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REVIEW Open Access

Holo-omics for deciphering plant-
microbiome interactions
Ling Xu1 , Grady Pierroz1, Heidi M.-L. Wipf1, Cheng Gao1, John W. Taylor1, Peggy G. Lemaux1 and
Devin Coleman-Derr1,2*

Abstract

Host-microbiome interactions are recognized for their importance to host health. An improved understanding of the
molecular underpinnings of host-microbiome relationships will advance our capacity to accurately predict host fitness and
manipulate interaction outcomes. Within the plant microbiome research field, unlocking the functional relationships
between plants and their microbial partners is the next step to effectively using the microbiome to improve plant fitness. We
propose that strategies that pair host and microbial datasets—referred to here as holo-omics—provide a powerful approach
for hypothesis development and advancement in this area. We discuss several experimental design considerations and
present a case study to highlight the potential for holo-omics to generate a more holistic perspective of molecular networks
within the plant microbiome system. In addition, we discuss the biggest challenges for conducting holo-omics studies;
specifically, the lack of vetted analytical frameworks, publicly available tools, and required technical expertise to process and
integrate heterogeneous data. Finally, we conclude with a perspective on appropriate use-cases for holo-omics studies, the
need for downstream validation, and new experimental techniques that hold promise for the plant microbiome research
field. We argue that utilizing a holo-omics approach to characterize host-microbiome interactions can provide important
opportunities for broadening system-level understandings and significantly inform microbial approaches to improving host
health and fitness.

Introduction
The host microbiome has emerged as a crucial determin-
ant of host health and an important modulator of host
interaction with its abiotic environment [1]. In effect, the
microbial genes in the microbiome augment the host’s
own genetic repertoire and can act to improve the host’s
adaptation to environmental perturbation [2], or, in some
cases, prevent it from doing so [3]. In humans, it is in-
creasingly recognized that the microbiome can influence a
wide range of pathologies, including cancer, cardio-
metabolic diseases, allergies, and obesity [4]. Similarly, it is
now recognized that much of plant fitness depends on in-
teractions with the plant microbiome [5], which not only
includes susceptibility to diseases [6] but also survivability

under both biotic and abiotic stress [7, 8]. Recent research
suggests that these interactions depend on complex mo-
lecular exchanges involving the host’s perception of its mi-
crobial partners, microbial perception of the host, and
microeconomics revolving around nutrients and resources
important for survival of both [9–13]. Additionally, new
findings indicate that final outcomes for host fitness can
be dependent not only on the exchange of goods between
the host and microbe, but on signaling and metabolic in-
teractions among members of the microbiome themselves
[14–16]. Collectively, these studies demonstrate that un-
derstanding the plant microbiome will likely require an
examination of these relationships at the level of func-
tional capacity, activity, and molecular exchange for both
host and microbe.
Currently, we lack this necessary functional insight into

plant microbiome interactions. This is in part due to the
complexity of the system. Unlike the animal gut, the plant
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microbiome is assembled from and resides within one of
the most diverse surrounding environments on the planet,
the soil itself [1, 17]. Soils harbor a vast microbial ecosys-
tem including bacteria, viruses, fungi, archaea, and pro-
tists, which all interact with each other [18] in complex
trophic exchange networks. These soil microbiomes can
shift drastically in abundance, composition, and activity
over short physical distances, timeframes, and in response
to seasonal environmental factors, which increases the
source diversity from which plants draw their micro-
biomes [19–21]. As an added layer of complexity, it is also
known that metabolites present within and exuded by the
plant feed the microbiome [22], and that these metabolites
can shift dramatically in composition and quantity over
the course of plant development and from tissue to tissue,
leading to differential recruitment of microbial taxa across
time and space. Furthermore, specific microbial lineages
are known to trigger the systemic exudation of specific
plant metabolites [23], potentially creating feed forward
loops in microbiome development. Collectively, these fac-
tors produce a dynamic and interconnected biological sys-
tem that has challenged our ability to decipher the basal
molecular mechanisms that create and sustain it.
However, perhaps a greater cause of our slow rise to

