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Breaking the Barrier of Transmission Noise in
Full-Duplex Radio

Yingbo Hua, Yiming Ma, Ping Liang, and Ali Cirik

Department of Electrical Engineering, University of California, Riverside, CA 92521

yhua@ee.ucr.edu, yma@ee.ucr.edu, liang@ee.ucr.edu, aciri002@student.ucr.edu

Abstract— The key technical challenge in making a full-duplex
radio is self-interference cancelation (SIC). The self-interference
received by a full-duplex radio has two major components: one
corresponds to an information-carrying waveform meant for a
remote radio and the other corresponds to the noise generated
from the transmit chain of the full-duplex radio. The transmission
signal-to-noise ratio (SNR) of a typical radio is only about 30dB.
This severely limits the performance of any SIC methods which
ignore the transmission noise. None of the previously known
digital or hybrid methods for SIC has any built-in mechanism to
handle the transmission noise. In this paper, we present a new
analog-digital hybrid method whose performance is no longer
limited by the transmission noise. This method also involves a
blind system identification and equalization algorithm for finding
the optimal parameters of the cancelation filter.

Index Terms— interference cancellation, full-duplex radio

I. INTRODUCTION

As the radio spectrum becomes more crowded than ever,

the need for spectrally efficient radio technologies increases.

One such technology is known as full-duplex radio which can

transmit and receive at the same time and same frequency.

While the full-duplex radio technology appears on the verge

to be proven feasible for many commercial and military

applications, a key technical challenge still remains which is

self-interference cancelation (SIC). A full-duplex radio must

have at least one radio transmit chain and one radio receive

chain. The signal emitted out of the transmit chain is also

picked up by the receive chain, which is the self-interference.

The self-interference can be first reduced by increasing the

attenuation between the transmit chain and the receive chain.

This can be achieved by using various antenna technologies

(and even possibly using some radio blocker/absorber in be-

tween transmit and receive antennas in some situations). This

approach is also called passive cancelation in the literature [1].

The remaining self-interference has to be (actively) canceled

by one or more SIC methods. For any SIC method, a cance-

lation waveform must be first generated based on a source

signal from the transmit chain and then used for cancelation

somewhere in the receive chain. Given the RF nature of the

interference, it is natural to think of an analog cancelation path

between the transmitter and the receiver at the RF frontend.

This is exactly what was proposed in [2] and [3] where a

tunable analog circuit is used for interference cancelation. We

will refer to these analog methods as all-analog where the

cancelation path has analog input interface, analog filter and

This work was supported in part by DoD, ARL and UCOP.

Fig. 1. Four approaches for SIC critical for full-duplex radio. The dash
lines denote the cancelation paths. The all-analog path denotes a path with
analog input interface, analog filter and analog output interface. The all-digital
path denotes a path with digital input interface, digital filter and digital output
interface. The hybrid-1 path denotes a path with digital input interface, digital
filter and analog output interface. The hybrid-2 path denotes a path with analog
input interface, digital filter and analog output interface. The two antennas can
be merged into one by using a circulator [8]. The concepts shown in this paper
can also be applied to MIMO full-duplex radio.

analog output interface. See Fig. 1. An advantage of all-analog

passive circuits is that virtually no noise is introduced and the

remaining interference can be further canceled at a later stage.

An alternative to all-analog is all-digital. There are well

established theories for adaptive filters [4] that can be readily

implemented in baseband DSP circuits. An all-digital cance-

lation path has digital input interface, digital filter and digital

output interface. But this method works only if the interference

(or residue interference after an initial cancelation) is not much

stronger than the desired signal from a remote radio or other-

wise the desired signal suffers from a large quantization noise.

Furthermore, this method also suffers from the transmission

noise. The interference caused by the noise originated from

the transmit chain cannot be regenerated in the baseband for

cancelation.

