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Abstract: As machine learning algorithms become increasingly sophisticated to exploit

subtle features of the data, they often become more dependent on simulations. This paper

presents a new approach called weakly supervised classification in which class proportions

are the only input into the machine learning algorithm. Using one of the most challenging

binary classification tasks in high energy physics — quark versus gluon tagging — we

show that weakly supervised classification can match the performance of fully supervised

algorithms. Furthermore, by design, the new algorithm is insensitive to any mis-modeling

of discriminating features in the data by the simulation. Weakly supervised classification

is a general procedure that can be applied to a wide variety of learning problems to boost

performance and robustness when detailed simulations are not reliable or not available.
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1 Introduction

With the increasing complexity of theoretical models and computing power, many scientific

projects increasingly rely on simulations to design analysis techniques. This is especially

true for high energy particle physics, where high fidelity Monte Carlo (MC) simulation

is used to model physical processes at distances ranging from 10−25 meters all the way

to the macroscopic dimensions of detectors. However, just as models have become more

complex, analysis techniques have also become more sophisticated. Numerous, often subtle,

features of events are combined using powerful supervised learning algorithms trained on

large simulated (labeled) datasets. Despite these advances, there is no guarantee that

techniques highly optimized in simulation are also optimal in nature. For example, it is

well-known that comparisons of tagging efficiencies between data and simulation result in

large (& 10%-30%) corrections (scale factors) for b-tagging [1, 2], quark/gluon tagging [3, 4],

boosted W tagging [5, 6], and high pT top quark tagging [7, 8]. Non-unity correction factors

show that the classifiers trained on simulation are necessarily sub-optimal when applied to

data. It is sometimes the case that one knows the proportions of each class better than the

properties of each class that are useful for classification. Weakly supervised classification

is a new machine learning paradigm for classification where training is performed directly

on (unlabeled) data.

The task of training a classifier on multidimensional data based only on class pro-

portions is highly under-constrained. Neural network training is already a non-convex

problem, but removing all local information about class labels significantly increases the

difficulty of optimization. However, the field of multi-instance learning (MIL) [9] has shown

that local information is not necessarily needed for classification.1 The setup of MIL is a

series of sets (‘bags’) of individual instances without individual labels. Consider the task

of distinguishing two classes, called A and B. For the training set, it is known if a bag

contains at least one instance of class A. The algorithm is then optimized to identify the

presence of at least one instance of class A in an unseen bag. Recent work has extended

this procedure to identify the class of individual instances, still only training on bag-level

1See ref. [10] for a review of recent work in MIL.
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labels [11]. In this paper we make supervision even weaker in that bag-labels are only

known on average. In particular, all that is known to the training is the expected fraction

of class A in any particular bag. This paradigm is also referred to as Learning with Label

Proportions (LLP) [12].

High energy quarks and gluons produced in reactions at the Large Hadron Collider

(LHC) result in collimated streams of particles traveling at nearly the speed of light, known

as jets. One of the most challenging classification tasks in high energy physics is to distin-

guish quark-induced jets from gluon-induced jets based on their radiation pattern. There

is an extensive literature exploring discriminating observables [13]. However, standard

quark and gluon discriminants are known to be poorly modeled by state-of-the-art sim-

ulations [3, 14]. Despite this, the fraction of quark and gluon jets in a given sample is

often well-known. At a fixed order in perturbation theory, the probability for an out-going

parton to be a quark or a gluon depends on well-known parton distribution functions and

matrix elements. Therefore, quark versus gluon discrimination is well-suited for weakly

supervised classification and is therefore the main example used later in this paper.

This paper is organized as follows. Section 2 formally introduces weakly supervised

classification and describes how it is applied in practice. The technique is illustrated

using quark versus gluon jet tagging in section 3. The paper ends in section 4 with some

concluding remarks. The source code implemented to produce the results presented in this

paper is available at https://doi.org/10.5281/zenodo.322813.

