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ABSTRACT 

A technique is described for the solution of the Helmholtz 

equation together with associated boundary conditions based on a 

generalization of a method used for the solution of the Dirichlet 

problem of potential theory, in which a dipole distribution is 

introduced on the boundary of a region to generate the potential 

inside. In order that the boundary conditions be satisfied, the 

distribution must be found as the solution of an integral equation. 

If the boundary is smooth, the equation is of Fredholm type, but if 

it has a corner the equation is singular. The problem of a sharp 

corner is analyzed, and properties of the solution are developed 

using the theory of singular integral equations. Direct use of the 

technique can be made impossible in some cases by the presence of 

"partner problem" eigenvalues. A simple method for avoiding this 

difficulty is presented. 

* This work was supported by the U. S. Department of Energy. 
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I. INTRODUCTION 

The use of integral equations to find solutions of Laplace's 

equation or the Helmholtz equation satisfying various boundary 

conditions has a long history, dating back at least to the work of 

"' 
Fredholm on a "new" method of solution for the Dirichlet problem (1]. 

Although the properties of these integral equations have been of great 

theoretical interest throughout this century, the advent of the large, 

high-speed computers has made the method of great practical utility. 

In particular, for the solution of the Helmholtz equation, 

_2 2 -+ 
(v + K )1!r(r) 0 ' c(l) 

the use of a boundary integral equation for obtaining W numerically 

has two decided advantages over the alternative finite difference 

(FJ:l.1) or finite element (FEM) methods in which an approximation for 

the Laplacian operator is. introduced. In the first place, only points 

on the boundary of a region are needed to obtain the solution so that 

the dimensionality of the space of unknowns is reduced by one. This 

can be of substantial benefit in reducing computer storage requirements 

for a desired calculational accuracy. Secondly, for "exterior" prob-

lems, in which the region involved is not closed, an "outgoing wave 

condition" is automatically achieved by the proper choice of kernel 

function in the integral equation. This condition is difficult to 

impose accurately in the FJ:l.1 or FEM approaches. 

Three different (but related) boundary integral equation 

methods have been developed for solution of the Helmholtz equation: 

1. the solution is expressed in terms of an auxiliary monopole 

("charge") distribution on the boundary of the region; 2. the 

solution is expressed in terms of an auxiliary dipole distribution on 
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the boundary; or, 3. the solution is expressed in terms of the 

solution and its normal derivative on the boundary by making use of 

the Helmholtz representation which arises from Green's theorem [2]. 

In each of these methods an integral equation for the unknown is 

obtained by considering the limit of the integral representation for 

'II(;) in which ; approaches the boundary. These three methods have 

been presented together using a consistent notation in a fine paper 

by IG.einma.n and Roach [3], so that their similarities and their 

differences can easily be seen. It is found that the integral 

equations typically involve one of two kernels, either that for the 

free-space solution for an isolated monopole, or the normal derivative 

of that solution at a surface. If the former kernel occurs (and the 

boundary is smooth), one must solve a Fredholm equation of the first 

kind, while for the latter the equation is of the second kind. Since 

the solution of equations of the first kind present some difficulties 

not found for those of the second kind [4], it has been traditional to 

choose methods leading to the latter. Recently, however, Jaswon [5] 

and Symm [6] have shown that the former equations can be treated 

satisfactorily, so either approach can be useful. In this paper we 

will use the dipole representation for the Dirichlet problem, but 

since the kernels needed for the various approaches are closely 

related, some of the conclusions which will be reached can be readily 

adapted for any of the other choices. 

As has been noted above, the integral equation which is 

obtained for the dipole distribution has a kernel of the Fredholm type 

(completely continuous) if the boundary is smooth, but it is singular 

if sharp corners are present. In the last few years a number of 
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applications of the method to acoustic and electromagnetic radiation 

problems have been made C7-12l, but in these no detailed analysis of 

the complications arising from sharp corners was done. In Section II 

of this paper we give a reasonably complete analysis of the properties 

of the dipole distribution in the vicinity of a corner. ~The behavior 

of the solution of the Helmholtz equation near a corner has already 

been determined by Meixner [13] and others [14-17] using techniques 

based on the differential equation, but we here provide an alternative 

development based on a direct treatment of the singular boundary 

integral equation which we believe has an inherent interest of its own. 

A significant difficulty exhibited by the boundary integral 

equations is that the homogeneous part of a particular equation may 

be identical to that for another problem. Thus, from Table I of 

Kleinman and Roach [3] one sees, for example, that the exterior 

Neumann problem expressed using a dipole distribution, and the 

interior Dirichlet problem using a Helmholtz representation have the 

same homogeneous parts. Thus, if one wishes to solve the exterior 

Neumann problem at an eigenvalue of the interior Dirichlet problem a 

direct approach will be impossible. This difficulty is well-known 

[2,18,19]. If the Helmholtz representation is used, one finds that 

the inhomogeneous term in the integral equation is orthogonal to the 

eigensolution of the transposed homogeneous equation so that, by the 

well-known Fredholm theorems [20] a solution exists but it is not 

unique. It has been shown that, for the Helmholtz representation, if 

the second of the two integral equations is added to the system, one 

will then have a unique result [3,19,21,22]. In Section III of this 

paper, we provide a simple alternative method of calculation for use 
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when a dipole distribution is employed. This involves modifying the 

kernel so that its resolvent is not singular at the eigenvalue. 

