cho-
sen to depend linearly on X ∈ t. Then the equation 〈X,μ〉 = μX , X ∈ t, defines a
smooth mapping μ from M to the dual space t∗ of t, called the momentum mapping
of the Hamiltonian T -action. The theorem of Atiyah [2, Theorem 1] and Guillemin-
Sternberg theorem [13] says that the image μ(M) of the momentum mapping is equal
to the convex hull in t∗ of the image under μ of the set MT of fixed points in M for
the action of T , where the set μ(MT ) is finite and therefore μ(M) is a convex poly-
tope. Note that this implies that MT �= ∅. Delzant [8] proved that if dim(T ) = n, then
μ(M) is a so called Delzant polytope, and μ(M) completely determines the Delzant
space (M,σ,T ). Delzant [8] moreover proved that M is isomorphic to a smooth toric
variety with σ equal to a Kähler form on it, and the action of T extends to a holomor-
phic action of the complexification TC of T . For this reason a Delzant space is also
called a symplectic toric manifold. See also Guillemin [14] for a beautiful exposition
of this subject.

If the first de Rham cohomology group of M is equal to zero, then every sym-
plectic action on M is Hamiltonian. Nevertheless, in general the assumption that the
symplectic torus action is Hamiltonian is very restrictive, as it implies that the ac-
tion has fixed points and that all its orbits are isotropic submanifolds of M , that is,
σ(XM,YM) = 0 for all X,Y ∈ t. Research on Hamiltonian and smooth torus actions
has been extensive. Orlik-Raymond’s [28, 29] and Pao’s [31, 32] studied smooth
actions of 2-tori on compact connected smooth 4-manifolds; Karshon and Tolman
classified centered complexity one Hamiltonian torus actions in [18] and also stud-
ied Hamiltonian torus actions with 2-dimensional symplectic quotients in [17]; Ko-
gan [20] worked on completely integrable systems with local torus actions; most
recently, Pelayo and Vũ Ngo.c [34, 35] have studied integrable systems on symplectic
4-manifolds in which one component of the integrable system comes from a Hamil-
tonian circle action. There are many other papers which relate integrable systems and
Hamiltonian torus actions, for instance Duistermaat’s paper on global action-angle
coordinates [9] and Zung’s work on the topology of integrable Hamiltonian systems
[42, 43].

Although Hamiltonian actions of n-dimensional tori on 2n-dimensional manifolds
are present in many integrable systems in classical mechanics, non-Hamiltonian ac-
tions occur also in physics, cf. Novikov’s article [27]. At the other extreme of a
symplectic Hamiltonian T -action is the case of a symplectic T -action whose prin-
cipal orbits are symplectic submanifolds of (M,σ), in which case the action does
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not have any fixed points and the restriction of the symplectic form to the T -orbits is
non-degenerate, which in particular implies that the action is never Hamiltonian. The
classification of Pelayo [33], reviewed in the present paper, shows that there are lots
of cases where this happens.

If one principal orbit is symplectic, then every orbit is symplectic, and the action is
locally free in the sense that all the stabilizer groups are finite subgroups of T . We first
describe in Sect. 3.2 the particular case when the action is free, and hence the orbit
space M/T is a manifold; in this case the classification is more straightforward, see
Proposition 3.2. If the action is not free, then the orbit space M/T is a good orbifold
(proven in [33]), and the classification of Sect. 3.2 is generalized to this rather more
delicate situation in Sect. 3.3. If dimM − dimT = 2, when the orbifold M/T is an
orbisurface, the classification can be given in a stronger, more concrete fashion, see
Sect. 5.

This paper contains the following new results: Theorem 1.1, Theorem 3.3, Propo-
sition 4.1, Theorem 4.2, Proposition 4.3, Lemma 4.5 items (iii) and (iv) and Corol-
lary 4.6. In particular, the following topological result is a consequence of Theo-
rem 4.2 and Proposition 4.3.

Theorem 1.1 If M is compact, connected symplectic manifold on which a torus T

acts effectively with symplectic orbits, then the leaf space M/T is a very good orb-
ifold with Betti number b1(M/T ) = b1(M) − dimT .

The above result may be considered a symplectic version of the classical work by
Kirwan [19] on the computation of the Betti numbers of symplectic quotients in the
Hamiltonian case.

There are a few results on non-Hamiltonian symplectic torus actions: McDuff [24]
and McDuff and Salamon [25] studied non-Hamiltonian circle actions, and Ginzburg
[15] non-Hamiltonian symplectic actions of compact groups under the assumption
of a “Lefschetz condition”. Benoist [3] proved a symplectic tube theorem for sym-
plectic actions with coisotropic orbits and convexity result in the spirit of the of the
Atiyah-Guillemin-Sternberg theorem [3]; Ortega-Ratiu [30] proved a local normal
form theorem for symplectic torus actions with coisotropic orbits. These appear to
be the most general results prior to the classification of symplectic torus actions with
coisotropic principal orbits in Duistermaat-Pelayo [11] and Pelayo [33]. For a con-
cise overview of the classification in [11] and an application to complex and Kähler
geometry see [12].

2 Preliminaries

Let (M,σ,T ) be a symplectic T -manifold. For every x ∈ M the orbit T · x of the T -
action containing x is a smooth manifold, and the mapping T → M : t 
→ t ·x induces
a diffeomorphism from T/Tx onto T · x, where Tx := {t ∈ T | t · x = x} denotes the
stabilizer subgroup of x in T . The tangent mapping at 1Tx of this diffeomorphism
is a linear isomorphism from t/tx onto the tangent space Tx(T · x) at x of T · x.
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Here t and tx denote the respective Lie algebras of T and Tx . That is, if XM(x)

denotes the infinitesimal action at x of an element X of the Lie algebra t of T , then
Tx(T · x) = {XM(x) | X ∈ t}, tx = {X ∈ t | XM(x) = 0}, and the aforementioned
linear isomorphism t/tx → Tx(T · x) is induced by the linear mapping t → TxM :
X 
→ XM(x). For an effective torus action the minimal stabilizer subgroups are the
trivial ones Tx = {1}, in which case the action of T is free at the point x, and the
corresponding orbits are called the principal orbits. The set M reg of all x ∈ M such
that Tx = {1} is an open, dense, and T -invariant subset of M .

The orbit T · x is symplectic if, for every y ∈ T · x, restriction of σy to the tangent
space Ty(T · x) of the orbit is a symplectic form. That is, if (Ty(T · x))σy denotes the
orthogonal complement of Ty(T · x) in TyM with respect to the symplectic form σy ,
then TyM is equal to the direct sum of Ty(T · x) and its symplectic orthogonal com-
plement.

Benoist [3, Lemme 2.1] observed that if u and v are smooth vector fields on M

which preserve σ , then their Lie bracket [u,v] is Hamiltonian with Hamiltonian func-
tion equal to σ(u, v), that is, i[u,v]σ = −d(σ (u, v)). It therefore follows from the
commutativity of T that if X,Y ∈ t, then d(σ (XM,YM)) = 0, which means that there
is a unique antisymmetric bilinear form σ t on t such that

σ t(X,Y ) = σx(XM(x),YM(x)) (1)

for every x ∈ M and X,Y ∈ t. If X ∈ tx , that is XM(x) = 0, then σ t(X,Y ) = 0 for
every Y ∈ t. It follows that th ⊂ l ⊂ t, if th and l denote the sum of all tx ’s and the
kernel of σ t in t, respectively.

Assume that for some x ∈ M the orbit T · x is dimT -dimensional and symplectic.
Then σ t is nondegenerate, which in turn implies that every T -orbit is a symplectic
submanifold of (M,σ). Because tx ⊂ kerσ t = {0}, the closed subgroup Tx of the
compact group T is discrete, hence finite. Therefore the action is locally free and
every T -orbit is dimT -dimensional.

3 Models for symplectic torus actions with symplectic principal orbits

We give a concise review of Pelayo [33, Chaps. 2–7] with some modifications in the
exposition and present a new fact: Theorem 3.3.

We study symplectic actions of the torus T on the symplectic manifold (M,σ)

such that at least one T -orbit is a dimT -dimensional symplectic submanifold of
(M,σ). This condition means that there exists x ∈ M such that tx = {0} and the
restriction of σx to Tx(T · x) is nondegenerate. It follows that the antisymmetric bi-
linear form σ t in (1) is nondegenerate, which in turn implies that for every x ∈ M

we have tx = {0} and the restriction of σx to Tx(T · x) is nondegenerate. That is, the
action of T on M is locally free, and all T -orbits are dimT -dimensional symplectic
submanifolds of (M,σ). We denote by σT the unique invariant symplectic form σ on
the Lie group T such that σ1 = σ t on T1T = t.

It follows that for each x ∈ M the symplectic orthogonal complement �x :=
(Tx(T · x))σx of the tangent space of the T -orbit is a complementary linear sub-
space to Tx(T · x) in TxM , and that the restriction to �x of σx is a symplectic form.
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Furthermore the �x depend smoothly on x ∈ M , and therefore define a distribution
� in M , a smooth vector subbundle of the tangent bundle TM of M .

