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ABSTRACT

A multiwavenumber theory is formulated to represent eddy diffusivities. It expands on earlier single-

wavenumber theories and includes the wide range of wavenumbers encompassed in eddy motions. In the

limiting case in which ocean eddies are only composed of a single wavenumber, the multiwavenumber theory

is equivalent to the single-wavenumber theory and both show mixing suppression by the eddy propagation

relative to the mean flow. The multiwavenumber theory was tested in a region of the Southern Ocean (708–
458S, 1108–208W) that covers the Drake Passage and includes the tracer/float release locations during the

Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). Cross-stream eddy diffu-

sivities and mixing lengths were estimated in this region from the single-wavenumber theory, from the

multiwavenumber theory, and from floats deployed in a global 1/108 Parallel Ocean Program (POP) simula-

tion. Compared to the single-wavenumber theory, the horizontal structures of cross-stream mixing lengths

from the multiwavenumber theory agree better with the simulated float-based estimates at almost all depth

levels. The multiwavenumber theory better represents the vertical structure of cross-stream mixing lengths

both inside and outside the Antarctica Circumpolar Current (ACC). Both the single-wavenumber and

multiwavenumber theories represent the horizontal structures of cross-stream diffusivities, which resemble

the eddy kinetic energy patterns.

1. Introduction

Eddies are not explicitly resolved in standard-

resolution, centennial-scale, global climate simulations;

however, these simulations are sensitive to the repre-

sentation of eddy mixing processes (e.g., Danabasoglu

and Marshall 2007). This sensitivity has motivated ef-

forts to estimate eddy mixing rates in the ocean that aim

to reveal mixing processes leading to improved eddy

parameterizations (e.g., Gille et al. 2012). Both float-based

and tracer-based diagnostic approaches have been em-

ployed to estimate diffusivities in the tropical North At-

lantic (e.g., Banyte et al. 2013), western boundary

currents (e.g., Chen et al. 2014), the SouthernOcean (e.g.,

LaCasce et al. 2014; Tulloch et al. 2014), and the global

surface (e.g., Abernathey and Marshall 2013).

Understanding the estimated diffusivity patterns is a

necessary step toward improving eddy parameterization

schemes. A common approach is to interpret the mixing

length Lmix instead of the diffusivity itself:

Lmix5
k

Gurms

, (1)

where G denotes the O(1) mixing efficiency, urms

is the eddy velocity magnitude, and k denotes the
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eddy diffusivity (e.g., Taylor 1915; Klocker and

Abernathey 2014).

Bates et al. (2014) pointed out that ocean studies often

assume that Lmix is of the same order of magnitude as

the eddy size (e.g., Holloway 1986; Haine and Marshall

1998). This assumption is reasonable in an oceanwithout

mean flows (Klocker and Abernathey 2014). In regions

of the real ocean that contain mean flows, such as the

Antarctica Circumpolar Current (ACC) and western

boundary currents, eddy mixing in the cross-mean flow

(cross stream) direction can be suppressed when eddies

propagate relative to the mean flow. This concept dates

back to Bretherton (1966) and Green (1970) and can be

interpreted as follows: If eddies are stationary relative to

the mean flow, eddies have sufficient time to stir andmix

the same tracers, which also move with the mean flow;

on the other hand, if the eddies propagate relative to the

mean flow, eddies do not mix the same tracers, and

mixing is suppressed (Klocker and Abernathey 2014).

This idea has also recently been applied to studies about

chaotic advection (Pratt et al. 2014).

Analytical formulas exist to represent the suppression

of cross-stream mixing length by the eddy propagation

relative to the mean flow (e.g., Green 1970; Killworth

1997; Ferrari andNikurashin 2010; Klocker et al. 2012a).

Ferrari and Nikurashin (2010) (F–N theory) proposed

that the cross-stream mixing length Lmix,? satisfies

Lmix,? 5
L

11 k2eddyg
22(Cw2 jUj)2

, (2)

where jUj denotes the mean flow magnitude. Note that

although some previous studies (e.g., Klocker and

Abernathey 2014) assume that the mean flow is zonal,

this theory applies to the case with the mean flow in any

arbitrary direction (Chen et al. 2014). Here, Cw denotes

the phase speed along the mean flow direction; positive

Cw corresponds to downstream propagation, and nega-

tive Cw corresponds to upstream propagation (Chen

et al. 2014). The terms keddy, L, and g are the eddy

wavenumber, eddy length scale, and the reciprocal of

eddy decorrelation time, respectively. Surface eddy

diffusivities from the F–N theory agree with those from

altimetry (e.g., Ferrari and Nikurashin 2010; Klocker

and Abernathey 2014; Bates et al. 2014). The F–N the-

ory also captures the three-dimensional structure of

float-based eddy diffusivities in the intense Kuroshio

Extension jet area (Chen et al. 2014). On the other hand,

the theory appears to break down in regions where large

topographic gradients occur (e.g., Griesel et al. 2010;

Naveira-Garabato et al. 2011; Chen et al. 2014). Bates

et al. (2014) found that the F–N theory is also not ef-

fective in capturing the observed vertical structures of

eddy diffusivities from the U.S./U.K. field program Di-

apycnal and Isopycnal Mixing Experiment in the

Southern Ocean (DIMES; e.g., Ledwell et al. 2011) or

from the North Atlantic Tracer Release Experiment

(NATRE; e.g., Ledwell et al. 1998).

The breakdown of the F–N theory in some ocean

scenarios is unsurprising, considering that it is built on a

number of assumptions that are violated in the ocean,

including a flat bottom, a spatially and temporally con-

stant mean flow, and scale separation between the mean

flow and eddies (e.g., Ferrari and Nikurashin 2010). One

assumption upon which these theories, including the

F–N theory, are based is that eddies only contain a single

wave corresponding to the most unstable mode or that

eddies are dominated by a single wave (e.g., Green 1970;

Killworth 1997; Ferrari and Nikurashin 2010; Klocker

et al. 2012a). In fact, the frequency–wavenumber spectra

of sea surface height is a broad continuumwith no robust

peaks, indicating that the oceanic eddy field includes

motions over a broad range of wavenumbers and fre-

quencies (e.g., Wunsch 2010; Wortham 2013; Wortham

andWunsch 2014). Even a singleGaussian vortex can be

decomposed into wave motions with a range of wave-

numbers and frequencies (Chen et al. 2015). In the

midlatitude ocean interior away from western boundary

currents, the phase speeds for all the dominant wave-

numbers are roughly the same; however, in the Gulf

Stream, the Kuroshio Extension, and the ACC, the

dominant waves are dispersive, and both eastward- and

westward-propagating waves are nonnegligible [see

Figs. 2–16 in Wortham (2013)].

Assuming that internal waves are small-amplitude

Gaussian random processes, Holmes-Cerfon et al. (2011)

developed a formula for one-particle horizontal diffusivity

based on the internalwave spectra. Feddersen (2004) found

that estimates of radiation stresses based on full spectra are

different from thosebasedonapeak frequency. Inspiredby

Holmes-Cerfon et al. (2011) and Feddersen (2004), and

motivated by the discrepancy between the single-

wavenumber assumption and the observed broadbanded

oceanic spectra, here we formulate a multiwavenumber

theory (MW theory) for eddy diffusivities in the mean flow

(section 2). The theory can be derived from both float-

based and tracer-based diffusivity formulas (sections 2a

and 2b), and it links diffusivities with the frequency–

wavenumber spectra of the Eulerian eddy velocity fields.

We choose the DIMES region (708–458S, 1108–208W)

as a test bed for the MW theory (Fig. 1). It covers both

the region upstream of the Drake Passage, where the

floats and tracers were released in the DIMES experi-

ment (e.g., Ledwell et al. 2011;Watson et al. 2013; Sheen

et al. 2013; LaCasce et al. 2014; Tulloch et al. 2014), and

the region downstream of the Drake Passage (Scotia
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Sea), where eddy kinetic energy is larger and mixing is

more intense than upstream of the Drake Passage. Eddy

diffusivities are estimated at high spatial resolution from

numerical floats deployed in a global eddying model.