The ideas of this paper have been implemented in the devel-

opment of a computer program for the solution of the Helmholtz equation 

in two dimensions for regions bounded by polygons. In a subsequent 

paper the numerical techniques used and some representative results 

are described. 

n. THE DIRlLE DISTRIBUTION NEAR A CORNER 

A solution of the Helmholtz equation, Eq. (1), in a region V 

can be expressed in terms of a dipole distribution, D(;), on the 

boundary of the region, SV • Specifically, one can write: 

where G(;,;.) is a solution of the equation 

2 2 ... ... -+ ... 
('i7r + K) G(r,r') = 5(r- r'), 

and the integral is taken over the surface, SV' of the region [2 ) • 

... ... 
If the region V is finite, only the singularity in G at r -+ r' 

is important, but if the region is unbounded then a further condition 

-+ 
for r -+ ro must be imposed. In such cases, one is usually interested 

in the solution of wave-scattering problems, and one writes 

Here, *inc(;) is a specified incident wave, and *sc(;) is the 

scattered wave. The latter is required to hl:i:ve only "outgoing" parts. 

-6-

In this paper we shall be interested in two-dimensional phenomena; in 

this case [23] 

(2) 

where. is the Hankel function of the first kind. · In two dimen-

sions the. volume, V, becomes an area in a plane, and the integral is 

taken over the bounding contour with d-;; = -~z )( dt, where ez. is 

a unit vector out of the plane and d! is a line element along the 

contour. Using H~l)' = -~l), we can write 

~l)(K I;• - ;I) 
(;' .. i!) . dd' (3) 

1
-+ .... 1. 
r' ·.- .. r. 

If one has a bounded region, then the total solution, 1!r(;) , 

will typically be represented as in Eq. (3), but the (complex) Hankel 

function factor i~l) can be replaced by the (real) Nemilann function 

( -N1 ). In the. Dirichlet problem, W is specified on the boUildary, 

and one obtains the botindary integral equation by taking the limit as 
.... 
r approaches the boundary from within the region v. One finds: 

(4) 

w;liere :f'(;) ·. is the specifiect boundary value of 1!r(;). We propose to 

i.n\restigate the properties o:f' this integral equation. 

Although the boundary. distribution technique can be applied 

directly to cases in which the boundary is smooth, i.e., satisfies a 

Lia:Punov condition [24], some additional analysis must be given if the 
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boundary has sharp corners. In the former case, the kernel of the 

equation can be shown to be completely continuous and so the usual 

Fredholm theorems apply. On the other hand, if there are corners the 

kernel is singular. 

To deal with this situation, we Will consider a corner in a 

boundary and for simplicity we Will assume that the two sides of the 

corner are straight. The angle between these two sides will be called 

a , Further, since the singular nature of the equation comes about 

because of the small-distance behavior of the kernel, we divide the 

kernel into a leading term which includes the most singular part, and a 

remainder which is completely continuous. Thus we write: 

2i 
- "'(iiXJ + R(x) , 

and we will focus attention principally on the first term. 

If Eq. (5) is now introduced into Eq. (4), we find: 

f .... .... .... .... 
D(r 1)(r 1 -r)·dcr1 

+ ,.... ....,2 
211 r 1 - r 

(5) 

.... 
dcr' 

Let us now introduce the notation that n
1

(s) is D(;) on side 1 

of the corner, where s is the distance from the corner, and D2 (s) 

is D(;) on side 2. With this notation, the equation can be explic

itly written for ; on side 1 as: 
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t2 

s sin a£ 
211 

0 

J
t2 [ 2 2 l/2j R K(s 1 - 2s 1 s cos a+ s ) 

sina n2 (s') / 
2 2 1 2 

0 (s 1 - 2s 1 s cos a+ s ) 
ds 1 

+¥- J 
B' (6) 

where f
1

(s) is the boundary value of f(;) on side 1. For a 

straight side there is no contribution from the distribution n1 (s) 

to the potential on that side except for the term n
1

(s)/2, because 

the vector ; 1 - ; is perpendicular to the surface element • The 

length of side 2 is t
2

• The integral over B1 is the contribution 

from the distribution other than the part on sides 1 and 2. This 

last integral is analytic as a function of s, since it is a finite 

integral and 

'

.... .... I .... r 1 - r > 0 for r 1 on B 1 and ; on side 1 

Similarly, for side 2 we have: 

D2(s) s sin af1 

-2- + 211 

0 

n
1 

(s 1 )ds 1 
_,_____;~-------,,- + • .. ' 

(s 12 - 2s 1 s cos a + s2 ) 

where the • • · indicates terms similar to the R, B' terms for f
1 

· 

To analyze the corner singularity, we introduce 



D±{s) + s sin a jm 
-2-- 2:rr 

0 

where t is the lesser of 
m 
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\ and includes the 

contributions of f.{s) and the remainder of the equations coming 
~ 

from R, B', and the integral for the larger ti beyond t 
m 

Obviously, these integral equations .have a singular kernel as 

s, s' -+ 0, and so some care must be used in dealing with them, 

either for analytic or numerical purposes. 

