UC Riverside UC Riverside Previously Published Works

Title

Traceless Protection for More Broadly Applicable Olefin Metathesis

Permalink https://escholarship.org/uc/item/8rr6n5c4

Journal Angewandte Chemie International Edition, 58(16)

ISSN 1433-7851

Authors

Mu, Yucheng Nguyen, Thach T van der Mei, Farid W <u>et al.</u>

Publication Date

2019-04-08

DOI

10.1002/anie.201901132

Peer reviewed

HHS Public Access

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2020 April 08.

Published in final edited form as:

Author manuscript

Angew Chem Int Ed Engl. 2019 April 08; 58(16): 5365–5370. doi:10.1002/anie.201901132.

Traceless Protection for More Broadly Applicable Olefin Metathesis

Yucheng Mu[†],

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)

Thach T. Nguyen[†],

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)

Farid W. van der Mei,

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)

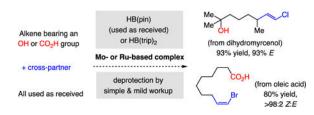
Richard R. Schrock, and

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA), Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)

Amir H. Hoveyda

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)

Abstract


An operationally simple in situ protection/deprotection strategy that significantly expands the scope of kinetically controlled catalytic Z- and E-selective olefin metathesis is introduced. We demonstrate that, prior to the addition of a sensitive Mo- or Ru-based complex, treatment of a hydroxy- or a carboxylic acid-containing olefin with commercially available HB(pin) or readily accessible HB(trip)₂ (pin = pinacolato, trip = 2,4,6-tri(iso-propyl)phenyl) for 15 minutes is sufficient for efficient generation of a desired product. Routine workup leads to quantitative deprotection. A range of stereochemically defined Z- or E-alkenyl chlorides, bromides, fluorides, and boronates or Z-trifluoromethyl-substituted alkenes with a hydroxy- or a carboxylic acid group were thus prepared in 51-97% yield and 93% to >98% stereoselectivity. The substrates, HB(pin), and cross-partners were used as received. We also show that, regardless of whether a polar functional unit is present or not, a small amount of HB(pin) (e.g., 10 mol %) may be used to remove residual water, significantly enhancing efficiency (i.e., lower catalyst loading).

Graphical Abstract

amir.hoveyda@bc.edu.

[†]These authors contributed equally.

Without a trace: Alkenes containing an alcohol and/or a carboxylic acid group can now be converted to Z- or E-alkenes through single vessel operations that consist of in situ protection, catalytic cross-metathesis, and deprotection by mild work-up/purification.

Keywords

alkenes; catalysis; cross-metathesis; stereoselectivity; synthesis

*T*he colossal impact of olefin metathesis on modern chemistry is largely due to the complementary nature of Mo-based alkylidenes and Ru-based carbenes,^[1] an attribute more recently manifested in the recently introduced methods for *Z*- or *E*-selective processes (Scheme 1a).^[2] While only monoaryloxide pyrrolide (MAP)^[3] **Mo-1** and monoaryloxide chloride (MAC)^[4] **Mo-2** can be used to generate *Z*- or *E*-alkenyl halides,^[5] and synthesis of *Z*-trifluoromethyl-substituted alkenes is confined to reactions with **Mo-2**,^[4] a hydroxy or a carboxylic acid unit decompose the derived catalysts rapidly. Reactions with **Ru-1**^[6] can involve hydroxy-containing substrates, but efficiency is lower with an allylic alcohol,^[7] and, as with Mo-based catalysts, a carboxylic acid is not tolerated.^[7] Unsaturated organic compounds bearing an alcohol and/or a carboxylic acid,^[8–9] are suitable substrates for **Ru-2**; however, unlike **Mo-1** and **Ru-1**, and similar to **Mo-2**, monosubstituted alkenes cannot be used.^[10]

Unsaturated hydrocarbons with a hydroxy or a carboxylic acid group are an important class of compounds in chemistry.^[11] Many are renewable raw materials, including animal fats and vegetable oils, inexpensive and viable substitutes for the dwindling petrochemicals,^[11] and others are biologically active. The ability to synthesize stereochemically defined alkenyl halide derivatives^[5] of the aforementioned molecules by cross-metathesis without protection/deprotection sequences or rigorous purification would be highly advantageous. In this context, stereochemically defined alkenes with a fluoro or a trifluoromethyl substituent would be especially attractive products. Such entities are vital to future advances in medicine,^[12] and the corresponding chlorides or bromides may be transformed to many valuable entities with high stereospecificity by catalytic cross-coupling.^[13]