functional insight on plant microbiome interactions lies in
our choice of tools. The field of plant microbiome re-
search thus far has largely relied on descriptive investiga-
tions of community structure using amplicon-based
sequencing, such as 16S rRNA sequencing for bacteria
and ITS sequencing for fungi [19, 20]. While it is true that
these data have led to considerable insight into the general
forces that act to shape the broad structure of the plant
microbiome and the relative strength of their impact [24,
25], they typically fall short of providing mechanistic
insight into relationships with the host. More recently, a
greater number of studies have begun to explore other
microbiome features, such as activity and functional cap-
acity, through the inclusion of metatranscriptomics and
shotgun metagenomics [26, 27]. Despite this increase, at
present there remains a shortage of studies which take the
additional step of linking plant microbiome data to plant
physiology, genetics, metabolism, and other host processes
[28], which could provide missing data from this under-
represented side of plant-microbiome interactions.
To achieve a more integrated perspective on plant

microbiome function, we argue for experimental designs
which pair host-centered omic strategies, such as tran-
scriptomics, metabolomics, epigenomics, and proteo-
mics, with the more commonly used microbial-focused
techniques, such as amplicon sequencing, shotgun meta-
genomic, metatranscriptomics, and exometabolomics.
Nyholm et al. recently coined the phrase “holo-omics” to
describe such experiments that incorporate data across
multiple omic levels from both host and microbiota

domains [29]. We propose that such holo-omic studies
have the power to resolve the functionality of a plant
microbiome ecosystem by generating an image of what is
being expressed, translated, and produced during plant-
microbiome interactions [19]. This multifaceted image can
help winnow results obtained from each individual dataset
to meaningful biological signals, and to help build support
for specific hypotheses with data gathered through orthog-
onal approaches. In this review, we build upon the concep-
tual framework introduced by Nyholm et al. with a specific
exploration of holo-omics in the field of plant microbiome
research. We first discuss experimental design consider-
ations for plant holo-omics studies, focusing on the value of
including longitudinal designs and careful consideration of
sampling strategy. Next, we present a recent case study of
plant holo-omics that investigates the interaction between
drought stress and the development of the sorghum micro-
biome, followed by several other recent examples of holo-
omic studies targeting the plant microbiome. Finally, we
summarize current challenges in the analysis of holo-omics
datasets and explore newly developed tools for analyzing
holo-omics datasets, concluding with our perspective on
the importance of downstream validation and the future of
holo-omics in plant microbiome research.

Experimental design of holo-omics studies
A number of experimental design considerations (Fig. 1)
are crucial for obtaining accurate and meaningful results
from microbiome studies that involve holo-omics [29–
31]. First, we propose that longitudinal studies—used
here to refer to studies in which sampling occurs across
plant development, though not always from the same in-
dividual host—offer distinct advantages for holo-omic
studies over their end-point counterparts. In end-point
microbiome experiments, researchers’ sample at typically
a single defined time point in the experiment to find
differences in microbial communities between different
experimental treatments. However, selecting the appro-
priate time point presents a challenge, as there is often
little or no a priori knowledge of when host and micro-
biome responses will occur. More importantly, patterns
in each data type, even when biologically connected or
correlated, may not occur within a single temporal
window.
Longitudinal studies, by contrast, attempt to describe

shifts in the microbiome over time. As a result, longitu-
dinal studies allow for a type of pseudo-replication, since
patterns observed over multiple time points are more
likely to be the result of real biological processes instead
of random noise, similar to the value added and
purpose-driven aspects of true biological replicates. Sec-
ondly, longitudinal designs increase the likelihood of ob-
serving shifts that only occur in a narrow window of
time post treatment. As mentioned above, samples
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collected only at one arbitrarily defined time point may
not capture important treatment-dependent differences
manifesting outside the selected temporal window. Add-
itionally, a longitudinal design can be beneficial in iden-
tifying correlations between data types that are affected
by a temporal delay [7]. The transduction and decoding
of signals between host and microbe can take time [32,
33], as does the lag between shifts in transcription and
downstream shifts in protein synthesis and metabolite
production within the host [34–36]. The impact on
microbiome composition and abundance, and the devel-
opment of macroscopic host phenotypes is likely even
more impacted by temporal delay. Finally, a longitudinal
design may help to establish a clear hypothesis for caus-
ality between correlated features in orthogonal datasets.
The advent of probabilistic time series modeling and its
application in holo-omic designs could prove particularly
useful in this regard, though at present these tools are
still under development [36, 37]. Despite its advantages,
a longitudinal design for holo-omics experiments does
come with important constraints and considerations. For
instance, due to the necessity of multiple rounds of sam-
pling, the timing of sample collection should be planned
carefully to ensure that new confounding variables, such
as circadian variations [38, 39] and abiotic factors that

