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Abstract. In situ observations of soil water state variables
under natural boundary conditions are often used to estimate
the soil hydraulic properties. However, many contributions
to the soil hydrological literature have demonstrated that the
information content of such data is insufficient to accurately
and precisely estimate all the soil hydraulic parameters. In
this case study, we explored to which degree prior informa-
tion about the soil hydraulic parameters can help improve
parameter identifiability in inverse modelling of in situ soil
water dynamics under natural boundary conditions. We used
percentages of sand, silt, and clay as input variables to the
ROSETTA pedotransfer function that predicts the parameters
in the van Genuchten-Mualem (VGM) model of the soil hy-
draulic functions. To derive additional information about the
correlation structure of the predicted parameters, which is not
readily provided by ROSETTA, we employed a Monte Carlo
approach. We formulated three prior distributions that in-
corporate to different extents the prior information about the
VGM parameters derived with ROSETTA. The inverse prob-
lem was posed in a formal Bayesian framework and solved
using Markov chain Monte Carlo (MCMC) simulation with
the DiffeRential Evolution Adaptive Metropolis (DREAM)
algorithm. Synthetic and real-world soil water content data
were used to illustrate the approach. The results of this study
demonstrated that prior information about the soil hydraulic
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parameters significantly improved parameter identifiability
and that this approach was effective and robust, even in case
of biased prior information. To be effective and robust, how-
ever, it was essential to use a prior distribution that incorpo-
rates information about parameter correlation.

1 Introduction

Simulation of soil water dynamics under transient conditions
typically requires knowledge of the soil hydraulic properties,
that is, the water retention function and the hydraulic conduc-
tivity function. A broad array of methods exists to determine
these two constitutive relationships from laboratory or field
experiments. An overview of these methods together with
a discussion of their strengths and limitations can be found
in Durner and Lipsius(2005), amongst others. With the ever
increasing pace of computational power, availability of ac-
curate and stable numerical solution schemes of the govern-
ing flow equations, and effective and efficient parameter opti-
mization methods, the use of inverse modelling to determine
soil hydraulic properties has become increasingly popular in
the last few decades. A review ofVrugt et al.(2008a) dis-
cusses recent progress in inverse modelling of soil hydraulic
properties. Laboratory methods such as the multistep outflow
method (van Dam et al., 1994) have the advantage of being
comparatively quick and precise. This allows the processing
of a large number of samples, which opens up the possibility
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to study the spatial variability of the soil hydraulic proper-
ties. However, soil hydraulic properties derived from labora-
tory experiments on small soil cores are typically inadequate
to simulate soil water dynamics at larger spatial scales (Ritter
et al., 2003; Mertens et al., 2005; Guber et al., 2006; Wöhling
et al., 2008; Baroni et al., 2010). There are multiple reasons
for this discrepancy, most notably that the sample volume
analysed in the laboratory is not a representative elementary
volume (e.g.Mallants et al., 1997) or that the experimental
conditions dictated in the laboratory are not representative
for field conditions (e.g.Basile et al., 2003). Arguably, field
methods such as the internal drainage method (Zhang et al.,
2003) provide estimates of the soil hydraulic properties that
are more representative for in situ soil water dynamics. How-
ever, such methods place a high demand on equipment and
time and are labour intensive. Moreover, considerable diffi-
culties arise when these local scale soil hydraulic properties
are used to infer the effective retention and hydraulic con-
ductivity function that characterize soil water dynamics at
larger spatial scales (e.g.Smith and Diekkr̈uger, 1996; Zhu
and Mohanty, 2002). Effective properties are defined here as
the soil hydraulic properties of an equivalent homogeneous
domain that produces the same response as the actual hetero-
geneous domain under some upscaled boundary conditions
(Vereecken et al., 2007).

As an alternative to laboratory or field experiments, soil
hydraulic properties can be derived from field measurements
of soil water state variables under naturally occurring bound-
ary conditions (Vereecken et al., 2008). One main advantage
of this approach is that it allows for estimating effective soil
hydraulic properties at larger spatial scales given observa-
tions at multiple locations within the considered soil domain.
Several applications of this approach can be found in the
soil hydrological literature.Jacques et al.(2002) estimated
the soil hydraulic properties of a four-layer soil profile using
pressure head and water content data collected at 12 different
locations and 5 depths along a 5.5 m long trench. To mini-
mize problems with nonuniqueness and to reduce the dimen-
sionality of the inverse problem, they used a stepwise param-
eter estimation procedure that sequentially estimates the soil
hydraulic parameters for each individual soil layer. Another
study byRitter et al.(2003) used soil water content mea-
sured at 6 locations and 3 depths within a 4800 m2 field plot
to infer the effective soil hydraulic properties of a three-layer
soil profile. They also reported problems in finding well-
defined values of the soil hydraulic parameters. To alleviate
these problems,Ritter et al.(2003) fixed some of the soil hy-
draulic parameters at values derived from laboratory experi-
ments.Wöhling et al.(2008) derived effective soil hydraulic
properties of a three-layer soil profile using pressure head ob-
servations from 3 locations and 3 depths. They compared the
efficiency of three multiobjective search algorithms in find-
ing Pareto solutions of soil hydraulic parameters that charac-
terize the trade-off in the fitting of pressure head data at dif-
ferent depths.Steenpass et al.(2011) estimated effective soil

hydraulic properties of a two-layer profile from observed soil
surface temperature data and measurements of spatially dis-
tributed soil water content at 36 locations and 2 depths within
a 6 m× 6 m plot. They implemented a Bayesian inference
scheme using Markov chain Monte Carlo (MCMC) simula-
tion and reported considerable uncertainty in the estimated
soil hydraulic parameters. Some of the parameters attained
physically unrealistic values, whichSteenpass et al.(2011)
attributed to a lack of information in the wet range. Finally,
Wöhling and Vrugt(2011) explored whether using observa-
tions of two different soil water state variables helps to better
constrain the soil hydraulic parameters. They estimated ef-
fective soil hydraulic properties of a four-layer profile using
pressure head and soil water content measurements from 3
locations and 5 depths. Depending on what kind of state vari-
ables were used for model calibration, the estimated param-
eters derived with MCMC simulation differed substantially,
while the uncertainty in these estimates was generally small.