2 Weakly supervised classification

Given a set of data originating from two classes labeled 0 and 1, the goal of classification is to

construct a function f : Rn → {0, 1}, where n is the dimensionality of the feature space used

to discriminate the two classes. In the traditional classification paradigm of fully supervised

training, the function ffull is built by minimizing a loss function like the following:

ffull = argminf ′:Rn→{0,1}

N∑
i=1

`
(
f ′(xi)− ti

)
, (2.1)

where N is the number of labeled data available for training, ` is a loss function with

limx→0 `(x) = 0, and ti is the true label of example i. A common loss function is the

squared error. In order to provide flexibility and stability, one often modifies the original

problem to take f : Rn → [0, 1]. The ideal classifier that one tries to approximate with

eq. (2.1) is based on the likelihood ratio p(~x|0)/p(~x|1), where p(~x|i) is the n-dimensional

probability density for the feature vector ~x for the class i ∈ {0, 1}. Ideally, f(x) would

be 1 when the likelihood ratio is maximum and 0 when it is minimum. Weakly supervised

classification is a new paradigm in which instead of knowing the ti, all that is known is

the proportion of events in either class: y =
∑

i ti/N . Thus, the weakly supervised fweak
is given by

fweak = argminf ′:Rn→[0,1]`

(
N∑
i=1

f ′(xi)

N
− y

)
. (2.2)
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The argument of eq. (2.2) is non-convex, with many minima. In particular, the trivial

solution f ′(x) = y results in a loss of zero. However, using multiple batches of data with

different proportions yk is sufficient to collapse the solution space, so long as the distribution

p(~x|i; k) = p(~x|i), i.e. the distribution of the discriminating features for a particular class

is the same in every batch k. To build intuition for why there is any hope to solve this

problem, consider a case where there are two batches A and B with proportions yA and

yB. Consider an n-dimensional histogram where the ith dimension captures a discretized

version of the ith discriminating feature. If the ith dimension has mi bins, then the total

number of bins in the histogram is M =
∑n

i=1mi. One can always rearrange bins so that

instead of an n-dimensional histogram with mi bins in the ith dimension, there is a one-

dimensional histogram with M bins. As visualizing high dimensional histograms can be

cumbersome, let hA be one-dimensional histograms with M bins for the batch A and hB
be the corresponding histogram for batch B. Then, for each bin i, one can write

hA,i = yAh1,i + (1− yA)h0,i (2.3)

hB,i = yBh1,i + (1− yB)h0,i, (2.4)

where hX,i is the content of the ith bin of the histogram hX . Except for contrived scenar-

ios, eq. (2.3) will have a unique solution for h0,i and h1,i, which are discretized versions

of the probability densities p(~x|0) and p(~x|1). One can then form an (approximately) op-

timal classifier from the ratio of histograms with bin contents h0,i/h1,i. If the number of

dimensions is large, one can add a further step to use machine learning to approximate

the optimal classifier from h0,i and h1,i. As a result, the problem is completely solvable.

Weakly supervised training combines the classification step with the first step and does so

without binning. Solving eq. (2.3) ‘by-hand’ is intractable when n is relatively large or the

number of examples is relatively small. It is also complicated when there are more than

two batches (over-constrained). These challenges are all naturally handled by the all-in-one

machine learning approach of weakly supervised classification, as illustrated below.

In the weakly supervised training used in the following examples, f ′ in eq. (2.2) is

parametrized as a three-layer neural network with three inputs, a hidden layer with 30

neurons, and a sigmoid output. We use the Adam optimizer [15] in Keras [16] with a learn-

ing rate of 0.009 and train for 25 iterations. As reference, we consider a traditional classifier

ffull = argminf ′:Rn→[0,1]`
(
f ′(xi)− ti

)
, (2.5)

where ti labels the individual instances and f ′ is parametrized as a three-layer neural

network with three inputs, a hidden layer with 10 neurons, and a sigmoid output. Min-

imization is performed with stochastic gradient descent in Keras with a learning rate of

0.01 run for 40 iterations. For each training, both networks are initialized with random

weights, following a normal distribution.

Figure 1 shows the weakly supervised classifier performance when training with 9

subsets of data with proportions between 0.2 and 0.4 compared with that of the fully

supervised one. Three features, labeled 1 − 3 are constructed so that the distribution of

feature i given class j follows a normal distribution with mean µij and standard deviation

– 3 –
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Figure 1. Receiver Operator Characteristic (ROC) curves for instance classification, using three

individual features and then combined using a fully supervised network and the weakly supervised

classifier. One performance metric is the Area Under the Curve (AUC) which is the integral of the

ROC curve.

Feature µ0 σ0 µ1 σ1

1 26 8 18 7

2 0.09 0.04 0.06 0.04

3 0.28 0.04 0.23 0.05

Table 1. Mean (µ) and standard deviation (σ) values of the normal distributions for class 0 and 1

of each feature.

