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Mapping Hierarchical Structures with Synchrony for Binding:
Preliminary Investigations

John E. Hummel Eric R. Melz

Abstract

Synchrony of firing has recently become a popular
technique for dynamic binding in neural networks, and has
been applied to numerous problem domains. However,
hierarchical structures are difficult to represent using
synchrony for binding. This paper presents our progress
toward a framework for representing hierarchies in a neural
network using synchrony for dynamic binding. We
illustrate the approach with a model of analogical
mapping. The model (IMM2) uses synchrony to bind case
roles to objects within propositions. Hierarchies are
established by allowing units representing propositions to
play a dual role, acting both as the argument of one
proposition and as a pointer to another.

Introduction

Synchrony of firing has attracted attention as a useful way
to create dynamic bindings in artificial neural networks. The
idea is that a binding of two or more primitives can be
represented by allowing separate units, each representing one
primitive, to fire in synchrony. For example, to represent
the proposition own(Janet Book), units representing own-
agent would fire in synchrony with units for Janet while
units for own-object fire in synchrony with units for book
(Hummel & Holyoak, 1992; Shastri & Ajjanagadde, 1990).
Dynamic bindng is attractive because it can be created and
destroyed on the fly, allowing a network to reuse the same
units in multiple bindings. This capacity has many
important implications, the most basic of which is that it
makes compositionality possible in a neural network
representation,

Despite the usefulness of synchrony for simple dynamic
binding, it is not straightforward to extend it to represent
hierarchical structures. Given the ubiquity of hierarchies in
human cognition, the problem of how they may be
represented in a general way is an extremely important one.
This paper focuses on the use of synchrony to represent and
process hierarchical structures.

The task domain within which this issue will be addressed
is analogical mapping, the problem of finding a set of
correspondences between the elements of two analogous
situations or structures (a source analog and a rarger). For
example, given the source know(Clark Janet), and the target
know(Paul Elaine), a natural mapping places Clark into
correspondence with Paul and Janet into correspondence with
Elaine. Analogical mapping provides an ideal problem
domain for assessing representations of structure because
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structural constraints, based in part on hierarchical relations,
play a central role in establishing analogical mappings
(Gentner, 1983; Holyoak & Thagard, 1989). In addition,
mapping is a challenging special case of the basic cognitive
process of comparing structured representations. Comparing
representations (e.g., matching cases to schemas, or memory
elements to antecedents of rules) is fundamental to reasoning
and comprehension. Analogical mapping is particularly
demanding because it requires finding novel constant-to-
constant correspondences, which cannot be pre-wired in any
simple fashion. In general, comparison of structured
representations has proven difficult to accomplish in neural
networks (Barmnden, 1994),

Hummel and Holyoak (1992; Hummel, Burns &
Holyoak, 1994) have proposed a model of analogical
mapping that uses synchrony to dynamically bind case roles
to objects in propositional statements and to establish
correspondences between the elements of two analogs. This
model, called the Indirect Mapping Model (IMM), is the
point of departure for the current effort. IMM can solve
simple analogies of the type illustrated above, as well as
considerably larger analogies. However, like other models
using synchrony for binding, it cannot represent or compare
hierarchical structures, such as propositions that take other
propositions as arguments.

Hierarchies and Synchrony

Hierarchies are difficult to represent using synchrony
because synchrony provides only one degree of freedom (df)
for binding: at any given instant, two units are either
synchronized or they are not (but see McClurkin et. al.,
1988). When units are synchronized, the entities they
represent are interpreted as bound (members of a single
group); conversely, if two entities are unbound (members of
different groups), then their respective units must remain
desynchronized. Accordingly, simple synchrony relations
cannot represent that two units are members of the same
group at one level of a hierarchy and members of separate
groups at some lower level of the hierarchy. For example,
in the proposition know(Clark own(Janet book)), Janet and
book are members of the same group with respect to the
patient role of the predicate know, so with respect to the
top-level proposition they should be synchronized. But in
the lower-level proposition, Janet and book are bound to
different case roles and should therefore remain out of
synchrony.