The above considerations led us to envision a traceless protecting group strategy (Scheme 1b) that would offer the following features: a) efficient and rapid protection of an alcohol or a carboxylic acid under mild conditions; b) readily accessible and mild reagent; c) transient derivatives that are not too basic or nucleophilic (e.g., a metal alkoxide); d) easily removable and innocuous byproducts with no adverse influence on catalyst activity; e) umasking by a simple, efficient, and mild protocol. Herein, we disclose the realization of the above objective.

The negative impact of a Lewis basic amide or amine on the efficiency of olefin metathesis reactions with Ru-based catalysts has been formerly addressed by the addition of an appropriate additive (e.g., a Ti-based complex^[14] or a BrØnsted acid^[15]). In 2005 we reported a case where chelation of a Mo alkylidene with a nearby secondary amine may be circumvented by pre-treatment of the substrate with freshly distilled catecholborane (12 h, 22 °C), releasing H₂. Ensuing subjection to aqueous NaOH regenerated the product free amine.^[16] We thus chose to identify another boron–hydride reagent which, while readily available and inert towards addition to alkenes, can react with a hydroxy group to afford a boronate^[17] more quickly (e.g., 1 vs. 12 h) and without the need for initial purification/ drying. These deliberations led us to pinacolborane (HB(pin)), a robust, mild and commercially available reagent. Whether the strategy would be applicable to carboxylic acids remained to be established.

To probe the feasibility of the approach, we treated a mixture of oleyl alcohol and *Z*dichloroethene with 1.1 equivalent of HB(pin) for just 15 minutes at room temperature, affording boronic ester **1** (observable by ¹H and ¹¹B NMR spectroscopy; Scheme 2a); **Mo-2** (3.0 mol % in benzene) was then added. After four hours and routine silica gel chromatography, we isolated *Z*-alkenyl chlorides **2a** and **3** in 87% and 78% yield, respectively (>98% *Z*). Similarly, we synthesized *Z*-alkenyl bromide **2b** (69% yield, >98:2 *Z:E*), and *Z*-F₃C-substituted alkene **2c** (72% yield, >98:2 *Z:E*). The approach is amenable to gram-scale operations (Scheme 2b) and the use of a complex confined in a paraffin pellet ^[18] (Scheme 2c). Regardless of the cross-partner or the conditions used, we were able to obtain the alkyl-substituted alkenyl halide (cf. **3**) or trifluoromethyl co-products with identical stereochemical purity as the component bearing a primary alcohol but in slightly lower yields (volatile). The oleyl alcohol, the halogen-containing reagents, and HB(pin), all commercially available, were used as received.

Different unsaturated alcohols and cross partners are suitable substrates (Table 1). Kinetically Z- or E-selective transformations with substrates with a primary aliphatic (entry 1), a primary or secondary allylic (entries 2–3), or a tertiary alcohol (entries 4–6) were efficient, affording 1,2-disubstituted alkenyl boronates (**5** and **10b**) or alkenyl halides (**7**, **9**, **10a**, and **11**) in 59–93% yield and with high stereoselectivity.

The strategy is applicable to more challenging reactions, involving trisubstituted alkenes (Scheme 3a). Citronellol was converted to *Z*-alkenyl fluoride **12a** with 94:6 fluoro:bromo selectivity, in 90% yield (pure fluoride) and >98:2 *Z*.*E* selectivity. The transformation to *E*-alkenyl chloride **12b** was as efficient and stereoretentive (80% yield, 95:5 *E*:*Z*). *Z*-Alkenyl fluoride **13** was prepared from natural product bisabolol in 87% yield (pure fluoride) and 98:2 *Z*.*E* selectivity. In light of the prevalence of compounds that contain an isoprenyl group along with a polar (e.g., hydroxy) group, the approach provides a cost-effective and stereoselective method for synthesis of an assortment of valuable and/or easily functionalizable derivatives. Traceless protection may be used in reactions that convert readily available trisubstituted alkenes to those that are less easily accessible (Scheme 3b), ^[19] including alkenyl chlorides, bromides, and olefins that contain three C-based substituents (**15a-b**^[20] and **18**, respectively). The high yield (80–90%) and stereoisomeric purity (95% to >98% of one isomer) with which **12a-b** and **13** (Scheme 3a) are formed is

noteworthy because, generally, alkenyl halides bearing an unhindered (linear) alkyl substituent cannot be obtained efficiently from a terminal or a 1,2-disubstituted olefin. Homocoupling and/or isomerization of the 1,2-disubstituted olefin is a complication with these less substituted alkenes, and fluoro:bromo or *E*:*Z* selectivity is typically lower (\sim 70:30).^[5]

