
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Secure password-based authenticated key exchange for web services

Permalink
https://escholarship.org/uc/item/8rj6z0p3

Authors
Liang, Fang
Meder, Samuel
Chevassut, Olivier
et al.

Publication Date
2004-11-22

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8rj6z0p3
https://escholarship.org/uc/item/8rj6z0p3#author
https://escholarship.org
http://www.cdlib.org/

Secure Password-Based Authenticated Key Exchange
for Web Services

Liang Fang1
Computer Science Department,

Indiana University

lifang@cs.indiana.edu

Samuel Meder
Department of Computer Science,

University of Chicago

meder@mcs.anl.gov

Frank Siebenlist
Mathematics and Computer Science

Division, Argonne National Laboratory

franks@mcs.anl.gov

Olivier Chevassut
Computational Research Division,

Lawrence Berkeley National
Laboratory

ochevassut@lbl.gov

ABSTRACT
This paper discusses an implementation of an authenticated key-
exchange method rendered on message primitives defined in the
WS-Trust and WS-SecureConversation specifications. This IEEE-
specified cryptographic method (AuthA) is proven-secure for
password-based authentication and key exchange, while the WS-
Trust and WS-SecureConversation are emerging Web Services
Security specifications that extend the WS-Security specification.
A prototype of the presented protocol is integrated in the WS-
ResourceFramework-compliant Globus Toolkit V4. Further
hardening of the implementation is expected to result in a version
that will be shipped with future Globus Toolkit releases. This
could help address the current unavailability of decent shared-
secret-based authentication options in the Web Services and Grid
world. Future work will be to integrate One-Time-Password (OTP)
features in the authentication protocol.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General –
security and protection.

General Terms
Security, Design

Keywords
Authenticated key exchange, web services, password, security.

1. INTRODUCTION
1.1 Grid Computing and Web Services
The term “Grid” refers to systems and applications that integrate
and manage resources and services distributed across multiple
control domains [9]. Pioneered in an e-science context, Grid

technologies are also generating interest in industry as a result of
their apparent relevance to commercial distributed-computing
applications [7]. The results of this research have been
incorporated into a widely used software system called the Globus
Toolkit® (GT) [8] that uses public key technologies to address
issues of single sign-on, delegation, and identity. The Grid
Security Infrastructure (GSI) is the name given to the portion of
the Globus Toolkit that implements security functionality.

The recent definition of the Web Service Resource Framework
(WSRF) specification and other elements of the Open Grid
Services Architecture (OGSA) within OASIS and the Global Grid
Forum (GGF) introduce new challenges and opportunities for
Grid security [21, 24]. In particular, integration with Web services
and hosting environment technologies introduces opportunities to
leverage emerging security technologies such as described in the
WS-Security, WS-Trust and WS-Secure-Conversation
specifications [18, 22, 23].

1.2 Security in Grid Computing and Web
Services
Security in Web Services (WS) is still immature in many ways as
a great number of emerging specifications seem to be competing
and in flux. Recently, however, the basic underpinnings for SOAP
message security have been defined by the standardized WS-
Security specifications in OASIS [23]. WS-Trust and WS-
SecureConversation are proposed extensions of the WS-Security
specification, defining message primitives and interfaces for
security context establishment, sharing, and session key
derivation [18, 22]. Although these specifications have not yet
been standardized, the associated authors have publicly stated
their intentions in that direction.1

Security in Grid Computing is of utmost importance. Any Grid
site deployment must provide the basic security mechanisms
including authentication, authorization and secure
communications. The Grid Security Infrastructure (GSI)
component in Globus plays the central role in providing these
mechanisms, as well as the extended ones such as single sign-on,

1 Fang’s work was completed during his internship in

Mathematics and Computer Science Division, Argonne
National Laboratory.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM Workshop on Secure Web Services, October 29, 2004, Fairfax VA,
USA.
Copyright 2004 ACM X-XXXXX-XXX-X…$5.00.

delegation and mutual authentication using public key
cryptography [14]. GSI was initially built upon the Transport
Layer Security (TLS) protocol, and was enhanced to provide
message level authentication, key exchange, data protection, and
delegation through the use of proxy certificates.