These float-based diffusivities are used not only to test

the relevance of the single-wavenumber and multi-

wavenumber theories but also to help put the sparse

mixing observations in the DIMES region into a larger

spatial context.

This paper is organized as follows: Section 2

introduces the MW theory of eddy diffusivities and il-

lustrates its consistency with the F–N theory in the

single-wavenumber limit. Section 3 describes the con-

figuration of the global eddying model with numerical

floats, which we use to test the applicability of our the-

ory. Section 4 presents eddy diffusivities in the DIMES

area from the numerical floats in the eddying model.

Section 5 provides the diffusivities diagnosed from both

the F–N and MW theories and compares them with the

float-based diffusivities. Sections 6 and 7 provide the

discussion and summary, respectively.

2. The multiwavenumber theory from both float
and tracer perspectives

Here, we derive the MW theory for the diffusivity

tensor and cross-stream diffusivities from both the float

and tracer perspectives. Its consistency with the F–N

theory in the single-wavenumber scenario is demon-

strated in appendix A.

a. The multiwavenumber theory derived from
Lagrangian eddy diffusivities

1) DIFFUSIVITY TENSOR IN AUTOCORRELATION

FORM

Lagrangian eddy diffusivities can be estimated from

numerical floats. We start from the diagnostic formulas,

involving the integral over the autocovariance func-

tion (Davis 1991; Griesel et al. 2010, 2014; Chen et al.

2014):

kL,‘
ij (x)5 lim

t/‘
kLij (x, t)

5 lim
t/‘

ðt
0
d~thu0i,L(t0 j x, t0)u0j,L(t01 ~t j x, t0)i , (3)

where kL,‘ij (x) is the value of the diffusivity tensor kLij (x, t)

in the limit as time lag t goes to infinity and h�i denotes
the ensemble average of many pseudo float trajectories

with center positions passing x. Here, u0i,L(t0 1 t j x, t0)
denotes the residual velocity in the i direction at time

t01 t for the float that passes position x at time t0.Residual

velocities denote the float velocities subtracted from the

local ‘‘time-mean’’ Eulerian velocity at the float position.

Following Klocker et al. (2012a), we assume that

(i) themean flow varies on spatial scales larger than eddies,

and thus the mean flow vector U is approximately a

constant, and (ii) the eddy velocity magnitude is much

smaller than the mean flow magnitude. Therefore, to

leading order, floats move only with the mean flow.

Consequently, the Lagrangian velocities u0i,L can be

obtained from the Eulerian velocities:

u0i,L(t0 j x, t0)5 u0i(x, t0), and

u0i,L(t01 ~t j x, t0)5 u0i(x1U~t, t01 ~t) , (4)

where u0i denotes the Eulerian eddy velocities in the i

direction.

Following Klocker et al. (2012a), we set the starting

time of the float t0 to be zero, without loss of generality.

Then substituting Eq. (4) into Eq. (3),

kL,‘
ij (x)5 lim

t/‘

ðt
0
d~thu0i(x1Ut, t)jt50u

0
j(x1Ut, t)j

t5~t
i .

(5)

FIG. 1. Bathymetry (color; m) and barotropic streamlines (black contours) from the POP

model in our study domain. Barotropic streamlines here and in the following figures are defined

as cg 5 gf21h, where f is the Coriolis parameter and h is the sea surface height averaged over

the years 1994–95.
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We define the Eulerian eddy velocities at position x1Ut

at time t as

U0
i(x, t)5 u0i(x1Ut, t) ; (6)

then we obtain from Eq. (5)

kL,‘
ij (x)5 lim

t/‘

ðt
0
d~thU0

i(x, t)jt50U0
j(x, t)jt5~ti . (7)

Assuming that the eddy statistics are temporally sta-

tionary, we have

kL,‘
ij (x)5

1

2
lim
t/‘

ðt
2t

d~thU0
i(x, t)jt50U0

j(x, t)jt5~ti . (8)

2) DIFFUSIVITY TENSOR IN SPECTRAL FORM

The derivation so far is similar to that of Klocker et al.

(2012a), who provided a derivation for the F–N theory

from the Lagrangian perspective. The second part of the

derivation (in this subsection) diverges from Klocker

et al. (2012a) in order to develop a multiwavenumber

mixing formula. Using the one-dimensional cross-

correlation theorem (e.g.,Weisstein 2014), Eq. (8) leads to

kL,‘
ij (x)5

1

2
lim
v0/0

bU0
i(v

0)cU0
j
*(v0)

D E

’
1

2
cU0
i (0)

cU0
j
*(0)

D E
5
1

2
SU0

i,U0
j
(v0, x)

����
v050

, (9)

where �̂ is the Fourier transform, �* denotes the complex

conjugate, and v0 denotes frequency. Because the

Fourier transform of a real variable is real at zero fre-

quency, h bU0
i(0)

cU0
j
*(0)i is real, even when i and j differ.

FollowingRandel andHeld (1991), the one-dimensional

cross spectrum of variables a and b at position x,

Sa,b(v
0, x), is defined as

Sa,b(v
0, x)5Rehâ(v0)b̂*(v0)i . (10)

Following conventional notation (e.g., Ferrari and

Wunsch 2010), we then define Sa,b(k
0, l0, v0, x) as the

three-dimensional cross spectrum in an oceanic patch

centered at x:

Sa,b(k
0, l0,v0, x)5Rehâ(k0, l0,v0)b̂*(k0, l0,v0)i . (11)

Here, we use a rotated, coordinate system with wave-

number l0 perpendicular to themeanflowandwavenumber

k0 aligned with and pointing in the mean flow direction.

To obtain enough ensembles (float trajectories), we

often estimate diffusivities averaged over a selected

oceanic patch (using either geographic or adaptive bins)

rather than carrying out a pointwise estimate. The spa-

tial average of the one-dimensional spectra over the

oceanic patch can be obtained from the three-

dimensional spectra:

Sa,b(v
0, x)

patch
5

ð‘
2‘

ð‘
2‘

Sa,b(k
0, l0,v0, x) dk0 dl0 , (12)

where �patch denotes the spatial average over the patch.

Equations (9) and (12) lead to the diffusivity tensor

averaged over the selected oceanic patch centered at x:

kL,‘
ij (x)

patch
5

1

2

ð‘
2‘

ð‘
2‘

SU0
i,U0

j
(k0, l0,v0, x)jv050 dk

0 dl0 .

(13)

In practice, kL,‘ij (x)
patch

is more easily diagnosed from

the Eulerian eddy velocities u0i rather than from

U0
i. Using the spectral analysis technique of Chen et al.

(2015), we obtain from Eq. (6)

bU0
i(k

0, l0,v0)5 bu0i(k0, l0,v01 jUjk0) , (14)

where jUj is the magnitude of themean flow vectorU, k0

is the wavenumber in the direction of U, and l0 is the

wavenumber perpendicular to U. Therefore,

SU0
i ,U0

j
(k0, l0,v0, x)5 Su0

i ,u
0
j
(k0, l0,v0 1 jUjk0, x) . (15)

Substituting Eq. (15) into Eq. (13) leads to our multi-

wavenumber formula for the diffusivity tensor averaged

over the patch, involving the three-dimensional spec-

trum of Eulerian eddy velocities at the patch:

kL,‘
ij (x)

patch
5

1

2

ð‘
2‘

ð‘
2‘

Su0
i,u

0
j
(k0, l0, jUjk0, x) dk0 dl0 .

(16)

Using the above procedure, we can also obtain the

diffusivity tensor averaged along a slice aligned with the

mean flow direction and centered at x (see Fig. 7c):

kL,‘
ij (x)

slice
5

1

2

ð‘
2‘

Su0
i,u

0
j
(k0, jUjk0, x) dk0 , (17)

where � slice denotes the average along the slice, and

Su0
i
,u0

j
(k0, v0, x) is the two-dimensional cross spectrum

along the slice.

