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ABSTRACT 
This paper discusses an implementation of an authenticated key-
exchange method rendered on message primitives defined in the 
WS-Trust and WS-SecureConversation specifications. This IEEE-
specified cryptographic method (AuthA) is proven-secure for 
password-based authentication and key exchange, while the WS-
Trust and WS-SecureConversation are emerging Web Services 
Security specifications that extend the WS-Security specification. 
A prototype of the presented protocol is integrated in the WS-
ResourceFramework-compliant Globus Toolkit V4. Further 
hardening of the implementation is expected to result in a version 
that will be shipped with future Globus Toolkit releases. This 
could help address the current unavailability of decent shared-
secret-based authentication options in the Web Services and Grid 
world. Future work will be to integrate One-Time-Password (OTP) 
features in the authentication protocol.   

Categories and Subject Descriptors 
C.2.0 [Computer-Communication Networks]: General – 
security and protection. 

General Terms 
Security, Design 

Keywords 
Authenticated key exchange, web services, password, security. 

1. INTRODUCTION 
1.1 Grid Computing and Web Services 
The term “Grid” refers to systems and applications that integrate 
and manage resources and services distributed across multiple 
control domains [9]. Pioneered in an e-science context, Grid 

technologies are also generating interest in industry as a result of 
their apparent relevance to commercial distributed-computing 
applications [7]. The results of this research have been 
incorporated into a widely used software system called the Globus 
Toolkit® (GT) [8] that uses public key technologies to address 
issues of single sign-on, delegation, and identity. The Grid 
Security Infrastructure (GSI) is the name given to the portion of 
the Globus Toolkit that implements security functionality.  

The recent definition of the Web Service Resource Framework 
(WSRF) specification and other elements of the Open Grid 
Services Architecture (OGSA) within OASIS and the Global Grid 
Forum (GGF) introduce new challenges and opportunities for 
Grid security [21, 24]. In particular, integration with Web services 
and hosting environment technologies introduces opportunities to 
leverage emerging security technologies such as described in the 
WS-Security, WS-Trust and WS-Secure-Conversation 
specifications [18, 22, 23]. 

1.2 Security in Grid Computing and Web 
Services  
Security in Web Services (WS) is still immature in many ways as 
a great number of emerging specifications seem to be competing 
and in flux. Recently, however, the basic underpinnings for SOAP 
message security have been defined by the standardized WS-
Security specifications in OASIS [23]. WS-Trust and WS-
SecureConversation are proposed extensions of the WS-Security 
specification, defining message primitives and interfaces for 
security context establishment, sharing, and session key 
derivation [18, 22]. Although these specifications have not yet 
been standardized, the associated authors have publicly stated 
their intentions in that direction.1 

Security in Grid Computing is of utmost importance. Any Grid 
site deployment must provide the basic security mechanisms 
including authentication, authorization and secure 
communications. The Grid Security Infrastructure (GSI) 
component in Globus plays the central role in providing these 
mechanisms, as well as the extended ones such as single sign-on, 
                                                                 
1  Fang’s work was completed during his internship in 
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delegation and mutual authentication using public key 
cryptography [14]. GSI was initially built upon the Transport 
Layer Security (TLS) protocol, and was enhanced to provide 
message level authentication, key exchange, data protection, and 
delegation through the use of proxy certificates.  

The Globus Toolkit is being rendered on the web service 
protocols. For that reason, GSI requires a TLS-like message level 
protocol built from the WS-security primitives, to support the 
establishment of a security context between two parties and 
enable future communications without having to perform an 
expensive exchange of security credential each time [11]. GSI-
SecureConversation is the first effort of such a protocol, which 
defines its own session-based security mechanism, similarly to 
WS-SecureConversation. Its implementation is based on public 
key authentication and has no support for authentication based on 
shared secrets.  

The WS-SecureConversation specification accommodates 
multiple authentication mechanisms (e.g., username/password, 
certificates, and capabilities). Unfortunately, there is currently no 
open source implementation of WS-SecureConversation 
supporting password-based authentication.  

Currently, we see a trend where many Grid site deployments use 
or plan to use password authentication to obtain public key 
credentials from a credential service. The recent compromises of 
user and server machines are resulting in site security policy 
changes where long-term secrets are no longer to be stored on the 
user’s machines. Instead, long-term credentials will be stored on 
servers in data centers where their integrity can be better 
protected. Users will authenticate with a (one-time) password to 
these credential servers. After successful authentication, the user 
will obtain short-lived credentials, such as a short-lived X.509 
certificate or proxy-certificate, which can subsequently be used 
for the access of other services on the Grid [15]. This has renewed 
interest in password-based authentication mechanisms. 