The Globus Toolkit is being rendered on the web service
protocols. For that reason, GSI requires a TLS-like message level
protocol built from the WS-security primitives, to support the
establishment of a security context between two parties and
enable future communications without having to perform an
expensive exchange of security credential each time [11]. GSI-
SecureConversation is the first effort of such a protocol, which
defines its own session-based security mechanism, similarly to
WS-SecureConversation. Its implementation is based on public
key authentication and has no support for authentication based on
shared secrets.

The WS-SecureConversation specification accommodates
multiple authentication mechanisms (e.g., username/password,
certificates, and capabilities). Unfortunately, there is currently no
open source implementation of WS-SecureConversation
supporting password-based authentication.

Currently, we see a trend where many Grid site deployments use
or plan to use password authentication to obtain public key
credentials from a credential service. The recent compromises of
user and server machines are resulting in site security policy
changes where long-term secrets are no longer to be stored on the
user’s machines. Instead, long-term credentials will be stored on
servers in data centers where their integrity can be better
protected. Users will authenticate with a (one-time) password to
these credential servers. After successful authentication, the user
will obtain short-lived credentials, such as a short-lived X.509
certificate or proxy-certificate, which can subsequently be used
for the access of other services on the Grid [15]. This has renewed
interest in password-based authentication mechanisms.

MyProxy is such a credential management service that is used at
the core of a number of Computing Center's credential repository
for its Grid users [10]. This service provides a convenient means
for the storage of user credentials (i.e. their X.509 certificates and
associated private keys), which can then be retrieved by the user
using a traditional username and password interface. In addition
to solving a number of usability problems for users, a strong
argument can be made that consolidating long-term user
credentials in a secure repository, such as MyProxy, which is
managed by professional staff, is preferable to having credentials
managed in an ad hoc fashion by users who are well-intended, but
often not security savvy.

1.3 Accomplishments
This paper describes the design and implementation based on the
WS-Trust and WS-SecureConversation specifications supporting
an authentication method based on a password, i.e. shared secret.
It is the first effort to bring password-based authentication key
exchange methods into the message level security, right after
Steiner et al. [12] and Taylor et al. [13] ported these methods into
the Transport Layer Security (TLS) protocol.

A password is a short string chosen from a relatively small
dictionary so that it is easier to be memorized than a long
symmetric key; however, passwords are subject to various attacks

such as dictionary attack and network eavesdropping. Therefore,
passwords should not be used directly as input of
signature/encryption schemes. A run-time password-derived
secret should be used instead.

Our protocol implementation consists of a password-based
authenticated Diffie-Hellman key exchange to agree on a session
key, and a key derivation to educe multiple session keys from this
master key. Each session is in turn used in conjunction with a
symmetric cipher such as the AES, and a Message Authentication
Code such as the HMAC, to implement secure message
exchanges. The communications for passing these inner
cryptographic primitives and parameters need to be defined for
WSRF-compliant clients and services. This requires the definition
of operations for all client/service interactions in Web Service
Definition Language (WSDL). WSDL is the standard language in
XML for defining Web Services interfaces.

Currently, most of the message level security solutions in Web
Services are based on Public Key Infrastructure (PKI), for
example, the GSI-SecureConversation implementation of Globus
Toolkit 3 and the WS-SecureConversation implementation in the
coming release version of WSS4J [17].

The rest of this paper is organized as follows. In Section 2, we
illustrate the security context establishment using the WS-Trust
and WS-SecureConversation specifications. In Section 3, we
introduce the password-based key exchange method and explain
its integration in WS-Trust and WS-SecureConversation under the
Web Services Resource Framework (WSRF). Section 4 concludes
this paper and presents our future directions.