In principle, this dilemma could be resolved by any
number of schemes for squeezing extra df out of the
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temporal characteristics of a unit's firing. For example,
units might fire in synchrony once if they are bound at the
first level of a hierarchy, twice if they are bound at both the
first and second, etc. However, such schemes are likely to
be cumbersome and error prone (e.g., what temporal
resolution would be required to exploit such a code?).
Moreover, because they rely on complex codes, such
schemes are prone to hard and arbitrary limits on embedding
(determined by the number of codes in the scheme).

We propose an approach to representing hierarchies that
operates within synchrony's single df, by allowing only one
level of a hierarchy to be active at a time. Hierarchical
embedding is accomplished by means of units that represent
complete propositions (proposition units). A proposition
unit can serve both as the argument of one proposition and
as a pointer to another (in general, such units could point to
any complex structure, but the current discussion is
restricted to the representation of propositions). Because a
single unit cannot itself "contain" all the semantic content
of a proposition, it must instead be able to stand for that
content in some other meaningful way. The manner in
which proposition units perform this function becomes the
central issue in this approach. In general terms, pointing is
accomplished by having a proposition unit learn connections
that allow it to mimic the causal properties of the
propositional structure to which it points (as elaborated
shortly).

The Indirect Mapping Model, II (IMM2)

Architecture

IMM2 encodes propositions as arrangements of five
classes of units. Units are coupled by one or both of two
types of links: connections, which propagate excitation and
inhibition, and Fast Enabling Links (FELs; Hummel &
Biederman, 1992), which allow units to synchronize and
desynchronize oscillations in their outputs. The encoding of
own(Janet book) is illustrated in Figure 1. Each
proposition, i, is encoded locally by one proposition unit,
Pj. Pj shares recriprocal excitatory connections with one to
three sub-proposition units, SP;ij. SPjj encodes the
bindings defining the jth case role of the ith proposition.
For example, if P{ is own(Janet book), then SP| 1 encodes
the binding of Janet to the agent role of own, and SP{ 2
encodes the binding of book to the object role of own. SPs
under the same proposition share positive connections and
negative FELs (the latter keep the SPs out of synchrony
with one another). SP;; encodes its case role-argument
bindings by means of reciprocal excitatory connections and
positive FELs with one predicate unit and one object unit.
In the current example, SP} 1 is linked to the predicate unit
for own-agent (denoted O1) and the object unit for Janet
(denoted J). Predicate and object units are functionally
equivalent, and are distinguished only for clarity.
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| Proposition:
O own(Janet book)

Sub-proposition:

Janet=Own-agent

Predicate: OwnAgent

O Object: Janet

QO Semantic: Female
Figure 1. Basic architecture of IMM2.

Figure 2. Encoding of the hierarchical proposition
know(Clark P1), where P1 = own(Janet book).

Proposition, sub-proposition, predicate, and object units
serve the purely structural function of encoding the binding
relations among the components of a proposition. This
function is enhanced by their strictly localist implmentation
(see Hummel & Holyoak, 1992). However, encoding
semantics is better served by a distributed representation over
units representing attributes. Each object and predicate unit
is connected to a set of semantic units that code the
attributes of the corresponding object or predicate. For
example, Janet might be connected to semantic units for
human, adult, and female, while book might be connected to
artifact, paper, and small. Similarly, predicates, such as
own-agent and own-object are connected to semantic units
for their attributes. Semantic units for predicates are
distinguished according to place, so that units encoding the
agent role do not overlap with those for the patient role.
Otherwise, all predicate and object representations are
allowed to overlap on the semantic units.

Extending this architecture to encode hierarchical
propositions is straightforward. Let P be know(Clark
own(Janet book)). P2 is encoded as shown in Figure 2,
where P] simply takes the place of an object unit under
SP2 2 (which encodes the binding P to know-object).
Otherwise, the general structure encoding P7 is exactly the
same as that encoding Pj.