We nciw make a Mellin transformation of the equations to obtain 

.6.+{ 5) sin a 
---- :!: -----

2 (2rc )2 i 

·t 
0 

c+iCD 

I 
c-ioo 

CD 

d5. .6.±{ 5. ) I s 5ds 

0 

(s')- 5' ds' (7) 

In this equation, LX 0 = r D{s )s 5-
1
ds . In obtaining Eq. (7), 

we have made the direct Mellin integration and have used the inverse 

relation: 

D(•) (2<1)-1 11ro "(g),-! •• , 

c-~oo 

The choice of the constant c will be discussed later. The transfcmn 

of the function F±(s) is <1>±(5). In arriving at this equation we 
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have interchanged the order of integration over 51 with those over 

s',s, which can be justified a posteriori. Next we can evaluate the 

integrals over s' and s. It would be convenient at this point if 

one could interchange these integrations, but in fact the results can 

easily be shown to depend on the order chosen. The integral over 

can be evaluated by noting that 2 2 
{s' - 2s's cos a + s ) = 

[s' - s eia][s' - s e-ia], and then separating the factors using 

partial fractions; the resulting integral can be expressed in terms 

of bypergeometric functions [25] : 

t 

1
m 

(s')- 5' ds' 
--r.~~--~----~ 
(s•

2 
- 2s's cos a+ s

2
) 2i(l- 5')s

2 
sin a 

{8) 

If s > tm' · the bypergeometric functions are analytic and have 

convergent power series expansions, but if s < t we need the m 

analytic continuation of the functions as can be obtained using 

Kummer's relations [26] : 

s-5' sin[{:rr- aH'] 

sin :rr5' 

··:: )]} 
{9) 

s' 
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These results can be used to evaluate the final integral over s, 

using E~. (9) for the portion of the integral in which 0 < s < t 
....... """ m' 

and E~. (8) for the remainder. For our purposes, the most important. 

term which arises thereby is that which comes from the first term on 

the right-hand side of E~. (9): 

~-~I 
1( t 

m 
(~ - sl) 

sin [(1t- o:)~ 1 l = 

sin 1ts 1 
Cs- s 1

) 

(10) 

The feature of this term of particular interest is the pole at 

~· ~ ~. The other terms can be integrated using the series 

representations for the hypergeametric functions, with the result 

that: 

(s I),...~ IdS I ts-sl { m 1t sin{(1t - o:)s 1 J 
= ~ (s - s 1 )sin 1( s 1 s•

2 
- 2s 1 s coso:+ l 

As a function of s 1
, it is easily found that the integral has poles 

at the positive integers, while as a function of s there are poles 

at all the~ with the exception of s = 0. Since the integrals 

will only be convergent if Re(s•} < 1, -1 < Re(g} < 1, and 

Re ( s - s ' } > 0 , we must initially restrict the range of these 

variables to satisfy the ine~ualities. If we let the point 

approach the integration contour subject to the last of the 
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conditions, we then obtain an integral e~uation for ~~), of the 

form: 

1 
±4rr'i Cs-s 1

) 

(12) 

where we have absorbed the series of terms from E~. (11) into ~ . 

This e~uation is in standard singular integral e~uation form, 

and thus may be treated using known techni~ues [27]. We begin by 

considering the homogeneous e~uation, and introduce a function 

H(~) - l 
21ti Cs 1 

- s) 

where 6(0) is a solution of the homogeneous e~uation. Clearly 

H(s) is an analytic function in the finite half-planes defined by 

Re(s) ~ c, 

integration. 

and it has a discontinuity in crossing the contour of 

If we define the H(±)(s) to be the functions obtained 

from the integral in which Re(s) ~ c, respectively, together with 

their analytic continuations, we then easily find that 

and so 

(13) 

This e~uation can be used to deduce the analytic structure of 

6io) (s). 
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We eventually wish to obtain the analytic structure of D(s), 

which will require using the inverse transform on .6( s). For the 

latter step, in the limit s ~ 0, the contour in the inverse trans-

form can be closed on the left, and so the behavior of D(s) is 

determined by singularities on the left of the contour. In this 

region H(-) (g) is clearly analytic, and so we can solve for 

H(+)(E) in terms of H(-}(s) using Eq. (13) to analytically continue 

H( +) ( s) to the left of the contour. Thus we find: 

~+)(s) = (1 ± r(s))-1 ~-)(s) • 

A solution of this equation can be obtained by taking the logaritl:un of 

the equation and then noting that log H(s) is a function with a 

given discontinuity on the contour. The solution of this problem (the 

"Hilbert problem") then can be written [281 

~(s) = exp {~ 
2:n:J. 

assuming that the integral converges. We then see that ~-)(s) is 

analytic and nonzero on the left of the contour, and if we use Eq. 

(13) to analytically continue Hi+)(s}, it is evident that ~+)(s) 

will also be analytic unless 

1 ± r(s) = 0 

At such points, ~+)(±) will generally have poles. Thus ~io)(s) 

also bas poles at such points. 

The solution of Eq. (12) may now be obtained by introducing 

}I( s) = 1 

2rci 
Jim 

c-i<D 

Then it is easily seen that 

so that 

Using 

this equation can be written: 

}ji +) ( s) }ji-) ( s) 

~+J(s) - Hi-J<s> 

-14-

r(g'}(t }s-s' L;(g')ds' 
m 

(s' - s) 

2r(s) ~±(E) 

~-J(s) 

(14) 

Again we have a discontinuity equation to satisfy and we obtain as the 

formal solution: 

r(s') ~±(s') . ds' 

i:n: ~-)(s') s' - s 

Since :Ui-) ( s) is analytic on the left of the contour, if we use 

Eq. (14) to obtain the analytic continuation of ;ui+)(S) , we finally 

find that 
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±lli-)(~) + 211)(~) 

l±r(~) 
(15) 

Thus, we can generally expect poles in 6( ~) in the left half plane 

wherever 1 ± r(~) = 0 on the left of the contour. 

To complete the discussion, it is necessary to specify the 

contour; i.e., to determine c. In the first place, from the 

restriction on Re(~), we require that -1 < c < 1. In addition, the 

preceding development will only give a meaningful expression for 

H(~) if tn[l ± r(~)l .... 0 as lrm s I -+ oo. It is easily seen that 

r(~)"' exp[( l:rc -a: I - :rc) lrm ~ ll as lrm s I .... ro, so r(s) .... o. 