3) CROSS-STREAM DIFFUSIVITIES IN SPECTRAL

FORM

The full diffusivity tensor has receivedmuch attention

in eddy parameterizations and tracer transport studies

(e.g., Plumb andMahlman 1987; Griffies 1998; Bachman
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and Fox-Kemper 2013). However, previous investigations

of the role of the mean flow in mixing have focused

primarily on cross-stream mixing (e.g., Ferrari and

Nikurashin 2010; Griesel et al. 2014), which drives the

eddy-induced meridional overturning circulation in the

Southern Ocean (Tulloch et al. 2014). For consistency

with recent work on cross-stream mixing, we next

present cross-stream diffusivities in spectral form. Sub-

sequent sections focus on testing the validity of the MW

theory in representing cross-stream diffusivities. For

brevity, in this paper we will not discuss the full

diffusivity tensor.

When the i and j components in Eq. (3) both represent

the cross-stream direction, we obtain the float-based

formula for cross-stream eddy diffusivities:

kL,‘
? (x)5 lim

t/‘
k?(x, t)

5 lim
t/‘

ðt
0
d~thu0?,L(t0 j x, t0)u0?,L(t01 ~t j x, t0)i ,

(18)

where u0?,L(t0 1 t j x, t0) denotes the residual velocity in

the cross-stream direction at time t01 t for the float that

passes position x at time t0.

Following sections 2a(1) and 2a(2), one can easily

obtain cross-stream diffusivities in spectral form, again

by using cross-stream components for both the i and j

direction in Eqs. (16) and (17). The cross-stream diffu-

sivity averaged over the patch centered at x is

kL,‘
? (x)

patch
5

1

2

ð‘
2‘

ð‘
2‘

Su0
?,u

0
?
(k0, l0, jUjk0, x) dk0 dl0 ,

(19)

where Su0?,u
0
?(k

0, l0, v0, x) is the three-dimensional spec-

trum of the cross-stream Eulerian eddy velocities over

the patch. Similarly, the cross-stream diffusivity aver-

aged over a slice aligned with the mean flow direction

and centered at x is

kL,‘
? (x)

slice
5

1

2

ð‘
2‘

Su0
?,u

0
?
(k0, jUjk0, x) dk0 , (20)

where Su0?,u0?(k
0, v0, x) is the two-dimensional spectrum

of cross-stream Eulerian eddy velocities along the slice.

Since kL,‘? (x)
slice

has a higher cross-stream resolution

than kL,‘? (x)
patch

, we diagnose kL,‘? (x)
slice

in section 5.

This will be denoted by kmulti
? for short.

We find that the MW theory is a natural extension

of the single-wavenumber theory to a more realistic

regime with multiple wavenumbers. As shown in

appendix A, in the limit of a single wavenumber,

cross-stream diffusivities from the MW theory reduce

to the diffusivities from the single-wavenumber

F–N theory.

b. The multiwavenumber theory derived from
Eulerian eddy diffusivities

We can also obtain the MW theory for diffusivities

presented in section 2a from an Eulerian diffusivity

perspective. The tracer concentration C satisfies

›

›t
C1 u � $C2 k0=

2C5 0, (21)

where u is the total velocity, and k0 is the molecular or

numerical diffusivity of the tracer. The Eulerian eddy

diffusivity tensor kEij is often defined as

u0iC052kEij
›

›xj
C , (22)

where the overbar denotes the ensemble average, the

prime represents the deviation from the ensemble av-

erage, and ui is the Eulerian velocity (e.g., Plumb and

Mahlman 1987).

Consider the scenario from section 2a: eddies are of

small amplitude compared to the mean flow and the

system is spatially homogenous, with the spatial scale of

the mean (e.g., mean flow and mean eddy flux) much

larger than the eddy scale. Appendix B shows that kEij in

this scenario is equivalent to the multiwavenumber dif-

fusivity tensor derived from the Lagrangian perspective

[Eqs. (16) and (17)], when k0 is very small.

3. Testing the theory: A global eddying model with
numerical floats

We use a global eddying model to test whether the

MW theory from section 2 can capture diffusivity

structures in realistic contexts. The Parallel Ocean

Program (POP) simulation used in this study is the same

as that described by Chen et al. (2014). Here, we briefly

review the keymodel features. The domain is global and

the grid has a nominal spatial resolution of 1/108. In the

vertical direction, the model is discretized into 42 ver-

tical levels, and the layer thickness decreases from 10m

at the surface to 250m at the ocean bottom. The

K-profile parameterization (Large et al. 1994) is used to

represent vertical mixing in the upper ocean, and bi-

harmonic viscosity and diffusion parameterize horizon-

tal mixing of momentum and tracers at subgrid scales.

As summarized by Abernathey et al. (2013), a number

of methods exist for estimating eddy diffusivities. Here,

we estimate Lagrangian eddy diffusivities fromnumerical

floats (e.g., Davis 1987, 1991; Griesel et al. 2010). We

deployed one million numerical floats at the beginning of

JULY 2015 CHEN ET AL . 1881



the year 1994 uniformly over the entire globe at 23 ver-

tical levels with a horizontal resolution of 0.258 in latitude
and 2.58 in longitude. These floats were advected online

by the three-dimensional Eulerian velocity fields for a full

year. The float properties, including position, velocity,

and density, were recorded at daily intervals.

Figure 1 shows our study domain, which extends from

708 to 458S and from 1108 to 208W, roughly corre-

sponding to the DIMES region. The barotropic

streamlines, defined as cg 5 gf21h, are used as an in-

dicator of the location of the time-mean ACC. Here, f is

the Coriolis parameter, g is gravity, and h is the tempo-

rally averaged sea surface height over the years 1994–95.

The time-mean ACC is broad and roughly zonal west of

Drake Passage. Once inside Drake Passage, it in-

tensifies because of mass conservation; it then shifts

northward to the east of Drake Passage and becomes

more spatially variable. Topographic variations are

larger to the east of Drake Passage than they are to the

west (Fig. 1). Figure 2 shows the eddy velocity mag-

nitude at two selected depths. Though the eddy ve-

locity magnitude gradually decreases with depth, its

horizontal structures vary little with depth, with large

magnitudes inside the ACC core.

The model agrees with observations and previous

literature in the following two ways: First, the small

change in horizontal structure with depth, shown in

Fig. 2, is consistent with an equivalent barotropic flow

field in the Southern Ocean, as has been identified and

employed in previous studies (e.g., Killworth and

Hughes 2002; Firing et al. 2011; Klocker et al. 2012b).

The horizontal structure of eddy velocity magnitude is

consistent with that observed in altimetry (e.g., Farneti

et al. 2010): eddy velocitymagnitudes are large along the

path of the ACC and are also larger to the east of Drake

Passage than to the west. Second, as reviewed in section

1, in the spectra of sea surface height from altimetry,

both westward- and eastward-propagating signals are

significant in the Southern Ocean and Kuroshio Exten-

sion patches, where the eastward mean flow is intense

(Wortham 2013). Similar features exist in the POP

model (Fig. 3). Note that the model resolution is high

enough to be eddy permitting. In this area of the model,

the domain average of the first baroclinic Rossby radius

of deformationRd is 12 km, which is twice as large as the

POP grid spacing averaged over the study domain.

Additionally, Rd is larger than the grid size at 88% of

grid points in our study domain.

FIG. 2. Eddy velocity magnitude (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 1 y02

p
; m s21) at (a) 466 and (b) 2625m from the POPmodel. The barotropic

streamlines are superimposed as black contours to indicate the location of the ACC. Here, u0 and y0 are the deviation
of total Eulerian velocity from the 2-yr (1994-95) mean.

FIG. 3. Base 10 logarithm of the normalized frequency–zonal wavenumber spectrum of sea surface height in a patch extending over 308
longitude and 108 latitude from (a) the Southern Ocean, (b) the Kuroshio Extension, and (c) the interior of the North Pacific. The center

locations of the patches are 408S, 158Wfor (a), 358N, 1608E for (b), and 308N, 1408Wfor (c). The spectra were obtained from the sea surface

height from the POP model during 1997/98, with the spatial and temporal mean over each patch removed. Black lines indicate the zero

zonal wavenumber and thus separate eastward- and westward-propagating signals in the spectra.
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4. Eddy diffusivities in the DIMES region from
numerical floats

a. Methodology

Chen et al. (2014) calculated critical layer depths and

float-based eddy diffusivities in the Kuroshio Extension.