Lemma 3.1 The distribution � is T -invariant and integrable.

Proof The T -invariance of � follows from the T -invariance of σ .
There is a unique t-valued one-form θ on M , called the connection form, such

that � = ker θ and θ(XM) = X for every X ∈ t. � is integrable if and only if θ

is closed. Let Xi , 1 ≤ i ≤ m := dimT be a basis of t, and let Y j be the σ t-dual
basis of t, determined by the equations σ t(Xi, Y j ) = δij for all 1 ≤ i, j ≤ m. Then
θ = ∑m

i=1 iXi
M

σ ⊗ Y i . For every X ∈ t we have d(iXM
σ) = LXM

σ − iXM
(dσ) = 0,

because σ is T -invariant and closed. Hence θ is closed. �

Lemma 3.1 leads to the local models of the symplectic T -space described in the
paragraph after Theorem 3.5. These local models can also be obtained by applying
results of Benoist [3, Proposition 1.9] or Ortega and Ratiu [30, Sects. 7.2–7.4] to the
case of a symplectic torus action with symplectic orbits. The proof of Lemma 3.1 in
[33] uses these local models.

3.1 The model T ×S I

Let I be a maximal connected integral manifold of the distribution �, where σ I :=
ι∗I σ is a symplectic form on I and ιI denotes the inclusion mapping from I into M .
In other words, I is a leaf of the symplectic foliation in M of which the tangent
bundle is equal to �.

Let S := {s ∈ T | s · I = I}, which is a subgroup of T . If we provide I and
S with the leaf topology and the discrete topology, respectively, then the action
of S on I is proper. Because each other leaf is of the form t · I for some t ∈ T

and T is commutative, the group S does not depend on the choice of the leaf I .
Furthermore, because the leaves form a partition of M , we have t ∈ S if and only if
t · I ∩ I �= ∅, the mapping A : T × I → M : (t, x) 
→ t · x is surjective, and
A(t, x) = A(t ′, x′) if and only if there exists s ∈ S such that x′ = s · x and t ′ = ts−1.
We let s ∈ S act on T × I by sending (t, x) to (ts−1, s · x). Because S acts freely
on T and properly on I , it acts freely and properly on T × I . Therefore the orbit
space T ×S I has a unique structure of a smooth manifold such that the canonical
projection ψ : T × I → T ×S I is a smooth covering map with S as its covering
group. Moreover, the unique mapping α : T ×S I → M such that α ◦ ψ = A is a dif-
feomorphism. The symplectic form σT ⊕ σ I on T × I is S-invariant, hence there is
a unique symplectic form σT ×S I on T ×S I such that ψ∗(σ T ×S I ) = σT ⊕σ I , when
the σx -orthogonality of �x and Tx(T · x) implies that σT ×S I = α∗(σ ). Finally, α

intertwines the T -action on T ×S I induced by the T -action (t ′, (t, x)) 
→ (t ′t, x) on
T × I with the T -action on M . We conclude that α is an isomorphism of symplectic
T -spaces from (T ×S I, σ T ×S I , T ) onto (M,σ,T ).

The orbit space I/S for the action of S on I is provided with the finest topology
on the orbit space I/S such that the canonical projection πI/S : I → I/S is con-
tinuous. Because the action of S on I is proper, the topology on I/S is Hausdorff.
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The mapping ι : I/S → M/T induced by the inclusion maps I → M and S → T is
bijective and continuous, and because M/T is compact, it follows that ι is a homeo-
morphism. This in turn implies that I/S is compact, that is, the action of S on I is
cocompact.

3.2 When T acts freely

We assume in this subsection that the action of T on M is free. We will present a
model of the symplectic T -space in which I and S are replaced by the universal
covering of M/T and the monodromy homomorphism from the fundamental group
of M/T to T , respectively.

The freeness of the T -action implies that M/T has a unique structure of a smooth
manifold of dimension dim(M/T ) = dimM − dimT and the canonical projection
π : M → M/T : x 
→ T · x exhibits M as a principal T -bundle, with � as a flat in-
finitesimal connection. Furthermore the action of S on I is free, I/S has a unique
structure of a smooth manifold such that πI/S : I → I/S is a smooth covering map,
and the homeomorphism ι : I/S → M/T is a diffeomorphism. The composition
ι ◦ πI/S : I → M/T , which is a smooth covering map, is equal to the restriction π |I
of π to I .

There is a unique symplectic form σ I/S and σM/T on I/S and M/T , respectively,
such that σ I = π∗

I/S
(σ I/S) = (π |I )∗(σM/T ). The symplectic form σM/T on M/T

does not depend on the choice of the leaf I , because T acts transitively on the set of
leaves and each t ∈ T acts as a symplectomorphism from (I, σ I ) onto (t · I, σ t ·I ).
Because π |I = ι ◦ πI/S , it follows that ι is a symplectomorphism from (I/S,σ I/S)

onto (M/T ,σM/T ). In the sequel we simplify the notation by writing O = M/T ,
σ O = σM/T , ψ = π |I , or equivalently O = I/S, σ O = σ I/S , ψ = πI/S .

Let x0 ∈ I and write p0 = ψ(x0). For each loop γ in O starting and ending at p0
there is a unique curve λ in I , called the lift of γ , such that γ = ψ ◦ λ and λ starts
at x0. The endpoint x′

0 of λ belongs to ψ−1({p0}), and therefore there is an s ∈ S such
that x′

0 = s · x0, where s is unique because T acts freely on M . Furthermore, because
S provided with the discrete topology acts properly, the element s ∈ S only depends
on the homotopy class [γ ] of γ , and the mapping μ : [γ ] 
→ s is a homomorphism
from the fundamental group π1(O,p0) to S, called the monodromy homomorphism.
The action of μ([γ ]) on I is the unique deck transformation [γ ] of the covering
ψ : I → O, a diffeomorphism  of I such that ψ ◦  = , such that [γ ](x0) is
equal to the endpoint of the lift of γ . Conversely, because I is connected, there exists
for each s ∈ S a curve λ in I running from x0 to x′

0, and because ψ(x′
0) = ψ(x0) = p0

it follows that γ = ψ ◦ λ is a loop in O starting and ending at p0. In other words,
μ(π1(O,p0)) = S. For this reason the subgroup S of T is called the monodromy
group.

The mapping ψ∗ : π1(I, x0) → π1(O,p0) : [λ] 
→ [ψ ◦ λ] is an isomorphism
of groups from π1(I, x0) onto the kernel kerμ of the monodromy homomorphism
μ : π1(O,p0) → S. It follows that ψ∗(π1(I, x0)) is a normal subgroup of π1(O,p0),
that is, ψ : I → O is a Galois covering. The homomorphism [γ ] 
→ [γ ] from
π1(O,p0) to the group of deck transformations of ψ : I → O has kernel equal
to kerμ = ψ∗(π1(I, x0)), and the image group, isomorphic to S � π1(O,p0)/

ψ∗(π1(I, x0)), acts freely and transitively on the fibers of ψ : I → O.
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The universal covering Õ is defined as the space of homotopy classes of curves in
O starting at p0, where in the homotopies the endpoints of the curves are kept fixed.
Let πO : Õ → O denote the mapping which assigns to [γ ] ∈ Õ the endpoint of γ .
Then there is a unique structure of a smooth manifold on Õ such that πO : Õ → O is
a smooth covering map. The manifold Õ is simply connected, and each covering of O
by a simply connected manifold is isomorphic to πO : Õ → O. If c ∈ Õ, and choose
γ ∈ c. Then the endpoint x of the curve λ in I starting at x0 such that ψ ◦λ = γ does
not depend on the choice of γ , and the mapping πI : Õ → I is a smooth covering
map, isomorphic to the universal covering of I . The group structure on π1(O,p0)

is induced by the concatenation of loops. The concatenating of a loop starting and
ending at p0 with a curve starting at p0 leads to an action of π1(O,p0) on Õ. This
action is free, and transitive each fiber of πO : Õ → O. For any [γ ] ∈ π1(O,p0)

and [δ] ∈ Õ, the definition of the homomorphism μ : π1(O,p0) → S implies that
γ ◦ πI ([δ]) = μ([γ ]) · πI ([δ]) = πI ([γ ] · [δ]).

We are now ready to present the following model of our symplectic T -space
(M,σ,T ).

Proposition 3.2 The composition A ◦ (1 × πI ) of the projection 1 × πI : T × Õ →
T × I with the action mapping A : T × I → M is a Galois covering map from T × Õ
onto M , with π1(O,p0) as the group of deck transformations, where [γ ] ∈ π1(O,p0)

acts on T × Õ by sending (t, [δ]) to (tμ([γ ])−1, [γ ] · [δ]). Let Mmodel = T ×π1(O,p0)

Õ and ιmodel : Mmodel → M denote the π1(O,p0)-orbit space and the induced map,
respectively. (Recall that μ is the monodromy homorphism.)