Thus the logarithm will approach zero at oo, tmless it bas an 

imaginary part of the form i:rcn • To guarantee that this does not 

happen, we can choose c = o, since r ( ~) is real and nonzero on the 

imaginary axis. Any other c satisfying the limit restriction is 

equally acceptable as long as the contour would not thereby be dis-

torted from the imaginary axis by going past a zero of 1 ± r( s) , 

since in such a case the logarithm would acquire an imaginary part 

at oo. (In principle the contour could pass ~ a zero and a pole 

in 1 ± r( s) and still have a well-behaved integral as I Im s I -+ ro • 

This condition cannot be achieved with the restriction on c , however; 

the poles in r(~) are at s = n, n I= 0.) 

We now can conclude that D(s) will behave as 

s .... o, where sn is a pole in the transform, ""(;). 

will appear if 

sin :rc s 
n 

+ sin(:rc - o:)S n 

as 

Such poles 

(16) 
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if s I= o. In the case of ""+' the solutions of this equation are 

s(+) = - (2n- l):rc 
n o: 

and in the case of ""- , 

(-) s = n 

2(n - l):rc 
2:rc - 0: 

(2n - 1 ):rc 
2:rc - 0: 

where n is any positive integer. 

(17A) 

(1 '7B) 

In addition to these poles, we must consider other possible 

singularities in ""(~). s:i.nce li(-)(s) is analytic, the only other 

possibility would be singularities in <I>(£). In ract, <I>(s) in part 

comes from contributions to f(s) arising from distributions on the 

other boundaries, B', and since these contributions will be 

analytic near s = 0, this part of <I>±( s) will be the transform of 

functions which have power series expansions; i.e., they have poles 

at the negative integers. If the explicit form of r(~) is inserted 

into Eq. (15), however, we find 

[± l{~- )(~) + 2 <I>(s>l sin 1[~ 
[sin :res± sin (:rc -"o:)sJ 

so that any poles which appear in <I>(~) at the negative integers are 

cancelled by the factor sin :rc~. On the other band, if the boundary 

value fl (s) or f
2

(s) bas a nonanalytic behavior as s .... 0 the 

singularities in <I>(~) generated thereby will not be cancelled. 

Finally, we must consider singularities which are generated 

by parts of the kernel ~l) (~tr )/r other than the most singular one 

which bas already been treated. We will see that if 6/.. ~) has a 

pole at -s , then additional poles will be generated at -~-2, 

-~-4, Further, we will show that if ~ satisfies Eq. (15), 
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then the contribution from these additional terms can be summed to 

provide a term in D(s) proportional to the Bessel function J
5

(Ks). 

The proof consists of a demonstration that if D(s) = J
5

(Ks), then 

the integral operator of Eq. ( 4) carried over a side 0 :;:. s' .:;:. t 

generates two terms: one proportional to J 
5 
( KS) whi.ch is consistent 

with Eq. (4), and a second which is analytic. As bas been seen, the 

latter makes a contribution to ~( 5) in Eq. (7) which produces no 

poles in .6(~), and hence does not affect the analytic behavior of 

D(s) as s ~ 0. 

For this proof we therefore consider 

J 
0 

where If the Hankel function 

is expressed using a Neumann and a Bessel fUnction, the latter 

produces an integral which is an analytic fUnction of s , since 

J
1

(z)/z 2 is an entire function of z . 

v(s,a) a f 
0 

Thus we only need consider 

The integrand bas branch points in the complex s' plane at 

s t = o, ia -±a se , se If we introduce cuts in the plane as 

shown in Fig. 1, we can then write v(s,a) as an integral over the 

contour. C 

v(s,a) f 
c 

. -18-

Assuming that s < t, the contour ma.y be distorted into three parts 

as shown: c1 and S_ over the two cuts, and the parts of the 

circle c0 • The portion of v(s,a) contributed by c
0 

gives an 

analytic function which we now ignore. Since 

2 
n:z 

where 1jrl (z) · is an entire fUnction, odd in z, the integrals over 

cl and cl include only a pole and a logarithmic discontinuity 

contribution. Thus one finds 

v(s,a) 

where A.F. 

11 _ e2n:i5)-l {- ~2-
'< KS sin a 

+ 2i 
J1<d;- ;. I> 

r;- ;. 1 

represents an analytic function of s. 

J (Ks' )ds' s 

+ A.F. , 

(18) 

The phase of the 

argument of J 5(Ks') has been fixed on the basis of the cut from 

s ' = 0 to oo in Fig. 1. The integrals over s 1 can be rewritten 

as integrals over s' from the origin to seia or se1 (2n:-<:t) plus 

an analytic term, so we wish to calculate 

j (s,a) 
Jl (K I; - ; •. ,) 

I;- ;.I 
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If we expand both Bessel functions in power series, we find 

2 m+n 

( ~ )s+l 
00 00 (~ ~ ) 

j (s,o:) >~ 1 \ 
m! (m + 1)! I n! I'(s + n + 1) L....l L-.l 

m=O n=O 

s-t2n ( 1o: -io: ] m (s') (s' - se )(s' - se ) ds' 

The integral can be evaluated easily after expanding the factor 
io:m 

( s ' - se- ) using the binanial theorem. Thus: 

co 

j (s,o:) (~ )s+l L (!I-f 
(m + 1)! 

m=O n=O 

( m )<-e2io:)k I'(s + 2n + k + 1) 

k · I'( s + 2n + m + k + 1) 

To carry out the sums, we change variables to M = m + n, and 

t = k + n, and then interchange the order of summation between t 

and n to get: 

j (s,o:) -
1o: s+l 

( Ks~ ) 

M 

L ( 2io: t. 
~-~-e --'--) ---,-
(M- t)!I'(s+M+t+2) 

t=O 

\ 

X ! 
(-l)n I'(s + t + n + 1) 

L..::. 
n=O 

(M - n + 1) n! ( t - n)! I' ( s + n + 1) 

-20-

The sum over n can be done if we note that 

I'(s + t + n + 1) 
r(s+n+l) 

Then the sum, S, can be written as 

s [ 
The integral can easily be evaluated, giving 

s ( -1 ) t (M - t ) ! 

