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Abstract

The 59,000 km long global mid-ocean ridge system is the site of formation of 20 km3 of

oceanic crust yearly. Two-thirds of all heat loss from the interior of our planet is through

the ocean floors, 40% of this amount is focused through the ridge. Activity involves

complex interactions among a number of processes occurring over wide ranges of depths

and lateral distances, including melting of the earth's mantle, delivery of the molten rock to

a crustal magma chamber, cooling of the magma intrusion by hydrothermal circulation and

volcanic eruption, chemical exchange between hot rock surrounding the magma chamber

and the overlying seawater, and even the establishment of exotic biological communities

near hydrothermal vents at the ridge axis. These features justify the expanding scientific

interest in the study of the ridge.

Transient controlled-source electromagnetics (CSEM) is a geophysical exploration

technique capable of determining the electrical conductivity beneath fast-spreading seg­

ments of the mid-ocean ridge. Geological structure beneath the mid-ocean ridge that is

readily accessible to transient CSEM exploration is located at crustal levels and includes

the axial magma chamber and its associated zones of partial melt and hydrothermal activ­

ity. Seismic images of the top several kilometers beneath the fast spreading East Pacific

Rise (EPR) between 9-13°N have already been obtained. Multi-channel reflection profiles

place strong constraints on the geometry of the top of the axial magma chamber but re­

fraction data provide only coarse estimates of the sub-sunace temperature, distribution of

partial melt and porosity, parameters required to distinguish between proposed petrolog­

ical models of the ridge. Electrical conductivity is a strong indicator of all these critical

parameters and therefore CSEM methods are well-suited to improve the estimates and

help characterize the ridge environment.

In this thesis, a pair of forward modeling computer programs have been developed

to design ridge-going experiments and assist interpretation of mid-ocean ridge transient

CSEM data sets, as they become available. The programs may also be used to evaluate

the transient CSEM technique as it might be applied to investigate other tectonically

active regions of the seafloor. One program rapidly computes the theoretical response, as



a function of time, of an arbitrary, two dimensional earth to a sudden switch-on of electric

current in a line source of electromagnetic energy. The other program is more advanced,

requires more computer time, and is referred to as a 2.5-D program because it can handle

excitation of the earth by a more realistic, finite source.

The programs solve the forward problem as follows. Electromagnetic boundary value

problems based on the governing Maxwell's equations are solved by the finite element

method in the Laplace frequency s-domain. The calculated electromagnetic field compo­

nents are then transformed into the time domain by means of the Gaver-Stehfest algorithm.

In the 2.5-D program, Maxwell's equations are additionally Fourier transformed in the di­

rection parallel to the strike of the 2-D conductivity structure, and field components are

computed in the along-strike wavenumber q-domain. Following the calculation, inverse

transforms are performed to obtain the along-strike spatial variations of the field compo­

nents. The codes have been validated through comparisons with known analytic solutions

in which the earth is modeled as a uniformly conducting half-space. Convergence of the

finite element approximation is found to be O(h), where h measures the size of the trian­

gles comprising the finite element mesh. An extrapolation formula is described by which

numerical solutions on progressively finer meshes are combined. The formula permits great

accuracy to be attained in the computed field components, using relatively coarse meshes.

A numerical study of the performance of an idealized transient CSEM system at the

East Pacific Rise has been carried out using the 2-D code. The system consists of an infi­

nite source located 5 km west of the ridge axis, and seafloor magnetic field sensors placed

at various distances across the ridge crest. The source is oriented with respect to the

strike of the ridge so as to produce only the H-polarization mode of electric current flow.

The results indicate that this system can detect the axial magma chamber and the asso­

ciated zones of hydrothermal activity and partial melt by monitoring two electromagnetic

response parameters, the diffusion time T and the response amplitude Bmax , as a function

of transmitter/receiver separation. These response parameters are easily extracted from

measured data and are diagnostic of the sub-surface electrical conductivity. The presence

of a highly conductive magma chamber slows and attenuates signals diffusing beneath the

ridge, increasing T and decreasing Bmax • Hydrothermal circulation in the highly fractured,
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extrusive basalt layer has the same effect on the data for receivers placed within 3 km of

the ridge axis, but very little effect elsewhere. Inferences made from the numerical results

suggest that a horizontal electric dipole (HED) of moment 104 A·m and receivers sampling

the seafloor magnetic field at 10-25 Hz with a sensitivity of 1 pT/s over a time window

extending to 10 s are sufficient to detect these crustal targets.

Interpretation of transient CSEM data requires forward modeling using a more re­

alistic, finite source. The 2.5-D code is capable of achieving this. Sample field patterns

produced in the vicinity of the ridge by a sudden switch-on of electric current in a horizon­

tal electric dipole (HED) are computed. The patterns illustrate diffusion, in three spatial

dimensions and time, of various along-strike electromagnetic field components through

typical mid-ocean ridge structures. The results demonstrate the utility of the 2.5-D code,

i. e. its potential for interpreting data from a transient CSEM ridge-going experiment.
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Chapter 1

Introduction

1.0 Introduction

A great challenge to the marine geophysicist involves the determination of the sub­
surface geology of the seafloor to depths of several kilometers. Knowledge of the
aforementioned is important not only for the sake of the exploration of a large but
relatively unknown part of the earth's crust, but also to investigate the formation
of economic geological structures, including mineral deposits, and to constrain cer­
tain geo-dynamic models associated with plate tectonics, such as those describing
the formation of oceanic crust at mid-ocean ridges (MORs) and its destruction at
subduction zones.

At the geophysicist's disposal are seismic, gravity, magnetic and electromagnetic
techniques, measurements from which are sensitive to the elastic properties, density,
magnetic and the electrical properties of the earth, respectively. Regardless of tech­
nique chosen, a response of the earth can be measured and either directly inverted, or
compared to theoretical responses that have been computed for models of the earth.
The result, in both cases, is a profile of the critical physical property in one or more
dimensions. This profile is often converted into a geological map using the available
information about rock properties. Since many rocks have similar values for a given
physical property, the geological interpretation is likely to be ambiguous, so that
wherever possible it is desirable to apply more than a single geophysical technique.

In broad terms, this thesis is concerned with transient controlled-source electro­
magnetics (CSEM) as a technique to determine the electrical conductivity structure
of the mid-ocean ridge. In particular, a pair of forward modeling computer programs
have been developed, ostensibly to assist interpretation of mid-ocean ridge transient
CSEM data sets, as they become available, but in actual fact the programs may
be used to evaluate transient CSEM techniques at many other places on the deep
seafloor. One program rapidly computes the theoretical electromagnetic response of
an arbitrary, two dimensional earth to its excitation by a 2-D infinite source. The
other program is more advanced, requires more computer time, and is referred to as
a 2.5-D program because it is capable of handling finite source excitation.

Active electromagnetic exploration of the mid-ocean ridge is very much in its
infancy, and there remains much that can be done. While ridge-going transient
CSEM experiments are likely to provide hard constraints on models of oceanic crust
formation (Constable 1990), there is no doubt that they will be difficult and costly to
perlorm. A full-scale design using the programs described in this thesis can optimize
an experiment, with respect to a wide range of criteria. For example, one can find
the resolution of the mid-crustal, axial magma chamber and other MOR geological
features, and identify optimal transmitter/receiver configurations and expected signal
magnitudes. I have investigated this problem in great detail using the 2-D code,
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and the results are presented in later chapters. In addition, once an experiment is
completed, the data may be interpreted either with trial and error forward modeling
using the 2.5-D code or else by direct inversion where the 2.5-D code is but a single
component of a larger inversion package.

In this introductory chapter, in which I will describe the motivation for studying
the mid-ocean ridge by controlled-source electromagnetics, I will present a review
of the electrical properties of the ocean crust and identify some well-known factors
which influence its electrical conductivity, especially in the vicinity of an active ridge.
Then, I will give a brief overview of transient CSEM techniques capable of mapping
seafloor electrical conductivity. Finally, I will present an outline of what is to be found
in the remainder of the thesis.

1.1 Electrical Properties of Oceanic Crust

The major rock units in a cross-section of the top several kilometers of seafloor near
an active mid-ocean ridge, as inferred primarily from studies of ophiolites and the
results of seismic reflection and refraction experiments, typically include a thin layer
of young, unconsolidated sediments, whose thickness depends on crustal age, a 1-2
km thick layer of basalts subdivided into lavas and sheeted dykes directly beneath the
sediments, 4-6 km of gabbros at the base of the oceanic crust and, finally, peridotites
which comprise the upper mantle. Like all rocks, those of young oceanic crust and
upper mantle are assemblages of minerals, with the electrical properties of rocks
depending not only on the kinds of minerals present, but also on the way in which the
minerals are distributed throughout. At fast spreading ridges, a mid-crustal reservoir
containing hot, partially molten material and associated zones of hydrothermal fluid
circulation throughout the upper basalt layer may exist. The electrical properties of
rocks located directly beneath ridges will depend, in addition to the factors already
given, on the amount of fluid or partial melt present, its distribution and temperature.

The electrical properties of a given material include its electrical conductivity
0' and electric permittivity f. Electrical conductivity measures the resistance of a
material to the establishment of long term current flow through it, and is widely vari­
able throughout the earth, spanning many orders of magnitude. Electric permittivity
measures the ability of a material to become polarized by an external electric field E.
The dielectric constant K=€/ fO of most minerals and rocks is in the range 1-100, and
depends on the frequency of the applied field (Keller 1989).

Magnetic permeability Il, although it appears in the governing equations of elec­
tromagnetism, is normally considered to be a magnetic property. Magnetic permeabil­
ity measures the ability of a material to become magnetized by an external magnetic
field H. The permeabilities of most ocean crust materials are close to the free space
value Ilo, except those of rocks containing a great quantity of iron. For example,
the relative permeability /-lr=1l1 Ilo of basalts containing 2 vol% magnetite (Fe3 04)
is Ilr=1.08, and that of basalts containing 5 vol% magnetite is Ilr=1.18 (Carmichael
1989). The relative permeabilities of gabbros and peridotites, and their typical mag­
netite contents, are similar to those quoted above.

The spatial variations in magnetic permeability Il throughout oceanic crust are
not sufficiently large to have an appreciable effect on seafloor electromagnetic measure­
ments, although it should be noted that the magnetic exploration technique produces
data whose interpretation is very sensitive to small changes in permeability. In addi­
tion, due to the low frequencies W<,O' / f used in seafloor CSEM, measurements do not
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depend on spatial variations in electric permittivity (Keller 1987). The large spatial
variations in electrical conductivity, on the other hand, strongly influence electro­
magnetic responses. In view of this, the electrical conductivity of minerals and rocks
deserves to be examined in greater detail.

H a sample of conducting material is placed in an external electric field E, a
current will flow in the material. The current density J depends on the electrical
conductivity, as summarized by Ohm's Law:

J = l1(r, E)E (1.1)

In equation (1.1), l1 is the electrical conductivity tensor, and must be determined
empirically. H the material is found to be linear and isotropic, the conductivity
tensor reduces to the scalar quantity l1(r). The vast majority of minerals and rocks
are linear but anisotropic, nonetheless, for large fonnations in which the constituent
rocks may not be systematically aligned, it is common to write Ohm's Law in its
simplest form

J = u(r)E. (1.2)
The units of electrical conductivity, derived from the MKS units of E and J, are
siemens per meter (S/m).

Minerals may be divided into metallic conductors, semiconductors and solid elec­
trolytes. The various conduction mechanisms, which are described below, are dis­
cussed in far greater detail in Keller (1987). Values for rock conductivities that are
given below have also been taken from this reference.

To start with, native metals, which have been found among hydrothennally al­
tered sufides at the mid-ocean ridge (e.g. Hannington et.al. 1988), are rare but
extremely conductive. For instance, the conductivity of native copper is 3.0x106­

8.0x107 S/m. Graphite is a strongly anisotropic metal: the conductivity of graphite
is about 2x 106 Sim if J is parallel to the basal cleavage but can be two orders of
magnitude less if J is perpendicular to the basal cleavage. In semiconductors, a few
eV of activation energy is required to move a charge carrier from one atom to the
next, effectively reducing the electrical conductivity relative to that of metals. The
activation energy may be supplied e.g. by heating the mineral. Sulphides and oxides,
a group which includes many economic ore minerals, are semiconductors with elec-
trical conductivity in the range 10-4~l1~106 S/m; they can become as conductive as
true metals at sufficiently large temperatures.

Most rock forming minerals are solid electrolytes. Electrolytic conduction in
solids proceeds via the motion of ions, under the influence of an applied E field,
through the crystal lattice. It is the result of defect3 in the lattice that ions are
provided for conduction. The conductivity of solid electrolytes depends on the ion
mobility, which is the apparent velocity under an applied field of strength 1 V1m, the
number density of the charge carriers and also temperature, since thermal agitation
can displace ions from their normal positions.

The conductivity of solid electrolytes as a function of absolute temperature T
has been found from laboratory measurements to be of the following form:

(1.3)

where Al and A2 are constants, k=1.381x10-23 J/deg is Boltzmann's constant, and
U1 and U2 are identified as activation energies. Basalts, gabbros and peridotites are
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all solid electrolytes and values for their parameters Ai and Ui are given in the table
below (Keller 1987):

Al A~ UI U2
gabbro 0.78/m 10 81m 0.70 eV 2.2 eV
basalt 0.7 107 0.57 2.0
peridotite 4.0 107 0.81 2.3.

Seawater is an aqueous electrolyte, i.e. under an applied E field, its constituent
cations and anions are accelerated in different directions. High temperature lowers
the viscosity of the seawater, which raises the ion mobility and therefore its electrical
conductivity. The conductivity of porous rocks depends primarily on the amount
of water present, its distribution and temperature. The amount of water present in
a rock is governed by its porosity, which is the volume fraction of void space. The
distribution of water in the rock is governed by its texture, which is a description of the
pore geometry. In order to conduct electricity, the pore spaces must be interconnected
and filled with water. An empirical formula relating conductivity to porosity in fully
saturated rocks is given by Archie's Law (Keller 1987):

u = auw W m (1.4)

where U w is the conductivity of the aqueous electrolyte, W is the fraction of the
volume of pore space to the total volume of the rock and a and m are empirically
determined parameters. There is a large scatter in the (u, W) data which is due not to
experimental uncertainties but to variability in the texture of porous rock. In young
oceanic crust, textures may range from the inter-granular space in marine sediments
to the large, poorly interconnected structures (vesicles, vugs, drained pillows, etc.)
with high (20-40 %) porosity that are commonly found in the extrusive volcanics.

For partially saturated rocks, Archie's Law is modified to

u = auwsn()m (1.5)

where n~2 is empirically determined, S is the fraction of the pore volume filled with
aqueous electrolyte and () is the volume fraction of void space in the rock. Archie's Law
holds provided the rock is minimally saturated: there must be at least a continuous
thin film of water over all the grain sunaces in the rock, but the entire pore volume
need not be filled with water as in the case of fully saturated rocks.

Pertaining to regions where melt co-exists with solid, such as in the mid-crustal
reservoir beneath fast spreading ridges, and using simple geometric models of partially
molten rock, Waff (1974) has derived relationships between the effective conductivity
u* of a two-phase melt/solid system and melt fraction ¢> and connectivity. The
best possible bounds u _ ~u*~u+ for the effective conductivity are referred to as the
Hashin-Shtrikman bounds (Schmeling 1986) and are given by

(
1 1-<1»-1

u_ = Us + <I> +--
u m - U 8 3us

(1.6)

(
1 ¢ )-1

U+ = U m + (1 - ¢» + -
Us - U m 3um

(1.7)
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where U m is the conductivity of the melt phase and Us is that of the solid phase. The
lower bound u _ corresponds to dry rocks or to a completely unconnected melt, such
as isolated melt pockets at grain triple junctions, while the upper bound u+ applies
when the melt is completely connected, such as fluid-filled tubes or films along grain
interfaces. The Hashin-Shtrikman bounds are valid for two phase material that is
macroscopically homogenous and isotropic.

Although this section of the thesis has been largely descriptive in nature, nu­
merical estimates of the electrical conductivity of various, proposed mid-ocean ridge
structures can be found in §2.3.

1.2 Seafloor Transient CSEM Techniques

In order to determine an electromagnetic response of the earth at the seafloor, and
thereby enable mapping of the sub-surface conductivity, a source of electromagnetic
energy must be available and receivers must be deployed. The seafloor magnetotelluric
method (MT) is the oldest and most established technique. It uses fluctuations in
the natural ionospheric electric currents as the source of electromagnetic energy, and
seafloor electric and/or magnetic field sensors as receivers. A typical MT response
function R(w) that can be extracted from the data consists of a horizontal component
of the magnetic field divided by the orthogonal horizontal electric field component e.g.
R(w)=By(w)/Ex(w), measured as a function of frequency. If the conductivity of the
earth u( z) is assumed to vary only with depth z, the response function R(w) at a given
frequency can be inverted to give a value for electrical conductivity that is averaged
over a certain, frequency-dependent range of depths ~z (Parker 1970).

Seafloor MT measurements are, however, of limited use for determining the con­
ductivity of oceanic crust, because of the following facts. On the deep seafloor, far
from coastlines, the amplitudes of all frequency components of the natural electro-
magnetic field greater than about 10-2 Hz are severely attenuated, with respect to
their values at the sea surface, due to the presence of the overlying, conducting ocean.
Also, at very low frequencies f~10-4 Hz, electromagnetic fields induced in the oceans
by internal waves, tides and currents contaminate the field of ionospheric origin. As
useful indicators of the sub-surlace conductivity structure, MT response functions are
therefore band-limited to the two or three intermediate decades of frequency 10-2­

10-4 Hz (Constable 1990). These frequencies are such that electrical conductivity
profiles constructed by direct inversion of seafloor MT data best resolve earth struc­
ture at depths of 50-200 kilometers, which is well into the upper mantle (Oldenburg
1981). But the targets of interest to the geophysicist or mineral explorationist are
often located in the crust. To explore this regime using electromagnetic techniques,
controlled sources activated on the seafloor are suitable since they generate the high
frequency (f~10-2 Hz) signals that are removed from the natural spectrum by the
overlying seawater.

CSEM systems consist of a transmitter, which mayor may not be in direct
contact with the earth, and remote receivers sensitive to one or more components of
the transmitted electromagnetic fields E and B. On land, CSEM systems have for
decades been used throughout the mining industry to locate and assess the extent
of buried mineral deposits. However, a CSEM exploration system that is successful
on land, where the overlying medium is the non-conducting air, may not necessarily
be well-suited to investigate structure beneath the oceans. A good example of the
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incompatibility between land-based and marine instrumentation is illustrated by the
Slingram system, which consists of co-planar transmitter and receiver loops at fixed
separation, and is commonly used for mineral exploration on land. On the seafloor,
where the overlying medium is higWy conductive seawater, the Slingram system is
unlikely to produce data sensitive to the more resistive earth (Cheesman et. ale 1987),
since it measures the vertical component of the magnetic field, a quantity which
vanishes at the surface of a good conductor. The fact that only certain electromagnetic
systems, when deployed on the seafloor, are sensitive to seafloor conductivity, plus
the fact that equipment must be engineered to withstand high pressures and rough
treatment on the sea bottom, clearly indicates that the design of a seafloor system
must carefully take into account factors relating to the unique environment in which
it is to be deployed.

Most electromagnetic measurements are made in the frequency domain, that is,
the transmitter current let) is harmonic in time, i.e. proportional to exp(iwt), and the
measurements are expressed in terms of field amplitudes and phase shifts relative to
a prescribed "primary" electromagnetic field (e.g. Grant and West 1965). Recently,
however, it has been recognized that in some instances time domain measurements
offer practical advantages over frequency domain measurements (Swift 1987), even
though the total information contents of both sets of measurements are, in principle,
identical. A single transient waveform is obtained with less effort than it takes to
record the frequency responses for many different values of transmitted frequency w,
but the wide-band time domain measurement is more susceptible to noise, which can
be filtered out of a frequency domain measurement (Swift 1987).

A simple transient CSEM system consists of a transmitter carrying a current let)
which is stepped on from zero to a steady value at time t=O and a remote receiver
which is sensitive to one or more components of the resultant fields E(t) and B(t).
The shape of the response curve, i.e. the actual quantity that is measured by the
receiver, is often indicative of the electrical conductivity along a path between the
transmitter and the receiver. For example, Edwards and Chave (1986) have analyzed
the theoretical response from a seafloor in-line electric dipole-dipole (ERER) configu­
ration when it is deployed over a uniform earth. They noted that a peak in the ERER
response 8t E x (t) due to diffusion of electromagnetic fields through the resistive crust
occurs at relatively early times after step-on while a later peak in the response is
due to diffusion through the much more conductive ocean. A typical transient CSEM
response curve corresponding to a double half-space conductivity model is shown
plotted as squares in Figure 1.1. The two characteristic peaks seen in the response
curve are well separated in time and are diagnostic of the electrical conductivities of
the earth and the sea, respectively. Cheesman et.al. (1987) discovered a similar result
for a seafloor co-axial horizontal magnetic dipole-dipole (HRHR) configuration, and
further commented that the response from an idealized Slingram system consisting of
co-planar vertical magnetic dipoles (HZHZ) is insensitive to the least conducting of
the half-spaces, which is almost always the seafloor. The conclusion drawn by these
authors is that transient ERER and HRHR systems are well-suited to the determina­
tion of seafloor conductivity in the most common instance where the seafloor is less
conductive than the seawater. Systems of these types have already been designed,
built and tested at sea (Cheesman et.al. 1990, Everett et.al. 1989), and behave as
predicted by the theory.

In heterogenous environments, transient CSEM data interpretation is made easier
once the robustness of the first peak arrival time as an indicator of seafloor conduc­
tivity is recognized. The effect of a non-uniform seafloor electrical conductivity in the
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vicinity of the transmitter on the first peak arrival time is of direct relevance to the
interpretation of marine CSEM data collected in many places, e.g. near a mid-ocean
ridge, a coast or even a crack in the seafloor. A theoretical analysis (Everett et.al.
1989) of the responses from a pair of simple heterogenous conductivity models serves
to illustrate the point, which will be taken up again in much more detail in later
chapters of this thesis. The presence of a shore line attenuates the CSEM response
8t E x (t) slightly but does not significantly alter either the crustal or direct seawater
arrival times at the receiver, Figure 1.1. If there is a crack in the seafloor between
the transmitter and receiver, the early signal arrival is delayed and its magnitude
greatly attenuated by the presence of highly conductive seawater in the crack, Figure
1.2. The response curves of Figure 1 are calculated, and may be interpreted, using
the theory and numerical methods developed in Chapters 3 and 4 of this thesis. The
manner by which transient CSEM responses are altered in the presence of mid-ocean
ridge structures such as the magma chamber and associated zones of hydrothermal
circulation is the focus of Chapters 5 and 7 of this thesis, and is in fact the principal
raison d'etre of the thesis.

1.3 Outline of the Thesis

The remainder of the thesis is organized as follows. In the next chapter, I will present
a review of mid-ocean ridge geology and electrical conductivity. In Chapter 3, I will
review some necessary electromagnetic theory, present solutions to simple electro­
magnetic boundary value problems of relevance to marine geophysics, and develop
some diagnostics for determining the sub-surface electrical conductivity from these
solutions. In Chapter 4, I will outline the development of a numerical method based
on finite elements to solve 2-D transient electromagnetic boundary value problems.
In Chapter 5, I employ the finite element method to solve ridge-related problems,
in particular a feasibility study for doing transient CSEM experiments at an active
seafloor spreading site is undertaken. In Chapter 6, I outline an extension of the nu­
merical method to handle a finite source, which solves the so-called 2.5-D problem,
and in Chapter 7 I will present results from a model study of the mid-ocean ridge to
illustrate the utility of this more advanced code. Conclusions drawn from the work
are presented in the final chapter.

References

Carmichael, R.S., 1989. The magnetic properties of minerals and rocks, in (ed.
Carmichael, R.S.) C.R. C. Practical Handbook of Physical Properties of Rocks
and Minerals, C.R.C. Press Inc., Boca Raton, FL.

Cheesman, S.J., R.N. Edwards and A.D. Chave, 1987. On the theory of sea-floor
conductivity mapping using transient electromagnetic systems, Geophysics, 52,
204-217.

Cheesman, S.J., R.N. Edwards and L.K. Law, 1990. A test of a short-baseline sea­
floor transient electromagnetic system, Geophys. J. Int., 103, in press.

Constable, S.C., 1990. Marine electromagnetic induction studies, Surv. GeophY3.,
11, 303-327.

7



Edwards, R.N. and A.D. Chave, 1986. On the theory of a transient electric dipole­
dipole method for mapping the conductivity of the sea floor, Geophysics, 51,
984-987.

Everett, M.E., R.N. Edwards, S.J. Cheesman, H. Utada and I.J. Ferguson, 1989. In­
terpretation of seafloor electromganetic data in applied geophysics, in (ed. Miya,
K.) Applied electromagnetic in materials, Pergamon Press, Oxford UK, 143-153.

Grant, F.S. and G.F. West, 1965. Interpretation theory in applied geophysics,
McGraw-Hill Book Co., New York NY.

Hannington, M.D., G. Thompson, P.A. Rona and S.D. Scott, 1988. Gold and native
copper in supergene sulfides from the Mid-Atlantic Ridge, Nature, 333, 64-66.

Keller, G.V., 1987. Rock and mineral properties, in (ed. Nabighian, M.N.) Electro­
magnetic Methods in Applied Geophysics, Society of Exploration Geophysicists,
Thlsa OK, 13-51.

Keller, G.V., 1989. Electrical properties, in (ed. Carmichael, R.S.) C.R.C. Practical
Handbook of Physical Properties of Rocks and Minerals, C.R.C. Press Inc., Boca
Raton, FL.

Oldenburg, D.W, 1981. Conductivity structure of oceanic upper mantle beneath the
Pacific plate, Geophys. J. R. Astr. Soc., 65, 359-394.

Parker, R.L., 1970. The inverse problem of electrical conductivity in the mantle,
Geophys. J. R. Astr. Soc., 22, 121-138.

Schmeling, H., 1986. Numerical models on the influence of partial melt on elastic,
anelastic and electrical properties of rocks. Part II: electrical conductivity, Phys.
Earth Planet. Int., 43, 123-136.

Swift, C.M. Jr., 1987. Fundamentals of the Electromagnetic Method, in (ed.
Nabighian, M.N.) Electromagnetic Methods in Applied Geophysics, Society of
Exploration Geophysicists, Tulsa, OK, 5-10.

Waff, H.S., 1974. Theoretical considerations of electrical conductivity in a partially
molten mantle and its implications for geothermometry, J. Geophys. Res, 79,
4003-4010.

8



4.0
,,-....,

ITX arysea se!l
r-
I R% Tx Rx
0

6\\~

~ earth earth

~ 2.0

'fa ~
~

C'IJ

"- r\\S

l-~"- \~\ .:>
I.-....: 0 a..- V II II

~
Q
"-
~

~

C
"-2.0

!

10-4 10-3 10-2 10-1 100 10 1 -10 2

TljyfE [s]

Fig.l.l .~ typical transient CSEM response (squares), in
this case the time derivative of a horizontal electric
field component 8t E x (i), as it might be measured by a
seafloor receiver. The first peak is due to electromag­
netic energy diffusing from a line source Tx through
the earth to a receiver Rx. The second peak is due
to energy diffusing through seawater. The shape of
the response is not altered greatly if the transmitter
is deployed near a shoreline and the receiver is placed
further off-shore (triangles).



- 2.0 ~_J..,;,.,L.UJ,I,L__J_.........~__L.._..........~_'__'_...........~..._.....................w__..___.....-...-..

10-4 10-3 lO-Z. 10-1 10° 10 1 102

TIME [5]

sea
Rx

sea

4.0 ,-.------------------,1 Tx

earth

o

2.0

Fig.l.2 The presence of a crack in the seafloor between
the transmitter and receiver attenuates the first peak
in the response curve 8t E x (t).



Chapter 2

Mid-Ocean Ridge Geology
and Electrical Conductivity

2.0 Introduction

New oceanic crust is being formed along active segments of the global mid-ocean

ridge (MOR) system. The spreading rates are as high as 18 cm yr-1 . The presence

of an axial magma chamber and associated zones of partial melt and hydrothermal

activity located up to several kilometers beneath the seafloor at these locations is

central to almost all recently proposed theories of crustal formation. Seismic images

of the top few kilometers beneath the fast spreading East Pacific Rise (EPR) near

9-13°N have already been obtained. Multi-channel reflection profiles place strong

constraints on the geometry of the axial magma chamber but refraction data provide

only coarse estimates of the sub-surtace temperature, distribution of partial melt and

porosity, parameters required to distinguish between proposed petrological models of

the ridge. Electrical conductivity is a strong indicator of all these critical parameters

and therefore controlled-source electromagnetic (CSEM) methods are well-suited to

improve the estimates and help characterize the ridge environment.