There is a unique symplectic form σmodel of which the pullback by the canonical
projection T × Õ → T ×π1(O,p0) Õ = Mmodel is equal to σT ⊕ πO ∗(σ O). The pro-
jection T × Õ → Mmodel intertwines the T -action (t ′, (t, [δ])) 
→ (t ′t, [δ]) on T × Õ
with the unique action of T on Mmodel. The map ιmodel is a T -equivariant symplecto-
morphism from the symplectic T -space (Mmodel, σmodel, T ) onto (M,σ,T ).

We conclude this subsection with a construction inspired by Kahn [16, Proof of
Corollary 1.4].

Recall the T -invariant connection form θ on M introduced in the proof of
Lemma 3.1. θ ′ is the connection form of any other integrable T -invariant infinitesi-
mal connection for the principal T -bundle π : M → M/T if and only if θ ′ = θ + η,
where η is a closed T -invariant t-valued one-form on M which is horizontal, that is,
η(XM) = 0 for every X ∈ t. In other words, η = π∗(β) for a unique closed t-valued
one-form β on M/T , and θ ′ = η + π∗(β). If μ′ : π1(M/T ,p0) → T denotes the
monodromy homomorphism defined by �′ = ker, then

μ′([γ ]) = μ([γ ]) exp

(

−
∫

γ

β

)

for every [γ ] ∈ π1(M/T ,p0).
Because T is commutative, the homomorphism μ : π1(M/T ,p0) → T is triv-

ial on the commutator subgroup C of π1(M/T ,p0), the smallest normal subgroup
of π1(O,p0) which contains all commutators. It is a theorem of Hurewicz that
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C is equal to the kernel of the surjective homomorphism h1 : π1(M/T ,p0) →
H1(M/T ,Z), called the Hurewicz homomorphism, which assigns to each [γ ] ∈
π1(M/T ,p0) its homology class. See Hu [22, Theorem 12.8]. It follows that there is
a unique homomorphism μh : H1(M/T ,Z) → T such that μ = μh ◦ h1.

On the other hand
∫
γ

β = [β](h1([γ ])), where [β] ∈ H1(M/T , t) �
Hom(H1(M/T ,Z), t) denotes the image of the de Rham cohomology class of β un-
der the canonical isomorphism from H1

deRham(M/T ) ⊗ t onto H1(M/T , t). For any
group H the torsion subgroup H tor of H is defined as the group of all elements of H

of finite order. Because ttor = {0}, every homomorphism H1(M/T ,Z) → t vanishes
on H1(M/T ,Z)tor, and therefore μ′

h = μh on H1(M/T ,Z)tor.
The compactness of M/T implies that H1(M/T ,Z) is a finitely generated

commutative group, and therefore the group H1(M/T ,Z)/H1(M/T ,Z)tor is iso-
morphic to Z

b for some b ∈ Z≥0, called the first Betti number b1(M/T ) of
M/T . In contrast, the group H1(M/T ,Z)tor is finite, isomorphic to the Carte-
sian product of finitely many cyclic finite groups. Let ei , 1 ≤ i ≤ b be a Z-basis
of H1(M/T ,Z)/H1(M/T ,Z)tor. For every 1 ≤ i ≤ b, choose [γi] ∈ π1(M/T ,p0)

and Xi ∈ t such that h1([γi]) = ei mod H1(M/T ,Z)tor and T � μ([γi]) = exp(Xi).
Then there exists a unique homomorphism β from H1(M/T ,Z)/H1(M/T ,Z)tor to
t such that β(ei) = Xi for every 1 ≤ i ≤ b, and it follows that for this choice of
β the corresponding μ′ satisfies μ′([γi]) = μ′

h(h1([γi])) = 1 for every 1 ≤ i ≤ b.
For any [γ ] ∈ π1(M/T ,p0), there exist ci ∈ Z and δ ∈ π1(M/T ,p0) such that
h1([δ]) ∈ H1(M/T ,Z)tor and h1([γ ]) = ∑m

i=1 cih1([γi]) + h1([δ]), hence μ′([γ ]) =
μ′([δ]) = μ([δ]). We therefore have proved the following theorem, in which the last
statement is Pelayo [33, Theorem 4.2.1].

Theorem 3.3 Let �′ be any flat infinitesimal connection for the principal T -bundle
π : M → M/T , with the corresponding monodromy homomorphism
μ′ : π1(M/T ,p0) → T . Then μ′

h = μh on the finite group F := H1(M/T ,Z)tor,
which implies that μh(F ) = μ′

h(T ) ⊂ μ′(π1(M/T ,p0)). On the other hand, �′ can
be chosen such that μ′(π1(M/T ,p0)) is equal to the finite subgroup μh(F ) of T .

It follows that the principal T -bundle π : M → M/T is T -equivariantly diffeo-
morphic to T × (M/T ), if and only if μ([γ ]) = 1 for every [γ ] ∈ h1

−1(F ). This hap-
pens in particular if H1(M/T ,Z) has no torsion. Here t ′ ∈ T acts on T × (M/T )

by sending (t,p) to (t ′t, p).

If �′ is as in Theorem 3.3, then there is a unique two-form σ ′ on M such that
σ ′ = σ on the T -orbits and on the linear complements �′

x of the tangent spaces to
the T -orbits, but this time �′

x is the σ ′
x -orthogonal complement of Tx(T · x) in TxM .

Then σ ′ is a T -invariant symplectic form on M , the T -orbits are symplectic subman-
ifolds of M , and �′ is the distribution of the symplectic orthogonal complements to
the tangent spaces of the orbits. The integral manifolds I ′ of �′ are compact if and
only if the monodromy group μ′(π1(M/T ,p0)) of �′ is finite, which according to
Theorem 3.3 can always be arranged by means of a suitable choice of the T -invariant
symplectic form σ ′ on M , equal to σ on the T -orbits. We like to think of Theorem 3.3
as telling how the integral manifolds and the monodromy of � can be changed when
changing the symplectic form in the above manner, without changing the T -action.
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Let dimT = dimM − 2, when M/T is a compact connected oriented surface.
Then H1(M/T ,Z) has no torsion, see for instance Sect. 4.1, and the conclusion is
that every principal T -bundle π : M → M/T which admits a T -invariant symplectic
form with symplectic T -orbits is trivial. This is Pelayo [33, Corollary 4.1.2], proved
before by Kahn [16, Corollary 1.4] in the case that dimM = 4.

3.3 Orbifolds

We return to the general case, when there may exist x ∈ M \ M reg, meaning that the
stabilizer subgroup Tx , which is finite, is nontrivial.

Let I denote the maximal integral manifold of � such that x ∈ I . If t ∈ Tx then
t · x = x, hence t · I ∩ I �= ∅, and therefore t ∈ S = {s ∈ T | s · I = I}, see Sect. 3.1.
Therefore I is Tx -invariant. Because the derivative at (1, x) of the covering map
A : T × I → M is bijective, there exist neighborhoods U and V of 1 and x in T

and I , respectively, such that the restriction to U ×V of A is injective. Because Tx is
compact, we can choose V to be Tx -invariant. Suppose that tj and xj are sequences in
T and V , respectively, such that xj → x and V � tj ·xj → x as j → ∞. Because T is
compact, we can arrange that there exists t∞ ∈ T such that tj → t∞ as j → ∞. The
continuity of A implies that t∞ · x = limj→∞ tj · xj = x, hence t∞ ∈ Tx . if we write
sj = t∞−1tj , then sj → 1 and sj · xj ∈ V . If j >> 1, then sj

−1 ∈ U , sj xj ∈ V , and
A(sj

−1, sj xj ) = A(1, xj ), in combination with the injectivity of A|U×V , implies that
sj = 1, hence tj = t∞ ∈ Tx . The conclusion is that there exists an open Tx -invariant
neighborhood I0 of x in I such that if t ∈ T and t · I0 ∩ I0 �= ∅, then t ∈ Tx .

It follows that if M0 = A(T × I0) and α0 : T ×Tx V → M is the mapping in-
duced by A|T ×Io

, then α0 is a T -equivariant symplectomorphism from (T ×Tx I0,

σ T ×Tx I0 , T ) onto (M0, σ |M0, T ). This model of (M0, σ |M0, T ) is equal to the model
of Sect. 3.1, with M , I , and S replaced by M0, I0, and Tx , respectively.

The set (I/S)0 = πI/S(I0) is an open neighborhood of S · x in I/S, and the
mapping i0 : I0/Tx → I/S, defined by the inclusion mappings I0 → I and Tx → S,
is a homeomorphism from I0/Tx onto (I/S)0. The homeomorphism ι : I/S → M/T

of Sect. 3.1 maps (I/S)0 onto an open neighborhood (M/T )0 of T · x in M/T . By
shrinking the above I0’s if necessary, we can arrange that these are diffeomorphic
to open subsets of R

n, n = dim I = dimM − dimT , and it follows that the I0’s
and corresponding finite groups Tx form an orbifold atlas for I/S. We define the
orbifold structure on M/T by declaring the homeomorphism ι : I/S → M/T of
Sect. 3.1 to be an orbifold isomorphism; this is a different, canonically equivalent
way of defining the orbifold structure to [33, Definition 2.3.5], where it was defined
using the symplectic tube theorem. Then the map ψ = πI/S : I → I/S is an orbifold
covering from the smooth manifold I onto the orbifold I/S, which exhibits I/S �
M/T as a good orbifold, with covering group equal to S. Here we have used the
terminology and basic properties concerning orbifolds as in Boileau, Maillot and
Porti [5, Sects. 2.1.1, 2.1.2].