2. WS-TRUST AND WS-SECURE-
CONVERSATION IN SECURITY
CONTEXT ESTABLISHMENT
2.1 WS-Trust
The Web Services Trust Language is an extension to WS-Security.
It defines syntax for security token exchanges to build up trust
relationship among different web service domains. It also
provides a set of mechanisms to allow a range of security
protocols to fit in, such as the Web Services Trust Model. In this
Web Services Trust model, if the service requestor does not have
the required tokens for a target service, it turns to an authority for
them. Such an authority is called a Security Token Service. WS-
Trust also defines multi-message exchange mechanisms, such as
the challenge-response protocol. Most of the tokens used in WS-
SecureConversation are actually defined in WS-Trust, including
the most frequently used RequestSecurityToken (RST) and
RequestSecurityTokenResponse (RSTR).

2.2 WS-SecureConversation
The Web Services Secure Conversation Language is based on
WS-Security and WS-Trust to allow security context
establishment, sharing, and session key derivation. It defines a
Security Context Token (SCT) shared among the communicating
parties for the session lifetime. A SCT usually contains an
identifier pointing to the security tokens being shared.

WS-SecureConversation gives three scenarios for establishing
security contexts. The first one is SCT created by a security token
service; the second one is by one of the communicating parties

and propagated with a message; the last is through negotiation
and exchanges. These scenarios, however, do not exclude each
other. For instance, a security token service may have to create
security context tokens through negotiation.

Our implementation is based on an unreleased version of WSS4J,
which includes a preliminary implementation of WS-
SecureConversation through a pair of handlers. The interaction
between the different components is shown in Figure 1, which
assumes that both sides have previously exchanged their public
keys. The workflow is as follows:

1. The sender, which is usually a client, defines the
cryptographic algorithms to use, and generates a random
session key suitable for the selected algorithms for either
signature or encryption or both.

2. It then encrypts the generated session key with the public
key of the receiver (with the assumption that the sender
already knows where to get the receiver’s public key).

3. It embeds the encrypted session key into a SOAP message. If
necessary, he may choose to encrypt the message with the
session key.

4. The receiver, upon receiving the SOAP message, decrypts
the session key with his own private key. From then on, both
sides have possessed the session key for further signature
and verification or encryption and decryption operations.

The goal of WS-SecureConversation initialization process is to
finish the key exchanges before passing the first remote
invocation message to the service provider. Intuitively, this
solution looks straightforward and easy to be implemented;
however, there is a problem with the dependency on the two
handlers, as it is unable to engage in multi-round key exchange
interactions. The reason lies in the service side WS-Secure-
Conversation handler. WSS4J, as a sub-project of Axis, follows
the design of Axis. Axis is an open source SOAP engine for
building generic Web Service applications [16]. Simply speaking,
every SOAP message goes through the Axis SOAP engine to its
desired target along a pre-configured path. The path is made up of
a chain of processor nodes, also known as handlers. For example,
the encryption handler is responsible for encrypting or decrypting
SOAP messages when it receives them. The service provider
handler is a special handler that contains the real service logic and
sits at the end of the path. Except the service provider, a handler

can never short-circuit the message flow by returning the message
without passing it on to the next handler on the path.

In a secure Web Service, the WS-SecureConversation handler at
the service side is not the service provider but one of the
underlying serving handlers. It must faithfully pass the remote
invocation message on, until it reaches the service provider, even
though the key exchange interaction may not have finished and
the session key may not be ready. Therefore it is impossible for a
server-side WS-SecureConversation handler to finish a multi-
round interaction. This solution only works for those cases that no
further interaction is necessary such as the public key-based one

assumed in WSS4J.

Even though WS-Trust and WS-SecureConversation provide
some methods to compute a new key, they do not restrict the use
of alternative key exchange methods to obtain session keys. These
alternative methods include Diffie-Hellman key exchange,
independent security token services and other services that
propagate the tokens. In order to address the before mentioned
restrictions imposed by the WSS4J/Axis implementation, our WS-
SecureConversation implementation inherits the approach that
GSI-SecureConversation adopted by implementing the
negotiation mechanism as a separate service. The details will be
addressed in the next section.