vary over diurnal cycles (for example, temperature and
light), are not introduced into downstream statistical
analyses. When sampling large numbers of samples, es-
pecially in the field, many host-associated data types,
such as transcriptomics, are sensitive to circadian cycles
and will require that samples be collected in as narrow a
window at a fixed time of day across the experimental
design.
Secondly, when designing an integrated holo-omics

study, it is critical to consider the limitations imposed by
the samples and sampling process. For instance, one
must carefully consider the suitability of each collected
sample type for specific desired data types, which in
some cases may require alterations to sampling strategy
to become feasible. Leaf microbiome samples, for ex-
ample, will contain exponentially more DNA, RNA, and
proteins derived from the plant than from the microbes,
so some microbial techniques may not be feasible with-
out plant-derived contamination removal. For environ-
ments that have low microbial biomass, such as sandy
soils under drought stress, one must collect a larger
number of samples for nucleic acid extraction. Soil or
rhizosphere samples with high humic acid content, on
the other hand, may require special reagents for humic
acid removal. Additionally, different plant tissues, such

Fig. 1 Considerations for design, analysis, and validation of holo-omic experiments. At left, design related considerations include intentional use of longitudinal
designs, appropriate selection of sample types, and evaluation of optimal data types for the scientific questions addressed in the study. In the middle, analysis
related challenges include selecting the appropriate range of biological and technical expertise, as well as the selection of appropriate analytical framework and
tools for direct integration of diverse data types. At right, recommendations of techniques for downstream hypothesis testing and validation include use of
direct and evolution-driven modifications of host genetic space, direct manipulation of microbial genetics, and bottom-up construction of reduced complexity
synthetic communities
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as roots and leaves, may require different collection
methods or require different amounts of time to collect,
and these differences can have inadvertent impacts on
sample viability and data outcomes, especially for omics
strategies that are highly sensitive to time and
temperature (i.e., transcriptomics, metatranscriptomics).
When a single collected sample will be used to produce
multiple data types, it is important to identify a universal
sampling strategy that will work for all of them. Lastly,
detailed collection and reporting of sample metadata is
important to better ensure reproducibility and biological
relevance of findings.
Third, it is important to consider not only how antici-

pated data types impact sampling needs but also what
questions are best addressed with specific data types
within a holo-omic design, and whether a holo-omic de-
sign is in fact advantageous. While there are indeed
many queries that can be posed within this framework,
careful review is needed of what data type combinations
are most suitable and achievable for the system being
studied, lines of investigation pursued, and resources
available for the project; this includes taking inventory of
tools, databases and computational resources available,
extent and quality of host genome annotations, and po-
tential impacts of biotic and abiotic parameters on data
acquisition [40]. For example, holo-omics may be par-
ticularly challenging in non-model plants, in comparison
to other host organisms, due to large, deficiently anno-
tated genomes, large metabolic diversity, multiple organ-
elles, and complex interaction networks with both
symbionts and pathogens [36]. This may in some cases
preclude the useful inclusion of some data types on the
host side, such as transcriptomics or epigenomics.
It is worth noting that due to the inclusion of multiple

omics techniques, holo-omics designs are typically quite
expensive to implement. Specific omics techniques re-
main relatively expensive, including both shotgun meta-
genomics and metatranscriptomics, while others (such
as amplicon analysis) can cost at one to two orders of
magnitude less per sample. Prior to undertaking a holo-
omic study, we suggest that focused pilot surveys with
less costly techniques, or alternatively with limited sam-
pling scope, have been performed first to determine that
microbial community dynamics are significantly im-
pacted by the experimental factors in question to war-
rant further holo-omic investigation. This will also allow
preliminary analyses of the system to be analyzed with-
out the need for as wide a range of technical and bio-
logical expertise. Development of staging within the
holo-omic studies, in which techniques requiring greater
investment are implemented later, can in the case of lon-
gitudinal designs allow for reduced resource expenditure
through selection of critical time points to focus on
based on less costly early datasets. However, it’s worth

noting that not all data types are equally amenable to
this approach; some sample types require immediate or
rapid processing (RNA, metabolites), whereas others
(DNA) can be stored for later use for much longer pe-
riods of time.

