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RESEARCH ARTICLE

Aging delays the suppression of lipolysis and fatty acid oxidation in the
postprandial period

Adam D. Osmond,’ © Robert G. Leija," @ Jose A. Arevalo,! Casey C. Curl,! Justin J. Duong,! Melvin J. Huie,!
Umesh Masharani,? and © George A. Brooks'

'Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United
States and 2Division of Endocrinology, Department of Medicine, University of California, San Francisco, California, United
States

Abstract

Plasma glycerol and free fatty acid concentrations decrease following oral glucose consumption, but changes in the rate of lipol-
ysis during an oral glucose tolerance test (OGTT) have not been documented in conjunction with changes in fatty acid (FA) oxi-
dation or reesterification rates in healthy individuals. After a 12-h overnight fast, 15 young (21-35 yr; 7 men and 8 women) and 14
older (60-80 yr; 7 men and 7 women) participants had the forearm vein catheterized for primed continuous infusion of
[11,2,3,3-H]glycerol. A contralateral hand vein was catheterized for arterialized blood sampling. Indirect calorimetry was per-
formed simultaneously to determine total FA and carbohydrate (CHO) oxidation rates (Rox). Total FA reesterification rates (Rs)
were estimated from tracer-measured lipolytic and FA oxidation rates. After a 90-min equilibration period, participants underwent
a 120-min, 75-g OGTT. Glycerol rate of appearance (Ra), an index of lipolysis, decreased significantly from baseline 5 min post-
challenge in young participants and 30 min in older participants. At 60 min, FA Rox decreased in both groups, but was signifi-
cantly higher in older participants. Between 5 and 90 min, CHO Rox was significantly lower in older participants. In addition, FA
Rs was significantly lower in older participants at 60 and 90 min. The area under the curve (AUC) for FA Rox was greater than
that for FA Rs in older, but not in young participants. Our results indicate that, in aging, the postprandial suppression of lipolysis
and FA oxidation are delayed such that FA oxidation is favored over CHO oxidation and FA reesterification.

NEW & NOTEWORTHY To our knowledge, our investigation is the first to demonstrate changes in lipolysis during an oral glu-
cose tolerance test (OGTT) in healthy young and older individuals. Plasma glycerol and free fatty acid concentrations changed
after glycerol rate of appearance (Ra), indicating that plasma concentrations are incomplete surrogates of the lipolytic rate.
Moreover, simultaneous determinations of substrate oxidation rates are interpreted to indicate that metabolic inflexibility in aging
is characterized by delayed changes in postprandial substrate utilization related to the lipolytic rate.

aging; lactate; metabolic flexibility; OGTT, reesterification

INTRODUCTION

Metabolic flexibility describes the ability to switch back
and forth between carbohydrate (CHO) and fatty acid (FA) uti-
lization in response to changes in energy substrate availabil-
ity. Such conditions include the transition from rest to
exercise (1), or from postabsorptive to postprandial states (2).
Metabolic flexibility has previously been demonstrated in the
ability to alter substrate utilization in response to insulin
stimulation (3, 4) and exogenous fuel administration in
humans. Following oral CHO consumption in resting (5, 6)
and exercising (7, 8) humans, metabolic flexibility is illus-
trated by an increase in whole body CHO oxidation. During
postprandial rest, the systemic rise in CHO oxidation is medi-
ated by an increase in insulin secretion to facilitate peripheral
glucose uptake. Several previous investigations have used an
oral glucose tolerance test (OGTT) to model physiological
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changes in CHO oxidation rates during hyperglycemia and
hyperinsulinemia and demonstrated a rise in CHO oxidation
within the first hour after glucose consumption (5, 6, 9). Other
previous investigations also documented simultaneous reduc-
tions in FA oxidation rates and plasma free fatty acid (FFA)
concentrations (10-12). Because FAs serve as the primary
energy substrate during postabsorptive rest (13, 14), metabolic
flexibility to oral CHO is also illustrated by the concurrent
suppression of whole body FA oxidation. Intrinsically, meta-
bolic flexibility is ultimately regulated by several mechanisms
that similarly control substrate partitioning, including con-
trols of adipose tissue lipolysis.

The loss of metabolic flexibility, or metabolic inflexibility,
is observable in metabolic disease states and in “healthy”
aging (15-17). Central to the “Randle Cycle” theory (18) is that
an abundance of FA determines energy substrate partitioning.
From there, it follows that metabolic inflexibility is induced
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by an excess availability of FFA in plasma during hyperinsu-
linemia and the subsequent elevation of FA oxidation that
occurs at the expense of CHO oxidation (19, 20). Several previ-
ous investigations have used combined infusions of insulin,
lipid, and heparin to simulate intravascular lipolysis and
observe the effects of elevated FFA on substrate oxidation
rates. As predicted by the “Randle Cycle” theory (18), FA oxi-
dation increased and CHO oxidation decreased when FFA
availability was elevated (21-24). Physiologically, however,
the persistence of FFA availability during hyperinsulinemia
would suggest a defect in the insulin-mediated suppression of
lipolysis (25). Bonadonna et al. (26) reported that FFA mobili-
zation during insulin infusion was higher in older compared
with younger individuals and resulted in greater total lipid ox-
idation. Although higher rates of lipolysis were suspected
to have resulted in increased FFA availability, it was unclear
whether the lipolytic rate was different or altered by their
experimental conditions. To our knowledge, the lipolytic
response during physiological hyperinsulinemia has not
yet been investigated in aging. Consequently, at present, it
is unclear whether there are aging-related modifications to
the lipolytic rate in the postprandial period, and whether
such modifications promote metabolic inflexibility in
aging through the induction of substrate competition by
increasing FFA availability.

The OGTT is a standard physiological method for
assessing the influence of a glucose load on parameters
of metabolic flexibility in the postprandial period. As
described, after oral glucose consumption, the suppres-
sion of whole body FA oxidation occurs as CHO oxidation
rises (5, 6, 9-12). Reductions in the plasma concentrations
of glycerol alone (27) or concurrently with FFA (28, 29)
have also been documented during an OGTT and have
been interpreted as a reduction in lipolysis due to the rise
in insulin. Although changes in the concentrations of
glycerol and FFA typically follow the lipolytic rate (30),
they do not provide information on the turnover of those
metabolites. To our knowledge, only one investigation
has used a glycerol isotope tracer to determine changes
in the lipolytic rate during an OGTT. Diniz Behn et al.
(31) reported a reduction in the glycerol rate of appear-
ance (Ra), a marker of lipolysis, during an OGTT in very
young (12-21 yr old) overweight or women with obesity.
Unfortunately, the metabolic health of their participants
limits the application of their results for the general pop-
ulation and as such, our understanding of the changes in
the lipolytic rate during an OGTT is incomplete. Fatty
acids released from lipolysis are either oxidized in differ-
ent tissues or reesterified into triglycerides (TG) in the
liver, adipose tissue (32), or skeletal muscle (33, 34).
Because FAs taken up by skeletal muscle have the poten-
tial to alter insulin signaling if not oxidized (35), growing
our understanding of FA metabolism during the post-
prandial period is imperative. At present, it is unclear
whether there are aging-related modifications to lipolytic,
FA oxidation, or FA reesterification rates in the postpran-
dial period, and whether such modifications promote
metabolic inflexibility in aging.

A rise in blood lactate concentrations above baseline
(i.e., lactatemia) during an OGTT has also been docu-
mented (36-38). We have recently reviewed the role of

J Appl Physiol - doi:10.1152/japplphysiol.00437.2024 - www.jappl.org

lactate in signaling and its effects on energy substrate par-
titioning (39). Briefly, lactate binding to hydroxycarboxylic
acid receptor 1 (HCAR-1) on adipose cells (40, 41) mediates
the insulin-induced inhibition of lipolysis via autocrine
signaling (42). Evidence of the antilipolytic effect of lac-
tate in humans was first provided by Boyd et al. (43), who
demonstrated that lactate infusion during mild exercise
prevented an increase in plasma glycerol and FFA concen-
trations. Similar results were obtained earlier in resting
(44) and exercising (45) dogs receiving lactate infusions.
In humans, lactate production by adipose cells following
oral glucose consumption (46, 47) provides the foundation
for an autocrine mechanism by which lactate exerts its
antilipolytic effects. Just as our understanding of the
changes in the lipolytic rate during an OGTT is incom-
plete, it is not known whether physiological lactatemia
induced by oral glucose consumption has any relationship
with lipolysis.

The purpose of this investigation was to assess meta-
bolic flexibility by determining concurrent changes in the
rates of lipolysis as estimated from the glycerol Ra, total
FA, and CHO oxidation, and total FA reesterification dur-
ing an OGTT in healthy young and older individuals. We
hypothesized that lipolysis would decrease in response to
oral glucose consumption. We hypothesized that FA oxi-
dation and reesterification rates would decrease, and
CHO oxidation rates would increase in response to oral
glucose consumption. Furthermore, we hypothesized that the
changes in substrate oxidation rates would be delayed in

aging.

