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SCALAR INVARIANTS OF SURFACES IN CONFORMAL

3-SPHERE VIA MINKOWSKI SPACETIME

JIE QING, CHANGPING WANG, AND JINGYANG ZHONG

Abstract. For a surface in 3-sphere, by identifying the conformal round 3-sphere
as the projectivized positive light cone in Minkowski 5-spacetime, we use the confor-
mal Gauss map and the conformal transform to construct the associate homogeneous
4-surface in Minkowski 5-spacetime. We then derive the local fundamental theo-
rem for a surface in conformal round 3-sphere from that of the associate 4-surface
in Minkowski 5-spacetime. More importantly, following the idea of Fefferman and
Graham [4, 5], we construct local scalar invariants for a surface in conformal round
3-sphere. One distinct feature of our construction is to link the classic work of
Blaschke [2], Bryan [3] and Fefferman-Graham [4, 5].

1. Introduction

It is well-known that all local scalar invariants of a (pseudo-)Riemannian metric are
Weyl invariants, based on Weyl’s classical invariant theory for the orthogonal groups.
A conformal structure on a manifold is described by an equivalent class of conformal
Riemannian metrics. Two metrics g1 and g2 on a manifold M are conformal to each
other if g1 = λ2g2 for some positive smooth function λ on M. There are several ways
to set the theory of local conformal invariants, but it is no longer straightforward to
account for local scalar conformal invariants because of the lack of Weyl Theorem
for the group of conformal transformations. To tackle such problem, in the seminal
paper [4] in 1980’s, Fefferman and Graham described the ingenious construction of a
Ricci-flat homogeneous Lorentzian ambient spacetime for a given conformal manifold,
where the conformal manifold is represented by the homogeneous null hypersurface
in the ambient spacetime. Their construction was motivated by the model case in
which the conformal round sphere Sn is the projectivized positive light cone N

n+1
+ in

Minkowski spacetime R1,n+1. In [4], Fefferman and Graham initiated the program to
use local scalar (pseudo-)Riemannian invariants of the ambient metrics at the homoge-
neous null hypersurface to fully account for local scalar conformal invariants. Readers
are referred to their recent expository paper [5] to learn all the developments of this
program (cf. also, [1, 6]). This program also has lead to many significant advances in
the global theory of conformal geometry, particularly via conformally invariant PDEs.

In this paper we want to build the model case to the study of local scalar invariants
of submanifolds in a conformal manifold in the way that follows the approach in
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2 Scalar Conformal Invariants

[4]. The model case for us is to study 2-surfaces x̂ in the conformal round 3-sphere
(S3, [g0]). As in [4], the conformal round 3-sphere is represented by the positive light
cone N

4
+ in Minkowski 5-spacetime R

1,4. Given an immersed surface

x̂ : M2 → S
3

or equivalently
y = (1, x̂) : M2 → N

4
+,

to incorporate all metrics in [g0] on 3-sphere we consider the homogeneous extension

xN = α(1, x̂) : R+ ×M2 → N
4
+ ⊂ R

1,4.

Then we will use the conformal Gauss map ξ of x̂ to choose a canonical null vector y∗

at each given point y ∈ xN ⊂ N4
+ to extend xN further into a homogeneous timelike

4-surface
x̃ = αy + αρy∗ : R+ × R

+ ×M2 → R
1,4.

We will also consider the associate ruled 3-surface

x+ =
1√
2
(ety + e−ty∗) : R×M2 → H

4 ⊂ R
1,4

where H4 is the hyperboloid in Minkowski 5-spacetime. The main idea, inspired by
the work [4, 5], is to use the geometry of the associate 4-surface x̃ in Minkowski space-
time R1,4 (the associate ruled 3-surface x+ in the hyperboloid H4 and the spacelike
surface as the image of the conformal Gauss map ξ in the de Sitter spacetime S3,1 in
Minkowski spacetime R1,4) to study the geometry of the surface x̂ in the conformal
round 3-sphere S3.

Our approach facilitates proofs of the local fundamental theorems (cf. Theorem
3.3.1 and [13, 14]) and produces local scalar invariants of surfaces in the conformal
round 3-sphere. The second is more interesting and helpful to find appropriate PDE
problems to study the surfaces. The study of Willmore surfaces indeed exemplifies
well that how important and central those problems are in the theory of surfaces in
general [2, 3, 10, 11].

We should remark that the key to our construction of associate surfaces is the
conformal Gauss map ξ to a given surface x̂ in the conformal round 3-sphere. The
conformal Gauss maps have been introduced in several contexts (cf. [2, 3, 12]). We
are searching for a definition that fits into the context of ambient spaces of Feffer-
man and Graham (cf. Lemma 2.3.1 and Lemma 2.3.2). It is fascinating to see how
Blaschke [2] introduced the conformal Gauss map as the map representing the family
of mean curvature 2-spheres of the surface x̂ and the conformal transform x̂∗ (cf.
Definition 2.4.1) as the other envelope surface of the conformal Gauss map. One
technical assumption for the null vector y∗ to be well defined at each point y ∈ xN is
to require that the conformal Gauss map of the surface x̂ induces a spacelike surface



3 Scalar Conformal Invariants

in the de Sitter spacetime S1,3, which is equivalent to that the surface x̂ is free of
umbilical point in the conformal 3-sphere S3.

It is nice to know that in our construction the associate 4-surface x̃ in Minkowski
spacetime R1,4 is a minimal 4-surface (of vanishing mean curvature) if and only if the
2-surface x̂ is a Willmore surface with no umbilical point in S3 (cf. Theorem 3.2.1).
The same statement also holds for the associate ruled 3-surface x+ in the hyperboloid
H

4 (cf. Theorem 3.4.1) as well as the conformal Gauss map surface ξ in de Sitter
sapcetime S1,3 (cf. Theorem 2.5.2).

Upon realizing that a different representative λ2g0 in the conformal class [g0] on S3

is equivalent to a different parametrization for the associate surface

(1.0.1) x̃ = αyλ + αρy∗λ : R+ × R
+ ×M2 → R

1,4,

where yλ = λ̂(1, x̂) and λ̂ = λ ◦ x̂ for a conformal factor λ, the real issue is how we
use the geometry of the surface x̂ in the 3-sphere (S3, λ2g0) to calculate the geometry
of the associate surface x̃. The solution is to use the following 3-sphere S

3
λ in the

positive light cone N4
+:

(1.0.2) λ(1, x) : S3 → N
4
+

as the realization of (S3, λ2g0). For the convenience of readers we present the calcu-
lations of the geometry of S3

λ as a spacelike 3-surface in Minkowski spacetime in the
Appendix B. But it starts with the following observation.

Lemma 1.0.1. Suppose that x̂ : M2 → S
3 is an immersed surface and λ2g0 is a

conformal metric in the round conformal class [g0] on S3. Then

(1.0.3) ξ = Hλyλ +
→
nλ,

where Hλ is the mean curvature of x̂ in (S3, λ2g0) and
→
nλ is the unit normal to yλ in

S3
λ ⊂ N4

+.

Using the calculations in Appendix B, we are able to show in the proof of Theorem
4.3.2 that the data {m,ωλ,Ωλ,Ω

∗
λ} that determine the first and second fundamental

forms of the associate surface x̃ in Minkowski spacetime R1,4 can all be expressed in
terms of covariant derivatives of the curvature of the surface x̂ in (S3, λ2g0) and the
covariant derivatives of curvature of (S3, λ2g0) (including 0th order). In the exact
same spirit as in Fefferman and Graham [4, 5], our construction of associate surfaces
x̃ provides a way to capture local scalar conformal invariants of a surface x̂ . Namely,
one can obtain local scalar conformal invariants of the surface x̂ in the conformal
round 3-sphere by computing the local scalar (pseudo-)Riemannian invariants of the
associate surface x̃ at the homogeneous surface xN in the light cone in Minkowski
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5-spacetime. The first non-trivial one is

(1.0.4) ∆̃H̃|ρ=0 = 2α−3(∆λHλ + |
◦
IIλ|2Hλ + (

◦
IIλ)

ij(Rλ)i3j3 − (Rλ) i
3i, )

in a general parametrization (1.0.1), where (Rλ)i3j3 and (Rλ)3i are the Riemann cur-
vature and Ricci curvature of the metric λ2g0 on S3. Due to the homogeneity of x̃ we
automatically have

(1.0.5) Hλ = ∆λHλ + |
◦
IIλ|2Hλ + (

◦
IIλ)

ij(Rλ)i3j3 − (Rλ) i
3i, = λ̂−3(∆H + |

◦
II|2H)

which is the curvature that vanishes if and only if the surface x̂ is Willmore. Notice
that extra curvature terms do not show up when we work with either the round metric
g0 or the Euclidean metric. Similar formulas have appeared in the literature [9, 8, 7].

We also calculate in Section 4.2 some other conformal scalar invariants of higher
orders:

(1.0.6)
|∇h̃|2|ρ=0 = α−4(|∇Ωλ|2 + 8|dHλ|2 + 2Ricλ(

→
nλ,∇Hλ) + 3H2

λ|Ωλ|2

+ 3KT
λ |Ωλ|2 + 6Ωλ · Hess(Hλ))

(cf. (4.2.7), where KT
λ is the sectional curvature of (S3, λ2g0) at the tangent plane to

the surface x̂, and

(1.0.7)
∆̃∆̃H̃|ρ=0 = 8α−5(∆λHλ + 9|ωλ|2Hλ − 3Div(ωλ)Hλ

− 6ωλ(∇Hλ)− 6Hλ|
◦
IIλ|−2

◦
IIλ · Ω∗

λ),

where ωλ =< dyλ, y
∗
λ > and Ω∗

λ = − < dy∗λ, dξ > are parts of the data that determine
the geometry of the associate surface x̃ and are given in (3.1.3) and (4.3.6) as invari-
ants of the surface x̂ in (S3, λ2g0).

To end the introduction we remark that, for the sake of the production of local
scalar invariants, the assumption of having no umbilical point in our construction is
not an issue.

2. The associate surfaces in R1,4

In this section we introduce the associate surfaces in Minkowski space R1,4 for a
given surface x̂ : M2 → S3. We then show that such associate surface is canonical in
doing conformal geometry for the surface x̂. The construction relies on the conformal
Gauss map and the conformal transform of x̂. It is also very interesting to see how
Blaschke and Bryant came to the conformal Gauss map and the conformal transform
in very different perspectives [2, 3].



5 Scalar Conformal Invariants

2.1. Surfaces in 3-sphere. Suppose that

x̂ : M2 → S
3 ⊂ R

4

is an immersed surface with isothermal coordinate (u1, u2). Let

n : M2 → R
4

be the unit normal vector at each point on the surface. Then we obtain the first
fundamental form

(2.1.1) I =< dx̂, dx̂ >= E|du|2

and the second fundamental form

(2.1.2) II = − < dx̂, dn >= e(du1)2 + 2fdu1du2 + g(du2)2.

Hence the mean curvature of the surface in 3-sphere is

(2.1.3) H =
1

2E
(e+ g)

and the Gaussian curvature of the surface is

(2.1.4) K =
eg − f 2

E2
+ 1.