MyProxy is such a credential management service that is used at 
the core of a number of Computing Center's credential repository 
for its Grid users [10]. This service provides a convenient means 
for the storage of user credentials (i.e. their X.509 certificates and 
associated private keys), which can then be retrieved by the user 
using a traditional username and password interface. In addition 
to solving a number of usability problems for users, a strong 
argument can be made that consolidating long-term user 
credentials in a secure repository, such as MyProxy, which is 
managed by professional staff, is preferable to having credentials 
managed in an ad hoc fashion by users who are well-intended, but 
often not security savvy.  

1.3 Accomplishments  
This paper describes the design and implementation based on the 
WS-Trust and WS-SecureConversation specifications supporting 
an authentication method based on a password, i.e. shared secret. 
It is the first effort to bring password-based authentication key 
exchange methods into the message level security, right after 
Steiner et al. [12] and Taylor et al. [13] ported these methods into 
the Transport Layer Security (TLS) protocol.  

A password is a short string chosen from a relatively small 
dictionary so that it is easier to be memorized than a long 
symmetric key; however, passwords are subject to various attacks 

such as dictionary attack and network eavesdropping. Therefore, 
passwords should not be used directly as input of 
signature/encryption schemes. A run-time password-derived 
secret should be used instead.  

Our protocol implementation consists of a password-based 
authenticated Diffie-Hellman key exchange to agree on a session 
key, and a key derivation to educe multiple session keys from this 
master key. Each session is in turn used in conjunction with a 
symmetric cipher such as the AES, and a Message Authentication 
Code such as the HMAC, to implement secure message 
exchanges. The communications for passing these inner 
cryptographic primitives and parameters need to be defined for 
WSRF-compliant clients and services. This requires the definition 
of operations for all client/service interactions in Web Service 
Definition Language (WSDL). WSDL is the standard language in 
XML for defining Web Services interfaces.  

Currently, most of the message level security solutions in Web 
Services are based on Public Key Infrastructure (PKI), for 
example, the GSI-SecureConversation implementation of Globus 
Toolkit 3 and the WS-SecureConversation implementation in the 
coming release version of WSS4J  [17].  

The rest of this paper is organized as follows. In Section 2, we 
illustrate the security context establishment using the WS-Trust 
and WS-SecureConversation specifications. In Section 3, we 
introduce the password-based key exchange method and explain 
its integration in WS-Trust and WS-SecureConversation under the 
Web Services Resource Framework (WSRF). Section 4 concludes 
this paper and presents our future directions. 

2. WS-TRUST AND WS-SECURE-
CONVERSATION IN SECURITY 
CONTEXT ESTABLISHMENT 
2.1 WS-Trust 
The Web Services Trust Language is an extension to WS-Security. 
It defines syntax for security token exchanges to build up trust 
relationship among different web service domains. It also 
provides a set of mechanisms to allow a range of security 
protocols to fit in, such as the Web Services Trust Model. In this 
Web Services Trust model, if the service requestor does not have 
the required tokens for a target service, it turns to an authority for 
them. Such an authority is called a Security Token Service. WS-
Trust also defines multi-message exchange mechanisms, such as 
the challenge-response protocol. Most of the tokens used in WS-
SecureConversation are actually defined in WS-Trust, including 
the most frequently used RequestSecurityToken (RST) and 
RequestSecurityTokenResponse (RSTR). 

2.2 WS-SecureConversation 
The Web Services Secure Conversation Language is based on 
WS-Security and WS-Trust to allow security context 
establishment, sharing, and session key derivation. It defines a 
Security Context Token (SCT) shared among the communicating 
parties for the session lifetime. A SCT usually contains an 
identifier pointing to the security tokens being shared. 

WS-SecureConversation gives three scenarios for establishing 
security contexts. The first one is SCT created by a security token 
service; the second one is by one of the communicating parties 



and propagated with a message; the last is through negotiation 
and exchanges. These scenarios, however, do not exclude each 
other. For instance, a security token service may have to create 
security context tokens through negotiation. 