σij . For reference, the values of µij and σij used for the example shown in figure 1 are

in table. 1. Both the traditional and weakly supervised classifiers have the same Receiver

Operator Characteristic (ROC) and thus have identical classification performance. Note

that the loss for weakly supervised classification is symmetric with respect to swapping the

class assignment, therefore the classifier output for a given training can give higher values

for class 0, while for a different training it would give higher value for class 1.

As with any machine learning algorithm with inherent randomness, the performance of

a weakly supervised classifier has a stochastic component. This is quantified by retraining

the same network many times with different random number seeds in each iteration. The

interquartile range (IQR) over the Area Under the Curve (AUC) values for each training

is a measure of the spread due to the inherent randomness. Figure 2 shows the AUC IQR

for the toy example with one proportion fixed to 0.2 and the second proportion scanned

from 0.2 to 0.7. The stability improves as the difference between the class proportions

increases. In addition to the performance varying less as the proportions are further apart,

the overall performance quantified by the median AUC (denoted by 〈AUC〉) also improves

(increases). The improvement in the median AUC is not as dramatic as the reduction

in the AUC IQR, but it does suggest that it is (slightly) easier for the machine learning

algorithm when the proportions are very different.2 This makes sense in the context of the

2Even when the proportions are within few percents, stable performance can be achieved if multiple

– 4 –
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Figure 2. Median (solid triangles) and interquartile range (solid dots) of the AUC as a function of

the difference in proportions ∆y between the two subsets of the training sample. The proportion

corrisponding to one subset is fixed to 0.2, while the other varies. For each point the AUC is

computed 100 times on the same test set with different trainings, each performed with a random

weight initialization. The maximum AUC for each point is also shown (hollow triangles).

two-step intuition-building paradigm given above: the algorithm can spend more attention

on the classification task if it is easier to extract the class distributions. Easier here refers

to the fact that the solution to eq. (2.3) has a Jacobian factor with (∆y)−1, which becomes

numerically unstable as ∆y becomes small.

3 Example: quark and gluon jet discrimination

Due to the strength of the strong force, there is a plethora of gluon jets produced at the

LHC. However, many processes result in mostly quark jets. Prominent examples include

the identification of hadronically decaying W bosons [17, 18], jets associated with vector

boson fusion [19–21], and multi-quarks resulting from supersymmetry [22]. The references

given here are the small number of public results that mention quark/gluon tagging, but

there many more analyses that would benefit from a tagger if a robust technique existed.

The weakly supervised classification strategy is particularly useful for quark/gluon

tagging because the fraction of quark jets for a particular set of events is well-known from

parton distribution functions (PDF) and matrix element (ME) calculations while useful

discriminating features have not been computed to high accuracy and simulations often

mis-model the data. In particular, the fraction of out-going quarks and gluons depends

on the convolution of PDF and ME calculations where the state-of-the-art is automated

next-to-leading order [23–25] with many independent input and validation measurements

spanning LEP, SLD, Tevatron, and the LHC. In contrast, fragmentation is modeled with a

perturbative parton shower that only resums the leading logarithms [26–28] and hadroniza-

tion models that are not derived from first principles (non-perturbative phenomenological

models) [29, 30]. There is a lot of powerful discrimination information inside the jet radi-

(> 2) subsets with different proportions can be used for training.

– 5 –



J
H
E
P
0
5
(
2
0
1
7
)
1
4
5

ation pattern,3 so it is of great interest to use this information without heavily relying on

simulation for fragmentation modeling.

To illustrate this concrete example, quark and gluon jets are simulated and a weakly

supervised classifier is trained on the generated event sample. Unlike real data, in the

simulated sample, we also know per-event labels which are used to additionally train a fully

supervised classifier. Events with 2→ 2 quark-gluon scattering (dijet events) are simulated

using the Pythia 8.18 [34] event generator. Jets are clustered using the anti-kt algorithm [35]

with distance parameter R = 0.4 via the FastJet 3.1.3 [36] package. Jets are classified as

quark- or gluon-initiated by considering the type of the highest energy quark or gluon in

the full generator event record that is inside a 0.3 radius of the jet axis. For simplicity, one

transverse momentum range is considered: 45 GeV < pT < 55 GeV. Additionally, there

is a pseudo-rapidity requirement that mimics the usual detector acceptance for charged

particle tracking: |η| < 2.1. Heuristically, gluons have twice as much strong-force charge as

quark jets, resulting in more constituents and a broader radiation pattern. More precisely,

at leading logarithm the ratio of the average gluon and quark jet constituent multiplicity

is equal to the ratio of the QCD color-factor (Casimir) associated with quarks (CF ) and

gluons (CA): CA/CF = 9/4 ∼ 2 [13, 37]. In fact, due to Casimir scaling, the ROC curve for

any pT and angle-weighted moments of the jet radiation pattern is set by CA/CF [38]. The

following variables are useful for quark/gluon discrimination: the number of jet constituents

n, the first radial moment in pT (jet width) w, and the fraction of the jet pT carried by the

leading anti-kT R = 0.1 subjet f0. The constituents i considered for computing n and w

are the hadrons in the jet with pT > 500 MeV.