Before describing in later chapters results from numerical modeling to support

this claim, in this chapter I wish to review mid-ocean ridge geology and the elec­

trical conductivity of mid-ocean ridge structures, in part to motivate the study of

active electromagnetics at the ridge and in part to provide a framework from which

geo-electrical models of the ridge may be constructed. To preface the discussion, a

schematic EPR cross-section based on the interpretation of the seismic reflection data
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is shown in Figure 2.1a. A more recent interpretation which tal<es into account both

the reflection and refraction data is shown in Figure 2.2.

2.1 A Rapid Overview of the Geology

Ocean crust formation along active ridge segments, an essential feature of plate

tectonics, begins as ascending partial melt supplied from 30-60 km deep within the

mantle enters a crustal reservoir, where it undergoes low-pressure chemical differen­

tiation processes and mixes with resident, more evolved magmas (Langmuir, Klein

and Plank 1991). After occupying this reservoir, the axial magma chamber, for a

length of time which depends on the supply rate, some of the contents are extruded

onto the seafloor within a very narrow 1-2 km wide neo-volcanic zone centered on

the ridge axis. At the start of a volcanic cycle, eruptions are in the form of sheet

flows but as material accumulates above the magma chamber, direct conduits to the

seafloor become increasingly rare. Magmas subsequently extruded from the chamber

are forced through networks of cracks and fissures in the growing volcanic edifice and

those that reach the seafloor emerge as pillow lavas (MacDonald 1982). The result is

a complex of sheeted dykes and overlying pillow lavas which comprises the top 1-2

km basaltic layer of very young oceanic crust; this layer is also referred to as seismic

layer 2. Further down, the magma remaining inside the chamber begins to cool. The

material in the coldest part of the chamber, usually close to the edges, crystallizes

into gabbros. This leads to the formation beneath the upper basalts of a 4-6 km thick

base layer of gabbros, seismic layer 3. The newly created layers of crust then migrate

away from the ridge axis under the influence of tectonic forces.

Stress caused by the horizontal acceleration of the crust away from the ridge

axis produces crustal fissuring aligned along-axis. At fast spreading ridge segments,

fissures are typically 1-3 m wide and are most intense in 1-2 km wide bands at the

edges of the neo-volcanic zone (MacDonald 1982). Since the fissures are observed on
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the seafloor, a fact established during manned submersible observations, cold seawa­

ter is able to penetrate the crust. The seawater temperature rises with its depth of

penetration due to the presence of the hot, underlying magma chamber. The mag­

matic heat source is of sufficient size and temperature to drive a vigorous circulation

of seawater and dissolved minerals throughout the upper basalts. To complete the

circulation, hot hydrothermal fluids are discharged within several hundred meters of

the ridge axis through vents. MOR hydrothermal activity transfers heat from the

magmatic intrusion across the seafloor into the oceans (Lister 1980).

The global mid-ocean ridge involves complex interactions among a number of

processes occurring over wide ranges of depths and spatial scales, including melting

of the earth's mantle, delivery of the molten rock to the crustal magma chamber,

cooling of the magma intrusion by hydrothennal circulation and volcanic eruption,

chemical exchange between the hot rock surrounding the magma chamber and the

overlying seawater, and even the establishment of exotic biological communities near

the vents (Munk et.al. 1988). However, amongst these, the features of the mid-ocean

ridge that are readily accessible to transient CSEM exploration, as it is discussed in

this thesis, are located at crustal levels and include the axial magma chamber and

associated zones of partial melt and hydrothermal activity. After a brief discussion on

the deep structure of the ridge, which shapes the geo-dynamics at all other levels, I will

examine some of the geophysical evidence that has led to our current understanding

of the major crustal features. This is done in order to characterize the ridge in three

dimensions on the appropriate 1-10 kilometer length scale.

2.2 Mid-Ocean Ridge Geophysics

How melt gets from its mantle source region into the crustal reservoir, and the

time it takes to do so, are open questions and a focus of ongoing research into the

fundamental nature of the deep structure of the ridge by marine geologists and geo-
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physicists worldwide (Phipps Morgan and Delaney 1991). Obtaining answers is made

the more difficult by the fact that the geometry and melt fraction of the mantle

melting region beneath the ridge, or indeed beneath any other tectonically active

zone, is not well constrained by the sparse seismic and magnetotelluric data avail­

able (Shankland et.al. 1981). Possible mechanisms by which melt segregates from

and rises through a residual mantle matrix to eventually concentrate into the narrow

(2-6 km wide) crustal accretion zone at the base of the lithosphere have been ex­

plored through the use of numerical models of two-phase porous flow in a deformable

matrix (Scott and Stevenson 1989, Buck and Su 1989, Spiegelman and MacKenzie

1987, Phipps Morgan 1987), geo-chemical analyses of dredged mid-ocean ridge basalt

(MORB) samples (Langmuir et.al. 1991), studies of mantle flow patterns fossilized in

the Samail ophiolite of Oman, a volcanic outcrop believed to be the remnant of an an­

cient oceanic spreading center (Rabinowicz et.al. 1987), and laboratory experiments

on two-phase silicate liquid/olivine mixtures (Riley et.al. 1991). Debates concerning

the deep structure will almost certainly not be settled without the input of additional

seismic and MT data.

For many years, the existence of a mid-crustal magma chamber beneath fast

spreading ridges has been inferred from the study of ophiolite analogues and MORB

geo-chemical systematics. More recently, geophysical evidence for a magma chamber

has come from seismic studies. Multi-channel seismic reflection profiles from between

8°50'N-13°30'N across and along the EPR axis have revealed in many places, most

notably at 9°30'N, the presence of a strong reflector 4-6 km wide at depths of 1.2-2.4

km beneath the seafloor. The reflector has been interpreted as the top of a crustal

magma chamber (Detrick et.al. 1987). The width of the reflector may however be as

little as 0.8-1.2 km wide, according to forward ray-tracing models of the diffraction

hyperbolae that appear around the reflector's edges in the common-mid-point stacked

sections (Kent et.al. 1990). The floor of the chamber could not be imaged by the

reflection data but the top could be traced in along-axis profiles as a continuous
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reflector for tens of kilometers between ridge axis discontinuities. When added to the

reflection data just described, expanding spread profiles (ESPs) from 13°N (Harding

et.al. 1989) are consisent with a small, transient axial magma lens of high melt

fraction ponding atop a much larger permanent region of hot rock containing only

isolated pockets of melt. This latter region, centered on the axis, might extend to 20

km wide at the base of the crust.

The along-strike variability of the magma chamber can not be neglected in an

accurate view of the mid-ocean ridge at the 1-10 kilometer length scale. A recent

seismic tomography experiment (Toomey et.al. 1990) centered on the EPR at lat­

itude g030'N has produced data indicating that the 3-D seismic velocity structure

of the crust shows along-axis heterogeneity over distances of a few kilometers. The

inferred structure is consistent with injection of mantle-derived melt midway along

the linear segment of the ridge between the Clipperton Fracture Zone and the g003'N

overlapping spreading center. The viewpoint emerging from the EPR tomographic

results, which provide the first 3-D seismic images of the crust beneath the ridge

but are limited to 1 km resolution, is that ridge segmentlJ define discrete magmatic

units. The same conclusion may also be inferred from gravity data collected over the

Mid-Atlantic Ridge (MAR). On this slow spreading ridge, mantle Bouguer anomalies

show gravity lows centered on all six of the segments surveyed by Lin et.al. (1990).

On the basis of high resolution bathymetric data from the EPR, MacDonald et. ale

(1988) have also proposed that ridge segmentation is defined by sources of partial

melt: segments with an axial magma chamber, broad cross-section and a summit

graben are shallow and swollen with magma; those without a magma chamber or

graben and possessing a narrow cross-section are deeper and starved of magma.

Mid-ocean ridge axial topography is strongly influenced by spreading rate (Phipps

Morgan et.al. 1987). Extensional stresses caused by the horizontal acceleration of the

strong, brittle lithosphere that thickens with distance from the ridge axis can generate

both the kilometer-scale relief observed on slow (5-25 mm/yr) spreading ridges and
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the lack of appreciable relief that is observed on fast (>45 mm/yr) spreading ridges.

Relief at ridge hot spots (e.g the Reykjanes Ridge) and at ridge discontinuities is prob­

ably more dependent on the distribution of partial melt beneath the ridge than on

spreading rate. The width of the axial valley, 30 km wide at slow spreading ridges and

zero at fast spreading ridges, is controlled by plate thickness (Phipps Morgan et. ale

1987). Surveys of the EPR near 12°50'N by a submersible (Choukroune et.al. 1984)

and near 3°25'S by a deeply-towed instrument package (Lonsdale 1977), and others,

have identified an active tectonic zone comprising the central volcano and extending

up to about 2 km from either side of the ridge axis. Beyond this is a tectonically

inactive horst and graben zone that is formed by tensional faulting and evolves by

progressive shearing on inclined fault planes. Pelagic sedimentation, which occurs on

the 3°25'8 site at a maximum rate of 22 m/106 yr (Lonsdale 1977), gradually infills

open fissures and smooths the roughness of the fault blocks.

Hydrothermal circulation in the ocean crust can be divided into two zones: active

circulation is restricted to the spreading axis and passive circulation occurs off-axis.

In the active zone, convecting seawater penetrates the crust and cools the crystallizing

magma chamber. In the passive zone, heat is transferred to the seawater principally

by conduction from below and the circulation is less vigorous. Alt et.al. (1986)

have reconstructed in detail the mineralogy and chemistry of the hydrothermally

altered basalts as a function of distance from the spreading axis based on analyses of

samples from the upper 1 km section of oceanic crust at the Deep Sea Drilling Project

(DSDP) Hole 504B site, and have verified the above classification scheme. A general

feature associated with hydrothermal circulation is that the seawater temperature

rises with the depth of penetration (Bowers and Taylor 1985) due to the presence of the

underlying magma chamber. Hot (~ 350°C) hydrothermal fluids may be discharged

within several hundred meters of the ridge axis through vent fissures (Ballard et.al.

1984). At these high-temperature vent openings, the dissoved minerals come into

contact with cold seawater and some of them precipitate out of the hydrothermal
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solution, forming polymetallic sulfide deposits on the seafloor.

Although little is known about the spatial distribution of the sub-seafloor por­

tions of ridge hydrothermal systems, ESP data from the East Pacific Rise between

9-10o N suggest that the maximum penetration depth of the active, axial hydrother­

mal circulation occurs probably a few hundred meters above the dike-gabbro (seismic

layer 2-layer 3) transition (Vera et.al. 1990). Two-dimensional numerical mod­

els of the fluid flow in MOR hydrothermal systems have examined the influence of

magma chamber geometry on the spatial extent and vigour of hydrothermal circu­

lation (Brikowski and Norton 1989). If the geometry of the magma chamber is like

that inferred from the seismic multi-channel reflection data (Detrick et.al. 1987), the

numerical results suggest that active hydrothermal upflow and hot springs are con­

centrated within 1.5 km of the ridge axis. Based on 6180 isotopic analyses of samples

from the Samail ophiolite, off-axis, passive hydrothermal circulation may penetrate

to the base of the crust (Gregory and Taylor 1981). However, marine geologists treat

this observation with caution since structure inferred from ophiolitic crustal sections

may not necessarily correspond to structure found in present-day oceanic crust. The

Samail ophiolite, located in Oman, is believed to be a fossilized, outcropping fragment

of an ancient seafloor spreading center that has been thrust to the earth's surface.

2.3 Electrical Conductivity

In any setting, the formulation of an electrical model of the earth requires a

synthesis of the geological information and the results of conductivity measurements

made either in the laboratory or in situ on the prevalent rock types. In this section

of the thesis, I will examine some of the published electrical conductivity data that

in §2.4 will be applied towards the development of an electrical model of the ridge.

Many factors that control the electrical conductivity of the materials in active

MOR environments have been identified. The electrical conductivity of seawater de-
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pends on temperature, pressure and salinity. Although there is a slight increase near

the seafloor due to pressure, the electrical conductivity at 42.5°N in the Pacific Ocean

is approximately constant and equal to 3.2 S/m below the main thermocline (Chave

and Luther 1990). In the uppermost few hundred meters of the crust, the amount of

fracturing, the presence of seawater in these fractures and the size and connectedness

of the fluid passages determines the electrical conductivity. From a large-scale resis­

tivity experiment at the DSDP Hole 504B site, the in situ electrical conductivity of

the pillow lavas is about 0.1 S/m (Becker et.al. 1989). The conductivity at this site

falls off by a factor of 100 in the sheeted dikes near the base of seismic layer 2. The

decrease in conductivity with depth is expected since fractures do not form or close

under increasing pressure. Since Hole 504B was drilled into 5.9 Ma crust and hence

may have experienced crack sealing by precipitates from a cooling hydrothermal sys­

tem, the electrical conductivity of younger and hotter basalts closer to a spreading

axis may exhibit a much less dramatic decrease in electrical conductivity at the base

of layer 2. In regions where hydrothermal circulation is most pronounced, the electri­

cal conductivity will be enhanced with respect to that of drier, less fractured basalt,

although by how much will depend on the water/rock ratios. Based on seafloor elec­

trical measurements made from the submersible Cyana on a seamount close to the

EPR axis (Francis 1985), the electrical conductivity of sulphide deposits has been

found to be generally one to two orders of magnitude greater than that of the sur­

rounding pillow basalts and at one site it even exceeded the electrical conductivity of

the overlying seawater.

The electrical conductivity of dry gabbros ranges from 10-5 S/m at 500°C to

nearly 0.01 S/m at 1000°C (Kariya and Shankland 1983). The electrical conductivity

of magmatic liquids is 3-4 orders of magnitude greater than their refractory residues

(Waif and Weill 1975), and a relatively small amount of partial melt can dominate the

bulk conductivity. The effect on the melt conductivity due to changes in the oxygen

fugacity 102 can be neglected. As oxygen fugacity increases, the oxidation state of Fe
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changes from predominantly Fe2+ to Fe3+. The electrical conductivity of magmatic

melt ranges from about 2.5-6.0 Sim as temperature increases from 1200°C to 1500°C

(Waff and Weill 1975), with compositional variations of the melt accounting for much

less than an order of magnitude variation in the electrical conductivity.

Large conductivity anomalies from magnetotelluric measurements in tectonically

active areas (e.g. the mid-ocean ridge) cannot be explained by the laboratory electri­

cal conductivity data on solid crystalline olivine (Shankland and Waff 1977), there­

fore the need to invoke the presence of partial melting in the upper mantle is strong.

Laboratory measurements of the electrical conductivity of molten basalts at mantle

pressures of 25 kbar and temperatures 1200°C~T~1400°Cseem to require partial

melting of the order 4>2::5-10% in order to explain the MT conductivity anomalies in

terms of the partial melt hypothesis (Tyburczy and Waff 1983). However, a given

field measurement of conductivity u in a tectonic zone may be due to either rock at

high temperature T and small melt fraction 4> or at low T large </J. The electrical

conductivity of a dunite, a rock composed primarily of the. mineral olivine, under

controlled oxygen fugacity is 10-6 Sim at 800°C and 10-3 Sim at 1400°C (Consta­

ble and Duba 1990). An upper mantle conductivity of 10-5 Sim has been inferred

(Cox et.al. 1986) based on controlled-source electromagnetic data. This value, in­

ferred from data collected over 25 Ma tectonically inactive oceanic lithosphere, might

increase closer to the ridge.

According to the above information, there probably exist large contrasts in elec­

trical conductivity beneath an active ridge segment. This gives rise to expectations

that electromagnetic methods, which exploit such contrasts, can provide an electrical

image of the sub-surface.

2.4 Ridge Geo--Electrical Models

Major structures found beneath a fast spreading center, as inferred from geophysical
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and geological information, are illustrated in Figures 2.1a and 2.2. Simplified 2-D

electrical conductivity models based on mid-ocean ridge geology are shown in Figures

2.1b and 2.3a-d. The electrical models consist of polygonal representations of the ge­

ological structures, with the electrical conductivity u of each polygon assumed to be

uniform and its value selected on the basis of the available data, which is summarized

in §2.3. Although the models are only approximate representations of the true electri­

cal conductivity structure beneath a fast spreading mid-ocean ridge, they are useful

as preliminary models by which to attack forward modeling problems. As electro­

magnetic and other geophysical data becomes available from sea-going experiments,

the models without doubt will stand in need of refinement.

Figure 2.1a, in particular, shows a simplified geo-electric cross-section of the

East Pacific Rise near 9°N. This latitude corresponds to a site of recent multi-channel

seismic reflection surveys and is the location where the axial magma chamber is seis­

mically best resolved. The geometry shown is adapted from Figure 6 of Detrick et. ale

(1987). Figure 2.1b shows a conductivity model based on the geologic cross-section. If

a controlled-source experiment were to be done at this location, electromagnetic sig­

nals could, for example, be generated at some source location (Tx) and the associated

electric and/or magnetic field recorded at various seafloor locations (A-D) across the

ridge. The magma chamber depicted in Figure 2.1b has an electrical conductivity of

u=1.0 S/m and represents a region of about 60% basaltic melt at 1200°C (Shankland

and Waff 1977).

In Figure 2.2, the geometry from gON has been modified to take into account

new seismic data from expanding spread profiles (ESPs) (Harding et.al. 1989). The

region of high melt fraction is restricted to a thin lens at the top of a much larger,

broader region of hot rock containing only isolated pockets of melt. Figure 2.3a

shows a quasi-layered oceanic crust, the region of hot rock is added as a broad zone

of conductivity u=0.05 S/m in Figure 2.3b. This conductivity value represents 1-2%

partial melt at 1200°C. The thin lens of completely molten material, assigned u=4.0
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S/m, is represented in Figure 2.3c. In Figure 2.3d three bands of conductivity 0"=0.3

S/m are added to account for axial hydrothermal circulation throughout the upper

basaltic sequence, reflecting the fact that the conductivity in the hydrothermal regime

will be enhanced with respect to that of dry layer 2 basalts. The bands may not reflect

any true structure beneath the ridge, but are simply representative of regions where

the spatially averaged electrical conductivity is larger than surrounding regions due

to an increased fluid/rock ratio.

In Chapter 5, I will find transient electromagnetic responses of the mid-ocean

ridge goo-electric models shown here. The responses are calculated using a finite

element numerical procedure, described in the next two chapters of this thesis, which

solves the governing electromagnetic diffusion equations.
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Chapter 3

2D Analytical Modeling

3.0 Electromagnetic Source Equations

In the presence of matter or in vacuo, the laws of macroscopic electromagnetism are

quite often and conveniently expressed in terms of the divergence and curl of the

electric field E [V.m- l ] and the magnetic induction B [T] vectors. According to the

Helmholtz theorem of vector calculus, knowledge of the divergence and curl of these

vectors gives a complete description of the electromagnetic field throughout space.

The theorem provides that if V·F and VxF are known throughout a finite region

and vanish elsewhere they suffice to uniquely determine an arbitrary vector field F.

For this reason, V·F and VxF are called the sources of F. Maxwell's equations,

which have been abstracted from the results of fundamental experiments including

those performed by Ampere during the period 1821-25 and Faraday in about 1831,

are expressions for the sources of the electromagnetic fields (E, B):

V·B=O

aB
VxE=-­

8t
aE

V x B = pO"(r)E + pls + P! at

(3.1)

(3.2)

(3.3)

(3.4)

where Pch [C·m-3] is the volume electric charge density and Js [A·m-2 ] is the applied

current density, which is that arising from the flow of charges other than by conduc­

tion. Often, the experimenter has direct control of the applied current density, i. e.
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by sending currents through wires with the use of batteries (Wangsness 1979). The

above equations are valid only in media which are linear, isotropic and homogenous

(l.i.h.) with respect to electric permittivity f [F.m- I ] and magnetic permeability It

[H·m- I ] and linear and isotropic with respect to electrical conductivity l1(r) [S·m- I ].

That is, the quantities f and It are scalar constants, characteristic of the material,

while the quantity 11(r) may vary with position. Hereafter, I will restrict attention

to media which have the above properties plus l1(r)#O everywhere, at the cost that I

will be unable to model electromagnetic fields as they might occur within air or many

classes of important and common earth materials, e.g. anisotropic conductors such

as graphite or non-linear magnetic materials such as iron.

3.1 Controlled-Sources in the Presence of Earth Conductors

Recall that I have restricted discussion to media whose electrical conductivity is ev­

erywhere non-vanishing. One consequence of this restriction is that, in the absence of

applied currents, pch(r, t)=O for t~Tr, where Tr=f/l1 is the relaxation time. Since the

volume charge density pch decreases with time as Pch=p~he-t/Tr following emplace­

ment of free charge on or within a conductor (e.g. Wangsness 1979), the relaxation

time gives an estimate of the length of time required for the attainment of static

equilibrium due to the dissipation of free charge. The relaxation time is but one time

scale, a diffU3ion time proportional to Ill1X2 where x is a penetration depth into a

conductor will be encountered in §3.6. The diffusion time provides an estimate of the

time scale required for current flow in a conductive medium to reach steady state.

Immediately following a variation in source current, localized, induced conduction

currents are produced near the source such that the electromagnetic fields everywhere

within the conductive medium are maintained at the values which existed immediately

before the source current change. This statement is in accordance with Lenz' Law,

which is an example of Le Chatelier's principle.

I also assume that the electric permittivity and magnetic permeability are every-
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where constant and equal to their free space values:

f = fO = 8.85 X 10-12 F/m
J.l = J.lo = 47r X 10-7 Him

so that the electrical conductivity u(r) is the only electrical property that can vary

from one conductor to another.

In addition, I assume that there are no applied currents either outside the solution

domain n or on its bounding surlace 00, i.e.:

Js(r, t) = 0 r ¢ n, r = ro E an (3.5)

and that an is sufficiently far from applied currents so that to a specified degree of

precision the following holds:

E(ro, t) = B(ro, t) = 0 ro EOn, t > T r • (3.6)

I define a controlled-source as a conductor carrying an applied current whose

density is a precisely known function of position and time. In addition, a controlled­

source must possess a physical analog, i. e. a practical device with an equivalent

current density can be constructed.

The final assumption that I make is that of the quasi-static approximation.

Everywhere within a conductor the following inequality is assumed to be true:

aE
u(r)E ~ tOo at ·

The above relationship, which can be conveniently recast as

aE E
-~-at T r

(3.7)

(3.8)

implies that the electric field inside a conductor is slowly time-varying, such that it

appears to be constant at the time scale defined by the relaxation time T r • The in­

equality (3.8) is valid for most earth conductors (Oristaglio and Hohmann 1984). The
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quantity In=eoE/Ot, appearing in equation (3.4), is often called the displacement

current density. When it is set to zero, the quasi-static approximation is said to have

been made.

3.2 Electromagnetic Diffusion

After incorporation of the assumptions of §3.1, the two Maxwell's equations that

change are, respectively:

v x B = JLol1(r)E + JLoJs .

(3.9)

(3.10)

From equations (3.9) and (3.3) it is evident that the sources of E are the volume

charge density and time variations of the magnetic induction. From equations (3.10)

and (3.2), the sources of the induction B include applied currents and conduction

currents, the latter depending on the electric field. Since E and B are coupled in the

sense that the sources of one field depend on either the value or the time variations of

the other field, equations (3.3) and (3.10) must be solved simultaneously in order to

determine either field. Eliminating E, for example, gives the vector diffusion equation

1 8B [1]
V x u(r) V x B + po at = poV X u(r)Js(t) · (3.11)

The above equation describes the manner by which time-varying applied currents

produce in conductors a magnetic induction B(t). Similarly, eliminating B from

equations (3.3) and (3.10) gives a second diffusion equation:

(3.12)

As described above, the vector diffusion equations (3.11, 3.12) are only valid

within conductors. If two different conductors abut, the diffusion equations hold

separately within each. However, at the interface between conductors there must
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exist a discontinuity in one or more of the electrical properties f, jJ, u(r). On this

interface, the electromagnetic fields satisfy the following conditions:

(3.13)

(3.14)

(3.15)

(3.16)

where it is the unit normal vector pointing from medium 1 into medium 2. In the

equations (3.13-3.16), I have used the notation Bn to represent the scalar product n·B

and Bt , Et to represent the vectors nxB, iixE which are tangential to the surface of

the discontinuity. Also, Uch [C·m-2 ] is the electric charge density on this surface and

Ks [A·m-1
] is its applied current density. In static equilibrium, the surlace electric

charge density Uch at the interface between two conductors may be different from zero

despite the fact that the volume charge density Pch vanishes everywhere within the

conductors.

The electromagnetic response of a system of conductors to controlled-source ex­

citation is described in terms of the solutions to the vector diffusion equations (3.11)

and (3.12). A correctly defined response is one which has a physical analog, enabling

comparisons to be made between theory and experiment. Before a response can be

computed, however, the applied current density Js(r, t) appearing in the RHS of the

vector diffusion equations must be specified. Only electric and magnetic dipoles need

to be considered since, by the superposition principle, they are the building blocks of

controlled-sources. I shall now examine the two types of dipole in greater detail.

3.3 Grounded and Insulated Controlled-Sources

Magnetic and electric dipoles are mainly distinguished by the way in which the current

they carry interacts with surrounding conductors. The electric dipole is a straight
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conducting filament of length ~ carrying a current let). The dipole is grounded at

both ends to the surrounding conductors. The current density of a point electric

dipole (one which has the property that ~~O, I ~oo such that the product I ~ is

finite) located at the co-ordinate origin is

JS·d·(r, t) = P(t)6(r)x (3.17)

where P(t)=l(t)~ [A·m] is the electric dipole moment. The unit vector x appearing

in equation (3.17) signifies that the applied current let) flows in the x-direction.

A physical analog of the electric dipole in free space is an open circuit consisting

of insulated wire supplied by power from a battery. In a conducting medium the

circuit is grounded in the sense that the wire is bared at the free ends in order to

make direct electrical contact with its surroundings. The rest of the wire is closely

twisted together and connected to a remote battery. In this analog, currents flow

along the wire from the (+) terminal of the battery to the free end denoted as the

current source, through the surrounding conductors, then into the other free end

denoted as the current sink and along the wire again to the (-) battery terminal

thus completing the circuit. At large distances from the free ends in comparison to

their separation the electromagnetic fields of this arrangement are identical to those

of a point electric dipole.

The magnetic dipole is a circular filament of radius a carrying a current let) and

is insulated from surrounding conductors, i. e. there are no sources or sinks of current.

When located at the origin of a cylindrical co-ordinate system the current density of

a point magnetic dipole (one which has the property that a~O, I~oo such that the

product l1ra2 is finite) is

(3.18)

where p=Jx2 + y2 and M(t)=l(t)1ra2 [A·m2 ] is the magnetic dipole moment. The

physical analog is a current-carrying loop of radius A with a remote battery supplying
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power to the loop. The battery is connected to the loop via closely twisted conducting

leads. At large distances from the loop compared to A the electromagnetic fields of

the loop are identical to those of a point magnetic dipole.

3.4 H-polarization Boundary Value Problem

The magnetic induction B(t) in a medium of conductivity u(r) due to its excitation by

a point electric or a point magnetic dipole is a solution to the vector diffusion equation

(3.11). The dipole current density functions are given by equations (3.17) and (3.18)

and are inserted into the equation prior to solving. Unfortunately, finding solutions

to this equation for all but the most simple systems of conductors in the presence of

either dipole field has proven difficult: analytic examples relevant to geophysics are few

(Ward and Hohmann 1987) and specialized numerical techniques are required (Barton

and Cendes 1987, Emson and Simkin 1983) in addition to unreasonably large amounts

of CPU time (Pridmore et.al. 1981) even on vector supercomputers (Adhidjaja and

Hohmann 1989). To ease the computational load, whether the solution technique is

analytical (Edwards 1988, Inan et.al. 1986) or numerical (Oristaglio and Hohmann

1984, Goldman et.al. 1986), it is convenient to address a two dimensional analog

problem obtained by setting to zero one of the spatial partial derivative operators, for

example 8,=0. In the 2-D problem created, the vector diffusion equation reduces to a

scalar diffusion equation, the latter possessing a greater catalog of analytical solutions

and being amenable to standard numerical methods of solution. I assume initially in

§3.4 that excitation is by an x-directed point electric dipole; then in a later section

§3.8 I shall consider the case of magnetic excitation.