Our implementation is based on an unreleased version of WSS4J, 
which includes a preliminary implementation of WS-
SecureConversation through a pair of handlers. The interaction 
between the different components is shown in Figure 1, which 
assumes that both sides have previously exchanged their public 
keys. The workflow is as follows:  

 

1. The sender, which is usually a client, defines the 
cryptographic algorithms to use, and generates a random 
session key suitable for the selected algorithms for either 
signature or encryption or both.  

2. It then encrypts the generated session key with the public 
key of the receiver (with the assumption that the sender 
already knows where to get the receiver’s public key). 

3. It embeds the encrypted session key into a SOAP message. If 
necessary, he may choose to encrypt the message with the 
session key. 

4. The receiver, upon receiving the SOAP message, decrypts 
the session key with his own private key. From then on, both 
sides have possessed the session key for further signature 
and verification or encryption and decryption operations. 

The goal of WS-SecureConversation initialization process is to 
finish the key exchanges before passing the first remote 
invocation message to the service provider. Intuitively, this 
solution looks straightforward and easy to be implemented; 
however, there is a problem with the dependency on the two 
handlers, as it is unable to engage in multi-round key exchange 
interactions. The reason lies in the service side WS-Secure-
Conversation handler. WSS4J, as a sub-project of Axis, follows 
the design of Axis. Axis is an open source SOAP engine for 
building generic Web Service applications [16]. Simply speaking, 
every SOAP message goes through the Axis SOAP engine to its 
desired target along a pre-configured path. The path is made up of 
a chain of processor nodes, also known as handlers. For example, 
the encryption handler is responsible for encrypting or decrypting 
SOAP messages when it receives them. The service provider 
handler is a special handler that contains the real service logic and 
sits at the end of the path. Except the service provider, a handler 

can never short-circuit the message flow by returning the message 
without passing it on to the next handler on the path. 

In a secure Web Service, the WS-SecureConversation handler at 
the service side is not the service provider but one of the 
underlying serving handlers. It must faithfully pass the remote 
invocation message on, until it reaches the service provider, even 
though the key exchange interaction may not have finished and 
the session key may not be ready. Therefore it is impossible for a 
server-side WS-SecureConversation handler to finish a multi-
round interaction. This solution only works for those cases that no 
further interaction is necessary such as the public key-based one 

assumed in WSS4J. 

Even though WS-Trust and WS-SecureConversation provide 
some methods to compute a new key, they do not restrict the use 
of alternative key exchange methods to obtain session keys. These 
alternative methods include Diffie-Hellman key exchange, 
independent security token services and other services that 
propagate the tokens. In order to address the before mentioned 
restrictions imposed by the WSS4J/Axis implementation, our WS-
SecureConversation implementation inherits the approach that 
GSI-SecureConversation adopted by implementing the 
negotiation mechanism as a separate service. The details will be 
addressed in the next section. 

3. PASSWORD-AUTHENTICATED KEY 
EXCHANGE IN WS-TRUST AND WS-
SECURECONVERSATION 
3.1 A Method for Password-Based Key 
Exchange 
Methods for Authenticated Key Exchange (AKE) allow two 
parties to agree on a common secret value. This secret value, 
often refers to as a session key, is stored in a security context. In 
practice, multiple keys will be derived from this session key to 
implement mechanisms for message confidentiality and integrity. 
AKE methods based on passwords uses a (short) shared password 
as a means to compute this session key. Bellovin and Merritt first 
raised this problem in 1992 [3] and since then several methods 
have been proposed to solve it. The AuthA protocol is an example 
of such a provably-secure method [2, 4, 5]. 
The AuthA protocol is based on the Diffie-Hellman key-
agreement protocol [6]. It offers protection against man-in-the-
middle attacks by the flows of the Diffie-Hellman exchange under 
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the password, provides semantic security of the session key, 
mutual authentication, as well as forward secrecy. A typical 
workflow of the AuthA method is depicted in Figure 2. The Client 
and the Server share a previously known password passwd. G is a 
cyclic group on which the Diffie-Hellman problem is hard. The 