Commercially available eugenol was converted to alkenyl chloride **19a** in 79% yield and 96:4 *Z*:*E* selectivity (Scheme 4). The reaction generating *ortho*-substituted **19b** (55% yield, 95:5 *Z*:*E*) was somewhat less efficient, perhaps due to internal $O \rightarrow Mo$ chelation.^[21] When we applied the same procedure to synthesis of *E*-styrenyl halides **20a** and **20b**, there was <5% conversion. This might be for two reasons: reduced Lewis basicity of the styrenyl phenol, resulting in slower boronate formation, a scenario that is supported by analysis of the relative rates of boronate formation (¹H NMR), ^[22] and lower rate of olefin metathesis due to the sterically more hindered alkenes. Therefore, with 2.0 equivalents of HB(pin) **20a** and **20b** were isolated in 78% and 75% yield, respectively (>98:2 *E*:*Z*). With more borane present, brief subjection of the solution to mild vacuum (5 min, 2 torr) is needed to ensure maximum efficiency (e.g., without vacuum: 40% conv. with natural product eugenol); this shows that excess HB(pin) and/or its long term exposure to a Mo MAP or MAC complex can have an adverse impact (more on this below).

With oleic acid (Scheme 5), 2.0 equivalents of HB(pin) were needed and Z-alkenyl bromide **21a** was isolated in 66% yield (>98% Z). The need for excess borane was not surprising in light of the earlier data (cf. **20a-b**) and the lower Lewis basicity of a carboxylic acid. More disconcerting were the boron containing byproducts; one was confirmed to be (pin)BOB(pin) (¹¹B NMR, δ 21.7 ppm),^[23] arising from bimolecular disproportionation of in situ generated carboxyl boryl compounds (to give a carboxylic anhydride).^[24]

We therefore examined the effectiveness of HB(trip)₂. We surmised that this more sizeable alternative might be less susceptible to disproportionation and react less readily with a Mo alkylidene complex; although, boronate formation could be too slow as well. In the event, we prepared HB(trip)₂, a robust reagent that can be accessed in multi-gram quantities in two straightforward steps and 70–75% overall yield.^[21] When pre-treatment with HB(trip)₂ was applied (1.1 equiv.), under otherwise identical conditions, we were able to isolate 21a in 80% yield (vs. 66% with HB(pin); >98% Z). There was no byproducts and subjection to mild vacuum was not necessary. Synthesis of Z-alkenyl chloride 21b and Z-F₃C-substituted alkene 21c further highlight utility. The smaller difference in yields for alkenyl chloride 21b might be attributed to the faster pace of this particular reaction, compared to those involving the less reactive Z-1,2-dibromoethene (cf. 21a) or Z-1,1,1,4,4,4-hexafluoro-2-butene (cf. 21c), which in turn implies that, as cross-metathesis rate is reduced, there is stronger likelihood that a borane reacts with a Mo complex.^[25] The conversion of aryl olefin 22 to Zalkenyl chloride 23, carried out in the presence of anti-malarial agent artesunate,^[26] demonstrates applicability to relatively sensitive functional groups. Whereas trisubstituted alkene of citronellic acid was converted to Z-alkenyl fluoride 24 in the presence of 1.1 equivalents of HB(trip)₂ (85% yield, 96:4 Z:E), there was <5% conversion when HB(pin) was used or when the combination of the more sensitive Mo-2 and HB(trip)₂ was employed (<5% conv.).