(M + 1)! 

Thus the sum over t becomes: 

I'(~ +M+ t +2) 
r(s+M+2) 

2io:t 
e 

iaM· sin o:(M + 1) 
e 

sin o: 

We therefore obtain 

(~j+l 00 

I 
( 

~ 2 y io:M -+ ~ e sin o:(M + 1) 

j(s,o:) 
sino: (M + 1) ! I' ( s + M + 2 ) 

M=O 

This term must be combined with one in which o: 

(2:n: - 0:): 

00 

j(s,o:) + j(s, 2:n:-o:) 
( ¥ )~+1 ei:n:~ 

I sin o: 
M=l 

( 

x { sin [ ( :n: - o:) s l - sin [ ( :n: - o:) s 
I 

is replaced by 

(- «- t-1 
M! I'(~ + M + 1) 

(19) 
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To complete the calculation of v(s,a), we expand 

sin[ (rc - a)S - 2aM] . 
M! r(s + M + 1) (20) 

Irthe results of Eqs. (19) and (20) are combined with Eq. (18), we 

then find: 

v(s,a) 
2 sin[ (rc - a)sl 

(21) 
Ks sin a sin res 

Finally, the kernel in the integral equation for a point on a side 

of" the corner is -Ks sin a·N1 (K 1:;• - :; I)/ ( 41:;' - :; I) , so that if s 

satisfies Eq. (17) then the series of terms of the form ss+2M can 

be summed to give Js(Ks) • Thus, 1.mless 

the boundary conditions introduce other 

singularities for nonintegral s's there are no other singularities 

and hence we can expand D(s) in an infinite series of such Bessel 

functions. It may be noted that if pole singularities in .6( 5) are 

introduced by the boundary conditions at values of s which do not 

satisfy Eq. (17), then one still would have a series of terms for 

D(s) of the form s-12M s , but the coefficients would no longer be 

related to the Bessel series. Lastly, we mention that although the 

analytic parts of v(s,a) and other analytic contributions to the 

integral equation do not influence the analytic form of D(s), it is 

clear that they play an essential role in determining the residue of 

the poles in .6( s) at the values of 6. given by Eq. (17) • 
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A few conments are appropriate at this point: In deducing 

the analytic form of the solution, we have assumed that the unknown 

f1.mctions on the reoainder of the bo1.mdary away from the corner of 

interest can be treated as if they were known. The legitimacy of this 

approach can be rigorously established using the Carleoann-Vekua 

method for solving singular equations [29]. In this technique one 

uses the solution of the "dominant part" of the equation as 

illustrated here in solving Eq. (12) to convert the singular kernel 

to one which is only weakly singular and hence can be solved using 

Fredholm theory. We did not feel that such an approach, which does 

little else than to increase the complexity of notation and the bulk 

of the equations, was particularly illuminating and so we have chosen 

the more heuristic approach given above. We refer the interested 

reader to the rigorous treatment of singular integral equations for a 

complete discussion. 

In addition to the behavior just deduced, in certain particular 

cases it is possible to obtain a different type of function in D(s), 

This will occur if the denominator in Eq. (15) has a double zero at 

s = s0 ; i.e., an "inside" and an "outside" s as given by Eq. (17) 

are identical. This will only occur in the even solution if 

(2n - 1) 
2rc , 

(2m + 2n - 3) 

and in the odd case if 

2n 
2rc , 

(2m + 2n 1) 

where m,n are positive integers. In such a case .6(s) will have a 

double pole at 5 • Since such a double pole can be obtained by the 
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coalescence of two single poles, it is strongly suggested that we can 

expect a solution of D(s) of the form [oJs(Ks)/osls=so . The proof 

of this conjecture is quite simple. 

It has already been demonstrated that 

t 
R:il) (Kj; - ;. I) J~ (<>' )d,] 1 r J S (Ks) 

± iKs sin a f 2 4 I;-;. I L 
0 

~{1 ± sin[(11: - a)sl } Js(Ks) +analytic terms. 
sin 1ts 

(22) 

Since this relation is valid for values of s in the neighborhood 

of 5
0 

, it can be differentiated on s • However, if 

sin 11:s ± sin[(1t - a)sl has a double zero at s = s0 , its first 

derivative also vanishes there. Thus the Dei:lanalytic part of the integral 

equation which depends on either Js (Ks) 
. 0 

cancels 

out of the equation, and such terms are therefore allowed in the 

expansion of D(s). 

Finally, we consider the relation between the behavior of 

D(s) near a corner and that of w(;) , where ; is not on the 

boundary. Here: 

If we represent the point ; in polar coordinates (r,e) we replace 

Eq. (22) with 
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1 r sin[(1( - 9)sl ± sin[(1( - a + 9)sl 
J 

2 
sin 11:s 

The trigonometric terms in the numerator of the brackets can be 

ca:nbined to give 

sin [ ( 11: - e) s l ± sin [ ( 11: - a + e) s l 

sin~- (211: - a)s] 
• 2 

cos · _,_(a_-..;;;.2-'-'9 ):....5 l 2 
(even) 

r (211: - a)s] r (a - 29)5 1 
cos sin 1 ·J 

i-. 2 L. 2 
(odd) . 