The alternative to all-analog and all-digital is hybrid. In

order to preserve the desired (weak) signal in the receive chain,

the strong interference should be canceled at the RF frontend

of the receiver. For this purpose, several authors have proposed

various forms of transmit beamforming based methods (see for

example [5], [6], [7], [8]) where the transmitters are prefiltered

such that the waveform from a primary transmit chain and

the waveform from a secondary (cancelation) chain cancels

each other at the receiver’s RF frontend. We view this group

of methods as hybrid-1 as in Fig. 1.The cancelation path is
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Fig. 2. A programmable radio board with 2.4 GHz carrier where the FPGA
firmware and software have been programmed (substantially changed from
original WARP http://warp.rice.edu/trac/wiki/cite) for real-time SIC using
the time-domain transmit beamforming method [8], which differs from the
programming at the data packet level shown in [5]. The latter is a frequency-
domain method and has a prefix problem as discussed in [8].
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Fig. 3. A cumulative distribution function of the amount (dB) of inter-
ference cancelation using the radio shown in Fig. 2. The source waveforms
are Hamming-windowed sinc functions of 15MHz bandwidth. The average
amount of the cancelation is slightly above 25dB. With about 80% probability,
the cancelation is within 24-27dB.

driven by a digital source waveform and also filtered digitally,

but however the output of the cancelation path cancels the

interference in an analog fashion at the RF frontend of the

receiver. Compared to all-digital, the hybrid-1 reduces the

burden of potential saturation of the receiver’s frontend. But

it still suffers from the transmission noise as for all-digital.

In fact, we have recently implemented the method shown

in [8] on a programmable radio board. See Fig. 2. This radio

has a lower transmission SNR (higher transmit chain noise

figure) than the Agilent vector generators which we used for

the data reported in [8]. On this radio, we have achieved 25dB

interference cancelation (see Fig. 3.) of waveforms with 15

MHz bandwidth although 50dB cancelation was previously

achieved on the Agilent equipment.

In this paper, we present a new hybrid approach labeled as

hybrid-2 in Fig. 1. In this approach, the cancelation path taps

a source waveform directly from the RF end of the transmit

chain, converts it into baseband for digital filtering and then

yields a baseband analog cancelation waveform for cancelation

just before VGA (variable gain amplifier) in the receive chain.

In other words, this cancelation path has analog input interface,

digital filter and analog output interface. The hybrid-2 is robust

to the transmission noise as discussed later in detail. The

hybrid-2 can also be integrated with the hybrid-1 for improved

benefits. (Shortly before submitting this paper, we realized that

our blind system algorithm shown in sections V and VI for

computing the parameters of the digital filter in the hybrid-2

cancelation path can also be used for computing the parameters

of the analog filter in the all-analog cancelation path shown

in [3], which we will address in detail in a future paper.)

In order for a full-duplex radio to be used in an LTE cellular

network, for example, the required total interference suppres-

sion is about 160dB. With the best possible passive cancelation

[1], we need to achieve about 90dB active cancelation. With

the state-of-art all-analog method [3], we still have about 40dB

interference left. By breaking the performance barrier caused

by 30dB transmission SNR of a typical radio transmitter, the

realization of a full-duplex radio being used for real world

applications should not be far in the future.

In section II, we highlight the impact of the transmission

noise on a hybrid-1 method. In section III, we present the

basic configuration of the new (hybrid-2) method. In section

IV, we show how a hybrid-2 method can be integrated with a

hybrid-1 method. After that, in sections V and VI, we outline

some of the fundamental results necessary for implementing

the hybrid-2 method. At the conference, we will present the

latest simulation and experimental findings.

II. THE BARRIER OF TRANSMISSION NOISE

Let us consider a hybrid-1 method for a full-duplex radio

with one primary transmit chain and one secondary (can-

celation) transmit chain. Let SNRT be the SNR of the

transmitted signal from each transmit chain. Before cancela-

tion, the receiver receives g1

√
PT xT (t) + g1

√
PT

SNRT
nT (t) +

g1

√
PRxR(t)+nR(t) where g1 is the receiver gain (normally

affected by both LNA and VGA), xT (t) is the normalized (unit

variance) interfering waveform, nT (t) is the normalized trans-

mission noise, xR(t) is the normalized desired signal from

another node, nR(t) is the normalized receiver noise, and PT

and PR are the powers of
√

PT xT (t) and
√

PRxR(t). After

cancelation, the best possible result for what the receiver re-

ceives is g2

√
PT

SNRT
nT (t)+g2

√
PT

SNRT
n′

T (t)+g2

√
PRxR(t)+

nR(t) where g2 is the receiver gain after cancelation and the

2nd term is the additional noise from the cancelation path.

Clearly, if PR < PT

SNRT
, the desired signal is buried under

the transmission noise. Unfortunately, this condition holds for

most practical situations where PT /PR is larger than 50dB

and SNRT is only about 30dB.