In summary, these studies suggest that in situ observa-
tions of soil water dynamics contain insufficient informa-
tion to warrant accurate and precise estimation of the soil
hydraulic properties. A general approach to improve pa-
rameter identifiability in case of data with limited informa-
tion content is the inclusion of prior information about the
parameters of interest. In this study, we define “parameter
identifiability” as the antithesis of “parameter uncertainty”
(Vrugt et al., 2003a). We will refer to a parameter as be-
ing identifiable if the uncertainty in its estimate is reason-
ably small. Note that our definition slightly differs from
the classical definition used in inverse problem theory (e.g.
Carrera and Neuman, 1986b). The use of prior informa-
tion is well established in groundwater hydrology and hy-
drogeophysics (e.g.Carrera and Neuman, 1986a; Woodbury
and Ulrich, 1993; Kowalsky et al., 2004). However, only
few soil hydrological studies have investigated the effect of
using prior information about the soil hydraulic parameters
in inverse modelling of soil water dynamics.Wang et al.
(2003) estimated soil hydraulic properties of four materials
of a layered soil profile using neutron probe measurements
of soil water content collected in 9 boreholes distributed
evenly in a 50 m× 50 m plot during an extensive infiltra-
tion experiment. In their Bayesian analysis, they included
prior information about the mean values and variances of the
soil hydraulic parameters as provided byCarsel and Parrish
(1988) to estimate the parameter values that have maximum
posterior density.Mertens et al.(2004) estimated effective
soil hydraulic properties for a two-layer profile using water
content observations from 25 locations and 3 depths within
a 80 m× 20 m hillslope plot. They used prior information
derived from laboratory and field experiments to formulate a
prior probability density function (pdf) of the soil hydraulic
parameters. This prior distribution was subsequently used in
the Generalized Likelihood Uncertainty Estimation (GLUE)
method (Beven and Binley, 1992) to generate random sam-
ples of the soil hydraulic parameters.Mertens et al.(2004)
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found that incorporation of prior information improved the
sampling efficiency of the GLUE method and that the result-
ing prediction uncertainty bounds better enclosed the obser-
vational data. Finally,Hou and Rubin(2005) employed the
principle of minimum relative entropy (Woodbury and Ul-
rich, 1993) to infer prior distributions of the soil hydraulic
parameters from prior information that incompletely charac-
terizes these distributions. To illustrate this approach, they
used prior information about the expected values, variances,
and lower and upper bounds of the soil hydraulic parameters
derived from the ROSETTA database (Schaap et al., 2001).
This prior distribution was then applied to calibrate a one-
layer vadose zone model against observations of soil water
content profiles derived from neutron probe and time do-
main reflectometry (TDR) measurements and to investigate
the effect of the length of the calibration period on model
predictive uncertainty.

In this study, we investigated the effect of three different
prior distributions of the soil hydraulic parameters in inverse
modelling of in situ soil water dynamics. We used prior in-
formation on sand, silt, and clay percentages and translated
this information into prior information on soil hydraulic pa-
rameters using the ROSETTA pedotransfer function (Schaap
et al., 2001). Sand, silt, and clay percentages constitute ba-
sic soil information and are readily available in most vadose
zone studies, making this approach widely applicable. In
addition to the standard ROSETTA prediction that provides
the mean values and standard deviations of the predicted pa-
rameters, we tested a Monte Carlo approach to derive the
correlation structure of the predicted parameters. We for-
mulated three prior pdfs that incorporate to different extents
the prior information derived with ROSETTA. A Bayesian
framework was used to combine the various prior pdfs with
the information contained in observations of soil water con-
tent in a 50 m× 50 m bare soil plot exposed to natural bound-
ary conditions. The resulting posterior distribution was ex-
plored by MCMC simulation using the DiffeRential Evolu-
tion Adaptive Metropolis (DREAM) algorithm (Vrugt et al.,
2008b, 2009). The present study had two main objectives.
The first objective was to explore the potential benefit of in-
cluding additional information on parameter correlation in
the prior distribution of the soil hydraulic parameters. This
information helps to better constrain the parameter space,
and we may expect that this additional constraint improves
the identifiability of the estimated parameters. The second
objective was to test the robustness of the Bayesian approach
in case of biased prior information.

2 Methods

2.1 Measurements

We measured soil water content at 61 locations within
a 50 m× 50 m bare soil plot (Fig.1). The measurement
site was located at the bottom of a gently sloping (<3◦)
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Fig. 1. Measurement grid with 61 measurement points used to ob-
tain spatial averages of soil water content. Solid circles indicate 36
measurement points located on a regular 10 m× 10 m grid. Open
circles denote 25 measurement points used for local refinement of
the measurement grid. The refinement points were located such that
each box of the regular 10 m× 10 m grid contained one randomly
selected location.

agricultural field near J̈ulich, Germany (TERENO test site
Selhausen, 50◦52′8.6′′ N, 6◦27′57.2′′ E, Weiherm̈uller et al.,
2007; Herbst et al., 2009). The measurement plot itself was
plane. The soil in this part of the field had a silt loam tex-
ture and was classified as a Stagnic Luvisol (IUSS Work-
ing Group WRB, 2007). Soil texture within the 50 m× 50 m
plot was fairly homogeneous. The fine earth fraction of
the topsoil (0 to 30 cm) was composed of 14± 1 % sand,
70± 1 % silt, and 16± 1 % clay (mean± standard deviation,
N = 47). Due to clay accumulation, the subsoil had a slightly
higher percentage of clay, with 14± 2 % sand, 66± 2 % silt,
and 20± 2 % clay (N = 12). The soil was kept bare dur-
ing the measurement campaign. Accumulation of weeds
was prevented by occasional application of herbicides and
manual removal.

Soil water content was measured using TDR. Two-rod
probes (25 cm rod length, 2.3 cm rod spacing) were installed
horizontally 6 cm below the soil surface. The waveforms
were recorded manually using a TDR100 device (Campbell
Scientific, Logan, UT, USA) and analysed using the algo-
rithm described inHeimovaara and Bouten(1990). We used
the empirical relationship ofTopp et al.(1980) to convert the
apparent dielectric permittivity to soil water content. Mea-
surements were taken on 29 days between 19 March and
14 October 2009, comprising a measurement campaign of
210 days. Because measurements of soil temperature and
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carbon dioxide efflux were carried out simultaneously with
the TDR measurements, a complete measurement cycle on
all locations took about three hours. The soil temperature
and carbon dioxide efflux data were not used in this study.
The soil water content data did not show any significant tem-
poral or spatial trend and could be well described with a nor-
mal distribution at any given measurement date. We arith-
metically averaged the soil water content data from the 61
locations and used this time series of mean water content to
calibrate an effective soil hydraulic model. The mean values
were assigned the midpoints of each measurement cycles.

2.2 Model description

2.2.1 Governing flow equation

We simulated one-dimensional vertical water flow in a
100 cm deep, homogeneous profile using the Richards
equation:

∂θ

∂t
=

∂

∂z

(
K(h)

(
∂h

∂z
+1

))
(1)

where θ (cm3 cm−3) denotes the soil water content,K
(cm h−1) represents the soil hydraulic conductivity,h (cm)
signifies the pressure head,t (h) is time, andz (cm, pos-
itive upward) defines the vertical coordinate. We used the
HYDRUS-1D model (̌Simůnek et al., 2008) to solve the
Richards equation for given initial and boundary conditions.

2.2.2 Soil hydraulic properties

The soil hydraulic properties were parametrised using the
van Genuchten-Mualem (VGM) model (van Genuchten,
1980). The water retention functionθ(h), expressed in terms
of effective saturationS (dimensionless), is given by:

S(h) =
θ(h)−θr

θs−θr
=

{(
1+|αh|

n
)−m for h ≤ 0

1 for h > 0
(2)

whereθr andθs (cm3 cm−3) represent the residual and sat-
urated water content, respectively, andα (cm−1), n, and
m = 1−1/n (both dimensionless) are shape parameters. The
hydraulic conductivity functionK(h) is given by:

K(h) = KsS(h)L
(
1−

(
1−S(h)1/m

)m)2
(3)

whereKs (cm h−1) is the saturated hydraulic conductivity,
andL (dimensionless) is an additional shape parameter.

2.2.3 Spatial discretisation

The 100 cm deep profile was discretised into 81 nonequidis-
tant nodes. Nodal distance was shortest adjacent to the soil
surface and gradually increased with depth, with a distance
of 0.05 cm at the upper and 3.5 cm at the lower boundary.