A plant holo-omics case study
As a recent example of a holo-omics study of the plant
microbiome [7], Xu et al. conducted a large-scale field
study of sorghum and the associated root microbiome as
it responds to drought stress. This work was carried out
in the central valley of California, where a lack of sum-
mer rainfall and high temperatures virtually guarantees
the ability to induce drought conditions during sor-
ghum’s growing cycle without the need for rainout shel-
ters [7, 41]. As plants respond to drought differently
depending on their developmental stage [42], collection
of time-series data in this drought experiment was
employed to yield a more complete view of sorghum’s
responses to water stress across growth stages. Such an
approach also has value for exploring the plant micro-
biome; to our knowledge, very few longitudinal micro-
biome studies have been performed on crop systems in
the field [7, 43], and even fewer exist in which the diver-
sity, composition, and function of the plant microbial
community is profiled alongside plant growth and
development.
As part of this study, two genotypes of sorghum

(RTx430 and BTx642) were grown in randomized blocks
in an agricultural field at the Kearney Agricultural Re-
search and Extension Center in Parlier, CA. Individual,
randomized blocks were subjected to either drought
stress or normal irrigation from the 2nd until the 8th
week after seedling emergence [7, 44–46], at which point
drought-stressed samples were watered again to explore
the impact of renewed irrigation on host and micro-
biome processes. Samples were collected in a longitu-
dinal fashion (once per week at a specific time of day)
from leaf and root tissues, along with rhizosphere and
bulk soil. This design allowed for the investigation of
differences influenced by sample compartments (leaf,
root, rhizosphere, and soil), by genotype (RTx430 and
BTx642), by watering treatment (irrigation and drought),
and by plant development (from seedling emergence to
grain maturation) [44]. More importantly, the holo-
omics approach described enabled exploration of con-
nections between microbial and plant phenotypes across
the diverse datasets.
First, an exploration of the impact of drought on root

bacterial microbiome composition was undertaken.
Amplicon sequencing (16S rRNA) revealed that the bac-
terial community in the sorghum root system strongly
responds to early drought stress in a developmentally
conditioned manner. Specifically, it was observed that
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drought delayed the normal development of the root
and rhizosphere microbiome, and that this development
is rapidly restored upon rewatering [7]. Notably, drought
stress led to a strong enrichment of gram-positive bac-
teria, including Actinobacteria and Firmicutes, and line-
ages within the phylum Chloroflexi. Second, an
exploration of microbiome transcriptional activity was
used to look for potential causes on the microbial side
for this broad, but clear, lineage-specific enrichment.
Metatranscriptomics data from the rhizosphere revealed
a strong drought-induced shift in microbial processes re-
lated to the transport and catabolism of carbohydrates,
amino acids, and secondary metabolites, many of which
are known to be present in the plant-produced root exu-
dates that feed rhizosphere and root-associated mi-
crobes. By including metabolomics data derived from
the host root tissue, we identified a strong overlap be-
tween drought-enriched root metabolites produced by
the host and microbial transport pathways upregulated
in the root microbiome during drought. An analysis of
transcription levels through qPCR and RNA-Seq for sev-
eral sorghum genes involved in these metabolic path-
ways revealed strong upregulation, demonstrating that
the enriched metabolites were likely produced by the
host and not the microbes themselves. Finally, genome-
resolved metagenomics allowed for the development of
partially complete genomic bins for many of the
enriched and depleted taxa in the rhizosphere micro-
biome. A comparative genomics approach between these
groups has demonstrated that microbes which are
strongly enriched in drought stress have significantly
more genes allocated to the transport and catabolism of
many of the drought-enriched root metabolites. Based
on the combined analysis of these individual datasets, we
developed the hypothesis that drought leads to enrich-
ment of specific microbes in the root microbiome
through shifts in host exudate profiles that favor growth
of these taxa due to substrate preference.
In addition to the bacterial community, this project