In the 2-D analog defined as above, the conductivity becomes at most a function

of two variables u(x, z ). The invariant direction is y, this direction is sometimes

referred to as along-8trike in analogy to a term used in structural geology. The point

electric dipole current density Js·d·(r, t) given by equation (3.17) reduces to that of
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an extended electric dipole of moment P'(t):

J~e.d·(X, z, t) = P'(t)6(x)6(z)x. (3.19)

In equation (3.19), the dipole moment is P'(t)=A(t)~ [AJ where A(t) is a current

per unit length. The extended dipole is non-physical but it is sometimes helpful to

visualize it as a conducting strip which is infinitely long along-strike, infinitesimally

thin in the z-direction and of width ~ in the x-direction. It carries a current/unit

length A(t) which Hows acr088 the strip in the x-direction, thus there is a line sink

of current at x=t:i/2 and a line source of current at x=-~/2. The extended dipole

also has the property that ~--40, "\--400 such that the product A~ is finite. From

its symmetry, it is evident that the extended dipole produces only one non-vanishing

component of the magnetic induction in the 2-D conductivity structure, namely the

along-strike component B=By(x, z)y. There are two components of the electric field,

they are orthogonal to B, i.e. Ex(x, z)x and Ez(x, z)z. Since the extended dipole

produces only one component of B it is said to excite the H-polarization mode of

Maxwell's equations. There exists an orthogonal mode. An infinite insulated line

source oriented along-strike can be thought of as an extended magnetic dipole. It

generates only one component of E and thereby excites the E-polarization mode.

Since there is only one component of B, the vector diffusion equation (3.11) must

reduce to a scalar diffusion equation. Inserting B(r, t)=By(x, z, t)y into equation

(3.11) and simplifying gives the required form:

!.-. [~ 8By ] +~ [~ 8B y ] _ 0 aBy = Ito aJ~e.d.
ax u ax az u az It at u az (3.20)

where J~e.d. is equal to the dot product J~e.d·(r,t).x.

As a solution to equation (3.20), By is a function of time t, but equivalently, it

can be described as a function of frequency w if the current/unit length carried by the

dipole oscillates with time according to A(t)=Aoexp(iwt). For many practical cases,

however, it is desirable to obtain the solution to (3.20) for a dipole current/unit length
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A(t) that is a discontinuow function of time. When this is the case, By is conveniently

expressed as a function of the Laplace frequency s [Hz]. In §3.5 for example, I shall

describe the transient magnetic field By(t) that is generated by a step-on dipole with

a current/unit length of the form A(t)=Aou(t) where u(t) is the Heaviside function

defined by:

u(t) = {O, ~ft ~ 0;
1, If t > o.

A Laplace transform of an arbitrary function of time F(t) is defined by

F(s) =100

exp(-st)F(t) dt.

(3.21)

(3.22)

Application of the transformation (3.22) to the time-dependent equation (3.20) turns

it into the time-independent scalar diffusion equation:

- - ~ed

!..- [~ aBy] +~ [~ aBy] _ osB = po oJs · ..ax (7 ax az (7 az J.l y (7 az (3.23)

The solution to the above equation By(x, z, s) is said to be in the Laplace domain.

It can be transformed back into the time domain by means of an inverse Laplace

transformation which, for the arbitrary function F(t) is given by:

1 l1'+ioo
F(t) =-2. exp(st)F(s) dt.

1rZ 1'-ioo
(3.24)

The analytic representations of the Laplace transformation and its inverse, given by

equations (3.22) and (3.24) respectively, are of little practical use for my purposes.

Instead, in circumstances where analytic functions are to be transformed from one

domain into the other I refer to tables of Laplace transforms (e.g. Abramowitz and

Stegun 1972) and when a numerical Laplace inversion is required I use the Gaver­

Stehfest algorithm (Gaver 1966, Stehfest 1970a,b) which is introduced in §3.7 and

described in detail in Appendix A.

To complete the specification of the H-polarization boundary value problem, the

partial differential equation equation (3.23) is supplemented by the condition that
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is obeyed by B1J(x, z, s) on the bounding curve an of the two dimensional solution

domain Q. The boundary condition for By is

(xo,zo) E an, s > o. (3.25)

The above equation, which is valid for the 2-D analog problem as formulated in the

Laplace domain, is otherwise equivalent to equation (3.6).

What are the effects of addressing the 2-D analog problem as opposed to solving

the fully three dimensional vector diffusion problem? Since the effects vary according

to the nature of the problem under study, I will restrict discussion to effects that are

relevant to geophysical exploration. For example, a major shortcoming of the 2-D

approximation as applied to geo-electrical problems is due to the fact that in most

regions and over a large range of length scales, the earth's electrical conductivity varies

in all three spatial dimensions. Therefore, conductivity functions of the form 0"(X, z)

required by the 2-D formulation are likely to be poor representations of the actual

electrical structure of the earth. This limitation of the 2-D approximation may not

necessarily apply however if a well-defined strike direction has been established from

a priori knowledge of the geology. In this case the geological structure, and oftentimes

the conductivity, varies systematically or not at all along the strike direction.

Another limitation of the 2-D approximation is that the solution By(x, z, t) to

the scalar diffusion equation (3.20) is different from the y-component of the solution

B(r, t) to the vector diffusion equation (3.11). Therefore, aspects of the electro­

magnetic response including the pattern of induced currents in the earth (which is

described by J=V x BIJ.lo) and the signal magnitude IBI will be unrealistic if the 2-D

approximation is employed. Only for very simple earth conductivity structures can

exact conversion factors be formulated. These factors enable certain 2-D response

parameters, defined in §3.6, to be converted into corresponding physical response pa­

rameters, i. e. those that would be calculated from solutions to the vector diffusion

equation. (For further details, see Chapter 5 and Everett and Edwards 1990). For

complicated structures such conversion factors are neither exact nor readily available.
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To make matters worse, the closest physical analog of the 2-D x-directed ex­

tended dipole, which is a row of everliy spaced and similarly directed finite dipoles,

will likely never be constructed and deployed. This is because the difficulty of doing

so outweighs the main practical benefit of the 2-D extended dipole, which is that of

simplifying the electromagnetic field modeling and the a posteriori interpretation of

data. In other words, it is easier to solve the vector diffusion equation than to build

and deploy a 2-D extended dipole. The field of the extended dipole is therefore of

interest not with the hope that its physical analog will ever be constructed but rather

in the mathematical sense that the extended dipole is the source which excites the

fundamental H-polarization mode.

Provided the geological structure has a well-defined strike, there are advantages

to performing two-dimensional geo-electrical modeling based on the scalar diffusion

equation (3.23). Qualitatively, 2-D modeling identifies which features of a complicated

system of earth conductors respond most strongly to 2-D source excitation. Often

these features are the same ones which respond strongly to finite source excitation.

The 2-D responses can also point to the range of times that best illuminate the

interesting features of the earth conductors under study. Also, the separation of

the two fundamental modes that arises naturally from the 2-D formulation of the

problem helps to make the physics of electromagnetic diffusion into conducting bodies

understandable. The mode separation is not possible in the fully three dimensional

formulation.

3.5 H-polarization Closed-Form and Analytical Solutions

In §4.2-4.4 I shall describe the development and implementation of a finite element

technique which finds approximate solutions to a class of elliptic boundary value prob­

lems (BVPs) based on the diffusion equation in two spatial dimensions. This class

includes the H-polarization problem as defined by the partial differential equation

(3.23) and boundary condition (3.25). In this section I will develop some closed-form
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and analytical solutions to the H-polarization problem; they will be used in §4.5 to

estimate the convergence properties of the finite element implementation and here in

§3.5 to expedite illustration of the current patterns as induced in a uniformly con­

ducting earth. Since the finite element code was written to enable modeling of marine

electromagnetic fields, I shall restrict attention at this point to systems of conductors

whose geometry and conductivities are appropriate to this environment.

Consider an x-directed 2-D extended dipole, described by the current density

function (3.19) with the spatial co-ordinates oriented such that x is horizontal, y

is along-strike and z is vertical, positive upwards. In this section, the conductors

excited by this dipole must be kept geometrically simple in order to facilitate the

analytical approach. Specifically, the following double half-space problem is considered

(Edwards 1988). The dipole is located on the interlace beneath a semi-infinite uniform

conductor U=Uo occupying z>O which represents an infinitely deep ocean and above

a similar semi-infinite uniform conductor U=U1 which naively represents the earth.

The dipole moment P'{t) is assumed to have the Heaviside step-on fonn Aou(t)d

where u(t) is given by equation (3.21). In the Laplace domain the Heaviside function

is u(s)=I/s, so that P'(s)=P'=Aod/s. The closed-form solution to the double­

halfspace problem as described above is given in the Laplace domain by

-=-ocean J..loP' lex> [ (70 81 ]By (s) = -- 8 8 exp(-80z)cos(Ax) dA Z ~ 0
7rS 0 (710 +(70 1

~arth - P,O P' lex> [ 0'180 ]By (s) = 8 8 exp(81z)cos(Ax) dA Z ~ 0
7rS 0 Ul 0 +UO 1

(3.26)

(3.27)

where 8i=JA2 + J..lO(7iS, and i=O, 1. The above equations may be derived according

to the method of Sommeneld (1926) which is now considered to be standard (Wait

1961).

For any real antenna, let alone the extended dipole which is infinite in extent,

the instantaneous switch-on in current as implied by the presence of the Heaviside

step-on tenn in the dipole moment is admittedly an idealization. However, with fast
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electronics the current rise time in a finite dipole can be tens of microseconds. In

this case, the rise time may be safely neglected when modeling electromagnetic fields

within earth conductors since this time scale is small in comparison to typical diffusion

times (see §3.6), which are between Oems) and O(s). Just as the electromagnetic fields

at large distances produced by a finite electric dipole are identical to those produced

by a point electric dipole (see §3.3), the electromagnetic fields at typical diffusion times

produced by a dipole with a microsecond rise time are identical to those produced by

an idealized Heaviside dipole.

Returning to the double half-space problem, if the conductivity of the naive

earth model is made the same as that of the ocean 0'0=0'1=0', i.e. the extended

dipole is located in a uniformly conducting whole-space, then equations (3.26) and

(3.27) simplify to:

-ws J.L OP'l°OBy (8) = ±-- exp( -8Izl)cos('\x) d,\
211'"8 0

(3.28)

where 8=";,\2 + J-loCTS. The positive sign in equation (3.28) is valid in the upper half­

space z>O and the negative sign is valid for z<O. Although the integral is divergent

at z=O the limit

(3.29)

does exist. For Izl~O, the integral in equation (3.28) is analytic; an integral of the

same form is tabulated e.g. in Gradshteyn and Ryzhik (1965):

where 'R(.) denotes the real part of an arbitrary complex argument, K 1 is the modified

Bessel function of unit order and o.=JJ-loO's. Since the electrical parameters J-lo and 0'

are everywhere real and positive, the condition R(0.»0 is upheld provided R(VS»O.
This latter condition on the Laplace frequency S is consistent with those imposed by

the Gaver-Stehfest inversion technique, the significance of which will be discussed in
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§3.7. Inserting the above expression into equation (3.28) yields the desired analytic

form:

(3.31)

where p=Jx2 + z2 and cos4>=z/p.

The skin depth of a conductor is the distance that an electromagnetic field com­

ponent is able to penetrate before being attenuated by some prescribed amount.

Although the concept of a skin depth is usually formulated in the frequency domain,

the appearance of the Bessel function K 1 in equation (3.31) suggests an analogous

definition for a skin depth in the Laplace domain. Since the function K1 decays at

large values of its argument {3 (Abramowitz and Stegun 1972) according to:

K 1 ((3) ~ {fpexp( -(3) [1 + O( ~)] , (3.32)

the quantity K 1( JI-t0(7Sp2) appearing in the equation (3.31) may be regarded as a

damping factor which attenuates By with increasing penetration distance p from the

source into the conducting whole-space. Denoted by 68
, the Laplace domain skin

depth is chosen somewhat arbitrarily as the distance p at which the damping factor

in equation (3.31) becomes equal to K 1{v'2), i.e.:

(3.33)

The skin depth 68
, being proportional to 1/y'U, increases as the electrical conductiv­

ity decreases. Thus, electromagnetic field components are able to readily penetrate

resistors but suffer rapid attenuation with range inside good conductors. This phe­

nomenon is in accordance with Lenz' law.

The Laplace domain double half-space solutions, given by equations (3.26) and

(3.27), are shown plotted in Figure 3.1 for four different conductivity contrasts (70:(71

ranging from 3:3 to 3:0.1. The dipole moment is P'=l A and the conductivity of

the upper medium is 0"0=3.0 S/m. The whole-space solution shown in the first plot
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of Figure 3.1 is computed from equation (3.31), the three others are computed from

the closed-form expressions (3.26) and (3.27), using special software (Chave 1983) to

evaluate the oscillatory cosine integrals. The solutions are displayed inside a rectan­

gle described by -5t5i<x, z<5t5i where the quantity t5[, given by J2/ /loUiS, i=O, 1

is defined as the skin depth of the i-th medium. The extended dipole source, which

occupies the line (x=O,-oo~y~oo,z=O), is located at the center of each plot. The plot

contours, which are logarithmically spaced at intervals of two per decade, are lines

of constant By. The solid contours correspond to By>O and the dashed contours to

By<O. Due to the unique symmetry of the H-polarization formulation, the contours

also coincide with current streamlines. The currents circulate along the contours from

the current source to the current sink. The sense of circulation is therefore clockwise

in the lower half-space and counter-clockwise in the upper half-space. The cur­

rent streamlines are more closely packed in the relatively conducting upper-halfspace

medium, this is particularly evident when the four plots of Figure 3.1 are compared.

The patterns of currents shown depend only on the conductivity contrast, not on the

dipole moment pI nor the Laplace frequency s. However, the numerical values of the

contours do depend on these latter two quantities.

3.6 Electromagnetic Response Parameters

In §3.3 I mentioned that the electromagnetic response of a system of conductors

to controlled-source excitation is described in tenns of the solutions to the vector

diffusion equations (3.11) and (3.12). In this section I shall describe some 2-D analogs

of response parameters. The analogs, which are defined in terms of the solutions

By(t) to the more easily solved scalar diffusion equation (3.20), characterize the 2-D

transient response of an arbitrary system of conductors but are analytic only for the

whole-space geometry described in §3.5. In Chapter 5 exact conversion factors will

be determined which relate the analytic 2-D analogs to their 3-D counterparts, from

the latter comparison to electrical measurements made at sea can be perlormed.
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Consider the Laplace domain whole-space solution (3.31) to the H-polarization

BVP. The equivalent time domain solution can be obtained formally through the

Laplace inversion integral (3.24). From tables (Abramowitz and Stegun 1972), how­

ever, I find the transform:

(3.34)

The notation £-1 [.] refers to the inverse Laplace operation. Comparing the above

transform with equation (3.31), the assignment A=Jj.to(fp2 is appropriate. In addi­

tion, the quantity JJloUp2 is positive definite, as required by the transform. Thus,

the whole-space transient solution to the H-polarization BVP is given by:

P' 2
B ( ) - Po z (-POUp)yt- 2exp ·

21rp 4t
(3.35)

This is called the step response because the source moment Pl(t) is proportional to

the Heaviside step-on function. Other idealized forms of the source moment pI(t)

can lead to responses that are of interest to practitioners. For example, the impulse

response is simply the time derivative of equation (3.35)

2 pI 213 (t) = Pou z (-poup)
y 8 2exp 41rt t

(3.36)

and describes time variations in the magnetic induction By that would be produced in

a uniform earth by a impulsive source of moment P'(t)=Ao6(t)~[A·s-1 ] where 6(t) is

the Dirac delta function, sometimes called the impulse function. The impulse response

By is of interest since fluctuations with time in the magnetic induction components

are measured by practical receivers such as induction coils.

Following a step-on in the dipole current, the magnetic induction component

By(t) diffuses into a uniform conductor in the manner described by the step response,

equation (3.35). IT the dipole current is an impulse function of time, the diffusion

is described by the impulse response, equation (3.36). A diffusion time (Edwards

and Chave 1986), characteristic of the electrical conductivity u, can be defined as
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the time taken for the impulse response to attain its maximum magnitude. A more

precise definition of the diffusion time T is given in the following implicit form:

By(t)lt=r = maxB,I(t). (3.37)

The diffusion time T is identified as the arrival time of the magnetic induction By

at a given point in the conductor. To provide a useful estimate of conductivity, the

diffusion time need only be accurate to a quarter of a decade on a logarithmic scale

since conductivity varies over many orders of magnitude within the earth. From

equations (3.36) and (3.37) I derive the important result valid for a uniform medium

that
J-loU p2

T=--
8

(2D extended dipole source). (3.38)

For comparison, the finite electric dipole (3-D) diffusion time is T=J.Lour2/10 (see

Cheesman 1989, also Chapter 5).

Another response parameter of practical importance is the maximum value of

the impulse response. The maximum, which governs the peale voltage that would be

recorded in an induction coil, occurs at the diffusion time and is given by

· · 8P'z
max By(t) = By(T) = 2 4·

True p
(3.39)

The concept of a skin depth may be formulated in the time domain. Just as

there appeared a damping factor in the Laplace domain expression (3.31) for By(s),

so there is one in the corresponding time domain expression (3.35) for By(t). The

Laplace domain damping factor is a modified Bessel function K} but in the time

domain the factor is exp( -J.LoUp2 /4t), see equation (3.35). For convenience, I choose

the time domain skin depth, denoted by 6t , to be the distance at which the exponential

damping factor becomes equal to lIe, i.e.:

ht = J2t .
J.Lou
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Defined as above, the time domain skin depth quantifies the concept of late time.

Following a transient event in an antenna, electromagnetic field components at posi­

tions within the conductor satisfying p~6t are said to have reached their steady state

values and hence at these positions equilibrium has been re-attained.

The late time values of the magnetic induction component can also be useful

response parameters. For the step and impulse response respectively, the DC-limits

are given by:

(3.41)iJOC = O.
y

BDe = p.oP'z ,
y 21t"p2

The step response has a non-zero DC-limit as a consequence of the fact that steady

applied currents, whether or not they are grounded to conductors, are sources of a

magnetostatic field, see §3.0. The late time step response can not be measured by

an induction coil, since coils respond only to change3 in the magnetic induction. Ap­

propriate is a fluxgate, or other high sensitivity, high speed magnetometer providing

direct magnetic induction measurements. The impulse response is zero at late time

since an impulsive applied current is non-zero only at the time t=O. Since no further

current is applied to the conductor, by the DC-limit all currents produced by the

initial impulse have dissipated and conditions of static equilibrium throughout the

conductor are re-attained.

The step response By(t) given by equation (3.35) is shown in Figure 3.2 plotted

for a range of times to=0.1 S::;t~tl=5.0 s following step-on of the source current. The

contours, as in the previous figure, are both current streamlines and lines of constant

By; the contour interval is again two per decade. The boundary of the plots is the

rectangle described by -56~<x,z<56~ where 6~=J2tolJ1.oU. The dipole moment is

P'=l A and the conductivity of the medium is 0'=3 S/m. The ±1 nT contours, which

are the ones nearest the source (i. e. at positions p~6t), do not move outwards as

time progresses from to to tt. Thus, the currents near the source have already reached

their late time limit by to=O.l s. The currents elsewhere have not yet reached their

late time limit. For example, in the to=O.l s snapshot the ±O.l nT contours have
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diffused out to about 16~ but at the latest time tt =5 s they have progressed out to

somewhere between 4-66~. IT desired, the rate of outwards progression of currents

from the source, which is diagnostic of the conductivity, can be determined.

The time derivative of the step response of Figure 3.2 is the impulse response,

it is shown in Figure 3.3. The dipole moment is P'=l A/s and the conductivity of

the medium is 0'=3 S/m. The impulse response, which is sharply peaked near the

source at t=to with a maximum >0.3 nT/s spreads outwards from the source with

time until at the later time tt =5.0 s it is everywhere less than 0.01 nTIs. At DC,

the impulse response vanishes altogether. The By contour values, again spaced half

a decade apart, indicate the rate of change of magnetic field that would be recorded

by an induction coil.

As mentioned previously, there are two non-vanishing components of the elec­

tric field that are associated with the H-polarization problem, they can be obtained

by direct application of Maxwell's equation (3.4). Incorporating the H-polarization

symmetry B=By(x, z)y these electric field components are

E l_aBy

x - /loU az ' E
z

= _1_8By •

/loU ax (3.42)

Of this pair, the x-component is particularly interesting since the in-line electric

dipole-dipole configuration, which features an x-directed electric dipole and pairs of

electrodes oriented such that they measure directly the horizontal field component

Ex(t), shows promise both in theory (Edwards and Chave 1987) and in preliminary

field tests (Everett et.al. 1989). The 2-D analog to the measured field component is

computed using the first equation of the pair (3.42) and equation (3.35), it is:

E (t) = _~ [(_JLOO'z2) (_JLOO'p2)]
x 27r0" 2tp2 exp 4t

and its corresponding late time value is:
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Both electric field components Ex,Ez are non-zero at DC by virtue of the fact that

the 2-D extended electric dipole is grounded to the conductor, see §3.0. The impulse

response electric field is of little interest because practical electric receivers, which are

often pairs of electrodes, rarely measure E(t) directly.

3.7 Transient Double Half-Space Solutions

In this section I will employ the Gaver-Stehfest (Gaver 1966, Stehfest 1970a,b) al­

gorithm to transform the double half-space solutions of the H-polarization from the

Laplace domain into the time domain. A detailed derivation of the Gaver-Stehfest

algorithm, which will be defined immediately below, appears in Appendix A. For ar­

bitrary geometry, the transformation is accomplished by inserting the Laplace domain

function By (s) into the approximate formula

By(t) ~ 1~2 t Vj(n)B y (jl~2) n,even
J=l

where the Gaver-Stehfest coefficients {'Vj,j=l, 2, ... , n} are given by

. min.[i,il kn / 2(2k)'
v:.( ) - ( 1)n/2+J "'" •

J n - - L- (n/2 _ k)!k!(k -l)!(j - k)!(2k _ j)!.
k=[i¥]

(3.45)

(3.46)

As an approximation, the linear combination of terms appearing in equation (3.45)

gives results accurate to 8-bit precision for the choice n=8 provided the unknown

function By(t) has no discontinuities, sharp peaks or rapid oscillations. Since the un­

known function in this case is the solution to a diffusion equation, it will satisfy all of

these requirements. Note that, according to equation (3.45), the Laplace domain func­

tion need be known only at the n real values of S given by {sj=jln2/t, j=1, 2, ... , n}.

Rounding errors worsen the result as n becomes too large, because 'Vj with greater

and greater absolute values occur (Stehfest, 1970a). The Gaver-Stehfest algorithm

was first used to solve electromagnetic induction problems in geophysics by Knight

and Raiche (1982) and then later by Edwards and Cheesman (1987).
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In the time domain, the double half-space solutions given in the Laplace domain

by equations (3.26) and (3.27), when inserted into equation (3.45), become approxi­

mately

Bocean(t) R:: JtoP' [00 [t If;(n) 0"081iCt)eXP[-80j(t)Zl] cos('xx) d,X z ~ 0
y 1r 10 j=1 j 0"1 8 0j(t) +0"081j(t)

(3.47)

Bearth(t) R:: _ JtoP' [00 [t Vj~n) 0"1 8 0j(t)exp[81iCt)Z]] COS(AX) d,X z ~ 0 (3.48)
y 1r 10 j=1 J 0"1 8 0j(t) +0"081j(t)

with n, even and 8ij(t) = ),X2 +jln 2p,OUi/t, i=O,l.

This "semi-analytic" function is shown plotted for the range of times t o=0.5

s~t5:tl=50 s and for a variety of conductivity contrasts from 3:1 to 3:0.03 in Figures

3.4a-d. Apart from the different conductivity contrasts, the geometry is otherwise

identical to that of Figure 3.2, for its description see §3.6. The plots of Figure 3.4

all show vortices of currents diffusing outwards from the source at rates which are in­

versely proportional to the half-space conductivities. For example, the magnetic field

component at the early time to diffuses much more rapidly into the relatively resistive

earth than into the seawater. Also at early times, in particular, the plots reveal the

presence of an outwardly moving diffusive front leaking energy across the seafloor.

It is this energy that constitutes an earth signal measured by seafloor magnetic field

sensors. At the late time t 1 the seawater signal begins to dominate, its effect is to

obscure information about the conductivity of the solid earth.

3.8 E-Polarization Analytical Modeling

I have already examined in detail the two dimensional H-polarization mode of

Maxwell's equations as excited by an extended electric dipole and have mentioned

the existence of an orthogonal mode. This other mode, called the E-polarization

mode, is excited by a infinitely long insulated line source oriented along the strike of

a two dimensional conductivity structure u(x, z). The line source, carrying a time­

varying current let) produces only one component of E, namely E=Ey(x, z)y. There
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are two components of B in this mode, they are the orthogonal components, i. e.

B=Bx(x, z)x+Bz(x, z)z. In this section, I will look at some closed-form and analytic

E-polarization mode solutions.

The current density of the infinite line source is

J~m.d·(X, z, t) = I(t)6(x)6(z)y (3.49)

and its closest physical analog is a segment of an insulated loop of very large radius

or alternatively an insulated cable grounded at distant ends (Wait 1952). The infinite

cable is an extended magnetic dipole in the sense that the currents in the cable are

not in direct electrical contact with the surrounding conductors, i. e. the earth is

inductively excited. For simple geometries, this mode has been investigated in great

detail by Inan et.al. (1986). Like the physical analog of the 2-D extended dipole,

the infinite cable will likely not be deployed since the practical difficulty of doing so

outweighs the the resultant simplification of the modeling and data interpretation.

Since there is only one non-vanishing component of E, it is convenient to solve

for it since it decouples from the two components of the magnetic induction. The

relevant vector diffusion equation (3.12) becomes, when the E-polarization symmetry

is incorporated, the scalar diffusion equation

(3.50)

H the current in the cable is of the step-on form I(t)=Iu(t) then the corresponding

time-independent scalar diffusion equation is

(3.51)

where Ey(x,z,s) is the Laplace transfonn of Ey(x,z,t). To completely specify the

E-polarization BVP, equation (3.51) is augmented by the condition on the boundary

an that

(xo, zo) E an, s > O.
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(3.54)

(3.53)

There exists a closed-form solution to the E-polarization BVP if the double half­

space geometry described in §3.5 is employed. Assume that the cable is located on

the seafloor interface at the co-ordinate origin. The solution is given by

E;cean(s) = _p;1100

[ei:(~~:z)] cos(,\x) d,\ z ~ 0

E;arth (s) = _ p;1100

[e;:~~:)] cos('\x) d,\ z ~ o.

This function, which is sensitive to the conductivity contrast 0'0/0'1, is shown plotted

for a range of contrasts in Figure 3.5. The contours are lines of constant E y and, due to

the unique symmetry of this mode, are also equipotentials. Like the H-polarization

current streamlines (Figure 3.1), the equipotentials are more closely packed in the

relatively conducting upper half-space.

The Laplace domain electric field component E;s (s) produced by an infinite

cable exciting a uniformly conducting whol~spacemay be obtained from the pair of

double half-space equations (3.53) and (3.54) by making the replacements 0"0=0"1=0".

The result is the closed-form expression:

EWS(s) = _Pol roo [exp(-8Iz l)] cos(,xx) d,x
y 2~ Jo 9

(3.55)

which may be simplified further as follows. Taking the z-derivative of both sides of

the integral (3.30) and using the relationship that exists between the zero and unit

order modified Bessel functions, namely K~(z)=K1(Z) it follows that

fOO exp( _J,\2 + a21zl)Jo --...;;::,x:::;:2=+=a:::;:2:---cos(,xx) d,x = Ko(ap) R(a) > 0 (3.56)

and when the above expression is inserted into equation (3.55) the whole-space electric

field is analytic:

(3.57)

The corresponding expression in the frequency domain E;s(w) can be found e.g. III

Wait (1952).
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Using the tabulated Laplace transform (Abramowitz and Stegun 1972)

1 -A2
£,-1 [Ko(AJS)] = 2t exp(4i) A > 0, (3.58)

and associating A once again with vi/JoUp2, the transient whole-space electric field

is analytic, namely:

(3.59)

The above function, shown plotted in Figure 3.6, is sharply peaked near the source

at time to=O.l s but spreads out as time progresses. As suggested by the plot at

the latest time shown (tt =5.0 s), the DC value of this function is zero, i.e. E~c=O.

This late time behaviour is in accordance with the fact that steady currents, when

insulated from conductors, produce only a magnetostatic field.