We chose this particular discretization scheme to accommo-
date the large gradients in pressure head that occur close to
the surface in response to atmospheric forcing. In general,
if nodal spacing is too large, the numerical solution of the
Richards equation becomes inaccurate due to linearisation
errors of the pressure head and averaging errors of the hy-
draulic conductivity (van Dam and Feddes, 2000). In the
present case, a further increase in the number of nodes did
not significantly alter the simulation results, from which we
concluded that the spatial discretization of the soil profile
was adequate.

2.2.4 Boundary conditions

The water flux at the soil surface is controlled by potential
evaporationEpot (cm h−1) and precipitationP (cm h−1). The
numerical solution of the Richards equation was obtained by
limiting the actual water flux across the upper boundary as
follows:

−K(h)

(
∂h

∂z
+1

)
≤ Epot(t)−P(t)

for hmin
UB ≤ h(t) ≤ hmax

UB at z = 0 cm (4)

wherehmin
UB = −100 000 cm andhmax

UB = 1 cm denote the min-
imum and maximum values of the pressure head allowed at
the upper boundary, respectively. If the simulated pressure
head reaches either of these two limits, the HYDRUS-1D
model switches to a pressure head boundary condition to cal-
culate the actual water flux.

Precipitation and other meteorological variables were
recorded at a meteorological station located 100 m west of
the measurement site. Potential evaporation was estimated
using the FAO method (Allen et al., 1998). The FAO method
consists of two steps. First, the potential evapotranspira-
tion from a grass reference surface, ETref, is calculated using
a modified Penman-Monteith equation (Allen et al., 1998,
p. 74). We used hourly averaged values of air temperature,
relative humidity, wind speed, incoming shortwave radiation,
and atmospheric pressure as input variables. In a second step,
the reference evapotranspiration is scaled with an empiri-
cal coefficient,Epot = 1.15ETref (Allen et al., 1998, p. 263).
This coefficient reflects the increased evaporation potential
of bare soils (as compared to the reference grass surface),
which is mainly due to the lower albedo of wet soil surfaces.

In the absence of detailed information about the lower
boundary of the considered soil domain, we tested differ-
ent lower boundary conditions in HYDRUS-1D. From an in-
verse modelling point of view, a zero gradient pressure head
boundary condition is most appealing because it does not
require explicit information about soil water state variables
or fluxes at the lower boundary. Readings from a nearby
piezometer suggested that the ground water table was about
200 cm below the lower boundary of the simulated profile.
Simulations with the zero gradient boundary condition indi-
cated that a substantial amount of water was lost from the
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profile due to drainage, resulting in simulated water contents
that considerably underestimated the actually observed soil
water content data. Repeated model runs with different real-
izations of the VGM parameters demonstrated that this dif-
ference was persistent and could not be explained by an in-
appropriate selection of the soil hydraulic parameters. We
therefore used a prescribed constant pressure headhLB as
the lower boundary condition:

h(t) = hLB at z = −100 cm (5)

Unfortunately, no measurements of pressure head or soil wa-
ter content were made at the bottom of the simulation domain
from which an appropriate value ofhLB could be inferred.
We therefore treatedhLB as an unknown parameter that was
estimated jointly with the VGM parameters.

2.2.5 Initial condition

All model runs started from a uniform initial pressure head
throughout the profile equal to the pressure head at the lower
boundaryhLB . A 75 day spin-up period was used to allow for
the relaxation from the initial pressure head distribution and
to reduce sensitivity of simulation results to soil water state
initialization.

2.3 Inverse modelling

Let the pressure head at the lower boundary be stored in
x1=[hLB] and the VGM parameters inx2=[θr θs α n Ks L].
The difference between the soil water content observations
ỹ=[ỹ1,...,ỹN ] and the corresponding HYDRUS-1D pre-
dicted valuesy=[y1,...,yN ] was computed using the follow-
ing residual vector:

εi(x1,x2) = ỹi −yi(x1,x2) i = 1,...,N (6)

whereN is the number of observations. A common approach
is to aggregateε(x1,x2) into a single measure of model per-
formance and, depending on its definition, minimize or max-
imize this criterion during model calibration. If the inverse
problem is posed in a probabilistic framework, this criterion
is called the likelihood. It gives the probability of observing
the data given the model parameters. Under the assumption
of independent, identically and normally distributed residu-
als,ε∼N (0,σ 2

ε ), the likelihood is given as:

p(ỹ|x1,x2,σε) ∝ σ−N
ε exp

(
−

1

2σ 2
ε

N∑
i=1

εi(x1,x2)
2

)
(7)

Note that the likelihood is not only a function of the model
parameters,x1 andx2, but also of the standard deviation of
the residuals,σε. The value ofσε is typically unknown a pri-
ori because it integrates over various error sources such as
measurement errors, model structural errors, and errors in
model input variables. In practice,σε should therefore be
considered as an unknown parameter that needs to be inferred
from the observational data.

Bayesian inference provides a formal way of combining
information from observations with prior information about
the system. This is achieved through Bayes’ theorem:

p(x1,x2,σε|ỹ) ∝ p(x1) p(x2) p(σε) p(ỹ|x1,x2,σε) (8)

wherep(x1), p(x2), andp(σε) denote the prior probabili-
ties, andp(x1,x2,σε|ỹ) represents the posterior probability,
that is, the probability of the parameters after assimilating the
observational data. Note that Eq. (8) implies independence
between prior information ofx1 andx2. Based on the under-
lying physics of the system, we may expect thatx1 andx2
are correlated, but in the absence of detailed prior informa-
tion about this correlation, the assumption of independence
is justifiable.

It is common practice in Bayesian inference to eliminate
the standard deviation of the residuals from the inference
equations. This is expedient because we are not particularly
interested inσε. In addition, elimination ofσε has the advan-
tage of reducing the number of estimated parameters. As-
suming a Jeffreys prior forσε, p(σε)∝1/σε, the standard de-
viation of the residuals can be integrated out of the inference
equations (e.g.Box and Tiao, 1992; Kavetski et al., 2006).
The likelihood function (Eq.7) and Bayes’ theorem (Eq.8)
then reduce to:

p(ỹ|x1,x2) ∝

(
N∑

i=1

εi(x1,x2)
2

)−
N
2

(9)

p(x1,x2|ỹ) ∝ p(x1) p(x2) p(ỹ|x1,x2) (10)

In many practical applications of Bayes’ theorem, prior
information about the estimated parametersx1 and x2 is
vague. In this case, a uniform prior distribution is usually
imposed. The only information provided by a uniform prior
is that of the bounds of the feasible parameter space. Within
these bounds, all parameter values have equal probability. In
the present case, we had rather limited information about
the pressure head at the lower boundary,x1=[hLB]. We
therefore specified a uniform prior distribution for this pa-
rameter defined asp(x1)∼U(ax1,bx1), whereax1 and bx1

denote the lower and upper bounds, respectively (Table1).
The bounds were selected based on the available informa-
tion about the depth of the ground water table and assum-
ing a hydrostatic equilibrium between the lower boundary
of the simulated profile and the ground water table. For
the VGM parameters,x2=[θr θs α n Ks L], we tested three
different prior distributions, one being multivariate uniform,
p(x2)∼U(ax2,bx2), and the other two being multivariate
normal,p(x2)∼N (µx2,6x2). These prior distributions are
defined in Sect.2.4.