MATERIALS AND METHODS

Study Participants

The overall study design has been reported separately (48,
49), but is summarized here for readers’ convenience. This
study was approved by the University of California, Berkeley
Committee for the Protection of Human Subjects (CPHS
2018-08-11312) and conformed to the standards set by the
Declaration of Helsinki. Fifteen young (21-35 yr; 7 men and 8
women) and 14 older (60-80 yr; 7 men and 7 women) partici-
pants were recruited. Potential participants were inter-
viewed and received verbal and written information on
study purposes and procedures. After giving verbal and writ-
ten consent, participants were screened for metabolic and
cardiovascular diseases. Screening tests included a health
history questionnaire, a blood draw for a basic metabolic
panel, an electrocardiogram (ECG) and pulmonary function
assessment via spirometry, three-site skin fold measure-
ments (men: chest, abdomen, and thigh; women: triceps,
suprailiac, thigh) to assess body density, and a physical ex-
amination. Measurements of body density were converted to
body composition and expressed as percentage body fat
according to the guidelines provided by the American
College of Sports Medicine (50). To assess physical fitness,
screening also included a continuous, progressive cycle er-
gometer test to determine peak oxygen consumption
(VOzpear) and ventilatory threshold (VT). The exercise test-
ing protocol has been reported separately (51). For dietary
controls, participants provided 3-day dietary records that
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were analyzed for caloric intake and macronutrient consump-
tion (Diet Analysis Plus v.6.1, ESHA Research, Salem, OR). To
qualify for participation, participants were required to be diet
and weight stable; to have a body mass index (BMI) in the
range of >18.5 and <30.0 kg'm % to be nonsmokers; to have
normal pulmonary function (vital capacity 1-s forced expira-
tory volume of >70%); to have a fasting blood glucose concen-
tration of <100 mg-dL~’; to have a hemoglobin Alc percentage
of <5.7% of total hemoglobin; to have a fasting blood total cho-
lesterol concentration of <200 mg-dL %, LDL cholesterol con-
centration of <100 mg-dL !, HDL cholesterol concentration
of >40 mg-dL !, and total TG concentration of <150 mg-dL
to pass a physical examination; and to be cleared for participa-
tion by a licensed physician. Moreover, women were required
to have a regular (28- to 35-day) menstrual cycle, to not be preg-
nant, and to not be taking oral contraceptives.

Screening procedures preceded experimental procedures
by at least 1 wk. Participants who were entered into the study
were provided with verbal and written information on free-
dom to withdraw from the study as well as the contact infor-
mation of the laboratory manager, principal investigator,
and physician if adverse effects of the study procedures had
occurred.

Experimental Procedures

Participants underwent a 120-min OGTT with primed,
continuous infusion of [1,1,2,3,3-*H]glycerol (Ds-glycerol)
and [3-°C]lactate (Cambridge Isotope Laboratories, Inc.,
Andover, MA). Data on lactate kinetics in young (52) and
older (49) participants are reported separately, but the use of
[3-3C]lactate is mentioned in this report for its relevancy to
the present data.

Participants reported to the laboratory in the morning
following a 12-h overnight fast. Women who participated
did so during the mid-follicular phase of their menstrual
cycle. For the 24 h preceding the experimental trial, partic-
ipants were asked to maintain their standard dietary pat-
tern and refrain from strenuous physical exercise. On the
morning of the trial, a catheter was placed in a warmed
hand vein for “arterialized” blood sampling and a contra-
lateral arm vein catheter was placed for tracer infusion.
Background blood samples were then taken for the deter-
mination of endogenous isotopic enrichment (IE) of glyc-
erol. Subsequently, a 15-mL priming bolus containing 40
mg of Ds-glycerol was given, and then the participants
rested for 90 min while the tracer glycerol was infused
continuously at a rate of 0.32 mg-min . Arterialized blood
sampling was repeated at 75 and 90 min after the start of
continuous infusion.

After 90 min of continuous infusion, participants drank a
solution containing 75 g of p-glucose in 296 mL (No. 10-O-
075, Azer Scientific Inc., Morgantown, PA). Participants con-
sumed the solution in <2 min. Arterialized blood sampling
was subsequently completed at 5, 15, 30, 60, 90, and 120 min
after the consumption of glucose.

Blood Sample Collection

Samples for the determination of arterialized blood lac-
tate and glucose concentrations and glycerol IE were im-
mediately deproteinized in two volumes of cold 7%
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perchloric acid (PCA) after collection. Samples for the
determination of plasma glycerol, FFA, TG, insulin, C-
peptide, glucagon, epinephrine, and norepinephrine con-
centrations were collected in tubes containing KzEDTA
(Vacuette, Greiner Bio-One, Monroe, NC). In addition, per
mL of whole blood, 8 TIU (trypsin inhibitory units) of
aprotinin and 10 pL of DPP IV inhibitor (No. DPP4-M,
Sigma-Aldrich, St. Louis, MO) were added prior to collec-
tion to prevent the degradation of insulin, C-peptide, and
glucagon. All samples were placed on ice immediately af-
ter collection and then centrifuged at 3,000 g for 10 min
at 4°C. The supernatants were then separated and stored
at —80°C until analysis.

Indirect Calorimetry

At each of the blood sampling time points, respiratory gas
exchange was determined by open-circuit indirect calorime-
try. The “metabolic cart” was calibrated according to the man-
ufacturer’s instructions prior to each experiment. Respiratory
gases were collected with a mouthpiece, nose clip, two-way
nonrebreathing valve, and headgear-type valve support (Hans
Rudolph Inc., Shawnee, KS). Hereafter, the breathing appara-
tus will be referred to as the “mouthpiece.” Expired gases were
collected for at least 5 min before and after (i.e., for at least 10
min) and simultaneously with blood sample collection. The
first 5 min of each collection period was used for acclimation,
and the data were not used for analysis. After collection at
baseline, participants briefly removed the mouthpiece only to
consume the glucose solution and then immediately replaced
it. Participants were asked not to remove the mouthpiece at
the 5 min and 15 min collection points to eliminate the accli-
mation period before the 15-min collection point. Otherwise,
participants were allowed to remove the mouthpiece between
collection points.

Metabolite Analyses

Arterialized plasma glycerol concentrations were deter-
mined enzymatically (53) and simultaneously with TG con-
centrations using a prepared set of reagents (Wako L-Type
Triglyceride M, Fujifilm Healthcare Solutions, Lexington,
MA). The average values are reported. Plasma FFA concen-
trations were determined using a prepared set of reagents
and standards [Wako HR Series NEFA-HR(2), Fujifilm
Healthcare Solutions]. Arterialized blood lactate concentra-
tions were determined enzymatically (54) from PCA extracts
of whole blood. Similarly, arterialized blood glucose concen-
trations were determined from PCA extracts using a pre-
pared reagent [Pointe Scientific Glucose (Hexokinase), Fisher
Scientific, Hampton, NH].

Hormone Analyses

Arterial plasma concentrations of insulin (No. 80-INSHU-
EO01.1), C-peptide (No. 80-CPTHU-EOL1.1), and glucagon (No.
48-GLUHUU-EO1) were determined using enzyme-linked
immunosorbent assay (ELISA) kits purchased from ALPCO
Diagnostics (Salem, NH). Plasma concentrations of epineph-
rine (No. ab287788) and norepinephrine (No. ab287789) were
determined using ELISA Kkits purchased from Abcam (Boston,
MA). Standard curves were constructed using a software pro-
gram (SoftMax Pro 4.3.1 LS, Molecular Devices, Sunnyvale,
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CA) and concentrations were calculated from a 4-parameter
logistic fit.

Ds-Glycerol Analysis

Glycerol IE were determined by gas chromatography/
mass spectrometry (GC/MS; GC Model 6890 Series and MS
Model 5973N, Agilent Technologies) of the triacetate deriva-
tive, as previously described (30). Perchloric acid extracts of
whole blood were neutralized with 2 N KOH, transferred to
ion exchange columns that were previously washed with
double deionized water (ddH,O) through a cation resin
(Analytical Grade 50 W-X8, 50-100 Mesh H™ Resin, Bio-Rad
Laboratories, Hercules, CA) and with ddH,O0 followed by 2 N
formic acid through an anion resin (Analytical Grade 1-X8,
100-200 Mesh Formate Resin). Glycerol was eluted through
the cation column with ddH,0. The eluent was lyophilized,
reconstituted in methanol, and then centrifuged at 3,000 g
for 10 min at 4°C. The clear supernatant was collected and
then dried under nitrogen (N,) gas. Samples were then deriv-
atized with a 2/1 mixture of acetic anhydride/pyridine and
heated at 65°C for 10 min. The mixture was dried under N,
gas and the samples were reconstituted in ethyl acetate for
GC/MS analysis. Methane was used for chemical ionization.
Selective ion monitoring was performed for mass-to-charge
(m/z) ratios of 159 for unlabeled glycerol and 164 for labeled
[1,1,2,3,3-°H]glycerol tracer.

Determination of Glycerol Kinetics

Glycerol Ra, rate of disappearance (Rd), and metabolic
clearance rate (MCR) were calculated using the equations of
Steele as modified for use with stable isotopes (55):

IE = abundance of D5 — glycerol/
(abundance of endogenous glycerol
+ Ds — glycerol),

Ra (pmol-min™) = [F - V[(C1 + C3)/2]
x [(IEz —IE1)/(r2 — 11)]]/ [(IE2 + IEy)/2],

Rd(pmol-min~!) = Ra — V[(Cy—C1) /(12 — 1)),

MCR (L-min™") = Rd/[(Cy + C2)/2],

where F represents the tracer infusion rate (0.32 mg~min‘1),
V is the estimated volume distribution for glycerol (270
mL-kg %), C; and C, are concentrations at sampling times
and t, respectively, and IE; and IE, are isotopic enrichments
at sampling times ¢; and t, respectively.

Determination of Substrate Oxidation and Fatty Acid
Reesterification Rates

Respiratory data were exported from the Parvo Medics
TrueOne program using 5-s averaging display. Subsequently,
respiratory data were averaged over the last 5 min of each 10-
min collection period; the average values were used in the
following calculations. The rate of energy expenditure (EE),
percentage of EE derived from CHO and lipid, rate of total
CHO oxidation (CHO Rox), and rate of total lipid oxidation
(Lipid Rox) were calculated using the following equations
(56, 57):

J Appl Physiol - doi:10.1152/japplphysiol.00437.2024 - www.jappl.org

EE from CHO = (RER — 0.71)/0.29,

EE from Lipid = 1 — EE from CHO,

Total CHO Rox (kcal-min™!) = (EE from CHO x VO,)
x 5.05kcal- L1 O,

Total Lipid Rox(kcal-min ') = (EE from Lipid x VO,)
x 4.70keal-L™ O,

Total EE (kcal-min~?)
= [(EE from CHO x VO,) x 5.05kcal-L 1 0,]
+ [(EE from Lipid x VO,) x 4.70kcal-L ™1 0,],

where RER is the respiratory exchange ratio (Vco,/Vo,) and
Vo, is the rate of oxygen consumption in L-min—'. Total
CHO Rox was converted to units of mg-min~" using the ca-
loric equivalent of CHO (4.2 kcal-g™!), and then to units of
pmol-min~" using the molecular weight of glucose (180.16
g-mol ). Total Lipid Rox was converted to units of mg-min*
using the caloric equivalent of lipid (9.5 kcal-g’l), and then
to units of pmol-min ! using the molecular weight of a repre-
sentative TG (860 g-mol ™). Furthermore, Lipid Rox was con-
verted to FA Rox by multiplying by 3 (3 moles of FA per mole
of TG).