In the sequel we write O for the orbifold I/S � M/T . Let Oreg denote the set of
all regular points of O, points p in a local orbifold chart with a trivial local group.
In terms of the orbifold covering ψ : I → O by means of the smooth manifold I ,
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we have p ∈ Oreg if and only if Tx = {1} for every x ∈ ψ−1({p}), that is, I reg :=
ψ−1(Oreg) is equal to the set of all points in I on which the action of S is free.

There is an orbifold covering πO : Õorb → O, called the universal orbifold cover-
ing such that for every orbifold covering π ′ : O′ → O and points p̃0 ∈ Oorb, p′

0 ∈ O′
such that πO(p̃0) = π ′(p′

0) is a regular point in O, there exists a unique orbifold
covering πO′ : Õorb → O′ such that πO = π ′ ◦πO′ and πO′(p̃0) = p′

0. The universal
covering is unique up to orbifold isomorphisms. The group of all orbifold deck trans-
formations, the orbifold automorphisms c of Õorb such that πO ◦c = πO , is called the
orbifold fundamental group � of O. The action of � on Õorb is proper. See Thurston
[40, Proposition 5.3.3 and Definition 5.3.5].

In our good orbifold case the universality property of πO : Õorb → O implies that
there exists a unique orbifold covering πI : Õorb → I such that πO = ψ ◦ πI and
π(p̃0) = x0 if x0 is a base point in I such that ψ(x0) = p0 = πO(p̃0). Because I is a
smooth manifold, Õorb is a smooth manifold, diffeomorphic to the universal covering
Ĩ of I , and � acts on Õorb by means of diffeomorphisms.

The mapping πI intertwines the action of � on Õorb with a unique action of
� on I , and there is a unique homomorphism μ : � → S, called the orbifold
monodromy homomorphism, such that c · x = μ(c) · x for every c ∈ � and x ∈ I . We
have μ(�) = S, and therefore the subgroup S of T is called the monodromy group.
The homomorphism from � to the group of deck transformations of πI : Õorb → I
has kernel equal to kerμ = ψ∗(�) and the image group is isomorphic to S �
�/ψ∗(π1(I, x0)). It also follows that Õorb,reg := πO −1(Oreg) is equal to the set of
all points of Õorb on which � acts freely.

Let x0 and p̃0 be base points in I and Õ, respectively, such that ψ(x0) = p0 =
πO(p̃0). We have x0 ∈ I reg and p̃0 ∈ Õorb,reg because p0 ∈ Oreg. An orbifold loop in
O based at p0 is defined as a loop γ in O based at p0 such that γ = πO ◦ γ̃ , where γ̃

is a path in Õorb starting at p̃0, which is unique when it exists. By definition, orbifold
homotopies of loops γ in O based at p0 correspond to homotopies of the curves γ̃ in
Õorb. Because � acts transitively on πO −1({p0}), there exists a c ∈ � which maps p̃0

to the endpoint of γ̃ , where c is unique because � acts freely on p̃0. Furthermore, any
path in Õorb from p̃0 to c · p̃0 is homotopic to γ̃ , because Õorb is simply connected.
It follows that the mapping [γ ] 
→ c is an isomorphism, from the group πorb

1 (O,p0)

of all orbifold homotopy classes of homotopy loops in O based at p0, onto �. We
use this isomorphism to identify the two groups, and write � = πorb

1 (O,p0) in the
sequel.

With these notations and basic facts, we have the following model of (M,σ,T ),
extending Proposition 3.2 to the case that the T -action is not free.

Theorem 3.4 The composition A ◦ (1 × πI ) of the projection 1 × πI : T × Õorb →
T × I with the action mapping A : T × I → M is a Galois covering map from
T × Õorb onto M , with � = πorb

1 (O,p0) as the group of deck transformations, where
c ∈ � acts on T × Õorb by sending (t, p̃) to (tμ(c)−1, c · p̃). This action is proper
and free, where the freeness of the action implies that the action of kerμ on Õorb is
free. Let Mmodel = T ×� Õorb and ιmodel : Mmodel → M denote the �-orbit space and
the induced map, respectively. (Recall that μ is the monodromy homorphism.)
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There is a unique symplectic form σmodel of which the pullback by the canonical
projection T × Õorb → T ×� Õorb = Mmodel is equal to σT ⊕ πI ∗(ιI ∗σ), where ιI
denotes the inclusion mapping I → M . The projection T × Õorb → Mmodel inter-
twines the T -action (t ′, (t, p̃)) 
→ (t ′t, p̃) on T × Õorb with a unique action of T on
Mmodel. The map ιmodel is a T -equivariant symplectomorphism from the symplectic
T -space (Mmodel, σmodel, T ) onto (M,σ,T ).

In Theorem 3.4 we could have written ιI ∗(σ ) = ψ∗(σ O) for a unique orbifold
symplectic form σ O on O � I/S � M/T , when πI ∗(ιI ∗σ) = πO ∗(σ O).

The following converse to Theorem 3.4 is our existence theorem in the classifica-
tion of all compact connected symplectic T -spaces (M,σ) with symplectic principal
orbits.

Theorem 3.5 Let T be an even-dimensional torus provided with an invariant sym-
plectic form σT . Let O be a compact and connected good even-dimensional orbifold
provided with an orbifold symplectic form σ O . Finally, let μ be a homomorphism
from � = πorb

1 (O,p0) to T such that kerμ acts freely on the orbifold universal cov-
ering Õorb of O.

Then Õorb is a smooth manifold and πO ∗(σ O) is a symplectic form on Õorb. The
action (c, (t, p̃)) 
→ (tμ(c)−1, c · p̃) of � on T × Õorb is proper, free, and preserves
the symplectic form σT ⊕ σ Õorb

. Let πM be the canonical projection from T × Õorb

onto the orbit space M := T ×� Õorb. Then there is a unique symplectic form σ on
the smooth manifold M such that πM

∗(σ ) = σT ⊕ πO ∗(σ O). πM intertwines the
T -action (t ′, (t, p̃)) 
→ (t ′t, p̃) on T × Õorb with a unique T -action on M which
preserves σ and has symplectic orbits.

4 Topology of the orbit space

In the next paragraphs we present a more detailed local model of the symplec-
tic T -action, and draw some conclusions about the singularities of the orbifold
O � I/S � M/T and the orbifold fundamental group of O. The statements Propo-
sition 4.1, Theorem 4.2, Proposition 4.3, Lemma 4.5 items (iii) and (iv) and Corol-
lary 4.6 are new. Theorem 1.1 follows from Theorem 4.2 and Proposition 4.3.

Note that the local groups of the orbifold O � M/T � I/S are the finite stabilizer
groups Tx which act on a suitable Tx -invariant open neighborhood I0 of x in I by
means of symplectomorphisms. It follows from the linearization theorem of Bochner
[4] that there is a smooth local coordinate system which maps x to the origin in a
vector space �x := Tx I , in which the elements of Tx act by linear tranformations. It
follows from Chaperon [6, Corollary 1] that there exists a local system of coordinates
around x, equal to zero at x, in which the symplectic form is constant and the ele-
ments of Tx act by means of symplectic linear transformations. This actually holds
for an arbitrary continuous action of a compact group G by means of symplectomor-
phisms, with a fixed point x. For the proof, one first applies the linearization theorem
of Bochner [4, Theorem 1] in order to arrange that G acts by linear transformations,
and then the equivariant Darboux lemma of Weinstein [41, Corollary 4.3] in order
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arrive at the G-invariant constant symplectic form. For any proper symplectic action
of a Lie group G on a symplectic manifold (M,σ) there a exist a G-invariant almost
complex structure and Hermitian structure J and h on M , such that σ is equal to
the imaginary part of h, see for instance [10, Sect. 15.5]. The same proof yields a
Tx -invariant complex structure and Hermitian structure h on �x such that σ = Imh.
In other words, Tx acts on �x by means of unitary complex linear transformations.
Because Tx is commutative, there is an h-orthonormal basis of simultaneous eigen-
vectors for the Tx -action in �x . If z = (z1, . . . , zm) ∈ C

m denote the coordinates in
�x with respect to this basis, we have (t · z)j = λj (t)zj for every 1 ≤ j ≤ m and
t ∈ Tx , where λj is a homomorphism from Tx to the multiplicative group C

× of all
nonzero complex numbers. Because Tx is finite, there is a unique dj ∈ Z>0 and ho-
momorphism lj : Tx → Z/djZ such that λj (t) = e2π ilj (t)/dj for every 1 ≤ j ≤ m and
every t ∈ Tx . Because M reg is dense in M , Tx acts effectively on �x , which means
that the homomorphism Tx � t 
→ (l1(t), . . . , lm(t)) ∈ (Z/d1Z) × . . . × (Z/dmZ) is
injective.