For models that are nonlinear in their parameters, such as
HYDRUS-1D, the posterior distributionp(x1,x2|ỹ) cannot
be obtained by analytical means nor by analytical approxi-
mation. We therefore resort to iterative methods that approx-
imate the posterior pdf by generating a large sample from this
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Table 1. Lower and upper bounds of the estimated parameters.

lower upper
parameter unit bound bound

θr cm3 cm−3 0.043 0.091
θs cm3 cm−3 0.409 0.481
log10(α) cm−1

−2.55 −2.07
log10(n) – 0.179 0.267
log10(Ks) cm h−1

−2.24 −0.08
L – −5.49 6.27
hLB cm −250 −50

distribution. The most general of such methods is MCMC
simulation (e.g.Brooks, 1998). The basic building block of
many existing MCMC schemes is the Metropolis algorithm
(Metropolis et al., 1953). To simplify notation, we merge
the two parameter vectorsx1 andx2 into a single vectorx.
The Metropolis algorithm generates a Markov chain, which
has the property that the next position of the chainxi+1 only
depends on its current positionxi . The Markov chain is gen-
erated by alternating between two basic steps. First, a pro-
posalx? is generated. Second, the proposal is accepted with
probability:

A(x?,xi,ỹ) = min

(
p(x?

|ỹ)

p(xi |ỹ)
,1

)
(11)

If the proposal is accepted, the Markov chain moves to the
proposal position,xi+1

= x?. Otherwise, the current position
is retained,xi+1

= xi .
To generate samples from the posterior distribution, we

used the DREAM framework ofVrugt et al.(2008b, 2009).
This MCMC scheme runs multiple chains simultaneously for
global exploration of the parameter space and automatically
tunes the scale and orientation of the proposal distribution
during evolution of the chains to the target distribution. This
scheme is an adaptation of the Shuffled Complex Evolution
Metropolis algorithm (Vrugt et al., 2003b) and has the ad-
vantage of maintaining detailed balance and ergodicity while
showing excellent efficiencies on complex, highly nonlinear,
and multi-modal target distributions. The use of multiple
chains protects against premature convergence and opens up
a wide array of statistical tests to diagnose whether the chains
have converged to a stationary distribution or not. We used
the most recent variant of DREAM that uses sampling from
past states and a mix of parallel direction and snooker up-
dates to generate proposals in each individual chain. This
algorithm, entitled DREAM(ZS), has several desirable advan-
tages. First, sampling from the past circumvents the require-
ment of using a large number of chains for posterior explo-
ration. Just a few chains will suffice. This will speed up
convergence to the target distribution, especially for high-
dimensional problems. Second, outlier chains do not need

explicit consideration. By sampling historical states, aber-
rant trajectories can jump directly to the modal region at any
time during the simulation. Third, the transition kernel defin-
ing the jumps in each of the chains does not require informa-
tion about the current states of the chains. This is of great
advantage in a multi-processor environment where the vari-
ous candidate points can be generated simultaneously so that
each chain can evolve most efficiently on a different proces-
sor. An implementation of sampling from past states and
snooker updating is described inter Braak and Vrugt(2008).
An application of DREAM(ZS) appears inSchoups and Vrugt
(2010).

In this study, we used three parallel chains to explore
the parameter space and approximate the posterior distri-
bution. The diagnostic ofBrooks and Gelman(1998) was
used to check when convergence to the target distribution
had been achieved. After convergence, we continued to run
DREAM(ZS) and generated an additional 50 000 samples,
which were used to summarize the posterior distribution.

2.4 Prior information about the soil hydraulic
parameters

2.4.1 Predicting the soil hydraulic parameters

The ROSETTA program (Schaap et al., 2001) implements
five hierarchical pedotransfer functions to estimate the VGM
parameters from a varying degree of basic soil data, such as
textural class, texture, bulk density, and soil water content
at specific pressure head values. We estimated the soil hy-
draulic parameters from measured sand, silt, and clay per-
centages of the topsoil layer at the experimental site. The
corresponding pedotransfer function is labelled with H2-C2
in Schaap et al.(2001). This pedotransfer function con-
sists of an ensemble of artificial neural network models that
were each calibrated to a different data set. These data sets
were generated from the ROSETTA database using the boot-
strap method (Efron, 1979). The use of multiple calibration
data sets provides a simple way to address uncertainty in the
predicted soil hydraulic parameters. Each artificial neural
network model provides slightly different estimates of the
VGM parameters, and the ensemble meansp = [p1 ... p6]
and standard deviationsu = [u1 ... u6] (both size 1×6) con-
stitute the ROSETTA output (Table2).

ROSETTA uses log10-transformed values ofα, n, andKs,
which induces an approximate normal distribution for each
of the VGM parameters (Schaap et al., 2001). This transfor-
mation scheme was retained in the present study.

2.4.2 Deriving the covariance matrix of the predicted
soil hydraulic parameters

The information provided by ROSETTA can readily be used
to formulate an informative prior distribution that is mul-
tivariate normal with mean vectorµx2 = p and diagonal
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Table 2. Mean values, standard deviations, and correlation coefficients of the ROSETTA (Schaap et al., 2001) predicted soil hydraulic
parameters.

standard correlation coefficients

parameter unit mean deviation θr θs log10(α) log10(n) log10(Ks) L

θr cm3 cm−3 0.067 0.006 1.00
θs cm3 cm−3 0.445 0.009 0.18 1.00
log10(α) cm−1

−2.31 0.060 0.81 0.71 1.00
log10(n) – 0.223 0.011 −1.00 −0.24 −0.85 1.00
log10(Ks) cm h−1

−1.16 0.270 −0.40 0.83 0.21 0.33 1.00
L – 0.39 1.47 −1.00 −0.17 −0.81 1.00 0.40 1.00

covariance matrix6x2 = diag(u2
1,...,u

2
6). This approach,

however, is rather simplistic in that it ignores the correlation
that is typically found between the soil hydraulic parameters.
Parameter correlation is evident from statistical analysis of
soil hydrological databases (e.g.Carsel and Parrish, 1988; de
Rooij et al., 2004). From an inverse modelling point of view,
it is apparent from first-order approximations of the parame-
ter covariance matrix (e.g.Kool and Parker, 1988), objective
function contour plots (e.g.Toormann et al., 1992), or scat-
ter plots of the posterior sample (Vrugt et al., 2003a). Given
these findings, it seems productive to include the correlation
of the soil hydraulic parameters in the prior pdf. In general, if
we neglect correlation, we assign too high prior probabilities
to physically unrealistic combinations of the soil hydraulic
parameters.

To formulate prior pdfs that consider parameter corre-
lation, we need detailed information about the correlation
structure of the predicted parameters,p. This information
is not provided by ROSETTA but can be derived using the
following Monte Carlo approach. The basic idea of this ap-
proach is that the correlation structure ofp can be inferred
from a random sample drawn in close vicinity ofp. Using
this approach, we can derive the full covariance matrix of the
predicted parameters6p in four subsequent steps:

Step 1:. Draw a random sample of input variables. Let the mea-
sured percentages of sand, silt, and clay used as input variables to
ROSETTA be denoted byf (size 1×3). Generate a random sam-
ple of input variablesF (size 1000×3) from a multivariate normal
distribution,N

(
µf ,6f

)
, centred aroundf :

N : µf = f ,6f =

 0.250−0.125−0.125
−0.125 0.250−0.125
−0.125−0.125 0.250

→ F (12)

Based on a preliminary analysis, we assigned the diagonal entries
of 6f (variances) an arbitrary small value of 0.25 %. This value
works well in practice, ensuring that the sampled percentages are
in close vicinity off , and hence, that the corresponding random
sample of soil hydraulic parameters will be in close vicinity ofp.
The negative values of the off-diagonal terms (covariances) were
chosen such that they are consistent with the compositional nature
of soil texture and that6f is positive semidefinite.