The two components of induction that are associated with the E-polarization

mode may be computed from Maxwell's equation (3.3). After applying the symmetry

of this mode, i.e. E=Ey(x, z)y, equation (3.3) reduces to a pair of equations which

can be written into integral form as follows:

j 8Ey
Bx(t) = {)z dt, (3.60)

For example, the x-component of the magnetic induction Bx(t), which is obtained by

integrating the z-derivative of the expression (3.59), is given by:

(3.61)

The above component, which does not vanish at late time, has a form which is identical

to that of the H-polarization magnetic induction component (3.35). The similarity

occurs because both are horizontal induction components orthogonal to the direction

of flow of the applied current.

The time domain double half-space solutions may be found approximately by

inserting the Laplace domain expressions given by equations (3.53) and (3.54) into
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the Gaver-Stehfest equation (3.45), i.e.

~ - (jln2)Ey(t) ~ ~ l-j(n)Ey -t- ·

Upon doing so, there results

Eocean(t) ~ _Jtonn2 r~o [~ l-j(n) exp[-8oj(t)z] ] COS(AX) dA
y 1rt 10 ~ j 8 0 ·(t) + 8 1 ·(t)o 1=1 J 1

Eearth(t) ~ _JLonn2 foo [~l-j(n) exp[81j(t)z] ] cos('xx)d'x
y 1rt 10 ~ j 8 0 ·(t) +8 1 ·(t) ,o J=1 1 J

(3.62)

(3.63)

(3.64)

plots of which are shown in Figures 3.7a,b for conductivity contrasts of 3:1 and 3:0.03

and the range of times t o=0.5 s<t<t1 =50 s. The plots show the patterns of equipoten­

tials diffusing outwards from the line source after step-on at time t=O. The equipo­

tentials, like the current streamlines for the H-polarization mode, initially diffuse

outwards at a rate inversely proportional to the half-space conductivity. However

at late times, e.g. t>t1 , the electric field becomes increasingly independent of the

conductivity contrast. Finally, at its late time limit, the electric field Ey(t) vanishes

by virtue of the fact that steady currents, when insulated from conductors, produce

only a magnetostatic field.
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Fig.3.1 Laplace s-domain solution By(x,z,s) to the H­
polarization mode of Maxwell's equations, for a fixed
value of s=l Hz. The regions shown are squares whose
sides are 108f where 8f=J2/!lOO'IS is the skin depth of
the lower conductor. Contours of magnetic induction
By are shown for various electrical conductivity con­
trasts between upper (fixed at 0'0=3 S/m) and lower
conducting half-spaces. The field is produced by a 2­
D extended dipole of unit moment. The contour lines
in these plots are also current streamlines. Contours
are logarithmically spaced, two per decade and their
values range from ±lO pT near the source outwards
to ±O.OOI pT remote from the source. The dashed
contours correspond to negative va11.l:es.



Fig.3.2 Contours of the H-polarization mode step response
By (t) show electromagnetic diffusion into the first 5
skin depths of a uniform conductor following a rapid
switch-on of electric current in a unit moment, ex­
tended dipole at time t==O. The contours are logarith­
mically spaced, two contours per decade. By t==5 s,
the step response has reached a final, steady value.



Fig.3.3 Logarithmically spaced contours of the impulse re­
sponse 8t B y (t) show electromagnetic diffusion into the
first 5 skin depths of a uniform conductor following an
impulse of electric current in a unit moment, extended
dipole at time t=O. In contrast to the step response of
the previous figure, the impulse response vanishes at
late time.
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Fig.3.4 Transient double half-space solutions By (x, z, t) to
the H-polarization mode of Maxwell's equations for a
range of electric.al conductivity contrasts (a-d, clock­
wise from upper left, i.e. Fig.3.4a is the 2x2 block of
contour plots in the upper left corner). Logarithmi­
cally spaced contours of the magnetic field, which is
produced by a rapid switch-on of electric current in
an extended dipole at time t=O, are plotted for each of
the contrasts as a time sequence from 0.5-50 s to show
the different rates of electromagnetic diffusion into the
various conducting half-spaces.
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Fig.3.5 Laplace s-domain solution Ey(x,z,s) to the E­
polarization mode of Maxwell's equations, for a fixed
value of s=l Hz. Logarithmically spaced contours,
two per decade, of electric field are shown for various
electrical conductivity contrasts between upper (0-=3.0
81m) and lower conducting half-spaces. The field is
produced by electric current flow in an infinite, insu­
lated cable oriented perpendicular to the page, and
is displayed to depths of 5 skin depths in the lower
conductor. The contour lines in these plots are also
equipotentials.
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Fig.3.6 Contours of the E-polarization mode step response
E y ( t) show electromagnetic diffusion into the first 5
skin depths of a uniform conductor following a rapid
switch-on of electric current at time t=O in a unit mo­
ment, infinite insulated cable oriented perpendicular to
the page. The contours are logarithmically spaced, two
per decade. The electric field step response E y ( t) van­
ishes at late time, since steady source currents produce
only a magnetostatic field in conductors.
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Fig.3.7 Transient double half-space solutions E y(x, z, t) to
the E-polarization mode of 1Ilaxwell's equations for a
pair of electrical conductivity contrasts (a-b, top to
bottom, i.e. Fig.3.7a is the uppermost 2x2 block of
contour plots). Logarithmically spaced contours of the
electric field, which is produced by a rapid switch­
,on of electric current at time t=O in an infinite, in­
sulated cable oriented perpendicular to the page, are
plotted for each contrast as a time sequence from 0.5­
50 s to show the different rates of electromagetic dif­
fusion into the various conducting half-spaces. At late
times E y(x, z, t) becomes increasingly independent of
the conductivity structure, and eventually vanishes.



Chapter 4

2D Numerical Modeling

4.0 Introduction

In the previous chapter I have shown that if the geo-electromagnetic model, which

includes descriptions of the source and the earth geometry that it excites, is granted

certain two dimensional symmetries, then the possibility arises for Maxwell's equa­

tions to break into one of two orthogonal modes. Specifically, a separation occurs

if the applied current density Js and the electrical conductivity l1(r) are invariant

along a common strike ('0) direction. For example, recall that the x-directed ex­

tended electric dipole, as described in §3.4, energizing a 2-D structure l1(x, z) excites

the H-polarization mode of Maxwell's equations. Similarly, the infinite line source

oriented along-strike, refer to §3.8, excites the E-polarization mode. Although these

symmetries are entirely artificial and enforced on the model solely to lessen the com­

putational burden, solutions to the governing scalar diffusion equations of either mode

are in many cases useful as an aid to interpretation of field data, refer to Chapter 3

for more details. In this chapter, I will outline the development and implementation

of a numerical method which solves, within a context of marine electromagnetics,

boundary value problems based on the governing equations of the H-polarization and

E-polarization modes. Using the resulting set of computer programs, I can evaluate

the transient electromagnetic response of two-dimensional earth conductivity models

u(x, z), especially ones which represent geological structures such as the mid-ocean

ridge, that are of interest to the marine geophysics community. The newly accessible

models can have much more complicated geometry than the double half-space and

55



they virtually never possess analytical solutions.

In the geophysical exploration literature, there have been several successful at­

tempts to model numerically the E-polarization mode of Maxwell's equations. All

of the attempts have been motivated by the need for software to interpret data from

land-based controlled-source electromagnetic surveys. The earliest paper is due to

Coggon (1971) who considered a line source with an oscillating current I=Ioexp(iwt).

In the frequency domain, the E-polarization BVP that he solved is

82 E,lw) iPEy(w) _ 2E ( ) _. J ,m.d .
8x2 + 8z2 a y w - 1,J1.W s , (x,z) En (4.1a)

Ey(xo,zo,w) = 0, (xo,zo) E 8n, w > 0 (4.1b)

where a=JiJ.tuw + JlfW2. In this domain, the solution Ey(w) is complex and is related

to the transient solution simply by the Fourier transform:

Ey(t) = I: Ey(w)exp(iwt)dw. (4.2)

Of more interest are the papers which solve the E-polarization problem directly in

the time domain. The boundary value problem in this domain, when displacement

currents are not neglected, is based on the damped wave equation:

82 Ey(t) 82 Ey(t) 8Ey(t) 82 E y 8Jgm.d.

8x2 + 8z2 - Jlu {}f; - Jlf. {}f;2 = Jl {}f; , (x, z) E n

Ey(xo, zo, t) = 0, (xo, zo) E an, t > O.

(4.3a)

(4.3b)

The above problem was solved by Kuo and Cho (1980) using the finite element

method. Later, Oristaglio and Hohmann (1984) used a finite difference method with

a DuFort-frankel explicit time-stepping scheme to solve the electromagnetic time­

dependent diffusion equation, which is obtained from equation (4.3a) by setting the

last term on the left hand side to zero, i. e. by invoking the quasi-static approxi-

mation described in §3.1. Goldman et.al. (1986) have used a finite element method

with a Crank-Nicholson implicit scheme to solve the same problem. By incorporat­

ing an exact boundary condition on the air/earth interface these latter two authors
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were able to avoid discretization of the upper non-conducting half-space, which was

an improvement over the earlier efforts of Kuo and Cho. Included in the Oristaglio

and Hohmann paper are color snapshots of the patterns of electromagnetic diffusion

into simple two-dimensional conductivity models of the earth. Table 4.1 provides a

summary of the previous work described above. There has to date been little interest

in developing code specifically for interpretation of marine data in part because of the

lack of commercial interest in seafloor mining. However, as indicated in Chapters 1

and 2, there is ample scientific motivation to develop such a code.

Table 4.1

Mode Domain Method
Author(s) Year H-pol. E-pol. time frequency FE FD

Coggon 1971 V V V
Kuo & Cho 1980 V V V

Oristaglio &
Hohmann 1984 V V V

Goldman et. ale 1986 V V V

Instead of working directly in the time domain, I have chosen to model both

the E-polarization and H-polarization modes in the Laplace domain, using the finite

element method, and then transform the calculated field component into the time do­

main by means an inverse Laplace transform. The H-polarization BVP as formulated

in the Laplace domain is:

- - -led
.2... [~ aBy(S)] +!... [~ aBy(S)] _ lisB (s) = J.L aJs · .,
8x (7 8x 8z (7 8z r Y (7 8z (x, z) E n

By(xo, Zo, s) = 0, (Xo, zo) E an, s > 0

(4.4a)

(4.4b)

and the E-polarization BVP in the Laplace domain is:

82E y(s) 82E y(s) _ E ( ) _ J ,m.d .
8x2 + 8z2 J-tS 11 S - J-tS S , (X,z) E n (4.5a)

Ey(xo, Zo, s) = 0, (xo, zo) E an, s > O.
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An advantage of formulating the boundary value problems in the Laplace domain

becomes evident when a transient electromagnetic field component By(t) or Ey(t) is

required to be known at only one or more prescribed "critical" times. In such cases,

the Laplace formulation leads to a more efficient use of computer resources than does

the direct time domain formulation since the former avoids the potential waste of

effort associated with carefully time-stepping the field components from t=O. Using

the Gaver-Stehfest inversion algorithm, which was introduced in §3.7, the transient

field components evaluated at some prescribed time to are simply linear combinations

of several Laplace domain solutions, in accordance with equation (3.45).

4.1 Perturbed Boundary Value Problems

IT the two-dimensional geometry is sufficiently simple, the representation of the ap­

plied current density Js in terms of the Dirac delta function, as indicated in equa­

tions (3.19) and (3.49), permits analytic solutions of electromagnetic boundary value

problems to be found everywhere in tIle solution domain n, despite the presence of

singularities in the field components (By, Ey) at the points at which currents are

applied. However, the same boundary value problem, when attacked numerically, is

ill-posed. In order to make the numerical problem well-posed, the singularities must

be avoided. This can be achieved if the BVP is represented in the computer in a

slightly altered, or perturbed, form. In this section, I will discuss perturbed BVPs in

general terms and in §4.2 describe a technique based on the finite element method

which solves them. In §4.3 I will apply the theory to solve a perturbed version of the

H-polarization BVP.

Consider the linear differential equation:

Lu(r) = 0, rE n (4.6)

where L is an arbitrary linear partial differential operator. The function u which

satisfies the PDE (4.6) is said to be its classical solution and is distinguished from a
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weak solution that satisfies only

(Lu, v)o = 0 (4.7)

for all admissible test functions vCr) (Wait and Mitchell 1985). The notation ( · ,. )

refers to the Euclidean, or £2, inner product

(u, v)n = Luv dr. (4.8)

H it is known a priori that there are singularities in the solution u at a point

or points within the solution domain 0, it is advantageous to re-define the BVP by

establishing a new solution domain Oh which is essentially the original domain n
with a hole or holes cut into it to avoid the singularities. The resultant perturbed

boundary value problem is based on the modified equation:

(4.9)

with nhen. It is important to note that u and uh are both exact solutions but to dif­

ferent problems. Suppose there is known to be only one singularity in the solution u,

then the boundary of the new solution domain may be denoted by anh=anhO+anh1
where the outer boundary anhO=aO has not changed but aOhl is a new inner bound­

ary which defines the hole in nh • An example of a perturbed domain, showing typical

locations of the inner and outer boundaries, is depicted in Figure 4.1a. Often, the

boundary conditions are known precisely on an but only approximately on anh.

Specializing for a moment to 2-D marine electromagnetic problems, the operator

L in equation (4.9) is a scalar time-independent diffusion operator and uh represents

an electromagnetic field component. The solution u to equation (4.7) may contain

singularities caused by applied currents but uh , by construction, does not contain any

singularities. The inner boundary anh1 immediately surrounds the point at which

current is applied. Throughout the thesis, I assume that currents are applied at only

one point and that the inner boundary can be placed sufficiently close to the applied
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currents such that uh(rl)' rlEaOh1 may be approximated by an analytic whole-space

or double half-space expression depending on the conductivity adjacent to the source

and is not affected by details of the over-all structure O'(r~rl).

4.2 Finite Element Solution of Perturbed BVPs

I now proceed to describing a finite element technique which solves a class of perturbed

BVPs in two spatial dimensions. In §4.3 I will describe how the technique can be

applied to solve numerically the H-polaxization BVP. The first step is to partition

the domain Oh, which is assumed to be polygonal, into a mesh of NT triangles. Nodes,

or discrete points within the domain at which the solution uh is to be approximated,

are to coincide with the vertices of the triangles. A solution u, which will be the finite

element approximant of the exact solution uh , is sought with the form

N

U = L ajai(x, z).
i=l

(4.10)

In equation (4.10), l}i may be conveniently referred to as a basis function, and is

associated with the i-th of N nodes, while ai is an unknown coefficient.

Every basis function is represented, in turn, by a set of piecewise, two dimensional

interpolating polynomials:

NT

ai(X, z) = L a[(x, z), i = 1,2, ... , N.
r=l

(4.11)

In general, the polynomials {a[(x, z), i=l, ... , N, r=l, ... , NT} are of order m. Setting

m=l specifies a first order finite element method, setting m~2 yields higher order

approximants but at the cost of increasing programming complexity. The interpolat­

ing polynomial a[(x, z) is associated with both the i-th node and the r-th triangle.

With the choice m=l, the interpolation over each triangle is linear and is performed
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over the T-th triangle by a polynomial that is given by:

1 x z
det 1 x· z·J J

1 Xk Zk
if (x, z) E ~T;

1
,

Xi Zi

det 1 x· z'J J
a[(x,z) = 1 Xk Zk (4.12)

0, otherwise,

where ~T denotes the interior of the T-th triangle. The three vertices of this trian­

gle are located at co-ordinates labelled (Xi, Zi), (Xj, Zj), (Xk, Zk) where consecutive

indexing of the vertex co-ordinates is perlormed in a clockwise sense around the tri­

angle as illustrated in Figure 4.1b. From equation (4.12) note that the interpolating

polynomials possess the property that

v P E (i,j, k), q E (i,j, k) (4.13)

where 6pq is the Kronecker delta function defined by

6 = {I, if p=q;
pq 0, otherwise. (4.14)

Equation (4.13) is the mathematical statement that an interpolating polynomial is

zero at all of the nodes except at the node to which it is associated, in which case it

is unity. From equation (4.11), which gives the relationship between the interpolating

polynomials and the basis functions, it is found that the basis function aj is zero at

all nodes except at node i, in which case the basis function is equal to aj=Ni,T<NT

where Ni,T is the total number of triangles which have node i as a vertex. These

triangles define the support of the i-th basis function.

I shall now describe how the finite element approximant ii. is computed. Suppose

that of the N nodes in the mesh there are M=Mo+Mt boundary nodes. Let the
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interior nodes be numbered by the sequence {I, 2, ... , N-M}, the Mo nodes on the

outer boundary by {N-M+l,N-M+2, ... ,N-M1 } and the M 1 nodes on the inner

boundary by {N-Mt +l,N-M1+2, ... ,N}. This numbering scheme allows boundary

nodes to be distinguished from interior nodes, which is important because bound­

ary conditions can be used to determine certain coefficients of the FE approximant

(4.10), even before equation (4.9) is solved. For example, since uh vanishes on the

outer bOWldary by virtue of equations similar to (4.4b) or (4.5b), it follows that the

coefficients ai=O, i=N-M+l, ... ,N-Mt • Also, since uh on the inner boundary is to

be evaluated analytically, the coefficients associated with inner boundary nodes are

known in advance. For convenience, these latter coefficients can be renamed to aj=bj ,

j=N-M1+1, ... , N. When the boundary conditions are incorporated in the manner

just described, the FE approximant (4.10) becomes
N-M N

ii = L aiCti(x, z) + L bjCtj(x, z). (4.15)
i=l ;=N-Mt +1

The finite element technique then consists of solving for u the following set of equa-

tions:

(Lu,a')Oh = 0 1= 1, ... ,N - M (4.16)

where the test function vex, z) has been cho3en to be a vector of length N-M, with

each element of v being a basis function of the form (4.11), specifically

VI = ai, 1= 1,2, ... , N - M. (4.17)

Although this choice for the test function does lead to a unique approximation of uh ,

it is certainly not the only such choice.

4.3 Numerical Solution of the H-Polarization BVP

The H-polarization BVP, whose geophysical interpretation has been established in

§3.5, is defined by the pair of equations:
- - -/e.d.

~ [~ 8By(s)] !- [~ 8By(s)] _ B ( ) = J.Lo 8Js () r\ (4 18)
!) !) + !) !) /lOS Y S !), x, z E~" .
ux U ux uZ U UZ U uZ
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By(xo,zo,s) = 0, (xo, zo) E an (4.19)

where u(x, z) is arbitrary. In this section, I will apply the theory as developed in

the previous two sections of this chapter towards solving a perturbed version of the

boundary value problem given above.

Since it is assumed that the applied current described by the density J~.d. oc­

cupies the origin, the field component By (s) is singular there. Therefore, in order

to have a well-posed numerical problem' I shall avoid this singularity by defining a

perturbed solution domain over which the partial differential equation (4.18) is to be

solved; a suitable choice for nh is shown in Figure 4.1c. The perturbed BVP that

results is defined by the following three equations:

~ [~ aB:(S)] ~ [~ aB:(S)] _ -h _

a a + a I a /-LosBy(s) - 0,x u x z u z
(x, z) E !lh (4.20)

-h
B,,(xo,zo,s) = 0, (xo, zo) E anhO (4.21 )

(4.22)

where 1J,cean and n;arth are analytic solutions to the H-polarization double half­

space problem and are given by equations (3.26) and (3.27) respectively. Note that in

equation (4.20) there is no longer a source term involving J~.d.. In the finite element

formulation, the point source is replaced by exact boundary data but only on the M1

nodes of anhl, as specified by equation (4.22). Elsewhere on anhl , the function B:
is approximated by interpolating from the exact boundary data.

According to the expansion (4.15), the finite element approximant denoted by

B~ can be written as

N-M NB: = L ajG:j(x, z) + L bkG:k(X, z)
j=l k=N- M t+ 1
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where the set of coefficients {aj, j=l, ..., N - M} are the unknowns of the problem

and must be solved for. The coefficients that are known in advance are {bk, k=N­

M+1, ...,N-M1+1, ... ,N} and they correspond to the boundary nodes:

(4.24)

(4.25)

In equation (4.25), B: is given by equation (4.22). Substituting the finite element

approximant h: given by equation (4.23) into the set of equations (4.16) gives

where the scalar time-independent diffusion operator Lis:

L = !.- (~!.-) +~ (~~) - jloS.ax u ax az u az

(4.26)

(4.27)

Equation (4.26) represents a set of N-M equations, the I-th equation of which

N-M N

L aj(Laj, adOh = - L B:(Xk' Zk)(Lak, a,)oh.
j=1 k=N-M1 +1

To simplify notation let the element r jl of a matrix r be:

and the element 91 of a vector g be:

so that equation (4.26) can be re-written in the following matrix form:

ra=g.
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The above matrix equation is to be solved for the vector a which by virtue of the

Kronecker delta relationship (4.13) has elements

(4.32)

I. e. the desired solution at node i. Hence the coefficients {ai} are identical to values

of the finite element approximant B~ as interpolated at the nodes.

The inner product that appears in matrix element rjl, equation (4.29), can writ­

ten in simple form using Green's Theorem, which in two dimensions is:

JIn u ~: dxdz = in uvdz - JIn ~:VdXdZ (4.33)

The first term of the inner product in equation (4.29), with the operator L given by

equation (4.27), is re-cast as

(!- [~OOj] 0
/
) = 1 !:..O:l 8O:j dz _ (~OOj (0 / )

ax l7 ax' Oh '80h U ax U ax 'ax Oh·
(4.34)

The first term in the RHS of equation (4.34) vanishes since node 1 is an interior

node and its associated basis function a' is being evaluated only at the boundary

nodes along OOb. To verify the above assertion, recall the statement made following

equation (4.14). With the first term of the RHS of equation (4.34) removed, the inner

product that is left contains only first order spatial derivatives of the basis functions.

Therefore, the matrix element r jl of equation (4.29) becomes, after Green's Theorem

has been applied to the first and second terms of the inner product in equation (4.29):

(4.35)

The applicability of Green's Theorem to the evaluation of the inner products, besides

simplifying the expression for r j/, also is the reason why the basis functions are allowed

to be linear in x and z in the first place even though the operator L contains second

order spatial derivatives. Thus, the quantity Laj, which is a second order derivative
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of a linear function, need not exist everywhere in n in order to evaluate the inner

product (Laj,a,)o.

To summarize this section, the idea is to solve the linear system ra=g where the

elements of the matrix r are given by equation (4.35) and the elements of the RHS vec­

tor g are given by equation (4.30) with the set of coefficients {hI:, k=N-M1 +1, ... , N}

known a priori, see equations (4.24) and (4.25). The solution vector is a and its

elements are identically the finite element approximant B~(s) at the interior nodes,

according to equation (4.32). H the finite element approximant is computed at the n

values of the Laplace frequency s given by {s j jln 2ft, j=l, 2, ..., n~8} in accordance

with the Gaver-Stehfest requirements, see equation (3.45), than an approximation for

By(t) in the time domain may be evaluated using

(4.36)

(4.37)

The above is referred to as a FE-Gaver-Stehfest formula.

4.4 Computational Aspects

The matrix elements {rjl, j, 1=1, ... , N - M} are given in equation (4.35) in terms of

inner products over the perturbed solution domain nh • I will show in §4.4 that these

inner products are analytic when linear interpolating polynomials of the form (4.12)

are used over a triangular partition of Oh. For example, the inner product of two

interpolating polynomials appears in the expression for rjl. It can be re-written as:

(OJ,OI)Oh = { ojoldxdz = L { ojor dxdz,JOh T Jar
where use has been made of equation (4.11). Using the following quadrature formula

which is exact for integration of arbitrary linear functions I(x, z) over a triangular

region ~r:

(4.38)
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I obtain a desired analytic result:

(4.39)

(4.40)

(4.41 )

(4.42)

In the above equations, Ar is the area of the r-th triangle and the vertices of this

triangle are at the co-ordinates (Xi, Zi), (Xj, Zj), (Xt, Zt).

Similarly, analytic expressions are available for the other inner products com­

prising f jl, but only provided the electrical conductivity of each triangle in the mesh

is kept constant with respect to X and z. IT the discretization of {lh is sufficiently

fine, keeping the electrical conductivity constant over each element does not preclude

modeling complex geological structures. The starting point is

( .!. oaj oal) = L -.!.. f OOlr OOlT dx dz
U Ox Ox flh r u r Jar Ox ox

where a r is the electrical conductivity assigned to the r-th triangle and again use

has been made of equation (4.11). Since the interpolating polynomials are linear, the

terms under the integral in equation (4.40) are both independent of X and z, therefore

they may be brought outside the integration. There results:

( .!. oaj Oal) _ L Ar OOl] OOlT
a Ox 'OX Oh - a r Ox Ox

r

which is analytic.

Since all the inner products in equation (4.35) may be evaluated analytically,

none of the elements of the matrix I' or the vector g in the finite element linear

system ra=g need to be evaluated with the aid of numerical quadrature. Inserting

the analytic expressions (4.39) and (4.41) for the inner products of fjl back into the

original equation (4.35) gives the result:

r ~ A r [OOl] OOlT OOl] OOlT /-LoUrS fJ ]
jt = - L....J U r ox ox + oz oz + 3 jt·

r

From equations (4.42) and (4.12) it is apparent that fil is non-zero only if j=l

or if the nodes j and 1 share common triangles, i. e. the basis functions a i and a,
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have overlapping support. By ordering the nodes in such a way that nodes sharing

common triangles are ordered as close as possible to one another, the bandwidth

(3 of the matrix r is kept to a minimum. This is important when it is considered

that the solution time of the linear system ra=g using band Gaussian elimination

is O[,82(N-M)]. In addition, the amount of storage required for this algorithm is

O[,8(N-M)]. The implementation of the finite element technique described in this

chapter uses a band Gaussian elimination routine from the NAG (1983) mathematics

software library. The implementation also includes a slightly modified version of

the mesh generator TRIMESH written by Travis (1987). This software, once the

piecewise constant electrical conductivity O'(x, z) and the domain Qh are specified,

automatically partitions !lh into triangular elements and orders the nodes so as to

minimize the bandwidth of r.

4.5 Convergence of Approximation

When applying a numerical method towards solving a perturbed BVP, two distinct

types of errors are encountered. The approximation error is Ilu - ii, II and the pertur­

bation error is Ilu - uh II where the notation 11·11 refers to an arbitrary vector norm.

A finite element solution is optimal if the perturbation error is of greater order in h

than the approximation error. The perturbation error is caused by any combination

of numerical quadrature of the inner products, interpolated boundary conditions and

boundary approximation. Since the inner products associated with the finite element

formulation of the H-polarization problem may all be evaluated exactly, see §4.4, only

"boundary perturbations" contribute to its perturbation error. Although there have

been few if any theoretical bounds placed on the perturbation errors for solutions of

open boundary problems which contain one or more singularities, e.g. controlled­

source electromagnetic boundary value problems, the following related error estimate
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(Wait and Mitchell 1985) is of interest. Consider the model elliptic problem

u = 0, (x,z) E an.

(4.43a)

(4.43b)

The perturbation error for this problem is Ilu - uh ll=O(h3
/

2
) if nh IS a polygon

inscribed within n. The corresponding approximation error on {lh is Ilu - ull=O(h)

for linear interpolating polynomials on a triangular partition. The parameter h, which

is a measure of triangle size, may be interpreted as follows. Consider a mesh composed

of triangles of size h. IT the mesh is made finer by sub-division of every triangle into

four via the creation of new nodes at the mid-points of the element edges, then the

triangles of the new mesh are of size h/2 (see Figure 4.1d). For the model problem,

which does not suffer from boundary perturbations due to interpolated boundary

conditions, it is also assumed that

(4.44)

The perturbed H-polarization problem, which is defined by equations (4.20­

4.22), on the other hand suffers from both types of boundary perturbations, i. e.

interpolated boundary conditions and boundary approximation. In addition, the limit

(4.44) does not hold. Therefore, the error bounds described above for the model

problem suggest that the perturbation error for the H-polarization problem is at best

(4.45)

and that with a triangular partition and linear interpolating polynomials the approx­

imation error is at best

(4.46)

Recall once again that By is the exact solution on n, B: is the exact solution on the

perturbed domain {lh and B~ is the FE approximant on nh. To study convergence

69



as a function of triangle size h, the perturbed BVP (4.20-4.22) has been solved on

a sequence of progressively finer meshes. A fine mesh, characterized by triangles of

size h/2, is generated from a coarser one of size h, by dividing every triangle into four

smaller ones, joining the mid-points of its edges, as in Figure 4.1d.