The present strategy may be used to improve reactions with Ru-based catalysts that, although effective with terminal alkenes (i.e., **Ru-1** vs. **Ru-2**),^[10] do not tolerate a carboxylic acid. Whereas there was no conversion to **26** under a typical set of conditions (Scheme 6), the desired product was obtained in 70% yield when the mixture was charged with 5.0 mol % **Ru-1** after brief initial treatment with HB(trip)₂. There was <5% conversion with HB(pin), indicating that, similar to Mo-based systems, this class of Ru carbenes is susceptible to decomposition^[27] when subjected to a reactive boron hydride. This example underscores a key advantage of the transient protection strategy, as **26** is a type of acid/ester compound, which would be difficult to access efficiently by site-selective hydrolysis of a diester. While stereocontrol is not optimal with **Ru-1**, the strategy should be germane to transformations with the more selective variants.^[28]

The approach can be applied conveniently to removing residual moisture or other debilitating impurities, allowing for improved efficiency (Scheme 7). Subjection of *Z*-crotyl–B(pin) to *Z*-1,2-dichloroethene and 3.0 mol % **Mo-2** led to minimal conversion; only after the addition of another 2.0 mol % **Mo-2** were we able to isolate **27** in 75% yield (>98:2 *Z:E*). In contrast, with 4.0 gram of *Z*-crotyl–B(pin), after initial treatment with just 10 mol % HB(pin) for 15 minutes at room temperature before addition of just 1.6 mol % **Mo-2** for one hour, we obtained 4.3 grams of **27** (96% yield) as a single stereoisomer after distillation.

In closing, we present a practical solution to several key problems in the state-of-the-art in catalytic olefin metathesis, which are likely to have an immediate impact on stereoselective chemical synthesis. Development of additional traceless protection approaches that are applicable to other sensitive functional groups is in progress.

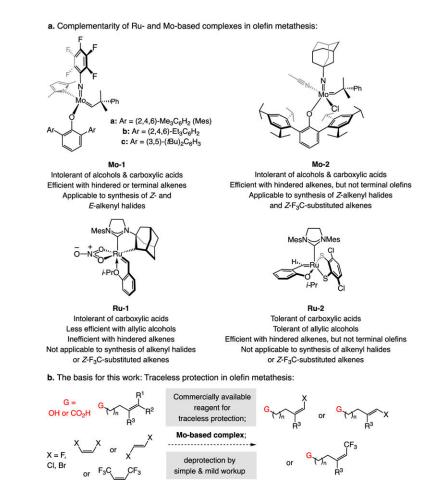
Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements.

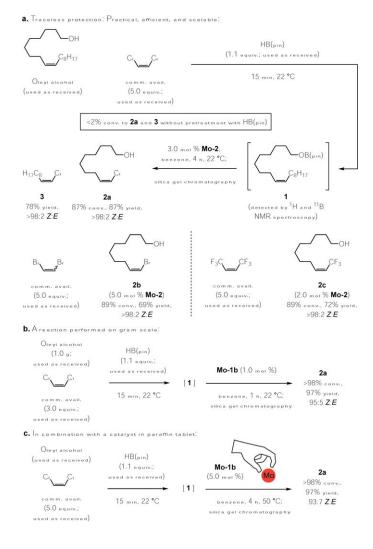
Financial support was provided by the NIH (GM-59426 and GM-130395). T.T.N. gratefully acknowledges a LaMattina Graduate Fellowship. We thank J. del Pozo, F. Romiti, and M. J. Koh for helpful discussions.