This study uses a similar approach to estimate diffusiv-

ities from floats. As in Griesel et al. (2010) and Chen

et al. (2014), we diagnose cross-stream diffusivities using

Eq. (18). Residual velocities u0?,L represent the de-

viation of the float velocities from the local time-mean

Eulerian velocities at the float positions. Here, the time

mean refers to the temporal average over the years 1994–

95.We gather positions of floats within our study domain

every other day; these serve as the center positions of

the pseudotrajectories. Float trajectories that extend

69 days backward in time and 69 days forward in time

relative to the center position are used in the analysis

(Chen et al. 2014).

We use a clustering approach, described by Chen et al.

(2014), to divide our domain into adaptive bins. These

bins are irregularly distributed in space; however, the

number of pseudotrajectories in each bin is roughly the

same (Fig. 4). This statistical uniformity leads to more

converged diffusivity estimates than the geographic

binning approach (Koszalka and LaCasce 2010; Chen

et al. 2014). We estimated diffusivities in these adaptive

bins at 11 depth intervals in the upper 3000m with layer

thicknesses increasing from 45 to 500m with depth.

Using the Chen et al. (2014) technique to test for con-

vergence, we found that diffusivity estimates in 95% of

the adaptive bins were converged.

b. Numerical results

The horizontal patterns of float-based cross-stream

diffusivities, as shown in Fig. 5, are similar to those of the

eddy velocity magnitudes shown in Fig. 2, with large

values inside the ACC. This indicates that the spatial

patterns of eddy mixing are probably mostly controlled

by eddy kinetic energy. Similar to the eddy velocity

magnitude (Fig. 2), the horizontal structures of eddy

diffusivities change little with depth, consistent with

the equivalent barotropic nature of the flow field in the

Southern Ocean. Diffusivities in the ACC east of the

Drake Passage are larger than those to the west. Nega-

tive float-based diffusivities exist at some spots, espe-

cially inside the ACC (Fig. 5). They correspond to

upgradient eddy fluxes, which have been identified in

many oceanic regions from both observations and

modeling studies (e.g., Johnson et al. 1992;Morrow et al.

1992;Wilkin andMorrow 1994; Griesel et al. 2009; Chen

et al. 2014).

The vertical structures of float-based diffusivities and

mixing lengths from the POP model were examined by

Griesel et al. (2014). They found that the mixing

FIG. 4. (a) Colored dots indicate the location of centroids for

each adaptive bin for diffusivity estimates at 400–600m. The color

of the dots shows the number of pseudo tracks for each bin.

(b)Histogram of the number of tracks per bin and red lines indicate

the location of the numbers 400 and 600. The number of pseudo

tracks for each bin is around 500, and the length of each pseudo

track is 139 days.

FIG. 5. Float-based diffusivities in the cross-stream direction at (a) 400–600 and (b) 900–1400m. Dots indicate the

location of the centroid of each adaptive bin used to obtain the diffusivity estimates.We carried out convergence tests

using the method from Chen et al. (2014) and only converged diffusivities are shown here. Black lines indicate the

barotropic streamlines. Gray regions denote land, and white regions denote areas lacking converged diffusivity

estimates due to topography or inadequate numbers of floats.
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suppression in the jet core is not robust east of theDrake

Passage, where the mean flow is composed of multiple

thin jets. We repeated their analysis, and our findings

support their conclusions (not shown).

LaCasce et al. (2014) and Tulloch et al. (2014) esti-

mated meridional isopycnal diffusivities, using tracer and

float observations collected during the DIMES experi-

ment. Given the quasi-zonal orientation of the ACCwest

of the Drake Passage, their meridional diffusivities are

expected to be approximately equivalent to cross-stream

diffusivities. They extrapolated the vertical structures of

the meridional diffusivities from the DIMES observa-

tions using a regional eddying model. However, their

estimates do not resolve horizontal structures.

Figure 6 shows a comparison of our float-based dif-

fusivities in a region west of the Drake Passage

(618–568S, 1108–808W) with those from a regional

MITgcm simulation (Tulloch et al. 2014). Estimates

from Tulloch et al. (2014) and our modeling results

agree both in the order of magnitude of the diffusivities

and the location of the deep maximum. Below 1000m,

the vertical structure of our diffusivity profile is similar

to that of Tulloch et al. (2014), with both displaying peak

values at around 2100m; our estimate, however, is of a

smaller magnitude (Fig. 6). At 500–1000m, our float-

based diffusivities decrease with depth, but theirs in-

crease with depth. These diffusivity differences might be

due to their model having higher horizontal and vertical

resolution than ours. Also, their estimates are based on

12 patches of tracers, whereas ours are based on nu-

merical floats deployed at high spatial resolution. Note,

however, that the observational estimate from DIMES

at 1500m (the blue error bar in Fig. 6) encompasses our

estimate, although our float-based diffusivity estimates

are for the year 1994, roughly 15 yr prior to the initial

DIMES float and tracer deployment (e.g., Ledwell

et al. 2011).

5. Eddy diffusivities in the DIMES region from
multiwavenumber theory: Estimations and
comparisons

This section examines diffusivities and mixing lengths

from the MW theory from section 2 and compares them

with those from the F–N theory and from numerical

floats.

a. Methodology

To assess whether we can obtain improved mixing

estimates by extending the single-wavenumber theory to

the multiwavenumber scenario, we diagnose eddy dif-

fusivities and mixing lengths from both the F–N and

MW theories. In contrast to Tulloch et al. (2014), we

consider the entire DIMES domain, both upstream and

downstream of Drake Passage.

We use kmulti
? to denote the cross-stream diffusivities

from the multiwavenumber mixing formula Eq. (20)

andLmulti
mix,? for the correspondingmixing lengths. Similarly,

k
single
? and L

single
mix,? respectively denote cross-stream diffu-

sivities and mixing lengths from the F–N theory.

The diffusivity kmulti
? depends on the frequency–

wavenumber spectrum of cross-stream eddy velocities

Su0? ,u0?(k
0, v0, x). As illustrated in Fig. 7c, we identify a

300-km-long slice (black line in Fig. 7c), which is centered

at the position x (red dot in Fig. 7c) and aligned with the

mean flow direction at the position x. Then we extract

Eulerian eddy velocities along the slice during the year

1994 to form the Hovmöller diagram [Figs. 7a(1) and

7b(1)]. The term Su0?,u
0
? can beobtained from the extracted

FIG. 6. The figure compares diffusivities from Fig. 10 in Tulloch

et al. (2014) (blue dot and error bar and black line) with those from

this study (red line). The blue dot and error bar show meridional

eddy diffusivities observed from the DIMES experiment, and the

black line shows the meridional eddy diffusivities estimated using

numerical tracers from the MITgcm. The red line shows the float-

based cross-stream diffusivities in the POP model averaged over

a selected region west of theDrake Passage (618–568S, 1108–808W).

This region approximately coincides with that of the spreading area

of the numerical tracers used in Tulloch et al. (2014) one year after

their release [see Fig. 1b from Tulloch et al. (2014)]. Therefore, the

red and black lines represent diffusivities in the same area.
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eddy velocities using a two-dimensional Fourier trans-

form [Figs. 7a(2) and 7b(2)].We then determine kmulti
? by

integrating Su0?,u0? along v0 5 jUjk0 [Eq. (20)].
We diagnose L

single
mix,? from the F–N theory [Eq. (2)],

using the same method as Chen et al. (2014). The

dominant eddy wavenumber keddy is chosen to be the

centroid of the eddy kinetic energy spectrum. The eddy

size and the reciprocal of the eddy decorrelation time

scale are determined from

L(x, y, z)5
2p

keddy(x, y, z)
, and g(x, y, z)5

urms(x, y, z)

2GL(x, y, z)
.