The rate of total FA reesterification (Rs) was calculated as
the difference between the rate of lipolysis and the rate of
total FA oxidation (56, 58):

Total FARs (nmol-min~?) = (3 x Glycerol Ra) — Total FA Rox,

where glycerol Ra is the glycerol rate of appearance in
pumol-min~! and FA Rox is the rate of total FA oxidation in
pmol-min~!

Estimations of Insulin Sensitivity

The homeostatic model assessment (HOMA) method was
used to estimate insulin resistance (IR) from baseline, fasting
blood glucose, and plasma insulin concentrations. Scores
were calculated using the equation described by Matthews
et al. (59):

HOMA — IR = (BPI x BPG)/22.5,

where BPI is the baseline plasma insulin concentration in
pIU-mL~! and BPG is the baseline blood glucose concentra-
tion in mM. A HOMA-IR score of 1 indicates “normal” insulin
sensitivity (60), and higher scores indicate greater degrees of
insulin resistance in nondiabetic individuals (61). In addi-
tion, the composite insulin sensitivity index (CISI) was used
to estimate whole body insulin sensitivity during the OGTT.
Scores were calculated using the equation described by
Matsuda and DeFronzo (62):

CISI =10,000/,/[(BPI x BBG) x (MPI x MBG)],

where BPI is the baseline plasma insulin concentration in
pIU-mL~Y, BPG is the baseline blood glucose concentration
in mg-dL~%, MPI is the mean plasma insulin concentration
from 30 to 120 min in pWIU-mL ", and MBG is the mean blood
glucose concentration from 30 to 120 min in mg-dL %
Plasma insulin concentrations were converted from units of
pM to pIU-mL™ by dividing by 6 (63). A CISI score <2.5
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Table 1. Summary of ANOVA results describing time x
age interactions and main effects for time and age for
variables studied

Time X Age Time Age

Variable F P Value F P Value F P Value
[Glycerol] 0.87 0.52 126.0 <0.001 0.16 0.69
[FFA] 215 0.05 203.9 <0.001 0.63 0.43
[TG] 291 0.01 25.97 <0.001 1.00 0.33
[Lactate] 214  0.05 3216 <0.001 0.26 0.61
[Insulin] 3.33 0.004 41.84 <0.001 1.74 0.20
[C-Peptide] 496 0.01 150.8 <0.001 6.73 0.02
[Glucagon] 148 0.19 61.60 <0.001 1.03 0.32
[Epinephrine] 042 0.86 2.02 0.12 2.48 0.13
[Norepinephrine] 2.48 0.03 133 0.27 0.59 0.45
Glycerol Ra 250 0.02 9217 <0.001 0.82 0.37
Glycerol Rd 248 0.03 9196 <0.001 0.823 0.37
Glycerol MCR 110 0.36 38.04 <0.001 0.01 0.93
FA Rox 281 0.02 133.8 <0.001 0.29 0.59
FA Rs 3.29 0.004 7779 <0.001 341 0.08
CHO Rox 3.1 0.007 1404 <0.001 14.15 <0.001

Brackets around variables indicate arterial plasma or whole blood
(Lactate only) concentrations. Data was analyzed by repeated-meas-
ures two-way ANOVA with Tukey’s multiple comparisons test.
CHO, carbohydrate; FA, fatty acid; FFA, free fatty acid; MCR,
metabolic clearance rate; Ra, rate of appearance; Rd, rate of dis-
appearance; Rox, rate of oxidation; Rs, rate of reesterification;
TG, triglyceride.

is associated with insulin resistance (64), whereas higher
scores suggest greater degrees of insulin sensitivity.

Estimations of Pancreatic f-Cell Function

The HOMA method was also used to estimate B-cell func-
tion (%p) from baseline, fasting blood glucose, and plasma
insulin concentrations. Scores were calculated using the
equation described by Matthews et al. (59):

HOMA — % = (20 x BPI)/(BPG — 3.5).

A HOMA-%p score of 100% indicates “normal” -cell func-
tion (60), and lower scores indicate lesser p-cell function.

The insulinogenic index (IGI) and oral disposition index
(DI) methods were also used to estimate B-cell function dur-
ing the “early phase” of insulin secretion (i.e., 0-30 min post-
challenge). Scores were calculated using the equations
described by DeFronzo et al. (65, 66):

IGI = Al30-0/AG30-0,

DI = IGI x CISI,

where Alzg ¢ is the change in plasma insulin concentration
from baseline at 30 min in pM and AGzo¢ is the change in
blood glucose concentration from baseline at 30 min in mM.
Lower IGI scores have been reported in individuals with
impaired glucose tolerance (67), and lower DI scores have
been reported in individuals at risk for developing diabetes
(68). Accordingly, higher IGI and DI scores are interpreted to
reflect greater insulin secretory capacity.

Statistical Analyses

Data were analyzed using GraphPad Prism 10 (v.10.1.2
for Windows, GraphPad Software, Boston, MA). Statistical
significance was set at o < 0.05. An unpaired ¢ test was
used to assess the significance of mean differences
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between participant characteristics. Repeated-measures
two-way ANOVA with Tukey’s multiple comparisons test
was used to assess the significance of mean differences
between groups and across time points. Data are presented as
means * standard error of the mean (SE). Time x age interac-
tions and main effects for time and age are summarized in
Table 1. For brevity, significance for time x age interactions
and main effects for time and age are described in-text only
for select variables studied. Otherwise, only results of multiple
comparisons are described. Differences across time points are
expressed relative to baseline (i.e., before the consumption of
glucose at 0 min). Area under the curve (AUC) was deter-
mined also using GraphPad Prism 10. An unpaired ¢ test was
used to assess the significance of differences in AUC. Data are
presented as means * SE. Pearson correlation coefficients
were used to assess the significance of relationships among
glycerol Ra and select variables studied.

RESULTS

Participant Characteristics

Anthropometric, physical performance, and dietary charac-
teristics of young and older participants have been reported
elsewhere (48, 49), but results are summarized here for read-
ers’ convenience. Older participants’ age, BMI, and body fat
percentage were significantly higher than young participants
(P < 0.05). In contrast, young participants’ absolute and rela-
tive VOpeax and VT were significantly higher than older par-
ticipants (P < 0.05). There were no significant differences in
body mass, pulmonary function (FEV,/FVC), daily caloric
intake, or macronutrient intake between groups.

Indexes of insulin sensitivity and insulin secretion are pre-
sented in Table 2. Older participants’ HOMA-IR score was
significantly higher than young participants (P = 0.01). In
contrast, young participants’ IGI and DI scores were signifi-
cantly higher than older participants (P < 0.007). There was
no difference in the CISI or HOMA-%f scores between
groups (P > 0.13).

Glycerol, FFA, and TG Concentrations during an OGTT

Arterial plasma glycerol concentrations decreased sig-
nificantly from baseline 30 min postchallenge in both
young (50.58 +3.01 vs. 69.19 £2.50 uM, P < 0.001) and older
(48.84+4.19 vs. 72.76 £5.12 uM, P < 0.001) participants,
and then continuously declined until 120 min (P < 0.001).

Table 2. Indexes of insulin sensitivity and insulin
secretion in young and older participants

Variable Young Older P Value
HOMA-IR 0.80+0.1 1.27+0.2 0.02
CISI 7.45+0.9 6.00+£0.6 0.19
HOMA-%8, % 66.71+7.3 100.99+19.6 0.13
1GI, pM-mM’1 134.31£23.5 55.66+6.8 0.007
DI 803.86 £ 1111 305.67+35.4 0.001

Values are means = SE. Young (n = 15) and older (n = 14) partici-
pants. CISI, composite insulin sensitivity index; DI, oral disposi-
tion index; HOMA-%p, homeostatic model assessment method of
pancreatic p-cell function; HOMA-IR, homeostatic model assess-
ment method of insulin resistance; IGI, insulinogenic index.
Comparisons were made by unpaired ¢ test.
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Figure 1. Arterial plasma concentrations of glycerol (A), free fatty acids
(FFA) (B), and triglycerides (TG) (C) before and during an oral glucose
tolerance test (OGTT) in young (n = 15) and older (n = 14) participants.
Values are means + SE. #Significantly different from O min, P < 0.05.
*Significantly different between groups, P < 0.05.

There were no significant differences in glycerol concen-
trations between groups at any time point (P > 0.24)
(Fig. 1A). Plasma FFA concentrations decreased signifi-
cantly from baseline 30 min postchallenge in both young
(247.14 £ 32.78 vs. 464.71+27.01 uM, P < 0.001) and older
(326.87 +37.75 vs. 457.93+35.52 uM, P < 0.001) partici-
pants, and then continuously declined until 120 min (P <
0.001). In addition, FFA concentrations were signifi-
cantly higher in older participants between 60 and 120
min (P < 0.05) (Fig. 1B).
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Arterial plasma TG concentrations increased significantly
from baseline 30 min postchallenge in both young (0.74 + 0.10
vs. 0.660.10 mM, P < 0.001) and older (0.87+0.08 vs.
0.75£0.07 mM, P = 0.01) participants. However, in young
participants, TG concentrations decreased below baseline at
60 min (0.61+0.10 mM, P = 0.03) and then continuously
declined until 120 min (P < 0.01). In contrast, in older partici-
pants, TG concentrations decreased to baseline values at 60
min and 90 min, and then decreased below baseline at 120
min (0.65%0.08 mM, P = 0.03). There were no significant dif-
ferences in TG concentrations between groups at any time
point (P > 0.11) (Fig. 1C).