Notice that

(2.1.5)





nu1 = − e

E
x̂u1 − f

E
x̂u2

nu2 = − f

E
x̂u1 − g

E
x̂u2 .

If one takes another conformal metric λ2g0 on the 3-sphere S3, where λ is a positive
function on S3, then the first fundamental form for the surface x̂ is

(2.1.6) Iλ = λ̂2I,

where λ̂ = λ ◦ x̂ and the second fundamental form is

(2.1.7) IIλ = λ̂II − λ
n
I,

where λ
n
= n(λ). Hence

(2.1.8) Hλ = λ̂−1(H − λ
n

λ̂
) and

◦
IIλ = λ̂

◦
II,

where
◦
II is the traceless part of the second fundamental form II. Here we see the

easy scalar conformal invariant |
◦
II|2, which can be considered to be the counter part

of the square of the length of Weyl curvature on a conformal manifold.
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2.2. Minkowski 5-spacetime. Let R1,4 be the Minkowski 5-spacetime, where we
use the notation

R
1,4 = {(t, x) : t ∈ R and x ∈ R

4}
with the Lorentz inner product

< (t, x), (s, y) >= −st + x · y.
Recall the positive light cone is given by

N
4
+ = {(t, x) ∈ R

1,4 : −t2 + |x|2 = 0 and t > 0};
the hyperboloid is given as

H
4 = {(t, x) ∈ R

1,4 : −t2 + |x|2 = −1 and t > 0};
and the de Sitter 4-spacetime is given as

S
1,3 = {(t, x) ∈ R

1,4 : −t2 + |x|2 = 1}.

Given a surface x̂ : M2 → S3 ⊂ R4, we may consider the 2-surface

y = (1, x̂) : M2 → N
4
+ ⊂ R

1,4

and the homogeneous extension

xN = αy : R+ ×M2 → N
4
+ ⊂ R

1,4

for α ∈ R+. There does not seem to be a way of doing “geometry” of the homoge-
neous 3-surface xN in the positive light cone N4

+.

To motivate our choice of the associate surface in R1,4 of x̂ we first introduce the
so-called homogeneous coordinate for R1,4 used in the ambient space construction of
Fefferman and Graham [4, 5], that is,

(2.2.1) (t, x) = x0(1, x̂) + x0x∞1

2
(1,−x̂)

where 



x0 =
1

2
(r + t)

x0x∞ = (−r + t)

and r = |x| and x = rx̂. In this coordinate the Minkowski metric is

G̃0 = −2x∞(dx0)2 − 2x0dx0dx∞ + (x0)2(1− x∞

2
)2g0(x̂).

Hence, given a surface x̂ : M2 → S3, we are looking to construct an associate homo-
geneous timelike 4-surface

(2.2.2) x̃ = αy + αρy∗ : R+ × R
+ ×M2 → R

1,4
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if we can have canonically the null vector y∗ at a given null position y on xN. It is clear
that the associate surface x̃ is ruled by the positive quadrants of timelike 2-planes in
Minkowski spacetime. One may consider the intersection of x̃ with the hyperboloid
H

4:

(2.2.3) x+ =
1√
2
(ety + e−ty∗) : R×M2 → H

4,

which is called the associate ruled 3-surface since it is a 3-surface in hyperbolic 4-
space ruled by geodesics lines. Recall that a geodesic line in the hyperboloid H4 is the
intersection of the hyperboloid with a timelike 2-subspaces in Minkowski spacetime.
In the following we will introduce the canonical choice of such y∗.

2.3. Conformal Gauss maps. Let us consider any unit spacelike normal vector to
the homogeneous null 3-surface xN = αy in N4

+ ⊂ R1,4. That is to ask a unit spacelike
5-vector ξ to satisfy

(2.3.1) < ξ, xN >= 0, < ξ, xN

u1 >= 0, < ξ, xN

u2 >= 0,

which implies that

ξ = ay +
→
n,

where
→
n = (0,n) is the unit normal to the surface x̂ in the standard unit round

3-sphere in {1} × R4 ⊂ R1,4. It turns out that there is a unique choice if we insist
that the map

ξ : M2 → S
1,3 ⊂ R

1,4

is (weakly) conformal. Namely we have

Lemma 2.3.1. Suppose that x̂ : M2 → S
3 is an immersed surface. Then, for a unit

normal vector ξ to the homogeneous null 3-surface xN = αy : R+ ×M2 → N4
+ ⊂ R1,4,

< ξu1 , ξu2 >= 0

if and only if

ξ = Hy +
→
n

and

(2.3.2) < dξ, dξ >=
1

2
E|

◦
II|2|du|2.

Proof. It is simply a straightforward calculation. We know

ξui = aui(1, x̂) + a(0, x̂ui) + (0,nui).

Hence we have

< ξu1, ξu2 >= −2af +
1

E
(fe+ fg) = 0,



8 Scalar Conformal Invariants

which is equivalent to a = H . For the rest we calculate

(2.3.3) < ξu1 , ξu1 >=< ξu2, ξu2 >=
1

E2
(f 2 + (

e− g

2
)2)E.

�

Another way to identify a unique unit spacelike normal vector to the homogeneous
null 3-surface xN = αy : R+ ×M2 → N4

+ is the following:

Lemma 2.3.2. Suppose that x̂ : M2 → S3 is an immersed surface. Then, for a unit
spacelike normal vector ξ to xN = αy : R+ ×M2 → N4

+ ⊂ R1,4,

ξ = Hy +
→
n

if and only if

(2.3.4) < ∆ξ, y >= 0.

Proof. We simply calculate, for ξ = a(1, x̂) + (0,n),

∆0ξ = ξu1u1 + ξu2u2 = (∆0a)(1, x̂) + 2∇a(0,∇x̂) + a(0,∆0x̂) + (0,∆0n)

and

< ∆0ξ, (1, x̂) >= −2aE + 2HE.

Notice that ∆ = E−1∆0. �

Before we give a formal definition of the conformal Gauss map we want to make
a remark that (2.3.4) is the integrability condition for the unit vector field ξ to be
the conformal Gauss map (up to a sign) for the surface x̂. This turns out to be the
easiest way to see that x̂ is Willmore if and only if the conformal Gauss map ξ of
x̂ is also the conformal Gauss map (up to a sign) of the conformal transform x̂∗ (cf.
Definition 2.4.1).

Definition 2.3.3. Suppose that x̂ : M2 → S3 is a surface. Then we will call

(2.3.5) ξ = Hy +
→
n : M2 → S

1,3 ⊂ R
1,4

the conformal Gauss map according to Blaschke [2] (cf. [3, 12]).

For a positive function λ on the sphere S3 we consider the conformal metric λ2g0
on the sphere S3, which can be realized as the 3-sphere S3

λ: λ(1, x) : S
3 → N4

+ ⊂ R1,4

in Minkowski spacetime. It is then very crucial and important to realize that the
surface x̂ in the 3-sphere S3 with the conformal metric λ2g0 is realized as the 2-surface
λ̂(1, x̂) : M2 → N4

+ ⊂ R1,4 inside the 3-sphere S3
λ. It is helpful to see the calculations

in Appendix B about the geometry of the 3-sphere S3
λ in Minkowski spacetime R1,4.
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Lemma 2.3.4. If one works with a conformal metric λ2g0 in general, then

(2.3.6) ξ = ξλ = Hλyλ +
→
nλ,

where
→
nλ =

→
n + (log λ)

n
y is the unit normal to the surface

yλ = λ̂(1, x̂) : M2 → S
3
λ ⊂ N

4
+.

Proof. It is easily seen that the normal direction to the surface yλ inside S
3
λ is λn

(1, x̂)+
λ(0,n) and < λ

n
(1, x̂) + λ(0,n), λ

n
(1, x̂) + λ(0,n) >= λ2. Therefore the unit normal

for the surface yλ in S3
λ is

→
nλ =

→
n + (log λ)

n
y. Then it is easily verified that

Hλyλ +
→
nλ = Hy +

→
n

using (2.1.8) �

In the light of (2.3.2), the conformal Gauss map gives rise a spacelike 2-surface

ξ : M2 → S
1,3 ⊂ R

1,4

when the original surface x̂ : M2 → S
3 is free of umbilical point. We will have more

detailed discussions for the reasons to call ξ the conformal Gauss map in Section 2.7.

It is very interesting to see that Blaschke came across to the conformal Gauss map
in a very different perspective. Blaschke considered the family of mean curvature
2-spheres to the surface x̂ in S3. A round 2-sphere in 3-sphere can be thought as the
intersection of a timelike hyperplane and the 3-sphere at time t = 1 in Minkowski
spacetime R1,4 and a timelike hyperplane in R1,4 is described by a unit normal vec-
tor lying in de Sitter 4-spacetime S1,3. Given a direction (H,Hx̂ + n) ∈ S1,3, the
hyperplane perpendicular to that in R

1,4 is given by the first equation in (2.3.1):

(2.3.7) < (s, z), (H,Hx̂+ n) >= 0,

which is

−sH +Hz · (x̂+
1

H
n) = 0.

At the level s = 1 in the 3-sphere |z| = 1, we arrive at

1− ẑ · (x̂+
1

H
n) = 0.

Then we may rewrite it as

(2.3.8) |ẑ − (x̂+
1

H
n)|2 = 1

H2

which clearly is a round 2-sphere of mean curvature H when intersects with the 3-
sphere S

3 ⊂ R
4 at t = 1 in R

1,4. Hence the equations (2.3.1) exactly ask the surface
y = (1, x̂) : M2 → S3 ⊂ N4

+ ⊂ R1,4 is an envelope surface of the family of mean
curvature 2-spheres described by the conformal Gauss map ξ.
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It is known that a mean curvature sphere of a surface goes to the mean curvature
sphere of the image surface under conformal transformations.

2.4. Conformal transforms. Assume that the surface x̂ : M2 → S3 is free of um-
bilical point. Then the conformal Gauss map induces a spacelike 2-surface in the de
Sitter 4-space S1,3

ξ : M2 → S
1,3 ⊂ R

1,4.

One notices that the equations (2.3.1) imply that y = (1, x̂) is naturally a null normal
vector the surface ξ in the de Sitter 4-spacetime S1,3. Because

< y, ξui >= − < ξ, yui >= 0.

Hence it is natural to take the other null normal vector y∗ such that

(2.4.1)
< y∗, y > = −1, < y∗, y∗ >= 0, < y∗, ξ >= 0,

< y∗, ξu1 > = 0, and < y∗, ξu2 >= 0.

We may write
y∗ = µ̂∗(1, x̂∗).

Definition 2.4.1. Suppose that x̂ : M2 → S
3 is a surface with no umbilical point.

And suppose that
y∗ = µ̂∗(1, x̂∗) : M2 → N

4
+ ⊂ R

1,4

satisfies the equations (2.4.1) for y = (1, x̂). Then the surface

x̂∗ : M2 → S
3

is said to be the conformal transform of the surface x̂ according to Robert Bryant [3]
(cf. [2]).