(23)

As before, urms is the eddy velocity magnitude, and G
denotes the mixing efficiency. We chose G to be 0.35,

following Klocker and Abernathey (2014) and Chen

et al. (2014). The phase speedCw is determined from the

Radon transform approach of Chen et al. (2014), andU

denotes the 2-yr (1994/95) mean flow vector. We can

then determine k
single
? from the mixing length L

single
mix,?

using Eq. (1):

k
single
? (x, y, z)5Gurms(x, y, z)L

single
mix,? . (24)

Similarly, Lmulti
mix,? can also be obtained from kmulti

? using

Eq. (1).

b. Results

1) COMPARISON OF HORIZONTAL STRUCTURES

Figure 8 shows cross-stream diffusivities from the two

theories and numerical floats. Consistent with float-

based results, both the MW and F–N theories represent

FIG. 7. [a(1)] Hovmöller diagram of cross-stream velocity anomalies (m s21) along the mean flow direction x0, extending from2150 to

150 km at 918m in the year 1994. Here x0 5 0 [i.e., red dot in (c)] corresponds to 588S, 748W. (c) As in Fig. 8b in Chen et al. (2014), to form

a Hovmöller diagram centered at the red dot, we first identify a 300-km slice (the black line), which is centered at the red dot and aligns

with themean flow direction at the red dot. Cross-stream velocity anomalies along the black line are then extracted to form theHovmöller
diagram. Cross-stream velocity anomalies denote the deviation of velocities in the cross-mean flow direction from its mean over the years

1994–95. [b(1)] As in [a(1)], but for a different location: 918m at 628S, 628W. [a(2)], [b(2)] Frequency–wavenumber spectra of velocity

anomalies shown in [a(1)] and [b(1)], respectively. Black lines in [a(2)] and [b(2)] denotev5 jUjk0, where jUj is themean flowmagnitude,

v denotes frequency, k0 is the wavenumber along the x0 direction, and positive k0 points in the mean flow direction. The color bars of the

spectra are on the logarithmic scale, and the unit of the spectra is m2 s22 (cpk)21 (cpd)21, where cpk denotes cycle per km and cpd denotes

cycle per day.
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large diffusivities occurring inside the ACC. However,

both theories have large diffusivity estimates along the

eastern coast of the South Pacific, which is not the case

for the float-based estimates. Possible reasons for this

overestimation are discussed in section 5b(3). Float-

based diffusivities are negative at some spots, corre-

sponding to upgradient eddy fluxes. However, neither

the F–N nor MW theories can represent negative dif-

fusivities, whose mechanism and parameterization are

left for future work.

Cross-stream mixing lengths have complex horizontal

patterns (Fig. 9). The MW theory reasonably represents

the large mixing lengths inside the ACC below 1000m,

but the F–N theory does not (right panel of Fig. 9). Both

the MW and F–N theories fail to capture effectively the

large-scale structures of mixing lengths in the upper

1000m (left panel of Fig. 9). In particular, the mixing

length from the F–N theory is too large north of the

ACC west of the Drake Passage because of the large

eddy sizes L.

To quantify the skill of the two theories in repre-

senting diffusivities, we correlated the float-based esti-

mates with those diagnosed using the MW and F–N

theories (Fig. 10). Both theories capture some aspects of

the horizontal structure of cross-stream diffusivities; the

correlation coefficients between the float-based esti-

mates and the MW theory estimates have roughly the

same magnitude as those between floats and the F–N

theory, with values of 0.4–0.6 (Fig. 10b). The similar skill

of the two theories in capturing cross-stream diffusivity

patterns is related to the fact that, in our study domain,

the diffusivity patterns are mainly controlled by eddy

kinetic energy. This indicates that obtaining accurate

mixing lengths (e.g., Bates et al. 2014; Chen et al. 2014)

FIG. 8. Cross-stream eddy diffusivities (103m2 s21) from [a(1)],[a(2)] numerical floats, [b(1)],[b(2)] theMW theory, and [c(1)],[c(2)] the

F–N theory at (left) 400–600 and (right) 900–1400m. The two thick black contours are the barotropic streamlines with values of 3 3 104

and 105m2 s21, which approximately pass the northern and southern edges of the Drake Passage. They are chosen to be the boundaries of

the ACC. The hatched area indicates regions where diffusivities are indistinguishable from zero at the 95% confidence level (i.e., the

magnitude of diffusivity is smaller than the two standard error using a bootstrap technique). Gray regions denote land, and white regions

denote areas lacking diffusivity estimates due to topography or inadequate numbers of floats. Note that thewhite area in [c(1)] and [c(2)] is

larger than in [b(1)] and [b(2)], as the eddy size L at each grid point used to estimate k
single
? from the F–N theory is derived from flow

properties from a 38 3 38 patch (Chen et al. 2014), while k? from the MW theory at each grid point is derived from a 300-km slice

(section 5a).
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may not be essential to obtaining the correct diffusivity

structures in the DIMES region.

When we examine the horizontal structures of cross-

stream mixing lengths below 500m, we see that the

correlation coefficients between the MW theory and

floats are larger than those between the F–N theory and

floats (Fig. 10a). The advantage of the MW theory is

more noticeable with increasing depth. Below 2000m,

mixing lengths diagnosed from the F–N theory and float-

based estimates decorrelate, whereas the correlation

coefficient between the MW theory estimates and float-

based estimates increases to 0.3–0.4 (Fig. 10a).

2) COMPARISON OF VERTICAL STRUCTURES

To assess how well the two theories capture the ver-

tical structures of eddy mixing, we examined the corre-

lation between float-based diffusivities/mixing lengths

and their theoretical-based counterparts throughout the

water column (Fig. 11). In the regions where correlation

coefficients are not significantly positive, the theory is

considered not to have skill in representing diffusivities.

Larger positive correlation coefficients imply better skill

in representing diffusivities. Table 1 quantitatively

compares the skill of the two theories.

The F–N theory has better skill representing dif-

fusivities inside the ACC than outside the ACC

[Figs. 11b(1) and 11b(2)]; it captures the vertical struc-

tures of the cross-stream diffusivities in 75% of the area

inside of the ACC but in only 41% of the area outside of

the ACC (Table 1). For vertical structures of cross-

stream mixing lengths, the F–N theory provides skillful

estimation in 55% of the area inside the ACC but only

19% of the area outside the ACC (Table 1).

The MW theory better represents the vertical struc-

tures of diffusivities and mixing lengths than the F–N

theory both inside and outside the ACC (Fig. 11;

Table 1). In 91% of the study domain, the MW theory

represents vertical structures of diffusivities that are sig-

nificantly correlated with float diffusivities. In contrast,

the percentage is only 55% for the F–N theory. Table 1

reveals that the MW theory captures diffusivities outside

the ACC as well as it does inside the ACC. In contrast,

the F–N theory is better inside the ACC than outside.

Nonetheless, the MW theory consistently outperforms

FIG. 9. Cross-stream mixing lengths (Lmix,?; km) from [a(1)],[a(2)] numerical floats, [b(1)],[b(2)] the MW theory, and [c(1)],[c(2)] the

F–N theory at (left) 400–600 and (right) 1900–2400m.As in Fig. 8, the two thick black contours represent the boundaries of theACC.Gray

regions denote land, and white regions denote areas lacking diffusivity estimates due to topography or inadequate numbers of floats.
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the F–N theory. Overall, in roughly 90% of the area

outside the ACC, the float-based estimates are better

correlated with estimates from theMW theory, than with

estimates from the F–N theory (Table 1). In contrast, the

percentage is roughly 60% inside the ACC.

The MW theory better represents the mixing lengths

to the east of the Drake Passage than to the west

[Fig. 11a(2)]. TheMW theory cannot represent negative

diffusivities. The existence of negative diffusivities in-

side the ACC west of the Drake Passage (Figs. 8, 9)

probably contributes to the small or negative correlation

there. Note that the MW theory is based on the

assumptions that the mean flow varies slowly spatially

and that eddies have much smaller amplitude than the

mean flow. These assumptions are poorly satisfied in the

area north of the ACC west of the Drake Passage (not

shown), leading to the poor representation of mixing

lengths there [Fig. 11a(2)].

3) COMPARISON OF MAGNITUDES

Though the MW and F–N theories capture the order

of magnitude of eddy diffusivities and mixing lengths

correctly, both theories overestimate the values (Fig. 12).

In the upper 1000m, the MW theory overestimates the

FIG. 10. Correlation of (a) cross-stream mixing lengths and (b) diffusivities as a function of

depth. In the legends, Lmix,? and k? respectively denote mixing length and diffusivities in the

cross-stream direction. Superscripts float, multi, and single denote estimates from floats, the

MW theory, and the F–N theory, respectively.