Also, if g1 = g2 is forced, the ratio of interference powers

before and after cancelation is less than SNRT (or equals
SNRT +1

2 from the above analysis). This is the performance

barrier caused by the transmission noise.

III. BASIC CONFIGURATION OF THE NEW METHOD

To break the barrier of the transmission noise, we propose

a new method whose basic configuration is shown in Fig. 4.
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Fig. 4. Basic configuration of the new method. The path of H5GH6 is
the cancelation path where G is adaptive. All H functions represent analog-
interfaced channels or components and should be treated as unknown linear
transfer functions. (This configuration also applies to the all-analog approach
shown in [3].)

Here, the input x(n) represents the digital source interference

signal before DAC (digital-analog converter) in the transmit

chain. The noise w(n) is the unknown transmission noise

from the entire transmit chain. The output y(n) represents the

received digital signal after ADC (analog-digital converter) in

the receive chain. This observable has two components: one

is due to the desired signal s(n) from a remote radio and the

other is due to both x(n) and w(n). The cancelation path is

represented by H5, G and H6 where G is an adaptive filter. If

the transfer function G is such that H6GH5 = −H3H2, then

neither x(n) nor w(n) affects y(n). It is important to note that

none of the H transfer functions (H1 to H6) is known precisely

enough and they should be treated as unknown. This is because

the exact knowledge of the transfer function of an analog-

interfaced component is difficult to obtain. Given unknown

H1, · · · ,H6 and unknown w(n), finding G is a blind system

identification and equalization problem (which however differs

from the conventional blind equalization problems in the

literature). More detailed descriptions of the H functions are

as follow:

H1 represents the equivalent baseband channel transfer

function (or simply channel) between a digitally generated

baseband waveform x(n) and the output of the RF power

amplifier in the transmit chain. The noise w(n) represents

a combination of all noises generated in the transmit chain,

which include the quantization noise in generating the trans-

mitted baseband waveform at DAC, the noise from the up-

conversion RF mixer, and the noise from the transmit power

amplifier.

H2 represents the channel between the transmit antenna and

the receive antenna when two separate antennas are used for

transmitting and receiving. H2 may also represent the isolation

path of an RF circulator when a single antenna is used along

with the RF circulator for both transmitting and receiving.

H3 represents the channel between the receive antenna and

an analog baseband signal combiner just before VGA. (For all-

analog, the signal combiner should be RF and before LNA.)

H4 is the channel between the analog signal combiner and

the output y(n), which includes VGA and ADC. (For all-

analog, H4 is the entire receive chain after the RF combiner.)

H5 is the channel between the output of the transmit power

amplifier in the transmit chain and the input of the digital

filter G, which may include a baseband-frequency sampler, a

low pass filter and an ADC. This block does not need any

carrier-frequency oscillator which tends to have a large phase

noise.
H6 is the channel between the output of the digital filter

G and the signal combiner, which includes a DAC for analog

signal combining before VGA. (For all-analog, G is an analog

filter, H5 models the input interface of G, and H6 models the

output interface of G.)
The cancelation path comprising H5, G and H6 can be

made relatively noise free compared to the transmission noise.

Note that the power of the quantization noise from a 14-

bits ADC, for example, is over 70dB weaker than the signal

power, which is insignificant compared to a typical trans-

mission noise. For most applications, all H functions may

appear all-pass with some delays while H2 tends to be highly

frequency-selective depending on the environment surrounding

the transmit antenna and the receive antenna. However, for

high-quality interference cancelation (such as 50dB or more),

all H functions need to be treated as unknown when the

parameters of G are optimized in minimizing the interference

in y(n). To find the optimal G online, the output signal y(n) is

the only observable we have to rely on, which we will discuss

the detail shortly.

IV. A CASCADE FORM OF HYBRID-2

To reduce the noise caused by LNA, it is desirable to reduce

the interference at the RF frontend of the receiver. With a

reduced interference at the RF front-end, the gain of LNA can

be increased. The noise figure of LNA generally decreases

with the gain, which is typically as small as 3dB at the highest

gain. Although the hybrid-2 alone cannot achieve that, it can

be used in tandem after the all-analog. Furthermore, hybrid-2

can be used in cascade with hybrid-1 (and both hybrids can

be used after the all-analog cancelation).
Shown in Fig. 5 is a cascade form of the hybrid-2 with a

special form of the time-domain transmit beamforming method

(hybrid-1). Here, Ca and Cb are the waveform prefilters which

should be chosen to reduce the self-interference at the RF

frontend (at the sum immediately after the desired signal s(n).
Ca is the prefilter for the primary transmit chain, and Cb

for the secondary (cancelation) transmit chain. The hardware

associated with Hia and Hib is similar to that of Hi in Fig.