It is important that the conformal transform x̂∗ of a surface x̂ is independent of
the conformal factor λ. Notice that the equations in (2.4.1) remain the same ex-
cept the first one when replacing y by yλ. It is again very interesting to recall how
Blaschke discovered the surface x̂∗. From the above discussions it is now easy to
see that the surface x̂∗ is nothing but the other envelope surface of the family of
round 2-spheres described by the conformal Gauss map ξ, i.e. the family of the mean
curvature spheres of the surface x̂. Since y∗ satisfies the last three equations in (2.4.1).

2.5. The geometry of the surface ξ in S1,3. Recall that the first fundamental
form for the surface ξ in the de Sitter spacetime S1,3 ⊂ R1,4 is

(2.5.1) Iξ =< dξ, dξ >= m|du|2,
where

(2.5.2) m =
1

2
E|

◦
II|2.
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The first fundamental form Iξ is usually called the Möbius metric on the surface x̂.
We remark here that, if one works with a conformal metric λ2g0 instead, then the
Möbius metric remains the same

(2.5.3) m = mλ =
1

2
Eλ|

◦
IIλ|2.

The second fundamental form for the surface ξ in S
1,3 is given by

IIξ = − < dξ, dy > y− < dξ, dy∗ > y∗ = Ωy + Ω∗y∗ = Ωλλ̂
−2yλ + Ω∗

λλ̂
2y∗λ

and

(2.5.4)
Ωij = − < ξui, yuj > and Ω∗

ij = − < ξui, y∗uj >

(Ωλ)ij = − < ξui, (yλ)uj >= λ̂Ωij and (Ω∗
λ)ij = − < ξui, (y∗λ)uj >= λ̂−1Ω∗

ij

.

In fact it is easy to calculate that

(2.5.5) Ω =

[
e−g

2
f

f g−e

2

]
=

◦
II

Let us first calculate the mean curvature in the y∗ direction. We notice that

< ∆0ξ, y∗λ >= ((Ω∗
λ)11 + (Ω∗

λ)22)

while
< ∆0ξ, yλ >= ((Ωλ)11 + (Ωλ)22) = 0.

Based on the calculations
< ∆0ξ, ξ > = −2m

< ∆0ξ, ξu1 > =
1

2
mu1 − 1

2
mu1 = 0

< ∆0ξ, ξu2 > = −1

2
mu2 +

1

2
mu2 = 0.

we obtain

(2.5.6) ∆0ξ = −((Ω∗
λ)11+(Ω∗

λ)22)yλ−2mξ = (−((Ω∗
λ)11+(Ω∗

λ)22)−2mHλ)yλ−2m
→
nλ.

On the other hand, we directly calculate

(2.5.7)
∆0ξ = ∆0(Hλyλ +

→
nλ)

= (∆0Hλ)yλ +Hλ∆0yλ + 2(Hλ)u1(yλ)u1 + 2(Hλ)u2(yλ)u2 +∆0
→
nλ

It seems that the best way to calculate geometrically is to use the Lorentz orthogonal
frame

{yλ, y†λ, (yλ)u1 , (yλ)u2,
→
nλ},

where

(2.5.8)
< y

†
λ, yλ > = −1 and

< y
†
λ, y

†
λ > =< y

†
λ, (yλ)u1 >=< y

†
λ, (yλ)u2 >=< y

†
λ,

→
nλ >= 0.
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It is actually easy to find that

(2.5.9) y
†
λ =

1

λ
(
1

2
|∇ log λ|2y + y† −∇ log λ),

where y† = 1
2
(1,−x̂) and ∇ is the gradient on the standard round 3-sphere. We will

do inner product to both (2.5.6) and (2.5.7) with the null vector y
†
λ. To calculate

Hλ < ∆0yλ, y
†
λ > + < ∆0

→
nλ, y

†
λ > we rewrite

Hλ < ∆0yλ, y
†
λ >= −Hλ(< (yλ)u1 , (y†λ)u1 > + < (yλ)u2, (y†λ)u2 >)

and

< ∆0
→
nλ, y

†
λ >= − < (

→
nλ)u1, (y†λ)u1 > − < (

→
nλ)u2 , (y†λ)u2 > − <

→
nλ, (y

†
λ)ui >ui .

Meanwhile one may calculate

(2.5.10)





(
→
nλ)u1 = − eλ

Eλ

(yλ)u1 − fλ

Eλ

(yλ)u2− < (
→
nλ)u1 , y

†
λ > yλ

(
→
nλ)u2 = − fλ

Eλ

(yλ)u1 − gλ

Eλ

(yλ)u2− < (
→
nλ)u2 , y

†
λ > yλ.

Hence we have

(2.5.11)

Hλ < ∆0yλ, y
†
λ > + < ∆0

→
nλ, y

†
λ >

= E−1
λ (

◦
IIλ)ij < (yλ)ui, (y†λ)uj > − <

→
nλ, (y

†
λ)ui >ui

= −E−1
λ (

◦
IIλ)ijR

λ
i3j3 + Eλ(R

λ) i
3i,

due to (B.0.22), (B.0.23), and (B.0.24). Now we obtain the mean curvature of the
surface ξ in the de Sitter spacetime S1,3.

Lemma 2.5.1. Suppose that x̂ : M2 → S3 is an immersed surface with no umbilical
point and that ξ : M2 → S1,3 is the conformal Gauss map. Then the surface ξ is
spacelike and its mean curvature is a null vector

(2.5.12) Hξ = 2λ̂2 Hλ

|
◦
IIλ|2

y∗λ

for any positive function λ on the 3-sphere S3, where

(2.5.13) Hλ = ∆λHλ + |
◦
IIλ|2Hλ + (

◦
IIλ)

ij(Rλ)i3j3 − (Rλ) i
3i, ,

(Rλ)ijkl and (Rλ)ij are the Riemann curvature and Ricci curvature for the conformal
metric λ2g0 on the 3-sphere S

3 respectively.

Proof. We perform inner product to (2.5.6) and (2.5.7) by the null vector y
†
λ and

obtain that

(2.5.14) (Ω∗
λ)11 + (Ω∗

λ)22 = Eλ(−∆λHλ − |
◦
IIλ|2Hλ − (

◦
IIλ)

ij(Rλ)i3j3 + (Rλ) i
3i, )
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in the light of (2.5.11). Then one can easily calculate the mean curvature for ξ in
S1,3. �

We remark that (2.5.12) actually shows that

(2.5.15) Hλ = λ̂−3(−∆H − |
◦
II|2H)

for a surface x̂ in the conformal 3-sphere.

Theorem 2.5.2. ([2] [3]) Suppose that x̂ : M2 → S3 is an immersed surface with no
umbilical point. Then x̂ is a Willmore surface in S3 if and only if the conformal Gauss
map induces a minimal spacelike surface in the de Sitter spacetime S

1,3. Moreover its
conformal transform x̂∗ is a dual Willmore surface in S3.

Proof. Most of this theorem has been known to Blaschke [2] and Bryant [3]. Because
Lemma 2.3.2 implies that ξ is also the conformal Gauss map (up to the sign) for x̂∗

when Hξ vanishes. The two dual Willmore surfaces are the two envelope surfaces of
the family of round 2-spheres described by the conformal Gauss map ξ. �

Remark 2.5.3. It is also known to Balschke [2] and Bryant [3] that

• If x̂ is a minimal surface in S3, then x̂∗ = −x̂.
• x̂ is a Willmore surface if and only if x̂∗∗ = x̂, which raises an interesting
question: what does it mean x̂∗∗∗ = x̂ if possible?

2.6. Finding y∗λ. Let us now solve y∗λ for yλ = λ̂(1, x̂) = λ̂y, where λ̂ = λ ◦ x̂ and λ

is a positive function on the sphere S3. At each point on the surface we set

y∗λ = κyλ + κ†y
†
λ + b

→
nλ +

ωλ
1

Eλ

(yλ)u1 +
ωλ
2

Eλ

(yλ)u2 .

And we get from (2.4.1)

(2.6.1)





κ† = 1

−2κ+κ− + b2 +
(ωλ

1 )
2 + (ωλ

2 )
2

Eλ

= 0

b = Hλ

−(Ωλ)11ω
λ
1 − (Ωλ)12ω

λ
2 = (Hλ)u1Eλ

−(Ωλ)21ω
λ
1 − (Ωλ)22ω

λ
2 = (Hλ)u2Eλ.

We therefore have

Lemma 2.6.1. Suppose that x̂ : M2 → S3 is an immersed surface with no umbilical
point. Then

(2.6.2) y∗λ =
1

2
(|ωλ|2 +H2

λ)yλ + y
†
λ +Hλ

→
nλ − (

◦
II)−1

λ dHλ
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for any positive function λ on the 3-sphere, where

|ωλ|2 = (ωλ
1 )

2 + (ωλ
2 )

2

Eλ

=
1

m
((Hλ)

2
u1 + (Hλ)

2
u2).

In particular,

(2.6.3) y∗ =
1

2
(|ω|2 +H2)y +

1

2
(1,−x̂) +H(0,n)− (0, (

◦
II)−1dH),

and

(2.6.4) x∗ = ax̂+
H

1− a
n− 1

1− a
(

◦
II)−1dH,

where

(2.6.5) a =
|ω|2 +H2 − 1

|ω|2 +H2 + 1
.

Proof. One simply solves (2.6.1) if det Ωλ 6= 0, which is equivalent to the fact that
the surface has no umbilical point. �

2.7. Canonicity of y∗. Now we want to show that the choice of y∗ is canonical in
terms of doing conformal geometry for the surface x̂ in S

3. It is important to realize
that there are two separate issues here. One is about the symmetry of the conformal
3-sphere. To be precise, for a conformal transformation

φ : S3 → S
3

and the transformed surface

φ(x̂) : M2 → S
3,

is it true that

φ̃(x̃) = αφ̃(y) + αρφ̃(y∗) : R+ × R
+ ×M2 → R

1,4

is the associate 4-surface of φ(x̂) in R1,4, where φ̃ is the corresponding Lorentz trans-
formation on R

1,4 to φ? The other issue is whether or not the associate surface x̃ is
independent of metrics in the conformal class of the round 3-sphere. The first easy
and important fact is that the conformal Gauss map is independent of the metrics in
the conformal class.

Lemma 2.7.1. Suppose that x̂ : M2 → S3 is an immersed surface. Then the confor-
mal Gauss map ξ is independent of the metrics in the conformal class of the round
3-sphere S3. Meanwhile, the conformal Gauss map for the transformed surface φ(x̂)

is exactly φ̃(ξ), where φ̃ is the Lorentz transformation on the Minkowski spacetime
R

1,4 corresponding to a conformal transformation φ on S
3.
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Proof. First of all, one needs to realize that, for any given metric in the conformal
class of the round 3-sphere, it simply amounts to consider the surface

yλ = λ̂(1, x̂) : M2 → N
4
+

for some positive function λ : S3 → R+ and λ̂ = λ◦x̂. But this only possibly alters the
parametrization of the homogeneous null 3-surface xN = αλ̂(1, x̂) : R+ ×M2 → N4

+.
Hence it will not alter the conformal Gauss map. Of course one has already seen this
from Lemma 2.3.4.