References & Footnotes

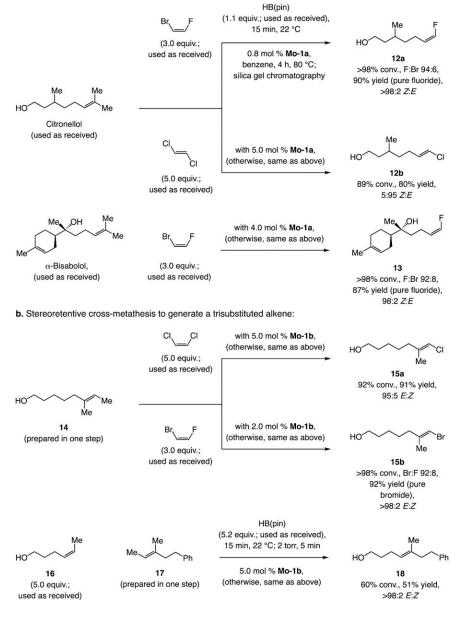

- [1]. Hoveyda AH, Zhugralin AR, Nature 2007, 450, 243–251. [PubMed: 17994091]
- [2]. a)For reviews regarding the development of kinetically controlled stereoselective olefin metathesis and their applications in organic synthesis, see: Hoveyda AH, Malcolmson SJ, Meek SJ, Zhugralin AR, Angew. Chem. Int. Ed 2010, 49, 34–44;b)Fürstner A, Science 2013, 341, 1357–1364;c)Shahane S, Bruneau C, Fischmeister C, ChemCatChem 2013, 5, 3436–3459;d)Hoveyda AH, J. Org. Chem 2014, 79, 4763–4792; [PubMed: 24720633] d)Hoveyda AH, Khan RKM, Torker S, Malcolmson SJ in Handbook of Metathesis, Vol. 2 (Eds.: Grubbs RH, O'Leary DJ) Wiley–VCH, Weinheim), 2015; pp. 503–562;e)Montgomery TP, Ahmed TS, Grubbs RH, Angew. Chem. Int. Ed 2017, 56, 11024–11036.
- [3]. Malcolmson SJ, Meek SJ, Sattely ES, Schrock RR, Hoveyda AH, Nature 2008, 456, 933–937.[PubMed: 19011612]
- [4]. Koh MJ, Nguyen TT, Lam JK, Torker S, Hyvl J, Schrock RR, Hoveyda AH, Nature 2017, 452, 80– 85.

- [5]. a)Koh MJ, Nguyen TT, Zhang H, Schrock RR, Hoveyda AH, Nature 2016, 531, 459–465;
 [PubMed: 27008965] b)Nguyen TT, Koh MJ, Shen X, Romiti F, Schrock RR, Hoveyda AH, Science 2016, 352, 569–575. [PubMed: 27126041]
- [6]. a)Keitz BK, Endo K, Herbert MB, Grubbs RH, J. Am. Chem. Soc 2011, 133, 9686–9688;
 [PubMed: 21649443] b)Keitz BK, Endo K, Patel PR, Herbert MB, Grubbs RH, J. Am. Chem. Soc 2012, 134, 693–699; [PubMed: 22097946] c)Herbert MB, Marx VM, Pederson RL, Grubbs RH, Angew. Chem. Int. Ed 2013, 52, 310–314.
- [7]. Koh MJ, Khan RKM, Torker S, Yu M, Mikus M, Hoveyda AH, Nature 2015, 517, 181–186.[PubMed: 25567284]
- [8]. a)Khan RKM, Torker S, Hoveyda AH, J. Am. Chem. Soc 2013, 135, 10258–10261; [PubMed: 23822154] b)Khan RKM, Torker S, Hoveyda AH, J. Am. Chem. Soc 2014, 136, 14337–14340; [PubMed: 25268949] c)Koh MJ, Khan RKM, Torker S, Hoveyda AH, Angew. Chem. Int. Ed 2014, 53, 1968–1972;d)Ref. [7];e)Mikus MS, Torker S, Xu C, Li B, Hoveyda AH, Organometallics 2016, 35, 3878–3892;f)Mikus MS, Torker S, Hoveyda A, Angew. Chem. Int. Ed 2016, 55, 4997–5002;g)Ahmed TS, Grubbs RH, J. Am. Chem. Soc 2017, 139, 1532–1537; [PubMed: 28107003] h)Jung K, Kim K, Sung J-C, Ahmed TS, Hong SH, Grubbs RH, Choi T-L, Macromolecules 2018, 51, 4564–4571.
- [9]. Xu C, Liu Z, Torker S, Shen X, Xu D, Hoveyda AH, J. Am. Chem. Soc 2017, 139, 15640–15643.
 [PubMed: 29068666]