For the purposes of analogical mapping, propositions are
encoded in two mutually exclusive sets, propositions P¥ in
the source analog, and P/ in the target. Source and target
propositions share semantic units (see Figure 3), and it is
primarily through the semantic units that propositions in
the source activate propositions in the target. In addition to



the connections described above, there are modifiable
connections between units of the same type across the
analogs (henceforth, Hebb connections, for their Hebbian
learning rule). In the initial state of the network, the
weights of all Hebb connections are zero. As the network
runs, these connections update their weights to (a) keep a
record of the mappings the network has established, and (b)
allow past mappings to constrain future mappings.

Operation

In general, IMM2 performs analogical mapping in the
same way as the original IMM. One at a time, propositions
in the source become active and create patterns of activity on
the semantic units. The semantic units excite and
synchronize units in the target analog. Lateral inhibition
between units of the same class (i.e., predicate, object, SP,
and proposition) and recurrent excitation between consistent
units (e.g., SPs with their objects and predicates) results in
the best-fitting target proposition's growing active at the
expense of poorly-fitting propositions. Once the pattern of
activation in the target settles, active units strengthen their
Hebb connections from the active units (of the same class)
in the source. The pattern of Hebb connections that evolves
over several such cycles is the model's representation of the
best source-target mapping.

Active propositions. Active propositions are represented
as synchronized patterns of activity over the network's units.
Proposition i is recalled from long-term memory by
activating unit P;. P; excites all SP units under it. The
SPs establish the pattern of synchronized firing that
represents the active proposition. By virtue of the negative
FELs between them, SPs under a given P; rapidly establish
a pattern of mutually desynchronized firing. Each SP
excites and synchronizes the predicate and object (or
proposition) under it. Therefore, predicates and objects
belonging to the same case role fire in synchrony with one
another and out of synchrony with those belonging to other
case roles. The predicates and objects likewise synchronize
the semantic units to which they are connected. Consider an
example. Say Pj in Figure 2, own(Janet book), becomes
active. It will activate SP]_) and SP 2, which will begin
to fire out of synchrony with one another. SPj_ 1 will
activate and synchronize the predicate own-agent and the
object Janet, and these will activate and synchronize their
respective semantic units. SPj 2 will similarly activate
own-object and book, which will activate their respective
semantic units. The result is that the semantic units for
Janet and own-agent will fire in synchrony with one another
and out of synchrony with those for book and own-object.

The above describes the activation of simple, non-
hierarchical propositions. More challenging is the
representation of active hierarchical propositions. Due to
the one df limitation on synchrony, it is critical that
semantic units representing a lower proposition (such as P
in Figure 2) not become active when the higher level
proposition (P2) is active. However, it is necessary to
activate some representation of the lower proposition.
Otherwise, in the case of, say, know(Clark own(Janet
book)), there would be no explicit representation of what it
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is that Clark knows. IMM2 solves this problem by
allowing the lower level proposition unit (P1) to become
active but not to propagate its activation to the SPs below
itself (SP1,1 and SPy 2). This gating is accomplished by

means of a "mode”! within which each P operates. If P;
receives more excitatory input from SPs above itself (i.e.,
SPs with respect to which it serves as an object filling a
role) than from SPs below itself, then it enters "child"
mode. If it receives more excitation from SPs below than
above, then it enters "parent” mode. In parent mode, a P;
propagates activation only to SPs below itself; in child
mode, it propagates activation only to SPs above itself,

Consider what happens when P2, know(Clark P]),
becomes active. It will activate SP2_ 1 and SP2 2, which
will fire out of synchrony with one another. SP2 1 will
activate and synchronize know-agent and Clark, which will
activate and synchronize their respective semantic units.
Similarly, SPp 2 will activate know-object, which will
activate its semantic units. But when SP 9 activates Py,
P1 will enter child mode, firing in synchrony with SP7 2
(and, therefore, with know-object), but not propagating any
activity to SP1.1 or SP1.2. The resulting pattern thus
nominally represents the embedding of one proposition
within another. For this nominal representation to be a
functional one, P1 must function in lieu of the entire
proposition to which it points. Py learns to perform this
function during the analogical mapping process.