Next we consider the transformed surface φ(x̂). Recall that, given a conformal

transformation φ of 3-sphere, we have a unique Lorentz transformation φ̃ in the
time and orientation preserving component of the Lorentz group on the Minkowski
spacetime such that, for λ(1, x̂) ∈ R1,4,

(2.7.1) φ̃(λ(1, x̂)) = λµ(1, φ(x̂))

for some positive number µ. By the definition, which requires φ̃ is a linear map and

< φ̃((t, x̂)), φ̃((s, ŷ)) >=< (t, x̂), (s, ŷ) >,

we now easily see that φ̃(ξ) is the conformal Gauss map for the transformed surface

φ(x̂). Since φ̃(ξ) is the unit normal vector field to the homogeneous null 3-surface

φ̃(x) in N4
+ that is conformal map from M2 to S1,3. �

Consequently we have

Proposition 2.7.2. Suppose that x̂ : M2 → S3 is an immersed surface with no
umbilical point. Then the associate surface

x̃ = αyλ + αρy∗λ : R+ × R
+ ×M2 → R

1,4,

for any yλ = λ̂(1, x̂) and y∗ = λ̂−1λ∗(1, x̂∗) defined by the equations (2.4.1), is inde-
pendent of the metrics in conformal class of the round 3-sphere S3.

Proof. It suffices to verify that

(2.7.2) (λ̂y)∗ = λ̂−1y∗.

Since it implies that the change of metrics in the conformal class will at most cause
possible change of parametrization of the associate surface x̃. �

We also have from Lemma 2.7.1 the following:

Lemma 2.7.3. Suppose that x̂ : M2 → S3 is an immersed surface with no umbilical
point. Let yλ = λ̂(1, x̂) ∈ N4

+ and let φ be a conformal transformation of 3-sphere.
Then

(2.7.3) φ̃(yλ)
∗ = φ̃(y∗λ).



16 Scalar Conformal Invariants

Hence

(2.7.4) φ(x̂∗) = (φ(x̂))∗.

Proof. From Lemma 2.7.1 we know that the conformal Gauss map for the transformed
surface φ(x̂) is φ̃(ξ). Then it is easy to verify (2.4.1) for φ̃(y∗) to be φ̃(y)∗. Then the
equation (2.7.4) follows from (2.7.1) and (2.7.3):

γ̂∗(1, (φ(x̂))∗) = φ̃(y)∗ = φ̃(y∗) = µ̂∗λ̂∗(1, φ(x̂∗)).

�

Therefore we have

Proposition 2.7.4. Suppose that x̂ : M2 → S3 is an immersed surface with no um-
bilical point. Let φ be a conformal transformation of 3-sphere. Then the associate
4-surface in R

1,4 of the transformed surface φ(x̂) is exactly the 4-surface φ̃(x̃) trans-
formed from the associate 4-surface x̃ of the original surface x̂ under the corresponding
Lorentz transformation φ̃ of φ.

3. The geometry of the associate surfaces

In this section we calculate the first and second fundamental forms for the associate
homogeneous timelike 4-surfaces x̃ in R1,4 as well as for the associate ruled surface
x+ in the hyperboloid H4, for a given immersed 2-surface x̂ in S3.

3.1. The first fundamental form for x̃ in R1,4. To calculate the first fundamental
form for the surface in the parametrization

(3.1.1) x̃ = αyλ + αρy∗λ

associated with a conformal metric λ2g0 on the 3-sphere S3 , we first calculate

dx̃ = (yλ + ρy∗λ)dα+ αy∗λdρ+ (α(yλ)u1 + αρ(y∗λ)u1)du1 + (α(yλ)u2 + αρ(y∗λ)u2)du2.

Hence the first fundamental form for the associate 4-surface x̃ in the coordinates
(α, ρ, u1, u2) is

I x̃ =< dx̃, dx̃ >= −2ρdαdα− 2αdαdρ

+ 2α2 < (y∗λ, (yλ)u1 > dρdu1 + 2α2 < y∗λ, (yλ)u2 > dρdu2

+ < α(yλ)u1 + αρ(y∗λ)u1 , α(yλ)u1 + αρ(y∗λ)u1 > (du1)2

+ < α(yλ)u2 + αρ(y∗λ)u2 , α(yλ)u2 + αρ(y∗λ)u2 > (du2)2

+ 2 < α(yλ)u1 + αρ(y∗λ)u1 , α(yλ)u2 + αρ(y∗λ)u2 > du1du2.
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In fact one may calculate

(3.1.2)





(yλ)u1 = −ωλ
1yλ −

(Ωλ)11
m

ξu1 − (Ωλ)12
m

ξu2

(yλ)u2 = −ωλ
2yλ −

(Ωλ)21
m

ξu1 − (Ωλ)22
m

ξu2

(y∗λ)u1 = ωλ
1y

∗
λ −

(Ωλ)
∗
11

m
ξu1 − (Ωλ)

∗
12

m
ξu2

(y∗λ)u2 = ωλ
2y

∗
λ −

(Ωλ)
∗
21

m
ξu1 − (Ωλ)

∗
22

m
ξu2

where

(3.1.3) ωλ =< dyλ, y
∗
λ >= −Iλ(Ω

−1
λ dHλ)

based on (2.6.1). Now let us write I x̃ in matrix form:

(3.1.4) Ix̃ =




−2ρ −α

−α 0
0 0

α2ωλ
1 α2ωλ

2

0 α2ωλ
1

0 α2ωλ
2

α2F




where

(3.1.5)





F11 =
1

m
(p2 + q2) + 2ρ(ωλ

1 )
2

F12 = F21 =
1

m
q(p+ r) + 2ρωλ

1ω
λ
2

F22 =
1

m
(q2 + r2) + 2ρ(ωλ

2 )
2

and [
p q

q r

]
= Ωλ + ρΩ∗

λ.

It can be calculated that

(3.1.6) det I x̃ = − α6

m2
(pr − q2)2 = − α6

4m2
(E2

λ|Ωλ + ρΩ∗
λ|2 − ρ2((Ω∗

λ)11 + (Ω∗
λ)22)

2)2

which can tell us where the associate surface x̃ is degenerate. It is maybe a little
surprising that it is actually not difficult to calculate the inverse of Ix̃. We present
the calculations in Appendix A since they are straightforward calculations.

3.2. The second fundamental form for x̃ in R
1,4. It is clear from the definition

that the conformal Gauss map ξ is the unit normal vector for the associate 4-surface
x̃ in R1,4. Hence the second fundamental form for x̃ in R1,4 is

(3.2.1) II x̃ = − < dx̃, dξ >= (α(Ωλ)ij + αρ(Ω∗
λ)ij)du

iduj
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or in matrix form

IIx̃ =

[
0 0
0 αΩλ + αρΩ∗

λ

]
.

Therefore the mean curvature for the associate 4-surface in R1,4 is

H x̃ = Tr(Ix̃)
−1IIx̃.

To calculate the mean curvature H x̃ one only needs to know the low-right 2 × 2
block in the inverse of the matrix Ix̃. According to the calculations in Appendix A,
particularly (A.0.9) (A.0.15) (A.0.16), we therefore have

(3.2.2)

H x̃ =
m

α(pr − q2)2
((q2 + r2)p− 2q2(p+ r) + (p2 + q2)r)

=
m(p+ r)

α(pr − q2)
,

where

pr − q2 = detΩλ − ρTrΩλΩ
∗
λ + ρ2 det Ω∗

λ

and

(3.2.3) p+ r = ρ((Ω∗
λ)11 + (Ω∗

λ)22) = −ρEλHλ

in the light of (2.5.14).

Theorem 3.2.1. Suppose that x̂ : M2 → S3 is an immersed surface with no umbilical
point. Then x̂ is a Willmore surface in S3 if and only if the associate 4-surface x̃ in
R1,4 is minimal.

Proof. Based on the above equations (3.2.3) and (3.2.2) we obtain that

(3.2.4) H x̃ =
ρ det ΩλHλ

α(detΩλ − ρTrΩλΩ
∗
λ + ρ2 det Ω∗

λ)
.

�

3.3. Local fundamental theorem for surfaces in conformal 3-sphere. In this
subsection we want to state and prove a local fundamental theorem for surfaces in
conformal 3-sphere. In the previous section we have introduced the associate surface
x̃ in Minkowski spacetime R1,4 from a given surface x̂ in S3. From the geometric
structure of the associate surface x̃ one can tell that its intersection with the positive
light cone N4

+ is a homogeneous null 3-surface whose projectivization will recover the
original surface x̂ in S3.
Given a surface x̂ in S3 with a isothermal coordinates (u1, u2) on the parameter

space M2, we have the first fundamental form I in matrix form

I =

[
E 0
0 E

]
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and the second fundamental fundamental II form in matrix form

II =

[
e f

f g

]

The local fundamental theorem for surfaces in Riemannian geometry states that, up
to isometries of the standard round sphere S3, locally the surface is uniquely deter-
mined by the first fundamental form I and the second fundamental form II in the
standard round sphere S

3. Conversely, given a positive definite symmetric 2-form I

and a symmetric 2-form II in the parameter domain, which satisfy some integrability
conditions (Gauss-Codazzi equations), up to isometries, there is locally a unique sur-
face x̂ in the standard round sphere S3 whose first and second fundamental forms are
I and II. We are looking for the analogous local fundamental theorem for surfaces
in conformal round 3-sphere S3. The core idea of the local fundamental theorem in
Riemannian geometry is to solve the structure equations, which are the equations of
motion of Frenét frames on the surface and are determined from I and II.

Our strategy here is to use the local fundamental theorem for the associate surface
x̃ in the Minkowski spacetime R1,4 to establish the local fundamental theorem for a
surface x̂ in the conformal sphere S3. Since the association introduced in previous
subsections requires that the surface x̂ has no umbilical point, we will always assume
here that surfaces x̂ have no umbilical point.

To summarize the previous discussions, given a surface x̂ in S3, we have I = E|du|2
and II = e(du1)2 + 2fdu1du2 + g(du2)2. We also have the so-called Möbius metric

Iξ = m|du|2 = 1
2
E|

◦
II|2|du|2 induced from the Conformal Gauss map ξ of the surface

x̂, where
◦
II =

[
e−g

2
f

f g−e

2

]

is the traceless part of the second fundamental form II. We then construct the
associate surface

x̃ = αyλ + αρy∗λ : R+ × R
+ ×M2 : R1,4.

The first fundamental form I x̃ for x̃ in matrix form is, from (3.1.4),



−2ρ −α

−α 0
0 0

α2ωλ
1 α2ωλ

2

0 α2ωλ
1

0 α2ωλ
2

α2

m
(p2 + q2) + 2α2ρ(ωλ

1 )
2 α2

m
q(p+ r) + 2α2ρωλ

1ω
λ
2

α2

m
q(p+ r) + 2α2ρωλ

1ω
λ
2

α2

m
(q2 + r2) + 2α2ρ(ωλ

2 )
2


 ,

where the 1-form

ωλ = ωλ
1du

1 + ωλ
2du

2 = −d log λ̂− I(Ω−1(dH)) = d log λ̂+ ω.
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And the second fundamental form II x̃ for x̃ in R1,4 in matrix form is, from (3.2.1),

[
0 0
0 αΩλ + αρΩ∗

λ

]
.

where Ωλ = λ̂Ω and Ω∗
λ = λ̂−1Ω∗. Notice that I x̃ and II x̃ are exactly determined by

the Möbius metric Iξ = m|du|2, the 1-form ω, the traceless symmetric 2-tensor Ω and

the symmetric 2-tensor Ω∗, plus the conformal factor λ̂.