3. PASSWORD-AUTHENTICATED KEY
EXCHANGE IN WS-TRUST AND WS-
SECURECONVERSATION
3.1 A Method for Password-Based Key
Exchange
Methods for Authenticated Key Exchange (AKE) allow two
parties to agree on a common secret value. This secret value,
often refers to as a session key, is stored in a security context. In
practice, multiple keys will be derived from this session key to
implement mechanisms for message confidentiality and integrity.
AKE methods based on passwords uses a (short) shared password
as a means to compute this session key. Bellovin and Merritt first
raised this problem in 1992 [3] and since then several methods
have been proposed to solve it. The AuthA protocol is an example
of such a provably-secure method [2, 4, 5].
The AuthA protocol is based on the Diffie-Hellman key-
agreement protocol [6]. It offers protection against man-in-the-
middle attacks by the flows of the Diffie-Hellman exchange under

Handlers

Sender

Client
App

Message
Context

… …SecConv
Handler

Target
Service

Receiver

Handlers

… …SecConv
Handler

Message
Context

Handlers

Sender

Client
App

Message
Context

… …SecConv
Handler

Target
Service

Receiver

Handlers

… …SecConv
Handler

Handlers

… …SecConv
Handler

Message
Context

Figure 1 WS-SecureConversation in Handlers

the password, provides semantic security of the session key,
mutual authentication, as well as forward secrecy. A typical
workflow of the AuthA method is depicted in Figure 2. The Client
and the Server share a previously known password passwd. G is a
cyclic group on which the Diffie-Hellman problem is hard. The

group is produced by a generator g. By default, G, p, and g, are all
well-known.
The Client picks a random value for x and calculates X from the
generator g. Instead of presenting X to the server as in the
conventional Diffie-Hellman protocol, the Client encrypts X with
the password passwd, and sends the encrypted X* over to the
Server along with its name. Upon receiving this request, the
Server chooses at random a value y, and calculates Y using the
generator g. Meanwhile, it decrypts X with the password passwd
from X*. Considering that X* could have been modified or
replaced by a third-party attacker, we mark the received X*
as *X , and the decrypted X as X . If no attacker has modified
these values on the wire, these values are as
follows ** XX = and ,XX = . Upon receiving X, the Server
computes the Diffie-Hellman secret value key KB. It also then
computes the session key sk using the Diffie-Hellman secret value
and some additional information including the password and the
names of both parties.
The AuthA protocol achieves the property of mutual
authentication by having the Client and the Server compute and
send the authenticators AuthB and AuthA*. For efficiency
purposes, the Server sends the values Y, AuthB (as well as his
name), in one single message to the Client rather than two
separated messages. After receiving Y, the Client computes the
session key and then checks whether the received value AuthB
matches its computed AuthB*. If so, and the Client computes the
session key and AuthA, respectively. If not, the Server cannot be
authenticated, and the key-exchange fails. Lastly, the Client

returns to the Server AuthA to authenticate itself. If AuthA
matches AuthA*, the key-exchange terminated successfully and
the two parties share the same value for the session key sk.

In Figure 2, the session key skA is equal to skB, as long as XX = ,

and YY = ; both parties will obtain the session key without
exchanging it explicitly over the wire.

3.2 WS-SecureConversation Design Criteria
As we explained in section 2.2, because the WSS4J solution does
not support multi-round interaction cases such as the AuthA key
exchange method, we have to provide our own solution to support
the AuthA and any other interaction requirements.
In our WS-SecureConversation implementation design, we adopt
the GSI-SecureConversation approach by implementing the server
side negotiation mechanism as a separate service in the same
container as the application services. A WS-SecureConversation
handler is provided at the client side.
This approach leverages the Web Service Resource Framework
(WSRF) by treating the service security context as a stateful
resources.
The client side WS-SecureConversation handler interacts with the
remote WS-SecureConversation service for as many round trips
as needed. The whole workflow is shown in Figure 3, illustrated
in two phases. The first phase is the initial interaction for session
key exchange between the client side hander and the remote
service of WS-SecureConversation; in the second phase, both
sides communicate with each other with the derived session key
stored in their contexts.
The steps of the first phase are as follows:
1.0. The client application starts an initial remote call through a
SOAP message.

B, Y, AuthB

Alice
(passwd)

Bob
(passwd)

)(
,

* XEX
gX

passwd

x

=

= A, X*

),,,,(

),,,,(

),,,(
,

),(

,

2
*

1

*

BB

y
B

B

y

B

passwd

y

KYXBAHsk

passwdKBAHAuthA

KBAHAuthB
XK

XDX

gY

=

=

=
=

=

=

),,,,(

),,,,(
?