Step 2:. Use ROSETTA to generate the corresponding random
sample of soil hydraulic parameters. Propagate the random sample
of input variablesF through ROSETTA to obtain a random sample
of soil hydraulic parametersP (size 1000× 6):

ROSETTA: F → P (13)

We used quantile-quantile plots and pairwise scatter plots to test
whetherP follows a multivariate normal distribution. These diag-
nostic plots (not shown) indicated that each of the parameters had
a marginal distribution close to normal and that the pairwise correla-
tions among these parameters were approximately linear, providing
further justification for the use of the multivariate normal distribu-
tion as the prior model.

Step 3:. Calculate the correlation matrix of the random sample of
soil hydraulic parameters. Calculate the covariance matrixC (size
6× 6) of the random sample of soil hydraulic parametersP. Use
C to calculate the corresponding correlation matrixR (size 6× 6)
defined as:

ri,j =
ci,j

√
ci,i cj,j

for i,j = 1,...,6 (14)

This correlation matrix contains the additional information needed
to derive the full covariance matrix of the predicted soil hydraulic
parameters.

Step 4:. Derive the covariance matrix of the predicted soil hy-
draulic parameters. Derive the full covariance matrix of the pre-
dicted soil hydraulic parameters6p by scaling the correlation ma-
trix R with the corresponding standard deviations of the predicted
parametersu:

6pi,j = ri,j ui uj for i,j = 1,...,6 (15)

The scaling ensures that the diagonal entries of6p correspond to
the standard deviations of the predicted parameters while the off-
diagonal terms reflect the correlation among the soil hydraulic pa-
rameters derived from the random sample.

Note that the resulting covariance matrix6p only accounts
for parameter uncertainty and correlation induced by the pe-
dotransfer function. It does not account for uncertainty in
the predicted parameters due to uncertainty in the input vari-
ables. The correlation matrixR derived with the Monte Carlo
approach presented above is shown in Table2.
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2.4.3 Defining the prior distributions of the soil
hydraulic parameters

We tested three different formulations of the prior distribu-
tion of the soil hydraulic parameters. These prior distribu-
tions incorporate to different extends the information derived
from ROSETTA.

Prior 1: Multivariate uniform distribution.The first prior is multi-
variate uniformp(x2)∼U(ax2,bx2), with lower and upper bounds
ax2 andbx2, respectively, that jointly define the feasible parame-
ter space. We calculated the lower and upper bounds asp ± 4u

(Table1).

Prior 2: Multivariate normal distribution without correlation.
The second prior is multivariate normalp(x2)∼N (µx2,6x2),
with mean vectorµx2 = p and diagonal covariance matrix
6x2 = diag(u2

1,...,u2
6).

Prior 3: Multivariate normal distribution with correlation.The
third prior is also multivariate normal but considers correlation
among the soil hydraulic parameters using the full covariance
matrix6x2 = 6p derived using the Monte Carlo approach.

Figure 2 illustrates how the three prior distributions af-
fect the prior uncertainty of the water retention and hydraulic
conductivity functions. Unsurprisingly, the largest prior un-
certainties are found when using a uniform prior distribution
(Prior 1, red line). This uncertainty is substantially reduced
when prior information about the mean and standard devia-
tion is considered (Prior 2, blue line). Even though parameter
correlation is ignored in this prior distribution, the VGM pa-
rameters are much better constrained now, and this results in
much smaller 95 % confidence intervals compared to the uni-
form prior case. When parameter correlation is considered in
the prior distribution (Prior 3, grey area), the confidence in-
terval around the inflection point of the water retention func-
tion shrinks symmetrically, but the uncertainty in the wet and
dry ranges is hardly affected. A qualitatively similar picture
results for the hydraulic conductivity function.

2.5 Generation of synthetic data

To test the effectiveness and robustness of the Bayesian ap-
proach, we used two synthetic data sets. In the first case, we
created a time series of soil water content observations using
the HYDRUS-1D model with ROSETTA predicted values of
the soil hydraulic parameters (Table2) andhLB = −150 cm.
The upper boundary conditions as well as the observation
dates were the same as for the real data set. A normally dis-
tributed error was added to the simulated soil water contents
to represent the combined effect of model structural, bound-
ary condition, and observational error. The magnitude of this
random error was similar to the root mean square error of
the best HYDRUS-1D fit to the real soil water content data
(Sect.3.2). This synthetic data set was then used with the
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Fig. 2. 95 % prior uncertainty bounds of(a) the water retention
function and(b) the hydraulic conductivity function correspond-
ing to the three prior probability distributions of the soil hydraulic
parameters: multivariate uniform distribution (Prior 1), multivariate
normal distribution without correlation among the soil hydraulic pa-
rameters (Prior 2), and multivariate normal distribution with corre-
lation among the soil hydraulic parameters (Prior 3).

three prior distributions to inversely estimate the VGM pa-
rameters andhLB , providing a test of the effectiveness of us-
ing prior information about the soil hydraulic parameters.

We considered a second test case in which we have bi-
ased prior information. This test was specially designed to
establish whether we can infer the appropriate values of the
soil hydraulic parameters even though the prior distribution
is biased, providing a test of the robustness of the Bayesian
approach. There are essentially two ways in which we can
generate this bias. One way is to maintain the synthetic time
series of soil water content observations and to corrupt the
three prior pdfs. A simpler approach followed herein is to
leave the prior pdfs untouched, but to create a second syn-
thetic time series of soil water content observations using soil
hydraulic parameters that differ from the values predicted by
ROSETTA and used to create the prior pdfs. These param-
eters were selected by drawing a large random sample from
Prior 3 and then purposely picking a realization with very
low prior probability. Model settings and input variables
were the same as in the previous case, and the same ran-
dom error was added to the synthetic observations. We then
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Fig. 3. Cumulative prior and posterior probability distributions using synthetic soil water content data and three different unbiased prior
probability distributions:(a) multivariate uniform distribution (Prior 1),(b) multivariate normal distribution without correlation among the
soil hydraulic parameters (Prior 2), and(c) multivariate normal distribution with correlation among the soil hydraulic parameters (Prior 3).
The blue lines represent the prior distributions. The red circles denote the 2.5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 97.5 % quantiles of the
posterior distributions, respectively. The grey lines mark the parameter values used to generate the data. The x-axes cover the bounds listed
in Table1.
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Fig. 5. Pairwise scatter plots of the posterior sample and corresponding 95 % confidence ellipses using synthetic soil water content data and
the biased prior probability distribution with correlation among the soil hydraulic parameters (Prior 3). The axes cover the bounds listed in
Table1.

estimated the unknown model parameters from this second
time series using the three (now biased) prior distributions.