FIG. 11. Correlation of float-basedmixing quantities vs MW and F–N counterparts. In the title of each panel, (left)

k? and (right)Lmix,? denote diffusivities and mixing lengths in the cross-stream direction, respectively; corre(a, b) is

defined as the correlation between variables a and b over a 3.28 3 3.28 patch that extends from surface to bottom;

superscripts float, multi, and single, respectively, indicate estimates from numerical floats, MW theory, and F–N

theory. [a(1)],[a(2)],[b(1)],[b(2)] Regions where correlation coefficients are not significantly positive at 95% confi-

dence level are hatched; [c(1)],[c(2)] regions with negative values are hatched. As in Fig. 8, the region inside the two

black contours is defined to be inside the ACC; the rest of the area in our study domain is defined to be outside

the ACC.
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domain-averaged diffusivities and mixing lengths more

than the F–N theory; below 1000m, the mismatch be-

tween the MW theory and floats is smaller than it is

between the F–N theory and floats.

The magnitude of the diffusivities from the F–N the-

ory depends on the choice of G, which denotes the

mixing efficiency. The parameter G is generally chosen

to be order one (e.g., Klocker and Abernathey 2014;

Chen et al. 2014). We examined the diffusivities from

the F–N theory using different choices of G. F–N theory’s

overestimation of diffusivities between 85 and 3000m is

insensitive to G within the wide range from 0.1 to 10.

Since both the F–N and MW theories overestimate

diffusivities, in particular, along the eastern coast of the

South Pacific (Figs. 8, 12), the single-wavenumber as-

sumption probably is not the leading-order explanation

for the overestimation.When diagnosing the float-based

diffusivities, in order to reduce the dispersion caused by

the mean flow shear, as Griesel et al. (2010) did, we

calculate residual velocities fromEq. (18) by subtracting

the local mean flow rather than the spatially uniform

mean flow. However, both the F–N and MW theories

assume the mean flow to be constant and thus do not

include a mechanism to reduce the dispersion due to

mean flow shear. Therefore, the spatial homogeneity

assumption inherent in these theories might contribute

to the overestimation.

To test this hypothesis, we use Eq. (18) to recalculate

the float-based cross-stream diffusivities k?,sheared by

assuming that the mean flow is constant along each float

trajectory and equal to the mean flow at the midpoint of

the trajectory, that is, at the position where the float

passes at time t0. In other words, the residual velocity is

defined as the deviation of eddy velocity along the float

trajectories from the mean flow at the float position at

time t0. Similar to the F–N and MW theories, the con-

stant mean flow calculation does not include a mecha-

nism to reduce the dispersion caused by the mean flow

shear. As we expected, similar to the theory-based dif-

fusivities, the domain-averaged k?,sheared is also larger

than our original float-based estimates, and k?,sheared

also overestimate values off the east coast of South

America (figure not shown).

6. Discussion

The main goal of the MW theory was to modify the

single-wavenumber theory to account for the multi-

wavenumber feature of eddies. The single-wavenumber

theory and the MW theory are consistent in some re-

spects. In the single-wavenumber limit, the MW theory

reduces to the single-wavenumber mixing formula of

Ferrari and Nikurashin (2010) (appendix A). In addi-

tion, both theories are based on an assumption of spatial

homogeneity, which means that horizontal variations in

the mean flow and eddy properties are negligible. Fi-

nally, both theories explicitly illustrate the effect of the

mean flow U on mixing.

In spite of their consistency, the single-wavenumber

and MW theories also have clear differences. The MW

theory more clearly depicts the ocean, in that oceanic

eddies are composed of a range of wavenumbers rather

than a single dominant wavenumber. In addition, the

MW theory provides formulas for the diffusivity tensor

and cross-stream diffusivities [Eqs. (17) and (20)]; in

contrast, the F–N theory only focuses on cross-stream

diffusivities.

Since the MW theory is in spectral form, it can be

used to estimate the mixing rates induced by eddies

at selected spatiotemporal scales. Separating the

TABLE 1. Percentage of the area that satisfies the criteria listed in the first column at 95% confidence level, in the entire domain, inside

the ACC and outside the ACC. Here, we define corre(a, b) as the correlation between variables a and b in the entire water column over

a 3.28 3 3.28 patch. Superscripts float, multi, and single, respectively, indicate estimates in the cross-stream direction from numerical floats,

MW theory, and F–N theory. The terms k? and Lmix,?, respectively, denote eddy diffusivities and mixing lengths in the cross-stream

direction. The two thick black contours of the barotropic streamlines in Fig. 8, with the value of 33 104 and 105m2 s21, approximately pass

the northern and southern edges of the Drake Passage. They are chosen to be the boundaries of the ACC, the region inside the two black

contours is defined to be inside the ACC, and the rest of the area in our study domain is defined to be outside the ACC. Reported

uncertainties here are two standard errors, obtained from 10 realizations of a bootstrapping technique by randomly sampling the gridded

values in the selected spatial domain.

Region Entire domain (%) Inside ACC (%) Outside ACC (%)

corre(kfloat? , kmulti
? ). 0 91 6 1 86 6 1 95 6 1

corre(kfloat? , k
single
? ). 0 55 6 1 75 6 1 41 6 1

corre(kfloat? , kmulti
? )2 corre(kfloat? , k

single
? ). 0 77 6 1 62 6 2 87 6 1

corre(Lfloat
mix,?, L

multi
mix,?). 0 73 6 0 72 6 1 74 6 1

corre(Lfloat
mix,?, L

single
mix,?). 0 34 6 1 55 6 1 19 6 1

corre(Lfloat
mix,?, L

multi
mix,?)2 corre(Lfloat

mix,?, L
single
mix,?). 0 77 6 1 60 6 1 88 6 1
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contributions of small-scale and large-scale eddies to

mixing is useful because in eddy-permitting models,

large eddies are explicitly resolved and only small eddies

need to be parameterized (e.g., Fox-Kemper and

Menemenlis 2008). Separating the contributions of low-

frequency and high-frequency eddies to mixing is also

useful because in contrast with high-frequency eddies,

low-frequency eddies are dominated by banded

structures (striations) leading to anisotropic mixing

(e.g., Maximenko et al. 2005; Chen et al. 2015). The

MW theory [Eq. (20)] tells us that the contribution to

cross-stream mixing from eddies with frequencies

lower than VS is

kmulti
? (x) from striations

5
1

2

ð1V
S
/jUj

2V
S
/jUj

Su0
?,u

0
?
(k0, jUjk0, x) dk0 . (25)

The advantage of Eq. (25) is that it is computationally

more efficient than some other related frameworks (e.g.,

Chen 2013; Chen and Flierl 2015).

Our work regarding the MW theory has several im-

plications. First, the fact that the MW theory out-

performs the F–N theory in capturing the mixing length

structures indicates that it is useful to consider the

multiwavenumber regime in future development of

mixing theories and eddy parameterizations. In addi-

tion, much effort has been devoted to characterizing and

interpreting oceanic spectra in order to reveal the un-

derlying processes of oceanic turbulence (e.g., Xu and

Fu 2011). The MW theory links velocity spectra with

mixing, underscoring the importance of spectra for

mixing. Finally, critical layer theory suggests that ele-

vated values of mixing lengths occur at the critical layer

depth, where the wave phase speed matches the mean

flow magnitude (e.g., Bretherton 1966; Green 1970).

Critical layer depth has been estimated either by iden-

tifying the phase speed of the fastest growingmode from

linear stability analysis (e.g., Smith and Marshall 2009)

or by identifying the dominant phase speed of the eddy

field through the Radon transform (Chen et al. 2014).

Each wavenumber in the eddy field corresponds to a

different critical layer depth, and this work indicates that

it is important to consider the contribution of all the

waves in the eddy field to mixing. Therefore, future

studies would potentially benefit from estimating a

critical layer depth specific to each wavenumber.