4 where i = 1, · · · , 6. If there were no transmission noises

wa(n) and wb(n), Ca and Cb could be chosen to yield a zero

net contribution at the sum after s(n). But with wa(n) and

wb(n) (due to RF oscillator, RF mixers and power amplifiers

embedded in H1a and H1b), there can be a significant amount

of residue interference even if Ca and Cb are perfectly

chosen. Due to noisy channel estimates, the choice of Ca and

Cb can not be perfect, which introduces additional residue

interference. To reduce the residue interference left from Ca

and Cb, the adaptive filter G with two inputs can be used as

shown.

V. THE SYSTEM MODEL AND SOLUTION FOR G

In order to find the optimal transfer function G of the

adaptive filter during training, we must have a system model

15601560



Fig. 5. A cascade of hybrid-1 and hybrid-2 methods. Ideally, the prefilters
Ca and Cb should be such that Ca = H1bH2b and Cb = −H1aH2a. Due
to transmission noises wa(n) and wb(n), even the ideal Ca and Cb would
still leave a large residue interference. However, regardless of the cancelation
performance by Ca and Cb, if G is such that G = [Ga, Gb], H3H2a =
−H6GaH5a, H3H2b = −H6GbH5b, then all interferences are canceled at
the output of this system.

in terms of G. This model must take into account the unknown

nature of the H functions. In the following, we will only

consider the basic configuration shown in Fig. 4. (Although

useful for finding the parameters of the all-analog cancelation

path [3], the following discussions assume that G is digital.)

During training, we assume the absence of s(n), and hence

the output y(n) is simply the self-interference. We model y(n)
as a linear (but otherwise unknown) function of x(n) and

w(n), and also as an affine (but otherwise unknown) function

of the impulse response of G(z). The unknown nature here

is due to the unknown H functions. The optimal solution for

G(z) follows directly from the system model as shown next.

A. Complex Linear System

We will denote the impulse response of G(z) by

g(0), · · · , g(L). If the complex linear system model holds for

the entire circuit (where each pair of I/Q components forms

a complex number), which is a reasonable assumption, then

for any given training pulse x(n), n = 0, 1, · · · , N − 1 and a

proper guard interval, we can write

yi = (F + Wi)g + f + wi (1)

where yi = [y(0), · · · , y(N − 1)]T is the vector of the

corresponding (complex) outputs in the ith realization, g =
[g(0), · · · , g(L)]T , F and f are unknown linear functions of

x(n), n = 0, 1, · · · , N−1, and Wi and wi are unknown linear

functions of the noise w(n), n = 0, 1, · · · , N − 1 in the ith
realization. Here, we assume that x(n), n = 0, 1, · · · , N − 1
is used repeatedly for all realizations.

Denote the energy of yi by ‖yi‖2 with i = 1, · · · ,M . Then,

it follows that for a large M , the average energy of the output

(the self-interference) is given by

e =
1
M

M∑
i=1

‖yi‖2 = gH (RF + RW )g +

+2Re{(rF + rW )Hg} + rf + rw (2)

where RF = FHF, RW = 1
M

∑M
i=1 WH

i Wi, rH
F =

fHF, rH
W = 1

M

∑M
i=1 wH

i Wi, rf = fHf , and rw =
1
M

∑M
i=1 wH

i wi. Equivalently, we can write

e = gHAg + Re{gHb} + c (3)

where A = AH , b and c are the unknowns to be determined

before we can find the optimal g to minimize e.

