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Radiotherapy is safely employed for treating wide variety of cancers. The radiotherapy
workflow includes a precise positioning of the patient in the intended treatment position.
While trained radiation therapists conduct patient positioning, consultation is occasionally
required from other experts, including the radiation oncologist, dosimetrist, or medical
physicist. In many circumstances, including rural clinics and developing countries, this
expertise is not immediately available, so the patient positioning concerns of the treating
therapists may not get addressed. In this paper, we present a framework to enable remotely
located experts to virtually collaborate and be present inside the 3D treatment room when
necessary. A multi-3D camera framework was used for acquiring the 3D treatment space.
A client–server framework enabled the acquired 3D treatment room to be visualized in
real-time. The computational tasks that would normally occur on the client side were
offloaded to the server side to enable hardware flexibility on the client side. On the server
side, a client specific real-time stereo rendering of the 3D treatment room was employed
using a scalable multi graphics processing units (GPU) system. The rendered 3D images
were then encoded using a GPU-based H.264 encoding for streaming. Results showed
that for a stereo image size of 1280 × 960 pixels, experts with high-speed gigabit Ethernet
connectivity were able to visualize the treatment space at approximately 81 frames per
second. For experts remotely located and using a 100 Mbps network, the treatment
space visualization occurred at 8–40 frames per second depending upon the network
bandwidth.This work demonstrated the feasibility of remote real-time stereoscopic patient
setup visualization, enabling expansion of high quality radiation therapy into challenging
environments.

Keywords: remote visualization, radiotherapy, 3D monitoring, patient positioning, client–server architecture

INTRODUCTION
Radiotherapy is safely employed for treating wide variety of can-
cers. The radiotherapy workflow includes the positioning of the
patient in the intended treatment position. Trained radiation ther-
apists conduct this, but occasionally consultation is required from
other experts, including the radiation oncologist, dosimetrist, or
medical physicist. In many circumstances, including rural clin-
ics and developing countries, this expertise is not immediately
available, so the concerns of the treating therapists may not get
addressed. By the year 2015, 15 million new cancer patients are
expected in the world each year, of which 10 million will be in the
developing countries. Ensuring that those patients receive appro-
priate treatment is a major challenge (Bhadrasain, 2005; National
Cancer Institute, 2010; International Agency for Research on Can-
cer, 2012). Between 2005 and 2025, 100 million cancer victims in
the developing countries will require radiotherapy, for cure or the
relief of symptoms such as pain and bleeding. However, the lack of
radiotherapy treatment expertise in those countries leads to only
20–25% of patients in developing countries being treated with
radiotherapy (Bhadrasain, 2005). This situation will only worsen
in the future unless steps are taken to address it.

Radiation therapy treatments continue to gain complexity and
modern linear accelerators are essentially robotically controlled,

creating the need for more advanced in-room monitoring. Current
monitoring is restricted to one or more 2D video cameras
positioned in the room and monitored by the radiation thera-
pists. There are neither computer-based analysis nor monitoring
of the video, they are intended as straightforward monitoring
devices because the therapists cannot be in the room during treat-
ment and the radiation shielding requirements preclude the use of
windows.

One of the challenges of modern radiation therapy is the distri-
bution of specific expertise required for each clinic to safely treat
their patients. Medical physicists, for example, are often called to
the treatment room to assist the radiation therapists in evaluat-
ing a treatment set up. In many clinics, especially rural clinics,
there are not enough medical physicists to allow full-time access,
and the therapists will not have access to the expertise. This prob-
lem also exists in treatment planning expertise. Recent advances
in the digital storage and efficient and reliable communications
have enabled improved 2D remote visualization that facilitated
a decentralized radiotherapy services by allowing remote quality
assurance of treatment delivery (Olsen et al., 2000). An early work
toward such a 3D collaborative radiotherapy workflow was devel-
oped at the departments of radiotherapy at the University Hospital
of North Norway and the Norwegian Radium Hospital (Norum et
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al., 2005). The treatment planning systems at the two institutions
were connected through a 2 Mbps digital telecommunication line
and 2D videoconferencing units were installed. The feasibility of
performing clinical operations such as treatment planning, super-
vision, second opinions, and education using the collaborative
system were investigated for two dummy cases and six patients.
Remote treatment simulation procedures were carried out for five
patients and a cost-minimization analysis was performed. It was
observed that 2D remote supervision was possible with the thresh-
old (break-even point) comparing the costs of such visualization
to be 12 patients/year.