Though successful in many respects (as shown in

Fig. 12), the MW theory, like the F–N theory, over-

estimates the domain-averaged cross-stream mixing

lengths by roughly 5–10km.As discussed in section 5b(3),

the spatial homogeneity assumption inherent in these

theories contributes to the overestimation. Further im-

provements to the mixing theory probably should take

into account the spatial inhomogeneity (e.g., horizontal

shear in the mean flow), which can be induced by to-

pographic effects, the localized formation of coherent

vortices, and so on. In addition, both the MW and F–N

theories are built on the assumption that the magnitudes

of eddies are smaller than that of the mean flow. This

linear assumption does not hold in many oceanic re-

gions, and taking this nonlinearity into account may lead

to improvements of the mixing theory.

It is not trivial to take into account the spatial in-

homogeneity in eddy parameterizations. Appendix B il-

lustrates analytically that, in an inhomogeneous system,

where themean tracer gradient and eddy fluxes vary over

short spatial scales, eddy mixing depends on both the

local and nonlocal mean tracer gradients. However, the

concept of the eddy diffusivity itself, on which the F–N

and MW theories are built, is based on the assumption

FIG. 12. The domain averaged (a) cross-stream diffusivities and (b) mixing lengths as

a function of depth from the MW theory (red), numerical floats (black), and from the F–N

theory (blue).
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that eddy mixing and transport processes can be param-

eterized using the local mean tracer gradient.

While the shortcomings of the MW theory identified

in this study indicate that nonlocal eddy parameteriza-

tion schemes may ultimately prove valuable, the MW

theory nonetheless merits further assessment, particu-

larly since the assumption of spatial homogeneity is

reasonable in regions such as the midlatitude ocean in-

terior. In addition to cross-stream diffusivities, the MW

theory also provides formulas for the diffusivity tensor.

The relevance of the MW theory to mixing in other re-

gions or other years has not yet been explored. Griesel

et al. (2015, manuscript submitted to Ocean Modell.)

diagnosed the diffusivities from the single-wavenumber

theory using eddy parameters obtained from linear in-

stability analysis and then compared them with those

from numerical floats in the entire Southern Ocean.

While they found evidence for enhanced Lagrangian

integral time scales at the steering level depth, they

concluded that a single frequency is not able to re-

produce the oscillations in the velocity autocovariance.

This suggests that it would be useful to assess whether

the MW theory also better captures the vertical struc-

ture of mixing outside of the DIMES region.

To infer eddy diffusivities from the single-wavenumber

and multiwavenumber theories, we need information

about eddies (e.g., their spectra and dominant phase

speed). Thus, these mixing theories are not directly ap-

plicable to eddy parameterization schemes, which are

intended to link eddy diffusivities with large-scale, mean

flow characteristics. However, the theories do underscore

the value of including the critical-layer effect in eddy

parameterization schemes, and the multiwavenumber

theory shows that the critical-layer depth is wavenumber

specific. The multiwavenumber theory also suggests that

the link between the large-scale mean flow and eddy

spectra may help formulate new eddy parameterization

schemes. Previous studies linking mean flow with eddy

properties exist (e.g., Venaille et al. 2011).

7. Summary

Though oceanic eddies contain motions spanning a

wide range of wavenumbers (e.g., Wunsch 2010), pre-

vious theories of eddy mixing have often been based on

the assumption that eddies are composed of a single or

dominant wave (e.g., Green 1970; Killworth 1997;

Ferrari and Nikurashin 2010; Klocker et al. 2012a).

Motivated by this discrepancy, we formulated a MW

theory ofmixing, starting from the problem described by

Klocker et al. (2012a). Our MW theory, which can be

derived from both Lagrangian and Eulerian perspec-

tives, is based only on the mean flow and eddy velocity

spectra, which are unambiguous and straightforward to

calculate.

We chose the DIMES region to compare mixing the-

ories. Eddy diffusivities and mixing lengths in the cross-

stream direction were estimated using numerical floats

deployed in a global eddying model. Cross-stream diffu-

sivities are large inside the ACC, where eddy amplitudes

are large. Horizontal structures of cross-stream diffusiv-

ities and eddy kinetic energy vary little with depth, in-

dicating the relevance of the equivalent barotropic nature

in this region. These float-based mixing estimates at high

spatial resolution can serve as a context for observational

results from the DIMES experiment.

The float-based mixing estimates were then compared

with those from both the F–N and MW theories. We

found that the F–N andMW theories have similar skill in

representing the horizontal structures of cross-stream

eddy diffusivities, which are mainly controlled by eddy

velocity magnitudes. Correlation analysis indicates that,

compared to the F–N theory, the MW theory is better at

capturing both the horizontal and vertical structures of

cross-stream mixing lengths. Therefore, a so-called

dominant wave is insufficient to capture the mixing

length properties in the DIMES area and possibly in

other ocean regions aswell. Ideally the full range of waves

in the ocean should be considered when developing new

mixing theories or parameterization schemes.
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APPENDIX A

Consistency between the Single- and
Multiwavenumber Theories in the
Single-Wavenumber Scenario

Here, we illustrate that, in the single-wavenumber sce-

nario, the cross-stream diffusivity from the MW theory in
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section 2 is consistent with the single-wavenumber for-

mula for cross-stream diffusivities from Ferrari and

Nikurashin (2010) (F–N theory).

a. Review of the F–N theory

Following Flierl andMcGillicuddy (2002), Ferrari and

Nikurashin (2010) assumed that eddies are forced by

stochastic time-varying forcing with a single wave-

number. They employed a surface quasigeostrophic

model and defined the mean velocity U and buoyancy

B as

U(z)5U0

z1H

H
, and B(y, z)52Gy1N2z , (A1)

where N is the buoyancy frequency; G5 fU0/H, denot-

ing the horizontal buoyancy gradient; and f is the Cori-

olis parameter. The eddy field satisfies

›

›t
b1U0

›

›x
b2G

›

›x
c5U

ffiffiffi
g

p
Re[r(t)ei(kx1ly)]2 gb,

z5 0,

(A2)

and

›2xc1 ›2yc1
f 2

N2
›2zc5 0, z, 0, (A3)

where c is eddy streamfunction, b is surface eddy

buoyancy, k is the zonal wavenumber, l is the meridional

wavenumber, g is the linear damping rate, and r(t) is the

white noise forcing with zero mean and autocorrelation

function hr(t)r*(t0)i5 d(t2 t0). The term U sets the

forcing and eddy amplitudes.

Solutions satisfying Eqs. (A2) and (A3) can be

written as

c(x, y, z, t)5
U

k
Re

�
a(t) exp

�
i(kx1 ly)1

Nk

f
z

��
, and

b(x, y, z, t)5Nkc(x, y, z, t) ,

(A4)

where k is the wavenumber magnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l2

p
.

Substituting Eq. (A4) into Eq. (A2) gives

da

dt
1

�
g1 ik

�
U02

G

Nk

	�
a5

ffiffiffi
g

p
r(t) . (A5)

The variable a can be obtained from Eq. (A5); then the

eddy variables c and b are solved.

To solve the cross-stream diffusivity, they consider a

passive tracer equation satisfying

›

›t
C01U(z)

›

›x
C01 J(c,C0)1Gc

›

›x
c5 0, (A6)

where C0 is the tracer concentration and Gc is the mean

tracer gradient. They obtain the solution to C0 from Eq.

(A6) by assuming C0 has the same spatial structure as c.

Then the cross-stream Eulerian diffusivity can be ob-

tained from

y0C05
›c

›x
C0 52kE?

›

›y
C . (A7)

Their final solution to kE? in their single-wavenumber

mixing model is

k
single
? 5kE? 5

k2

k2
g

g21 k2[Cw2U(z)]2
EKE, (A8)

where Cw denotes the wave phase speed

Cw5

�
12

f

NHk

	
U05U0 2

G

Nk
, (A9)

and EKE is the domain-averaged eddy kinetic energy

EKE5
1

2
hu21 y2i5 1

2
hj$cj2i5 1

4
U
2 exp

�
2
Nk

f
z

	
.

(A10)

b. Cross-stream diffusivity from the
multiwavenumber theory in the
single-wavenumber limit

As shown in Eq. (19), to obtain cross-stream diffu-

sivities from the MW theory, the key is to derive the

frequency–wavenumber spectra of cross-stream eddy

velocities. In the single-wavenumber scenario from

Ferrari and Nikurashin (2010), we can obtain this spec-

trum from Eqs. (A4) and (A5).