Analogical mapping. Like the original IMM, IMM2
performs analogical mapping as a form of guided pattern
matching. One at a time, P; in the source are selected (at
random) to become active. As each is activated, it creates a
synchronized pattern of activation on the semantic units as
described above. In turn, these patterns activate and
synchronize predicate, object, SP, and proposition units in
the target analog. In the target, units of the same type
compete via lateral inhibition, and those that remain active
update their Hebb connections to the active units in the
source. After several iterations, the Hebb connections grow
toward asymptotic values. For example, run on the analogy

in Figure 3, the connection from PS| in the source

(henceforth S1) to Pty in the target (T1) grows toward 1.0,
and those from S1 to T2 and from S2 to T1 grow toward -1.

Hebb connections allow earlier mappings to constrain
later mappings. For example, if S1 is coactive with T1,
then the connection between them will become positive.
Therefore, whenever S1 becomes active, it will pass
activation directly to T1, favoring it in its competition with
the other target propositions. Similar biasing results from
the Hebb connections that develop between predicate, object
and SP units. In every case, the biasing serves to constrain
the later mappings on the basis of earlier mappings. But in
the case of the proposition units, the biasing serves the
additional function of allowing embedded propositions to
behave as hierarchical structures.

lAjth.ough they might appear "non-neural," such modes are
straightforward to implement with two auxillary units and
multiplicative synapses.



Consider the following simple analogy (Example 1)

Source Target

S1: F(ab) TL: F(f g)
$2: G(c S1) T2: G(h T1)
T3: F( j)

The representation of Example 1 is illustrated in Figure 3.
Upper case letters are predicate units (distinguished according
to place) and lower case are objects. The desired solution
maps S1 to T1, S2 to T2, and nothing to T3, along with
the corresponding predicate and object mappings. This
example is semantically impoverished (except that identical
letters represent identical predicates), and therefore is
solvable only on the basis of its structure. If the
hierarchical structure of the analogs is ignored, then there is
no basis for determining whether S1 should map to T1 or
T3. However, if hierarchial structure is considered, then S1
maps to T1 because they are embedded within S2 and T2,
respectively.

How does IMM2 solve this mapping? Suppose S2 is the
first proposition to become active, It will switch into
parent mode and activate its SPs. They will desynchronize
and activate G1 (the agent role of the predicate G) and ¢
(synchronized) and G2 and S1 (synchronized). S1 will enter
child mode because it is receiving excitation from the SP
above itself. G1 and G2 in the source will activate G1 and
G2 in the target (via their shared semantic units), and G1 and
G2 in the target will excite T2. T2 will (a) enter parent
mode, because it is receiving excitation from below itself,
and (b) activate T1, which will enter child mode. All Hebb
connections initially have strengths of zero. Active units
update their Hebb connections. Proposition units strengthen
their Hebb connections only with other proposition units in
the same mode. Thus, the connection from S1 to T1 will
grow stronger, the connection from S2 to T2 will grow
stronger, and all the other Hebb connections involving those
units will grow proportionately weaker (the learning rule is
competitive).

Figure 3. The IMM2 representation of Example 1.

Next suppose that S1 becomes active. It will activate the
predicates F1 and F2, which (via the semantic units and the
target’s predicate units) will excite both T1 and T3, causing
them to enter parent mode. On the basis of their inputs
from the semantic units, T1 and T3 are equally good
matches to S1. But by virtue of the Hebb connection from
S1 to T1 (established last iteration), T1 will have an
advantage over T3 in the inhibitory competition. It will
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therefore achieve a higher level of activation and further
strengthen its Hebb connection from S1. After several
iterations, the Hebb connection from S1 to T1 will approach
1.0 and the other Hebb connections involving those units
will grow negative. The model will have successfully
mapped the two analogs.