Virtual reality-based visualizations greatly help in develop-
ing 3D collaborative environments for radiotherapy applications.
Efforts by peers have focused on developing visualization frame-
works specifically for radiotherapy training (Phillips et al., 2008),
planning (Geng, 2008), and treatment simulation (Santhanam et
al., 2008). While 3D visualization has assisted in the planning and
simulation process, it has not been used in the treatment room.

Our context in this paper is focused on real-time acquisition
and visualization of the patient treatment setup for radiotherapy.
While expertise that is required in the treatment room can be
given over the telephone, it will be much less effective than hav-
ing the expert physically within the room. We hypothesize that
3D visualization of the patient setup and intrafraction motion
will enable experts to provide important consultative services to
rural and developing country clinics. In this paper, we present an
approach for remote visualizing in 3D the patient setup, allow-
ing the expert to interact with the local team as though they
were in the linear accelerator room with them. The key contri-
bution of this paper is to present a real-time remote multi-3D
camera-based imaging system that provides remote real-time 3D
images of the patient positioning setup at greater than 30 frames
per second (FPS) required for effective visualization (Hamza-lup
et al., 2007).

MATERIALS AND METHODS
MULTI-3D CAMERA SETUP
Figure 1 presents the schematic representation of the proposed
3D patient and treatment setup monitoring system. As in a typical
external beam radiotherapy setup, a patient is illustrated to lie
on a treatment couch with the linear accelerator gantry targeting
the region of interest. A set of 3D cameras were used for illus-
tration purposes to acquire the treatment environment. For our
setup, the cameras were distributed throughout the room to cap-
ture the entire patient, couch, and gantry and to minimize gaps
in the images caused by occlusions. The cameras were connected
to a controller program running on a computer through universal
serial bus (USB) ports.

For this work, we selected the Kinect camera as the 3D camera
used for the proposed 3D monitoring system as it was cost effective
and readily available across the world. From a technical perspec-
tive, Kinect cameras provide both color and depth information,
which enables to use the wide range of vision and 3D information
processing algorithms for monitoring and visualization purposes.
These cameras were being sold as part of a computer gaming sys-
tem, so they were not required to be quantitative. However, in
this application, the images from multiple cameras needed to be
stitched together to form a seamless and visually accurate represen-
tation of the room environment. If the cameras were not accurately
calibrated, the surfaces from two cameras would not coincide
where their image fields overlapped. This led to the development
of a calibration procedure (Santhanam et al., in review).

The camera calibration was performed for each camera to
determine the relationship between the raw depth information
and the calibrated depth. Images from each camera were first
corrected for camera-specific distortion. Image refining steps pre-
pared the 3D information (2D color and depth information)
from each of the cameras into a single 3D context. Image stitch-
ing was performed by computing the transformation matrix that

FIGURE 1 | A schematic representation of the camera setup for head and neck radiotherapy.

Frontiers in Oncology | Radiation Oncology February 2013 | Volume 3 | Article 18 | 2

http://www.frontiersin.org/Radiation_Oncology/
http://www.frontiersin.org/Radiation_Oncology/archive


“fonc-03-00018” — 2013/9/24 — 11:47 — page 3 — #3

Santhanam et al. 3D remote visualization of radiotherapy

transforms the 3D information of each camera into a specific ref-
erence camera. The 3D stitched images represented the patient
setup on the treatment couch along with the gantry and couch
positions.

CLIENT–SERVER ARCHITECTURE
A client and server system was used to correct, stitch, and trans-
port the images in real-time to the observer. The term client refers
to the user interface associated with each remotely located expert.
The term server relates to the software interface that controls the
multi 3D Kinect camera system discussed in the“Multi-3D Camera
Setup” section. Figure 2 schematically represents the client–server
setup used for the 3D visualization. Such a setup enables multi-
ple remotely located experts to simultaneously visualize the 3D
content. The client and the server interface are now described.