The model (T ×Tx I0, σ
T ×Tx I0, T ) with these additional properties is the model

of (M0, σ |M0, T ) in the symplectic tube theorem of Benoist [3, Proposition 1.9] and
Ortega and Ratiu [30, Sects. 7.2–7.4] in the case of a symplectic torus action with
symplectic orbits, with I0 as the slice.

The singular points for the Tx -action in C
m are the z ∈ C

m such that zj = 0 if
lj (t) �= 0 moddj for some t ∈ Tx . Therefore the singular set is a union of coordinate
subspaces in C

m. The singular sets Osing, I sing, and Õorb,sing are defined as the com-
plements in O, I , and Õorb of Oreg, I reg, and Õorb,reg, respectively. Because I sing and
Õorb,sing are the singular sets in the smooth manifolds I and Õorb for the respective
actions of S and �, these sets locally are unions of symplectic coordinate subspaces
of strictly positive even codimension. It follows that the singular set of the orbifold
O � I/S � M/T locally is equal to a corresponding union of “coordinate orbifolds”,
each of which is a symplectic suborbifold of strictly positive even codimension.

Because I sing and Õsing have codimension ≥ 2 in the smooth manifolds I and Õ,
the curves γ I and γ̃ are homotopic to curves in I reg and Õreg, respectively. It fol-
lows that the inclusion mapping ιreg : Oreg → O induces a surjective homomorphism
ιreg∗ : π1(Oreg,p0) → πorb

1 (O,p0).
Let N be a small tubular open neighborhood of Osing in O such that p0 is an inte-

rior point of O \ N , and the injection from O \ N into Oreg induces an isomorphism
π1(O \ N,p0)

∼→ π1(O,p0). The boundary ∂N of N is a simplicial complex in the
smooth manifold Oreg. Because Oreg \ N is a compact subset of Oreg, it is a simpli-
cial complex and therefore π1(Oreg \N,p0) is finitely generated, hence π1(Oreg,p0)

is finitely generated. Because ιreg∗ is surjective, we conclude:

Proposition 4.1 The orbifold fundamental group πorb
1 (O,p0) of O is finitely gener-

ated. The monodromy group S = μ(πorb
1 (O,p0)) is a finitely generated subgroup of

the torus T .

Let X be a path connected, simply connected metrizable locally compact topo-
logical space and � a discrete group acting properly on X. Choose x0 ∈ X and
write p0 = � · x0 ∈ X/�. For c ∈ �, let δ be a path in X from x0 to c · x0. If
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π : X → X/� denotes the canonical projection, then π ◦ δ is a loop in X/� based at
p0, and because X is simply connected, its homotopy class does not depend on the
choice of γ and we can write [γ ] = ϕ(c) for a uniquely defined ϕ(c) ∈ π1(X/�,p0).
The theorem of Armstrong [1] says that ϕ : � → π1(X/�,p0) is a surjective ho-
momorphism, with kernel equal to the smallest normal subgroup A of � which
contains all elements c ∈ � which have a fixed point in X. If we apply this to
X = Õorb and � = πorb

1 (O,p0), then X/� is canonically identified with O and
ϕ : πorb

1 (O,p0) → π1(O,p0) is the map obtained by forgetting the orbifold struc-
ture. It follows that this map ϕ is surjective from � onto π1(O,p0), and that its kernel
is equal to the smallest normal subgroup A of � which contains all c ∈ � such that
c · p̃ = p̃ for some p̃ ∈ Õorb. If c · p̃ = p̃, then μ(c) · πI (p̃) = πI (c · p̃) = πI (p̃).
That is, μ(c) ∈ Tx if we write x = πI (p̃). It follows that μ(kerϕ) is contained in
the product T• of all Tx ’s. Because the local normal form of the T -action, in com-
bination with the compactness of M , implies that there are finitely many stabilizer
subgroups Tx , each of which is finite, T• is a finite subgroup of T .

We recall the surjective Hurewicz homomorphism h1 : π1(O,p0) → H1(O,Z)

with kernel equal to the commutator subgroup of π1(O,p0). Furthermore, an orbifold
O is called very good if it is isomorphic, as an orbifold, to the orbit space of a finite
group action on a smooth manifold. We now have the following orbifold version of
Theorem 3.3.

Theorem 4.2 Let σ ′ be any T -invariant symplectic form on M such that (σ ′)t = σ t.
Let �′, I ′, μ′, and S′ respectively denote the integrable T -invariant distribution of the
σ ′-orthogonal complements of the tangent spaces of the T -orbits, a maximal integral
manifold of �′, the monodromy homomorphism from � = πorb

1 (O,p0) to T , and the
monodromy group S′ = μ′(�), where O � I ′/S′ � M/T � I/S.

Then the torsion group F = H1(M/T ,Z)tor is finite. We have μ′ = μ on U := (h1◦
ϕ)−1(F ) and on Armstrong’s subgroup A of �, E := μ(U)μ(A) ⊂ S′, μ(A) = T• :=
the product of all Tx ’s, and

#(T•) ≤ #(E) ≤ #(F )#(T•).

The symplectic form σ ′ can be chosen such that S′ = E. With such a choice,
M/T � I ′/S′ exhibits M/T as a very good orbifold, and I ′ is a compact symplectic
submanifold of M .

Proof The distributions �′ are characterized by the property that there exists a closed
T -invariant and horizontal t-valued one-form η on M such that �′

x = {v − ηx(v) |
v ∈ �x} for every x ∈ M . It follows from the theorem of Koszul [21] that the singular
cohomology group H1(M/T , t) = Hom(H1(M/T ,Z), t) is isomorphic to the space
of closed t-valued T -invariant horizontal smooth one-forms on M modulo the space
of all derivatives of T -invariant smooth t-valued functions on M . If [η] denotes the
element of H1(M/T , t) defined by η, then the monodromy homomorphism μ′ of �′
is given by

μ′(c) = μ(c) exp(−[η]((h1◦ ϕ)(c))), c ∈ �.
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Because [η] is a homomorphism from H1(O,Z) to the torsion-free additive group t,
it vanishes on the torsion subgroup F of H1(O,Z), and therefore μ′ = μ on U . Since
μ′(A) = T• is a finite hence discrete subgroup of T , and μ′|A depends in a continuous
fashion on the element [η] of the connected vector space H1(O, t), μ′|A is constant
as a function of [η] ∈ H1(O, t), and therefore μ′|A = μ|A.

Because � is finitely generated, H1(O,Z) = (h1 ◦ ϕ)(�) is a finitely generated
commutative group. This can also be proved directly by observing that the orbit space
stratification of M/T implies that the compact space M/T is homeomorphic to a
simplicial complex. It follows that H1(O,Z)/F � Z

b where b = b1(O) ∈ Z≥0, and
that the torsion subgroup F of H1(O,Z) is finite. Let ej ∈ H1(O,Z), 1 ≤ j ≤ b, be
such that the ej + F form a Z-basis of H1(O,Z)/F . Because h1◦ ϕ is surjective, we
have h1◦ϕ(cj ) = ej and h1◦ϕ(df ) = f for suitable cj , df ∈ �. Since the exponential
mapping from t to T is surjective, we have μ(cj ) = exp(Xj ) for suitable Xj ∈ t.
Finally there exists an η as above such that [η]((h1◦ ϕ)(cj )) = Xj hence μ′(cj ) = 1
for every 1 ≤ j ≤ b.

For any c ∈ C there exist mj ∈ Z and f ∈ F such that

h1◦ ϕ(c) =
b∑

j=1

mjej + f =
b∑

j=1

mj h1◦ ϕ(cj ) + h1◦ ϕ(df )

= h1◦ ϕ(c1
m1 . . . cb

mbdf ).

In view of the Hurewicz theorem this is equivalent to ϕ(c) = ϕ(c1
m1 . . . cb

mbdf )u for
an element u in the commutator subgroup of π1(O,p0). Because of the surjectivity
of ϕ, there exists an element v in the commutator subgroup of � = πorb

1 (O,p0) such
that u = ϕ(v), and we obtain that c = c1

m1 . . . cb
mbdf va for some a ∈ A = kerϕ. If

we apply the homomorphism μ′ to the left and the right hand side of this equation,
and use that μ′(cj ) = 1, where μ′(v) = 1 because μ′ is a homomorphism to the
commutative group T , we conclude that μ′(c) = μ′(df )μ′(a) = μ(df )μ(a). �

Note that M can only be diffeomorphic to T × (M/T ) when M/T is a smooth
manifold, that is, T acts freely. This case has been dealt with in Theorem 3.3.

Further investigation of the surjective homomorphisms ιreg∗ : π1(Oreg,p0) → �

and ϕ : � → π1(O,p0) should lead to more detailed information about the orbifold
fundamental group � = πorb

1 (O,p0) of O. For orbisurfaces O, this leads to a com-
plete understanding of the group structure of �, see Sect. 4.1.

We conclude this subsection with the computation in Proposition 4.3 of the first
Betti number of M .

Proposition 4.3 If all orbits of (M,σ,T ) are symplectic, then b1(M) = dimT +
b1(M/T ).