Lactate Concentrations during an OGTT

Arterial blood lactate concentrations are presented in
Table 3, but they have been graphically reported separately
(49). We observed a significant time x age interaction (F =
2.14, P = 0.05) and a significant main effect for time (F =
32.16, P < 0.001), but not age (F = 0.26, P = 0.61). Blood lac-
tate concentrations increased significantly from baseline 5
min postchallenge in young participants (P = 0.04) and at 15
min in older participants (P = 0.02), and then remained ele-
vated above baseline until 120 min in both groups (P < 0.04).
There were no significant differences in lactate concentra-
tions between groups at any time point (P > 0.08).

Insulin and C-Peptide Concentrations during an OGTT

We observed a significant time x age interaction for arte-
rial plasma insulin concentrations (F = 3.33, P = 0.004) and
a significant main effect for time (F = 41.84, P < 0.001) but
not age (F = 1.74, P = 0.20). Insulin concentrations increased
significantly from baseline 5 min postchallenge in young
participants (77.82 +12.62 vs. 22.71 £ 2.50 pM, P = 0.01) and at
15 min in older participants (151.40+17.49 vs. 33.85+3.60
PM, P < 0.001), and then remained elevated above baseline
until 120 min in both groups (P < 0.001). In addition, insulin
concentrations were significantly higher in older partici-
pants at baseline (P = 0.02) but higher in young participants
at 5 min and 30 min (P < 0.05) (Fig. 2A). C-peptide concen-
trations were increased significantly from baseline 5 min
and 60 min postchallenge in young participants (P < 0.001)
but only at 60 min in older participants (P < 0.001). In addi-
tion, C-peptide concentrations were significantly higher in
older participants at baseline (P = 0.001) but higher in young
participants at 5 min and 60 min (P < 0.04) (Fig. 2B).

Glucagon, Epinephrine, and Norepinephrine
Concentrations during an OGTT

Arterial plasma glucagon concentrations decreased sig-
nificantly from baseline 30 min postchallenge in both
young (5.87+0.75 vs. 9.78 £ 0.80 pM, P = 0.001) and older
(5.24£0.65 vs. 7.49 £ 0.79 pM, P = 0.002) participants, and
then remained low until 120 min (P < 0.002). There were
no significant differences in glucagon concentrations
between groups at any time point (P > 0.06) (Fig. 2C).

Arterial plasma epinephrine concentrations remained at
baseline levels in both young (21.78 = 0.64 pg-mL~%, P > 0.31)
and older (23.45+0.59 pg-mL™, P > 0.74) participants
throughout observation (Fig. 2D). Similarly, norepinephrine
concentrations remained at baseline levels in both young
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Table 3. Arterial blood lactate concentrations before and during an OGTT in young and older participants

Time, min Young P Value vs. 0 min Older P Value vs. 0 min P ValueYoung vs. Older
0 0.60x0.05 0.65+0.02 0.34
5 0.71+0.05 0.04 0.62+0.04 0.96 0.21
15 1.09+£0.09 <0.001 0.90+0.06 0.02 0.08
30 0.87+0.09 0.009 0.84+0.05 0.04 0.77
60 119+0.09 <0.001 1.05+0.06 <0.001 0.23
90 1.08+£0.09 <0.001 110+0.07 <0.001 0.88
120 1.02+0.10 0.002 1.11+£0.07 0.001 0.46

Values are means = SE. Young (n = 15) and older (n = 14) participants. Data were analyzed by repeated-measures two-way ANOVA
with Tukey’s multiple comparisons test. OGTT, oral glucose tolerance test.

(257.67+1.63 pg~mL’1, P > 0.09) and older (266.34+9.74
pgmL~!, P > 0.58) participants throughout observation
(Fig. 2E). There were no significant differences in epineph-
rine (P > 0.06) or norepinephrine (P > 0.09) concentrations
between groups at any time point.

Glycerol Kinetics during an OGTT

We observed a significant time x age interaction for arte-
rial glycerol Ra (F = 2.50, P = 0.02) and a significant main
effect for time (F = 92.17, P < 0.001) but not age (F = 0.82,
P =0.37). Glycerol Ra decreased significantly from baseline 5
min postchallenge in young participants (1.83+0.10 vs.
1.98+0.11 ymol-kg~tmin~!, P = 0.03) and at 30 min in older
participants (1.39+0.10 vs. 1.78+0.12 ymol-kg *min %, P =
0.002), and then remained low between 30 and 120 min in
both groups (P < 0.003). Conspicuously, in young partici-
pants, glycerol Ra was not significantly different from
baseline at 15 min (P = 0.22). There were no significant dif-
ferences in glycerol Ra between groups at any time point
(P > 0.14) (Fig. 3A). In addition, there was no significant
difference in the AUC for three times the absolute glycerol
Ra between groups (P = 0.67) (Fig. 3B).

The pattern of glycerol Rd was similar to that of Ra. We
observed a significant time x age interaction for arterial
glycerol Rd (F = 2.48, P = 0.03) and a significant main effect
for time (F = 91.96, P < 0.001) but not age (F = 0.82, P =
0.37). Glycerol Rd decreased significantly from baseline 5
min postchallenge in young participants (1.83+0.10 vs.
1.98=0.11 ymol-kg *min %, P = 0.03) and at 30 min in older
participants (1.10=0.10 vs. 1.78+0.12 ymol-kg *min %, P =
0.002), and then remained low between 30 and 120 min in
both groups (P < 0.003). As well, in young participants, glyc-
erol Rd was not significantly different from baseline at 15
min (P = 0.19). There were no significant differences in glyc-
erol Rd between groups at any time point (P > 0.13) (Fig. 3C).

We did not observe a significant time x age interaction for
arterial glycerol MCR (F = 1.10, P = 0.36) or a significant
main effect for age (F = 0.01, P = 0.93). However, we
observed a significant main effect for time (F = 38.04, P <
0.001). Glycerol MCR increased significantly from baseline
120 min postchallenge in young participants (35.98 +2.37 vs.
27.96+1.91 mL-kg 'min~!, P < 0.001). However, in older
participants, glycerol MCR increased significantly 60 min
postchallenge (32.74+1.94 vs. 26.36+1.57 mL-kg 'min~,
P = 0.01) and then continuously rose until 120 min (P <
0.004). There were no significant differences in glycerol
MCR between groups at any time point (P > 0.46) (Fig. 3D).
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Total Energy Expenditure Rates during an OGTT

Total EE increased significantly from baseline 5 min post-
challenge in both young (1.24 = 0.04 vs. 1.13 £ 0.04 kcal-min ",
P < 0.001) and older (1.24 £ 0.06 vs. 1.16 £ 0.06 kcal-min %,
P =0.01) participants. There were no significant differen-
ces in EE between groups at any time point (P > 0.45)
(Supplemental Fig. S14). However, when expressed rela-
tive to total body mass (TBM), EE increased significantly
from baseline 5 min postchallenge in young (12.19 £ 0.39
vs. 10.15+0.28 pmol-kg *:min~, P = 0.01) and at 30 min in
older participants (12.53 = 0.58 vs. 9.57 + 0.47 ymol-kg *'min %,
P = 0.01), and EE was significantly higher in young partici-
pants between 5 and 90 min (P < 0.01) (Supplemental Fig.
S1B).

Rates of Total FA Oxidation and Reesterification during
an OGTT

We observed a significant time x age interaction for total FA
Rox (F = 2.81, P = 0.01) and a significant main effect for time
(F =133.8, P < 0.001) but not age (F = .29, P = 0.59). FA Rox
decreased significantly from baseline 60 min postchallenge in
both young (1.64%0.24 vs. 3.75+0.10 ymol-kg *min~?, P <
0.001) and older (2.36+0.22 vs. 3.51+0.12 ymol-kg -min%,
P < 0.001) participants, and then remained below baseline
until 120 min (P < 0.001). In addition, FA Rox was significantly
higher in older participants at 60 min (P = 0.04) (Fig. 4A).
Results were similar when FA Rox was expressed in absolute
terms (Supplemental Fig. S2A).

We observed a significant time x age interaction for total FA
Rs (F = 3.29, P = 0.004) and a significant main effect for time
(F = 77.79, P < 0.001) but not age (F = 3.41, P = 0.08). FA Rs
decreased significantly from baseline 5 min postchallenge in
both young (1.74+0.23 vs. 2.28+0.14 pmol-kg 'min~!, P =
0.002) and older (1.28+0.16 vs. 1.93=0.17 ymol-kg !'min~",
P < 0.001) participants, and then continuously declined until
30 min (P < 0.001). In young participants, FA Rs increased to
baseline rates at 60 min (P = 0.98), increased significantly
above baseline at 90 min (2.49%0.11 pmol-kg 'min%, P =
0.003), and then returned to baseline rates at 120 min (P >
0.99). In contrast, in older participants, FA Rs increased con-
tinuously between 60 and 120 min and increased significantly
above baseline at 120 min (2.21=0.17 ymol-kg *min~!, P <
0.001). In addition, FA Rs was higher in young participants at
60 min (P = 0.02) and 90 min (P = 0.03) (Fig. 4B).

There were no significant differences in the AUC for total
FA Rox (P = 0.50) or FA Rs (P = 0.12) between groups. In
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Figure 2. Arterial plasma concentrations of insulin (A), C-peptide (B), glucagon (C), epinephrine (D), and norepinephrine (E) before and during an oral glu-
cose tolerance test (OGTT) in young (n = 15) and older (n = 14) participants. Values are means + SE. #Significantly different from O min, P < 0.05.

*Significantly different between groups, P < 0.05.

young participants, there were no significant differences in
the AUC for FA Rox and FA Rs (P = 0.34). However, in older
participants, the AUC for FA Rox was significantly greater
than the AUC for FA Rs (P = 0.008) (Fig. 5A).