Now, define

Ā =
[

Ar −Ai

Ai Ar

]
(4)

ḡ = [gT
r ,gT

i ]T (5)

b̄ = [bT
r ,bT

i ]T (6)

where Ar = AT
r and Ai = −AT

i . Then, (3) is equivalent to

e = ḡT Āḡ + ḡT b̄ + c (7)

Furthermore, we can write

e = ḡT ⊗ ḡT vec(Ā) + ḡT b̄ + c

= [gT
r ,gT

i ] ⊗ [gT
r ,gT

i ]

⎡
⎢⎢⎣

vec

(
Ar

Ai

)

vec

( −Ai

Ar

)
⎤
⎥⎥⎦ + ḡT b̄ + c

= gT
r ⊗ [gT

r ,gT
i ]vec

(
Ar

Ai

)

+gT
i ⊗ [gT

r ,gT
i ]vec

( −Ai

Ar

)
+ ḡT b̄ + c

=
{
gT

r ⊗ [gT
r ,gT

i ]

+gT
i ⊗ [gT

i ,−gT
r ]

}
vec

(
Ar

Ai

)
+ ḡT b̄ + c (8)

Let P be such that vec

(
Ar

Ai

)
= P

(
vec(Ar)
vec(Ai)

)
. Then,

e =
{
gT

r ⊗ [gT
r ,gT

i ] + gT
i ⊗ [gT

i ,−gT
r ]

}
P

(
vec(Ar)
vec(Ai)

)

+ḡT b̄ + c

=
{
[gT

r ⊗ gT
r ,gT

r ⊗ gT
i ] + [gT

i ⊗ gT
i ,−gT

i ⊗ gT
r ]

} ·
·
(

vec(Ar)
vec(Ai)

)
+ ḡT b̄ + c

=
[
gT

r ⊗ gT
r + gT

i ⊗ gT
i ,gT

r ⊗ gT
i − gT

i ⊗ gT
r

] ·
·
(

vec(Ar)
vec(Ai)

)
+ ḡT b̄ + c (9)

Since Ar = AT
r and Ai = −AT

i , we know that the only the

lower triangular (including the diagonal) elements of Ar are

independent and only the strictly lower triangular (excluding

the diagonal) elements of Ai are independent.

We now define the selection matrices SL+1 and S̄L+1 as

such that SL+1vec(Ar) contains only the lower triangular

elements of Ar, and S̄L+1vec(Ai) contains only the strictly

lower triangular elements of Ai.

Then, it follows that

e = uT v (10)

where

v =

⎡
⎢⎢⎣

SL+1vec(Ar)
S̄L+1vec(Ai)

b̄
c

⎤
⎥⎥⎦ (11)

uT =
[

uT
1 uT

2 ḡT 1
]

(12)
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where uT
1 = (gT

r ⊗gT
r +gT

i ⊗gT
i )ST

L+1DL+1, uT
2 = 2(gT

r ⊗
gT

i − gT
i ⊗ gT

r )S̄T
L+1, and for example

D4 = diag
[

1 2 2 2 1 2 2 1 2 1
]

(13)

Now we assume that for every M realizations, we use a

unique g from the set of g(k), k = 1, 2, · · · ,K. Then, corre-

sponding to this set, we have a set of e(k), k = 1, 2, · · · ,K.

It follows that

e = Gv (14)

where e = [e(1), · · · , e(K)]T and

G =

⎡
⎣ u(1)T

· · ·
u(K)T

⎤
⎦ ∈ RK×((L+1)2+2L+3) (15)

and u(k) is defined in (12) with g = g(k).
If G has a full-column-rank matrix (see next section), the

least square solution of v is given by

v = (GT G)−1GT e (16)

From this v, we can then construct the estimates of Ā, b̄
and c.

With the model (7) and the estimates of Ā, b̄ and c, the

optimal ḡ which minimizes e (the self-interference energy) is

given by

ḡ = −1
2
Ā−1b̄ (17)

B. Real Linear System

For the same system shown earlier, we can also model it as

e = ḡT Âḡ + ḡT b̄ + c (18)

where the real matrix Â only has the symmetric property

ÂT = Â, which is more relaxed than the structure shown

in (4). If there is an I/Q imbalance in the circuit, the complex

linear model fails but the real linear model still holds [8].

In this case, we can similarly show that

e = ûT v̂ (19)

where

v̂ =

⎡
⎣ S2L+2vec(Â)

b̄
c

⎤
⎦ (20)

ûT =
[

(ḡT ⊗ ḡT )ST
2L+2D2L+2 ḡT 1

]
(21)

VI. HOW TO CHOOSE THE TRAINING VECTORS g(k),

k = 1, 2, · · · ,K

A necessary condition for the training vectors is that the

matrix G defined in (15) is of full column rank. Furthermore,

we want the columns of G to be “nearly” orthogonal with

each other, which is important to reduce the noise sensitivity

of the estimate given by (16). In this section, we introduce

a choice of the training vectors that result in a sparse matrix

G that meets the above requirement. The sparseness is also

useful for reduced computation.