Proof Consider the action ((Y, γ ), (X, p̃)) 
→ (X − Y,γ · p̃)) on t × Õorb of the dis-
crete subgroup  := {(Y, γ ) ∈ t × � | expY = μ(γ )} of t × �. If (X − Y,γ · p̃) =
(X, p̃), then Y = 0 hence μ(γ ) = expY = 1, and γ · p̃ = p̃, and therefore γ = 1 be-
cause kerγ acts freely on Õorb. It follows that the proper action of  is also free, and
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the covering t × Õorb → T × Õorb : (X, p̃) → (expX, p̃) induces a diffeomorphism
from (t × Õorb)/ onto T ×� Õorb � M . Because t × Õorb is simply connected, we
conclude that the fundamental group of M is isomorphic to .

For any group G we denote by G/C(G) the abelianization of G, where C(G)

is the smallest normal subgroup of G which contains all commutators of elements
of G. The first homology group H1(M,Z) of M is isomorphic to the abelianiza-
tion of the fundamental group of M , and therefore isomorphic to /C(). Be-
cause μ is a homomorphism from � to the commutative group T , we have μ = 1
on C(�). Therefore ′ := {(Y, γ C(�)) ∈ t × (�/C(�)) | expY = μ(γ )} is a well-
defined subgroup of the commutative group t × (�/C(�), equal to the image of
 under the projection p : (Y, γ ) 
→ (Y, γ C(γ )) from t × � onto t × (�/C(�)).
Because C() = {0} × (�/C(�)) = the kernel of p|, it follows that p| induces
an isomorphism from /C() onto ′. The restriction to ′ of the projection
(Y, γ C(�)) 
→ γ C(�) is a surjective homomorphism from ′ to �/C(�) with ker-
nel equal to TZ × {0}, where TZ = ker(exp) denotes the integral lattice of T in t.
We have rank(TZ) = dimT . For any subgroup B of a finitely generated commuta-
tive group A we have rank(A) = rank(B) + rank(A/B), see for instance Spanier
[39, bottom of p. 8]. It follows that b1(M) := rank H1(M,Z) = rank(/C()) =
dimT + rank(�/C(�)).

Recall the surjective homomorphism ϕ : � = πorb
1 (O,p0) → π1(O,p0), of which

the kernel is equal to the smallest normal subgroup A of � which contains all
γ ∈ � such that γ · p̃ = p̃ for some p̃ ∈ Õorb. And the surjective homomorphism
h1 : π1(O,p0) → H1(O,Z) with kernel equal to C(π1(O,p0)). It follows that the
homomorphism h1◦ϕ : � → H1(O,Z) is surjective and has kernel equal to the small-
est normal subgroup of � which contains both A and C(�). If � : � → �/C(�)

denotes the canonical projection, then h1◦ ϕ = ψ ◦ � for a unique surjective homo-
morphism ψ : �/C(�) → H1(O,Z) with kernel equal to �(A). Let B be the smallest
subgroup of �/C(�) which contains all γ C(�) such that γ · p̃ = p̃ for some p̃ ∈ Õorb.
Because each such element γ of � has finite order, we have B ⊂ (�/C(�))tor. On the
other hand A ⊂ �−1(B), hence �(A) ⊂ B , and therefore rank(�(A)) = 0. There-
fore rank(�/C(�)) = rank(�(A)) + rank H1(O,Z) = 0 + b1(O) = b1(O), where O
is homeomorphic to M/T . �

4.1 When the orbit space is an orbisurface

In this subsection we assume that dimM − dimT = 2, so O � M/T � I/S is a
compact connected symplectic orbisurface. The local normal form discussed after
Theorem 3.5 leads to the following conclusions about the orbisurface O.

The singular locus Osing is a discrete, hence finite, subset of O. We write n :=
#(Osing), where n = 0 if and only if O is a smooth surface. Let si , 1 ≤ i ≤ n be an
enumeration of Osing. For each 1 ≤ i ≤ n there is a unique o = oi ∈ Z>1 such that
for each x ∈ I with ψ(x) = si the stabilizer group Tx of the point x in T is cyclic
of order oi , and acts on a small open disk D centered x in I as multiplication in
the complex plane by oi -th roots of unity. The integer oi is called the order of the
singular point si . Let ci denote the unique element of Tx which acts near x as a
rotation about the angle 2π/oi in the positive direction. A fundamental domain of
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the Tx -action is given by a wedge in D with vertex at x and opening angle 2π/oi ,
where the corresponding neighborhood of si in O is obtained by identifying the two
sides of the wedge by means of the rotation about the angle 2π/oi , which produces a
half-cone with vertex at si . It follows that the open neighborhood D/Tx of si in O is
homeomorphic to a disc. As this holds for every singular point si of O, it follows that
O is homeomorphic to a compact, connected and oriented smooth surface, where the
orientation is the one defined by the orbifold symplectic form, the orbifold area form
on O. The facts in the following paragraph are classically known (see for instance
Seifert and Threlfall [38, Sects. 38, 47], where the notes Nos. 21 and 25 refer to the
origins, starting with Poincaré [36]).

The surface O can be provided with the structure of a simplicial complex. Un-
less O is homeomorphic to a sphere, there exists a g ∈ Z>0 such that the surface
can be obtained from the convex hull P in the plane of a regular 4g-gon in the
following way. The boundary is viewed as a cycle of g quadruples of subsequent
edges αj ,βj ,α

′
j , β

′
j , j ∈ Z/gZ, where αj and βj are positively oriented and α′

j

and β ′
j are negatively oriented. The surface O is obtained by identifying, for each

j ∈ Z/gZ, αj with α′
j , where the identification respects the orientations. In the sur-

face O all the vertices of the 4g-gon correspond to a single point p0 ∈ O which
is taken as the base point. The edges αj and βj define loops in O based at p0. If
[αj ,βj ] = αjβjαj

−1βj
−1 denotes the commutator of αj and βj , then their concate-

nation for 1 ≤ j ≤ g corresponds to the loop which runs along the boundary of the
polytope P at its interior side, and therefore is contractible. If we denote the homo-
topy classes of the loops αj and βj by the same letters, these considerations lead
to the conclusion that the homomorphism, from the free group generated by the αj

and βj to π1(O,p0), is surjective, with kernel equal to the smallest normal subgroup
which contains the cyclic concatenation of the commutators [αj ,βj ], j ∈ Z/gZ. This
is usually expressed by saying that π1(O,p0) is generated by the αj , βj , subject to
the single relation

[α1, β1] . . . [αg,βg] = 1,

where π1(O,p0) = {1} if g = 0. Because h1([αj ,βj ]) = 0, the commutative group
H1(O,Z) is freely generated by the homology classes h1(αj ), h1(βj ), j ∈ Z/gZ.
Therefore H1(O,Z) � Z

2g , which implies that H1(O,Z) has no torsion. Therefore
the positive integer g, called the genus of the surface O, has the topological interpre-
tation that the first Betti number b = b1(O) is equal to 2g. With this interpretation, the
two-dimensional sphere has genus g = 0. Any oriented compact connected surface
of genus g > 0 is homeomorphic to a sphere with g handles.

It can be arranged that the singular points si , 1 ≤ i ≤ n, lie in the interior of the
polytope P . For each i, let γi be a loop in O consisting of a path δi from a vertex
p0 of P into the interior of P to a point close to si , followed by a circle around si in
the positive direction and completed by the inverse of δi . It can be arranged that the
curves γi don’t intersect each other except at the base point and that the concatenation
γ1 . . . γn is homotopic in Oreg = O \ Osing to the cyclic concatenation of the commu-
tators [αj ,βj ], j ∈ Z/gZ. If we denote the homotopy classes of the γi by the same
letters, then this leads to an isomorphism from Q/R onto π1(O,p0), where Q is the
free group generated by the αj , βj , and γi , and R is the smallest normal subgroup of
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Q which contains the product of the concatenation of the commutators [αj ,βj ] with
the inverse of the concatenation of the γi . That is, π1(Oreg,p0) is generated by the
αj , βj , and γi , subject to the single relation

[α1, β1] . . . [αg,βg] = γ1 . . . γn,

where the left and/or the right hand side is equal to 1 if g = 0 and/or n = 0.
The surjective homomorphism ιreg∗ from π1(Oreg,p0) onto πorb

1 (O,p0), dis-
cussed in the paragraphs preceding Proposition 4.1, has kernel equal to the [γ ] ∈
π1(Oreg,p0) such that there is an orbifold homotopy of γ to the trivial loop. The
homotopy can be arranged to be transversal to the singular set, and it follows that
γ is homotopic in Oreg to a concatenation of conjugates of powers of the curves γi

introduced above. Let ci denote a small circle around si in the positive direction and
let c̃i denote its orbifold lift to the orbifold chart near si . Then c̃i is equal to a rotation
on a small circle around the origin about the angle 2π/oi , and ci

k has an orbifold
contraction in the chart around si if and only if k ∈ Zoi . It follows that the kernel
of ιreg∗ is equal to the smallest normal subgroup of π1(Oreg,p0) which contains the
elements γi

oi , 1 ≤ i ≤ n. In other words, πorb
1 (O,p0) is generated by the αj , βj , and

γi , subject to the relations

[α1, β1] . . . [αg,βg] = γ1 . . . γn and γi
oi = 1 for every 1 ≤ i ≤ n, (2)

cf. Scott [37, p. 424]. Note that the kernel of the surjective homomorphism
ϕ : πorb

1 (O,p0) → π1(O,p0) is equal to the smallest normal subgroup containing
the γi ’s. This is compatible with the aforementioned presentation of π1(O,p0) with-
out γi ’s.