Client interface
For our proposed visualization system, we offloaded the rendering
task to the server to allow the 3D content to be visualized at 30 FPS
for satisfying real-time requirements (Hamza-lup et al., 2007). In
order to achieve this for every client, each client was associated with
a session ID that uniquely identified the client and the associated
stereoscopic visualization parameters, which were the eye location
and orientation in the treatment room global coordinates, the gaze
direction associated with each eye, the 3D clipping boundary, 3D
zoom factor and a user-provided value that selected the image
compression quality. Each session ID was also associated with a
desired visualization frame rate, which, coupled with the network
traffic rate, determined the 3D resolution of the visualized space.
A TCP-based connection (Stevens, 2003) was used between the

client and the server. Once the connection was established, the
client interface sent a “heartbeat” message to the server providing
the visualization parameters. The server generated the stereoscopic
image and sends it back to the client.

Server interface
The server interface consisted of three pipelined procedural
threads. The first procedural thread was used to creating a connec-
tion between the client and the server. The thread also maintained
the frame rate desired by the client. The second procedural thread
acquired the 3D treatment room space as discussed in “Multi-3D
Camera Setup” section and the third procedural thread communi-
cated with the client for sending the 2D stereoscopic projections of
the treatment room space. Figure 3 presents a schematic represen-
tation of the client–server interface. For each client identified by its
session ID, the stereoscopic visualization properties were retrieved
and, using a GPU-based render-to-texture feature, the 3D scene
was projected for each eye and its clipping properties to form a 2D
image (Shreiner, 2009).

The steps involved in the render-to-texture feature are as fol-
lows. First the 3D treatment room space, in the form of a vertex
list, was transferred to one of the GPU’s memory. We then assigned
a texture memory space as the location where the final rendered
image would be placed. We then created an openGL pipeline that
processed the 3D vertex list for each eye and clipping boundary
specifications provided by the client. Finally, using the GPU’s vec-
tor functionality, we projected each 3D location in the vertex list
through the OpenGL pipeline onto the pre-determined 2D tex-
ture. The 2D texture was then copied from the GPU into the
server (Shreiner, 2009).

FIGURE 2 | A schematic representation of the proposed tracking system for head and neck radiotherapy.
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FIGURE 3 | A schematic representation of the client–server interfaces.

The steps that occur on the client is represented by red while the steps that
occur on the server side is represented by blue. The brown arrows
represent the client–server network interface.

The 2D images were losslessly encoded in the H.264 stream for-
mat, which reduced the network-transmitted 2D image data size.
The encoded 2D images for each eye were then transmitted to the
client interface, which were subsequently decoded and visualized
using Nvidia’s 3D vision interface.

GPU-based H.264 video encoding
The computational complexity of H.264 encoding would take
a few seconds per frame if conducted using traditional com-
pute processing units (CPU)-based architecture and so would
degrade the real-time nature of the remote visualization (Wu et
al., 2009). To alleviate this issue, we used a GPU-based H.264
video encoding process (Nvidia, 2012). Figure 4 presents a
schematic representation of the proposed encoding system. The
first step converted a given 2D image from its native red green
blue (RGB) format to the YUV image format. To achieve this
with GPU acceleration, the given image was tiled at 8 × 8
pixels and the subsequent 64 RGB pixel values were loaded
into shared memory in 64 parallel threads. The RGB values
were stored in a 1D array in shared memory to allow simul-
taneous computations on the same data structure. The color
conversion from RGB to YUV was implemented through three
equations: Y = 0.29900 * R + 0.58700 * G + 0.11400 * B − 128;
U = −0.16874 * R − 0.33126 * G + 0.50000 * B;
V = 0.50000 * R + 0.41869 * G − 0.08131 * B. The three equations
were sequentially computed by one thread for each pixel. The next
step was to downsample the YUV image. The downsampling of
the U and V components was done by 32 threads in parallel. 16
threads computed the mean of a 2 × 2 pixel block for the U and
the other 16 threads on the same pixel block for the V values. The
mean was computed by adding all four values and dividing the
result by 4. The division was replaced by a shifting operation to
optimize performance. The next step was to store the down sam-
pled YUV values in global memory. The Y values were stored in
consecutive 8 × 8 pixel blocks, which were mapped to a 1D array.
The same held for the U and the V components. However, the

FIGURE 4 | A schematic representation of the steps involved in the

GPU-based H.264 encoding.The red box represents the steps that happen
in the GPU while the blue boxes represent the steps that occur in the GPU.

resulting down sampled 4 × 4 blocks were grouped to 8 × 8 blocks
to prepare the data for a discrete cosine transformation (DCT).