A. For real system

For the real system, we only treat Â as a symmetric matrix.

Let ḡ have the dimension m × 1. Then there are total Nm =
m(m+1)/2+m+1 unknown real parameters in the system.

We let the corresponding G be denoted by Gm. We also use

ḡT (n) = [g1(n), · · · , gm(n)]T with n = 1, 2, · · · , N .

We first consider the case of m = 2 for which N2 = 6.

With N = N2 = 6, we can write G2 as

G2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

g1(1)2 2g1(1)g2(1) g2(1)2 g1(1) g2(1) 1
g1(2)2 2g1(2)g2(2) g2(2)2 g1(2) g2(2) 1
g1(3)2 2g1(3)g2(3) g2(3)2 g1(3) g2(3) 1
g1(4)2 2g1(4)g2(4) g2(4)2 g1(4) g2(4) 1
g1(5)2 2g1(5)g2(5) g2(5)2 g1(5) g2(5) 1
g1(6)2 2g1(5)g2(6) g2(6)2 g1(6) g2(6) 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(22)

To construct a nonsingular G2, we let

1) ḡ(1) = [0, 0]
2) ḡ(2) = [1, 0]
3) ḡ(3) = [−1, 0]
4) ḡ(4) = [0, 1]
5) ḡ(5) = [0,−1]
6) ḡ(6) = [1, 1]

Then,

G2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1
1 0 0 1 0 1
1 0 0 −1 0 1
0 0 1 0 1 1
0 0 1 0 −1 1
1 2 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(23)

To show that this matrix has the full rank N2 = 6, we can

use eliminations by row combinations (starting from the top

rows). Then, we can obtain T2 with det(T2) = 1 such that

T2G2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1
1 0 0 1 0 0
1 0 0 −1 0 0
0 0 1 0 1 0
0 0 1 0 −1 0
0 2 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(24)

There is a column permutation matrix Pc2 such that

T2G2Pc2 = diag[1,J,J, 2] where

J =
[

1 1
1 −1

]
(25)

Hence, we have det(G2) = (−2)(−2)2 = 23.

For the case of m = 3 where N3 = N2+4 = 10, we choose

1) ḡ(1) = [0, 0, 0]T

2) ḡ(2) = [1, 0, 0]T

3) ḡ(3) = [−1, 0, 0]T

4) ḡ(4) = [0, 1, 0]T

5) ḡ(5) = [0,−1, 0]T

6) ḡ(6) = [0, 0, 1]T

7) ḡ(7) = [0, 0,−1]T

8) ḡ(8) = [1, 1, 0]T

9) ḡ(9) = [1, 0, 1]T

10) ḡ(10) = [0, 1, 1]T
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Then, it follows that

G3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 −1 0 0 1
0 0 0 1 0 0 0 1 0 1
0 0 0 1 0 0 0 −1 0 1
0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 1 0 0 −1 1
1 2 0 1 0 0 1 1 0 1
1 0 2 0 0 1 1 0 1 1
0 0 0 1 2 1 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

and there is an elimination-by-row matrix T3 with det(T3) =
1 such that

T3G3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 −1 0 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 −1 0
0 2 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(27)

It is then easy to verify that there is a column permutation

Pc3 such that T3G3Pc3 = diag[1,J,J,J, 2, 2, 2]. It follows

that det(G3) = −26.

For any given m, we can now show that the following

generalization of the previous cases can make a full rank Gm:

1) gi(1) = 0 for i = 1, · · · , m
2) gi(2i) = 1 for i = 1, · · · , m
3) gi(2i + 1) = −1 for i = 1, · · · , m
4) gik

(k+m+1) = gjk
(k+m+1) = 1, k = 1, · · · , Nm−

m− 1, where (ik, jk) is the kth pair of elements out of

{1, · · · , m} and ik < jk.