The only bad compact connected oriented orbisurfaces O are the ones with g = 0,
where O is homeomorphic to the two-sphere, and either n = 1 or n = 2 and o1 �= o2.
See Scott [37, Theorem 2.3]. Every good compact connected oriented orbisurface is
isomorphic to Õorb/�, where Õorb is the two-sphere with the standard Riemannian
structure, the Euclidean plane, or the hyperbolic plane, and � is a discrete group
of orientation preserving isometries acting on Õorb. See Thurston [40, Sect. 5.5].
This description has been used to prove that every good compact connected ori-
ented orbisurface is very good, see Scott [37, Theorem 2.5]. In the case of the hy-
perbolic plane = the complex upper half plane, � is a cocompact discrete subgroup
of PGL(2,R). That is, � is a Fuchsian group of which the signature (g;o1, . . . , on)

satisfies oi < ∞ for every 1 ≤ i ≤ n.
In each tangent space of Õorb there is a unique rotation J about the angle π/2,

with respect to the aforementioned Riemannian structure β and orientation. This de-
fines an almost complex structure J , which is integrable because dim Õorb = 2. The
imaginary part of the Hermitian structure h defined by β and J is a two-form of
which the exterior derivative is equal to zero, again because dim Õorb = 2. It follows
that h and Imh is a �-invariant Kähler structure and symplectic form on Õorb, and
therefore defines an orbifold Kähler structure and orbifold symplectic form on O,
respectively.

In the existence result Theorem 3.5 we need a compact and connected good or-
bisurface O provided with an orbifold smooth area form without zeros. The area form
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determines an orientation of O, and in the previous paragraphs we have described the
compact and connected oriented good orbisurfaces.

Lemma 4.4 Every paracompact oriented orbisurface O carries an orbifold smooth
area form without zeros which is compatible with the orientation.

Proof For every p ∈ O there exists an open neighborhood Up of p in O and an
orbifold smooth area form σp without zeros on Up which is compatible with the
orientation of O. The paracompactness of O implies that there exists a locally
finite smooth partition of unity χi , i ∈ I , subordinate to the open covering U :=
{Up | p ∈ O} of O. That is, for each i ∈ I , χi is a non-negative orbifold smooth
function on O with support in a Upi

, the Upi
form a locally finite covering and∑

i∈I χi = 1, where the left hand side is viewed as a locally finite sum. Write
σ := ∑

i∈I χiσpi
, a locally finite sum. Then σ is an orbifold smooth area form on O.

If p ∈ O, i ∈ I , and p ∈ Ui then, because σpi
and σp both are orbifold smooth area

forms without zeros on Upi
∩ Up compatible with the orientation of O, there exists

an orbifold smooth function ϕi on Upi
∩ Up such that σpi

= ϕiσp and ϕi > 0 on
Upi

∩ Up . It follows that σ = (
∑

i∈I χiϕi)σp , where
∑

i∈I χiϕi > 0 on a neighbor-
hood of p, because χi ≥ 0 for every i ∈ I and

∑
i∈I χi = 1. This proves that σ has

no zeros. �

In Theorem 3.5 we also need a homomorphism μ : πorb
1 (O,p0) → T such that the

kernel of μ acts freely on the orbifold universal covering Õorb of O.

Lemma 4.5 Let aj , bj , 1 ≤ j ≤ g, and ci , 1 ≤ i ≤ n, be elements of T . Then

(i) There exists a homomorphism μ : � := πorb
1 (O,p0) → T such that μ(αj ) = aj ,

μ(bj ) = bj , and μ(γi) = ci for all 1 ≤ j ≤ g and 1 ≤ i ≤ n, if and only if
c1 . . . cn = 1 and ci

oi = 1 for every 1 ≤ i ≤ n. If such μ exists, then it is unique.
(ii) The kernel of μ acts freely on Õorb if and only if, for each 1 ≤ i ≤ n, the order

ord(ci) of the element ci in T is exactly equal to oi .
(iii) If elements ci ∈ T exist as in (i) and (ii) then, for each 1 ≤ i ≤ n, oi is a factor

of the least common multiple mi of the oh such that h �= i.
(iv) If the n orders oi satisfy the condition in (iii), then there exists an (n − 1)-

dimensional torus T with elements ci ∈ T as in (i) and (ii).

Proof (i) There is a unique homomorphism μ̂ from the free group Q generated by the
αj , βj , and γi , such that μ̂(αj ) = aj , μ̂(βj ) = bj , and μ̂(γj ) = cj for every 1 ≤ j ≤ g

and 1 ≤ i ≤ n. The exists a unique homomorphism μ : � → T such that μ̂ is equal to
the composition of the canonical homomorphism Q → � with μ, if and only if μ̂ is
equal to 1 on the relation subgroup Rorb, that is, if and only if [a1, b1] . . . [ag, bg] =
c1 . . . cn and ci

oi = 1 for every 1 ≤ i ≤ n. Because T is commutative, [aj , bj ] = 1
for every 1 ≤ j ≤ g, and therefore the first condition is equivalent to the equation
c1 . . . cn = 1.

(ii) An element γ ∈ � does not act freely on Õorb if and only if γ �= 1 and γ ∈ �p̃ ,
the stabilizer subgroup of some p̃ ∈ Õorb. Because p̃ is a singular point for the action
of � on Õorb, its projection πO(p̃) to O is one of the singular points si of O. The
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description of the orbifold chart near si implies that there exists an s̃i ∈ Õorb such
that πO(s̃i ) = si and γi is the unique generator of �s̃i � Z/Zoi which acts near s̃i
as a rotation about the angle 2π/oi . Because the fibers of πO are the �-orbits, there
exists c ∈ � such that p̃ = c · s̃i , hence �p̃ = c�s̃i c

−1, and therefore γ = cγi
kc−1

for some k ∈ Z, where k /∈ Zoi because γ �= 1. Because T is commutative, we have
μ(γ ) = μ(γi)

k = ci
k = 1 if and only if k ∈ Z ord(ci), where oi ∈ Z ord(ci). Therefore

γ /∈ kerμ for every γ ∈ � which does not act freely on Õorb, if and only if ord(ci) =
oi for every 1 ≤ i ≤ n.

(iii) Because T is commutative and ci
−1 = ∏

h�=i ch, we have ci
−mi =∏

h�=i ch
mi = 1, which implies that mi ∈ Zoi .

(iv) D := {r/o1 + Z, . . . , r/on + Z ∈ (R/Z)n | r ∈ R} is a one-dimensional
subtorus of (R/Z)n, and therefore T := (Rn/Z

n)/D is an (n − 1)-dimensional torus.
Let ci ∈ T be the image under the canonical projection (R/Z)n → (R/Z)n/D of the
element of which the i-th coordinate is equal to 1/oi + Z, and all the other coordi-
nates are equal to zero. Then c1 . . . cn = 1 and ord(ci) = oi for every i, if the orders
oi satisfy the condition in (iii). �

Remark 4.1 Lemma 4.4 and (i), (ii) in Lemma 4.5 imply that any list of ingredients
as in [33, Definition 7.3.1] is the list of ingredients of a symplectic orbisurface O and
a homomorphism μ as in the assumptions of Theorem 3.5. In this way Lemma 4.4
and (i), (ii) in Lemma 4.5 lead to a proof of [33, Proposition 7.3.6].

The necessary condition (iii) puts quite severe restrictions on the n-tuples of the
orders oi of the singular points si . The condition (iii) excludes the bad orbisurfaces,
the cases that g = 0 and n = 1, or g = 0, n = 2 and o1 �= o2. However, it also excludes
many good orbisurfaces.1

Corollary 4.6 Assume that the orbisurface O is isomorphic to the orbit space M/T

of a symplectic action of a torus T on a compact and connected symplectic manifold,
with symplectic principal orbits. Let oi , 1 ≤ i ≤ n, denote the orders of the singular
points of O. Let ci ∈ T be such that, for each 1 ≤ i ≤ n, the order of ci in T is equal
to oi , and the product of the ci ’s is equal to 1. Let T• be the subgroup of T generated
by the ci ’s. Then the orbisurface O is isomorphic to R/T•, where R is a compact
Riemann surface and the finite group T• acts on R by means of automorphisms.