3 Results

3.1 Synthetic data

The results for the synthetic soil water content data using un-
biased prior distributions are depicted in Fig.3. This plot
shows the cumulative prior (blue line) and posterior (red cir-
cles) distributions of the estimated parameters corresponding
to each of the three prior distributions. When using the uni-
form prior (Prior 1, Fig.3a), the water retention parameters
(θr, θs, α, andn) were not identifiable, with posterior distribu-
tions that extended over the entire prior defined ranges. The
posterior distributions of the two additional soil hydraulic pa-
rameters (Ks andL) on the contrary differed markedly from
their marginal prior distributions. Seemingly, the observa-
tional data contained sufficient information to constrain these
two parameters. The pressure head at the lower boundary

(hLB) was not warranted by calibration against the synthetic
soil water content data. Very similar findings were observed
with the informative prior that neglects parameter correla-
tion (Prior 2, Fig.3b). Note thathLB was somewhat better
constrained in this case but still demonstrated considerable
uncertainty. This is a nice illustration of parameter interde-
pendence. Even though the prior ofhLB was the same for the
three prior distributions, this parameter became better iden-
tifiable when the VGM parameters were more constrained
in their prior pdf. Finally, the informative prior that consid-
ers parameter correlation (Prior 3, Fig.3c) substantially im-
proved the results. All the soil hydraulic parameters as well
as the pressure head at the lower boundary suddenly became
well identifiable by calibration against the observational data.
Note that in this case the true parameter values (grey lines)
were always located within the 95 % posterior confidence in-
tervals and that these intervals were reasonably small. In this
study, we refer to an estimate that satisfies both of these pre-
conditions as an accurate and precise estimate.

The results for the biased prior distributions are shown in
Fig. 4. They were qualitatively similar to those observed
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Fig. 6. Cumulative prior and posterior probability distributions using real soil water content data and three different prior probability
distributions:(a) multivariate uniform distribution (Prior 1),(b) multivariate normal distribution without correlation among the soil hydraulic
parameters (Prior 2), and(c) multivariate normal distribution with correlation among the soil hydraulic parameters (Prior 3). The blue lines
represent the prior distributions. The red circles denote the 2.5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 97.5 % quantiles of the posterior
distributions, respectively. The x-axes cover the bounds listed in Table1.

previously for the unbiased priors case. Again, when using
prior distributions that neglect correlation among the soil hy-
draulic parameters (Prior 1 and Prior 2), accurate and precise
estimation of the water retention parameters was not pos-
sible. Including prior information about parameter correla-
tion (Prior 3) significantly improved parameter identifiabil-
ity, enabling accurate and precise estimates of all parameters.
Note that this was possible despite the bias in the prior infor-
mation. This is illustrated in more detail in Fig.5, which
presents pairwise scatter plots of the posterior sample (grey
dots) and associated 95 % confidence ellipses of the prior
(blue line) and posterior (red line) distribution. These el-
lipses were calculated based on the assumption of a bivariate
normal distribution of the respective parameters. Although
the prior distribution of the VGM parameters was biased and
therefore assigned very low prior probability to the actual
parameter values (orange squares) used to generate the syn-
thetic time series, the 95 % posterior confidence ellipses en-
compassed these values.

3.2 Real data

Posterior distributions of the estimated parameters for the
real soil water content data are illustrated in Fig.6. These re-
sults resemble the findings presented in the previous section
for the synthetic data. The use of the uniform prior (Prior 1)
and the multivariate normal prior that neglects parameter cor-
relation (Prior 2) did not warrant accurate and precise identi-
fication of all estimated parameters. Consideration of param-
eter correlation in the prior distribution (Prior 3) substantially

improved the outcome of the Bayesian inference scheme.
To verify whether the prior distribution of the parameters
is consistent with the information from the soil water con-
tent data, please consider Fig.7 which compares the 95 %
confidence ellipses of the prior distribution (blue line) with
those derived from the posterior sample (red line). This fig-
ure highlights several important observations. First, the con-
fidence ellipses of the posterior distribution are much smaller
than their respective counterparts of the prior distribution.
Second, the prior distribution was apparently unbiased and
consistent with the posterior sample. And finally, the prior
and posterior distributions exhibit a very similar correlation
structure, particularly for the highly correlated parameters.

Figure8 compares the observed and simulated soil water
dynamics. The dark grey region represents the 95 % predic-
tion uncertainty intervals associated with the posterior pa-
rameter uncertainty, whereas the light grey region depicts
the total predictive uncertainty. Details on how to com-
pute these uncertainty intervals can be found inSchoups and
Vrugt (2010) and so will not be repeated herein. For com-
pleteness, the top panel plots the observed rainfall hyeto-
graph (blue bars) and potential evaporation (red bars). The
HYDRUS-1D model matched the in situ observations (red
circles) very well, with a corresponding root mean square er-
ror of 0.009 cm3 cm−3, and model efficiency (Nash and Sut-
cliffe, 1970) of 0.87. These two measures of goodness of
fit were calculated for the HYDRUS-1D simulation that best
described the observational data, that is, using the parame-
ter values that had maximum posterior density (θr = 0.066,
θs= 0.445,α = 0.0048,n = 1.68,Ks= 0.074,L = 0.63, and
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Fig. 7. Pairwise scatter plots of the posterior sample and corresponding 95 % confidence ellipses using real soil water content data and the
prior probability distribution with correlation among the soil hydraulic parameters (Prior 3). The axes cover the bounds listed in Table1.

hLB = −128). Note that two observations (day of year 190
and 238) fall outside the 95 % prediction uncertainty bounds.
This, however, is in good agreement with statistical expecta-
tion (2 out of 29 observations correspond to approximately
7 %). To convey an impression of the spatial variability of
soil water content within the 50 m× 50 m plot, we added bars
to the mean values that span the 2.5 % and 97.5 % quantiles
of the spatially distributed observations.

Figure9 plots the 95 % uncertainty bounds of the soil hy-
draulic functions corresponding to the prior and posterior dis-
tributions. We also plotted the observed soil water content
data. Note that the in situ data exhibited relative small vari-
ability and covered only a limited range of soil water states.
This explains, at least in part, why in situ observations of soil
water dynamics contain insufficient information to estimate
accurately and precisely all VGM parameters. Note also that
some of the data fall outside the posterior uncertainty bounds.
The reason for this is that these bounds show the uncertainty
in the soil hydraulic functions due to uncertainty in the soil
hydraulic parameters only. They do not include uncertainty
due to observational and model errors.

The likelihood function used in this study was based on
assumptions of uncorrelated, homoscedastic, and normally
distributed residuals. If any of these assumptions is violated
then the posterior distribution and corresponding prediction
uncertainty intervals are subject to error and should be revis-
ited. Good statistical practice therefore constitutes checking
whether the underlying assumptions of the likelihood model
have been met (e.g.Schoups and Vrugt, 2010). To assess the
validity of these assumptions we conducted three diagnos-
tic tests, and the results of this are plotted in Fig.10. The
top panel measures the correlation among the residuals by
plotting the autocorrelation function. The autocorrelation at
given lag (red circles) remained within the theoretical 95 %
significance interval of a time series of uncorrelated residu-
als (blue lines), indicating that the residuals are uncorrelated.
The middle panel tests whether the magnitude of the residu-
als depends on the magnitude of the soil water content obser-
vation. The residuals appear homoscedastic, that is, indepen-
dent of the magnitude of the observational data. Finally, the
bottom panel presents a quantile-quantile plot and explores
whether the residuals follow a normal distribution. Except
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for the two large residuals discussed above, the quantiles of
the residuals were in good agreement with this assumption.
We therefore concluded that the underlying assumptions of
the likelihood model were met and that the posterior dis-
tribution and corresponding predictive uncertainty intervals
were adequate.

