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SOME RELATIONSHIPS BETWEEN ASYNCHRONOUS
INTERPRETERS OF A DATAFLOW LANGUAGE*

Arvind and Kim P. Gostelow
Department of Information and Computer Science

University of California, Irvine
Irvine, California

The theory of fixpoint semantics is applied to
discover relationships between different inter
preters of a dataflow programming language. A
very concise model of the relative asynchrony
of two interpreters is given and it is shown that
one interpreter (described in the paper) is the
most asynchronous interpreter possible for the
given language. This same interpreter may also
produce more results than other less asynchronous
interpreters when executing the same program.
Conditions are also given, which if followed by
an actual machine architecture, will guarantee
that the machine will always compute the least
fixpoint of the program regardless of the order
in which computation steps are carried out or
the availability of processing resources.

1. INTRODUCTION

This paper applies the theory of fixpoint semantics to the design of
computer architectures and operating systems. Our particular inter
est is in asynchrony (or concurrency, or parallelism) of execution,
and our starting point is the adoption of a dataflow lanquage r2,5")
as the base machine language to be directly executed by a new compu
ter system [1]. Dataflow languages are single-assignment languages
13,4,8,10,133 that offer many advantages over more conventional
languages in areas such as modularity, inherent asynchronous execu
tion, and more easily describable semantics. We have selected Dennis'
Data Flow (DDF) languago ^53 as the base language for our architec
ture because of its relatively advanced state of development [6,133
over other dataflow languages.

We begin by specifying a formal semantic interpretation of DDF, where
the semantics is best considered a model of a machine which would
execute DDF. (The model is, in fact, a slight generalization of the
machine proposed by Dennis [73 for executing DDF.) We call this
first interpreter the Queued interpreter (QI) since it treats the
input and output lines of an operator as FIFO queues. We then give
a second semantic interpretation of DDF corresponding to a second
machine [l3 called the Unfolding or Unraveling interpreter (UI) which
does not explicity use FIFO queues. Using the relation "less defined
than or equal to" on the history of lines (variables) as the basis of
our measure of asynchrony, we show that for any program in DDF the UI
machine gives results that are more defined than or equal to QI, and
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that UI is capable of more asynchrony (concurrency of execution) than
QI. Furthermore, we extend the above comparison of UI and QI and
show that no interpreter operating under the basic dataflow rules can
produce greater concurrency of execution than UI, unless that inter
preter is allowed to "guess" the result of computations. Lastly, we
show that if a machine operates under three particularly simple con
ditions, then we can guarantee that regardless of how slowly it pro
gresses (due, say, to a reduction in available resources), or the
order in which it carries out its allowed worl<:, the least fixpoint
will be the natural result of its computation.

2. THE DATAFLOW LANGUAGE

Figure 1 shows the operation of the dataflow operators: function and
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predicate, gate-if-true (gate-if-false is not shown and is simply the
complement of gate-if-true), merge, D, and apply. Dataflow is based
upon two principles:

1. An operator fires (produces an output) whenever the inputs
required by that operator are present.

2. All operators are functional and produce no side-effects.

Data is carried by tokens that flow along directed arcs connecting
the output of one operator to the input of another operator. Thus,
in Figure la two complete sets of values have arrived at function f,
and one value of a third set. A token is represented as an ordered
pair <i,v> where i is the logical position of the token relative to
the 1st, 2nd, i-lth, ith, i+lth, ... etc. tokens on that same
line. The second component v of <i,v> is the data value carried by
the token. As can be seen in Figure la, function f has fired two
times,, once for each set of input values. As soon as some token
<3,v> arrives on the right-hand input to f, f may fire. Firing
causes the input tokens to be destroyed, and if the operator produces
an output then a new token is created to carry that output.value.

Figure lb shows the gate-if-true operator whose function is to gate
the input data to the output only if the boolean (control) input
carries the value true; otherwise no output is produced (but the
inputs are still absorbed). Note that the position indicator i in
the output tokens follows the order of the input tokens, and does
not leave "hole?" in the output line's history. Gates may be used to
construct a switch operator which in turn may be used to build an
if-then-else operator. For example. Figure 2 shows a switch and it

Figure 2

A switch built from
gate-if-true and gate-if-false operators



operates as follows: the ith data input arriving at the switch along
line U is <i,u>, and the ith control input <i,c> arrives along line
C. The values on lines U and C are sent to both the gate-if-true and
gate-if-false operator. This is because there is a fork in each line
(represented by the smaller black spot on each of lines U and C);
the single token input to the fork is duplicated and two tokens are
output by the fork, one token to each destination. Thus, one output
line may feed several inputs. In the above example, if c is true
then the token <i,u> will appear on line A and no output will appear
on line B, or if c is false then <i,u> will appear on line B and no
output will appear on line A. A switch thereby directs the flow of
data along one of two paths depending on some boolean value. In any
dataflow program, we require that any operator expecting boolean
values along some line receives only booleans.