Next we write the equations for the motion of the Frenét frames on the associate sur-
face x̃ according to I x̃ and II x̃. We consider the Frenét frame {yλ, y∗λ, 1√

m
ξu1 , 1√

m
ξu2 , ξ}

on the associate surface x̃. Because they are the orthonormal frames on x̃ with respect
to the Minkowski metric G̃0 on R

1,4. We now write
(3.3.1)

∂

∂u1




yλ
y∗λ
1√
m
ξu1

1√
m
ξu2

ξ



=




−ωλ
1 0 − 1√

m
(Ωλ)11 − 1√

m
(Ωλ)12 0

0 ωλ
1 − 1

m
(Ω∗

λ)11 − 1
m
(Ω∗

λ)12 0
1√
m
(Ωλ)11

1√
m
(Ω∗

λ)11 0 − 1
2m

mu2 −√
m

1√
m
(Ωλ)21

1√
m
(Ω∗

λ)21
1
2m

mu2 0 0

0 0
√
m 0 0







yλ
y∗λ
1√
m
ξu1

1√
m
ξu2

ξ




and
(3.3.2)

∂

∂u2




yλ
y∗λ
1√
m
ξu1

1√
m
ξu2

ξ



=




−ωλ
2 0 − 1√

m
(Ωλ)21 − 1√

m
(Ωλ)22 0

0 ωλ
2 − 1

m
(Ω∗

λ)21 − 1
m
(Ω∗

λ)22 0
1√
m
(Ωλ)21

1√
m
(Ω∗

λ)21 0 − 1
2m

mu1 0
1√
m
(Ωλ)22

1√
m
(Ω∗

λ)22
1
2m

mu1 0 −√
m

0 0 0
√
m 0







yλ
y∗λ
1√
m
ξu1

1√
m
ξu2

ξ




Remember we also have the two trivial equations

∂

∂α




yλ
y∗λ
1√
m
ξu1

1√
m
ξu2

ξ



= 0 and

∂

∂ρ




yλ
y∗λ
1√
m
ξu1

1√
m
ξu2

ξ



= 0.
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To solve the systems (3.3.1) and (3.3.2) of ODE, the necessary integrable condition
is

(3.3.3)
∂

∂u1

∂

∂u2




yλ
y∗λ
1√
m
ξu1

1√
m
ξu2

ξ



=

∂

∂u2

∂

∂u1




yλ
y∗λ
1√
m
ξu1

1√
m
ξu2

ξ



.

It turns out (3.3.3) is equivalent to the following six equations on the variables:
the positive function m, the 1-form ωλ, the traceless symmetric matrix Ωλ and the
symmetric matrix Ω∗

λ,

(3.3.4)

{
(Ωλ)11,2 − (Ωλ)12,1 = ωλ

1 (Ωλ)12 − ωλ
2 (Ωλ)11

(Ωλ)12,2 − (Ωλ)22,1 = ωλ
1 (Ωλ)22 − ωλ

2 (Ωλ)12

(3.3.5)





(Ω∗
λ)11,2 − (Ω∗

λ)12,1 = −ωλ
1 (Ω

∗
λ)12 + ωλ

2 (Ω
∗
λ)11 +

1

2

(Ω∗
λ)11 + (Ω∗

λ)22
|Ωλ|2

(|Ωλ|2)u2

(Ω∗
λ)12,2 − (Ω∗

λ)22,1 = −ωλ
1 (Ω

∗
λ)22 + ωλ

2 (Ω
∗
λ)12 +

1

2

(Ω∗
λ)11 + (Ω∗

λ)22
|Ωλ|2

(|Ωλ|2)u2

(3.3.6) ωλ
1,2 − ωλ

2,1 =
1

m
((Ωλ)11 − (Ωλ)22)(Ω

∗
λ)12 − ((Ω∗

λ)11 − (Ω∗
λ)22)(Ωλ)12)

and

(3.3.7) (K − 1) =
1

m2
TrΩλΩ

∗
λ,

where K is the Gaussian curvature of the Möbius metric Iξ = m|du|2. Of course,
as one may verify, (3.3.4), (3.3.5), (3.3.6) and (3.3.7) are exactly the Gauss-Codazzi
equations for the surface ξ in the de Sitter spacetime S1,3 induced by the conformal
Gauss map ξ of the surface x̂ in conformal 3-sphere S3.

Now we are ready to state and prove the local fundamental theorem for surfaces in
conformal round 3-sphere S

3.

Theorem 3.3.1. Suppose that, on a domain in D ⊂ R2, we are given the following

• a traceless symmetric 2-form Ω
• a positive function m or equivalently E such that m = − det Ω

E

• a 1-form ω

• a symmetric 2-form Ω∗.

And suppose that they satisfy the integrability conditions (3.3.4) - (3.3.7). Then, for a
given point p0 in D, there exists an open neighborhood D0 of p0 in D, a parametrized
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surface x̂ : D0 → S3 with no umbilical point, and a positive function λ̂ : D0 → R+

with λ̂(p0) = 1, such that

• Ω = λ̂
◦
II, where

◦
II is the traceless part of the second fundamental form of x̂

in the standard round S3

• m|du|2 =< dξ, dξ > is the Möbius metric induced by the conformal Gauss map
ξ of x̂

• ω = −I((
◦
II)−1(dH)) − d log λ̂, where I is the first fundamental form and H

is the mean curvature of x̂ in the standard round S3

• Ω∗ = −λ̂−1 < dξ, dy∗ >, where y∗ = 1
1−x̂·x̂∗

(1, x̂∗) and x̂∗ is the conformal
transform of x̂.

The surface x̂ is unique up to a conformal transformation of S3.

Proof. We start with choosing starting values for y, y∗, ξu1, ξu2, ξ at p0 = (u1
0, u

2
0), First

we take a null vector

y(u1
0, u

2
0) = y0 = (1, x̂0)

for some x̂0 ∈ S3 ⊂ R4. Then we choose ξ(u1
0, u

2
0) = ξ0 ∈ R1,4 such that

(3.3.8) < y0, ξ0 >= 0 and < ξ0, ξ0 >= 1.

Next we choose ξu1(u1
0, u

2
0) = ξ10 ∈ R1,4 and ξu2(u1

0, u
2
0) = ξ20 ∈ R1,4 such that

(3.3.9)
< ξ10 , ξ

1
0 > =< ξ20 , ξ

2
0 >= m(u1

0, u
2
0),

< ξ10 , ξ
2
0 > =< ξ0, ξ

1
0 >=< ξ0, ξ

2
0 >=< y0, ξ

1
0 >=< y0, ξ

2
0 >= 0.

Finally choose the unique null vector y∗(u1
0, u

2
0) = y∗0 such that

(3.3.10)
< y∗0, y0 > = −1

< y∗0, y
∗
0 > =< y∗0, ξ0 >=< y∗0, ξ

1
0 >=< y∗0, ξ

2
0 >= 0.

Notice that for any other choice of {y1, y∗1, ξ11, ξ21 , ξ1} satisfying the same orthonormal
properties in (3.3.8) - (3.3.10), there is a Lorentz transformation that takes one to the
other. With the integrability conditions assumed we may solve the systems (3.3.1)
and (3.3.2) at least in an open neighborhood D0 of p0 in D. Using the uniqueness of
solutions to systems of linear ODE one sees that the solution {y, y∗, 1√

m
ξu1 , 1√

m
ξu2 , ξ}

remains to be orthonormal in the Minkowski metric in D0.

Now one should realize that the y = λ̂(1, x̂) here is with some positive λ̂ (not
necessarily identically 1 in D0). It is then clear from all previous calculations that
the rest of the statements in the theorem can be easily verified. �
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3.4. The geometry of the associate ruled surface x+ in hyperbolic space H4.

In this section we want to discuss the geometry of the associate ruled 3-surface x+ in
H4, which is associated with a given surface x̂ in the conformal 3-sphere. It’s relation
to the associate surface x̃ is very much analogous to the one between the ambient
spacetime and the Poincaré-Einstein manifold of a given conformal manifold in the
work of Fefferman and Graham. It deems to be useful to understand the geometry
of the associate ruled 3-surface x+ in H4.

It is rather easy now to do calculations for x+ after we have calculated the first
fundamental form for the associate 4-surface x̃ in Minkowski spacetime R1,4 in section
3.1. We first have

dx+ =
1√
2
(etyλ − e−ty∗λ)dt+ (et(yλ)u1 + e−t(y∗λ)u1)du1 + (et(yλ)u2 + e−t(y∗λ)u2)du2

and, using (3.1.2),

(3.4.1)

Ix
+

= (dt)2 − 2ωλ
i dtdu

i + (
e2t

2m
((Ωλ)i1(Ωλ)j1 + (Ωλ)i2(Ωλ)j2)

+ (ωiωj +
1

m
((Ωλ)i1(Ω

∗
λ)j1 + (Ωλ)i2(Ω

∗
λ)j2))

+
e−2t

2m
((Ω∗

λ)i1(Ω
∗
λ)j1 + (Ω∗

λ)i2(Ω
∗
λ)j2))du

iduj

One can calculate the determinant

(3.4.2) det Ix
+

=
1

8m2
(E2

λ|etΩλ + e−tΩ∗
λ|2 − e−2t((Ω∗

λ)11 + (Ω∗
λ)22)

2)2,

which can tell us where the associate ruled surface x+ is degenerate.

To obtain the second fundamental form of the surface x+ it suffices to see that
the conformal Gauss map ξ is still the unit normal vector to the surface x+ in the
hyperboloid H4. Hence

(3.4.3) IIx
+

= − < dx+, dξ >=
1√
2
(etΩλ + e−tΩ∗

λ).

By the similar calculations as that in the previous section we have the mean cur-
vature of the associate ruled surface x+ as follows:

(3.4.4) Hx+

= e−3t

√
2 det ΩλHλ

(det Ωλ − e−2tTrΩλΩ∗
λ + e−4t det Ω∗

λ)
.

Theorem 3.4.1. Suppose that x̂ is an immersed surface in the conformal sphere S3

with no umbilical point and that x+ is the associate ruled surface in the hyperboloid
H4. Then x̂ is a Willmore surface in the conformal sphere if and only if the associate
ruled 3-surface x+ in the hyperboloid is a minimal surface.
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4. Scalar invariants of surfaces in conformal round 3-sphere

In this section we want to introduce scalar local invariants for surfaces in conformal
round 3-sphere S3. We will first recall what are scalar invariants for hypersurfaces in
(pseudo-)Riemannian geometry. Inspired by the work of Fefferman and Graham on
scalar local invariants in conformal geometry we are going to use the associate surface
x̃ in the Minkowski R1,4 of a given surface x̂ in 3-sphere S3, where one considers the
standard conformal 3-sphere as the projectivized positive light cone of the Minkowski
spacetime to construct scalar local invariant.