also analyzed the impact of drought on sorghum’s fungal
microbiome using ITS2 amplicon sequencing. The sym-
biosis between sorghum and arbuscular mycorrhizal
fungi (AMF) was of particular interest [47], considering
previous reports that AMF colonization improves
drought resistance in certain plants, with speculation
that fungal hyphae could improve water transport
through the soil and that fungal symbionts are capable
of altering their hosts’ stomatal conductance [48, 49]. In
contrast, the sorghum root RNA-seq dataset found that
while AMF community composition was not altered,
AMF abundance decreased markedly, as assessed via
qPCR of total fungal 18S rDNA and ITS2 amplicon se-
quencing to determine relative AMF abundance. Not-
ably, the strongest, drought-induced change in

transcription of host genes was the downregulation of
the cluster previously identified as markers of AMF
colonization. Transcription of these sorghum genes was
strongly and broadly downregulated in both pre- and
post-flowering drought and, in both cases, correlated
closely with decreases in AM fungal abundance [45].
When irrigation was resumed following the pre-
flowering drought, both AMF abundance and plant gene
expression were restored to pre-drought levels. Further-
more, a variety of host datasets (metabolomics, proteo-
mics, and RNA-Seq) revealed that photosynthesis, which
produces the sugars used to sustain AMF partnerships,
stalls during drought stress [45]. Researchers inferred
from the individual analysis of these different datasets
that sorghum, having lost photosynthetic output as a
consequence of closing its stomata in response to
drought, cannot make use of the mineral nutrients that
it acquires from AMF and quits providing the sugars
and lipids that it normally supplies to AMF in exchange
for minerals. This experiment suggests that integrating
host data with ITS amplicon data can offer profound
and even surprising clarification to broad assumptions
made about plant biology.

Holo-omics research in the field of plant biology
In addition to the case study described above, a growing
number of publications highlight the adoption of holo-
omics strategies in the plant microbiome field (Table 1,
Fig. 2) [31]. At present, the most frequently included
host data type is transcriptomics [50–54], which affords
a broad and, in many cases, comparatively well-
annotated perspective on host functionality. One clear
advantage of this data type is that it is perhaps the most
well-developed of all the plant omics techniques in
terms of analytics; there are a comparatively large num-
ber of vetted tools available, and an array of plant-host
specific expression atlases for downstream analyses. As
an example of one such study that successfully employed
host-transcriptomics in a holo-omics framework, Cas-
trillo et al. explored the relationship between phosphate
starvation response (PSR) and microbiome composition
and function in Arabidopsis [55]. As a result of this de-
sign, researchers discovered that the plant immune sys-
tem coordinates microbial recognition with nutritional
cues during microbiome assembly; 16S rRNA compos-
itional profiles indicated that the microbiomes of PSR
mutants were distinct from those of wild type Arabidop-
sis [55]. Additionally, it was shown that synthetic com-
munity inoculation enhanced the activity of a master
regulator of PSR (PHR1) under limited phosphate condi-
tions, which confirmed that PHR1 directly regulates a
functionally relevant set of plant-microbe recognition
genes [55]. Genome-wide gene expression analysis of the
Arabidopsis root demonstrated that the PHR1 mutant in
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Arabidopsis also directly represses the plant immune
system by altering the expression of genes in the jasmo-
nic and salicylic acid biosynthesis pathways [55]. Taken
together, this holo-omic design demonstrated that the
plant root microbiome directly connects phosphate
stress response and the plant immune system [55].
Metabolites represent the downstream products of

multiple interactions between genes, transcripts, and
proteins [56] and serve as an important component of
the functional interface of host-microbe interactions. An
advantage of including metabolomics data in holo-omics

studies is that many of the experimental, analytical, and
data integration requirements that are essential for
metabolomics studies are actually fully compatible with
inclusion of genomics, transcriptomics and proteomics
studies; for this reason, it has been suggested that meta-
bolomics can provide a “common denominator” to the
design and analysis of many holo-omics experiments
[56, 57]. As an example, by combining microbiome pro-
filing, primary metabolite quantification, host defense-
gene expression, herbivore growth assays, and microbial
complementation analysis, Hu et al. found that