),,,(

,

2

*
1

*

AA

passwd
A

A

x

A

KYXBAHsk

YKBAHAuthA
AuthBAuthB

KBAHAuthB

YK

=

=

==

=

=

AuthA
?*AuthAAuthA ==

Figure 2 The AuthA Method

1.1. The SOAP message is handled by the WS-Secure-
Conversation handler, which finds that a secure conversation
context is supposed to be established. It then blocks the message

and makes a remote RequestSecurityToken (RST) call defined in
WS-Trust to the WS-SecureConversation service, which is
located in the same service container as the remote target service.
Depending on the key exchange method, the SOAP message may
contain the selected methods and algorithms, the required
parameters, public keys, entropies, generated random session keys
and other information.
1.2. As the WS-SecureConversation service receives the RST
incoming message, it interprets the information attached in the

SOAP message according to its knowledge to the specified
method, which is defined as schemas in most cases. It then fetches
the security related information, such as credentials, from a
security context resource if necessary. The security context
resource has the general information about the owner who is
running the service container.
1.3 The initialization interaction may continue for more than one
round trip. The following SOAP message exchanges are under the
name of RequestSecurityTokenResponse (RSTR) call, defined in
WS-Trust. The RST with one or more SecurityContextTokens
(SCT) is returned. A SCT has an identifier referring to a token
established or to be established in the contexts. Finally, a session

key will be agreed upon and stored in both sides’ session contexts.
At service side, the session context lies in the service’s resource.
With the security context established, the WS-Secure-

Conversation handler passes the first SOAP message on to the
next handler, and thus the client begins to interact with the real
target service in phase 2.
The model in Figure 3 could be generalized with an
independently functioning Service Token Service, described in
WS-Trust as a typical WS-Trust model, as Figure 4 shows. The
service plays the role as a security authority. However, an
externalized Service Token Service means extra trust relationship
to be established between the Service Token Service and the

target service. The service itself needs a full fledged
authentication and authorization mechanism. Moreover, the WS-
SecureConversation service will no longer interact with the target
service’s resource internally, but through the interfaces provided
by a standard stateful service. Separating the WS-Secure-
Conversation service from the targeting service container helps
alleviate the load, as we can deploy or move the WS-Secure-
Conversation service to another host.

1.0 1.3

2

2

1.1
1.2

1.3

Handlers

Service
Token

Service

Target
Service

Security

Resource

Context

Resource

Context

Service Container
Client

Client

App

Message

Context

… …SecConv

Handler

2

Figure 4 WS-SecureConversation Service Externalized as Security Token Service

Authority

1.3

2
2

1.1
1.2

1.31.0

Handlers
SecConv

Service

Target
Service

Security

Resource

Context

Resource

Context

Service Container

Client

Client

App

Message

Context

… …SecConv

Handler

2

Figure 3 Server side WS-SecureConversation

3.3 Integration of Password-based Key
Exchange in WS-SecureConversation
Based on the implementations of the AuthA and WS-Secure-
Conversation, the integration work is straightforward. In our WS-
SecureConversation implementation, to allow different security
context establishment methods to be integrated, the method
general behaviors are abstracted as interfaces ClientNegotiator
and ServerNegotiator for both client side handler and server side
service, respectively. To integrate the AuthA method, we had to
implement the corresponding interfaces called AuthAClient-
Negotiator and AuthAServerNegotiator. The AuthA method
specific parameters are grouped as customized tokens, which are
defined in XML Schema, including ClientInitToken (CIT),
ServerResponseToken, (SRT) and ClientResponseToken (CRT).
Each token contains one or more cryptographic parameters, such
as the public keys and the authentication bits. These parameters
can be either required or optional, depending on the working
mode.
The instances of AuthAClientNegotiator and AuthAServer-
Negotiator are responsible for processing those tokens. WS-
SecureConversation handler and service wrap up them with the
WS-SecureConversation specific tokens, when processing a
response. When dealing with a request, they unwrap the WS-
SecureConversation specific tokens for protocol specific tokens.
The instance of AuthAServerNegotiator is stored in the resource
context for the current session, so that in the next round, WS-
SecureConversation service could fetch it from the resource
context according to the session context ID number.