For the DCT kernel, each component (Y, U, and V ) was pro-
cessed separately by one call to kernel 2. It had eight threads per
block and did the following: loading the data was straightforward
since it was already stored in the required 8 × 8 pixel blocks. Each
of the eight threads loaded one row of a block into shared mem-
ory. To avoid the complex and sequential computation of a 2D
DCT, the computation was split into several 1D separable DCTs.
The computation of the DCT for each row was independent and
was conducted by eight parallel threads. By using this optimized
1D DCT algorithm, the 2D DCT of an 8 × 8 pixel block was
computed using 464 additions and 80 multiplications. Quantiza-
tion was a simple division by the user-selected image compression
quality factor for every coefficient in the 8 × 8 block. Quanti-
zation tables were similar for all blocks of a component. Before
they were applied in the DCT kernel, the tables were multiplied by
the scaling values of the DCT step as described before. The scaled
and adapted quantization tables were applied to the coefficients
by eight threads in parallel. Each thread computed one line of
eight DCT coefficients and multiplies them by the inverse of the
corresponding value in the quantization table.

The last step of the H.264 compression was Huffman encoding,
which made use of the many zeros in lower frequencies result-
ing from DCT and quantization (Cheng et al., 2004). It included
an entropy encoder that was used to encode the discrete wavelet
transformation (DWT) coefficients plane-wise and an arithmetic
encoding that was used for removing redundancy. Finally, a rate
control algorithm was employed to truncate the data while keeping
the image distortion low.

Jitter avoidance
Visualization using data streams is limited by frame-to-frame jit-
ters that occur because of non-uniform network data transfer rates
(Hamza-lup et al., 2007). Such jitters affect the real-time visual-
ization perception for the client. Playout buffers are commonly
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used for alleviating jitter, where the video stream is buffered for
a fixed amount of time before the client visualizes the frame (Li
et al., 2008). The buffering time used for the playout buffer was
adaptively varied in order to suit the client–server network con-
nection. At each frame received by the client, the network delay
t for a set of N frames was calculated by the client. A clustered
temporal averaging that eliminated random fluctuations in the
network delay was used to find the average network delay t ′. The
client then buffered the frames for the t ′ time frame. The value of
N was adaptively varied using a Go-Back N algorithm (Stevens,
2003) to account for temporal fluctuations in the network
delay.

RESULTS
Figure 5 illustrates a linear accelerator environment imaged using
the proposed system. The 3D RGB images associated with each
of the Kinect cameras used for this illustration are shown in the
bottom of the image. Specifically, Figures 5B–D shows the sub-
ject’s position in the treatment couch as seen by the three Kinect
cameras. The 3D cloud of surface voxels obtained from the co-
registered camera system and visualized in 3D at the client side
as shown in Figure 5A. The 3D view generated using each of the
3D camera’s information was then used to generate the two stereo
pair images for each eye of the client. Figures 6A,B depict examples

of the 2D stereo pairs during imaging of the camera calibration
marker board. Such 3D content representing the patient and the
treatment setup (Figure 5A) will be converted to 2D stereo pairs
and will be visualized in 3D at the client side.

Table 1 presents the hardware configuration used for the
proposed client–server-based remote visualization framework.
Table 2 presents the results obtained for the remote visualization of
the 3D treatment room space. Two image sizes, 1280 × 960 pixels
and 640 × 480 pixels, were investigated for accessing the number of
frame that can be transferred over a gigabit Ethernet connection.
The usage of gigabit connection is to demonstrate a remote
visualization within a given medical facility. The GPU-based H.264
was able to encode the large and small frames at rates of 14 and
4 ms, leading to transfer rates of 81 and 320 FPS per eye, respec-
tively. Thus with a gigabit Ethernet connectivity, the client–server
system was able to support real-time 3D treatment space visu-
alization. Table 3 presents the results obtained for the remote
visualization using a 100 Mbps network with an effective stream-
ing bandwidth of approximately 8 Mbps, simulating collaboration
between two remotely located facilities. It can be seen that, given
real-time constraints, a 640 × 480 stereo image size would pro-
vide 40 FPS, adequate for real-time visualization. Constraining
the image size to be greater than 640 × 480 introduced jitter
artifacts.