group is produced by a generator g. By default, G, p, and g, are all 
well-known.  
The Client picks a random value for x and calculates X from the 
generator g. Instead of presenting X to the server as in the 
conventional Diffie-Hellman protocol, the Client encrypts X with 
the password passwd, and sends the encrypted X* over to the 
Server along with its name. Upon receiving this request, the 
Server chooses at random a value y, and calculates Y using the 
generator g. Meanwhile, it decrypts X with the password passwd 
from X*. Considering that X* could have been modified or 
replaced by a third-party attacker, we mark the received X* 
as *X , and the decrypted X as X .  If no attacker has modified 
these values on the wire, these values are as 
follows ** XX = and ,XX = . Upon receiving X, the Server 
computes the Diffie-Hellman secret value key KB. It also then 
computes the session key sk using the Diffie-Hellman secret value 
and some additional information including the password and the 
names of both parties.  
The AuthA protocol achieves the property of mutual 
authentication by having the Client and the Server compute and 
send the authenticators AuthB and AuthA*. For efficiency 
purposes, the Server sends the values Y, AuthB (as well as his 
name), in one single message to the Client rather than two 
separated messages. After receiving Y, the Client computes the 
session key and then checks whether the received value AuthB 
matches its computed AuthB*. If so, and the Client computes the 
session key and AuthA, respectively.  If not, the Server cannot be 
authenticated, and the key-exchange fails. Lastly, the Client 

returns to the Server AuthA to authenticate itself. If AuthA 
matches AuthA*, the key-exchange terminated successfully and 
the two parties share the same value for the session key sk.  

In Figure 2, the session key skA is equal to skB, as long as XX = , 

and YY = ; both parties will obtain the session key without 
exchanging it explicitly over the wire. 

3.2 WS-SecureConversation Design Criteria 
As we explained in section 2.2, because the WSS4J solution does 
not support multi-round interaction cases such as the AuthA key 
exchange method, we have to provide our own solution to support 
the AuthA and any other interaction requirements. 
In our WS-SecureConversation implementation design, we adopt 
the GSI-SecureConversation approach by implementing the server 
side negotiation mechanism as a separate service in the same 
container as the application services. A WS-SecureConversation 
handler is provided at the client side. 
This approach leverages the Web Service Resource Framework 
(WSRF) by treating the service security context as a stateful 
resources.  
The client side WS-SecureConversation handler interacts with the 
remote WS-SecureConversation service for as many round trips 
as needed. The whole workflow is shown in Figure 3, illustrated 
in two phases. The first phase is the initial interaction for session 
key exchange between the client side hander and the remote 
service of WS-SecureConversation; in the second phase, both 
sides communicate with each other with the derived session key 
stored in their contexts.  
The steps of the first phase are as follows: 
1.0. The client application starts an initial remote call through a 
SOAP message. 

B, Y, AuthB 

Alice 
(passwd) 

Bob 
(passwd) 

)(
,

* XEX
gX

passwd

x

=

= A, X* 

),,,,(

),,,,(

),,,(
,

),(

,

2
*

1

*

BB

y
B

B

y

B

passwd

y

KYXBAHsk

passwdKBAHAuthA

KBAHAuthB
XK

XDX

gY

=

=

=
=

=

=

),,,,(

),,,,(
?

),,,(

,

2

*
1

*

AA

passwd
A

A

x

A

KYXBAHsk

YKBAHAuthA
AuthBAuthB

KBAHAuthB

YK

=

=

==

=

=

 

AuthA 
?*AuthAAuthA ==  

Figure 2 The AuthA Method 



1.1. The SOAP message is handled by the WS-Secure-
Conversation handler, which finds that a secure conversation 
context is supposed to be established. It then blocks the message 

and makes a remote RequestSecurityToken (RST) call defined in 
WS-Trust to the WS-SecureConversation service, which is 
located in the same service container as the remote target service. 
Depending on the key exchange method, the SOAP message may 
contain the selected methods and algorithms, the required 
parameters, public keys, entropies, generated random session keys 
and other information. 
1.2. As the WS-SecureConversation service receives the RST 
incoming message, it interprets the information attached in the 

SOAP message according to its knowledge to the specified 
method, which is defined as schemas in most cases. It then fetches 
the security related information, such as credentials, from a 
security context resource if necessary. The security context 
resource has the general information about the owner who is 
running the service container. 
1.3 The initialization interaction may continue for more than one 
round trip. The following SOAP message exchanges are under the 
name of RequestSecurityTokenResponse (RSTR) call, defined in 
WS-Trust. The RST with one or more SecurityContextTokens 
(SCT) is returned. A SCT has an identifier referring to a token 
established or to be established in the contexts. Finally, a session 

key will be agreed upon and stored in both sides’ session contexts. 
At service side, the session context lies in the service’s resource. 
With the security context established, the WS-Secure-