A merge operator is shown in Figure Ic and is, in a sense, the
inverse of a switch. The purpose of a merge is' to join data from
two input paths onto a single output path, the order being deter-

. rained by a third boolean input. Note that each input line has its
own history of values and from those two histories and a control
history, a third output history is produced.

The D operator serves to introduce an intial token onto a line, and
otherwise behaves as the identity function. An example of a data
flow program composed of the above operators is shown in Figure 3.
This program has one input line Aj^ and one output line Xg.

T F

Figure 3

A program in Dennis*
dataflow language



The last operator is the apply operator. It accepts two inputs: a
dataflow program, and an argument. The value produced is the result
of applying the program to the given argument. Only one argument is
allowed; multiple arguments may be handled by a suitable encoding
of data.

The above has been a brief description of the operators, and one
small example of how the operators may be composed to form a program
(a term we define more formally below). Of particular importance
is that dataflow programs are "functional" since no operator has any
side-effects, and no two ouput lines may be connected to a single
input line — the so-called single-assignment restriction. Note
that one output may feed many distinct inputs; this produces no
side-effects.

3. THE INTERPRETERS

If we assume we have a program comprising a set of m input lines, n
operators and thus n output lines (we allow only one output line
per operator, but in fact this is no restriction), then there are
many possible ways in which the operators could be defined to behave
when tokens flow along arcs and arrive at an input. In particular,
we can say that each lino behaves as a FIFO queue so that an operator
may fire using token i from input line L only if token i-1 from L has
already been absorbed. That is, the lines behave as pipes down which
a sequence of values flows, and the values can never be taken out of
sequence. Actually, this is the usual model of dataflow systems
[3,5,8,9,10] and we call the underlying interpreter for this model QI
meaning Queued Interpreter. Later we will introduce a more asynchron
ous interpreter UI meaning Unraveling or Unfolding Interpreter which
produces results at least as defined as QI, and sometimes more
defined. Our interest in UI is due to its asynchrony which, although
in most cases produces no more results than QI, it does so with far •
greater freedom. Then given a suitable architecture [H that can
exploit this asynchrony, the same results can be computed much more
quickly.

The model presented in this paper allows us to explicitly capture the
notion of asynchrony and thereby make statements about how systems
compare with regard to how they compute, and not just what they
compute. This is our primary interest.

4. THE MODEL - GENERAL REMARKS AND DEFINITIONS

We model the dataflow language, regardless of interpreter, by consid
ering the history of all' tokens produced on a line due to the action
of some operator on some histories given to it as input. By varying
the definition of the operator as to how it computes outputs for a
given input, we can represent each interpreter of interest.

The history of some line L is a set of ordered pairs

L = {<1,Vj^>,<2,V2>, . . . ,<k,Vj^>, . . .}

where L is a function, i.e., <k,v,^>€L =t» L(k)=v. . More precisely.

L : J + Du{j.}



where i is the special undefined value, and where J"*" = {0,1,.,.} is
the set of non-negative integers and D is any value domain over which
a dataflow program may compute, for example, reals, integers,
booleans (denoted true and false here), strings, etc. The range
Du{i} of a history function L will be a chain-complete poset with
order relation C, where for any vcDuij.}.

i C V

and V ^ V -

Note that the value x is not in D, and no confusion arises if we
define for any history L

!v if <i,v
i otherwi:

Note that L is a "naturally-extended" function and is thus monotone.

We use the symbol to represent a relation on any pair of histories
L and L':

L ^ L' iff (Vie J*") (L(i) C L'(i) )

If we consider a history to be a function defined by a set of
<integer,value> ordered pairs, and thus a set of tolcens on a line,
the L £ L" is exactly token set containment. In particular, there
is the totally undefined history represented by the empty set (t>,
where 4) £ L for all histories L.