- [10]. Xu C, Shen X, Hoveyda AH, J. Am. Chem. Soc 2017, 139, 10919–10928. [PubMed: 28749659]
- [11]. Gunstone FD in Oleochemical Manufacture and Applications, Vol. 1 (Ed. Gunstone FD, Hamilton RJ) Academic Press, 2001.
- [12]. a)For example, see: Kolb M, Barth J, Heydt J-G, Jung MJ, J. Med. Chem 1987, 30, 267–272;
 [PubMed: 3806611] b)Silverman RB, Bichler KA, Leon AJ, J. Am. Chem. Soc 1996, 118, 1253–1261;c)Rosen TC, Yoshida S, Kirk KL, Haufe G, ChemBioChem 2004, 5, 1033–1043. [PubMed: 15300824] d)For a more recent overview, see: Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA, J. Med. Chem 2015, 58, 8315–8359. [PubMed: 26200936]
- [13]. Johansson Seechurn CCC, Kitching MO, Colacot TJ, Snieckus V, Angew. Chem. Int. Ed 2010, 51, 5062–5085.
- [14]. a)For example, see: Fürstner A, Langemann K, J. Am. Chem. Soc 1997, 112, 9130– 9136;b)Nevalainen M, Koskinen AMP, Angew. Chem. Int. Ed 2001, 40, 4060–6062.
- [15]. For example, see: Jakubec P, Cockfield DM, Dixon DJ, J. Am. Chem. Soc 2009, 131, 16632– 16633. [PubMed: 19883080]
- [16]. Sattely ES, Cortez GA, Moebius DA, Schrock RR, Hoveyda AH, J. Am. Chem. Soc 2005, 127, 8526–8533. [PubMed: 15941288]
- [17]. a)Romero EA, Peltier JL, Jazzar R, Bertrand G, Chem. Commun 2016, 52, 10563–10565;b)Yang Z, Zhong M, Ma X, Nijesh K, De S, Parameswaran P, Roesky HW, J. Am. Chem. Soc 2016, 138, 2548–2551. [PubMed: 26862789]
- [18]. Ondi L, Nagy GM, Czirok JB, Bucsai A, Frater GE, Org. Process Res. Dev 2016, 20, 1709–1716.
- [19]. Nguyen TT, Koh MJ, Mann TJ, Schrock RR, Hoveyda AH, Nature 2017, 552, 347–354.[PubMed: 29293209]
- [20]. For the rationale regarding the formation of a trisubstituted alkenyl bromide vs. a disubstituted alkenyl fluoride, despite the involvement of the same cross-partner, see ref. [19].
- [21]. Sattely ES, Cortez GA, Moebius DC, Schrock RR, Hoveyda AH, J. Am. Chem. Soc 2005, 127, 8526–8533. [PubMed: 15941288]
- [22]. See the Supporting Information for details.
- [23]. Ng CK, Wu J, Hor TSA, Luo H-K, Chem. Commun 2016, 52, 11842–11854.
- [24]. Kramer GW, Brown HC, J. Organomet. Chem 1977, 132, 9–27.
- [25]. As before, the corresponding alkyl-substituted products were obtained in slightly lower yield and with the same stereoselectivity (e.g., 89% and 82% yield and >98:2 Z:E for the n-octyl-substituted alkenyl chlorides obtained by the use of HB(trip)2 and HB(pin), respectively).
- [26]. Luo X-D, Shen C-C, Med. Res. Rev 1987, 7, 29–52. [PubMed: 3550324]