In addition, we have implemented the signature and encryption
handlers. These handlers have two tasks. The first one is to fetch
the secrets from the security contexts. The security context is part
of the resource context at the service side; while it is incorporated
in the background message context at the client side. The security
context resources may be stored in a persistent storage such as a
database, supported by the WSRF layer. The physical location of
a security context is transparent to the handlers. The other task is
to sign or encrypt the desired sections of the SOAP envelope with
the symmetric keys obtained. The whole interaction process is
depicted in Figure 5.

3.4 Status
The AuthA method is implemented in Java in the form of a
library, with a dependency on Bouncy Castle library [20]. The
WS-Trust and WS-SecureConversation implementations are built
on top of the pre-release version of Globus Toolkit 4.

4. CONCLUSION AND FUTURE WORK
In this paper, we brought the password-based authenticated key
exchange method to the message level security for run-time
session key derivation. We first briefly described the WS-Trust
and WS-SecureConversation specifications, which are emerging
message level security specifications for security context
establishment, sharing and derivation among multiple trust
domains. We then introduced the AuthA method as a standardized
password-based AKE method. Finally, we illustrated how we
have implemented a working system based on those specifications
and the WSRF-compliant Globus Toolkit.
Our future work will first be dedicated to the hardening of the
implementation such that we can feel confident that our
implementation can be deployed in real production-like
environments. High on our priority list is also to add One-Time
Password (OTP) features [19] to the AuthA protocol using
Abdalla et al.’s recent work [1]. We also plan to add mechanisms
to the AuthA protocol that would add resistence against Denial of
Services (DoS) attacks. The number of Denial of Services (DoS)
attacks through the Internet has grown tremendously in the last
couple of years. The effectiveness of DoS attacks can be
decreased through the use of specific cryptographic mechanisms
[4], which treat the amount of Perfect Forward-Secrecy (PFS) as

an engineering parameter that can be traded off against resistance
to DoS attacks.
Furthermore, the mutual authentication version of AuthA method
takes one and a half round trip. However, in practice, it takes two
full round trips, as the client’s call to the service has to be
returned, even with an empty envelope for the last message. We
are investigating whether we could further optimize the use of the
protocol by also exchanging protected application messages
during the second round-trip, which would effectively reduce the
overhead of the authenticated key exchange to a single round trip.

5. ACKNOWLEDGMENTS
We are pleased to acknowledge contributions to the
implementation by Rachana Ananthakrishnan and Jarek Gawor,

Figure 5 WS-SecureConversation Interactions in AuthA

<Fault/>

<RSTR><CRT>AuthA</CRT></RSTR>

<RSTR><SRT>B, Y, AuthB</SRT></RSTR>

<RST><CIT>A, X*</CIT></RST>

SecConv
Handler

AuthAClient

Negotiator

SecConv Service

Sec. Context

Resource

Container

AuthAServer

Negotiator

and we would like to thank Dennis Gannon and Ian Foster for
their continuous support. The authors also thank David
Pointcheval for his invaluable discussions on cryptographic issues
related to this document.

Our co-author Olivier Chevassut, was supported by the Director,
Office of Science, Office of Advanced Scientific Computing
Research, Mathematical Information and Computing Sciences
Division, of the U.S. Department of Energy under Contract No.
DE-AC03-76SF00098. This document is report LBNL-56361.
Disclaimer available at http://www-library.lbl.gov/disclaimer.

6. REFERENCES
[1] Abdalla M., Chevassut O., and Pointcheval D., Corruption in

Password-Authenticated Key Exchange, Submitted for
publication, August 2003. Also available as LBNL Report
Number LBNL-56212.

[2] Bellare M. and Rogaway P., The AuthA Protocol for
Password-based Authenticated Key Exchange. March 14,
2000.

[3] Bellovin S. M. and Merritt M., Encrypted Key Exchange:
Password-Based Protocols Secure against Dictionary Attack,
the Proc. Of the Symposium on Security and Privacy, IEEE,
1992, pp. 72-84.