Let H = (lILij"*" Du{i)) be the set of all possible histories. His
tories have certain properties which we need to define in order to
conveniently specify the semantics of dataflow operators under
various interpreters. The predicate "pr" (pr for "proper") is
defined in the domain as

pr(L,i) iff (vj) (Isj^i => L(j)?^i)

"P to and including position i if all
savino 1 are in the history; this is equivalent toying pr(L,i) iff (vi£i)(<i,v>cL for some v). Note that pr(L,0)

always true. We also need two mappings from Hinto J+:

tc(C,i) = #{jIL(j)=true and l<j<i}
fc(C,i) = »{j[L(j)=false and Isjsi)

^ means the cardinality of the" set A. Thusj the count of the number of true tokens on line C up toincluding the token in the ith position on C. The corresponding



tc?C^4r=Ltr!r^7f°'' example in Figure lb,
facts about histories. ' '"l- At this point we prove some useful
Proposition A- Let A, B, and C be histories, where Ac b and i.j\

A(i)?^i => A(i)=B(i)
pr{A,i) =t. pr(B,i)
pr(A,i) tc(A,i)=tc(B,i) and

fc(A,i)=fc(B,i)
"true => tc(C,i)=tc(C,i-l)+l

C{i)-false =» fc(C,i)=fc(C,i-i)+l

Proof

by proposition (A.1)
by definition of pr

by the definition of c
pr(A,i) (vj) (l<j«ri —. A(j)?^i)

===' (Vj) (Icjtri =t. B(j)7fi)
pr(B,i)

tc(A,i) = ^(jIA(j)=true a l<j<i}
~ #{j IB(j) =true A l<-i<ii
= tc(B,i)

tc(C,i) s= #(j IC (j) =true a l<j<i}
~ # (j IC (j) =true A i<-i2i_
= tc(C,i-l)+i

tc(C,i) ==

Isj<i}
Isj<i} by proposition (A.l)

; similarly for fc.
lsj<i}
isj^i-l}+^{i|C(i)=true}

^ ? Single-input DDF program shown in Figure 3. Asstated before, input histories will be designated Ai Am, and
with no loss in generality we assume each of the n DDF ope?ato?s in
opLatorr it is labelled as line foroperator Tj^ of the program, where t

T^z h"xh"' H l<i<n

oatl-irtrni " ®history and a dataflow operator li (function,
Ipnerit..a " r ""^^96, etc.) is a functional that maps histories
inout^tL A ^ program (the Lj) and histories given asinput (the A}^) , into an output history Lj^.

PtPSta"- is a set of n equations on n history variablesand m history input parameters where

or notationally,

L =• tCL;AD

L = T [L]
A

(4.1)

and the symbols stand for vectors of the corresponding symbol.
Am|arm^ of such a program is some fixpoint solution to (4.1). m
P«gram''F9 iJ", «ill be the meaning of ^ DDF
LtualTv^h^ c ? :• 2 proves that the least fixpoint is
mUrconduLns ^ machine would compute given some rather



The following subsections detail the definitions of the operators as
functionals and prove them monotone under interpreter QI and then
under UI. To do this precisely, we need one additional semantic
notation for "definition by case". The expression

^n ' .^n+1^

means "if is true then the result is ti otherwise, if P2 is true
then the result is t2f..., if Pn is true then t^^ is the result, and
if none of PifP2'-''/Pn is true then the result is We will
often nest case definitions, so some of the t^ may themselves be
case definitions.

5. THE OPERATORS UNDER QI

Recall that QI is the queued interpreter, meaning that each line
behaves as a FIFO queue of tokens where the token <i,v> is the ith
token in the queue L. We can describe the behavior of each operator
under QI as it accesses these FIFO queues by requiring that pr(L,i)
be true if token <i,v>^L is to be accepted as an input by the
operator to produce an output token. If pr(L,i) is not true, then
either <i,v>/L or seme predecessor token in the FIFO queue L is not
present. In either case <i,v> cannot take part in the computation
until other operators fire and make pr(L,i) true. We do not prove
it here, but the operators under QI will never produce any tokens
out of FIFO order, that is pr(L,jtL) is always true.

5.1 Functions, predicates

These operators are characterized by the fact that the ith set of
inputs produces the ith output, and again as for all operators under
QI, the FIFO order of token input holds. We let capital letter F
name the history (semantic) value of the operator f. Functions and
predicates may have n input lines and one output line. Note in the
following definition. that as more tokens arrive on the various input
lines, output appears only in FIFO order and is monotone (we prove
this below). We do not distinguish here between program input lines
Ai and other lines Lj since to do so would impose additional burden
some notation. We consider the functions and predicates with two
inputs only; the other cases are similar.

fCU,V] = (pr(U,i) A pr(V,i) {<i , f (U (i) , V{i) ) >} ; ij))
i>l

(5.1)

Our reason for writing the operators in this fashion rather than a
more abstracted function definition, is to mimic as closely as
possible actual machine behavior under these operators and the
production of output tokens.