This illustration necessarily glossed over many details of
the model's operation. In particular, it does not make the
role of synchrony obvious. Synchrony represents case role-
object bindings, so it becomes particularly important when a
mapping depends upon these bindings. The original IMM
demonstrates how synchrony can be used to map such
analogies, so we shall not illustrate that aspect of IMM2
here.

Details of Operation

Establishing Synchrony: Every unit in IMM2 is
described by three primary state variables: Activation (a;),
phase (¢;), and output (0;). Each unit's phase varies
cyclically between 0 and 2r. Together, a unit's phase and
activation determine when it will fire (set o; to 1)

{1, if0<¢ <am/2
(1)

0, otherwise.
The greater a;, the longer the interval 0...a;n/2, and so the
greater the number of times i will fire during the cycle;
IMM2 codes activation as firing frequency.

Units synchronize their outputs by locking their phases,
and desynchronize their outputs by keeping their phases as
far apart as possible (the maximum difference between
phases is 1800):

Agij = xeii £(¢i, ¢, FELj), %)
where Agjj is the change in ¢; due to ¢;, FELjj is the
weight on the FEL from unit j to unit i, x is a scaling
constant (0<x<0.5), eij is a random binary variable (pejj
=1) = ajIFEL;jl), and f 1s a function that returns the angular
distance, a;;, between ¢; and ¢;. For FEL;j > 0,
f(9i.¢j;FELjj) = -a;j, and and for FELj; < 0, (¢;,¢;:FEL;j)
= -ajj + n. Thus, positive FELs encourage units to have
similar phases (and therefore to fire in synchrony), while
negative FELs encourage units to have phases 180° apart
(and therefore to fire out of synchrony). Unit i computes the
total change in its phase, A¢;, as the mean over j of all
Agjj (plus a constant phase increment, which causes the
units' phases to change cyclically over time). The FEL-
based updating of phase occurs on a faster time scale than
the cyclical incrementing,

Flow of Activation: Propositions, SPs, predicates and
objects compute their net inputs, n; by:

= ZO‘W-.m,},
i 3)

I
where oj is the output of unit j, and wjj is the connection
weight (Hebb or fixed) from j to i. mjj is O for proposition
units in different modes, and 1 for all other units. All lateral
inhibitory weights are set to ~ -0.98. Units update their
activations by:

i



Aa. =

na,n, <0,

[}

{m(l—a,.)-aa,.,n,. >0

@)
vhere yand é are growth and decay parameters, respectively.
rarget units update their Hebb connections from source
inits by:

Aw,}. =u(l- W )o,0 N )
tis a learning rate. Learning is competitive: each time wj;
s updated, the quantity Awjj /n is subtracted from the n
sther connections from source unit i and the n other
'onnections to target unit j. As a result, Zjwj; and Z;wj; are
dways 0.

Simulations

As a first test, we ran IMM2 on Example 1 (Figure 3) for
wo complete cycles. Each source proposition was chosen
0 be active once during each cycle and was allowed to
'emain active for 600 time slices, during which the model
an as described above. The mappings it established (in
erms of the final values of the Hebb weights) conformed
:xactly to the desired mappings. IMM2 mapped S1 to Tl
the desired mapping) with strength 1.00 (the maximum
value of Hebb weight), both S1 and S2 to T3 with strength
0.5, and SI1 to T2 and S2 to T1 with strength -1.00.
Likewise, all corresponding sub-proposition, predicate and
bbject units mapped with weights greater than 0.95, and all
non-corresponding predicates and objects mapped with
weights less than zero. Although this analogy is extremely
simple, it demonstrates that IMM2 can map propositions
based on their hierarchical structure alone.