[4] Bresson E., Chevassut O., and Pointcheval D., New Security
Results on Encrypted Key Exchange, the 7th International
Workshop on Theory and Practice in Public Key
Cryptography, March, 2004.

[5] Bresson E., Chevassut O., and Pointcheval D., Security
Proofs for an Efficient Password-Based Key Exchange, the
10th ACM Conference on Computer and Communication
Security, Oct., 2003.

[6] Diffie W. and Hellman M., New directions in cryptography,
IEEE Transactions on Information Theory IT-22, 6 (Nov.),
1976, pp. 644-654.

[7] Foster I., Kesselman C., Nick J. and Tuecke S. The
Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration, Globus Project, 2002.
http://www.globus.org/research/papers/ogsa.pdf.

[8] Foster I., Kesselman C., Globus: A Metacomputing
Infrastructure Toolkit, Intl J. Supercomputer Applications,
11(2):115-128, 1997.

[9] Foster I. and Kesselman C., Computational Grids. Foster I.
and Kesselman C. eds., The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, 1999, 248.
2002.

[10] Novotny J., Tuecke S., and Welch V., An Online Credential
Repository for the Grid: MyProxy, Proceedings of the Tenth

International Symposium on High Performance Distributed
Computing (HPDC-10), IEEE Press, Aug. 2001.

[11] Shirasuna S., Slominski A., Fang L., and Gannon D.,
Performance Comparison of Security Mechanisms for Grid
Services, the 5th IEEE/ACM International Workshop on
Grid Computing, Pittsburgh, Nov. 8, 2004.

[12] Steiner M., Buhler P., Eirich T., and Waidner M., Secure
Password-Based Cipher Suite for TLS, the Proceedings of
Network and Distributed Systems Security Symposium, San
Diego, CA, Feb. 3-4, 2000, pp. 129-142.

[13] Taylor D., Wu T., Mavroyanopoulos N., and Perrin T., Using
SRP for TLS Authentication, TLS Working Group, IETF
Internet Draft, August 2004.

[14] Welch V., Siebenlist F., Foster I., Bresnahan J., Czajkowski
K., Gawor J., Kesselman C., Meder S., Pearlman L., Tuecke
S., Security for Grid Services, Twelfth International
Symposium on High Performance Distributed Computing
(HPDC-12), IEEE Press, June 2003.

[15] Welch V., Foster I., Kesselman C., Mulmo O., Pearlman L.,
Tuecke S., Gawor J., Meder S., Siebenlist F., X.509 Proxy
Certificates for Dynamic Delegation, 3rd Annual PKI R&D
Workshop, 2004.

[16] Apache Web Services Project, Axis,
http://ws.apache.org/axis.

[17] Apache WSS4J, http://ws.apache.org/ws-fx/wss4j.
[18] BEA, Computer Associates, IBM, Layer7, Microsoft,

Netegrity, Oblix, OpenNetwork, Ping Identity, Reactivity,
RSA Security, VeriSign, Westbridge, Web Services Trust
Language, March 2004.
"http://msdn.microsoft.com/library/en-
us/dnglobspec/html/ws-trust.asp"

[19] IETF, A One-Time Password System (RFC 2289), February,
1998. http://www.ietf.org/rfc/rfc2289.txt.

[20] Legion of Bouncy Castle, Bouncy Castle library,
http://www.bouncycastle.org.

[21] OASIS, “Web Service Resource Framework”, March 2004.
[22] OASIS, “Web Services Security: SOAP Message Security”

March 15 2004.
[23] BEA, Computer Associates, IBM, Layer7, Microsoft,

Netegrity, Oblix, OpenNetwork, Ping Identity, Reactivity,
RSA Security, VeriSign, Westbridge, “Web Services Secure
Conversation Language” May 2004.
"http://msdn.microsoft.com/library/en-
us/dnglobspec/html/ws-secureconversation.asp"

[24] Open Grid Services Architecture, OGSA-working-group at
GGF, https://forge.gridforum.org/projects/ogsa-wg.