Total CHO Oxidation Rates during an OGTT

We observed a significant time x age interaction for total
CHO Rox (F = 3.11, P = 0.007) and significant main effects for
time (F = 140.4, P < 0.001) and age (F = 14.15, P < 0.001). Total
CHO Rox increased significantly from baseline 5 min postchal-
lenge in young (10.89%0.40 vs. 8.86+0.30 pmol-kg -min},
P = 0.02) and at 30 min in older participants (11.34 = 0.60 vs.
8.40=0.51 pmol-kg~*min~?, P = 0.02), and then remained ele-
vated until 120 min (P < 0.01). In addition, CHO Rox was sig-
nificantly higher in young participants between 5 and 90 min

J Appl Physiol - doi:10.1152/japplphysiol.00437.2024 - www.jappl.org

(P < 0.03) (Fig. 4C), and the AUC for CHO Rox was significantly
greater for young participants (P = 0.04) (Fig. 5B).
However, when expressed in absolute terms, CHO Rox was
significantly higher in young participants at 60 min only
(1.07 £0.06 kcal-min~! vs. 0.85 £ 0.05 kcal-min~, P = 0.01)
(Supplemental Fig. S2B).

Correlations between Glycerol Ra and Glycerol, FFA,
Lactate, and Insulin Concentrations

Glycerol Ra was positively correlated with plasma glycerol
concentrations in young (r = 0.96) and older (» = 0.94) partici-
pants (Supplemental Fig. S3A). Similarly, glycerol Ra was posi-
tively correlated with FFA concentrations in young (r = 0.97)
and older (r = 0.95) participants (Supplemental Fig. S3B). The
correlations were significant for both groups (P < 0.002).
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Figure 3. Arterial glycerol rate of appearance (Ra) (A), area under the curve (AUC) for three times the absolute glycerol Ra (B), glycerol rate of disappear-
ance (Rd) (C), and glycerol metabolic clearance rate (MCR) (D) before and during an oral glucose tolerance test (OGTT) in young (n = 15) and older (n =
14) participants. Values are means * SE. #Significantly different from O min, P < 0.05.

Glycerol Ra was inversely correlated with lactate con-
centrations in both groups, but the correlation was higher
(r = —0.93 vs. r = —0.71) and more significant (P = 0.003
vs. P = 0.07) in older participants (Fig. 6A) (Table 4).
Similarly, glycerol Ra was inversely correlated with plasma
insulin concentrations in both groups, but the correlation
was higher (r = —0.98 vs. r = —0.93) and more significant
(P < 0.001vs. P=0.003) in older participants (Fig. 6B).

Correlations of Substrate Oxidation Rates to Markers of
Lipolysis

Glycerol Ra was positively correlated with total FA Rox
(r > 0.87) but inversely correlated with total CHO Rox (r >
—0.96) in both groups (Fig. 6, C and D). Similarly, plasma
FFA concentrations were positively correlated with FA Rox
(r > 0.93) but inversely correlated with CHO Rox (r > —0.97)
in both groups (Supplemental Fig. S4, A and B). All correla-
tions were significant for both groups (P < 0.01).

DISCUSSION

The purpose of this investigation was to determine concur-
rent changes in the rates of lipolysis as estimated from the
glycerol Ra, total FA and CHO oxidation, and total FA reesteri-
fication following oral glucose consumption in healthy young
and older individuals. Although the lipolytic rates were
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comparable between groups, we observed notable differences
in other parameters of energy substrate partitioning, particu-
larly in the immediate response to oral glucose consumption.
In brief, following oral glucose consumption, we report the
following: 1) the suppression of lipolysis is delayed in aging, 2)
blood lactate concentrations are inversely related to the lipo-
Iytic rate, 3) the suppression of FA oxidation is delayed in
aging, 4) the rise in CHO oxidation is delayed in aging, 5) FA
reesterification is not the primary fate of FA released from li-
polysis, and 6) the lipolytic rate informs aging-related differ-
ences in postprandial energy substrate partitioning. Our
results are discussed sequentially.

Glycerol Ra Provides a Complete Assessment of
Lipolysis during an OGTT

In postabsorptive or exercising humans, glycerol is pro-
duced from lipolysis, but “free” glycerol is not known to be
recycled to TG within adipose. Consequently, the glycerol Ra
is representative of the rate of lipolysis (69, 70). To our
knowledge, only one other investigation has used a glycerol
isotope tracer to determine changes in the rate of lipolysis
during an OGTT. Diniz Behn et al. (31) reported a reduction
in lipolysis during an OGTT in very young (12-21 yr old),
overweight, or women with obesity. Similarly using a glyc-
erol isotope tracer and paired with arterialized blood sam-
pling, we expand on their data by demonstrating that the
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Figure 4. Rates of total fatty acid oxidation (FA Rox) (A), fatty acid reesteri-
fication (FA Rs) (B), and carbohydrate oxidation (CHO Rox) (C) before and
during an oral glucose tolerance test (OGTT) in young (n = 15) and older
(n = 14) participants. Values are means + SE. #Significantly different from
0 min, P < 0.05. *Significantly different between groups, P < 0.05.

rate of lipolysis also decreases in healthy young and older
individuals during an OGTT.

Changes in arterial plasma glycerol and FFA concentra-
tions were closely related in young and older groups. Both
metabolites remained relatively unchanged within the first
15 min, abruptly decreased at 30 min, and then steadily
declined until the end of observation. Similarly, glycerol Ra
was reduced from baseline at 30 min in both groups and
remained below baseline between 30 and 120 min. Thus,
our results support previous investigations that have inter-
preted the reduction in glycerol concentrations alone (27),

J Appl Physiol - doi:10.1152/japplphysiol.00437.2024 - www.jappl.org

or concurrently with FFA concentrations (28, 29), as the
suppression of lipolysis at 30 min postchallenge.

The blood sampling protocol used in the present study dif-
fers from a traditional OGTT due to sampling at 5 and 15 min
after glucose consumption. Importantly, we sampled arteri-
alized blood that had passed through the lung parenchyma
and blood compartments, but not muscle, adipose, or the
integument as results from arm vein blood sampling. Our
data reveal that the rate of lipolysis decreased immediately
(i.e., 5 min) after glucose consumption in our young group.
Thus, because they remained relatively unchanged at 5 min
and 15 min (P > 0.58), changes in [Glycerol] and [FFA] are
incomplete surrogates of the lipolytic rate. Importantly, they
are presently unable to identify aging-related differences.
Both [Glycerol] and [FFA] remained unchanged from base-
line at 5 min in both groups (P > 0.60). However, as
described, the reduction in Ra at 5 min was only significant
in our young group (P = 0.03 vs. P = 0.25), and we observed
a significant time x age interaction for Ra. Hence, our results
demonstrate that the control of lipolysis in the postprandial
period is negatively affected in aging.

Notably, in our young group, glycerol Ra at 15 min was not
different from baseline (P = 0.22) despite being similar to Ra
at 5 min (P > 0.99), presumably due to a higher variation in
Ra at 15 min. A paired ¢ test comparing the mean difference
in young participants’ Ra from O min to 15 min yielded a
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Figure 5. Area under the curve (AUC) for rates of total fatty acid oxidation
(FA Rox) and reesterification (FA Rs) (A) and total carbohydrate oxidation
(CHO Rox) (B) during an oral glucose tolerance test (OGTT) in young (n =
15) and older (n = 14) participants. Values are means + SE. *Significantly
different between groups, P < 0.05. "Significantly different between FA
Rox and FARs, P < 0.05.
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P value of 0.02. Consequently, the present data are inter-
preted to indicate a rapid and sustained reduction in the rate
of lipolysis in our young, but not older group.

Insulin has an essential role in the suppression of lipolysis
(71). Previous investigations using stable isotope tracers
reported a reduction in the Ra of glycerol (72) and FFA (58)
during variable insulin infusion rates to demonstrate the insu-
lin-mediated suppression of lipolysis. Presently, the significant
inverse correlations between [Insulin] and glycerol Ra in both
groups support the role of insulin in the inhibition of lipolysis.

A prominent finding of the present investigation is the im-
mediate increase in [Insulin] 5 min after glucose consumption
in our young, but not older (P = 0.62) group. C-peptide

Table 4. Summary of correlations between arterial
glycerol Ra and select variables studied before and dur-
ing an OGTT in young and older participants

Young Older
Variable Pearson r R? P Value Pearson r R? P Value
[Lactate] -0.7 0.51 0.07 —0.93 0.86 0.003
[Insulin] —0.78 0.61 0.04 —0.98 0.96 <0.001
FA Rox 0.94 0.89 0.002 0.87 0.76 0.01
CHO Rox —0.98 0.96 <0.001 —0.96 0.91 <0.001

Young (n = 15) and older (n = 14) participants. Brackets around
variables indicate arterial plasma (Insulin) or whole blood (Lactate)
concentrations. Pearson correlation coefficients were used to assess
the significance of relationships. Pearson r, correlation coefficient;
FA, fatty acid; CHO, carbohydrate; OGTT, oral glucose tolerance test;
Ra, rate of appearance; Rox, rate of oxidation.
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concentrations were also increased in our young, but not
older (P = 0.32) group at 5 min. Because C-peptide concentra-
tions are used as a measure of insulin secretion (60), we report
a significant increase in insulin secretion in our young group.
Hence, the immediate suppression of lipolysis can be attrib-
uted, in part, to the immediate increase in insulin secretion.