Taking the Fourier transform of Eq. (A4) and multi-

plying by k2, we obtain the spectrum for cross-stream (in

this case, meridional) velocities:

Sy0(k
0, l0,v0)5k2Sc(k

0, l0,v0)5
U
2k2

k2
exp

�
2
Nk

f
z

	
jâ(v0)j2

����d(k2 k0, l2 l0)2 d(k1 k0, l1 l0)
2

����2 , (A11)
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where �̂ is the Fourier transform, Svar denotes the spectra

for variable var, and jâ(v0)j2 can be obtained through

Fourier transform of Eq. (A5):

jâ(v0)j2 5 gjr̂(v0)j2

g2 1

�
v02 k

�
U02

G

Nk

	�2 . (A12)

Substituting Eqs. (A11) and (A12) into Eq. (19) gives

the cross-stream diffusivities from the MW theory:

kmulti
? 5

1

4

U
2k2

k2

3 exp

�
2
Nk

f
z

	
gjr̂(Uk)j2

g21

�
Uk2 k

�
U02

G

Nk

	�2 ,
(A13)

noting from Eq. (A9) that

2(Cw 2U)k5

�
Uk2k

�
U02

G

Nk

	�
. (A14)

UsingEqs. (A14) and (A10), Eq. (A13) can be rewritten as

kmulti
? 5

1

4

k2

k2
g

g21 k2[Cw2U(z)]2
[4EKEjr̂(Uk)j2]

5 jr̂(Uk)j2ksingle? .

(A15)

Recall that r(t) is the white noise forcing with zero

mean and autocorrelation hr(t)r*(t0)i5 d(t2 t0); thus,

jr̂(Uk)j2 5 1 and kmulti
? 5 k

single
? . Therefore, in the single-

wavenumber limit, the cross-stream diffusivity formula

from the MW theory reduces to the single-wavenumber

formula from Ferrari and Nikurashin (2010).

APPENDIX B

Derivation of the Multiwavenumber Theory from
Tracers and Flux-Gradient Relation

Here, we show that the MW theory from section 2a

can also be derived from an Eulerian diffusivity per-

spective using tracers. The mathematical symbols used

below follow the convention of Eulerian diffusivities

and apply only in this appendix.

We take the mean and eddy equations for the passive

tracer C:

›

›t
C1 u � $C2 k0=

2C52$ � F , (B1)

and

›

›t
C01 (u1 u0) � $C02 k0=

2C052u0 � $C1$ � F ,
(B2)

where u denotes velocity, k0 is the molecular or numerical

diffusivity of the tracer, and F is the eddy flux u0C0. Here, �
denotes the ensemble average. For example, u and u0 de-
note the mean and eddy velocities. We shall use ensemble

averages with a suitably large number of ensembles.

If we define the Green’s function for each ensemble�
›

›t
1 (u1u0) � $2 k0=

2

�
G(x, t j x0, t0)

5 d(x2 x0)d(t2 t0) , (B3)

we obtain

C0(x, t)52

ð
D

ðt
2‘

dx0 dt0G(x, t j x0, t0)u0j(x0, t0)
›C(x0, t0)

›x0j

1

ð
D

ðt
2‘

dx0 dt0G(x, t j x0, t0)
›Fj

›x0j
,

(B4)

where
Ð
Ddx0 denotes the integration over the entire

available spatial domain D. From this, we find the

ensemble-averaged eddy flux

Fi 5u0iC052

ð
D

ðt
2‘

dx0 dt0Kij(x, t j x0, t0)
›C(x0, t0)

›x0j

1

ð
D

ðt
2‘

dx0 dt0Hi(x, t j x0, t0)
›Fj

›x0j
, (B5)

where

Kij(x, t j x0, t0)5 u0i(x, t)G(x, t j x0, t0)u0j(x0, t0) , (B6)

and

Hi(x, t j x0, t0)5 u0i(x, t)G(x, t j x0, t0) . (B7)

This becomes an integral/differential equation for F:

Fi 2

ð
D

ðt
2‘

dx0 dt0Hi(x, t j x0, t0)
›Fj

›x0j

52

ð
D

ðt
2‘

dx0 dt0Kij(x, t j x0, t0)
›C(x0, t0)

›x0j
. (B8)

The derivation of Eq. (B8) is similar to the derivation

of Eq. (2.14) from Kraichnan (1987), which is about
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ensemble-averaged eddy flux in a systemwith zeromean

flow and zero k0. Note that the widely used standard

form of eddy parameterization is

Fi 52kEij
›C(x0, t0)

›x0j
, (B9)

where kEij is the Eulerian diffusivity tensor. Assuming

spatial homogeneity, both Fj and ›C(x0, t0)/›x0j vary

slowly spatially; thus, the second term on the left-hand

side of the accurate form [Eq. (B8)] is roughly zero, and

›C(x0, t0)/›x0j on the right-hand side of the accurate form

can be pulled out of the integral. Thus, the accurate form

[Eq. (B8)] reduces to the standard form [Eq. (B9)] in the

spatially homogeneous case.

In the spatially inhomogeneous case, the accurate form

[Eq. (B8)] differs from the standard form [Eq. (B9)]. First,

Fi from Eq. (B8) depends on both local and nonlocal

mean tracer gradients. Second, we need to solve an in-

tegral equation for the flux. Though complicated, in

principle, for many realizations, we should be able to

solve the G(x, t j x0, t0) equation [Eq. (B3)] numerically

and average to find Hi(x, t j x0, t0) and Kij(x, t j x0, t0).
Nowwe consider an idealized case. As in section 2a, we

assume that 1) the mean flow velocity is much larger than

the eddy velocity, that is, juj � ju0j, and that 2) the spatial

scales of themeanflow and eddy flux aremuch larger than

the eddies; in other words, the system is approximately

spatially homogeneous. Our assumption of homogeneity

implies that juj is constant. We also assume that k0 in

Eq. (B1) is small. Under the small eddy amplitude and

small k0 assumptions, Eq. (B3) is reduced to�
›

›t
1 u � $

	
G0(x, t j x0, t0)5 d(x2 x0)d(t2 t0) . (B10)

For small enough excursions, the mean flow is roughly a

constant, and thus we obtain

G0(x, t j x0, t0)5 d[x2 x02 (t2 t0)u] �H(t2 t0) , (B11)

where H is the Heaviside step function. Under the spa-

tially homogeneous assumption, $ � F is negligible and

›C(x0, t0)/›x0j is roughly a constant; thus, the eddy flux

formula [Eq. (B5)] is reduced to

Fi 5 u0iC052
›C

›xj

�ð
D

ðt
2‘

dx0 dt0Kij(x, t j x0, t0)
�
. (B12)

Therefore, in this idealized case, the Eulerian eddy dif-

fusivity, defined by the widely used formula [Eq. (B9)], is

kEij 5

ð
D

ðt
2‘

dx0 dt0Kij(x, t j x0, t0) . (B13)

Substituting Eqs. (B6) and (B11) into Eq. (B13) leads to

kEij 5

ðt
2‘

u0i(x, t)u
0
j[x2 (t2 t0)u, t0] dt0 . (B14)

Following section 2a(1), we set t to be zero without the

loss of generality. Then we obtain from Eq. (B14)

kEij 5

ð0
2‘

d~tU0
i(x, t)jt50U0

j(x, t)jt5~t , (B15)

where U0
i(x, t) is defined in Eq. (6). Assuming that the

eddy statistics are temporally stationary, we have

kEij 5
1

2

ð‘
2‘

d~tU0
i(x, t)jt50U0

j(x, t)jt5~t . (B16)

Note that � here denotes the ensemble average, which is

essentially the same as h�i in themain text. Therefore, kEij
from Eq. (B16) is the same as kL,‘ij from Eq. (8). Fol-

lowing the derivation from sections 2a(2) and 2a(3), we

will obtain the multiwavenumber formulas for the dif-

fusivity tensor [Eqs. (16) and (17)] and cross-stream

diffusivities [Eqs. (19) and (20)].
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