Define the percent relative error on each node of a mesh of size h containing N

nodes as

(4.47)

Figure 4.2a shows contours of the percent relative error eh on a mesh of N =736 nodes

as a function of position in the lower haH-space of a double haH-space conductivity

model with a 3:1 conductivity contrast. The seafloor z=Q lies along the top of the

figure, the 2-D extended dipole source occupies the upper left corner, and the bound­

ary of the figure is a square whose sides are of length one Laplace domain skin depth,

i. e. the boundary is 16: X 16: in the x / z-plane. The errors are evaluated based on

comparing the output from the finite element program with the analytic solution to

the unperturbed problem, equation (3.27). The percent relative error on the mesh of

size h/2, which contains 2880~4N nodes, decreases everywhere by a factor of two,

see Figure 4.2b. On the finest mesh, which is of size h/4 and contains 11392~16N

nodes, the decrease in the error is an additional factor of two, see Figure 4.2c. Thus:

~h/4(X 0 zo) - ~~h/2(x 0 zo) - !~h(x 0 zo)
<;;"i " 1 - 2 <;;"i ", - 4 <;;"i ." (4.48)

for almost all i=l, 2, ... , N with exception near the corners of anh • At these locations,

the full rate of convergence is not achieved due to the presence of singularities that

occur in solutions to elliptic equations near the corners of non-smooth domains (e.g.

Johnson 1987). The results elsewhere, i.e. equation (4.48), imply that eh=O(h), in

accordance with equation (4.45), and that the relative error on the mesh of size h/4

obeys £~2.5%. The D(h) empirical relationship as illustrated by Figures 4.2a-c is a

strong indicator that the implementation of the finite element technique as described

in this chapter is optimal.
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4.6 Towards Mesh Optimization

The errors associated with the finite element solution of the H-polarization problem,

like those of any boundary value problem, depend on the mesh structure, especially

some aspects of it which are under the programmer's control. I have developed, after

much trial and error, a set of four mesh parameters which, when input to the mesh

generator TRIMESH (Travis 1987), completely specify the mesh structure. The set

includes a) the geometric spacing 9 of the nodes, b) the total number of nodes N in

the mesh, c) the distance d} of the inner boundary 8Qhl from the point where By

is singular and d) the position do of the outer boundary 8f2ho with respect to the

singularity. Clearly, only three of these parameters are free. In §4.6 I will determine a

set of values for the mesh parameters (g, do), keeping N fixed, that minimizes a pre­

scribed error criterion on solutions to the H-polarization double half-space problem.

While no attempt is made to find universal values for the mesh parameters, which

is highly problem dependent, the results from this section may be viewed as a step

towards mesh optimization for the double half-space problem. Before proceeding,

note that logarithmic spacing of the nodes is desirable since the field component By

decays exponentially with range from its source.

Some examples of meshes generated with different values of the node spacing

factor 9 satisfying 1.1<9<2.4 are shown in Figures 4.3a-d. To show clearly the differ­

ences in the mesh structure when 9 is changed, the position do of the outer boundary

and the number of nodes N are kept the same for each mesh. This, in turn, forces

the position d1 to depend on g. The sample mesh with g=1.5 shown in Figure 4.3b

contains far fewer nodes but is otherwise identical in structure to the mesh of size h

which was described in §4.5 and employed to estimate the convergence of the finite

element approximation.
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Consider the following "seafloor" error indicator:

N

11e;11 = L {eh(xi, Zi), if Zi=O~
. 0, otherWIse,
1=1

(4.49)

where the quantity eh(xi, Zi) is given by equation (4.47). This indicator provides a

measure of how accurate the approximation B~ is at nodes that are on the interlace

z==o between the upper and lower half-spaces. Minimization of the indicator Ilell
given by equation (4.49) seems a reasonable criterion by which to optimize the mesh in

view of the fact that magnetic field measurements are normally made by instruments

deployed on the seafloor. Figure 4.4 shows the dependence of the indicator (4.49)

on the position d1 of anhl and the geometric spacing factor g. The minimum of

each curve correponds to the optimal position of the inner boundary, at least as far

as minimizing the seafloor error indicator is concerned. Plotting d1 in units of skin

depths removes from Ilell its dependence on the Laplace frequency s. The best results

are obtained when the set of input parameters (g=1.5, d1= 0.16:) is chosen. As a

final word on mesh optimization, it is up to the programmer to determine the criteria

by which he wishes to optimize his mesh. The decision could be based, for example,

on the minimization of error at locations where actual measurements are likely to be

made.

4.7 Numerical Solution of the E-Polarization BVP

(4.50)(x,z)En

To complete Chapter 4, I will briefly describe how the numerical method described

earlier in this chapter is modified to solve a boundary value problem based on the

E-polarization mode of Maxwell's equations as it is excited by an infinite line source

oriented along-strike of a two-dimensional structure 0'(X, z). The governing equations,

as formulated in §3.8, are

82Ey(s) 82Ey(s) _ E ( ) _ J,m.d.
8x2 + 8z2 Jls Y S - JlS S ,

Ey(xo,zO's) =0, (XO,zo) Eaf2, s>o. (4.51 )
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As was the case with the H-polarization governing partial differential equation, the

applied current density J' in equation (4.50) causes a singularity in the along-strike

field component E y{s) at the co-ordinate origin. Therefore, to have a well-posed

numerical problem, the domain f2h illustrated in Figure 4.1c is again chosen. The

perturbed version of the E-polarization problem is defined on Oh as follows:

2-h 82- h
8 Ey(s) Ey(s) -h

8x2 + 8z2 - J.lO'sEy = 0, (x, z) E nk (4.52)

(4.54)

(4.53)
-h
Ey(xo,zo,s), (xo,zo) E 8nhO

-h {E;cean(xt, Zl ~ 0, s)
Ey(Xt,Zt,s) = -=:earth (Xl,Zl) E 8nhl

E y (Xl,Zl~O,S)

where E;cean (s) and "'E;arth(s) are analytic solutions to the E-polarization double

half-space problem and are given by equation (3.53) and (3.54) respectively.

(4.55)j,1=1,2, ...,N-M

The domain {lh is partitioned into a mesh of triangles upon which basis functions

of the form (4.11) and linear interpolating polynomials are defined. Writing the finite

element approximant E; to the exact solution E: in the fonn (4.23), the terms in the

finite element linear system ra=g that corresponds to the perturbed E-polarization

problem (4.52-4.54) have the elements:

r. - _ '"' A [80:; 80:[ 80:; 80:[ JlU r S6i1 ]
JI - L..J r 8x 8x + 8z 8z + 3 '

T

1=1,2, ...,N-M.

-h
ai = Ey(Xi,Zi), i = 1,2, ... ,N - M

N

91 = - L E:(Xk' Zk)rkl,
k=N-Mt+l

(4.56)

(4.57)

This linear system may then be solved by making the small necessary modifications

to the finite element code that solved the H-polarization problem.

The convergence as a function of triangle size h of the approximation error IIEy ­

E; II is O(h). This was established by comparing output from the finite element

program run on the sequence of progressively finer meshes described in §4.5 with the
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appropriate analytic solution to the unperturbed problem, equation (3.54). Figure

4.5 shows contours of the percent relative error eh/ 4 when the numerical problem is

solved on the finest mesh of 11392 nodes. The 2-D line source occupies the top left

corner of the plot, which is one square skin depth Si in the x / z plane of the lower

half-space of a double half-space conductivity model with 3:1 contrast. The quantity

eh / 4 is defined on the i-th node by:

(4.58)

The percent relative error obeys eh/4~1.3% almost everywhere on the mesh with

exception once again near the corners of aOhl .
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Fig.4.1 Schematic diagram of a perturbed domain nh over
which the electromagnetic diffusion equations may be
solved numerically (a). Locations of the outer bound­
ary af2ho and inner boundary anh1 , which encloses
the source, are shown. The domain f2h is divided into
triangles, or finite elements. A polynomial associated
with the i-th node, or vertex, performs linear inter­
polation over the r-th triangle. A consistent scheme
to keep track of the vertex co-ordinates is required,
e.g. clockwise indexing (b). i\ solution domain appro­
priate for the'H-polarization boundary value problem,
in this case a double half-space electrical conductivity
structure is being modeled, is shown in (c). Numerical
solutions become progressively more accurate as the
discretization of the mesh becomes finer. A fine mesh,
characterized by t.riangles of size h/2, is generated from
a coarser one of size h, by dividing every triangle into
four smaller ones, as illustrated for a single triangle in
(d). An mesh of size h/4 is also shown.
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Fig.4.2 Contours of the percent relative error €(x, z) on
finite element meshes with triangles characterized by
size h (a, top), h/2 (b, bottom left) and h/4 (c, bottom
right) in the numerical solution to the H-polarization
double half-space problem described in §3.5. The con­
ductivity contrast is 3:1 and s=1 Hz. The errors are
computed by comparing the output from the 2-D finite
element forward modeling code against the analytical
solution. The decrease in errors with mesh size h is
consistent with an O(h) convergence. The 2-D ex­
tended dipole transmitter occupies the top left corner
of each plot, while the seafloor is alon:g the top.
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Fig.4.3 Sample finite element meshes generated vvith a
fixed number of nodes but different values of a geo­
metric spacing factor 9 ranging from 1.1 (a, top left)
to 2.4 (d, bottom right). The factor 9 measures the
increasing distance between nodes with increasing dis­
tance from the source, vvhich is located in the central
cut-out of the mesh. The accuracy of a finite elem~nt

approximation depends greatly on the mesh structure.
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Fig.4.4 An error indicator Ilell as a function of the size Xo,
measured in skin depths 8, of the central cut-out of
the finite element meshes shown in Fig.4.3. The error
indicator measures the accuracy, at nodes along the
seafloor, of the finite element approximation to the so­
lution of the H-polarization double half-space problem
with a 3:1 electrical conductivity contrast and 8=0.2
Hz. Best results are attained when the geometric spac­
ing factor 9=1.5 (Fig4.3b) and xo=O.18.
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Fig.4.5 Contours of the percent relative error t(x, z) on
a finite element mesh with triangles characterized by
size h/4 (compare with Fig.4.2c) in the numerical solu­
tion to the E-polarization double half-space problem
described in §3.8, with 3:1 conductivity contrast and
8=1 Hz. The errors are computed by comparing the
output from the 2-D finite element forward modeling
code against the analytical solution.
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Chapter 5

2-D Electromagnetic Responses of
Active Mid-Ocean Ridge Models

5.0 Introduction

In this chapter I wish to establish, through the use of two dimensional numerical

modeling, how transient controlled-source electromagnetic (CSEM) data can help to

characterize the geology beneath fast spreading mid-ocean ridge segments. To do

this, the data, which consists of seafloor recordings of the various electric and mag­

netic field components, requires interpretation in terms of the sub-surlace electrical

conductivity, for various source/receiver configurations and positions with respect to

the ridge axis. A method of intepreting transient CSEM data is developed in this

chapter, initially using elementary layered earth models, and then in the later sec­

tions of this chapter the method is applied to some synthetic, noise-free mid-ocean

ridge data generated by the finite element program described in the previous chapter.

Before proceeding, I might remind the reader that many aspects of mid-ocean ridge

geology and the electrical conductivity of the earth beneath active ridge segments

such as those along the East Pacific Rise (EPR) are discussed in Chapter 2, please

refer there for background information.

In general terms, the problem of geophysical data intepretation may be attacked

by identifying diagnostic features from the earth's response that are sensitive to the

critical physical property of the sub-surface. Such diagnostics are sometimes referred

to as response parameters, and in our case they are chosen to characterize the earth's

electromagnetic response in terms of its electrical conductivity. Forward modeling
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techniques are used to assist the process. For a given electrical model of the earth

and a given CSEM system configuration, for example, electromagnetic response pa­

rameters can be computed via a forward algorithm. The sensitivity of the response

parameters to variations in the sub-surface electrical conductivity may be assessed by

perturbing the structure of the electrical model and noting the corresponding amount

by which the response parameters change. If the response parameters are sensitive

to the perturbation, and large enough to be measured in a practical experiment, the

structure being perturbed may be said to be well-resolved.

Specifically, using the transient finite element forward modeling algorithm de­

scribed in Chapter 4, I will compute a set of electromagnetic responses for the electrical

models of an active mid-ocean ridge segment described in the last section of Chapter 2.

The response parameters I have chosen are the diffusion time T and Bmax=max8tBy,

the maximum of the impulse response. These parameters have already been defined

and were calculated for simple double half-space electrical conductivity models in

Chapter 3. The variation of (T, Bmax ) in the presence and absence of a conductive

magma chamber and zones of hydrothermal circulation is monitored in order to indi­

cate whether transient CSEM systems, when arrayed in a certain configuration, can

discriminate between the different structures. The results of this work are presented

in this chapter of the thesis.

The forward algorithm is valuable as a means to find the resolution of mid-ocean

ridge structures to controlled-source excitation i. e. as an experimental design tool,

since ridge-going experiments are difficult and costly to perform. In fact, CSEM

data from ridge-going experiments is only just becoming available. An experiment

which recorded the 0.25-8.0 Hz frequency components of the horizontal electric field

generated by an electric dipole transmitter at the East Pacific Rise crest near 13°N

was performed in June 1989 (Evans et. ale 1990), but the data has not yet been

completely interpreted nor released. There has also not yet been a transient CSEM

system, of sufficient strength to image the magma chamber, deployed over an active
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mid-ocean ridge segment.

5.1 HED Response Parameters

A pair of electromagnetic response parameters, namely the diffusion time T and the

maximum impulse repsonse Bmax_maxotBy(t), were defined in §3.6. Values for the

response parameters were calculated for the case of an infinite line source exciting a

uniform conductor, see equations (3.38) and (3.39). In this section, I will compute

and plot the magnetic field due to horizontal electric dipole (HED) excitation of a

uniform conductor, and then calculate its corresponding diffusion time. This quantity

will be used later in the chapter when I compare infinite line source and HED response

parameters.

Consider a grounded HED with a time dependent moment M(t) located at the

origin and oriented in the x-direction. Define the co-ordinate z as the vertical mea­

sure, positive upward. The HED source, situated in a medium possessing an electrical

conductivity u=u(x, y, z), generates all six components of the electromagnetic field

(E, B). In a marine environment, the magnetic effects of displacement currents may

be neglected, in which case the governing Maxwell's equations reduce to a pair of

uncoupled vector diffusion equations, one for each of E and B. As derived in §3.2,

the diffusion equation satisfied by the magnetic field B is

1 Js
V' x -V' x B + p,OtB = p,V' x -

0' U
(5.1)

where p,=47r X 10-7 Him is the magnetic permeability of free space. The HED source

current density J~ED is given by

J~ED(t) = P(t)8(r)x. (5.2)

In equation (5.2), P(t)=I(t)~ is the HED dipole moment, a product of the source

current let) and its length ~. The HED may therefore be regarded as a point dipole

of strength pet) and oriented in the x-direction. We assume that the current in the
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HED is stepped on to a steady value at time t=O such that let) = luo(t) where uo(t)

is the Heaviside unit step function. In this case, the analytic solution (e.g. Cheesman

et.al. 1987) to the differential equation (5.1), subject to the boundary condition that

B vanishes at infinity and valid for a uniformly conducting medium is

B(t) = -JtP(zy + yz) [erfC( v'Jiiir ) + / Jt<7r
2

exp( -Jt<7r
2

)] • (5.3)
47rr3 20 7rt 4t

Contour plots of By(t), with By=B·y calculated from equation (5.3), are shown in

Figure 5.1 for y=O and Figure 5.2 for y=1.2 km. The plots illustrate the diffusion of

By as a flUlction of time into a uniform conductor. At late time, t~10 s, the magnetic

field is steady, i.e. By(t)=O. Note that for y>O, local maxima appear above and

below the line z=O, and recede vertically from the dipole as time advances.

Define the electromagnetic response of the conductor, at any given location, as

the curve 8tB(t), and assume that practical receivers capable of measuring it are

available. Recall that the diffusion time T, characteristic of the electrical conductivity

(J', is the time taken for the response to attain its maximum magnitude, i. e., T is the

solution to the following equa.tion:

From equations (5.3) and (5.4) it may be shown that

(5.4)

J-tur2

T=--
10 ·

(HED source) (5.5)

I will show that the diffusion time T depends largely on the distribution of electrical

conductivity along the most resistive path from the source to the receiver. Therefore,

given the source/receiver configuration and the electrical conductivity structure, it

is straightforward to predict T approximately, without actually solving a governing

diffusion equation.

We shall examine variations in the response parameters T and Bmax =max8t B(t)

with respect to changes in the source/receiver separation, for different conductivity
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models. This analysis will prove sufficient to distinguish between the models. Other

parameters from the response curve 8t B(t) might well be selected, but since the

diffusion time T and the response amplitude Bmax are easily obtainable from the

experimental record and the dependence of T on the sub-surface conductivity is known

approximately, these two parameters represent a particularly convenient data set.

5.2. Elementary I-D Earth Models

Let us look at the response curves 8t B y ( t) resulting from an infinite line source excita­

tion of some simple layered earth models before proceeding to those from the detailed

ridge models described in Chapter 2. Analysis of the response parameters (T, Bmax )

extracted from the layered earth responses will assist interpretation of the later, more

complicated responses. I shall be solving the H-polarization mode of Maxwell's equa­

tions in this section of the thesis, i. e. the extended dipole source is described by the

current density function (3.19).

Consider step-on extended dipole excitation of a uniform earth with electrical

conductivity 0'=0.1 S/m. The response OtBy(t) that would be measured by a seafloor

receiver is calculated by inserting either equation (3.26) or (3.27) into the Gaver­

Stehfest derivative formula,

[
ln2] Nc _

8t B y = -t- ~ cn(Nc}snBy(sn} Nc,even (5.6)

and then setting z=O. The result is shown plotted as squares in Figure 5.3b. The

dipole is of moment P'=100 A and lies on the seafloor beneath a uniform ocean with

0'=3.2 S/m. The source/receiver separation L is 5 km. From the curve, the response

parameters are found to be (r=0.42 s,Bmax =0.57 nTIs).

Now consider a very simple electrical model of young oceanic crust. The model,

shown in Figure 5.3a, consists of the unifonn ocean overlying a layer of conductivity

O'} =0.1 S/m representing the upper basaltic sequence and a 0'2=0.001 S/m half­

space representing the gabbros. This model differs from the double half-space model
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because of the presence of the resistive gabbroic basement. An expression for the

magnetic field resulting from step-on extended dipole excitation of the three-layer

model may be derived by extending the double half-space theory found in Edwards

(1988). The result, after setting z=O, is

(5.7)

(5.8)

where

R
0'281 - 0'1 8 2

12 =
0'2 8 1 + 0'1 8 2

may be regarded as a reflection co-efficient and h is the thickness of the upper layer.

Application of the Gaver-Stehfest derivative formula (5.6) gives the response curve

8t B y (t) for this model, which is shown plotted as triangles in Figure 5.3b. The re­

sponse parameters, as extracted from the curve, are (r=O.25 s,Bmax =O.34 nTIs).

Diffu3ion Time

The peaks in the layered earth response curves are due to electromagnetic energy

diffusing from the source along the most electrically resistive path to the receiver.

For the double half-space model, this means directly through the earth. Edwards

and Chave (1986) have shown that r can be inverted using equation (3.38) to give an

estimate of the seafloor conductivity and they indicated that this estimate is robust

with respect to the conductivity contrast 0'0/0'1 between the upper and the lower

half-spaces. A signal diffusing through the seawater is much smaller and arrives later

at approximately r=12 s (not clearly shown in Figure 5.3b).

The diffusion time for the three-layer model is r=O.25 s which represents a de­

crease with respect to the double half-space diffusion time of r=O.42 s. The decrease

is clearly due to a change in the most electrically resistive path. The path through

the three-layer model is down through the thin layer, across the resistive half-space

and then up again through the thin layer to the receiver. Since 0'2L2 « 0'1(2h)2,

the diffusion time across the resistive half-space can be neglected with respect to the
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diffusion time up and down through the thin layer. A shortening of diffusion time in

the presence of a resistive basement is also noted by Cheesman et.al. (1987) who mod­

eled in two dimensions magnetic dipole excitation of a three-layered earth. Likewise,

the diffusion time T through a 2-D conductivity structure of arbitrary complexity is

determined by the electrical conductivity along the most resistive path from source

to receiver.

Diffusion times from the three-layer earth model are plotted, again as triangles,

in Figure 5.3c as a function of source/receiver separation. For sufficiently large L,

T is constant, reflecting the fact that the first arrivals of electromagnetic energy at

those receivers have taken a fast path beneath the upper layer. A marked similarity

exists between this curve and a plot of first arrivals as a function of range from a

seismic refraction experiment, where in that case the earth would consist of a fast

velocity basement underlying a slower velocity layer. The variation with range of the

double-halfspace diffusion times is also displayed (squares).

Response Amplitude

The layered earth response amplitudes are Bma.x=O.57 nT/s for the double half­

space model and Bm a.x=O.34 nT/s for the three-layer model; these values are taken

from the curves plotted in Figure 5.3b. The difference in these results is due to the

dependence of Brnax on 0"- 11-3 , where 1has dimensions of length, see equation (3.39).

Thus, as far as the interpretation of the response amplitude is concerned, there is

a trade-off between conductivity and signal path length. Consider the three-layer

model. Although the basement conductivity of 0"=0.001 8/m is less than the thin

layer conductivity 0"=0.1 S/m, the path length through the three-layered model is

longer than the path through the double half-space model. The longer path length

results in a smaller response amplitude. However, as L increases, the difference in

the two path lengths becomes insignificant. At sufficient range, the two path lengths

are approximately equal, and the response amplitude is dominated by the difference
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(5.9)

in path resistivity (1-1, eventually causing the response amplitude of the three-layer

earth to become greater than that of the double half-space.

Response amplitudes of the three-layer, plotted as triangles, and double half­

space earth models (squares) are shown in Figure 5.3c as a function of L. The cross­

over in response amplitude as described above occurs at approximately L=12 km.

The response amplitude Bmax is more difficult to predict a priori than the diffusion

time r, since Bmax does not depend on the geometry in an obvious way.

Conversion Factors

In this section, we derive conversion factors to relate experimental determinations

of rand Bmax , as they might be extracted from the response curves of seafloor

receivers, to the theoretical values of these parameters that are calculated under the

2-D approximation. From equations (5.5) and (3.38), the effect of the approximation

Oy=o is to increase T by a constant factor

r 2D = [~l rHEDly=oo

The above equation, due to its simplicity, has broad implications for reducing the

computational load if it can be shown to remain even approximately true for compli­

cated structures, since to obtain r 2D only a scalar diffusion equation need be solved.

For comparison, a simple analytic form for the diffusion time also exists in the one di­

mensional (ox=Oy=o) magnetotelluric problem. Ferguson and Edwards (1990) show

that an infinite current sheet, of density Jsoc6(z) and aligned parallel to the sur­

face of a uniformly conducting half-space, induces fields which diffuse into it with a

characteristic diffusion time of

pO'z2
r---- 6 · (MT source). (5.10)

Comparing the I-D MT, 2-D extended dipole and 3-D HED results, we have

r
MT

= [~] r
2D

lx=o = [~] rHEDlx=o,y=oo
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The 2-D response amplitudes can also be converted into realistic signal ampli­

tudes quite easily. H the earth is lIDiformly conducting, the effect of the 2-D approxi­

mation Oy=O on Bmax can be assessed as follows. In the Laplace domain, there exists

a closed-form solution (Wait 1961) to the vector diffusion equation (5.1) when the

current density Js corresponds to that of a stepped-on, seafloor HED source and the

conductivity 0'(z) is that of a uniform ocean 0'0 overlying a uniform earth 0'1. The

y-component of the solution, which is expressed as a Hankel transform, is

B HED (s) = -p.P (Xi [8
0
+ (0'1 - 0'0) au] exp(-80 z) JO(AJx2 + y2) dA (5.12)

y 21rS 10 0'091 + 0'1 80 90+91

where Jo is a Bessel function. The 3-D response OtB:ED(t), calculated from equations

(5.6) and (5.12), is shown plotted as diamonds in Figure 5.4a. The HED moment is

P=l00 A·m, the double half-space model shown in Figure 5.3a is chosen, and L=5

km. Figure 5.4a also illustrates the comparison between the 3-D response and its

equivalent 2-D response, which I have already calculated and plotted as squares in

Figure 5.3a. The two response curves are initially of similar shape, but the HED

...... response takes about an order of magnitude longer to decay.

The response amplitudes, extracted from the curves, are B~~x=O.57 nT/s and

iJ~~,?=O.ll pT/s, note that there are two vertical scales in this plot. The HED

response is much smaller than the extended dipole response due to the fact that the

HED is a point source and the extended dipole is a line source. The ratio of the two

responses, as a function of the source/receiver separation L, is shown in Figure 5.4b.

The relationship is a very simple one:

· 2D · HEDB max = LBmax • (5.13)

Equations (5.9) and (5.13) define conversion factors which relate physical measure­

ments of the response parameters (T, Bmax ) to their values as computed under the

two-dimensional approximation, and are valid for the double half-space model.

5.3 A Uniform u=I.0 81m Magma Chamber Model
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I shall now calculate electromagnetic field components as they might be recorded on

the crest of the East Pacific Rise, assuming it has the conductivity structure shown

in the model of Figure 2.1b. This model is based on the analysis of seismic reflection

profiles, see Chapter 2 for further details. An infinite source, or transmitter, lies on

the seafloor 5 km west of the axis, as shown by the position marked Tx in Figure

2.1b. The seafloor is assumed to slope away from the crest at an angle of 5° with

the horizontal. Following a step-on in transmitter current which occurs at time

t=O, electromagnetic fields begin to diffuse through the conductivity structure. The

finite element-Gaver-Stehfest procedure, outlined in §3.7, is used to compute the

diffusing field By(x, z, t) at all points throughout the model but only the field at the

pre-selected sites on the seafloor labelled A-D will be used for further analysis. The

sites are a set of four ever.L1y spaced points along the seafloor across the ridge crest

and have been selected as possible receiver sites. These points lie 2.5 km west of the

axis, on the axis itself, and 2.5 km and 5.0 km east of the axis.

The patterns of magnetic field By(t) diffusing into nonnal quasi-layered oceanic

crust following 2-D extended dipole excitation is shown in Figure 5.5a. The patterns

represent solutions to the H-polarization mode of Maxwell's equations. At the instant

the source is activated, two current vortices form, one above and one below the source.

The strength of this initial current flow is precisely that required to maintain the field

everywhere at the zero value which existed before step-on. As time progresses the

lower, larger-scale vortex circulates in the crust and in a narrow band of seawater near

the seafloor. The streamlines at large range near the seafloor and near the interlace

between layers 2 and 3 of the oceanic crust resemble strikingly the wavefronts of

seismic head waves (see also Edwards 1988, de Hoop and Oristaglio 1988). The leaking

of energy into the seawater from below at early times is observed on the seafloor as an

"earth signal". Both vortices expand with time at a rate inversely proportional to the

conductivity and finally, at the late time limit, the current is confined to the seawater.

The addition to the model of the magma chamber retards the progress of the crustal
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vortex, Figure 5.5b. I shall show that this additional body of high conductivity causes

a delay in the arrival of the earth signal. At late times, for both models this is t>10

s, a "sea signal" dominates and information about the solid earth is lost.

The time derivative of the magnetic component 8tB y ( t) at locations A-D near the

crest is shown in Figure 5.6a, which permits a qualitative assessment of the response

parameters (T, Bmax ). Recall that the diffusion time T is the time at which the impulse

response reaches its maximum amplitude. At the seafloor positions labelled C and

D in Figure 2.1b the diffusion time T is much greater when a magma chamber is

included in the model. As expected, the presence of the magma chamber will delay

the peak voltage measured in a coil placed on the far side of the rise axis. The

response parameters will be examined quantitatively in the next section of the thesis.

Here, the objective is simply to illustrate the patterns of fields diffusing into typical

mid-ocean ridge structures.

Although we have not defined response parameters in terms of solutions to the

E-polarization mode of Maxwell's equations, it is instructive to compute the response

from excitation of an earth represented by the model in Figure 2.1b by the infinite wire

oriented along-strike. Contours of the electric component Ey(t) resulting from such

an excitation are shown in Figures 5.5c,d. The contours represent solutions to the

E-polarization mode of Maxwell's equations. The presence of the highly conductive

magma chamber is detected by a disruption of the normal progress of the diffusing

signal. The electric component at ridge floor locations on the far side of the rise axis

at early times (i.e. t=1.0 s) appears to be reduced in magnitude when the magma

chamber is included in the model. The computed electric component is shown for

positions A-D in Figure 5.6b. At early times for positions C-D the electric component

is indeed attenuated when the magma chamber is present. Figure 5.6b also shows that

at late time for all the receiver positions the magnitude of the electric component

does not depend on the presence of the magma chamber. Indeed, at late times,

the inductively generated TM component becomes increasingly independent of the
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conductivity structure and eventually vanishes. Once again, it is only the early time

measurements of the signal that provide clues to the existence of a magma chamber.