4.1. Scalar invariants of 4-surfaces in R1,4. For our purpose we will focus on the
discussion of scalar (pseudo-)Riemannian invariants of 4-surfaces x̃ in the Minkowski
spacetime R1,4. Suppose that

φ = φ(v2, v3, v4, v5) : A ⊂ R
4 → R

1,4

is a local parametrization of a surface x̃, where A is a domain in R4. Hence it induces
a local coordinate

φ̃ = φ̃(v1, v2, v3, v4, v5) : B ⊂ (−ǫ, ǫ)× A → R
1,4

for R1,4 such that
φ(v2, v3, v4, v5) = φ̃(0, v2, v3, v4, v5).

We will use the Capital Latin letters to stand for indices from 1 to 5 and Latin
letters to stand for the indices from 2 to 5. And we will use v = (v1, v2, · · · , v5) and
v̂ = (v2, · · · , v5). Hence the Minkowski metric in this coordinate is give as

G̃0 =< dφ̃, dφ̃ >= (G̃0)IJdv
IdvJ

and the fist fundamental form for x̃ in R1,4 is given as

I x̃ =< dφ, dφ >= g̃ijdv
idvj = (G̃0)ij |v1=0dv

idvj.

To be more restrictive we will assume that the surface x̃ is timelike and let

ξ : B → S
1,3

be a unit normal vector field on x̃ in R1,4. Then the second fundamental form for x̃
is given as

II x̃ = − < dφ, dξ >= h̃ijdv
idvj.

And
ξvi = −h̃ik g̃

kjφvj .

Definition 4.1.1. Let i : Mn−1 → Nn be an immersed hypersurface and let g

be a (pseudo)-Riemannain metric on the ambient manifold Nn. A scalar (pseudo-
)Riemannain invariant I(i,Nn, g) for the hypersurface i in Nn at a point p0 on the
surface i is a polynomial in the variables that are the coordinate partial derivatives
of gIJ of any order and the reciprocal of the determinant of gIJ at the point p0 such
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that the value of I(i,Nn, g) at p0 is independent of choices of local coordinates φ̃ of Nn

which are induced from a parametrization φ of the surface i nearby the given point p0.

The well-known examples of scalar Riemannian invariants for x̃ in R1,4 are

• H̃ = g̃ijh̃ij

• |h̃|2 = g̃ikg̃jlh̃ij h̃kl and H̃2 = g̃ij g̃klh̃ij h̃kl

• ∆̃H̃ = g̃klg̃ijh̃ij,kl, DivDivh̃ = g̃ikg̃jlh̃ij,kl, H̃|h̃|2 = g̃ikg̃jlg̃mnh̃ijh̃klh̃mn,

Trg̃h̃
3 = g̃ing̃jkg̃kmh̃ij h̃klh̃mn, and H̃3 = g̃ij g̃klg̃mnh̃ij h̃klh̃mn

• |∇̃h̃|2 = g̃ipg̃jqg̃krh̃ij,kh̃pq,r, g̃ipg̃jrg̃kqh̃ij,kh̃pq,r, g̃ipg̃jrg̃kqh̃ij,kh̃pq,r

|∇̃H̃|2 = g̃ij g̃pqg̃krh̃ij,kh̃pq,r, |D̃ivh̃|2 = g̃ipg̃jkg̃qrh̃ij,kh̃pq,r, D̃ivh̃ · dH̃
• ∆̃∆̃H̃

Each scalar invariant has an order. To find the order of each scalar invariant one
simply scales the metric by a constant κ and see what is the dimension of the scalar
invariant. For example, we can easily find that

H̃ [κ2G̃0] = κ−1H̃ [G̃0]

|h̃|2[κ2G̃0] = κ−2|h̃|2[G̃0]

∆̃H̃ [κ2G̃0] = κ−3∆̃H̃ [G̃0]

|∇̃h̃|2[κ2G̃0] = κ−4|∇̃h̃|2[G̃0]

∆̃∆̃H̃ [κ2G̃0] = κ−5∆̃∆̃H̃[G̃0].

To understand what are scalar Riemannian invariants I(x̃,R1,4, G̃0) we want to use
the so-called Fermi coordinates. A Fermi coordinate is one such that 1) on the surface

φ is a normal coordinate at a given point x̃0; 2) the coordinate curves φ̃(t, v
2, v3, v4, v5)

is a geodesic perpendicular to the surface at φ(v2, v3, v4, v5) with unit speed (a line
segment perpendicular to the surface in R1,4). Hence, for a Fermi coordinate,

(4.1.1) φ̃(v1, · · · , v5) = φ(v2, · · · , v5) + v1ξ.

The following facts are well known.

Lemma 4.1.2. Suppose that x̃ is a timelike hypersurface in R
1,4. Suppose that φ̃ is

a Fermi coordinate at a given point x̃0. Then

G̃0 =

[
1 0
0 [Gij ]

]

and

Gij(v
1, v̂) = g̃ij(v̂)− 2h̃ij(v̂)v

1 + h̃ik(v̂)h̃jl(v̂)g̃
kl(v̂)(v1)2,
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where

g̃ij(v̂) = ηij −
2

3
R̃ikjlv

kvl + · · ·

h̃ij(v̂) = h̃ij(0) + h̃ij,k(0)v
k + · · ·

R̃ijkl = h̃ikh̃jl− h̃ij h̃kl is the Riemann curvature tensor for x̃ and η is standard matrix
of signature {−1, 1, 1, 1}. Moreover all the coefficients in the Taylor’s expansions for

Gij are polynomials of h̃ij and the covariant derivatives of h̃ij at x̃0.

Therefore, in the light of Weyl theorem on the invariants of orthogonal groups, we
may conclude that

Proposition 4.1.3. All scalar invariants I(x̃,R1,4, G̃0) of a surface x̃ in R
1,4 are linear

combinations of terms that are complete contractions of tensor product of the second
fundamental form h̃ and the covariant derivatives of h̃.

Proof. From the above lemma it is easily that all scalar invariants of a surface x̃ in
R1,4 are polynomials of the first fundamental form g̃, the second fundamental form
h̃ and covariant derivatives of the second fundamental form h̃, if we evaluate them
in a Fermi coordinate for the surface. Then, by the Weyl theorem on the invariants
of orthogonal groups, we know they are linear combinations of full contractions of h̃
and covariant derivatives of h̃. �

4.2. Scalar invariants of the homogeneous associate surface x̃ in R1,4. Let us
work with the parametrization

x̃ = αλ̂(1, x̂) + αρλ̂−1 1

1− a
(1, x̂∗) = αyλ + αρy∗λ

and use the calculations given in Section 3.1 and Section 3.2. Now let us compute
some scalar invariants for our associate surface x̃ on the light cone where ρ = 0. Then
the first fundamental form is

Ix̃|ρ=0 =




0 −α

−α 0
0 0

α2ωλ
1 α2ωλ

2

0 α2ωλ
1

0 α2ωλ
2

α2Eλ 0
0 α2Eλ




from (3.1.4), whose inverse is

I−1
x̃ |ρ=0 =




|ωλ|2 − 1
α

− 1
α

0

ωλ
1

αEλ

ωλ
2

αEλ

0 0
ωλ
1

αEλ
0

ωλ
2

αEλ
0

1
α2Eλ

0

0 1
α2Eλ



.
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And the second fundamental form at ρ = 0 is

IIx̃|ρ=0 =

[
0 0
0 αΩλ

]
.

So the simplest (pseudo-)Riemannian invariants is the mean curvature H̃ , but it is
clear that

H̃|ρ=0 =
1

αEλ

((Ωλ)11 + (Ωλ)22) = 0.

The first non-trivial one is

(4.2.1) |h̃|2|ρ=0 = g̃ikg̃jlh̃ij h̃kl|ρ=0 = α−2|Ωλ|2,

which produces the first non-trivial invariant |
◦
II|2 for the surface x̂ in the conformal

3-sphere(cf. see the definition for scalar invariant of surfaces in the conformal 3-sphere
in the next subsection). In fact the following non-trivial invariants without taking
any derivative are all easy to calculate

TrI x̃h̃
k|ρ=0 = α−kTrI x̂

λ
Ωk

λ

for any k = 2, 3, · · · . Obviously those are the ones that can been easily seen with no
difficulty at all.

Next we want to calculate |∇H̃|2 and ∆̃H̃ at ρ = 0. To do so, let us first recall
from Section 3.2 the mean curvature

H̃ =
ρ det ΩλHλ

α(detΩλ − ρTrΩλΩ∗
λ + ρ2 det Ω∗

λ)
.

Hence H̃α = H̃u1 = H̃u2 = 0 and |∇H̃|2 = 0 at ρ = 0, that is, |∇H̃|2 gives no invariant
for the surface x̂. Let us set the convention to have a, b, c stand for α, ρ; i, j, k stand
for u1, u2, and A,B,C stand for all four variables. We then calculate, at ρ = 0,

(4.2.2)

∆̃H̃ =
1√
|g̃|

∂A(
√
|g̃|g̃AB∂BH̃)

=
1

α3E
(∂α(

√
|g̃|g̃αρ∂ρH̃) + ∂ρ(

√
|g̃|g̃ρB∂BH̃) + ∂i(

√
|g̃|g̃iρ∂ρH̃))

=
1

α3E
(∂α(

√
|g̃|g̃αρ∂ρH̃) + ∂ρ(

√
|g̃|gρα∂αH̃) +

√
|g̃|(∂ρg̃ρρ)∂ρH̃)

= 2α−3Hλ

where one needs to use the fact that g̃ρρ|ρ=0 = 0 and ∂ρg̃
ρρ|ρ=0 =

2
α2 based on calcula-

tions (A.0.14) in Appendix A. This confirms that Hλ is indeed a conformal invariant
of order 3 for a surface x̂ in 3-sphere in general conformal metric λ2g0.
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The next invariant we want to calculate is ∆̃∆̃H̃ . To do so, from (A.0.14) in
Appendix A, we observe the following:

(4.2.3)

∂ρ|ρ=0g̃
ρα = − 2

α
|ωλ|2, ∂ρ|ρ=0g̃

ρρ =
2

α2
,

∂ρ|ρ=0g̃
ρi = − 2

α2

ωλ
i

Eλ

and ∂ρ∂ρ|ρ=0g̃
ρρ =

8

α2
|ωλ|2.

After a lengthy calculation we get

(4.2.4)
∆̃∆̃H̃|ρ=0 = 8α−5(∆λHλ + 9|ωλ|2Hλ − 3Div(ωλ)Hλ

− 6ωλ(∇Hλ)−
3Tr(ΩλΩ

∗
λ)

2m2
|Ωλ|2Hλ).

This tells us that ∆λHλ +9|ωλ|2Hλ − 3Div(ωλ)Hλ − 6ωλ(∇Hλ)− 3Tr(ΩλΩ
∗

λ
)

2m2 |Ωλ|2Hλ is
a conformal invariant of order 5 for the surface x̂ in 3-sphere.