These functions are zero at the boundaries, 9 = 0 and Q = a, for 

s 1 s which satisfy Eq. (17), but if s satisfies the "exterior 11 

condition (which depends on (211: - a)), then the solution v has no 

term dependent on the corresponding J s ( Kr) anywhere inside the 

corner, even though D(s) has such a term. [We note that the s's 

are determined by the homgeneous part of the integral equation, and 

thus relate to solutions which vanish on the boundary. The specified 

boundary value for y enters the equation as the inhomogeneous term 

in the integral equation. ] 

The results for the corner behavior deduced above can be 

compared with previous analyses based on direct treatment of the 

Helmholtz equation. The exact solution for the diffraction of scalar 

or electromagnetic waves by a wedge gives terms of the form 
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s(n~/a)+2k near the edge of the wedge, where n,k are integers 

[15,16]. Maue based his analysis of diffraction on the Helmholtz 

representation [14], but he obtained the behavior of the solution near 

a corner by considering the partial differential equation there, 

rather than directly using the integral equation as we have done. A 

quite general analysis of the solution of elliptic partial d~ential 

equations together with associated boundary conditions has been carried 

out by Wigley [l7l. Finally, it should be mentioned that Meixner [13] 

used the physically reasonable condition that the field energy density 

1n the electromagnetic case should be integrable in order to exclude 

terms in the solution which are too singular as s -+ 0. The results 

obtained here completely agree with these various treatments since 

the first set of s's in Eqs. (l7A,B) match the behavior obtained 

for solutions of the partial differential equation, while the second 

set, which depends on (2~ - a), does not produce a J s (K'r) behavior 

in t(r,e). It may be noted that the behavior of the solution to 

the more general problem discussed by Wigley can have certain 

logarithmic terms which do not occur in the present case. The 

logarithmic terms which would appear here in D(s) in the case of a 

double pole in ~5), as discussed above, can easily be seen to 

vanish in ¥(;) 

Although we have. demonstrated that the results obtained here 

for the dipole distribution are consistent with earlier work, some 

doubt may still remain regarding their equivalence. Clearly the 
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analysis used here depends only on the form of the kernel in the 

integral equation, and, as shown by Kleinman and Roach [3], for any 

particular boundary value problem the same kernel also occurs in a 

related Helmholtz-representation integral equation for another 

problem. For example, the interior Dirichlet problem U&ing the dipole 

representation (IDD) has the same kernel as does the exterior Neumann 

problem using the Helmholtz representation (ENH). In terms of the 

solution to the equation, however, there is a difference: in the 

Helmholtz representation the solution must have the properties 

deduced using the partial differential equation, while the dipole 

distribution is not so restricted since it is only an auxiliary 

function. To gain some insight into these differences, we can use 

an argument given by Lamb [2] to relate the dipole distribution 

to a superposition of two solutions for the Helmholtz representation. 

We consider the Helmholtz representation for the interior of 

a region, V, bounded by SV. As is well known, one has 

( ¥(;) 
.... f v 

1 
r 

I f{ ~~ ~ ~~, (~) ds' J 
Gn(r,r')t(r') - G(r,r' *n r' ) j .... ~v sv ! 0 r 
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where G(;,; 1
) is the usual free-space solution of_the Helmholtz 

equation as given in Eq. (2) (for two dimensions), and n indicates 

the normal derivative taken with respect to ; 1 out of v. (We again 

note that if the domain in ; for 1jr or ljr 1 is unbounded, for the 

equation to be true it is necessary that the solution for that region 

must satisfy an asymptotic outgoing wave condition, while for the 

bounded region the solution must remain finite throughout. These two 

conditions lead to different solutions since one cannot have a 

solution in all space which satisfies both.) If we use this relation 

once for the desired solution 1jr defined inside V and again for an 

auxiliary ljr 1 defined outside V, on adding the two representations, 

we obtain 

- G (;,;I ) [ 1jr (;I ) + 1jr 1 (;I )]1 
n n 'J ds' , 

(23) 

where Thus, if we choose w'(;) = -w (;) n n 
-> 
r € v. on Sv we obtain 

the dipole representation for the solution as D(;) = ljr(;) + ljr' (;). 

From this one sees that since 1jr must satisfy the edge conditions 

for the internal solution, and ljr' must satisfy the external 

conditions, the dipole distribution will include both, as exhibited 

by Eq. (17). 

It may be helpful to indicate one further difference between 

the dipole and the Helmholtz representations even when the kernels are 

identical. For example, the IDD case satisfies 

D(;) 
2 
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where w(;) is the (given) boundary value for the solution, while the 

ENH case has the equation 

~ Gn(;,;~) w(; 1 )ds 1 

.-· 

1 ->-> -> 
= r G(r,r 1

) 1jrn(r 1 )ds 1 
, 

where 1jr (;) is the (given) normal derivative of the solution on the 
n 

boundary. Clearly, in the latter case the solution 1jr must be 

consistent with *n' and the lack of internal-type s1 S in 1jr must 

result from the specific form for the inhomogeneous part which of 

course differs from that of the dipole case. It seems desirable to 

demonstrate this result by a direct proof based on the integral 

equation. 