Proposition - F[U,V] is monotone
Proof - First we show that Fr.U,V] is a function if U and V are
functions:

<i,x>€FCu,V] x=f(U(i),V(i))

X is uniquely determined by f,U,V, and i
(since f,U and V are all functions).



Hence, F can output exactly one token in the ith position of the
output queue. Now we prove monotonicity of F:

Let U1,U2,V1, and V2 be histories such that UlcU2 a V1cV2 is true.
Let II = (ijpr(Ul,i) a pr(Vl,i) is true}.

FCu1,V1] = M {<i,f (U1(i),VI(i))>} by equation (5.1)
icll

= (I {<i,f(U2(i),V2(i))>} by proposition (A.l)
lYll

£ Fnu2,V2] by equation (5.1) _ |

5.2 Gates

We show only the gate-if-true operator; corresponding remarks can be
made for gate-if-false.

gate-if-trueCc,u] =
(J (pr(C,i) A pr(U,i) - (C (i) =true {<tc (C , i) , U(i) >} ; <}>)..; 4)) (5.2)
iil

That is, gate-if-true will fire for the ith input set from C and U
if both are proper up to and including the ith input, and an output
token is produced if C(i)=true. In case C(i) is true, then the
output produced will be the jth output token where j is the number of
true tokens so far absorbed by gate-if-true. No output is produced
for any false valued token absorbed on line C. Note that in case
either C or U is not proper (gate-if-true cannot yet fire for the ith
input set) or if C and U are proper but C(i) is false then the empty
set is the result for the ith firing.

Proposition - GATE-IF-TRUE[C,U] is monotone.
Proof - First we_show that if C and U are functions, then
GATE-IF-TRUECC,UJ is a function.

To establish a contradiction,

<j,u^>,<j,U2> •€ GATE-IF-TRUE[C,U]

<ajx'32^ ^^1^ ^2 ^ tc{C,jj^)=tc(C^j2)=j AC(j^)= C(j2)=true)

But by Proposition A.4, tc(C,j^)<tc(C,^2) which is a con
Hence and <j,U2> cannot be distinct tokens output
TRUE.

tradiction.

by GATE-IF-

To show monotonicity, let C1,C2,U1 and U2 be histories such that
Cl_cC2 A Ul£U2

Let II = {i|pr(Cl,i) a pr(Ul,i) is true}.



GATE-IF-TRUE[Cl,Ull

= (C1 (i)=true -> {<tc (C1 ,i) , U1 (i) >} ; $) by equation (5.2)
i€ II

~ (^2 (i) =true •* {<tc(C2,i),U2(i)>};tti) by proposition (A. 1) ,
(A.2),(A.3)

c IJ (C2(i)=true ^ {<tc(C2,i),U2(i)>};$) u
iell

IJ (pr(C2,i) Apr(U2,i) (C2 (i) =true {< tc (C2 ,i) ,U2 (i) >}

= GATE-IF-TRUE[C2,U2] by equation '(5.2)

5.3 Merqe

MERGE[C,U,V] =
ij (pr(C,i) Apr(U,tc{C,i)) a pr(V,fc(C,i))

(C(i)=true {<i , U (tc (C, i) ) >} ;
C(i)=false {<i , V (fc (C, i) ) >} J ; <+r) (5.3)

Proposition - MERGE[C,U,V] is monotone.
Proof - First we show that MERGE[C,U,V] is a function if C,U and V
are functions. Let <i,x> e MERGElC,U,V]. Then x=U(tc(C,i)) if
C(i)=true or x=V(fc(C,i)) if C(i)=false. Since C(i) is either true

but not both, x must be unique. Thus MERGE[C,U,V] is a
function.

To show monotonicity, let Cl, C2, U1, U2, VI and V2 be histories
such that C1^C2 a 01^02 a V1cV2 let II = {i|pr(Cl,i) a pr(U1,tc(C,i))
A pr(Vl,fc(Cl,i)) is true}.

mergeCci,ui,vi]

= IJ (Cl(i)=true -> {<i, U1 (tc (Cl, i) ) >};
i€ll Cl (i) =false •* {<i ,V1 (fc (Cl ,i) ) >}) by equation (5.3)

M (C2(i)=true ^ {<i,U2(tc(C2,i))> };
icil C2(i)=false - {<i,V2(fc(C2,i))>}}) by proposition A

£ MERGECC2,U2,V2] by equation (5.3)

5.4 D operator

The D operator introduces an initial token with value b onto a line

D.CU] = IJ (pr(U,i) {<i+l,U(i) >} ;<i>) U {<l,b>} (5.4)
itl

Proposition - Dj-CuD is monotone.
Proof - Clear.