Despite a higher HOMA-IR score in our older group, we did
not observe any other indication of insulin “resistance” as
observed in metabolic disease states. The mean HOMA-IR
score of our older group was lower than HOMA-IR scores pre-
viously reported in metabolic disease states (73-75), indicat-
ing greater insulin sensitivity in our healthy older group.
Moreover, the CISI scores of our young and older groups were
similar and were greater than the scores previously reported
in insulin-resistant individuals (67, 76). Thus, the delayed
suppression of lipolysis in our older group can be attributed,
in part, to lower circulating insulin associated with lower pan-
creatic B-cell function, but not insulin “resistance”. Further
support of this interpretation is provided in [Insulin] and [C-
Peptide], which were higher in our young group at 30 min
and 60 min, respectively. In addition, our estimates of B-cell
function (IGI and DI) during the initial 30 min of observation,
and higher [C-Peptide] in our young group at 5 min, collec-
tively indicate that our young group exhibited a greater insu-
lin secretory capacity. Our observations are consistent with
some (77, 78), but not all (66) previous investigations that
have similarly reported a diminished insulin response follow-
ing oral glucose consumption in older individuals resulting
from aging-related B-cell dysfunction (68).
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In healthy humans, the antilipolytic effect of insulin is coun-
terregulated by catecholamines, epinephrine and norepineph-
rine, but not glucagon (79, 80). Previous investigations using
graded infusions of catecholamines reported an increase in
markers of lipolysis in resting (81, 82) and exercising (83)
humans to demonstrate the promotion of lipolysis. Presently,
[epinephrine] and [norepinephrine] did not change from base-
line in either young or older groups during observation, and
concentrations were not different between groups at any time
point. Thus, despite a significant time x age interaction for
[norepinephrine], we do not attribute the delayed reduction in
glycerol Ra and higher [FFA] observed in our older group to dif-
ferences in circulating catecholamines. These results are inter-
preted to indicate that the postprandial lipolytic response is
controlled primarily by an increase in antilipolytic signals as
opposed to a reduction in signals that promote lipolysis.

Our finding that glycerol Ra was similar between groups at
all time points is consistent with previous reports of compara-
ble lipolytic rates between young and older individuals during
physiological conditions, including prolonged fasting (84)
and during exercise at a given power output before (85) and
after (86) endurance training. Moreover, because the CISI esti-
mates insulin sensitivity during an OGTT (62), the absence of
any significant difference in glycerol Ra between groups is
consistent with the similar CISI scores (P = 0.19). However,
the absence of significant differences in glycerol Ra is incon-
sistent with previous investigations that reported a dose-
response relationship between plasma insulin concentrations
and FFA mobilization rates (as a surrogate for the lipolytic
rate) (87, 88). Notably, Bonadonna et al. (26) reported that FFA
mobilization rates were greater in elderly compared with
younger individuals during euglycemic-insulin clamp experi-
ments yielding comparable plasma insulin concentrations.
Because glycerol Ra is a more appropriate measure of lipolysis
than FFA mobilization (70), results of Bonadonna et al. (26)
are difficult to interpret in the context of the lipolytic rate.
Greater rates of FFA mobilization might reflect lower rates of
local FA reesterification within adipocytes (58) as opposed to
greater rates of lipolysis. Alternatively, our results of glycerol
Ra can be interpreted to indicate that insulin sensitivity and/
or responsiveness of adipose tissue is preserved in aging,. Still,
because we observed a significant time x age interaction for
Ra, our results demonstrate that the postprandial control of li-
polysis is impacted in aging and further, maybe be negatively
affected by aging-related conditions. Metabolic flexibility was
exemplified in our young group in their ability to rapidly sup-
press lipolysis in response to oral glucose consumption.
Presently, it is unclear why [FFA] was significantly higher in
our older group between 60 and 120 min. We determined that
there was no difference in the extent to which lipolysis was
reduced (i.e., % decrease) between groups at any time point
(data not shown). Moreover, because the AUC for three times
the absolute glycerol Ra was not different between groups
(P = 0.67), we do not suspect that FFA mobilization was
greater in older group. Potentially, our older group exhibited
quantitatively less, or slower peripheral uptake of plasma FFA
to maintain higher [FFA], or our young group exhibited
greater FA reesterification within adipose (58, 89) to yield
lower [FFA]. Future similar investigations might use Ds-glyc-
erol in conjunction with a FA isotope tracer (e.g., [1-*3C]palmi-
tate) to explore these hypotheses.

J Appl Physiol - doi:10.1152/japplphysiol.00437.2024 - www.jappl.org

Blood Lactate Concentrations Are Inversely Related to
the Lipolytic Rate

Ahmed et al. (42) described an autocrine mechanism in
mouse adipocytes in which lactate signaling has a permis-
sive effect on the inhibitory effects of insulin on lipolysis. In
humans, lactate production by adipocytes following oral glu-
cose consumption (46, 47) provides the foundation for this
autocrine mechanism. Presently, the inverse correlations
between glycerol Ra and [Lactate] in both groups support the
role of lactate signaling in the inhibition of lipolysis. Our
results are consistent with other reports describing lactate
inhibition of lipolysis in isolated mouse (40) and human (41)
adipocytes incubated in lactate, resting (44) and exercising
(45) dogs receiving lactate infusions, and exercising humans
receiving lactate infusions (43). However, our results are
inconsistent with those of Ferrannini et al. (90), who
reported that lipolysis was unaffected by lactate infusion in
resting humans during euglycemic-insulin clamp. As noted
by the authors, lactate inhibition of lipolysis might warrant
“different metabolic circumstances” (90). Potentially, the
suppression of insulin secretion by catecholamine stimula-
tion during exercise (43, 45) or by pancreatectomy (44)
might improve the sensitivity of adipocytes to lactate signal-
ing. From extant data (42, 46, 47), our results are interpreted
to indicate that autocrine lactate signaling has a permissive
effect on the insulin-mediated suppression of adipocyte li-
polysis specifically in the postprandial period. Rephrased,
we speculate that lactate contributes to, but is not solely re-
sponsible for, the inhibition of adipocyte lipolysis. Further
support of this interpretation is provided in the magnitude
and significance of the inverse correlations between glycerol
Ra and [Insulin], which were marginally greater than those
between glycerol Ra and [Lactate] within groups.

Although correlations do not provide proof of causation,
we contend that our correlations support the role of lactate
signaling in the inhibition of lipolysis. Particularly, the
mechanism is supported by other investigators (40-45),
whereas inverse relationships with other variables are not.
Although arterial blood glucose concentrations (48) are most
likely also inversely related to glycerol Ra in the present
study, hyperglycemia by itself is not known to have a role in
the suppression of lipolysis in humans (91, 92). Notably,
in our young group, we observed a concurrent increase in
[Lactate] and [Insulin] and reduction in glycerol Ra at 5 min,
whereas in our older group, these responses were collectively
delayed. The coincidental nature of these observations is
bolstered by the significance of the correlations (young, P =
0.07 and older, P = 0.003) that affirm the potential permis-
sive effects of lactatemia on the insulin-mediated suppres-
sion of lipolysis. However, further investigation is required
to confirm the role of lactate signaling in the control of lipol-
ysis, in the postprandial period or otherwise.

The Postprandial Fall in FA Oxidation Is Delayed in
Aging

Whole body total FA oxidation rates decrease in response to
oral glucose consumption due to the ensuing rise in blood glu-
cose and plasma insulin concentrations that collectively
reduce lipolysis (25), FA availability, and FA oxidation (93). Our
results in our young group agree with previous investigations
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that reported that the reduction in FA oxidation occurs
beyond the first 30 min after glucose consumption (9-12).
However, unlike previous investigations, we observed a
stable and minimal FA Rox between 60 and 120 min.
These investigations observed an apparent continuous
decline in FA oxidation rates between 60 and 120 min. It is
unclear why this discrepancy exists, as these investiga-
tions used a similar 75-g (9) or larger 100-g (10, 11) glucose
load that should have, theoretically, resulted in greater
suppression of FA oxidation (94, 95). At minimum, we con-
firm extant data on the changes in FA oxidation immedi-
ately following oral glucose consumption in healthy young
individuals.

Total FA Rox fell below baseline rates at 60 min in both
groups. However, at 60 min, FA Rox was higher in our older
group. When expressed as an absolute rate, FA Rox also
trended to be higher in our older group at 90 min (P = 0.07).
In contrast, between 60 and 120 min, FA Rox was relatively
unchanged in our young group, suggesting that a minimal
rate had been reached by 60 min. As well, we observed a sig-
nificant time x age interaction for FA Rox. Thus, our results
demonstrate that the postprandial suppression of FA oxida-
tion is delayed in aging. Because FAs serve as the primary
energy substrate during postabsorptive rest (13, 14), we dem-
onstrate that metabolic flexibility to oral glucose consump-
tion is delayed in “healthy” aging. Multiple factors can be
implicated as contributors to the delayed response of FA Rox
(discussed later). However, worth noting first is the recipro-
cal changes in CHO oxidation rates.

The Postprandial Rise in CHO Oxidation Is Delayed in
Aging

Whole body total CHO oxidation rates predictably increase
in response to oral glucose consumption due to the ensuing
rise in plasma insulin concentrations that facilitates glucose
uptake and oxidation (93). In our young group, total CHO
Rox rapidly increased from baseline until 60 min. These
early changes in CHO Rox mirrored the changes reported in
previous investigations that similarly observed healthy
young men and women (5, 10, 11). Moreover, our results
agree with previous investigations that reported stable and
maximal CHO oxidation rates between 60 and 120 min after
glucose consumption in young individuals (6, 9). However,
we observed a significant increase in CHO Rox 15 min and 30
min after glucose consumption, which disagrees with the
results of others (6, 11). Anthropometric differences in the
populations studied (e.g., body fat content) might have con-
tributed to this difference. Still, we expand on extant data by
demonstrating that CHO oxidation rates increase above
baseline as early as 5 min after glucose consumption in
healthy young individuals.

Our results demonstrate that the postprandial rise in CHO
oxidation is delayed in aging. As described, we observed a sig-
nificant time x age interaction for CHO Rox. Furthermore,
CHO Rox increased above baseline 5 min after glucose con-
sumption in our young, but not in older group. An increase in
CHO Rox above baseline was not observed until 30 min in our
older group. Moreover, between 60 and 120 min, CHO Rox
remained relatively steady in our young group, but steadily
increased in our older group. Because these changes were also
observed when CHO Rox was expressed as an absolute rate,
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the divergent responses of CHO Rox between groups cannot
be completely explained by the minor difference in TBM (P =
0.22) or in the relative size of the glucose load (P = 0.36, data
not shown).