Conversation handler passes the first SOAP message on to the 
next handler, and thus the client begins to interact with the real 
target service in phase 2.  
The model in Figure 3 could be generalized with an 
independently functioning Service Token Service, described in 
WS-Trust as a typical WS-Trust model, as Figure 4 shows. The 
service plays the role as a security authority. However, an 
externalized Service Token Service means extra trust relationship 
to be established between the Service Token Service and the 

target service. The service itself needs a full fledged 
authentication and authorization mechanism. Moreover, the WS-
SecureConversation service will no longer interact with the target 
service’s resource internally, but through the interfaces provided 
by a standard stateful service. Separating the WS-Secure-
Conversation service from the targeting service container helps 
alleviate the load, as we can deploy or move the WS-Secure-
Conversation service to another host.  
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3.3 Integration of Password-based Key 
Exchange in WS-SecureConversation 
Based on the implementations of the AuthA and WS-Secure-
Conversation, the integration work is straightforward. In our WS-
SecureConversation implementation, to allow different security 
context establishment methods to be integrated, the method 
general behaviors are abstracted as interfaces ClientNegotiator 
and ServerNegotiator for both client side handler and server side 
service, respectively. To integrate the AuthA method, we had to 
implement the corresponding interfaces called AuthAClient-
Negotiator and AuthAServerNegotiator. The AuthA method 
specific parameters are grouped as customized tokens, which are 
defined in XML Schema, including ClientInitToken (CIT), 
ServerResponseToken, (SRT) and ClientResponseToken (CRT). 
Each token contains one or more cryptographic parameters, such 
as the public keys and the authentication bits. These parameters 
can be either required or optional, depending on the working 
mode. 
The instances of AuthAClientNegotiator and AuthAServer-
Negotiator are responsible for processing those tokens. WS-
SecureConversation handler and service wrap up them with the 
WS-SecureConversation specific tokens, when processing a 
response. When dealing with a request, they unwrap the WS-
SecureConversation specific tokens for protocol specific tokens. 
The instance of AuthAServerNegotiator is stored in the resource 
context for the current session, so that in the next round, WS-
SecureConversation service could fetch it from the resource 
context according to the session context ID number. 

In addition, we have implemented the signature and encryption 
handlers. These handlers have two tasks. The first one is to fetch 
the secrets from the security contexts. The security context is part 
of the resource context at the service side; while it is incorporated 
in the background message context at the client side. The security 
context resources may be stored in a persistent storage such as a 
database, supported by the WSRF layer. The physical location of 
a security context is transparent to the handlers. The other task is 
to sign or encrypt the desired sections of the SOAP envelope with 
the symmetric keys obtained. The whole interaction process is 
depicted in Figure 5. 
 

3.4 Status 
The AuthA method is implemented in Java in the form of a 
library, with a dependency on Bouncy Castle library [20]. The 
WS-Trust and WS-SecureConversation implementations are built 
on top of the pre-release version of Globus Toolkit 4. 

4. CONCLUSION AND FUTURE WORK 
In this paper, we brought the password-based authenticated key 
exchange method to the message level security for run-time 
session key derivation. We first briefly described the WS-Trust 
and WS-SecureConversation specifications, which are emerging 
message level security specifications for security context 
establishment, sharing and derivation among multiple trust 
domains. We then introduced the AuthA method as a standardized 
password-based AKE method. Finally, we illustrated how we 
have implemented a working system based on those specifications 
and the WSRF-compliant Globus Toolkit. 
Our future work will first be dedicated to the hardening of the 
implementation such that we can feel confident that our 
implementation can be deployed in real production-like 
environments. High on our priority list is also to add One-Time 
Password (OTP) features [19] to the AuthA protocol using 
Abdalla et al.’s recent work [1]. We also plan to add mechanisms 
to the AuthA protocol that would add resistence against Denial of 
Services (DoS) attacks. The number of Denial of Services (DoS) 
attacks through the Internet has grown tremendously in the last 
couple of years. The effectiveness of DoS attacks can be 
decreased through the use of specific cryptographic mechanisms 
[4], which treat the amount of Perfect Forward-Secrecy (PFS) as 

an engineering parameter that can be traded off against resistance 
to DoS attacks.  
Furthermore, the mutual authentication version of AuthA method 
takes one and a half round trip.  However, in practice, it takes two 
full round trips, as the client’s call to the service has to be 
returned, even with an empty envelope for the last message. We 
are investigating whether we could further optimize the use of the 
protocol by also exchanging protected application messages 
during the second round-trip, which would effectively reduce the 
overhead of the authenticated key exchange to a single round trip. 
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