APPLyi:Q,u] = IJ {pr(Q,i) Apr(u,i) {<i,apply (Q (i ) ,U(i) )>}; ct>) (5.5)
i&l

where apply(q,u) is the meaning of the output line of the dataflow
program represented by q with input history <l,u>. We require
procedure q to be well-behaved [6] so that exactly one token can be

•produced in the output history of q.

Proposition - APPLYCQ»U1 is monotone.
Proof - Just as for the case of functions and predicates.

This completes the definition of the operators under QI and the
proofs of their monotonicity.

6. THE OPERATORS UNDER UI

We now describe the behavior of the UI interpreter. UI is more
asynchronous in its operation than QI, and has the property (shown
later) that it may produce even more results than QI. Again, QI
is the more usual interpreter and assumes that lines are FIFO queues
along which data tokens flow. The position of each token in a queue
L corresponds to the relative time at which each token was produced.
Time, however, need not be so closely related to queue position. For
example, if the ith set of inputs to a function are all present,
then regardless of the presence or absence of the i-lth or i+lth set
of inputs, the ith output can be calculated. In fact, if each token
carried with it a specification of its logical queue position as

its value (rather than depending upon some physical position
in a pipe to specify that information), then by definition the queue
position of every token is known and the time at which a token is
produced becomes irrelevant. This is precisely what the machine in
[iD proposes to do. Theoretically, more results may be produced,
but the more important aspect is the increase in asynchrony and
potentially concurrent execution, which can be very siginificant.
(We have achieved orders of magnitude increases in concurrency of
execution with a system based upon the techniques reported here, but
where the programmer uses constructs only of the usual arithmetic,
if-then-else, and while-do types. By restricting the available
constructs, even greater asynchrony can be obtained.)

The following subsections define the behavior of each of the dataflow
operators under UI. As an example, consider Figure 4 which shows the
internal operation of a merge under UI. Each box may be considered
an individual suboperatoir, where each suboperator behaves just as a
function behaves under UI. That is, regardless of the status of the

or i+lth input set to each suboperator, the suboperator may
fire the ith output token as soon as the ith input set is present at
that suboperator. Thus, B'igure 4 shows that merge is three sub-
operators called Mp, M'ji, and Mp. The dashed lines are just like
program lines and nave histories but they are internal operator
communication lines. The function of M(^ is to keep track of which
token position from U and from V is to supply the next output token
from the merge. Thus information is kept on the line DUM (for
Dummy) and is essentially the ordered-value .token <i,(tc{C,i),
fc(C,i))>. Each time Mq fires, it inputs a token from C and the
token from DUM. The input from C says which of lines U and V is to
supply an input token, and DUM specifies which position within that
line. To cause the appropriate token from U or V to be sent to the
merge operator's output, Mc sends a token to Mt or Mp. The value
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herge-' under the interpreter UI
progresses further than merge under QI for the given input



bfi^iLnsft ?o"m °anfM time.''while many tokens may
de?L\%^ a^S alion-^s^C^h^:Mr and Mf ?o^?hrouipu? whenever?^ey°a;rive.

according Ilcoldi^ftr^? """" ''' ^ ^
6_i_l—Functions, predicates - Aoain wo n-i ^ro -r -^ .•
functions and predicates. " ^-input

FCUfV] - |J^(U{i)??i AV(i)^^i -> {<iFf {U(i) ,v(i ))>} ;
(6.1)

Proposition - F'[U,v3 is monotone.
F[U,V] given in section (5.1) provided the set II IS replaced by the set {i|ui(i)^i a Vl(i)/i is true}

6.2 Gates

glleliTtrl'Tnnlei^n '̂'® 9"®-i':-true operator. Aschematic of thegate ix true under UI is shown in Figure .5,

h-i

\ /
DUM ^

^ G

GATE-IF-TRUE'[C,U]

Figure 5

Gate-if-true under interpreter UI



OAIE IF TRUE . Each token on IMD :arries an ordered pair as its

of cai the first value of the pair and is a copy
IMTul) t ll suboperator Gu whether or not to output U(i)IMD(i)2 selects the second value of the pair, which tells Gn the
proper position of the token in the output history.