Finally we note that, as shown by Kleinman and Roach [3 ], the 

kernel in the Helmholtz representation for a problem is the transpose 

of that arising in the dipole representation for the same case. This 

results in the replacement of s by S 1 in Eq. (6) for f
1 

and 

makes a corresponding change in the equation for f 2 . Otherwise the 

analysis for D( s) can be carried out in the same way as before, and 

it is easily seen that the resulting behavior for the solution has 

each -s shifted to -s - 1. In this case, however, the unknown 

function obtained is the normal derivative, *n' so that the result 

is to be expected. 
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III· ELIMINATION OF DIFFICULTIES CAUSED BY EIGENVALUES 

OF THE DIPOLE INTEGRAL EQUATION 

As has been stated earlier, the dipole representation suffers 

from difficulties arising from spurious eigenvalues associated with 

its "partner" problem [2]. This condition exists as well for the 

Helmholtz representation but in that case it can be shown that the 

inhomogeneous term in the integral equation is orthogonal to the 

eigensolution of the transposed kernel, so according to th~ Fredholm 

alternatives a solution exists although it will not be unique. By 

use of an additional condition [3,19,21,221, however, the lack of 

uniqueness can be removed. 

In this section we wish to demonstrate that the dipole 

representation can be simply modified so that the difficulty with such 

unwanted solutions is avoided. This technique is similar to the 

Schmidt method for solving Fredholm equations [30], but has a dif-

ferent motivation. Let us write the dipole integral equation 

symbolically as 

D~•) + [ K(,,,•) D(,')ds' ~(s) ' (24) 

where L is the total path length around the bo~dary. We are now 

primarily interested in obtaining a solution to the integral equation 

even if K is close to an eigenvalue for the partner problem. We 

first make the substitution 

D(s) (25) 

where is the eigensolution of the homogeneous part of the 

integral equation, Eq. (24), and A is to be determined. We also 
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make the further substitution 

K(s,s') = k(s,s') + f(s) g(s'), (26) 

where f,g are to be specified. In numerical calculations, we have 

chosen g(s) = 1 and f(s) = -D0(s)/2 with excellent results. With 

these substitutions, we then obtain a modified integral equation: 

1 k(,,,•)n,(,•)d,• + <(•) 1 Dl(,•)g(,•)d,• 

0 0 

(27) 

It is clear that if 1LD (s')g(s')ds' 
0 1 

= o, the kernel K(s,s') can 

be replaced by k(s,s') in the equation, and one still has a valid 

solution of Eq. (2~. Since the equation for D1 is linear, the 

condition is easily achieved. We must only solve the equation 

L 

X(s) 1 - 2- + 

0 

k(s,s') X(s')ds' t(s) 

twice: once for s(s) = ~(s) to get X(s) = D1(~)(s), and again for 

L 
s(s) D0(s)/2 + 1 K(s,s')D0(s')ds' to get DiO)(s). (Note 

0 
that in this case, we can write 

!;(s) 

where Ko is the kernel for K = K0.) Then we have 



-31-

D(s) 

and A must be chosen so that 

A (28) 

The modified kernel, k, will not have the eigenvalue ~~:0 in 

its spectrum, and so approximate calculational techniques will 

normally have well-conditioned matrices. Further, the singular nature 

of the solution as K ~ ~~: 0 is made explicit. In this limit, we see 

that the ~(s) which generates Di0 )(s) becomes 

((,) • (. - •o> 1 ( dK(i\~'' >).."o Do('' )a,' 

so that A(~~: - ~~: 0 ) will tend to a finite limit as 11: -+ ~~: 0, and A 

(hence D) will have a pole at K = ~~: 0 • 

With this modification, we can use the dipole representation 

to obtain solutions of the Helmholtz equation even for 11: = ~~: 0 . For 

this purpose, we begin by Writing 

L 

= l K(;, ,, )D(•' )a,• , 

where the use of ; in the kernel rather than s is meant to 

indicate that ; is an arbitrary point inside V. Using Eq. (25), we 

can write: 
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,..L 

+ A i K0 (:;, s 1 )D 
0 

( s 1 )ds 1 

jo 

L 

+ J[ K(:;,s 1 )D1 (s 1 )ds 1
, 

0 (29) 

where only the second term on the right exhibits a singularity as 

This term is A times the eigenfunction of the homogeneous 

equation, and we will now show that this function is zero in the 

region of interest. 

For the internal Dirichlet problem, for example, the partner 

problem is the external Neumann problem, and if K
0 

is an eigenvalue 

for the latter, the normal derivative of the external eigensolution, 
I 

*n , will vanish on the boundary. As a result of the identification 

of D(:;) = 1jr(:;) + 1jr 1 (:;) following Eq. (23), this implies that 

1jr (:;) also vanishes on the boundary. Further, since D satisfies 
n 

the homogeneous equation, w(:;) vanishes on the boundary as well and 

therefore 1jr(:;) vanishes throughout the interior region. Similar 

arguments lead to the conclusion that for either an internal or 

external region or a Dirichlet or a Neumann problem, the eigensolution 

of the partner problem will vanish in the region of interest. [On the 

other hand, it is not true that an eigensolution of the problem of 

interest will vanish outside the region of interest.) 