We can also calculate the covariant derivatives of the second fundamental forms for
the associate surface. We first list the relevant Christoffel symbols for the calculation

(4.2.5)

Γ̃k
αα = Γ̃k

ρρ = Γ̃k
αρ = 0

Γ̃k
αj = α−1δjk

Γ̃k
ρj =

1

2Eλ

((ωλ
k )uj − (ωλ

j )uk +
1

m
((Ωλ)jl(Ω

∗
λ)kl + (Ωλ)kl(Ω

∗
λ)jl))

Γ̃k
ij = (Γλ)

k
ij − ωλ

kδij .

Then we calculate

(4.2.6)

h̃ab,C = 0

h̃ai,b = 0

h̃αj,k = −(Ωλ)jk

h̃ρj,k = − α

2Eλ

((Ωλ)ij((ω
λ
i )uk − (ωλ

k )ui +
1

m
((Ωλ)kl(Ω

∗
λ)il + (Ωλ)il(Ω

∗
λ)kl)

h̃ij,α = −(Ωλ)ij

h̃ij,ρ = α(Ω∗
λ)ij

− α

2E
((Ωλ)lj((ω

λ
l )ui − (ωλ

i )ul +
1

m
((Ωλ)kl(Ω

∗
λ)ki + (Ωλ)ki(Ω

∗
λ)kl)

− α

2E
(Ωλ)il((ω

λ
l )uj − (ωλ

j )ul +
1

m
((Ωλ)kl(Ω

∗
λ)kj + (Ωλ)kj(Ω

∗
λ)kl)

h̃ij,k = α(Ωλ)ij,k + α(Ωλ)ljω
λ
l δik + α(Ωλ)ilω

λ
l δjk.
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The easy one is

φα = h̃αj,kg̃
jk = 0 and φρ = h̃ρj,kg̃

jk =
1

α
Hλ

in the light of (2.5.14). While

φi = h̃iB,C g̃
BC = h̃ij,C g̃

jC + h̃ib,kg̃
bk = h̃ij,kg̃

jk + h̃ij,αg̃
jα + h̃iα,kg̃

αk

=
1

αEλ

(Ωλ)ij,j +
3

αEλ

(Ωλ)ijω
λ
j −

1

αEλ

(Ωλ)ijω
λ
j − 1

αEλ

(Ωλ)ijω
λ
j

=
1

αEλ

(Ωλ)ij,j +
1

αEλ

(Ωλ)ijω
λ
j = 0

due to the integrability condition (3.3.4). Thus |D̃ivh̃|2(= 0) does not give any in-

variant on the surface x̂, nor does D̃ivh̃ · dH̃(= 0). Because g̃ρρ|ρ=0 = 0.

We want to calculate |∇̃h̃|2 since we have all the covariant derivatives h̃AB,C in
(4.2.6). The calculation is direct yet very long. We omit the detail here.

|∇̃h̃|2|ρ=0 = α−4(|∇Ω|2+8|dH|2−6Ω·Ω∗− 2

E3
λ

(Ωλ)ijω
λ
k (R

λ)3ijk−
6

E3
λ

(Ωλ)ij(Ωλ)ki,jω
λ
k ),

where the Codazzi equation for the surface x̂ in (S3, λ2g0)

(Ωλ)ij,k = (Ωλ)ik,j + (Rλ)3ijk + (Hλ)ujEλδik − (Hλ)ukEλδij

has been used. At this point we like to write each term as local scalar invariant of
the surface x̂ in (S3, λ2g0). We first calculate

(Ωλ)ijω
λ
k(R

λ)3ijk = (Ωλ)ijω
λ
1 (R

λ)3ij1 + (Ωλ)ijω
λ
2 (R

λ)3ij2

= Eλ((Ωλ)11ω
λ
1 (R

λ)31 + (Ωλ)21ω
λ
1 (R

λ)32 + (Ωλ)22ω
λ
2 (R

λ)32 + (Ωλ)12ω
λ
2 (R

λ)31)

= Eλ(Ωλ)ijω
λ
j (R

λ)3i = −E2
λ(Hλ)ui(Rλ)3i = −Ricλ(

→
nλ, λHλ).

Then we deal with the last term

(Ωλ)ij(Ωλ)ki,jω
λ
k = (Ωλ)ij((Ωλ)kiω

λ
k ),j − (Ωλ)ij(Ωλ)kiω

λ
k,j

= −Eλ(Ωλ)ij(Hλ)i,j −
1

2
E3

λ|Ωλ|2Div(ωλ)

where
Div(ωλ) = E−1

λ ωλ
i,i = E−1

λ (ωλ
i )ui

= E−1
λ (< ∆0yλ, y

∗
λ > + < (yλ)ui , (y∗λ)ui >)

= H2
λ − |ωλ|2 + (Rλ)1212 + E−1 < (yλ)ui, (y∗λ)ui >

= H2
λ + 2

Ωλ · Ω∗
λ

|Ωλ|2
+ E−1

λ (Rλ)1212

∆0yλ = 2EλHλ

→
nλ + 2Eλy

†
λ − (Rλ)1212yλ
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and
2∑

i=1

E−1 < (y)ui, (y∗)ui >= |ωλ|2 + 2
Ωλ · Ω∗

λ

|Ωλ|2
.

So we have obtained

(4.2.7)
|∇h̃|2|ρ=0 = α−4(|∇Ωλ|2 + 8|dHλ|2 + 2Ricλ(

→
nλ,∇Hλ) + 3H2

λ|Ω|2

+ 3KT
λ |Ωλ|2 + 6Ωλ · Hess(Hλ))

where

KT
λ = E−1

λ (Rλ)1212

is the sectional curvature of (S3, λ2g0) of the tangent plane to the surface x̂.

4.3. Scalar invariants for surfaces in the conformal round 3-sphere. Let us
start with the definition of scalar invariants for surfaces in conformal sphere.

Definition 4.3.1. Let i : Mn−1 : Nn be an immersed hypersurface and let [g] be a
class of conformal metrics on the ambient manifold N|n. Ic(i,N

n, g) is said to be a
scalar conformal invariant of the hypersurface i in the conformal manifold (Nn, [g]) if
it is a scalar Riemannian invariant and

(4.3.1) Ic(i,N
n, λ2g) = λ−kIc(i,N

n, g).

for any positive function λ on Nn, where k is the order of the invariant Ic(i,N
n, g).

Recall that, for an immersed surface x̂ in S3, we have

◦
II(x̂, S3, λ2g0) = λ

◦
II(x̂, S3, g0).

Hence it is easy to observe that

|
◦
II|2(x̂, S3, λ2g0) = λ−2gik0 λ

−2g
jl
0 λ

◦
II ijλ

◦
IIkl = λ−2‖

◦
II‖2(x̂, S3, g0)

and

Trλ2g0(
◦
II)k(x̂, S3, λ2g0) = λ−kTrg0(

◦
II)k(x̂, S3, g0) for all k = 2, 3, · · · .

On the other hand, it does not seem easy to directly verify that Hλ is a conformal
invariant for a surface in the conformal 3-sphere, though this is a well-known one. We
have verified this in computing the mean curvature (cf. (2.5.12)) of the surface ξ in the

de Sitter spacetime S1,3 as well as in the above calculation of ∆̃H̃ (cf. (4.2.2)) of the
homogeneous associate surface x̃. In general it takes tremendous, if not impossible,
to verify whether an invariant I(x̂, S3, λ2g0) is conformally invariant, complicated by
the six integrability conditions. The most important application of the construction
of associate homogeneous surfaces is the following:
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Theorem 4.3.2. Suppose that x̂ : M2 → S3 is an immersed surface with no umbilical
point. And suppose that

x̃ = αy + αρy∗ : R+ × R
+ ×M2 → R

1,4

is the associate surface for x̂, where x̂∗ is the conformal transform of x̂. Then any
scalar (pseudo)-Riemannian invariant I(x̃,R1,4, G̃0) evaluated at ρ = 0, if it is non-

trivial, is a scalar conformal invariant Ic(x̂, S
3, λ2g0) multiplied with |

◦
IIλ|2n for some

integer n.

Proof. For any invariant I(x̃,R1,4, G̃0), we know that it is a full contraction of tensor
product of the second fundamental form and the covariant derivatives. For a choice
of representative λ2g0 on S3, in the corresponding parametrization (3.1.1), we claim
that

(4.3.2) I(x̃,R1,4, G̃0)|ρ=0 = α−kI(x̂, S3, λ2g0)|
◦
IIλ|2n

for a positive integer k and a nonnegative integer n, due to the homogeneity of the
associate surface. To see the right side of (4.3.2) is indeed a scalar Riemannian

invariant multiplied with factor |
◦
IIλ|2n for some integer n, we consider the tensors

that determines the first and second fundamental forms of the associate surface in
that parametrization. We recall from (2.5.5) that

Ωλ =
◦
IIλ

is the traceless part of the second fundamental form for the surface x̂ in the 3-sphere
with the conformal metric λ2g0. We also know from (3.1.3) that

ωλ = −Iλ((
◦
IIλ)

−1(dHλ)) = − 2

|
◦
IIλ|2

◦
IIλ(∇Hλ),

which causes us to include the possible negative n in the right side of (4.3.2). We
may also recall from (2.5.3) that

m =
1

2
Eλ|

◦
IIλ|2.

Next we want to show that Ω∗
λ is also a tensor product of covariant derivatives of

the 1-form ωλ, covariant derivatives of the second fundamental form IIλ and co-
variant derivatives of Riemann curvature tensor of the conformal metric λ2g0 on the
3-sphere(including 0th order). Recall the definition

(Ω∗
λ)ij =< y∗λ, ξuiuj > .

We use the same idea in the calculation of the trace of Ω∗ in Section 2.5. Hence we
write

(4.3.3) ξuiuj = −(Ω∗
λ)ijyλ − (Ωλ)ijy

∗
λ + (Γm)

k
ijξuk −mδijξ.
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From (2.6.2) we know that

< y∗λ, y
†
λ >= −1

2
(|ωλ|2 +H2

λ).

Using ξ = Hλyλ +
→
nλ from Lemma 2.3.4 and (B.0.22), we have

< ξuk , y
†
λ >= −(Hλ)uk + (Rλ)3k

and

< ξ, y
†
λ >= −Hλ.