- [27]. For a reaction pathway involving Ru(II) complexes and HB(pin), see: Kisan S, Krishnakumar V, Gunanathan C, ACS Catal 2017, 7, 5950–5954.
- [28]. Bronner SM, Herbert MB, Patel PR, Marx VM, Grubbs RH, Chem. Sci 2014, 5, 4091–4098. [PubMed: 25346842]

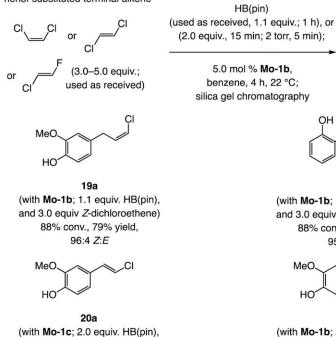

Author Manuscript

Author Manuscript


Complexes used for kinetically controlled olefin metathesis and the objectives of this study.

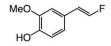
Scheme 2.

Traceless protection of an alcohol substrate with HB(pin) is practical, efficient, and scalable. Conversion was determined by ¹H NMR analysis of unpurified product mixtures; see the Supporting Information for details.


a. Stereoretentive cross-metathesis with trisubstituted alkene substrates:

Scheme 3.

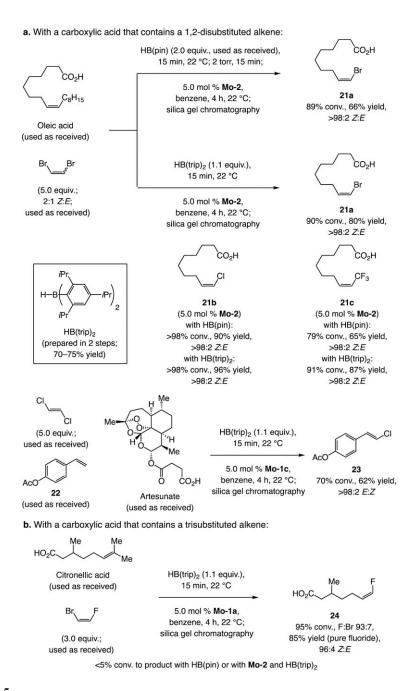
Transient protection in cross-metathesis reactions involving trisubstituted alkenes as products or substrates.


and 5.0 equiv E-dichloroethene) >98% conv., 78% yield, >98:2 E:Z

Z- or E-Alkenyl Halide

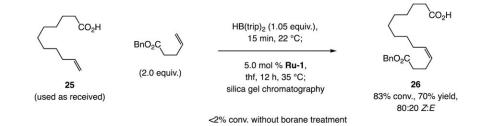
5.0 mol % Mo-1b, benzene, 4 h, 22 °C; silica gel chromatography

19b (with Mo-1b; 1.1 equiv. HB(pin), and 3.0 equiv Z-dichloroethene) 88% conv., 55% yield, 95:5 Z:E

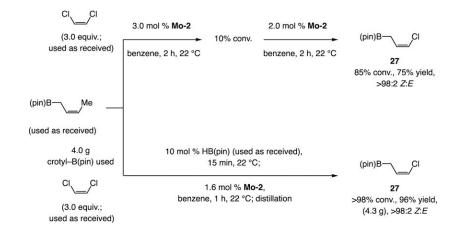

20b

(with Mo-1b; 2.0 equiv. HB(pin), and 5.0 equiv E-fluorochloroethene) >98% conv., F:Br 91:9, 75% yield (pure fluoride), >98:2 E:Z

Scheme 4.


Traceless protection in cross-metathesis with phenolic alkenes.

Author Manuscript


Scheme 5.

Transient protection in cross-metathesis with unsaturated carboxylic acids.

Scheme 6.

The traceless protection strategy expands the scope of reactions catalyzed by Ru-based complexes.

Scheme 7.

Commercially available HB(pin) may be used to remove residual moisture, allowing for enhanced efficiency.

Table 1:

Tracelesss protection for alcohol-containing substrates.^[a]

	Unsaturated alcohol (all used as received, except 8)	Cross partn (5.0 equiv.	er 15	HB(pin) ;; used as received), 5 min, 22 °C;	Product	
		all used as rece	eived) 3.0–5.0 n benz	nol % Mo complex , ene, 4 h, 22 °C; el chromatography		
Entry	Substrate	Cross partner	Mo complex; mol %	Product	Conv. (%); ^[b] Yield (%) ^[c]	Z:E ^[b]
1	H0~0~~~ 4	^{B(pin)}	Mo-1b ; 3.0	HO 5 B(pin)	74; 64	>98:<2
2	Вг б	CI	Mo-1c ; 5.0	Br 7	>98; 59	<2>98
3	OH Me	CICI	Mo-2 ; 5.0	OH CI	93; 91	>98:<2
4	Me Me OH Me	CI	Mo-1c ; 5.0	Me Me OH 10a	CI 97; 93	7:93
5	Dihydromyrcenol	MeB(pin)	Mo-1b ; 3.0	Me OH Me B(p 10b	oin) 83; 65	>98:<2
6		cıcı	Mo-1b ; 5.0	H H H H H H H H H H H H H H H H H H H	67; 61	>98:<2
SI	ubstrate Cross n	artner N	Ao complex:	Product	Conv (%) ^{.[b]}	7·F

Entry	Substrate	Cross partner	Mo complex;	Product	Conv. (%); ^[b]	<i>Z</i> : <i>E</i> ^[b]
			Mol %		Yield (%) ^[c]	
1			Mo-1b ; 3.0	5	76; 64	>98:<2
2			Mo-1c ; 5.0	7	>98; 59	<2:>98
3			Mo-2 ; 5.0	9	93; 91	>98:<2
4			Mo-1c ; 5.0	10a	97; 93	7:93
5			Mo-1b ; 5.0	10b	83; 65	>98:<2
6			Mo-1b ; 5.0	11	67; 61	>98:<2

^[a]Reactions were performed under N₂ atm.

 $^{^{[}b]}$ Determined by analysis of ¹H NMR spectra of unpurified product mixtures.

[c]Yield of isolated and purified product. See the Supporting Information for details.