5.4 A Melt Lens Model, and Hydrothermal Circulation

Simplified 2-D models of the goo-electric section at a fast spreading center are shown

in Figures 2.3a-d. The model geometries consist of block representations of actual

structures found beneath an active ridge segment (MacDonald 1989), taking both

seismic reflection and refraction data from the East Pacific Rise into account (see

Chapter 2). The electrical conductivity u of each geological structure is once again

assumed to be uniform and its value is selected on the basis of the available data sum­

marized in that chapter. To find the electromagnetic response of a particular model

to excitation by the extended dipole, the finite element-Gaver-Stehfest method is

used. From the transient magnetic field By(t) computed by this method, response

parameters (T, Bmax ) are extracted. All of the finite element calculations were per­

formed on the CRAY-XMP/24 at the Ontario Center for Large Scale Computation.

The computer code used to solve the governing diffusion equation (3.23) executed

at an average speed of 12 Mflops using CRAY single precision arithmetic. A set of

six evenly spaced points on the seafloor across the ridge crest have been selected as

typical receiver sites. These points lie 1.5 km west of the axis, on the axis itself, and

1.5 km, 3.0 km, 4.5 km and 6.0 km east of the axis. To generate a single snapshot of

the magnetic field, about one minute of CRAY CPU-time and 24 MB of memory are

required.

Uniform Magma Chamber

The electromagnetic response curves OtBlI(t) of the models shown in Figures 2.3a

and 2.3b are plotted, respectively, as squares and triangles in Figure 5.7. The effect

of adding the magma chamber is to delay the diffusion time and to alter the response

amplitude. These effects are not noticeable at the receiver located west of the axis
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I~ but become increasingly pronounced with range. In particular, at 6 km east of the

axis, Bmax is reduced by about 50% and the T increases from 0.3 s to 0.7 s.

The observed behaviour of the diffusion time may be understood by analogy

with the elementary three-layer model, Figure 5.3a. The most resistive path through

the quasi-layered model in Figure 2.3a is very similar to the most resistive path

through the three-layer model. It goes down through the upper basalt layer, across

the resistive base layer of gabbros and up again through the basalts to the receiver.

By virtue of its high electrical conductivity relative to the surrounding gabbros, the

presence of the magma chamber, Figure 2.3b, slows down the magnetic field diffusing

through it. Since the magma chamber conductivity is less than that of the upper

layer basalts, its presence does not, however, perturb the diffusion path.

It is apparent from Figure 5.7 that the response amplitude Bmax is enhanced

at the sites on-axis and up to 3 km east of the axis when the magma chamber

is included in the model, but reduced at the sites 4.5 and 6 km east of the axis.

This observation may be interpreted as follows. Induced currents in the magma

chamber, which are set up when it is excited by the "primary" field B~(x, z, t) diffusing

through the quasi-layered structure, act as a secondary source of electromagnetic

fields. The "secondary" magnetic field B;ec(x, z, t) produced by the induced currents

in the magma chamber has a spatial distribution which resembles that of the primary

field, i.e. a horizontal dipole pattern. The total magnetic field By=B~+B;ec is then

the sum of this field and the primary field. At seafloor sites between the two sources,

the primary and secondary fields reinforce one another, while at seafloor sites east of

the magma chamber they tend to cancel.

Thin Melt Lens

The response of the model containing the uniform magma chamber, shown again

plotted as triangles in Figure 5.8, is now compared to that of a model containing an

identical chamber with a thin lens of pure melt at the top (the latter model is shown
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in Figure 2.3c and its response is plotted as squares in Figure 5.8). The diffusion

times for the four closest receiver sites are the same for both models but there is

an enhancement in the diffusion time evident at the other two receiver sites, the

enhancement is about 0.1 s at the farthest site. Response amplitudes at the receiver

locations 0-3 km east of the ridge axis increase by as much as 17% following the

addition to the model of the thin lens but are much less elsewhere. The effect on the

response parameters (T, Bmax ) of the melt lens is measureable because the primary

diffusion path to the receiver has been diverted slightly by the presence of the lens of

enhanced conductivity. The most resistive path goes under the lens.

Hydrothermal Circulation

Finally, the effect of adding hydrothermal circulation to the upper 2 km of the crust

(see Figure 2.3d for the geometry) is shown in Figure 5.9. In this figure, the response

of the uniform magma chamber is plotted as triangles, the response including hy­

drothermal circulation is plotted as squares. The enhanced electrical conductivity

due to the circulating fluids delays the arrival of the signal at all receiver sites. For

example, the delay in diffusion time at 6 km east is 0.1 s. The effect of hydrothermal

circulation on the diffusion time is much greater at 0-3 km east of the axis, which

is directly above the regions of enhanced conductivity. A second effect of adding hy­

drothermal circulation to the model is to reduce the response amplitude at all receiver

sites. This effect is strongest at the receivers 0-3 km east of the axis.

The response amplitude is difficult to predict and interpret since it depends on

the conductivity model in a complicated way. For example, the response amplitude

increases at certain sites when the magma chamber is added to the quasi-layered

model but decreases at those sites when the hydrothermal circulation zones axe added,

even though both structures are relatively conductive with respect to their hosts.

5.5 On the Resolution of Mid-Ocean Ridge Structures
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The response amplitude from the uniform magma chamber model, as predicted from

the two dimensional numerical modeling and extracted from the curve plotted as tri­

angles in Figure 5.7, is of the order 1.5 nT/s at 3.5 km source/receiver separation and

50 pT/s at 8 km separation. The above amplitudes are valid for a 2-D extended dipole

possessing a moment of P'=100 A. Assuming that the linear relationship between the

HED and the 2-D response amplitudes, equation (5.13), is approximately true even for

the non-uniform conductivity structure that exists beneath the ridge, putative HED

response amplitudes can be computed from the 2-D results. These are, corresponding

to an HED with a moment of P=100 A·m, B~~~=0.4 pT/s and B~~~=0.006pT/s

for the 3.5 km and 8 km separations respectively. The small magnitude of the HED

response means that practical receivers must be sensitive to sub-pT/s fluctuations in

order to detect the signals originating several kilometers away. If the sensitivity of the

receivers is only 1 pT/s, the HED dipole moment must be increased to 104-105 A·m

in order to detect a response across the ridge. The University of Toronto fluxgates,

for example, are sensitive to 1 pT, although the noise levels are still uncertain.

A3ymptotic Behaviour of T

The dependence of the diffusion time on the source/receiver separation is sum­

marized in Figure 5.10a, for the various conductivity models studied. In all cases, the

explanation for the asymptotic behaviour of T at large values of L can be given in

terms of the availability of a fast diffusion path through the resistive gabbros, and is

analogous to the interpretation of seismic refraction first arrival time. For example,

the diffusion time for the quasi-layered model, plotted as squares, is a constant 0.3

s for receiver sites more than 1.5 km east of the axis. This observation is in accor­

dance with the asymptotic behaviour of T through the three-layer model containing

the resistive basement, c.f. the curve plotted as triangles in Figure 5.3e. Let us now

examine, in order, the behaviour of T as a function of L for each of the other MOR

conductivity models whose response we have computed.
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Consider the tuliform 0'=0.05 Sim magma chamber model, shown in Figure 2.3b.

The diffusion times for the various receiver sites are shown plotted as triangles in

Figure 5.10a. The diffusion time at the most distant site is 0.7 s and there is an

indication from the shape of the curve that T will asymptote to a constant value

at larger L, in accordance with the hypothesis of the preceding paragraph. The

diffusion time at receiver sites on or east of the ridge axis is greater when the magma

chamber is added to the quasi-layered model because, although the magma chamber

has not diverted the diffusion path, its presence has enhanced the conductivity along

a segment of the path. This gives rise to an increase in the overall diffusion time.

When a thin lens of pure melt at the top of the magma chamber is modeled,

the corresponding diffusion times are plotted as circles in Figure 5.10a. At the site 6

km east of the ridge axis, the presence of the melt lens delays the diffusion time by

0.1 s. Since the top of the magma chamber is located on the fastest diffusion path,

the effect of adding the highly conductive lens to the magma chamber is to perturb

slightly the geometry of the diffusion path. At the two farthest receiver sites the new

path is most likely one that proceeds beneath the lens.

Now consider the hydrothermal circulation of fluids in the zones of most intense

fissuring directly above a uniform magma chamber. The diffusion times are plotted

as diamonds in Figure 5.10a. At sites 0-3 km east of the axis, they show a marked

increase of about 0.3 s with respect to those of the uniform magma chamber model

(triangles) because the signals necessarily pass through the regions of enhanced con­

ductivity, see Figure 2.3d. At more distant sites, there is a direct path to the receivers

beneath the hydrothermal fluids, thus the diffusion time becomes, with range, inde­

pendent of the presence of the hydrothermal circulation.

To differentiate between the ridge conductivity models, the curves shown in Fig­

ure 5.10a indicate that the response 8t B(t) must be known accurately over the window

0.3~t~0.8 s following source activation. If a receiver returning accurate samples of

the magnetic field at about 10-25 Hz is employed, arrival times can be picked out of
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the time series to within 3-40 ms.

Behaviour 0/ Bmax

The response parameter Bmax is shown plotted as a function of increasing trans­

mitter/receiver separation in Figure 5.10b. At the most distant receiver site, 6 km

east of the axis, the various conductivity models are most easily distinguished. The

response amplitude is small, 5 pTIs, when hydrothermal fluids and a uniform magma

chamber are present (diamonds) and much larger, 25 pTIs, when they are both absent

(squares). IT just the magma chamber is present (triangles), the response amplitude

is an intermediate value, 12 pTIs, regardless of whether the thin lens of pure melt

(circles) is included. At sites 0-3 km east of the axis, however, the difference between

the response amplitudes of these latter two models is more pronounced.
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Fig.5.2 Contours of the HED step response at a distance of
y=1.2 km along-strike. Maxima in the magnetic field,
known as Maxwell's images, appear above and below
the dipole whenever y>O and recede vertically as time
advances.
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Fig.5.3 A pair of elementary, layered earth electrical mod­
els of young oceanic crust (a). Electric E(t) and mag­
netic B(t) are created by a sudden change in electric
current in a seafloor transmitter (Tx). The fields dif­
fuse outwards from the source, and may be recorded
at a distance L by a seafloor receiver (Rx). The rate
of diffusion is governed by the electrical conductivity
0'. Response curves 8t B y (t) for the layered models (b).
The maximum of each curve is the response amplitude
Bmax=max(8t B y ) while its position in time is the dif­
fusion time T. The response amplitude and diffusion
time as a function of Tx-Rx separation L, for the lay­
ered models (c).
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Fig.5.5 Electromagnetic field components as they might
be recorded on the crest of the East Pacific Rise, as­
suming it has the conductivity structure shown. Mag­
netic field By(x, z, t) diffusing into "normal", quasi­
layered oceanic crust following a step-on of electric
current in a 2-D extended dipole located 5 km off­
axis (a). The patterns shown represent solutions to
the H-polarization mode of Maxwell's equations. The
addition to the model of a magma chamber of con­
ductivity 0'=1.0 Sim retards the progress of the lower
vortex of currents (b), causing a lengthening of
the electromagnetic diffusion times to receivers located
across the ridge.

Fig.5.5 (cont'd) Electric field Ey(x, z, t) diffusing into lay­
ered crust following a step-on of electric current in an
infinite, insulated cable oriented parallel to the strike
of the ridge (c). The patterns shown represent solu­
tions to the E-polaxization mode of !vIaxwell's equa­
tions. The presence of the highly conductive magma
chamber disrupts the normal progress of the diffusing
field at early times (d), during which time the chamber
can be detected by an attenuation in the electric field
measured by receivers placed across the ridge.
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Fig.5.6 Response curves 8t B y (t) at the four seafloor loca­
tions A-D shown in Fig.2.1b, representing receiver sites
across the East Pacific Rise (a, top row). The response
is extracted from the numerical solution (see Fig.5.5a­
b for snapshots of the solution at times t=0.1,1.0 and
15.0 s following excitation), of the governing, transient
H-polarization boundary value problem. Responses
shown are for conductivity models that include (solid
line) and omit (dashed line) a magma chamber of con­
ductivity 0'=1.0 S/m. The electric field component
Ey(t), as extracted from E-polarization solutions, see
Fig.5.5c-d, at the same locations A-D, and for mod­
els with and without the magma chamber (b, bottom
row).
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km east of the axis and reduce the response amplitude
elsewhere.
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Chapter 6

2.5-D Analytical & Numerical Modeling

6.0 Introduction

With very few exceptions, all of the modeling described so far in this thesis has

involved transient electromagnetic excitation of 1-D or 2-D earth conductivity struc­

tures by means of infinite line sources. These two dimensional numerical models are

relatively low-cost and may be used to assist seafloor controlled-source data inter­

pretation (Chapter 4) and experimental design (Chapter 5). Major limitations of the

models discussed so far are that infinite sources can never be actualized, and conver­

sion factors which relate electromagnetic responses from an infinite source to those

from compact ones are available only for special and simple earth geometries. A more

advanced numerical model employing a finite source description can overcome these

deficiencies, at the cost of generating a greater computational load. In this chap­

ter I describe a finite source, 2.5-D (i. f. 3-D source, 2-D earth) forward modeling

algorithm, its finite element implementation and some numerical analysis in terms

of its convergence properties. The program models time-dependent electromagnetic

fields that are generated in the earth after activation of a seafloor horizontal electric

dipole (RED). The earth can be described by an arbitrary two dimensional conduc­

tivity function u(x, z); the y-direction is once again along-strike. Before going into

details about the solution technique, I wish to put this model into perspective by

indicating through examples from the literature the current state of 2.5-0 and 3-D

controlled-source electromagnetic modeling.

An early, successful attempt at solving the 2.5-D electromagnetic problem in the
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frequency domain on land using finite difference methods was published by Stoyer

and Greenfield (1976), who solved for the along-strike field components Ey(r, w) and

B,(r, w) that would arise from excitation of a 2-D earth by a point magnetic dipole.

The authors found agreement between their numerical results and analytic solutions

for a homogenous half-space as well as three dimensional analog model data. Later,

Stodt (1978) formulated the same problem in terms of secondary along-strike field

components using a finite element method but did not present numerical results. As

computers became more powerful through the past decade, a consensus emerged that

the fully three dimensional electromagnetic forward problem is at least as tractable

as the 2.5-D problem, causing interest in the latter to ebb. As a result, very few

researchers after Stoyer and Greenfield seriously attacked the 2.5-0 problem. But

despite the significant advances in computing power, the 3-0 controlled-source elec­

tromagnetic problem has still not been solved by either finite difference (Adhidjaja

and Hohmann 1989) or finite element (Pridmore et.al. 1981) methods, although nu­

merous integral equation formulations (e.g. Hohmann 1975), even in the time domain

(San Filipo and Hohmann 1985, Newman et.al. 1986), have met with great success.

The integral equation technique, however, is limited to modeling electromagnetic re­

sponses from confined bodies in an otherwise homogenous or layered earth.

In the past year or two, interest in finite element solutions to the 2.5-0 prob­

lem in the frequency domain, particularly with regard to buried dipole sources, has

resurged. Flossadottir and Cox (1989) and Unsworth et.al. (1990) have presented

solutions for seafloor dipole sources, the latter authors reporting very fast execution

times for an iterative computation of secondary Ey and By field components. Smith

et.al. (1990) describe a solution, again in the frequency domain, designed for use in

interpreting data from coal seams exploration. Their solution for the along-strike

total field components employs a nested dissection of the finite element matrix which

reduces the amount of computer storage required.

There is no appearance in the literature, at least in a geophysical context, of
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a solution to the transient 2.&-D problem. I have attacked the problem following

somewhat the philosophy of Stoyer and Greenfield. Finite element approximations to

the along-strike magnetic by (X, q, Z, s) and electric ey(X, q, Z, s) field components are

obtained in the spatial wavenumber q and Laplace frequency s domains, and then sine

and cosine transforms are penormed to transform the components into the spatial

domain, i. e. to obtain By(r, s) and Ey(r, s). Finally, the Gaver-Stehfest inverse

Laplace transform (see Appendix A for its derivation and Chapter 4 for applications),

is used to get the desired transient solutions By(r, t) and Ey(r, t). In §6.1-6.4 of the

thesis, I shall describe in detail the algorithm and finite element implementation and

then in §6.5 discuss errors, convergence and extrapolation properties of the code. In

Chapter 7, I shall describe results from a model study to illustrate the utility of the

2.5-D program.

6.1 The Hertz Vector and Double Half-Space Solutions

To find exact solutions to electromagnetic boundary value problems (BVPs) involv­

ing compact sources such as the HED, it has often proven convenient although not

necessary to employ the Hertz vector, denoted by II, in terms of which the entire

electromagnetic field E and B in conductors may be written (e.g. Wangsness 1979).

In this section of the thesis, as there are no exact solutions available for a 3-D source

and 2-D earth problem, I will calculate the Hertz vector II(r, s) in the Laplace do­

main for the following simple 3-D source, 1-D earth problem. The source current

density is that of the HED, given by equation (3.17), and the earth is modeled by a

conductivity profile u(z) which corresponds to the double half-space geometry, i. e.

u(z)={uo
U1

z>o
z<O.

(6.1)

Following the calculation, the along-strike components E y(r, s) and By (r, s) of the

electromagnetic field may be obtained from the components of the Hertz vector. An

exact solution to a 3-D source, I-D earth problem such as the one just described is
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useful because it provides a standard by which to estimate errors and analyze the

convergence properties of a 2.5-D code.

In accordance with the quasi-static approximation and the other simplifications

described in §3.1, the governing partial differential equations for marine electromag­

netic problems are Maxwell's equations, in the form given by (3.3) and (3.10). In the

Laplace domain, this pair of equations becomes

v x E(r,s) = -sB(r,s)

v x B(r,s) = Jlou(r)E(r,s) + JloJs(r,s).

(6.2)

(6.3)

Following Sommerfeld (1926), the Hertz vector TI(r, s) when written in the Laplace

domain is defined in terms of the electromagnetic field E(r, s) and B(r, s) by:

B(r, s) = Jlou(r)V x TI(r, s)

E(r, s) = -JloO"(r)sTI(r, s) + V [V · TI(r, s)] .

(6.4)

(6.5)

Combining equations (6.1-6.5) leads to the diffusion equations obeyed by the Hertz

vector
2- - Js(r,s)

V TI(r,s)-J-louisII(r,s)= ,i=O,l
O"i

(6.6)

which are valid respectively in the upper (i=O, sea) and lower (i=l, earth) uniformly

conducting half-spaces. Consider J s to be generated by an x-directed HED lying

on the seafloor at the origin of the co-ordinates and stepped-on at time t=O. It

follows from symmetry considerations that ny(r, s) vanishes (Wait 1961), and the

exact solutions to equations (6.6) in the two media (see Appendix B for a derivation)

for this source can be separated into the following components:

rr:ea(r,s) = p [00 exp(-uoz) >'Jo(>.p)d>. z > 0
21rUos 10 UO + Ul

rr:arth(r,s) = p (00 exp(UlZ) >'Jo(>.p)d>. z < 0
21rUl S 10 Uo +Ul
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rr;ea = n;arth = 0

and finally,

rr:.e\r,s)= -p ~ [00 (uo-ut}exP(-uoz)>..Jo(>..p)d>" z>O
21rO'oJLos2 ax Jo 0'1 Uo + O'OUI

(6.8)

(6.9a)

n:art\r,s) = -p !.- [00 (uo - ut}exp(uIZ) >"Jo(>..p)d>.. Z < O. (6.9b)
21r0'1JLos2 ax Jo 0'1 UO + O'OUt

In equations (6.7) and (6.9), JO(Ap) is a Bessel function of zero order, p=vx2 + y2

and Ui=VA2 + JLOO'iS with i=O,l. The along-strike electromagnetic components can

be written in terms of the above Hertz vector components by separating out the y
component of equations (6.4) and (6.5), i. e.:

B ( ) _ (8rrx (r,s) _ 8rrz (r,s))
y r, S - JLoO' az ax (6.10)

(6.11)

The above expressions may be evaluated and plotted as a contour map in order

to illustrate typical patterns induced in the sea and the earth by the along-strike

components of the electromagnetic fields after activation of an HED source. For

example, contours of constant along-strike magnetic field component By (r, 8 ), which

is given in the sea and the earth by

where

Ir,ea(r,s) = -;oP [CO [uo +ROxx] exp(-uoZ)AJo(Ap)dA
7rS 10 UO + UI

-:='eB arth( ) JLoP 100 [Ul - Raxx ] ( )' T (' ) d'y r,8 = -2- exp UIZ .l\tlo.l\P .1\

7rS 0 Uo + Ut

R = 0"1 - 0"0

O"tUO + O"OUI

(6.12a)

(6.12b)

(6.13)

are shown in Figure 6.1 for the range 0~y~3 km along-strike and 8=1 Hz. The

geometry is the double half-space, with the conductivity of the sea 0'=3.0 Sim and

that of the earth 0'=1.0 81m. The HED, situated at the origin at the center of the
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12 km x 12 km plots and oriented horizontally, is of strength P=1.0 A·m. The

figure shows the decay with distance along-strike in the magnitude of By, and that

an "image" of the dipole becomes buried into the more resistive earth as y increases.

In the vertical plane of the dipole, y=O, the pattern of the contours resemble current

streamlines for the H-polarization mode, see the upper right plot in Figure 3.1. The

along-strike magnetic field component By (r, s) is symmetric under the interchange

y-+-y, as may be seen from equation (6.12).

The along-strike electric field component Ey(r, s), given by

gea= P foo[l-UoR]exp(_uoz),x£PJO(,xP)d,x
y 21ruos Jo Uo + Ul oxoy (6.14a)

(6.14b)garth = P foo [1 + Ul R] exp(Ul z),x {)2 Jo(,xp) d,x,
y 21rUlS Jo Uo + Ul 8x8y

is shown contoured in the sea and the earth conducting half-spaces in Figure 6.2. The

along-strike electric field vanishes in the vertical plane of the dipole, reflecting the

anti-symmetric nature of E y with respect to the interchange y-+-y. As y increases,

the contours of constant along-strike electric component extend increasingly more

distant from the HED until a maximum spatial extent is reached (for the parameters

chosen, this occurs at y=1-2 km), and then the field magnitude decays back to zero

for larger along-strike offsets. It is also of interest to note that the positions of

the ma.xima in the magnitude of E y move out horizontally along the seafloor with

increasing distance along-strike.

6.2 Double Half-Space Analytical Solutions in the (q, s) Domain

Since the finite element algorithm, which will be outlined in detail in the next section

of the thesis, solves for the along-strike field components in the spatial wavenumber

domain, double half-space analytic solutions for these components in this domain are

desired in order to fix a local boundary condition near the source. A local condition

is imposed due to the fact that there exists a singularity in the analytic solution at

98



(6.15)

(6.17)

(6.18)

the location of the source. As indicated in §4.1, this singularity must be avoided

numerically to keep the problem well-posed. The analytic solutions also provide a

standard from which to evaluate finite element approximation errors.

In the derivation of the along-strike components byeq, s) and eyeq, s), several

types of integral transforms will be used, so for convenience I will list them here.

To begin with, consider an arbitrary function F(y, s) of the spatial co-ordinate y

and the Laplace frequency s. The function is related to its transform f( q, s) in the

wavenumber domain by means of the Fourier transform pair

!(q, s) =i:F(y, s)e
iqy

dy

F(y,s) = ~100

!(q,s)e-iqy dq. (6.16)
211" -00

For arbitraxy functions F( x, y, s ) of two spatial co-ordinates, the double Fourier trans-

form pair is

!(p,q,s) = 1.:1.: F(x,y,s)eipx+iqy dxdy

F(x, y, s) = 4~21:1: !(p, q, s )e-ipx-iqy dpdq.

For those functions in which the two spatial variables x and y occur only in the

combination p=Jx2 +y2, i. e. F(x, y, s)= F(Jx 2 + y2, s) the double Fourier inverse

transform (6.18) is related to the Hankel (Fourier-Bessel) transform

F(p,s) =100

!(>.,s)>.Jo(>.p)d>'

by means of the formula:

[00 I( >., s )>'Jo(>.p) d>' =~100 100

I(Jp2 + q2 ,s)e-ipx-iqy dp dq.h 211" -00 -00

(6.19)

(6.20)

Now, as the first step towards deriving by(q,s) and ey(q,s), the Fourier trans­

form pair (6.15,6.16) can be used to transform. equations (6.10) and (6.11) into the

wavenumber q domain. The resulting equations, which involve spatial derivatives
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(6.21)

(6.22)

of the Hertz vector components, are easily solved if equation (6.20) is first used to

translate the Hertz vector components from Hankel transforms into double Fourier

transforms. As an example, the Hertz vector x-component is in the required form

rr(p, z, s) for (6.20) to be applicable. It is found that

'=8rr ea( ) _ p 100 100

exp( -uoz) -ipx-iqy d d
x x, y, z, S - 2 _ _ e :p q

411" O'OS -00 -00 Uo + U1

where Ui= y'p2 + q2 + jlOO'i S with i=O,l. There is a similar expression in terms of the

double Fourier integral (6.20) for rr:art
\ x, y, z, s). The Hertz vector .i-components

(6.9), on the other hand, are not quite in the form ITz(p,z,s) since they possess

the partial derivative with respect to x, and 8x ";x 2 + z2f:f(p). The z-components

can, however, be written in a convenient form II z(r,s)=8x F(p,z,s), i.e. as a spatial

derivative of a Hankel transform of p. To translate this form into a double Fourier

transform, it is helpful to consider the x derivative of the double Fourier integral

(6.20), namely

8xF(p,s) = -i lex:> 1
00

pf(Jp2 + q2,s)e-ipx-iqydpdq.
211" -ex:> -ex:>

Applying (6.22) to the Hertz component (6.9a), gives the desired result

rr:ea(x, y, z, s) = iP lex:> lex:> [ p~o - u~ ] exp( -uoz)e-ipx-iqy dp dq
411"2 jlOO'OS

2 -ex:> -ex:> 0'1 Uo + O'OU1

(6.23)

with a similar expression for the Hertz component rr:arth
( x, y, z, s) following almost

immediately.

Now that both x and z Hertz vector components have been translated from

Hankel transforms into double Fourier transforms, it is a simple matter to find ex­

pressions for by(x,q,z,s) and ey(x,q,z,s), which is the desired result of this section.

First, consider the magnetic component. From equations (6.10), (6.20) and (6.22) it

follows that

~Bea = -jlOP lex:> lex:> [suo p2(uO - Ul) ] . .--- + _ _ exp( -uoz)e-Ipx-Iqy dpdq.
y 411"2 S2 -ex:> -ex:> UO+Ul JlO(O'lUO+O'OUl)

(6.24)
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Upon comparison of the above expression with equation (6.16), which defines the 1-D

Fourier inverse transfonn, the kernel r,ea(q, s) can be identified as:

P 100 [- 2(- -) ]-=-sea - JLo SUO P Uo - Ut - -ipx
by (x,q,z,s) = 2 _ _ + (_ _) exp(-uoz)e dp.

211'"s -00 Uo + Ut JLo O"t Uo + O"OUt
(6.25)

This above expression may be simplified. The pair of terms in the above square

brackets are even functions of p, thus the formula

j(p), evenrOO _ . { 2 Jooo
j(p )cos(px) dp

J- !(p)e-1PX dp =
-00 -2i Jooo j(p)sin(px) dp j(p), odd

is used to write -;;;a(q, s) in its final fonn as a cosine transform:

(6.26)

":"Sea -JLoP100
[suo p2(uO - Ut) ]by (q,s) = 2 _ _ + (_ _) exp(-uoz)cos(px)dp (6.27)

7rS 0 UO + Ut J.lo at Uo + aOUt

and similarly in the lower half-space there exists another cosine transform

P 100 [- 2(- -) 1~arth JLo SUI P Uo - Ut
by (q,s) = -2 _ _ + (_ _) exp(ulz)cos(px)dp.

11'"8 0 Uo + Ut JLo O"t Uo + O"OUt
(6.28)

Contours of the above function are shown in Figure 6.3 as a function of position in

the x/z-plane for a set of wavenumbers in the range 0~q~0.003 m- I and s=l Hz.

The same HED source and earth geometry as in Figures 6.1-2 is used. The contours

ofby(q,s) have the same shape as those for y=O in Figure 6.1, but the magnitude of

byeq, s) tends to zero as q increases. In Figure 6.4, plotted for various distances x (in

units of skin depths) from the source, appears the seafloor quantity by(x, q, z=O)/r:;ax,

where b;ax has been evaluated at the value of q= qmax which maximizes by(q) for a

given x. This normalization is done simply to ensure that the ordinate range is from

-1 to 1 regardless of the distance from the source, and then all curves can be shown

clearly on the same axes. The curves in Figure 6.4 will be used later in this chapter to

check the finite element program and aid measurements of its convergence properties.