4 Discussion

The results presented in this paper clearly indicate that the
in situ observations of soil water content did not contain suf-
ficient information to warrant an accurate and precise esti-
mation of all parameters of interest. This finding is not new
but has been reported previously (e.g.Jacques et al., 2002;
Ritter et al., 2003). Naturally occurring boundary conditions
display insufficient variability to result in a wide range of
soil water states, which is a prerequisite to successfully esti-
mating the VGM parameters (Vrugt et al., 2001, 2002). The
necessary information for some of the soil hydraulic param-
eters simply appears beyond the range of the actual soil wa-
ter content observations, and these parameters are therefore
difficult to constrain. There is different ways in which the

information content of our data could have been increased.
One approach is to increase measurement frequency and to
measure directly after rainfall events (Fig.8). This would
have resulted in a larger range of observed soil water states.
Another possibility is to consider the presence of vegetation,
and consequently, root water uptake. This would have ex-
tended the range of observed soil water states to the dry end.
The gain of information associated with this, however, would
come at a cost. The simulation of root water uptake as a func-
tion of time and depth requires specification of additional
parameters, which would need to be estimated simultane-
ously with the other parameters, introducing additional pa-
rameter and model uncertainty (e.g.Ines and Mohanty, 2008;
Wollschl̈ager et al., 2009).

The use of prior information about the soil hydraulic pa-
rameters substantially improved parameter identifiability. To
achieve this improvement, however, it was necessary to in-
clude information about parameter correlation in the prior
distribution. Using this additional information, our results
with synthetic data demonstrated that the Bayesian approach
is effective and robust, even in case of biased prior infor-
mation. It is noteworthy that the bias we used in this study
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Fig. 9. 95 % prior and posterior uncertainty bounds of(a) the water
retention function and(b) the hydraulic conductivity function using
real soil water content data and the prior probability distribution
with correlation among the soil hydraulic parameters (Prior 3). In
addition, the actual soil water content observations are plotted.

to test the robustness of the approach was rather moderate.
Clearly, another situation occurs if the magnitude of the bias
is actually so large that the prior information becomes incom-
patible with the information contained in the observational
data, as illustrated and discussed inHou and Rubin(2005).
In this situation, any approach of using prior information is
likely to fail. In practice, however, this failure becomes ev-
ident from inspection of the posterior distribution, with the
maximum posterior density of at least some of the param-
eters located at the bounds of the feasible parameter space
(Hou and Rubin, 2005).

Another option to alleviate problems with parameter non-
identifiability is to reduce the dimensionality of the model
calibration problem and fix some of the soil hydraulic pa-
rameters at some a priori defined value (e.g.Jacques et al.,
2002; Ritter et al., 2003). This approach is practical but may
impair the ability of the soil hydraulic model to accurately
describe the experimental data, in particular if parameters
are fixed at nonoptimal values. Due to parameter correlation,
fixing single parameters at nonoptimal values will likely cor-
rupt the estimates of the remaining parameters. Moreover,
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the decision which parameter to fix is often rather arbitrary,
without consideration of the actual information content of
the data (but see, e.g.Ritter et al., 2003; Mertens et al., 2005,
for some exceptions). This might results in fixing a param-
eter whose value is actually well defined by the calibration
data. An example of this is theL parameter in the VGM
model that is often fixed at some value taken from the lit-
erature because it is deemed unimportant or insensitive (e.g.
Abbaspour et al., 2000; Wollschl̈ager et al., 2009). In con-
trast, the results presented in this study demonstrated that
the in situ observations contained valuable information that
helped to substantially constrain this parameter (Fig.6). If
we still decide to fix some of the soil hydraulic parameters,
it remains typically difficult to choose appropriate values.
This is particularly true forθr, θs, andKs. These parame-
ters are generally poorly defined by direct measurements and
should therefore be considered as fitting parameters (e.g.van
Genuchten and Nielsen, 1985). The Bayesian approach pre-
sented in this study avoids many of the problems associated
with fixing parameters.

A recent review byVereecken et al.(2010) discusses the
strengths and limitations of existing pedotransfer functions to
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make accurate and reliable predictions of the parameters in
the VGM model. They also make suggestions on how to im-
prove the predictive capabilities of future pedotransfer func-
tions. We like to add to their suggestions to include infor-
mation on parameter correlation in the pedotransfer function
output. The Monte Carlo approach we presented might prove
useful in this regard. It is generally applicable and easy to im-
plement. As shown in this study, information on correlation
among the soil hydraulic parameters is highly beneficial in
Bayesian inverse modelling of in situ data, but equally useful
in many other applications such as stochastic modelling of
soil hydraulic properties and soil water flow (e.g.Mishra and
Parker, 1989; Mallants et al., 1996).

5 Summary and conclusions

Many contributions to the soil hydrological literature have
demonstrated the limited information content of in situ mea-
surements of soil water state variables under natural bound-
ary conditions to estimate the soil hydraulic properties.
A general approach, which has yet received very little at-
tention in the soil hydrological literature, is to use an infor-
mative prior distribution of the soil hydraulic parameters and
to combine this distribution with the in situ observations us-
ing Bayes’ theorem. In this paper, we investigated to which
degree prior information about the soil hydraulic parameters
can help improve parameter identifiability in inverse mod-
elling of in situ soil water dynamics under natural boundary
conditions. We used percentages of sand, silt, and clay as
input variables to the ROSETTA pedotransfer function that
predicts the soil hydraulic parameters. Textural data consti-
tute basic soil information that is readily available in most
vadose zone studies. In addition to the standard ROSETTA
prediction that provides the mean values and standard devi-
ations of the predicted parameters, we tested a Monte Carlo
approach to derive the correlation structure of the predicted
parameters. It was one objective of this study to explore the
value of this additional information on parameter correlation
in Bayesian inverse modelling. Another objective was to test
the robustness of the Bayesian approach in case of biased
prior information. We formulated three different prior distri-
butions that incorporate to different extents the prior infor-
mation derived with ROSETTA. We illustrated our approach
using synthetic and real-world observations of in situ soil wa-
ter dynamics under natural boundary conditions.

The results of this study demonstrated that prior infor-
mation about the soil hydraulic parameters significantly im-
proved parameter identifiability in Bayesian inverse mod-
elling of in situ soil water dynamics. The results also in-
dicated that the Bayesian approach was effective and robust
under the conditions tested in this study, even in case of bi-
ased prior information. For the Bayesian approach to be ef-
fective and robust, however, it was essential to incorporate in-
formation about the correlation structure of the soil hydraulic

parameters in the prior distribution. The proposed algorithm
to derive this additional information proved useful, yield-
ing reasonable estimates of the correlation coefficients of the
ROSETTA predicted parameters. Using the so derived full
covariance matrix in Bayesian inverse modelling enabled us
to successfully calibrate a one-dimensional effective vadose
zone model using real-world data with limited information
content.

Acknowledgements.We thank Marius Schmidt and Karl Schneider
for providing the meteorological data used to define the upper
boundary conditions. We also acknowledge the help of Nils
Prolingheuer during the measurement setup and data collection.
The first, third, and fourth author gratefully acknowledge financial
support by the TERENO project and by SFB/TR 32 “Patterns in
Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling, and
Data Assimilation” funded by the Deutsche Forschungsgemein-
schaft (DFG). We thank the four anonymous referees for their
insightful comments on the discussion paper and Mauro Giudici
for his suggestions to improve our paper.