A weakly supervised classifier with one hidden layer of size 30 is trained by consid-

ering 12 bins of the distribution of the absolute difference in pseudorapidity between the

two jets [39]. The proportion of quark initiated jets varies between 0.21 and 0.32. Figure 3

shows that, while the individual observables perform differently in the high or low gluon

efficiency (true positive rate) regimes, their combination in a NN gives consistently better

performance. The weakly supervised classifier matches the performance of the fully su-

pervised NN, despite only knowing sample proportions instead of individual event labels.

By construction the weakly supervised classifier is also robust against a realistic amount

of mis-modeling in the input variables. This feature is tested by building a pseudo-data

sample where the probability distributions of n and w are distorted in the training sample

to emulate the difference in efficiency measured in ref. [3]. The study in ref. [3] found

that a classifier extracted from simulation is more powerful than one extracted from the

data. This is reflected in the results presented in the right plot of figure 3. When a fully

supervised classifier is trained on a sample generated with the same distribution as the

test sample (mimicking training and testing on simulation), it achieves a better perfor-

mance than when trained on the original sample and tested on the distorted pseudo-data

(mimicking training on simulation and testing on data). In contrast, the weakly super-

vised classifier can be trained directly on the distorted pseudo-data sample (representing

the data) so is insensitive to the mismodeling of the input variables. This results in a 10%

3See refs. [3, 4, 13, 31, 32] and also ref. [33] for a summary.
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(a)

(b) (c)

Figure 3. Distributions of the discriminating features n, w and f0 (a) and comparison of ROC

curves for quark/gluon jet discrimination using a fully supervised classifier or a weakly supervised

classifier. In (b) the fully and weakly supervised classifiers are trained on identical simulated data

and evaluated on a test sample drawn from the same population. The weakly supervised classifier

matches the performance of the fully supervised one. The curves corresponding to the three input

observables used as discriminant are shown as reference. In (c), the fully supervised classifier (blue

line) is trained on a labeled simulated training sample. The weakly supervised classifier (red line) is

trained on an unlabeled pseudo-data training sample. In both cases, the performance is evaluated

on the same pseudo-data test sample. The ratios to the performance of a fully supervised classifier

trained on a labeled pseudo-data sample are shown in the bottom pad.

bias from the standard procedure that is avoided by the weakly supervised classifier. Even

larger differences may be expected from this and other classification tasks that utilize even

more input features or are more mis-modeled. The weakly supervised classifier is robust

and outperforms the standard supervised learning trained on simulation.

4 Conclusions

We have presented a new approach to classification with NN in cases where class propor-

tions are known but individual labels are not readily available. This weakly supervised

classification has broad applicability and has been demonstrated in one important discrim-

– 7 –
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Figure 4. ROC curves for instance classification using five individual features and then combined

using a fully supervised network and the weakly supervised classifier.

ination task in high energy physics: quark versus gluon jet tagging. In the quark/gluon and

related contexts, weakly supervised classification provides a robust and powerful approach

because it can be directly trained on examples from (unlabeled) data instead of (labeled,

but unreliable) simulation. The examples presented so far have used a small number of

input features to illustrate the ideas, but there is no algorithmic limitation on the number

of features. Figure 4 is a simple extension of figure 1 with 5 features instead of 3; in future

work, we will study the extension to many more features (tens to hundreds). This paper

has laid the conceptual groundwork for this new tool that has started a new classification

paradigm that can be applied to a wide variety of learning problems to boost performance

and robustness when detailed simulations are not reliable or not available.
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with axis-parallel rectangles, Artif. Intell. 89 (1997) 31.

[10] J. Amores, Multiple instance classification: Review, taxonomy and comparative study, Artif.

Intell. 201 (2013) 81.

[11] D. Kotzias, M. Denil, N. de Freitas and P. Smyth, From group to individual labels using deep

features, in the proceedings of the 21th ACM SIGKDD international conference on knowledge

discovery and data mining (KDD15), August 10–13, Sydney, Australia (2015).