Table 1 Recent studies employing holo-omics in the field of plant microbiome research. This table lists twenty recent publications
from the period of 2014 through 2020 that employ a holo-omics approach to explore plant and microbial interactions within the
above or below ground plant microbiome. A subset of these studies is also indicated in Fig. 2. The first column lists the first author,
year, and reference number within this review, while the second third and fourth columns indicate the plant host, sample type, and
specific omics techniques employed

Refs Plant host Sample type(s) Approaches

Deng et al. 2020 [61] Sorghum Rhizosphere 16S, host genomic

Horton et al. 2014
[62]

Arabidopsis Leaf 16S, ITS, host genomic

Wallace et al. 2018
[63]

Maize Leaf 16S, host genomic

Walters et al. 2018
[65]

Maize Rhizosphere 16S, host genomic

Bergelson et al. 2019
[64]

Arabidopsis Root 16S, host genomic

Castrillo et al. 2017
[55]

Arabidopsis Root 16S, host RNA-seq

Zolti et al. 2020 [51] Tomato, lettuce Root Shotgun metagenome, metatranscriptome, host RNA-seq

Chialva et al. 2019
[52]

Tomato Root Metatranscriptome, host rna-seq

Ofek-Lalzar et al.
2014 [53]

Wheat, cucumber Root Metagenomics, host rna-seq, metatranscriptomic

Li et al. 2019 [54] Peanut Root, rhizosphere Shotgun metagenome, metatranscriptome, host RNA-seq

Kudjordjie et al.
2019 [59]

Maize Soil, rhizosphere, root,
shoot

Plant extracts, 16S

Hu et al. 2018 [58] Maize Root 16S, root metabolites

Huang et al. 2019
[13]

Arabidopsis, Wheat, rice and N.
benthamiana

Root, leaf Metabolites, 16S

Xu et al. 2018 [7] Sorghum Root, rhizosphere Host metabolites, 16S, metatranscriptome

Varoquaux et al.
2019 [45]

Sorghum Root, leaf Host rna-seq, ITS

Gao et al. 2020 [44] Sorghum Soil, rhizosphere, root,
leaf

Host rna-seq, ITS

Vílchez et al. 2020
[66]

Arabidopsis Root Plant and bacteria RNA quantification with qPCR, root exudates,
host methylation

Ichihashi et al. 2020
[67]

Brassica rapa Soil, rhizosphere, root Ionomics, metabolomics, phenome, 16S

Zhalnina et al. 2018
[68]

Avena barbata Rhizosphere 16S, isolates genomes, root exudates, exometabolomics,
bacterial metabolites

Harbort et al. 2020
[15]

Arabidopsis Root 16S, host RNA-seq

Finkel et al. 2019 [9] Arabidopsis Shoot, root, seedling 16S, host RNA-seq
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Benzoxazinoids (BXs), a class of defensive secondary me-
tabolites that are released by the roots of cereals such as
wheat and maize, create feedback loops with soil micro-
bial communities that can alter future generations of
crop performance [58]. Metabolomics was used to iden-
tify and quantify specific plant produced BX classes as
they moved to soils, and amplicon analysis in several ele-
gant experimental designs revealed that exudation of
these compounds alter root-associated fungal and bac-
terial communities for the host and subsequent genera-
tions of the host, even following periods of
overwintering. Finally, host phenomics and host gene ex-
pression analysis demonstrated that these conditioned
shifts in soil microbiota led to altered host defense in
the subsequent generation, including altered levels of
phytohormones known to regulate herbivory [58]. An
additional study in this system confirmed has suggested
a role for BXs as gatekeepers to the root endosphere,
allowing specific microbial lineages access to the host
[59]. Despite the many advantages of using metabolomic
data for holo-omic studies, some challenges remain,
namely, that many peaks are not identifiable as specific
metabolites and studies typically require greater replica-
tion due to noise in the data [60]. Additionally, the num-
ber of identifiable metabolites is far more limited than