5) gi(n) = 0 otherwise

To prove this, we can let the Nm−1 × Nm−1 matrix Gm−1

have the full rank Nm−1. Next, we prove that the Nm × Nm

matrix Gm have the full rank Nm. Note that Nm = Nm−1 +
m + 1. It means that Gm have m + 1 additional columns and

rows than Gm−1. One can then verify that there are a row

permutation matrix P1, a column permutation matrix P2 and

an elimination-by-row matrix Tm such that

P1TmGmP2 =

⎡
⎣ Gm−1

J
2Im−1

⎤
⎦ (28)

where the two rows associated with the component J in

the above are due to the two entries in Gm: ḡ(2m) =
[0, · · · , 0, 1]T and ḡ(2m + 1) = [0, · · · , 0,−1]T . The m − 1
rows associated with the component 2Im−1 in the above are

due to the m−1 entries in Gm: ḡ(Nm−m+1+i) = [eT
i , 1]T ,

i = 1, · · · ,m − 1, where ei is the (m − 1) × 1 vector

of all zeros except the one value at its ith position. Hence,

det(Gm) = −2m det(Gm−1). Given det(G2) = 23, we have

det(Gm) = (−1)m2
m(m+1)

2 .

B. For complex system
For the complex system, the matrix G has an additional structure. If we

let ḡ have the dimension k × 1 where k = 2m, then there are total Mk =
(k/2)2 + k + 1 unknown real parameters in the system. Note that ḡ(n) =
[gT

r (n),gT
i (n)]T where gr(n) = [gr,1(n), · · · , gr,m(n)]T and gi(n) =

[gi,1(n), · · · , gi,m(n)]T . Also note that Mk = Nm +
(m−1)m

2
+ m. We

will denote the corresponding G by G(k). We will propose a choice of ḡ(n)
for n = 1, · · · , Mk to construct a nonsingular Mk × Mk matrix G(k).

There is a permutation matrix P(k) such that as follows:

G(k)P(k) =

[
G1,1 G1,2

G2,1 G2,2

]
(29)

where the first block column only depends on gr(n) and the second block
column depends on both gr(n) and gi(n). Furthermore, G1,1 ∈ RNm×Nm

has the exactly same structure as Gm in the real system with ḡ(n) replaced
by gr(n).

For 1 ≤ n ≤ Nm, we propose to choose gi(n) = 0 but at the same time
choose gr(n) in the same way as for the real system. Then, we know that
G1,1 is nonsingular and G1,2 = 0. Furthermore, for any G2,2, there is an
elimination-by-row matrix T(k) such that

T(k)G(k)P(k) =

[
G1,1 0

0 G2,2

]
(30)

It is now sufficient to choose Mk − Nm =
(m−1)m

2
+ m additional ḡ(n)

to make G2,2 full rank.
For m = 3, the structure of the nth row of G2,2 is

(G2,2)n,: =
[

2δgr,i(1, 2) 2δgr,i(1, 3) 2δgr,i(2, 3) ĝT
i

]
(31)

where δgr,i(k, l) = gr(k)gi(l)−gi(k)gr(l) and ĝT
i = [gi(1), gi(2), gi(3)].

If we choose

1) ḡ(N3 + 1) = [0, 0, 0, 1, 0, 0]T

2) ḡ(N3 + 2) = [0, 0, 0, 0, 1, 0]T

3) ḡ(N3 + 3) = [0, 0, 0, 0, 0, 1]T

4) ḡ(N3 + 4) = [1, 0, 0, 0, 1, 0]T

5) ḡ(N3 + 5) = [1, 0, 0, 0, 0, 1]T

6) ḡ(N3 + 6) = [0, 1, 0, 0, 0, 1]T

then we have (up to a column permutation)

G2,2 = diag (I3, 2I3) (32)

For any given m, we choose ḡ(n) for Nm + 1 ≤ n ≤ Mk as follows:

1) gi,n(n + Nm) = 1 for n = 1, · · · , m
2) gr,nk (Nm + m + k) = gi,mk

(Nm + m + k) = 1 for 1 ≤
k ≤ (m−1)m

2
where (nk, mk) is the kth pair of elements from

{1, · · · , m} satisfying nk < mk

3) gr,j(n) = 0 and gi,j(n) = 0 otherwise.

One can verify that up to a column permutation we have

G2,2 = diag

(
Im, 2I (m−1)m

2

)
(33)

which implies that det(G2,2) = 2
(m−1)m

2 .
Therefore, det(G(k)) = det(G1,1) det(G2,2) =

det(Gm) det(G2,2) = 2m2
.
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