[12] G. Patrini, R. Nock, P. Rivera and T. Caetano, (Almost) No label no cry, in Advances in

Neural Information Processing Systems 27, Z. Ghahramani et al. eds., Curran Associates

Inc., U.S.A. (2014).

[13] J. Gallicchio and M.D. Schwartz, Quark and gluon tagging at the LHC, Phys. Rev. Lett. 107

(2011) 172001 [arXiv:1106.3076] [INSPIRE].

[14] J.R. Andersen et al., Les Houches 2015: Physics at TeV Colliders Standard Model Working

Group Report, in the proceedings of the 9th Les Houches Workshop on Physics at TeV

Colliders (PhysTeV 2015), June 1–19, Les Houches, France (2016), arXiv:1605.04692

[INSPIRE].

[15] D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980.

[16] F. Chollet, Keras, https://github.com/fchollet/keras (2015).

[17] CMS collaboration, V tagging observables and correlations, CMS-PAS-JME-14-002 (2014).

[18] ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in

proton-proton collisions at
√
s = 8 TeV with the ATLAS detector, JHEP 12 (2015) 055

[arXiv:1506.00962] [INSPIRE].

[19] CMS collaboration, Search for the standard model Higgs boson produced through vector boson

fusion and decaying to bb, Phys. Rev. D 92 (2015) 032008 [arXiv:1506.01010] [INSPIRE].

[20] CMS collaboration, Measurement of electroweak production of two jets in association with a

Z boson in proton-proton collisions at
√
s = 8 TeV, Eur. Phys. J. C 75 (2015) 66

[arXiv:1410.3153] [INSPIRE].

[21] ATLAS collaboration, Search for the Standard Model Higgs boson produced by vector-boson

fusion and decaying to bottom quarks in
√
s = 8 TeV pp collisions with the ATLAS detector,

JHEP 11 (2016) 112 [arXiv:1606.02181] [INSPIRE].

– 9 –

http://dx.doi.org/10.1140/epjc/s10052-014-3023-z
https://arxiv.org/abs/1405.6583
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.6583
https://cds.cern.ch/record/1599732
http://dx.doi.org/10.1140/epjc/s10052-016-3978-z
https://arxiv.org/abs/1510.05821
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.05821
http://dx.doi.org/10.1007/JHEP12(2014)017
https://arxiv.org/abs/1410.4227
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.4227
http://dx.doi.org/10.1007/JHEP06(2016)093
https://arxiv.org/abs/1603.03127
http://inspirehep.net/search?p=find+EPRINT+arXiv:1603.03127
http://dx.doi.org/10.1103/PhysRevLett.107.172001
http://dx.doi.org/10.1103/PhysRevLett.107.172001
https://arxiv.org/abs/1106.3076
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.3076
https://arxiv.org/abs/1605.04692
http://inspirehep.net/search?p=find+EPRINT+arXiv:1605.04692
https://arxiv.org/abs/1412.6980
https://github.com/fchollet/keras
http://cds.cern.ch/record/1754913
http://dx.doi.org/10.1007/JHEP12(2015)055
https://arxiv.org/abs/1506.00962
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.00962
http://dx.doi.org/10.1103/PhysRevD.92.032008
https://arxiv.org/abs/1506.01010
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.01010
http://dx.doi.org/10.1140/epjc/s10052-014-3232-5
https://arxiv.org/abs/1410.3153
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.3153
http://dx.doi.org/10.1007/JHEP11(2016)112
https://arxiv.org/abs/1606.02181
http://inspirehep.net/search?p=find+EPRINT+arXiv:1606.02181


J
H
E
P
0
5
(
2
0
1
7
)
1
4
5

[22] B. Bhattacherjee, S. Mukhopadhyay, M.M. Nojiri, Y. Sakaki and B.R. Webber, Quark-gluon

discrimination in the search for gluino pair production at the LHC, JHEP 01 (2017) 044

[arXiv:1609.08781] [INSPIRE].

[23] J. Rojo et al., The PDF4LHC report on PDFs and LHC data: Results from Run I and

preparation for Run II, J. Phys. G 42 (2015) 103103 [arXiv:1507.00556] [INSPIRE].

[24] J. Alwall et al., The automated computation of tree-level and next-to-leading order

differential cross sections and their matching to parton shower simulations, JHEP 07 (2014)

079 [arXiv:1405.0301] [INSPIRE].

[25] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO

calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043

[arXiv:1002.2581] [INSPIRE].
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