The ability of skeletal muscle to suppress lipid oxidation
during hyperglycemia is influenced by insulin sensitivity,
percentage body fat, and aerobic fitness (96, 97). Because the
total energy expenditure represents a balance of CHO and
FA utilization, the ability to increase CHO oxidation during
physiological hyperglycemia would be influenced by the
same variables. Insulin has a primary role in the disposal
and subsequent oxidation of an oral glucose load in skeletal
muscle (3, 5). Because peripheral insulin sensitivity (98) and
skeletal muscle mass (99) reportedly decline in aging, the
delayed rise in CHO oxidation can be a hypothesized conse-
quence of the combined effects of insulin insensitivity and
reduced muscle mass. However, our data indicate that our
older group did not exhibit these aging-related decrements,
as there were no differences in HOMA-IR, CISI, or fat-free
mass (P = 0.79, data not shown). Basu et al. (100) reported
that insulin action was lower in their elderly than young par-
ticipants due to greater body fat content. Presently, we simi-
larly report a higher body fat percentage and greater body fat
mass in our older group (P = 0.005, data not shown).
Coincident with higher [Insulin], CHO Rox was higher in our
young group 30 min after glucose consumption. These
results allow us to speculate greater glucose uptake and oxi-
dation (94). The delayed rise in CHO Rox observed in our
older group is therefore attributed, in part, to lower circulat-
ing insulin and lower insulin action associated with greater
body fat mass, but not insulin “insensitivity” or less fat-free
mass for glucose uptake. The impact of this distinction is
extended to explain the observed differences in lipid metab-
olism. Notably, at 60-min postchallenge, [FFA] and FA Rox
were greater in our older group despite similar [Insulin] (P =
0.20). Our results are consistent with those of Bonadonna et
al. (26), who reported that plasma FFA concentrations and
FFA oxidation rates were greater in elderly compared with
younger individuals during euglycemic-insulin clamp.
Hence, the delayed suppression of FA oxidation and greater
[FFA] observed in our older group is attributed to lower insu-
lin action in aging (98, 101).

In addition to the delayed increase from baseline, we
report that CHO Rox was significantly lower in our older
group between 5 and 90 min. Resting metabolic rate (102)
and the metabolic scope reportedly decrease with advancing
age. Thus, our finding that postchallenge CHO Rox was lower
in our older group is potentially unsurprising. However, we
did not observe any significant differences in resting, postab-
sorptive EE whether expressed as an absolute rate (P = 0.74)
or relative to TBM (P = 0.32). Consequently, the ability to
increase EE and alter the balance of CHO and FA utilization
in our older group is attributed to other factors. As previ-
ously described, greater body fat mass (103) and its associ-
ated effects on insulin action (100) is likely responsible for
lower postchallenge CHO Rox. Consistently, when expressed
as absolute instead of relative rates, there were less differen-
ces in CHO Rox between young and older groups postchal-
lenge, indicating that differences in body composition also
contributed to lower postchallenge CHO Rox in our older

group.
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Collectively, results of postprandial glycerol Ra, FA
Rox, and CHO Rox demonstrate that responses were
delayed, but not restricted in our older group. By the end
of observation, FA Rox (P = 0.59) and CHO Rox (P = 0.26)
were not different between groups. These are consistent
with a companion report (48) in which we described the
inability of the difference in peak and baseline RER to
characterize metabolic flexibility in our healthy groups.
Hence, postprandial metabolic inflexibility in “healthy”
aging is characterized by delayed changes in energy sub-
strate partitioning.

Reesterification Is Not the Primary Postprandial Fate of
FA

Total FA Rs was determined as the difference in the lipo-
lytic rate (3 x glycerol Ra) and total FA oxidation rate. Our
estimation therefore more specifically determines the rate of
reesterification of FA released from lipolysis (104). Because
the only fates of FA released from lipolysis are oxidation and
reesterification, results of FA Rox and FA Rs will be dis-
cussed concurrently.

Fatty acid reesterification rates over time.
In both young (P > 0.72) and older (P > 0.16) groups, FA Rox
increased nonsignificantly from baseline between 5 and 15
min. Although not significant, the increases in FA Rox were
substantial enough to cause a simultaneous, significant
reduction in FA Rs below baseline. Therefore, our data indi-
cate that FAs released from lipolysis between 5 and 30 min
were used to support total EE rather than being recycled.
During the second hour of observation, FA Rs increased
transiently above baseline rates at 90 min and 120 min in
our young and older groups, respectively. Fatty acid Rs also
remained at baseline rates at 60 min and 120 min in our
young group. Notably, [Insulin] was also elevated above
baseline at these time points. Insulin has an essential role
in the regulation of FA reesterification (58, 105). Because
greater circulating insulin concentrations result in greater
suppression of FA reesterification (95), this was an unex-
pected result. We initially hypothesized that FA Rs would be
suppressed throughout the OGTT primarily due to the sup-
pression of lipolysis (58), and we demonstrated that the rate
of lipolysis decreased in both groups. Alongside the lower ar-
terial plasma concentrations of glycerol and FFA at those
time points, it is therefore unclear whether these brief
increases in FA Rs resulted in substantial TG synthesis.
Unfortunately, we are not able to determine the rates of oxi-
dation and reesterification of plasma FFA. As previously
described, Bonadonna et al. (26) reported greater rates of
plasma FFA mobilization and oxidation in their elderly par-
ticipants during euglycemic-insulin clamp. We predict that
plasma FFA reesterification rates were reduced in their el-
derly participants as a result. Accordingly, we suspect that
reesterification of circulating plasma FFA was reduced in
our older group. This could at least partially explain the
higher [FFA] between 60 and 120 min. Thus, our data and
those of others allow us to speculate that reesterification was
not the primary fate of FA released from lipolysis. Future
similar investigations might use Ds-glycerol in conjunction
with a FA isotope tracer (e.g., [1-*3C]palmitate) to explore this
hypothesis.

J Appl Physiol - doi:10.1152/japplphysiol.00437.2024 - www.jappl.org

Aging-related differences in fatty acid reesterification.
In contrast to FA Rox, FA Rs were significantly lower at 60
min and 90 min in our older group. Empirically, this
resulted from greater FA Rox at 60 min and 90 min (P =
0.07). We therefore estimated the division of FA for each
pathway by comparing the AUC for FA Rox to the AUC for
FA Rs. There were no differences observed in our young
group, which we interpret to indicate that similar amounts
of FAs were allotted to oxidation and reesterification.
However, the AUC for FA Rox was greater than the AUC for
FA Rs in our older group. With a significant time x age inter-
action for FA Rs, our results therefore also indicate that post-
prandial lipid substrate partitioning was altered in our older
group such that FA reesterification was diminished in favor
of FA oxidation.

Aging-related differences in FA reesterification have not
been extensively studied. Notably, Bonadonna et al. (26)
reported rates of plasma FFA turnover and oxidation, but
not rates of plasma FFA reesterification. Similarly, Sial et al.
(85) reported rates of glycerol tracer-measured lipolysis and
lipid oxidation rates in young and elderly individuals during
exercise, but not rates of total FA reesterification. Our esti-
mations of FA reesterification from the data of Sial et al. (85)
([3 x glycerol Ra] — [3 x fat oxidation]) reveal that the aver-
age FA reesterification rate during exercise was higher in
their elderly population than in their young population exer-
cising at the same absolute intensity due to lower rates of FA
oxidation. Our results agree in the broad sense that FA parti-
tioning is altered in aging, and that aging-related differences
in FA reesterification result primarily from differences in FA
oxidation. Also in agreement with our data, Sial et al. (85)
reported no differences in lipolytic and lipid oxidation rates,
and thus no differences in FA reesterification rates, during
postabsorptive rest.

Skeletal muscle takes up circulating FFA during hypergly-
cemia to serve as substrates for TG synthesis via reesterifica-
tion (89). Importantly, FAs taken up but not oxidized have
the potential to alter insulin signaling (35). Reesterification
in skeletal muscle therefore serves as a mechanism to protect
against insulin resistance (33). Because FA Rox was elevated,
the physiological impact of greater FA oxidation over rees-
terification in the present study is likely negligible in our
healthy older group. However, interpretation of our reesteri-
fication data is greatly limited by the absence of FA isotope
tracer data to describe the reesterification of plasma FFA.
Although the data of Bonadonna et al. (26) allows us to spec-
ulate that plasma FFA oxidation rates were elevated in favor
of FFA reesterification in our older group, the higher [FFA]
between 60 and 120 min challenges our hypotheses since
FFA mobilization was most likely not different between
groups (no differences in the AUC for three times the glyc-
erol Ra). Potentially, lower plasma FFA oxidation and
reesterification yielded higher [FFA]. Such results have
important implications for aging-related metabolic dis-
ease states in which elevated plasma FFA concentrations
give rise to greater rates of FA uptake (106) into skeletal
muscle with lower capacities for FA oxidation (107, 108).
Because glycerol MCR was not different between groups
at any time point, and because there were no differences in
the AUC for total FA Rs between groups, we do not suspect
that the mechanism for FA reesterification is negatively
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affected in aging. Still, the unknown postprandial fate of
plasma FFA in aging warrants further investigation.

Lipolysis and FFA Availability Influence Postprandial
Energy Substrate Partitioning

As described, the suppression of lipolysis was delayed in
our older group (30 min vs. 5 min). Bonadonna et al. (26)
reported that FFA availability and FA oxidation during hy-
perinsulinemia were higher in older compared with younger
individuals. Although higher rates of lipolysis were sus-
pected to have increased FFA availability, it was unclear
whether the lipolytic rate was altered by their experimental
conditions. Presently, we observed no differences in glycerol
Ra between groups, but [FFA] was higher in older partici-
pants between 60 and 120 min. The higher [FFA] at 60 min
and 90 min importantly coincided with higher FA Rox and
lower CHO Rox.