To test IMM2's ability to cope with more deeply nested
hierarchies, we next tested it with a variant of Example 1
with one additional level of embedding. This analogy
(Example 2) is:

Source Target

S1: F(ab) TI: F(f g)

§2: G(c S1) T2: G(h T1)

S3: H(w S2) T3: H(v T2)
T4:F(d e)
TS: G(k T4)

Here, the correct mapping maps S1 to T1, S2 to T2, and S3
to T3, but this time, the model must respect two levels of
hierarchical structure to get the correct mappings: On the
basis of predicates alone, S1 is as good a match to T4 as to
T1; and on the basis of predicates and one level of
hierarchical embedding, S3 is as good a match to T5 as it is
to T3. Successfully mapping S3 to T3 (rather than to T35)
thus requires the model to honor hierarchical embedding at
two levels. The model successfully mapped these analogs:
After three cycles, all Hebb connections corresponding to
correct mappings had values greater than 0.75, and all those
corresponding to incorrect mappings had values less than
zero.

IMM2 also successfully mapped all the non-hierarchical
analogies with which we tested the original IMM (see
Hummel & Holyoak, 1992; Hummel et. al., 1994).

The most substantial test of IMM2 to date is based on a
derivative of Gentner and Toupin's (1986) "Jealous Animal"

story. The basic form of this story states that a cat was
friends with a walrus, which played with a seagull, and made
the cat jealous, causing the cat to become angry. Its anger
caused the cat to become reckless, which caused the cat to be
in danger. The seagull saved the cat, which caused the cat to
befriend the seagull. Gentner and Toupin tested children's
comprehension of stories like this by having them act them
out with different characters. The finding of primary interest
here is that comprehension was better for systematic stories,
which included higher-level statements about the causal
relationships between events, than for unsystematic stories,
which did not include such statements (the magnitude of this
effect varied as a function of a number of other variables).
Following Holyoak and Thagard (1989), we adapted the

jealous animal story for IMM2 by generating source and
target analogs from it, and testing the model's ability to map
them onto one another as a function of whether the analogs
were systematic or unsystematic (i.e., whether they
contained the higher-level propositions). If IMM2 can use
hierarchical statements (e.g., cause(A B)) to constrain
analogical mapping, then mapping should be faster and/or
more accurate with systematic than with unsystematic
analogies. The source and target analogs for the systematic
version of this analogy each contain 13 propositions, and are
too large to display here. The target story was the same as
the source except that the cat, walrus and seagull were
replaced with a dog, walrus, and penguin, respectively. Each
object was represented by six semantic units, of which
similar objects in the source and target shared five. The
model was allowed to run until the Hebb weights stabilized.

IMM2's performance on these simulations was mixed.
Although it succeeded in finding intuitively correct
mappings in the structured case, it also succeeded in doing
so in the unstructured case. In one representative
unstructured run, it found all the correct object and
proposition mappings (and no incorrect mappings) within
six cycles through the source (Hebb weights corresponding
to correct mappings were greater than 0.9, and those
corresponding to incorrect mappings were less than zero).
On an otherwise equivalent run with the structured version
of the analogy, the model settled on the correct mappings
(with no incorrect mappings) after a single cycle through the
source. Thus, IMM2 is faster to settle on the correct
mappings in the structured than the unstructured cases, but it
eventually succeeds in both cases. Although these results
show that IMM2 is capable of finding the correct mappings
in a complex analogy, they only show a modest advantage
for structured over unstructured versions of the analogy.

Discussion

We have yet to fully explore IMM2's properties, but
preliminary results suggest that it can represent and compare
simple hierarchies.  Central to this capacity is the
proposition unit’s ability to act both as an object filling a
role in one proposition and as a pointer to another. With
this extension, the one df synchrony provides for binding
suffices to capture structural relations within multi-level
propositions. IMM2 exploits both local and distributed
representations and both serial and parallel processing. The
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units that encode structural relations are strictly localist, but
the meanings of individual concepts are distributed over
multiple semantic units. During mapping, source
propositions are activated serially, and at a finer time scale
the firing of elements associated with distinct roles are
desynchronized, hence serial. This serial processing is
crucial in representing the bindings of objects to roles. At
the same time, target propositions respond in parallel to the
activation triggered by the firing of a source proposition.
The integrated system provides distributed representations of
meaning and decision-making by parallel constraint
satisfaction while maintaining systematicity of knowledge
(Fodor & Pylyshyn, 1988).
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