Proof Because H1(O,Z) � Z
2g is torsionfree, U = ker(h1 ◦ ϕ) is equal to the nor-

mal subgroup of � generated by the commutator subgroup C and Armstrong’s sub-
group A. Because T is commutative, μ = 1 on C, hence μ(U)μ(A) = μ(A) = T•,
the subgroup of T generated by the Tx ’s = the subgroup of T generated by the ci ’s.
The conclusion therefore follows from Theorem 4.2 with R = I ′. �

1Yael Karshon pointed out that in terms of the prime factor decompositions oi = ∏
k p

μi,k

k
, the condition

(iii) is equivalent to the condition that for every k, if Mk denotes the maximum of the μi,k over all i, then
there are at least two distinct i and i′ such that μi,k = Mk = μi′,k .
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5 Classification in the orbisurface case

Theorems 3.4 and 3.5 do not give information on when two symplectic T -manifolds
are isomorphic. We begin by explaining that the isomorphisms are induced by orb-
ifold symplectomorphisms of the orbit spaces.

Let � : (M,σ,T ) → (M ′, σ ′, T ) be an isomorphism of symplectic T -spaces,
where dimM − dimT = 2 and the T -orbits are symplectic. Let O = M/T and
O′ = M ′/T denote the corresponding orbit spaces, which are orbifolds. The T -
equivariant mapping � : M → M ′ induces the mapping ϕ : O → O′ : T · x 
→
�(T · x) = T · �(x), which is an orbifold symplectomorphism from (O, σ O) onto
(O′, σ O′

).
Conversely, let ϕ be any an orbifold symplectomorphism from (O, σ O) onto

(O′, σ O′
). For any regular point p0 of O, let Õ = Õorb

p0
denote the orbifold universal

covering of O defined as the space of orbifold homotopy classes of orbifold curves
starting at p0, where the endpoints of the curves remain fixed. Then the mapping
which assigns to an orbifold curve δ in O its image ϕ ◦ δ in O′ induces a diffeomor-
phism ϕ̃ from Õ onto Õ′ = Õ′orb

p′
0

, where p′
0 = ϕ(p0). The mapping ϕ̃ intertwines

the action of � := πorb
1 (O,p0) on Õ with the action of �′ := πorb

1 (O′,p′
0) on Õ′

via the isomorphism ϕ∗ : � → �′, in the sense that ϕ̃(c · p̃) = ϕ∗(c) · ϕ̃(p̃) for every
c ∈ � and p̃ ∈ Õ. If μ : � → T and μ′ : �′ → T are the respective monodromy
homomorphisms, then μ = μ′ ◦ ϕ∗. Finally πO ∗(σ O) = ϕ̃∗(πO′ ∗(σ O′

)).
Therefore, if (Mmodel, σmodel, T ) and (M ′

model, σ
′
model, T ) are the respective mod-

els of (M,σ,T ) and (M ′, σ ′, T ) in Theorem 3.4, where Mmodel = T ×� Õ and
M ′

model = T ×�′ Õ′, then the mapping Id × ϕ̃ : T × Õ → T × Õ′ induces an iso-
morphism �model from (Mmodel, σmodel, T ) onto (M ′

model, σ
′
model, T ). Furthermore,

�model is equal to � after identification of the symplectic T -spaces with their mod-
els, in the sense that �model ◦ ιmodel = ι′model ◦ �. It follows that we may assume that
O′ = O, when we have to investigate the effect of the orbifold automorphisms ϕ of
O on the data of the model.

From now on we assume that O is an orbisurface as discussed in Sect. 4.1. The
orbisurface diffeomorphism ϕ of O permutes the singular points, while preserving the
orders. That is, there is a unique permutation α of {1, . . . , n} such that ϕ(si) = sα(i)

and oα(i) = oi for every 1 ≤ i ≤ n. Because every such permutation α is realized by
an orbisurface ϕ which is equal to the identity on a neighborhood of the boundary
of the polytope P in Sect. 4.1, we restrict the discussion in the sequel to orbifold
automorphisms ϕ of O which leave each of the singular points fixed.

Let Horb
1 (O,Z) denote the abelianization of � = πorb

1 (O,p0), with the canon-
ical surjective homomorphism h1 : � → Horb

1 (O,Z). The isomorphism ϕ∗ from
πorb

1 (O,p0) onto πorb
1 (O, ϕ(p0)) induces an automorphism of Horb

1 (O,Z), which
we also denote by ϕ∗, and which does not depend on the choice of the base point
p0. The torsion subgroup F = Horb

1 (O,Z)tor is the finite subgroup generated by the
[γi] = h1(γi), subject to the relations oi[γi] = 0 for every i and

∑
i[γi] = 0. Because

ϕ(si) = si , we have ϕ∗([γi]) = [γi] for every i, and therefore ϕ∗ is the identity on F .
The topological intersection number of one-dimensional cycles in the ori-

ented surface O defines a nondegenerate antisymmetric Z-valued bilinear form
on H1(O,Z) � Horb

1 (O,Z)/F � Z
2g . Actually, the Z-basis (αj ) = [αj ] + F ,
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(βj ) = [βj ] + F of H1(O,Z) is a symplectic basis with respect to the intersection
form, in the sense that (αj ) · (αk) = 0, (βj ) · (βk) = 0, and (αj ) · (βk) = δjk . The
automorphism ϕ∗/F of H1(O,Z) preserves the intersection form, and therefore is
given on any symplectic Z-basis by a symplectic matrix

ϕ∗/F �
(

P Q

R S

)

∈ Sp(2g,Z), (3)

in the sense that the g × g-matrices P , Q, R, S have integral entries and satisfy the
equations PQt − QP t = 0, RSt − SRt = 0, and PSt − QRt = I. It follows that

ϕ∗([αj ]) =
g∑

k=1

(pk
j [αk] + qk

j [βk]) +
n∑

i=1

ui
j [γi],

ϕ∗([βj ]) =
g∑

k=1

(rk
j [αk] + sk

j [βk]) +
n∑

i=1

vi
j [γi]

(4)

for suitable ui
j , v

i
j ∈ Z/Zoi .

Dehn [7] proved that the mapping class group of the topological surface O, the
group of isotopy classes of homeomorphisms of O, is generated by transformations
which nowadays are called Dehn twists. These are diffeomorphisms equal to the iden-
tity outside a small annulus around a loop α without self-intersections, and act on
H1(O,Z) by sending (β) to (β) + ((α) · (β))(α). As the latter transformations gen-
erate Sp(2g,Z) (see Magnus, Karass and Solitar [23, pp. 178, 355, 356]), every au-
tomorphism of H1(O,Z) which preserves the intersection form is equal to ϕ∗/F , for
an orbifold automorphism ϕ of O which leaves each singular point fixed.

It is shown in Pelayo [33, Sect. 6.4] that for each 1 ≤ i ≤ n there is an orbifold
automorphism ϕ of O which leaves each singular point fixed, preserves all [αj ]’s and
[βj ]’s except one of these, to which it adds [γi]. It follows that every automorphism
of Horb

1 (O,Z) which is equal to the identity on the torsion subgroup F and preserves
the intersection form is of the form ϕ∗ for an orbifold automorphism ϕ of O which
leaves each singular point fixed.

Finally the proof of Moser [26] can be used to show that if σ and σ ′ are two
orbifold area forms on O, then there exists an orbifold automorphism ϕ of O such
that σ ′ = ϕ∗(σ ) if and only if

∫
O σ = ∫

O σ ′. Moreover, if this is the case, then ϕ can
be chosen to be orbifold isotopic to the identity, which implies that ϕ leaves each
singular point of O fixed and acts as the identity on Horb

1 (O,Z).
The unique homomorphisms μh,μ

′
h : Horb

1 (O,Z) → T such that μ = μh ◦ h1 and
μ′ = μ′

h ◦h1 do not depend on the choice of p0, and we have μh = μ′
h ◦ϕ∗. If we write

aj = μ(αj ), bj = μ(βj ), ci = μ(γi), a′
j = μ′(αj ), b′

j = μ′(βj ), and c′
i = μ′(γi),

then it follows from μ = μ′ ◦ ϕ∗ and (4) that

aj =
g∏

k=1

(a′
k)

pk
j (b′

k)
qk
j

n∏

i=1

(c′
i )

ui
j ,

bj =
g∏

k=1

(a′
k)

rk
j (b′

k)
sk
j

n∏

i=1

(c′
i )

vi
j .

(5)
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This leads to the following uniqueness theorem, which corresponds to [33, Proposi-
tion 7.2.4].

Theorem 5.1 Let (Mmodel, σmodel, T ) and (M ′
model, σ

′
model, T ) be models constructed

from the respective ingredients g, n, oi , λ, σ t, aj , bj , ci , and g′, n′, o′
i , λ′, (σ ′)t, a′

j ,
b′
j , c′

i . Then these two models are isomorphic if and only if g = g′, n = n′, λ = λ′,
σ t = (σ ′)t, there exists a permutation α of {1, . . . , n} such that ci = c′

α(i) and oα(i) =
oi for every 1 ≤ i ≤ n, and finally there exist an element of Sp(2g,Z) as in (3) and
ui

j , v
i
j ∈ Z/Zoi , such that (5) holds for every 1 ≤ j ≤ g.

This completes the classification of compact connected symplectic T -spaces with
symplectic principal orbits and for which the orbit space is 2-dimensional.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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