Therefore we derive from (4.3.3) that

(4.3.4) < ξuiuj , y
†
λ >= (Ω∗

λ)ij+
1

2
(|ωλ|2+H2

λ)(Ωλ)ij+(Γm)
k
ij(−Huk+(Rλ)3k)+Hmδij ,

where

(Γm)
k
ij = Γk

ij +
1

2
|Ωλ|−2(|Ωλ|2uiδjk + |Ωλ|2ujδik − |Ωλ|2ukδij)

is the Christofel symbols for the Möbius metric m|du|2. On the other hand we have

ξuiuj = (Hλ)uiujyλ + (Hλ)ui(yλ)uj + (Hλ)uj(yλ)ui +Hλ(yλ)uiuj + (
→
nλ)uiuj

which implies

(4.3.5)

< ξuiuj , y
†
λ > = −(Hλ)uiuj +Hλ < (yλ)uiuj , y

†
λ > + < (

→
nλ)uiuj , y

†
λ >

= −(Hλ)uiuj −Hλ < (yλ)ui , (y†λ)uj > − < (
→
nλ)ui , (y†λ)uj >

− <
→
nλ, (y

†
λ)ui >uj

= −(Hλ)uiuj +
1

Eλ

(Ωλ)ik < (yλ)uk , (y†λ)uj > − <
→
nλ, (y

†
λ)ui >uj

= −(Hλ)uiuj − 1

Eλ

(Ωλ)ik(R
λ)i3k3 + ((Rλ)3i)uj .

by (B.0.23) and (B.0.22). Thus, comparing (4.3.4) and (4.3.5), we have

(4.3.6)

(Ω∗
λ)ij = −(Hλ)ui,uj −Hλmδij −

1

Eλ

(Ωλ)ik(R
λ)j3k3 + ((Rλ)3i),uj

− 1

2
(|ωλ|2 +H2

λ)(Ωλ)ij

+
1

2
|Ωλ|−2(|Ωλ|2uiδjk + |Ωλ|2ujδik − |Ωλ|2ukδij)((Hλ)uk − (Rλ)3k).

The last factor that goes into the left side of the equation (4.3.2) is the reciprocal of
the determinant:

det g̃|ρ=0 = − α6

m2
(pr − q2)2|ρ=0 =

α6

m2
(det Ωλ)

2 = α6E2
λ = α6 det I x̂λ .
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due to (3.1.6), where I x̂λ = (x̂)∗(λ2g0) = Eλ|du|2.

To verify that the right side of (4.3.2) is actually a conformal invariant, for a positive
functions λ on 3-sphere, we simply compare the right side of (4.3.2) evaluated at α = 1

with that evaluated at α = λ̂ and λ = 1. We then observe that

I(x̂, S3, λ2g0) = λ̂−kI(x̂, S3, g0).

Therefore it is a conformal scalar invariant for the surface x̂ in the 3-sphere. �

Appendix A. The inverse of I x̃ in general parametrizations

We consider the general parametrization

x̃ = αyλ + αρy∗λ : R+ × R
+ ×M2 → R

1,4.

Then the first fundamental form in matrix form is

(A.0.7) Ix̃ =




−2ρ −α

−α 0
0 0

α2ωλ
1 α2ωλ

2

0 α2ωλ
1

0 α2ωλ
2

α2F




where

(A.0.8)





F11 =
1

m
(p2 + q2) + 2ρ(ωλ

1 )
2

F12 = F21 =
1

m
q(p+ r) + 2ρωλ

1ω
λ
2

F22 =
1

m
(q2 + r2) + 2ρ(ωλ

2 )
2

and





F ∗
11 =

1

m
(p2 + q2)

F ∗
12 = F21 =

1

m
q(p+ r)

F ∗
22 =

1

m
(q2 + r2)

and [
p q

q r

]
= Ωλ + ρΩ∗

λ.

It is easily seen that

(A.0.9) (F ∗)−1 =
m

(pr − q2)2

[
r2 + q2 −q(p+ r)

−q(p+ r) p2 + q2

]

and

F |ρ=0 = F ∗|ρ=0 = E

[
1 0
0 1

]
.

Let

(I x̃)−1 =




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


 .
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Therefore, for example,

(A.0.10)





−2ρa11 − αa12 = 1

−αa11 + α2ω1a13 + α2ω2a14 = 0

α2ω1a12 + α2F11a13 + α2F21a14 = 0

α2ω2a12 + α2F12a13 + α2F22a14 = 0.

Subtracting the first equation multiplied by α from the second equation multiplied
by 2 in (A.0.10), we get

(A.0.11) α2a12 + 2α2ρω1a13 + 2α2ρω2a14 = −α

And subtracting (A.0.11) multiplied with ω1 from the third equation in (A.0.10) as
well as subtracting (A.0.11) multiplied with ω2 from the fourth equation in (A.0.10),
we get

(A.0.12) α2F ∗
[
a13

a14

]
=

[
αω1

αω2

]

Plugging back what are a13 and a14 to the equation (A.0.11) we have

(A.0.13)





a12 = α−1(−1− 2ρ[ω1, ω2](F
∗)−1

[
ω1

ω2

]
)

a11 = −αa12 + 1

2ρ
= [ω1, ω2](F

∗)−1

[
ω1

ω2

]
.

Similarly one gets

(A.0.14) α2F ∗
[
a23

a24

]
=

[−2ρω1

−2ρω2

]
and





a21 = α−1(−1− 2ρ[ω1, ω2](F
∗)−1

[
ω1

ω2

]
)

a22 =
2ρ

α2
(1 + 2ρ[ω1, ω2](F

∗)−1

[
ω1

ω2

]
)

(A.0.15) α2F ∗
[
a33

a34

]
=

[
1

0

]
and





a31 = α−1[ω1, ω2](F
∗)−1

[
1
0

]

a32 = −2ρ

α2
([ω1, ω2](F

∗)−1

[
1
0

]

(A.0.16) α2F ∗
[
a43

a44

]
=

[
0

1

]
and





a41 = α−1(F ∗)−1

[
0
1

]

a42 =
2ρ

α2
(1 + 2ρ[ω1, ω2](F

∗)−1

[
ω1

ω2

]
)
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Appendix B. The geometry of the 3-sphere S3
λ in R1,4

Let us calculate the Gauss Theorem for the 3-sphere S3
λ in Minkowski spacetime

R1,4. There is nothing new or difficult about the calculation, but this helps to under-
stand better about the geometry of the 3-sphere S3

λ ⊂ N4
+ ⊂ R1,4. It is very crucial

and important in our approach to use the fact that the induced metric on S
3
λ is exactly

the conformal metric λ2g0. We consider the Fermi parametrization induced from a
parametrization of the surface x̂ : M2 → S3 such that

(B.0.17) yλ = λ(x̂(u1, u2, u3))(1, x̂(u1, u2, u3)) : M3 → S
3
λ ⊂ N

4
+ ⊂ R

1,4

with

(B.0.18) x̂(u1, u2, 0) = x̂(u1, u2) and (yλ)u3 |u3=0 =
→
nλ.

Notice that yλ here is the extension of λ̂(1, x̂) before. We use the two null normal

vectors {yλ, y†λ} where

(B.0.19) < y
†
λ, yλ > −1, < y

†
λ, (yλ)u1 >=< y

†
λ, (yλ)u2 >=< y

†
λ, (yλ)u3 >= 0.

The first fundamental form is

(B.0.20) IS
3
λ = λ2g0 =< dyλ, dyλ > .

And the second fundamental form is

(B.0.21) IIS
3
λ = − < dyλ, dy

†
λ > y

†
λ− < dyλ, dyλ > yλ

To calculate the curvature for the metric gλ = λ2g0 we calculate

∇λ
∂
uj
∇λ

∂
ui
∂uk −∇λ

∂
ui
∇λ

∂
uj
∂uk = Rλ(∂ui, ∂uj )∂uk = (Rλ) l

ijk ∂ul .

First
∇λ

∂
uj
∂uk = (yλ)ukuj− < (yλ)uj , (y†λ)uk > yλ− < (yλ)uj , (yλ)uk > y

†
λ

Then

∂ui∇λ
∂
uj
∂uk = (yλ)ukujui− < (yλ)uj , (y†λ)uk >ui yλ− < (yλ)uj , (yλ)uk >ui y

†
λ

− < (yλ)uj , (y†λ)uk > (yλ)ui− < (yλ)uj , (yλ)uk > (y†λ)ui

and

∇λ
∂
ui
∇λ

∂
uj
∂uk = (∂ui∇λ

∂
uj
∂uk)TS3

λ

= (yλ)
TS3

λ

ukujui− < (yλ)uj , (y†λ)uk > (yλ)ui− < (yλ)uj , (yλ)uk > (y†λ)ui

Hence

(Rλ) l
ijk ∂ul =< (yλ)uj , (y†λ)uk > (yλ)ui+ < (yλ)uj , (yλ)uk > (y†λ)ui

− < (yλ)ui, (y†λ)uk > (yλ)uj− < (yλ)ui, (yλ)uk > (y†λ)uj

One may realize that

< (y†λ)ui, y
†
λ >= 0 and < (y†λ)ui, yλ >= 0
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and conclude

(y†λ)ui = (gλ)
ml < (y†λ)ui, (yλ)um > (yλ)ul.

Therefore

(Rλ) l
ijk ∂ul = (< (yλ)uj , (y†λ)uk > δ l

i + (gλ)jk(gλ)
ml < (y†λ)ui, (yλ)um >

− < (yλ)ui, (y†λ)uk > δ l
j − (gλ)ik(gλ)

ml < (y†λ)uj , (yλ)um >)∂ul

and

(Rλ)ijkl =(Rλ) n
ijk (gλ)nl =< (yλ)uj , (y†λ)uk > (gλ)il+ < (y†λ)ui, (yλ)ul > (gλ)jk

− < (yλ)ui, (y†λ)uk > (gλ)jl− < (y†λ)uj , (yλ)ul > (gλ)ik.

On the surface x̂, where u3 = 0, we have

[(gλ)ij] =



Eλ 0 0
0 Eλ 0
0 0 1


 .

Therefore we have, for i, j ∈ {1, 2},




− < (yλ)ui , (y†λ)uj > − < (yλ)u3 , (y†λ)u3 > Eλδij = (Rλ)i3j3

− < (yλ)uj , (y†λ)u3 > Eλδjl+ < (yλ)ul, (y†λ)u3 > Eλ = (Rλ)3jjl

− < (yλ)ui, (y†λ)ui > Eλ− < (yλ)uj , (y†λ)uj > Eλ = (Rλ)ijij

Finally we obtain, for i, j ∈ {1, 2},

(B.0.22) <
→
nλ, (y

†
λ)ui >=

1

Eλ

(Rλ)ijj3 = −(Rλ)i3,

and for i 6= j,

(B.0.23)

< (yλ)ui, (y†λ)uj > = −(Rλ)i3j3

< (yλ)ui , (y†λ)ui > = −(Rλ)i3i3 +
1

2
((Rλ)33 − (Rλ)1212)

< (yλ)u3, (y†λ)u3 > = −1

2
((Rλ)33 − (Rλ)1212)
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Finally, for the induced Fermi coordinate from an isothermal coordinate, we can
easily see that

(B.0.24)

(Rλ) i
3i, =

1

Eλ

(

2∑

i=1

Rλ)3i,i

=
1

Eλ

2∑

i=1

(((Rλ)3i)ui − (Rλ)3k(Γλ)
k
ii)

=
1

Eλ

2∑

i=1

(((Rλ)3i)ui

Because
∑2

i=1(Γλ)
k
ii = 0 for each k = 1, 2, where (Γλ)

k
ij is the Christofel symbols for

the conformal metric Iλ = Eλ|du|2 in the isothermal coordinates.
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