identifiable genes and transcripts from the genome or
transcriptome layer, and as a consequence use of meta-
bolomics data may limit the “search space” and thereby
limit the interpretation of the final results [56].
Host genomic datasets have also been used recently in

combination with genome-wide association style ana-
lyses to investigate the genetic underpinnings of micro-
bial recruitment [61–65]. An analysis of a population-
level microbiome analysis of the rhizospheres of 200 sor-
ghum genotypes indicated that rhizosphere-associated
bacteria exhibiting heritable associations with plant ge-
notypes, and certain host loci showed a correlation with
the abundance of specific subsets of the rhizosphere
microbiome [61]. There is an opportunity to expand the
use of other data types in holo-omics research as well,
such as epigenomics [66], proteomics, ionomics [67],
phenomics [67], exometabolomics [68], metaproteomics
[69–72], and metatranscriptomics; improving analytical
methodology and methods of holo-omics integration will
help facilitate this expansion.

Challenges in holo-omics analysis
Taken together, the above examples indicate how col-
lecting a combination of microbial and host data is a
promising approach to further unraveling plant and

Fig. 2 Connecting plant and microbial omics techniques. Recent examples from the plant microbiome research field of holo-omics studies employing paired
datasets from host data types (in green) and associated microorganism data types (in blue). Lines between techniques indicate individual studies that integrate
across the pair of indicated techniques. All studies reference here are also listed with additional detail in Table 1
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bacterial community interactions through generating
mechanism-based questions and testable hypotheses.
However, analysis of holo-omics comes with its own
challenges (Fig. 1). One clear hurdle is that holo-omics
approaches will typically require a broad range of expert-
ise to implement, and collaborations should include not
only a team of plant and microbial biologists for inter-
preting and decoding connections within and between
kingdom-specific pathways and genes but also statisti-
cians and computational biologists to identify and imple-
ment the approaches with appropriate statistical rigor
[73]. Integrative analyses for holo-omics require inten-
sive computational resources, including suitable means
for storing, processing, analyzing data, and workflows
with appropriate quality control measures and modeling
selections. Another significant challenge is the current
lack of fully developed analytical methodology, and there
is significant need for continued development of inform-
ative and robust bioinformatic tools. For those tools that
do exist, it can be difficult to know which to select, as
some will be generalizable to all data types and experi-
ments, while others will depend on the particular ques-
tions under investigation [31]. Generally, there is much
more software tailored for multi-omic analysis of either
the host or microbiome in isolation [36, 74–78], as
opposed to tools for integrating datasets from both sim-
ultaneously [79, 80]. For instance, gNOMO is a bioinfor-
matic pipeline that is specifically designed to process
and analyze non-model organism samples of up to three
meta-omics levels—metagenomics, metatranscriptomics,
and metaproteomics—in an integrative manner [81], but
analysis does not extend to the host.
A second challenge is the development and implemen-

tation of statistical methods that directly integrate or-
thogonal datasets within a single analytical framework.
Currently, the majority of plant microbiome studies that
employ a holo-omic design, including the examples
highlighted in this study, focus on separate omic ana-
lyses first and then integrate results from seperate layers
later based on the available data and prior knowledge
[82, 83]. This approach, while comparatively straightfor-
ward to implement, may miss important associations
among multiple omics layers [84, 85]. In this respect, the
plant microbiome research community may benefit from
recent advances made in the human microbiome field; a
number of recent human gut holo-omics studies have
begun to use direct integration of data from different
omics levels, for instance through implementation of
correlation analyses (such as Spearman’s rank correl-
ation), to directly resolve microbial taxa that correlate
with specific environmental or host features [86]. It has
also been suggested that more recently developed strat-
egies, such as kernel- and network-based approaches
[82], as well as Network-free non-Bayesian and