Thus, even though D(s) has a singularity due to the 

existence of a partner eigensolution, w(;) is finite and the 

difficulty in the behavior of D(s) is easily removed by dropping the 

second term when calculating w(:;) 
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We can obtain a solution to the Helmholtz equation in the 

limit K .... K
0 

if we set A(K - K
0

) = A1, and then set K = K
0 

in 

the modified kernel, k We then must solve 

D
1

(s) 
--- + 

2 

~(s) ~K(s,s 1)\ D (s 1 )ds 1 

OK -;K=K 0 
0 

This equation can be solved for D
1 

since the kernel k(s, s 1
) will 

not generally have an eigenvalue at K = K
0

• (Only if the eigenvalue 

were degenerate would a second eigenvalue occur, and in such a case 

the technique described here could be generalized to remove the 

second eigenfunction as well.) Finally, the solution of the Helmholtz 

equation in the limit K-+ K
0 

is given by the limit of Eq. (29): 

(oK(;,s
1
)\ D (s 1 )ds 1 

\: oK -)K=Ko 0 

which clearly produces a finite v(;), 

The techniques in this paper have been used to obtain accurate 

solutions of the interior Dirichlet problem. For this interior 

problem, the kernel was constructed using the Neumann function N1 

instead of -i~l) to obtain an integral equation with only real 

variables. This kernel led to a partner problem whose eigenvalues 

associated with the external Neumann problem were successfully 

removed as above. If the Hankel function had been used instead such 

eigenvalues would not have occurred but one would have twice as many 
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variables to store in the computer since the integral equation is 

then complex. 

In addition to partner eigenvalues, the interior problem also 

has true resonant solutions which produce very large solutions. These 

can be treated as above, except that the contribution to w(;) from 

the term A J K
0 

(;;, s 1 )D 
0 

( s 1 )ds 1 will no longer vanish and in fact will 

have a pole at the eigenvalue. In this case there seems to be little 

computational advantage to be gained by the separation of D into 

two parts. On the other hand, one can also visualize using the dipole 

representation in cases in which physical resonance of the systemis 

not associated with the eigenvalues of the integral equation for a 

For subregion, and so A cannot in fact have a pole at K = K
0

. 

example, the complete region of the problem may be divided into 

subregions of which the eigenvalues have little connection with the 

response of the system as a whole. If this situation can be 

identified a priori, it is then possible to modify the above procedure 

fqr.the solution of the boundary value problem to improve numerical 

results. If, then, A 

from Eq. (27) and the 

does not have a pole as 

fact that D(o) .... 0 as 
1 

IL g(s) ni~)(s)ds 
0 

0 . 

K .... K
0 

, it is clear 

that 

Hence, if K~ K
0 

the value of A is determined as the ratio of two 

integrals, each of which is almost zero. Thus errors in the D1
1s 

are much increased in the evaluation of A ; and in numerical 

calculations it is found that by far the largest contribution to the 

error in w(;) comes from the error in A. .To avoid this error, we 
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may express 

6(s) + 8(s) , 

where 

~·) + I ""(.,.·) «··J··· 
and therefore 

8(s) + 
2 

(30) 

6(s' )ds' . 

In these relations, k0 is the kernel k and ~0 is the value of 

~ in the limit K ... K
0 

Then, since 

0 ' 

A 

L L 

-Jr g(s)8(s)ds/ r g(s) ni0
)(s) ds . 

o Jo 

This expression for A is a significant improvement over Eq. (27) 

because both 8(s) and vanish in the limit as a 

result of the fact that the corresponding right-hand side of the 

integral equation vanishes. This is to be contrasted with the case 

involving in which the integral over the boundary vanishes as 
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but does not. In the new formulation, errors in A 

are indeed generated by errors in the right-hand side of the integral 

equation, but these ~e much more controllable than are errors in the 

solution of the integral equation. The significant feature of this 

approach is that errors in 6(s) do not contribute to errors in A 

Greatly improved accuracy in numerical calculations has been achieved 

using this formulation. 

In this section we have shown how the dipole treatment can be 

modified to eliminate difficulties normally encountered at the eigen-

values of a partner problem. It is of course clear that if more than 

one such eigenvalue occurs near the chosen value of K , the technique 

can easily be generalized to remove any desired set of eigenfunctions. 

Since the removal technique given here is inherently very simple, 

there is no compelling argument based on the eigenvalue difficulty 

for using the somewhat more complicated Helmholtz representation as 

suggested by Schenck [19], Burton and Miller [22] and Kleinman, and 

Roach [3]. Using that representation, the lack of uniqueness can be 

removed in a general way by the introduction of a second integral 

relation which is normally redundant but becomes essential at the 

eigenvalue. One must then effectively deal with two kernels, the 

11charge" and the "dipole" Green's functions of the Helmholtz 

representation, and this seems to add substantially to the complexity 

of the numerical calculations. In addition, the inhomogeneous term in 

the integral equation involves the integral of a kernel function over 

the boundary value of the solution, thus creating further complexity 

and producing another source of numerical error in the calculations. 
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In the approach developed here, it is necessary to make an a priori 

determination of the unwanted eigenvalues and their eigenfunctions, 
... 

but once that is done these results can be stored for future use. 

CONCLUSION 

In this paper we have developed two ideas, both of which are 

of value for either improving the accuracy or extending the range of 

applicability of the dipole representation to the solution of the 

Helmholtz equation. 

First, we provide an analysis of the properties of the dipole 

integral equation to obtain the form of the solution near a corner on 

the boundary. This analysis depends on the singular nature of the 

integral equation, and provides an alternative development to those 

based on the Helmholtz partial differential equation, although the 

results are different from but consistent with the latter. Secondly, 

we show how the dipole representation can be easily modified in many 

cases to remove a fundamental obstacle to its direct application. 

In a subsequent paper we show that in fact the dipole 

representation is capable of excellent numerical accuracy for a 

variety of problems. 
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FIGURE CAPI'ION 

Fig. l. Contour used to evaluate the integral of the Hankel 

function, rril), times the Bessel function, Jg 

(see text). 
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