FIGURE 5 | 3D head and neck surface acquisition at the server side in a normally lit environment. The 3D rendering at the client side is shown in (A)

while the three 3D cameras at the server side are shown in (B), (C), and (D).
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FIGURE 6 | 3D stereo images generated for each of the eyes for a known view angle. The subtle changes between the left and right eye images are shown
with the coordinate system. Each of these images were encoded with H.264 standard at the server side and streamed to the client side for real-time
visualization.

Table 1 | System configuration.

3D Camera Microsoft Kinect (6 cameras)

Server Intel Core i7 3.6 Ghz, 8 GB RAM

Server GPU Nvidia GTX 680m (2)

Network interface Ethernet

Client Intel Core i7 3.6 GHz, 8 GB RAM

3D display Viewsonic 120 Hz LED display

3D wearable accessory Nvidia 3D vision

Table 2 | Remote visualization characteristics using a gigabit Ethernet

connection.

RGB image size 1280 × 960 pixels 640 × 480 pixels

Stereo H.264 frame size 110 KB 28.5 KB

Stereo H.264 encoding time 14 ms 4 ms

Stereo image generation time 30 ms 30 ms

Effective streaming bandwidth 72 Mbps 72 Mbps

Frames transferred over network ∼81 FPS ∼320 FPS

Table 3 | Remote visualization characteristics using a 100 Mbps

connection with a frame rate of 30 FPS.

RGB image size 1280 × 960 pixels 640 × 480 pixels

Stereo H.264 frame size 110 KB 28.5 KB

Stereo H.264 encoding time 14 ms 4 ms

Effective streaming bandwidth 8 Mbps 8 Mbps

Frames transferred over network ∼8 FPS ∼40 FPS

DISCUSSION
A framework for remote 3D visualization is presented in this paper.
A multi-3D camera framework is used for acquiring the D treat-
ment space. A client–server framework enables the 3D treatment
space to be visualized by remotely located experts in real-time. The
visualization tasks on the client side are offloaded into the server
side to enable flexibility on the client side. A scalable multi GPU
system that enables rendering the 3D treatment space in stereo
and in real-time is employed on the server side. The rendered 3D
images are then encoded using a GPU-based H.264 encoding for
streaming purposes. Results showed that experts within a clinical
facility and with high-speed gigabit Ethernet connectivity will be
able to visualize the treatment space with 1280 × 960 pixel resolu-
tion at approximately 81 frames per second. For experts remotely
located, the treatment space visualization can be conducted at
40 FPS with a resolution of 640 × 480 pixels.

Two technical limitations were observed in our client–server
setup. The network bandwidth did not form a bottleneck for
experts located in the same high-speed network and visualizing
with a frame size of up to 1920 × 1080 pixels. The 3D treatment
space acquisition, which occurred at a rate of 30 FPS formed the
bottleneck in this case. The other key tasks such as 3D stereo
rendering and H.264 encoding occurred at a rate faster than the
treatment space acquisition rate. However, it was observed that for
frame sizes greater than 2550 × 1940 pixels, the H.264 encoding
took more time that the camera acquisition. Thus for greater frame
sizes, offloading client tasks to the server led to an overall reduction
in the speedup. Future work will focus on improving the H.264
encoding algorithm efficiency for stereoscopic video sequences.

The second limitation was that the number of server supported
clients depended on the number of GPUs available for providing
the required fast 3D rendering and encoding because each GPU
was dedicated to handle a set of client tasks based on the requested
frame size. Future work will focus on using a GPU cluster coupled
using load-balancing algorithms that enable efficient GPU usage.
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Jitter in the 3D visualization occurred for clients that used
available bit-rate network connections. The jitter avoidance mech-
anism discussed in this paper removed such artifacts, but its
effectiveness was limited by the network behavior. Increases

in the network delays and packet loss rates led to random
decrease in the N value and hampered the visualization system.
Future work will focus on addressing such network connectivity
issues.
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