Network-free Bayesian [87] approaches, may more com-
pletely uncover the non-linear relationships in host-
microbe interactions [88].
As an example of tools useful for a direct integration

approach, the recently developed Transkingdom net-
work (TransNet) analysis is designed to integrate and in-
terrogate holo-omics data. TransNet allows for the
construction of networks using correlations between dif-
ferentially expressed elements (e.g., genes, microbes) and
integration of high throughput data from different taxo-
nomic kingdoms. In addition, TransNet analysis can be
applied to integrate any “Transomics” data between, as
well as within, taxonomic kingdoms. Examples of data
types suitable for TransNet include miRNAs and gene
expression, proteins and metabolites, bacterial and host
gene expression, and methylation data [89]. A second
such example is the use of multivariate predictive mod-
eling with the Elastic Net algorithm through stacked
generalization. A recent study in humans obtained sam-
ples of the immunome, transcriptome, microbiome,
proteome, and metabolome simultaneously from the
same patients in order to measure the ability of each
dataset to predict gestational age [90]. While at present
this list remains relatively short, as holo-omics research
continues to grow as a field, we anticipate the develop-
ment of new models, statistical and visualization tools,
and methods for omics data integration and analysis that
is powerful enough to understand the underlying princi-
ples that govern complex plant microbiome systems.
One last, additional area of importance is the continued
development of means to incorporate non-omic data
with holo-omic analyses; a recent study suggest a joint
modeling approach [91], in order to further advance our
understandings of how the interplay of host and the mi-
crobial world impacts not only host fitness and health,
but potentially broader environmental and evolutionary
change as well.

Conclusions and perspective
The crosstalk among multiple molecular layers, within and
between both host and associated microbiome, cannot be
properly assessed solely by a reductionist approach that ana-
lyzes individual omics layers in isolation. While holo-omics
has the power to help unlock the molecular dynamics at play
within the plant microbiome [29], it is worth noting that we
anticipate the primary function of such large-scale holo-
omics studies is to be the generation, rather than testing, of
hypotheses about functional relationships in the plant micro-
biome. While it has been argued that null-hypothesis testing
is actually an outdated method for performing ecology stud-
ies [92], to reach a functional understanding of the molecular
mechanisms at play in the plant microbiome, validation ex-
periments that follow a traditional hypothesis-driven ap-
proach will be necessary (Fig. 1) [93]. Fortunately, a wide
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variety of new technical approaches in both plant and micro-
bial biology have been developed that are well suited to the
purpose of hypothesis testing in the plant microbiome. The
use of CRISPR/Cas9 engineering to create plant hosts altered
in core functions represents one such powerful approach that
has been used for validation [94]. Additionally, use of large
plant germplasm collections and mapping populations has
potential power to dissect genetic loci involved in the recruit-
ment of specific microbes through microbiome-based
GWAS [61–63, 95] and related approaches. On the micro-
bial side, the use of synthetic communities to dissect micro-
bial contributions to host phenotype is an approach that
derives its power from creating microbial communities that
can mimic in form and function as the native plant micro-
biome, but with a level of diversity that makes manipulation
manageable [93]. Similarly, randomly barcoded transposon
mutagenesis sequencing (RB-TnSeq) has also been shown to
be capable of identifying microbial genes involved in root
colonization [96], and could prove invaluable for developing
more complete bacterial genome annotations as well as ex-
perimental validation of gene function. Another promising
technique for in situ manipulation and study of the plant
microbiome is the use of CRISPR/Cas9-derived, sequence-
specific antimicrobials [97]. This environmental CRIS
PR/Cas9 system could be used to remove certain spe-
cies or even certain alleles within a species from a
complex community in order to study its effect on
the plant microbiome as a whole.
In conclusion, holo-omics represents a useful tool to

be used in our efforts to develop an improved under-
standing into the basic biology of plant-microbiome in-
teractions. Adoption of this strategy will in turn
necessitate and fuel the development of alternative
sequencing-data integration analysis techniques that
may have benefit outside the realm of plant biology. Fi-
nally, we believe pursuit of this path will encourage mi-
crobial and plant biologists, as well as ecologists,
statisticians, and computer scientists, to work together
to develop unified experimental frameworks that inte-
grate diverse scientific perspectives. It is this process of
technical and conceptual harmonization of methodolo-
gies across the scientific community that remains per-
haps the greatest challenge to affording us a more
holistic view of our natural world.
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