The correlations between glycerol Ra, [FFA], FA Rox, and
CHO Rox were comparable between groups in magnitude and
significance, indicating that age did not affect these relation-
ships. Results of the correlations can be interpreted in at least
two ways. Lipolysis and [FFA] are predictably inversely related
to CHO Rox but positively related to FA Rox due to the respec-
tive effects of insulin. The rise in plasma insulin concentra-
tions following oral glucose consumption facilitates peripheral
glucose uptake and oxidation. Simultaneously, insulin sup-
presses lipolysis to reduce plasma FFA availability for oxida-
tion. Because CHO Rox rose and FA Rox, glycerol Ra, and
[FFA] declined in both groups over time, the correlations were
consequently high in both groups.

Alternatively, results of the correlations can highlight the
differences observed in our older group. The correlations
also suggest that the delayed suppression of glycerol Ra and
coincident higher [FFA] could have enabled higher FA Rox,
thereby delaying the rise in CHO Rox and reducing FA Rs.
Consistently, in our older group, correlations of [FFA] to sub-
strate oxidation rates were higher, suggesting that [FFA] had
a larger influence than glycerol Ra on substrate oxidation
rates, as predicted by the “Randle Cycle” theory (18).
Previous investigations have also demonstrated greater rates
of FA oxidation and lower rates of CHO oxidation when
plasma FFA availability was elevated during hyperinsulin-
emia by lipid and heparin infusion (19, 21, 22). Kruszynska et
al. (12) notably documented lower CHO oxidation rates fol-
lowing oral glucose consumption when plasma FFA avail-
ability was artificially elevated. We observed similar results
as these investigations and by Bonadonna et al. (26), but
importantly, we observed similar results during physiologi-
cal hyperinsulinemia in which lipolysis and plasma FFA
availability were allowed to fall below baseline. Other previ-
ous investigations determined that elevated plasma FFA
availability induces transient changes in insulin action (109)
to affect substrate oxidation rates (19, 21, 22). Although we
are unable to determine whether plasma FFA were ele-
vated at a concentration high enough and for long enough
(110) to have transiently affected insulin action in our
older group, interpretation of these correlations from this
perspective are potentially meaningful in “unhealthy”
aging or metabolic disease states in which postprandial li-
polytic rates may be insensitive to insulin signaling such
that plasma FFA concentrations remain elevated. Overall,
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our data are interpreted to indicate that the delayed sup-
pression of lipolysis and greater FFA availability contrib-
uted to the delayed suppression of FA Rox at the expense
of CHO Rox and FA Rs.

Limitations

In the present study, we sought to determine changes in
the rate of lipolysis as estimated from the tracer-measured
glycerol Ra during an OGTT. In addition, we sought to deter-
mine lactate oxidation rates following oral glucose consump-
tion in young and older participants (49). To this end, we
used [1,1,2,3,3-Hlglycerol and [3-C]lactate stable isotope
tracers. An unfortunate consequence of the COVID-19 pan-
demic was our inability to conduct a repeated trial for deter-
mining FFA flux with [1-*C]palmitate as we have done
previously (30, 56, 111, 112). Although we provide evidence of
the changes in total FA substrate partitioning during an
OGTT, we were unable to precisely identify the rates of dis-
posal, oxidation, and reesterification of plasma FFA. Data on
postprandial plasma FFA kinetics in aging would be useful
due to the purported roles of plasma FFA in determining
substrate oxidation rates (26) and the known effects of
plasma-derived FA on insulin action in skeletal muscle (113,
114). Cumulatively, during the OGTT, we suspect greater
local (i.e., within adipocyte) reesterification in our young
group, minor plasma FFA reesterification in both groups,
greater rates of plasma FFA uptake in our young group, and
greater oxidation of plasma FFA at the expense of reesterifi-
cation in our older group. Future similar investigations
might use Ds-glycerol in conjunction with [1-"*C]palmitate to
explore these hypotheses. Our present data nonetheless
identifies immediate changes in parameters of energy sub-
strate partitioning following oral glucose consumption and
importantly, identifies aging-related differences.

As described previously, because we sought to deter-
mine lactate kinetics (49), we used an OGTT as opposed to
a mixed-meal tolerance test (MMTT) to promote a large
rise in blood glucose concentrations (48, 115) and subse-
quently, to maximize the potential for lactate production
and oxidation. Worth noting is that the glucose and incre-
tin hormone responses vary depending on the macronu-
trient composition of an oral challenge (115-117). Hence,
the insulin and lactate responses would also vary depend-
ing on the macronutrient composition of an oral chal-
lenge. Because a MMTT more appropriately represents
daily oral challenges, the omission of dietary lipid and/or
protein from the oral challenge of the present study there-
fore questions whether lactate signaling has a physiologi-
cally relevant role in the suppression of lipolysis. As
previously described, the autocrine mechanism by which
lactate exerts a permissive effect with insulin (42) is predi-
cated on lactate production by adipocytes following CHO
consumption (46, 47). Rephrased, a MMTT containing die-
tary CHO is likely to result in adipocyte lactate production
and the inhibition of lipolysis. This can be inferred from
the data of Woerle et al. (118) that reported a rise in plasma
lactate and fall in plasma FFA concentrations following
meal ingestion (50% carbohydrates) in humans. Thus, we
maintain that lactate signaling has a physiologically rele-
vant role in the suppression of lipolysis. Still, further
investigation of adipocyte lactate production and lipolysis
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during a MMTT is warranted to more completely represent
the postprandial period.

Although we attribute the delayed responses of glycerol Ra,
FA Rox, and CHO Rox as reflections of lower circulating insu-
lin in our older group, there are multiple factors outside the
scope of our methodology that could assist the interpretation
of our data. Among these include, but are not limited to: gas-
tric emptying (119), intestinal CHO absorption (120), incretin
secretion (121), and pancreatic B-cell sensitivity to incretin
stimulation (66, 68). All factors are purportedly reduced in
aging. Because they influence the insulin response, these fac-
tors might also be used to explain the delayed suppression of
lipolysis. Notably, extant data on the incretin response to oral
challenges are inconsistent, with some reporting compara-
tively higher incretin secretion in aging (66) and others
reporting lower (121). Considering the role of incretin stimula-
tion in the secretion of insulin in the postprandial period
(122), we acknowledge our inability to account for arterial
plasma incretin concentrations in our young and older groups
as a limitation. In addition, due to limitations in sample vol-
umes, we were only able to determine changes in [C-Peptide]
at 2 of the 6 postchallenge time points. Although this data
allowed us to speculate greater rates of insulin secretion in
our young group, we were unable to calculate insulin secre-
tion rates during the OGTT (66).

We (30, 56, 111, 112) and others (89, 123) have interpreted
the arterial glycerol Ra as a marker of whole body lipolysis
under the assumption that all glycerol released from lipoly-
sis in adipose and skeletal muscle appears in circulation
(69). However, the contribution of intravascular lipolysis to
the circulating glycerol pool must also be considered. This is
particularly important during the postprandial period, as li-
polysis within blood vessels is purported to precede FA
uptake and storage in peripheral tissue (124). From extant
data that suggest muscle does not always release glycerol as
does adipose during lipolysis (27, 125, 126) and the currently
unknown contribution from intravascular lipolysis, we inter-
pret our results of glycerol Ra to represent predominantly
adipocyte lipolysis. Still, we recognize that our inability to
determine the contribution of other sites of lipolysis to the
glycerol Ra is a limitation.

As previously described, between 60 and 120 min, glyc-
erol Ra continuously declined in our young but not in
older group, and FA Rox and CHO Rox remained steady in
our young but not in older group. Hence, we were unable
to identify minimal rates of lipolysis in our young group,
minimal FA oxidation rates in our older group, and maxi-
mal CHO oxidation rates in our older group. We were also
unable to observe these variables return to baseline rates.
Because we sought to collect clinically relevant data, we
used a 120-min observation period as is standard during a
75-g OGTT; therefore, a 2-h end point was deemed appro-
priate. Leclerc et al. (9) used a 360-min observation period
in which CHO and FA oxidation rates apparently returned
to baseline rates at 240 min. Because the responses were
delayed in our older group, future investigations might
use a similar 360-min observation period or longer to
determine aging-related differences in the restoration of
baseline conditions.

Importantly, although we successfully completed trials on
15 young and 14 older individuals, our data represent results
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obtained on healthy older volunteers free of comorbidities,
unlike most typically studied in studies of older individuals.
And finally, while not a limitation, but rather a distinction
is that in this investigation, arterialized blood was sampled
shortly and repeatedly after an oral glucose challenge. Thus,
we measured metabolites and hormones that had passed
through the lung parenchyma and blood compartments, but
not muscle, adipose, or the integument as results from arm
vein blood sampling. Hence, in addition to a healthy popula-
tion, the site of blood sampling may be a cause of apparent
differences between present and previous results following
oral glucose challenges. Notably, unlike other investigations
(127-129), we report no changes in plasma norepinephrine
concentrations following oral glucose consumption. This
discrepancy is most likely due to our sampling of arterialized
blood, as venous blood reportedly yields higher plasma con-
centrations (130) and clearance rates (131) of norepinephrine.

Conclusions

Our results demonstrate that rates of lipolysis (as indi-
cated from the glycerol Ra) and FA oxidation decreased
whereas rates of CHO oxidation increased in response to
oral glucose consumption in healthy, young and older
individuals. Because these responses were delayed in our
older group, we also demonstrate that postprandial lipid
substrate partitioning is negatively affected in aging such
that lipolysis and FA oxidation are favored over CHO oxida-
tion and FA reesterification. Observations are consistent
with the “Randle Cycle” theory of energy substrate parti-
tioning (18). However, divergent responses between groups
are attributed to higher circulating insulin, but not superior
insulin sensitivity in our young group. Overall, postpran-
dial metabolic inflexibility in “healthy” aging is character-
ized by delayed changes in energy substrate partitioning.
Finally, because glycerol Ra was inversely correlated with
[Lactate] to a similar magnitude as [Insulin], we provide
support for the permissive effects of lactate signaling on the
inhibition of lipolysis (42). Further investigation using FA
isotope tracers is encouraged to further elucidate aging-
related changes in postprandial lipid substrate partitioning.
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