The along-strike electric component eyeq, s) can be evaluated in a procedure

almost identical to that which enabled the expressions (6.27) and (6.28) to be found
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for the magnetic component. The main difference between the two calculations is

that Ey(r, s) contains a pair of terms which are odd functions of p, so from equation

(6.26) it is clear that ey(q,s) is imaginary and can be written as sine transforms. The

quantity iey(q,s) is real, however, and given by

~ea( ) -qP 100

[ps puo(uo - Ul)] (-) · ( )d (6.29)'ley q, s = 2 _ _ + (_ _) exp -uoz SIn px p,
1r'O'oS 0 Uo + Ul JLo 0'1 Uo + O'OUI

zeearth(q,s) = -qP [00 [_ ps__ PUl~O -'ii~ ] exp(ulz)sin(px)dp, (6.30)
y 1r'O't 82 10 Uo + Ul JLo (0'1 Uo + O'OU1)

The above function, which vanishes at both q--+O and q--+oo, is shown contoured as

a function of position in Figure 6.5 and, after normalization as described above, for

various values of x along the seafloor in Figure 6.6. The curves in the latter plot will

also be used to evaluate errors in the finite element approximation.

6.3 The 2.5-D PDE System

Having established some analytical solutions that may be used to check later nu­

merical results, in this section I will derive the set of governing PDEs for the 2.5-D

problem. The relevant Maxwell's equations from which to attack the 2.5-D prob­

lem numerically are given by equations (6.2) and (6.3) but with Js(r, s )=0. This

pair of equations may be combined to give vector diffusion equations, as was done

in Chapter 3. The vector equations are 3 x 3 systems of partial differential equations

(PDEs) where the independent variables are the components of either E or B. With

the two dimensional earth conductivity l1(x,z), however, it is possible to reduce the

dimensions of the partial differential system to 2x2, in which case the independent

variables become along-strike magnetic byeq, s) and electric zey(q, s) field components

in the spatial wavenumber q domain (Stoyer and Greenfield 1976). The reduction by

one in the number of PDEs that need to be solved affords a great reduction in both

computer time and storage. Also, if the equations are to be solved by a finite ele­

ment approximation, formulation of them in the wavenumber domain as described
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(6.31)

above permits straightforward triangulation of a two dimensional mesh and avoids

the numerical difficulties (Barton and Cendes 1987) and programming complexity as­

sociated with solving vector diffusion equations over tetrahedral or brick elements in

a three dimensional mesh.

To begin, Ampere's Law (6.3) and Faraday's Law (6.2) must be transfonned

into the wavenumber domain and then resolved into their x,y,z components. The six

component equations that result are then manipulated into just a pair of equations

for the along-strike components by(q,s) and ey(q,s). This is accomplished by elimi­

nating the four x and z components of b and e; the procedure is as follows. In the

wavenumber domain, where the operator V=(8x , 8y, 8z ) becomes V q=(8x , -iq, 8z ),

the along-strike (y) component of Ampere's Law (6.3) without the source term is

8bx 8bz _
- - - = /loue8z 8x y

and the orthogonal components (i.e. x and z) of Faraday's Law (6.2) are

2 -

(
s + -q-) bz = i:!L aby _ Gey

JloU JloU 8z 8x

2 -

(
q) -b iq 8by &ey

s +-- x = ---- +-.
pou poU 8x 8z

(6.32)

(6.33)

(6.35)

Eliminating bx and bz from the above set of three equations leaves a single equation

in by and ey, which is:

a (u GeY ) a (u GeY ) _ iq a (1 aby ) iq a (1 aby ) (6.34)ax u 2 ax +8; u 2 az -aey - flo ax u 2 az +flo az u 2 ax = 0

where u=y'q2 + /loUS. This is the first PDE of the 2x2 system. The second PDE is

found by combining the along-strike component of Faraday's Law (6.2):

Gez _ Gex = sb
8x 8z y

with the orthogonal components of Ampere's Law (6.3) without sources:

2 -

(
q ) iq Gey aby
-+pou ez =--+-
S S az ax
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(
q2 ) _ iq &ey 8by
-;- + J-LO(1 ex = -; 8x - 8z ·

and eliminating the components ex and ez • There results

(6.37)

~ (~8b,) +~ (~8b,) -sb +iq~ (..!.- &ey) -iq~ (..!.- &e
y

) = o. (6.38)
8x u2 8x 8z u2 8z 11 8x u2 8z {)z u2 8x

Following Stoyer and Greenfield (1976), multiplication of (6.34) by ijlo and writing

the resulting equation alongside (6.38) yields the desired 2x2 system:

(

8x (~8x) +8z (~8z) - s

q8x (~8%) - q8z (~8x)

The 2x2 partial differential operator matrix in the above system of equations is both

real and symmetric. The coupling of the two PDEs is evidenced by the appearance

of non-zero off-diagonal terms in the operator matrix. Note, however, that for the

zero wavenumber case, q=O, the above system de-couples into the two independent

H-polarization and E-polarization modes:

o ) ( by (q = 0, s))
- 0 (6.40)

8~+8~-J-L0(1s e,(q=O,s) -.

The separate 2-D polarized equations indicated in equation (6.40) have been solved

already in Chapter 4, cf. equations (4.20) and (4.52). The mode separation occurring

at zero wavenumber suggests that the effect of replacing an infinite source with a finite

source (which need not be an HED) is simply to couple the equations for the along­

strike electromagnetic field components, provided the earth has only a 2-D structure

and Maxwell's equations have been transformed into the along-strike wavenumber

domain.

6.4 2.5-D Finite Element Formulation

In this section of the thesis I shall describe the finite element solution of an electro-

magnetic boundary value problem (BVP) based on the system of PDEs (6.39). To
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avoid singularities, the BVP must be solved over a domain which does not include

source locations. The theory of finite element approximations on perturbed solution

domains is reviewed in §4.1, and the notation in this section is kept consistent. For

example, b: and te~ shall denote the exact solution to the system of PDEs over a per­

turbed domain !lh. The 2.5-D BVP may be phrased in terms of five equations, these

include the 2x2 system of PDEs plus four other equations representing boundary

conditions for the along-strike components b: and ie~, and are given by:

A (b:h ) = 0, (x,z) E nh,q ~ O,s > °
'ley

-h
by(xo,q,zo,s) = 0 (xo,zo) E a!lho

(6.41a)

(6.41b)

ie:(xo,q,zo,s) = 0

-h { -;;,e\x, q, z, s )
by(X1,q,zl,S) = -:-earth

by (x, q, z, s)

{
~ea( )-h 'ley x,q,z,s

'le y (x1,q,zl,S) = ~arth( )
'ley x,q,z,s

z>O

z<O,

z>O
z<O,

(6.41c)

(6.41d)

(6.41e)

with A the 2x2 partial differential operator matrix in equation (6.39). Note from the

boundary conditions (6.41b,c) that the along-strike field components are assumed to

vanish on the outer boundary of the mesh anhO and from (6.41d,e) they are assumed to

be equal to the double half-space analytic solutions (6.26-6.29) on the inner boundary

anh1 • Assumptions similar to these were also made during the numerical solution of

the 2-D problems in Chapter 4. The finite element approximate solution to the above

BVP is denoted by the two-vector iih and is written as a linear combination of the

basis functions Oi(x, z), i= 1,2,... ,N defined by equation (4.11), specifically:

(
-h ) () (b )b N-M a1j N lk

iih = _~ = ~ . O'j(x, z) + L O'k(X, z).
'leh 3=1 a21 k=N-Mt +1 b2k

y

(6.42)

The nodes have been numbered as they were for the 2-D problems, I.e. the mesh

contains N nodes in total, of which M o are on the outer mesh boundary, M 1 are
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on the inner mesh boundary and M=Mo+M1 • Since there are N-M nodes in the

interior of the mesh and two unknowns for every interior node, there are a total of

2(N-M) unknown co--efficients to be solved for, which are given by:

(6.43)

The co-efficients that are known a priori through the boundary conditions are those

corresponding to nodes on the outer boundary of the mesh

bIk = b2k = 0 k = N - M +1, ... ,N - M}

and those corresponding to nodes located on the inner boundary

(6.44)

(6.45)
(

b1k
) ( b~(Xk' Zk) )

- k = N - M 1 + 1, ... , N.

b2k ie~(xk' Zk)

In equation (6.45), the right hand side is given by the double half-space analytic

expressions (6.26-6.29) which were derived from the Hertz vector in §6.2.

A first order finite element method consists of solving for iih from the set of

equations

( Aii
h

, ( ::) ) Oh = 0, I = 1, 000' N - M (6.46)

where (·')flh is the Euclidean inner product defined in equation (4.8). The discretiza­

tion of the BVP (6.41) by means of approximating the exact solution uhby ti'h leads

to the 2x2-block matrix equation

ra=g. (6.47)

A typical element rjl of the block finite element matrix r is actually a 2x2 matrix

of the form

(6.48)
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(6.49)

The elements of the matrix in equation (6.48) are expressible in terms of inner prod­

ucts over derivatives of the basis functions, as such:

Pjl = _ (...;. 8aj 8(1) _ (...;. 8aj 8(1)

u ax ax Oh u 8z az Oh

Pj, = _ (J1.0; 8aj 8(1) _ (J1.0; 8aj 8(1) (6.50)
'U ax ax Oh 'U az az Oh

Tjl = (~ 8aj 8(1) _ (~ 8aj 8(1) (6.51)
u ax az Oh u 8z ax Oh

All of the inner products listed above are analytic, i. e. there is no numerical quadra-

ture over triangular elements required. Finally, an element g, of the RHS vector g in

equation (6.47) is itself a 2-vector and is given by

(6.52)

while an element aj of the solution vector a is given by the 2-vector in equation (6.43).

As was the case for the two dimensional H- and E-polarization discrete systems of

equations solved in Chapter 4, the linear system (6.47) associated with the 2.5-D

problem is solved by Gaussian elimination using subroutines from the NAG math

library, and the mesh is once again that generated by the program TRIMESH.

Once the system ra=g has been solved, the transient solutions By(y, t) and

Ey(Y, t) may be approximated on the interior nodes by combining an inverse sine or

cosine transform (equations 6.16 and 6.26) with the Gaver-Stehfest inverse Laplace

transform (equations 3.45 and 3.46). The finite element approximation yields b: and

ie~, from which the transient solutions are approximated by

In21°O n -h ( Iln2)By(xj,y,Zj,t) ~ - LVi(n)by Xj,q,Zj,-- cos(qy)dq,
t 0 1=1 t

and

n, even (6.54)

-ln21°O~ -1 ( Iln2) ·Ey(x j, y, Zj, t) ~ -- L....J Vi(n )zey x j, q, Zj, -- sln(qy) dq,
t 0 1=1 t

107

n,even

(6.55)



with j=l, ... ,N-M. The inverse transforms indicated above are performed using the

methods described in Chapter 3. The finite element linear system must be solved

for several values of the wavenumber q before the inverse sine and cosine transforms

can be done. A rule of thumb has developed, through considerable trial and error,

that wavenumbers are best chosen spaced logarithmically at about three per decade

over the range of q in which the function to be inverted varies with wavenumber. To

ensure that the function to be inverted has been sampled adequately, it is advisable

to choose wavenumbers at four or even five per decade and solve equations (6.54) and

(6.55) again, making sure the results do not change to within a required tolerance.

Transient sollltions as part of a model study will be presented in Chapter 7 of the

thesis, the remainder of this chapter will be taken up with numerical analysis of the

finite element approximation in the (q, s )-domain.

6.5 Errors and Convergence Properties

In §4.5, the relative error of the finite element approximation to the solution B y ( x, z, s)

of the two dimensional H-polarization problem was found to converge according to

O(h), where h is the mesh triangle size. In this section, to study convergence of

the approximate solution to the 2.5-D problem, the governing BVP (6.41) has been

solved on two meshes; a coarse one of N =736 nodes containing triangles of size h

and a finer one of 4N~2880 nodes containing triangles of size h/2. The fine mesh

is generated from the coarse mesh by dividing every triangle of the latter into four

smaller triangles, as indicated in Figure 4.1d. Figures 6.7a,b show contours of the

percent relative errors in both along-strike components byeq, s) and zey(q, s) on the

mesh of size h as a function of position in the lower half-space of a double half-space

conductivity model with a 3:1 conductivity contrast. The seafloor z=o lies along the

top of the figure, the HED occupies the upper left corner, and the boundary of the

figure is a square whose sides are one Laplace domain skin depth, d. Figure 4.2. The

errors axe evaluated based on comparing the output from the finite element program
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with the analytic solutions to the double half-space problem derived in §6.2. For both

components, as indicated in Figures 6.8a and 6.8b, the percent relative error on the

mesh of size h/2 decreases everywhere within the plot boundary by a factor of two,

the possible exceptions are near the corners of af2h, see §4.5. These results indicate

that the convergence rate is O(h), i. e. the finite element implementation of the 2.5-D

problem is optimal.

In Figure 6.9a the finite element approximant b:(x, q, z=O,s) appropriately nor­

malized, is compared to the exact solution by(x, q, z=O,s)/b;ax plotted earlier in Fig­

ure 6.4. The dotted lines represent the numerical solution, which was perlormed on a

mesh of size h/2. The misfit between the numerical and the analytic solution (solid

lines) is indicative of the approximation error. Note that the misfit becomes greater

as x, the distance along the seafloor from the HED, becomes smaller. In Figure 6.9b,

similar results for the electric component are displayed. The misfit in the electric

component is much less than that for the magnetic component. This is most likely

due to the fact that there is a discontinuity in the vertical derivative of the magnetic

component at the seafloor, but no discontinuity in any derivative of the electric com­

ponent, and that linear finite element interpolating polynomials best resolve smooth

functions.

6.6 An Extrapolation Formula

In this section of the thesis, I will describe an extrapolation technique which permits

very low «1-3%) relative errors to be achieved, using quite coarse (N~3000) meshes.

The idea of using extrapolation of inaccurate numerical solutions to achieve greater

accuracy is evident in Figure 6.10, where the analytic solution byeq, s) is plotted

against corresponding approximate solutions on meshes of size h (squares) and h/2

(triangles). Let b: be the numerical solution on the mesh of size h and b:/2
be the

numerical solution on the mesh of size h/2. If the order of convergence of these
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numerical solutions is exactly O(h), then the following relationship holds:

by = 2b:/2
- b:. (6.56)

Equation (6.56) expresses the fact that, if the finite element approximation is optimal,

points on the curve representing the solution on mesh h/2 should lie half way between

the analytic solution and the solution on mesh h. This appears to be the case in Figure

6.10. Figure 6.11 shows the extrapolated numerical solutions plotted, as a dotted line,

against the analytical solutions. The extrapolation greatly reduces the misfit, and the

relationship (6.56) is always satisfied to less than 3% relative accuracy.

Figure 6.12 shows that extrapolation can lead to accurate results even at nodes

on the mesh where the individual munerical solutions byhand /;:/2 badly approx­

imate the analytic solution. The plot corresponds to a node situated at z=O and

x=O.0566i, where 6i is the skin depth in the lower conducting medium. This location

on the seafloor is very close to the inner boundary of the mesh and is one where

finite element solutions (triangles and squares) most poorly approximate the analytic

solution (solid line). However, the extrapolated numerical solution (dotted line) still

yields remarkable accuracy.

The results from this section suggest that the extrapolation procedure described

by equation (6.56) can be used to model, to very high degrees of accuracy, the electro­

magnetic responses from complicated conductivity structures using relatively coarse

meshes. However, the O(h) convergence has been demonstrated explicitly only for

the double half-space geometry. Observing how solutions change as a function of the

number of nodes N, for more complex models, would test of the generality of the

extrapolation procedure.
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Fig.6.1 Laplace s-domain component By(x, y, z, s) of the
solution to the vector diffusion equation satisfied by
the magnetic field B, for double half-space electrical
~tructure and a fixed value of 8==1 Hz. Contours of By
are shown for various distances y [m] along-strike. The
field is produced by a unit moment, horizontal electric
dipole (HED) situated at the origin of the Cartesian
co-ordinates and is displayed to a depth of 6 km into
the lower conductor. The conductivity contrast is 3:1.
An "image" of the dipole becomes buried into the more
resistive lower conductor as y increases.
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conjunction with the 2.5-D finite element program, to
model electromagnetic fields accurately, even on rela­
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Chapter 7

2.5-D Mid-Ocean Ridge Electromagnetics

7.0 Introduction

The purpose of this brief chapter is to present some transient solutions to the 2.5-D

electromagnetic boundary value problem based on horizontal electric dipole excita­

tion of a two dimensional mid-ocean ridge electrical model. This is done simply

to demonstrate the utility of the 2.5-D code for modeling transient electromagnetic

fields produced by point sources lying within two-dimensional conductors of arbitrary

geometry, and to illustrate three dimensional, time-varying field patterns in a mid-

.-.-.. ocean ridge environment. Variations in the field components By(r, t) and Ey(r, t) with

time t and with distance y along-strike, at all points (x, z) in the electrical model,

are examined qualitatively. It is worth noting here that while the code has been

written specifically to assist interpretation of transient C8EM data from mid-ocean

ridge-going experiments, it can be used to interpret data from many other places on

the seafloor.

7.1 Formulation of a Mid-Ocean Ridge BVP

The electrical model chosen is shown in Figure 7.1, and represents a uniform magma

chamber of conductivity 00=0.05 81m (4.0 81m), corresponding to 1-2% (60%) partial

melt at 120QoC (Shankland and Waff 1977), embedded in an otherwise normal, lay­

ered model of young oceanic crust consisting of basalts, gabbros and peridotites (see

Chapter 2 for a discussion on the layering of normal oceanic crust). The shape of the

112



magma chamber is consistent with the seismic reflection data of Detrick et.al. (1987)

and the refraction data of Harding et.al (1989), both collected over the East Pacific

Rise near 9°N. Hydrothermal fluid circulation in fractured basalt near the ridge axis

is modeled as a continuous band of enhanced electrical conductivity 0-=0.3 Sim above

the lid of the magma chamber. Circulation extends througout the upper 1.5 km thick

basalt layer. The layer of dry gabbros is 4.5 km thick and is assigned a conductivity

of 0-=0.001 S/m. At the bottom of the model, the upper mantle is assigned a con­

ductivity of 0-=10-5 Slm, consistent with the controlled-source measurements of Cox

et.al. (1986). The conductivity of the seawater is 0-=3.2 S/m.

The finite element-Gaver-Stehfest method, outlined in Chapters 3 and 4, is

used to compute the along-strike electromagnetic field components byex, q, z, t) and

ey(x,q,z,t) that ,arise from excitation of the above model by a horizontal electric

dipole. The mesh on which solutions to the governing 2x2 system of diffusion equa­

tions (6.39) are obtained is shown in Figure 7.2. The system of equations is solved for

several N q values of the along-strike wavenumber q, and then numerical cosine and

sine transforms are used to transform the field components into the spatial domain

y, i.e. to obtain By{r, t) and Ey{r, t). The transforms are penormed numerically

by a modified version of the software described in A.D. Chave (1983). Specifically,

the kernels by(q) and ey{q) of the cosine and sine transforms are computed by the

FE-Gaver-Stehfest algorithm at each of N q discrete values of the wavenumber q,

the kernels are then 8plined to obtain a continuous representation of the kernels in

the variable q, which is required by Chave's software.

Chave's algorithm automatically integrates the product of the kernel and the

trigonometric function between zero crossings of the latter and sums the resulting

series of partial integrations using a continued fraction (CF) expansion. Often, the

terms in the series alternate in sign due to the oscillatory behaviour of sine and co­

sine functions, but the CF algorithm, which involves replacing the series by a rapidly

converging expression, allows slowly convergent or even divergent integrals to be com-
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puted easily and to an accuracy limited by machine precision. Chave uses the method

of Hiiangi et.al. (1980) to cast the series of partial integrations into a continued frac­

tion.

When solving the system of equations (6.39), an analytic solution in the along­

strike wavenumber, Laplace frequency (q, s) domain is required to fix an exact con­

dition on the inner boundary anhl of the finite element mesh, see equations (6.41d)

and (6.41e). In the present instance, the inner boundary OQhl is the rectangular

cut-out near the center of the mesh shown in Figure 7.2, and it encloses the trans­

mitting location. Analytic solutions for a HED source in air exciting a layered earth

are given in Ward and Hohmann (1987). After slight modification to account for the

fact that the HED is deployed in seawater, the solutions of Ward and Hohmann can

be used to fix the inner boundary condition. The along-strike magnetic and electric

field components, suitably modified and written in the (q, s) domain, are given by:

-=-sea jlOP100

[ p2 ]by (q,s)=-2- (l+rTE)- 2 2(rTE+rTM) exp(-uoz)cos(px)dp (7.1)
1rS 0 P + q

and

ze;,ea(q,s) = -2
qP

fOO 2: 2[(l-r™)UO -(l+rTE)~s]eXP(-uoZ)Sin(pX)dP
1rS 10 p q Uo Uo

(7.3)

zeearth(q,s) = -qP foo p [(l-r™)UO -(1 +rTE)~s] exp(Utz)sin(px)dp
y 21rS 10 p2 + q2 Uo Uo

(7.4)

where rTE and rTM are reflection co-efficients that depend on the conductivity and

thickness of the layers and Ui=y'p2 + q2 + l-'oUiS • The components ~arth and i'e~arth,

as given by equations (7.2) and (7.4) respectively, are valid only in the uppermost

layer. The leading P / s term is representative of a Heaviside step-on in the HED

dipole moment at time t=O.
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Assume that the seafloor has n layers, with the i-th layer of thickness hi and elec­

trical conductivity Ui, and that the layering terminates in a half-space, i.e. hn-+oo.

For such a layering, the reflection co-efficient rTE is given by

_ UO - Yi
rTE = - +v

Uo ~ I

with Yi defined by a recursion relation

(7.5)

(7.6)

and Yn-un. The other reflection co-efficient rTM is given by a similar expression

(7.7)

with Zj defined by the recursion

(7.7)

and Zn=un/Un. H the earth is comprised of n=2 layers, the reflection co-efficients

are:
_ Uo [UI +u2tanh(Ulhl)] -tIl [U2 +Ultanh(Uthl)]
rTE = Uo [UI + U2tanh(UI ht}] + UI [U2 + UI tanh(UI ht}]

_ UnUl [UlU2 +U20"Itanh(ul hl )] - UIO"O [U20"1 +UI0"2tanh(u1 h1 )]

rTM = UOUI [UIU2 + U2ultanh(UlhI)] + UIUO [U2UI + UIU2tanh(ul hI)].

(7.8)

(7.9)

The condition on the inner boundary anhl of the finite element mesh is obtained

simply by evaluating, at the co-ordinates nodes along anhl, the expressions for by

and iey given by equations (7.1-7.4), with rTE and rTM given by equations (7.8) and

(7.9) respectively. The inner boundary condition is an exact solution for a layered

earth, so that, to preserve the well-posedness of the numerical BVP, any "secondary"

electric and magnetic fields due to induced currents in 2-D conductivity structures

such as the magma chamber and zone of hydrothermal circulation, when evaluated

along the inner boundary of the mesh, must be very small fractions of the "primary"
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layered earth fields. Parameters of the electrical model required for the calculation

are 0"0=3.2 S/m, 0"1 =0.1 Slm, 0"2=0.001 Sim and hI =1.5 km.

For completeness, I include the along-strike electromagnetic field components in

the spatial, Laplace frequency (y, s) domain which, for HED excitation of a layered

earth, are also analytic. They appear in the form appropriate for a land-based HED

in Ward and Hohmann, but may be easily derived from equations (7.1-7.4) by taking

sine and cosine transforms. In either case, the results appropriate for a marine-based

HED are

The above equations (7.10-7.13) are the generalizations to an n-Iayered earth of the

double half-space solutions derived in Appendix B.

7.2 Numerical Solutions

Numerical solutions to the mid-ocean ridge boundary value problem described in

§7.1 are presented in this section of the thesis. Figures 7.3a-c show contours of the

along-strike magnetic component By(r, t) for a range of times 0.3 s~t~5.0 s after

step-on of the x-directed HED and a range of distances 100 m~y~5 km in the strike

direction. The HED is situated at the centers of the plots and at y=O. The plots

indicate, in three dimensions and time, patterns of electromagnetic diffusion through

a two dimensional mid-ocean conductivity structure. The conductivity of the magma
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chamber is 0"=0.05 Slm, and its presence does not noticeably affect the field patterns,

judging by the fact that the contours are nearly symmetrical about the x=O vertical

axis. The component By(r, t) is strongest at y=O, in-line with the transmitter, and

decays with increasing distance y along-strike. Figures 7.4a-c show contours of the

along-strike electric component Ey(r, t) for the same times and distances along-strike.

In contrast to the magnetic case, the presence of the magma chamber has a significant

effect on the electric component, especially at distances along-strike greater than 100

m. At the earliest time shown, see Figure 7.4a, the electric component is enhanced in

the magma chamber with respect to the surrounding dry gabbros. At later time, see

the plot corresponding to y=l km in Figure 7.4c, the electric component is excluded

from the magma chamber.

Figures 7.5a-c show contours of By(r, t) at 0.3 s~t~5 s after HED step-on,

for a model which includes a magma chamber of electrical conductivity 0"=4.0 S/m.

This value corresponds to 60% partial melt. The effect of the high conductivity, as

can be seen in the figures, is to slow the diffusion of By into the magma chamber,

producing a distortion in the field patterns at the seafloor that might be measureable

by seafloor magnetic sensors placed across the ridge axis. In order to confirm or

refute this hypothesis, snapshots of By need to be computed at several more times,

and response parameters extracted from the synthetic data. Figures 7.6a-c show

the electric component Ey(r, t) diffusing into the mid-ocean ridge model. At all

times shown, the electric field intensity is greater in the resistive gabbros than in the

conductive magma chamber. More modeling is required to confirm that the chamber

can indeed be detected by seafloor electric field sensors.

The along-strike components By(t) and Ey(t) are computed directly by the 2.5­

D finite element program. Of interest to the practical scientist is the transient ERER

configuration which measures the in-line component Ex(t) produced by a x-directed

horizontal electric dipole. The component Ex(t) has been shown to respond strongly

to variations in the sub-seafloor electrical conductivity (Edwards and Chave 1986)
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and ERER equipment has been built and tested at sea (Everett et.al. 1989). There­

fore, modeling by computer the response of the mid-ocean ridge to excitation by the

transient ERER configuration is desirable. The Ex(t) component may be obtained

from the output of the 2.5-D finite element code as follows. In the (q, s) domain,

ex ( q, s) is related to the along-strike components by:

(7.14)

The component Ex(r, t) is then obtained by taking a cosine and a Laplace transform.

I plan to investigate ERER modeling in the near future.
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Fig.7.1 2-D electrical model of an active mid-ocean ridge
used in a study designed to illustrate the utility of the
2.5-D finite element program. In the model, a uniform
magma chamber is embedded in young oceanic crust
consisting of basalt, gabbro and peridotite layers. The
electrical conductivity of the magma chamber depends
on its partial melt fraction, as shown. Hydrother­
mal fluid circulation in fractured basalt is modeled as
a zone of enhanced electrical conductivity above the
magma chamber. A suitable location for placement of
a CSEM transmitter (Tx) is also shown.
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Fig.7.2 Mesh resulting from discretization of a domain
based on the mid-ocean ridge electrical model of the
previous figure. 2.5-D finite element solutions to the
governing system of electromagnetic diffusion equations
are computed on the nodes of this mesh.
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Fig.7.3 Contours of the magnetic component By(x, y, z, t)
show electromagnetic diffusion, in three spatial dimen­
sions and time, from a HED transmitter located 5
km off-axis into the electrical model of the mid-ocean
ridge shown in Fig.7.1 (a-c, counter-clockwise from
top). The y co-ordinate measures the distance along
the strike of the ridge from the x-directed HED. The
transmitter is switched on at time t=O s. The electri­
cal conductivity of the magma chamber is 0"=0.05 81m.
Its presence does not greatly affect the field patterns.
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Fig.7.4 Contours of the electric component Ey(x, y, z, t)
showing diffusion into mid-ocean ridge electrical model
(a-c, counter-clockwise from top). The presence of the
magma chamber of electrical conductivity of 0-=0.05
Slm, in contrast to the magnetic case (see Fig.7.4),
has a significant effect on the field patterns. At t=0.3
s after transmitter switch-on, the field is enhanced in
the magma chamber with respect to the surrounding
gabbros. By t=5 s, this situation has reversed.
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Fig.7.5 Contours of the magnetic component By(x, y, z, t)
showing diffusion into mid-ocean ridge electrical model
(a-c, counter-clockwise from top). The magma cham­
ber has electrical conductivity 0"=4.0 Slm, correspond­
ing to 60% partial melt. The presence of the highly
conductive magma chamber slows the rate of electro­
magnetic diffusion across the ridge axis, producing a
distortion in the field patterns that may be measure­
able at the seafloor.
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Fig.7.6 Contours of the electric component Ey(x,y,z,t)
showing diffusion into mid-ocean ridge electrical model
(a-c, counter-clockwise from top). The electric field
intensity, at all times shown, is greater in the resistive
gabbros than in the conductive (0"=4.0 S/m) magma
chamber.