Edited by: A. Guadagnini

References

Abbaspour, K., Kasteel, R., and Schulin, R.: Inverse parameter es-
timation in a layered unsaturated field soil, Soil Sci., 165, 109–
123, 2000.

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evap-
otranspiration (guidelines for computing crop water require-
ments), FAO Irrigation and Drainage Paper No. 56, Food and
Agricultural Organization of the United Nations, Rome, Italy,
1998.

Baroni, G., Facchi, A., Gandolfi, C., Ortuani, B., Horeschi, D., and
van Dam, J. C.: Uncertainty in the determination of soil hy-
draulic parameters and its influence on the performance of two
hydrological models of different complexity, Hydrol. Earth Syst.
Sci., 14, 251–270,doi:10.5194/hess-14-251-2010, 2010.

Basile, A., Ciollaro, G., and Coppola, A.: Hysteresis in soil water
characteristics as a key to interpreting comparisons of laboratory
and field measured hydraulic properties, Water Resour. Res., 39,
1355,doi:10.1029/2003WR002432, 2003.

Beven, K. and Binley, A.: The future of distributed models: model
calibration and uncertainty prediction, Hydrol. Process., 6, 279–
298,doi:10.1002/hyp.3360060305, 1992.

Box, G. E. P. and Tiao, G. C.: Bayesian Inference in Statistical
Analysis, John Wiley and Sons, New York City, NY, USA, 1992.

ter Braak, C. J. F. and Vrugt, J. A.: Differential evolution Markov
chain with snooker updater and fewer chains, Stat. Comput., 18,
435–446,doi:10.1007/s11222-008-9104-9, 2008.

Brooks, S. P.: Markov chain Monte Carlo method and its applica-
tion, J. Roy. Stat. Soc. D-Sta., 47, 69–100, 1998.

Brooks, S. P. and Gelman, A.: General methods for monitoring
convergence of iterative simulations, J. Comput. Graph. Stat., 7,
434–455, 1998.

Carrera, J. and Neuman, S. P.: Estimation of aquifer parameters
under transient and steady state conditions: 1. Maximum like-
lihood estimation incorporating prior knowledge, Water Resour.
Res., 22, 199–210,doi:10.1029/WR022i002p00199, 1986a.

www.hydrol-earth-syst-sci.net/15/3043/2011/ Hydrol. Earth Syst. Sci., 15, 3043–3059, 2011

http://dx.doi.org/10.5194/hess-14-251-2010
http://dx.doi.org/10.1029/2003WR002432
http://dx.doi.org/10.1002/hyp.3360060305
http://dx.doi.org/10.1007/s11222-008-9104-9
http://dx.doi.org/10.1029/WR022i002p00199


3058 B. Scharnagl et al.: Investigating the effect of different prior distributions of the soil hydraulic parameters

Carrera, J. and Neuman, S. P.: Estimation of aquifer parameters
under transient and steady state conditions: 2. Uniqueness, sta-
bility and solution algorithms, Water Resour. Res., 22, 211–227,
doi:10.1029/WR022i002p00211, 1986b.

Carsel, R. F. and Parrish, R. S.: Developing joint probability dis-
tributions of soil water retention characteristics, Water Resour.
Res., 24, 755–769,doi:10.1029/WR024i005p00755, 1988.

van Dam, J. C. and Feddes, R. A.: Numerical simulation of in-
filtration, evaporation and shallow groundwater levels with the
Richards equation, J. Hydrol., 233, 72–85,doi:10.1016/S0022-
1694(00)00227-4, 2000.

van Dam, J. C., Stricker, J. N. M., and Droogers, P.: Inverse
method to determine soil hydraulic functions from multistep
outflow experiments, Soil Sci. Soc. Am. J., 58, 647–652,
doi:10.2136/sssaj1994.03615995005800030002x, 1994.

Durner, W. and Lipsius, K.: Determining soil hydraulic properties,
in: Encyclopedia of Hydrological Sciences, edited by: Ander-
son, M. G., chap. 75, John Wiley & Sons, Chichester, UK, 1121–
1143,doi:10.1002/0470848944.hsa077b, 2005.

Efron, B.: Bootstrap methods: another look at the jackknife, Ann.
Stat., 7, 1–26,doi:10.1214/aos/1176344552, 1979.

van Genuchten, M. T.: A closed-form equation for predicting the
hydraulic conductivity of unsaturated soil, Soil Sci. Soc. Am. J.,
44, 892–898,doi:10.2136/sssaj1980.03615995004400050002x,
1980.

van Genuchten, M. T. and Nielsen, D. R.: On describing and pre-
dicting the hydraulic properties of unsaturated soils, Ann. Geo-
phys., 3, 615–628, 1985,
http://www.ann-geophys.net/3/615/1985/.

Guber, A. K., Pachepsky, Y. A., van Genuchten, M. T., Rawls, W. J.,
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Vereecken, H.: Estimating soil hydraulic properties from infra-
red measurements of soil surface temperatures and TDR data,
Vadose Zone J., 9, 910–924,doi:10.2136/vzj2009.0176, 2011.

Toormann, A. F., Wierenga, P. J., and Hills, R. G.: Parameter esti-
mation of soil hydraulic properties from one-step outflow data,
Water Resour. Res., 28, 3021–3028,doi:10.1029/92WR01272,
1992.

Topp, G. C., Davis, J. L., and Annan, A. P.: Electromag-
netic determination of soil water content: measurements in
coaxial transmission lines, Water Resour. Res., 16, 574–582,
doi:10.1029/WR016i003p00574, 1980.

Vereecken, H., Kasteel, R., Vanderborght, J., and Harter, T.:
Upscaling hydraulic properties and soil water flow processes
in heterogeneous soils: a review, Vadose Zone J., 6, 1–28,
doi:10.2136/vzj2006.0055, 2007.

Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J.,
Vrugt, J. A., and Hopmans, J. W.: On the value of soil mois-
ture measurements in vadose zone hydrology: a review, Water
Resour. Res., 44, W00D06,doi:10.1029/2008WR006829, 2008.

Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y.,
Schaap, M. G., and van Genuchten, M. T.: Using pedotrans-
fer functions to estimate the van Genuchten-Mualem soil hy-
draulic properties: a review, Vadose Zone J., 9, 795–820,
doi:10.2136/vzj2010.0045, 2010.

Vrugt, J. A., Bouten, W., and Weerts, A. H.: Information con-
tent of data for identifying soil hydraulic parameters from
outflow experiments, Soil Sci. Soc. Am. J., 65, 19–27,
doi:10.2136/sssaj2001.65119x, 2001.

Vrugt, J. A., Bouten, W., Gupta, H. V., and Sorooshian, S.: Toward
improved identifiability of hydrologic model parameters: the in-
formation content of experimental data, Water Resour. Res., 38,
1312,doi:10.1029/2001WR001118, 2002.

Vrugt, J. A., Bouten, W., Gupta, H. V., and Hopmans, J. W.: To-
ward improved identifiability of soil hydraulic parameters: on
the selection of a suitable parametric model, Vadose Zone J., 2,
98–113,doi:10.2136/vzj2003.0098, 2003a.

Vrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., and
Sorooshian, S.: A Shuffled Complex Evolution Metropolis al-
gorithm for optimization and uncertainty assessment of hy-
drologic model parameters, Water Resour. Res., 39, 1201,
doi:10.1029/2002WR001642, 2003b.
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