Chapter 8

Conclusions

8.0 Conclusions

Constraining geodynamical models of ocean crust formation at active segments of

the global mid-ocean ridge system requires a knowledge of the geological structure

beneath the ridge. Hard constraints on the geology to depths of several kilometers

can be obtained using controlled-source geophysical techniques. The most commonly

used technique is seismic, which has provided clear images of the top of the partially

molten, mid-crustal axial magma chamber at the East Pacific Rise near gON but only

coarse estimates of the geometry and vigour of the associated hydrothermal circulation

zones.

Electrical conductivity, unlike seismic velocities, is a very strong indicator of

the amount, distribution, temperature and connectedness of partial melt and fluids

within rocks. Therefore, if maps of the sub-surface electrical conductivity beneath

active ridge segments could be obtained, they might be used to infer the presence

of a magma chamber and the accompanying hydrothermal fluids. Controlled-source

electromagnetic (CSEM) exploration techniques map electrical conductivity. CSEM

experiments are, however, difficult and costly to perform.

In view of the above, there is a need to have design and interpretation tools, by

which CSEM experiments can be planned and their results analyzed. This thesis has

described 2-D and 2.5-D time domain forward modeling computer implementations

which fulfill this need. The computer programs calculate the transient electromagnetic

fields which would result if an arbitrary two dimensional system of conductors were to
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be excited by a line source and a point source of electromagnetic energy, respectively.

The codes have been validated through tests against known analytical solutions to

the governing Maxwell's equations which assume the earth is uniformly conductive.

The convergence of the finite element approximation to these solutions was found to

be O(h), where h measures the size of the triangles in the finite element mesh. A

formula by which numerical solutions on progressively finer meshes are extrapolated

permits great accuracy using only coarse meshes.

A numerical study of the performance of a certain, idealized transient CSEM

system at the East Pacific Rise has been carried out using the 2-D code. The system

consists of an infinite source located on the seafloor 5 km west of the ridge axis, and

seafloor receivers placed at various distances across the ridge crest. The source is ori­

ented with respect to the strike of the ridge so as to produce only the H-polarization

mode of current flow. The results of the study indicate that this system can detect

the axial magma chamber and the associated zones of hydrothermal melt by moni­

toring two electromagnetic response parameters, the diffusion time and the response

amplitude, as a function of transmitter/receiver separation. The response parame­

ters were chosen so as to be easily extracted from the measured data, which consists

of seafloor recordings of magnetic and electric fields. The diffusion time measures

the time taken for an electromagnetic signal to diffuse from the source through the

earth to the receiver, while the response amplitude is a measure of the strength of the

signal. The presence of the highly conductive magma chamber slows and attenuates

signals diffusing beneath the ridge. The presence of hydrothermal fluid circulation in

the highly fractured, extrusive basalt layer has the same effect on the data, but only

if receivers are placed on the ridge crest itself. Inferences made from the numerical

results suggest that a horizontal electric dipole of moment 104 A·m and receivers with

sensitivity of 1 pT/s over a time window extending to 10 s are sufficient to detect

crtlstal mid-ocean ridge targets.

Proper interpretation of transient CSEM data requires forward modeling using
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a more realistic, finite source. The 2.5-D code is capable of doing this. Sample field

patterns produced in the earth beneath the sea by a sudden switch-on of electric cur­

rent in a horizontal electric dipole are computed. They illustrate diffusion, in three

spatial dimensions and time, of various electromagnetic field components through

typical mid-ocean ridge structures. Displaying the patterns demonstrates the utility

of the 2.5-D code, i. e. its usefulness for interpreting data from a transient CSEM

ridge-going experiment, as such results become available. While additional modeling

might be required to detennine the resolution of mid-ocean ridge structures to tran­

sient finite source excitation, all the necessary tools to do this may be found in the

pages of this thesis.
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Appendix A

Gaver-Stehfest Inverse Laplace Transform

I

In §I of this appendix, I derive a formula originally obtained by Gaver (1966) which

may be used to compute an unknown function of time pet) given its inverse pes) in

the Laplace domain. For the sake of convenience, the derivation will closely follow the

method and notation of Gaver's paper. The derivation of an acceleration formula due

to Stehfest (1970a,b) appears in §II of the appendix. For fixed amounts of computer

time and machine precision, Stehfest's procedure greatly improves the accuracy of the

Gaver inversion formula.

First, it should be easily recognized that for an arbitrary function pet) the fol­

lowing is valid:

per) = 100

h(t - r)P(t)dt (1)

where b(t - r) is the Dirac delta function. Gaver sought a discrete analog of the Dirac

delta function, which he denoted by h'n,m(t, a), and required that the two functions

be related in the following limit:

lim Sn met, a) = S(t - r).
n=m--+(X) ,

Thus, as the indices nand m are made larger, the quantity

Pn,m = 100

hn,m(t, a)P(t) dt

converges to the desired result per), i.e.:

peT) = lim Pn m.
n=m--+(X) ,
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Consider the function:

~ ( ) (n+m)! (1 -at)n -mat
Vn,m t, a == '( _)' - e ae .n. mI.

(5)

This function obeys equation (2) if the parameter a is suitably chosen and, as noted by

Gaver, commonly occurs as a probability density function related to the exponential

distribution in the statistical theory of single-server queues. In order to prove that

6n,m(t, a) has the required property in the limit of large nand m, it suffices to show

that the large n, m limit of the expectation value E(X) and variance VAR(X) are

given respectively by

lim E(X) == T, lim VAR(X) == 0
n,m--..oo n,m--..oo

(6)

where X is a random variable with probablity density given by equation (5). To

determine E(X) and VAR(X) for all n, m, use is made of the cumulant function,

defined by:

_ _ ~ (-s)k
Inb'n,m(S,a)=L..,ck k! ·

k=O

(7)

In equation (7), Ck is the k-th cumulant of the density function 6n,m(t, a); recall from

probability theory that the first cumulant is cl==E(X), the second is C2==VAR(X),

and so forth. The function 8n ,m(s, a) appearing in the above equation is the Laplace

transform of the density function fJn,m(t, a).

To find all cumulants of the fJn,m(t, a), including the expectation value and the

variance, we need to know the Laplace transform 8n ,m (s, a). The latter is defined as

usual by:

8n ,m(s, a) = 1=e-stb'n,m(t,a)dt, s > O.

Inserting equation (5) into equation (8) gives

C ( ) (n + m)! 100

( -at)n -mat d
Vn,m s, a = '( _)' 1 - e ae t.n. mI. 0
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It is expedient to evaluate the integral in the above equation by recognizing that there

is a recursion relation satisfied by the functions 6n ,m(s, a), n==O, 1,2, ... and m, fixed.

With the first index set to n - 1, for example, equation (9) becomes

- () (n + m - I)! [00 ( -at)n-l -mat
hn-1,m s, a = (n _ 1)!(m _ 1)! 10 1 - e ae dt

and, when evaluated at s==s + a, the function becomes

7 ( ) (n + m - I)! [00 ( -at)n-l -at -mat d
On-l,mS+a,a = (n-1)!(m-1)!10 1-e e ae t.

(10)

(11)

Subtracting equation (11) from equation (10), and comparing the difference to equa­

tion (9) leads to the desired recursion relation:

- n+m [6 - ]6nm(s,a) = 6n-Im(S,a)-6n-Im(S+a,a) ·, n' , (12)

The end member n==O of the recursion arises as a special case of equation (9), it is

simply:

1
00

- -st -mat ma
60 m(s,a) = e mae dt == .
'0 ma+s

(13)

We can use formula (13) for 60 ,m(s, a) plus the recursion relation (12) and math­

ematical induction to generate the Laplace transforms of 6n ,m(s, a) for arbitrary n,

for example:

61m(S, a) == (m + 1) [60 m(S, a) - 60m(s + a, a)] == [ ma ] [( (m~)1)a ]. (14)
, " ma + s m + a + s

For the general case, the Laplace transform of 6n ,m (t, a) is a product of a finite number

of terms each of which resemble the RHS of equation (13):

6
n

m S a - [ ma ] [ (m + l)a ] ... [ (m + n)a] mrr+n ja (15)
, ( , ) - ma + s (m + 1)a + s (m + n)a + s - j=m j a + s ·

From the Laplace transform of 6n,m(t, a), it is a simple matter to find an ex­

pression for the cumulant function, which is defined by equation (7). The derivation
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proceeds by taking the natural logarithm of the finite product of terms in equation

(15); this leads to the following finite sum of terms

In order to write the terms in the above equation in forms which may be directly

compared to corresponding terms in the defining series expansion for the cumulant

function, equation (7), the following series representation of the logarithm function

( ) ( )2 ( )3x-I 1 x-I 1 x-I
lnx= -x- +2" -x- +"3 -x- + ... (17)

is useful. For example, the first term of equation (16), after incorporating the series

representation of In x, is:

[
rna] -s s2 s3 00 (_l)ksk

In ma + s = ma + 2(ma)2 - 3(ma)3 + ... = {; k(ma)k (18)

and each of the other terms in equation (16) has a similar form, the n-th term being

I [ (m+n)a] f (_l)ksk
n (m+n)a+s = k=l k[(m+n)a]k"

(19)

Replacing all of the logarithmic terms by their series representations, as described

above, gives the following expression for the cumulant function:

_ n 00 (-l)ksk
Inhnm(s,a)=LL k"

, 1=0 k=l k [(rn + l)a]
(20)

All cumulants of 6n,m(t, a) may then be extracted by means of a term-by-term com­

parison of equation (20) to the definition of the cumulant function, equation (7), for

example, the k-th cumulant Ck is a solution to the equation

00

Ck _ L 1 - 0
k! 1=0 k [(m + l)a]k - ·
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The expectation value E(X) occurs when k==l, it is evidently

n 1 1[1 1 1 ]
Cl = E(X) =~ (m + l)a = ~ m + m + 1 + ... + m + n

and similarly when k==2 the variance of X is determined:

n 1 1[1 1 1 ]
C2 = VAR(X) =~ (m + lFa2 = a2 m2 + (m + 1)2 + ... + (m + n)2 ·

(22)

(23)

The above expressions are valid for all values of the indices n, m, but for large values

the expressions may be written in a convenient asymptotic form using the Euler­

Maclaurin integral formula, which is:

t f(k) ';::j fn f(x) dx + f(O) + f(n).
k=O 10 2 2

Thus for E(X), we have that

n 1 in dx 1 1
aE X == ~ + - + ,( ) t; m + k 0 m + X 2m 2(m + n)

and using the approximation

~ ';::jIn (X:1)
which is valid for x~l it follows that E(X) can be written as a logarithm:

E(X) I ( ) I (
2m + 1) I (2m + 2n +1)a ~nm+n+n 2 +n 2 2m m+ n

== I [(2m +2n + 1)(2m +1)]
n 4m2 •

(24)

(25)

(26)

(27)

Similarly, the variance VAR(X) can be written in the form of an aymptotic expansion

as follows:

n 1 l n
dx 1 n

VAR(X) = L ( k )2 ';::j ( )2 + O(-2) ';::j ( )'
k=O m + 0 m + x m m n + m
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Examining the first two cumulants of 6n,m(t, a), it is clear that for large nand

m this function reduces to the Dirac delta function, provided a=ln 2/T. This may be

seen explicitly by considering the limiting forms of equations (27) and (28), namely,

lim E(X) = .!.ln2 =T, lim VAR(X) = O.
n,m---+<X> a n,m---+<X>

Equation (28) therefore implies that

(29)

lim 6n ,m(t,a)= lim [ln2] (n+m)! (1_e-tln2/r)ne-mtln2/r=8(t_T).
n,m---+<X> n,m---+<X> T n!(m - I)!

(30)

The next task is use 6n ,m(t, a) to obtain a Laplace inversion formula for P(T). Starting

from the binomial theorem

n

(1- x)n = L (~) (_l)k x k
k=O

where the binomial coefficients (~) are given by

(
n) n!
k - k!(n-k)!'

and combining with it equations (30) and (3) results in

(31)

(32)

Pnm = [ln2] (n+m)! ~ (n) (-It ['X) e-ktln2/re-mtln2/rp(t)dt. (33)
, T n!(m - I)! t:o k 10

The integral in the RHS of the above equation is recognizable as a Laplace transform,

with transform variable s=(m + k)I~2, i.e. it can be re-written as

Pn m = [ln2] (n + m)! ~ (n) (_l)kp [em + k)ln2] . (34)
, T n!(m-1)! t:o k T

Setting n=m I arrive finally at Gaver's formula for the inverse Laplace transform:

Pn ( r) = [In 2] (2n )! ~ (n) (-1)k P [(n + k) In 2] . (35)
T n!(n - I)! LJ k T

k=O
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II

Gaver's formula (35) converges only very slowly to P(T) as n increases. This

section of the appendix contains the derivation of a technique originally used by

Stehfest (1970) to accelerate the convergence. First, recognize that equations (35)

and (4), taken together, imply the existence of the following asymptotic sequence:

(36)

The approximation Pn ( T) therefore has truncation error of order -1, i. e. the leading

error term in equation (36) is of O(l/n). Gaver found that linear combinations of the

form
N

PN(r) = L xi(N)P2i-l n(r),
;=1

(37)

where {Xi, i=l, 2, ... , N} is a set of coefficients to be determined, can increase signif­

icantly the order of the truncation error and hence lead to improved accuracy for

estimates of P(T). The computational cost associated with the improved accuracy

is that the known inverse Laplace transform pes) must be evaluated at N(n + 1)

values of s instead of just the n + 1 values as specified by equation (35). To see how

the coefficient set {Xi, i==l, 2, ... , N} is computed, consider at first the special cases of

N =2,3. Using only equation (36) note that for N =2 the linear combination

2P2n(r) - Pn(r) = per) + 0 (:2) (38)

cancels out the O(l/n) error term thereby producing a truncation error of order -2.

For N =3 the linear combination

(38)

has truncation error of order -3. For a given N, therefore, the coefficients are chosen

in order to cancel out error terms of order respectively lin, 1/n2 , ... , linN -1. This
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choice of {x i} makes the P(T) truncation error of order - N. The term-by-term

cancellation is achieved by selecting coefficients which obey the N x N linear system

of equations
N

XiL"7k = OkO, k = 0,1, ... ,N.
i=l z

(40)

The contribution of Stehfest to the inverse Laplace inversion problem lay in his

recognition that a linear combination of the form

K

PK(r) = LXi(K)Pn/2+1-i(r)
;=1

(41)

can produce a much better approximation to P(T) than the linear combination of the

form (37) used by Gaver. Stehfest chose a new set of coefficients {Xi} by requiring

them to be the solution to the K x K linear system

K
Xi

~ (n/2 + 1 _ i)k = OkO, k = 0,1, .. ,K-1. (42)

In the next paragraph, I shall follow the approach of Stehfest (1970) to show that his

coefficients, when inserted into the linear combination (41), gives a smaller truncation

error for P(T) than does the Gaver procedure which is based on equations (37) and

(40).

The linear system of equations given in equation (42) can be written in matrix

form as

1 1 1 Xl 1
(n/2)-1 (n/2 - 1)-1 (n/2 + 1 - K)-l X2 0

(43)

(n/2)1-K (n/2 - l)l-K (1 - K)-l XK 0

There is an analytic solution to the above matrix equation, which Stehfest gives as:

(K) (_1)i-1 (K) .( / .)K-1
Xi = K! i z n 2 + 1 - z ,
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This solution can be verified by direct substitution and with the aid of the following

formula for the Kronecker delta function:

(45)

in which a and K are arbitrary constants. Combining equations (44) and equation

(41), using the above formula for the Kronecker delta function and shifting the index of

summation from i--+i + 1 in equation (41) leads to a formula from which the truncation

error of the Stehfest procedure may be evaluated:

K-l (-l)iaK
PK(r) = per) + a 1610 + a2620 + ... +~ (n/2 _ i)i!(K _ 1 _ i)! + ...

aK [n K -1 n ]== Per) + !!, ¢l(K)(- -I)! + ... + (-1) ¢K(K)(- - K)! + ...
2. 2 2

= per) + ¢>K(K)aK(-l)K-l (~~,K)! + ...
2 •(!! - K)' [(!! - K)']K+1 2· 2·

=P(r)+(-l) ¥! aK+O (-~)! .

(46)

The functions <Pi( K), i=l, 2, ... , K appearing in equation (46) have not been written

explicitly in order to keep the formula simple but they do not depend on n. The

Stehfest truncation error is

o [(n/2 - K)!]
(n/2)!

instead of O(n- K ) as was the case with the Gaver procedure. Note that setting

K =n/2 in equation (46) causes the leading term in the truncation error of the Stehfest

formulation to vanish, which is why the Stehfest acceleration is so effective. With this

choice of K, the Stehfest coefficients are

The expression

(-1)i-l(n/2 + 1 - i)n/2-1
xi(n/2) = (i-l)!(n/2-i)! ·

n/2

PK(r)IK=i = L X iPnj2+1-i(r)
i=l
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that the Stehfest procedure gives, when Gaver's formula for Pn ( 'T) given by equation

(35) with the replacement n--+n/2 + 1 - i is used, has come to be known as the

Gaver-Stehfest formula. The explicit calculation is as follows (setting b=ln 2/T):

PK(r) = ~i~i (_l)k+i-l(~ + 1- i)"~-l(n+ 2 - 2i)!P [(~ + 1- i + k)b]
b ~ t:o (~- i)!(~ - i)!(i -l)!k!(~ + 1 - i - k)!

n

(~)i-In! 2 (-l)kp[(~+k)b]

= (~ -1)!(~ -I)! t; k!(~ - k)!

_ (~ - l)y-l(n - 2)!~ (-l)kp [(~ + k - l)b]
(~- 2)!(~ - 2)! ~ k!(~ -1- k)!

(~ - 2)i- 1(n - 4)!~ (-l)kp [(~ + k - 2)b]
+ (~- 3)!(~ - 3)!2! t::, k!(~ - 2 - k)!

+ ... +

(-1)y-22y - 13! 2 (-1/P[(k+2)b]
+ (¥ - 2)! t; k!(2 - k)!

(-1)i-12! ~ (_l)kp [(k + l)b]
+ (¥ - I)! ~ k!(l - k)! ·

(49)

Expanding the summation over the k indices in the above formula gives:

PK('T) _ (~)i -In! [P [(~ )b] P [(~ + l)b] (-l)ip [nb]]
b -(~-1)!(~-1)! ~! - (~-1)! + ... + ~!

(~-1)~-1(n-2)! [P[(~-l)b] (-1)(~-1)p[(n-2)b]]
- (~-2)!(~-2)! (¥-1)! + ... + (~-1)!

(~-2)i-l(n-4)! [P[(~ -2)b] (-1)(~-2)p[(n-4)b]]
+ (i - 3)!(i - 3)!2! (i - 2)! + ···+ (¥ - 2)!

+ ... +
(-1)~-22~-13! [P[2b] - P[4b]]

+ (~ - 2)! 2! - P[3b] +2!
(-1)-i-12! _

+ (¥ _ I)! [P[b] - P[2b]J ·

(50)
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Re--arranging the above terms in order of increasing argument of the inverse Laplace

function P[ib], i==l, 2, ... , n gives:

PK(r) == (_1).!f+1 [ 2P[b]] (_1)t+2 [2~3!P[2b]] (_l)~+n~ i 3!P[nb]
b (-¥- -I)! + (-¥- - 2)! + ... + -¥-!-¥-!(-¥- -I)! '

(51)

and using the relationship for even values of n that (-l)~+n==(-l)t, equation (51)

can in turn be re--written in the following form:

PK(r) _ _ i+
1

min[l,il ki (2k)!P[b]
b - (1) ~ (lJ - k)!k!(k -l)!(i - k)!(2k -I)!

min[2,il

+ (_1)i+2 L
k=2

+ ... +

ki (2k )!P[2b]
(~ - k)!k!(k -l)!(i - k)!(2k -I)!

(52)
min[n,il n-

+ (_l)i+n ~ k"2(2k)!P[nb]
Lt (~- k)!k!(k -l)!(i - k)!(2k -I)!
k=i

_ n _ i+i min[i,il ki (2k )!P[ib]
-?=( 1) ~ (!!-k)!k!(k-1)!(i-k)!(2k-1)!

1=1 k=[i¥] 2

where [(i + 1)/2] is the integer part of (i + 1)/2. Equation (52) is of the form

ln2~ - [oln2]PK(r)IK=i = -:;:- £;; Vi(n)P z-:;:- , n,even (53)

where the set of coefficients {Vi(n),i== 1,2, ... ,n} are called the Gaver-Stehfest set

and the i-th member is given by

!l+i min[i,il ki(2k)!
Vi(n)=(-1)2 ~ (¥-k)!k!(k-1)!(i-k)!(2k-i)r (54)

k=[i¥l

Equations (53) and (54) together comprise the Gaver-Stehfest Laplace inversion

algorithm. In theory, there is no reason why the approximant P~ (T) should not

become more accurate as n increases, but in practice rounding errors worsen the

result if n becomes too large. This is because IViI increases with n, reflecting the

unbounded nature of the Laplace inverse operator (Stehfest, 1970). Therefore, at a

fixed machine precision there is an optimal choice for n to return maximum accuracy.
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Appendix B

Hertz Vector Representation of a Seafloor HED
Lying Over a Uniform Earth

I

In §I of this appendix, I derive the Hertz vector potential TI(r, s) due to excitation

by a horizontal, x-directed horizontal electric dipole (HED) lying in a uniformly

conducting whole-space of conductivity 0'. In §II, I shall consider a simple double

half-space geometry.

The vector diffusion equation to be solved is

2 Js
V II(r, s) - /lO"sII(r, s) == -

0"

with the HED source current density given by

Js = P6(r)x.

(1)

(2)

In equation (2), P is the dipole moment, and x indicates the horizontal orientation of

the dipole with zvertical and positive upwards. From (1) it follows that II is parallel

to Js, i.e.

From (1),(2) and (3) it follows that

(
n2 _ ) II _ P6(r)
v /las x-

0'

(3)

(4)

(5)

is the eqllation to be solved. In cylindrical coordinates, there is from the symmetry

of equation (4) ail> = 0 so that the Laplacian operator reduces to

2 2 82

V = V p + 8z2
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and

(6)

It is convenient to seek a solution to the differential equation (4) in the form of

a Hankel transform

(7)

where Jo is the Bessel function of order zero. Using the relation

(8)

and equation (7) the differential equation (4) can be re-written as

(9)

The Dirac delta function in cylindrical coordinates under the axial symmetry is, with

arbitrary cPo,
1

6(r) = -6(p)6( 4> - 4>0)6(z).
p

(10)

Inserting equation (10) into (9) and integrating both sides over all <f>, there results

(00 [()fJ
2

2
_ U 2 ] I(A, Z)JO(Ap)AdA = P8(z) foo JO(Ap)AdA (11)

10 z 27("0" 10
where we use has been made of the identity

(12)

and I have defined

(13)

Thus, from equation (12), the problem of solving the differential equation (4)

reduces to the problem of solving

[
()2 2] P6(z)

- - u f(A,Z) = =-g(z)
8z2 2~0"

134

(14)



which is most easily attacked using the method of Green's functions. This method,

solves all one-dimensional non-homogenous Sturm-Louiville problems of which equa­

tion (14) is one. The term in brackets in equation (14) is a modified Helmholtz, or

diffusion, operator. Let the solution of equation (14) be of the form

f= JC:: Gi(z,r)g(r)dr

where G(z, T) is a Green's function that can now be constructed.

(15)

Let fl be a solution to the homogenous equation associated with equation (14)

that satisfies the boundary conditions at fez = +00) = 0 and let f2 be a solution

that satisfies the boundary condtion fez = -00) = o. Appropriate choices are

fleA, z) = exp(-uz)

and

f2( A, z) = exp(uz).

The Green's function is written generally, in two parts, as

(16a)

(16b)

1
Gi(z, r) = -W!I(z)f2(r),

1
Gi(z, r) = - W fl (r)f2(z),

with W being the Wronskian

-00 ~ z < T

T < Z ~ +00.

(17a)

(17b)

(18)

From equations (16a),(16b) and (28) the Wronskian for the diffusion operator reduces

to

W=2u (19)

so that for the homogeneous problem associated with equation (14) the particular

Green's function is

1
G(z, T) = --exp(-uz)exp(UT),

2u
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(20b)r < z S +00.1
G(z, r) == --exp( -ur)exp(uz),

2u

Finally, inserting the Green's function just constructed into equation (15) and inte-

I~

grating yields the result
P

f(A,Z) = -4-exp(±uz)
7rUU

(21)

with the positive sign valid for z < 0 and the negative sign for z > o.

Thus, the Hertz vector for an x-directed HED in a wholespace of conductivity (1

is found by combining equations (21) and (7). The result is

n = Pi foo exp(±uz)Jo(A )AdA.
47("(1 10 u p

(22)

II

Assume the HED is resting on the seafloor, a horizontal interface at z = 0, with

the ocean conductivity (10 above and the crust conductivity (11 below. By symmetry,

there will be no electric field component in the fJ direction. The Hertz vector will

have the form (Wait 1961)

(23)

The Hertz components in the ocean, denoted by superscript 1 can be writtem generally

as

n~ =~ foo [1 + A(A)] exp( -uoz) Jo(Ap)AdA
27ruQ 10 Uo

p 100

II~ = -2- C(A)exp(-uoz)Jo(Ap)AdA
?r(10 0

(24a)

(24b)

where equation (24a) with its [1 +A] term is written suggestively as a sum of primary

and secondary Hertz components, that is

n~,sec =~ foo A(A)exp(-uoz) Jo(Ap)AdA.
27ruQ 10 UQ

(24c)
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In the crust, region 2, there is

IT; =~ rOO B(..\) exp(Ul z) Jo( ..\p)..\d..\
21r0'1 io Ul

p 100

n; = -- D(,x)exp(ulz)Jo(,xp),xd,x.
21r0'1 0

In equations (24) and (25) I have set

(25a)

(25b)

(26)

The coefficients A,B,C,D are found by ensuring that the tangential components of

the electric and magnetic fields are continuous across the seafloor. These boundary

conditions explicitly are now applied explicitly.

The first boundary condition to be considered is continuity of the secondary

tangential magnetic field across-strike, i.e.,

B1,secl B21
y z=o = y z=o·

In terms of the Hertz vector components, see equation (6.4), this becomes

and, after substitution of the equations (24) and (25) the condition

(D - C)8x Jo(,xp) = (A + B)Jo(,xp)

is obtained. The second boundary condition is

which gives

and leads to

C=D.
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(28)

(29)

(30)

(31)

(32)



The remaining two constraints on the four unknown coefficients are obtained by en­

suring continuity across the seafloor of the tangential components of the electric field.

The boundary condition

(33)

on the across-strike electric field implies, from equation (6.5),

which, upon substiution of equations (24) and (25), leads to the constraint

[
_-_l-_A + _B] Jo(Ap) __1 [_uo_C + _U1_

D ] 8xJo(Ap)
Uo U1 p,s 0"0 0"1

1[1 +A B]== - -- - -- OxxJo(Ap).
p,s UoO"o U10"1

The final boundary condition is

which gives

and leads to the final constraint equation

(35)

(36)

(37)

(38)

The system of four equations (29),(32),(35) and (38) for the four unknown coef­

ficients A-D has the solution

1 + A == Uo
Uo +U1

B == U1

Uo + UI

C=D= -R8x

Uo + U1
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(40)

(41)



where we have defined
0'1 - 0'0

R=-----
0'1 Uo + O'OU1

(42)

Inserting the above coefficients into equations (24) and (25) yields the final ex­

pressions for the Hertz vector components due to an HED source at the seafloor

interface above a uniformly conducting earth. In the ocean, they are

and in the earth

II~ = ~ {CO exp( -uoz) Jo(..\p)..\d..\
27rUo Jo Uo + U1

139

(43a)

(43b)

(44a)

(44b)