GATE-IF-TRUE'[C,U] =

^ U(i)?^l {<IMD(i)2,U(i) (6.2.1)

where, letting t^ = DUM{i) +(c(i) =true' •> 1;0)

IMD =JJ^(DUM(i)/i AC(i)/i {<i,(C (i) ,tj^) >};0)
DUM =|J^ (DUM(i)7fi AC(i)j^l s- {<i+l,tj^>};0) U{<1,0>}

(6.2.2)

(6.2.3)

(6.2.4)

be?L H ^ token in its history, all subsequent members
arr?L in order iteratively when the corresponding tokens on C

T ^ necessarily fires in proper order while Gr, may
!! u- ^^tual operation this sequentiality of Gr is not a greathardship, since predicates in programs are often very short in com
putation time and waiting for them to arrive in order should not
appreciably slow activity.

To prove monotonicity and some other results, we need the following
proposition. '

Proposition B - Let i>l be an integer; then

1. DUM(i+l)j^i pr(C,i)
2. pr(C,i) IMD(i)2=DUM{i +l)=tc(C,i)
3. IMD(i)?^i => pr(C,i)

By induction

i=l:
i=k;
i=k+l

DUM(2)7^i =
DUM(k+l)7^i
DUM(k+2)?^i

C(l)^i ^ pr(C,l) by equation (6.2.4)
^ pr(C,k) assume

DUM(k+l)^i A C(k+l);^i by equation (6.2.4)
y' pr(C,k) A C(k+l)^i by induction hypothesis
^ pr(C,k+l) by the definition of pr.

By induction

i=k:
i»k+l:

pr(c,l) =. IMD(1)-(C(1) ,ti) A DUM(2)=ti
ti=(C(l)=true^l;0) since DUM(l)=07^i
IMD(l)2^DUM(2)=t2.=tc(C,l)

pr(C,k) =i> IMD(k)2=DUM(k+l)=:tc(C,k) assume
pr(C,k+l) =» pr(C,k) a C(k +l)?^i

=> IMD(k+l) =(C(k+l) ,tj^+l) A DUM(k+2)=tj.,i
by induction hypothesis DUM(k+l)^i

=» IMD(k+l)2=DUM(k+2)=tk+l=
DUM(k+l) + (c (k+1) =true -*• 1;0)

by-equation (6.2.2)



=S> IMD(k+l)2=DUM{k+2)=tc(C,k) + (C(k+l)=true -»• 1;0)
by induction hypothesis.
IMD(k+1)2=DUM(k+2)=tc(C,k+1) by the definition
of tc.

3. ImraGdiate by proposition (B.l) and equation (6.2.3):

IMD(k)7^i => DUM(k+l);^x =t- pr(C,k) •

Due to proposition B, IMD can be eliminated from equation (6.2.1).
Hence

GATE-IF-TIIUE'CC,U] =
1 I (pr(C,i) A U(i)?fi {<tc(C,i) ,U(i) >};<}!)
iYl

(6.2)

Proposition - GATE-IF-TRUE'CC.U] is monotone.
Proof - The proof that GATE-IF-TRUE'[C,U] is a function if C and U
are functions is identical to the proof given in section 5.2. The
proof of monotonicity of GATE-IF-TRUE given in section 5.2 is valid
here too, provided set II is replaced by the set
{i|pr(Cl,i) A Ul(i)7^i is true). •

6.3 Merge

Figure 3 is a schematic for merge, where IMD-rCi) and IMDp(i) inform
suboperators and Mp, respectively, the output line position for
the token U(i) and V(i). A token DUM(i) carries an ordered pair
where DUM(i)]^ is the next instance of suboperator M-p to be activated,
while DUM(i)2 is that of Mp.

MERGE'[C,U,V] =
M HMD A U(j)?^x - {<IMD^( j) ,U( j) >} ;C.) U
321

M (IMDp(j)j^i AV(j)7^i - (<IMD (j) ,V(j)>};4»)
iYl ^ ^

where as before, we let tj =DUM(i) + (C (i) =true 1;0)
f j^=DUM(i) 2-*- (C (i) =false 1;0;

(6.3.1)

(6.3.2)
(6.3.3)

IMD = U (DUM(i)?^i AC(i)7^i -f (C (i)=true {<t^ , i>} ;$) ;0) (6.3.4)
i2l

IMD- = 11 (DUM(i);fi A C(i)^i (C(i)=false {<f. , i> } ; <J>) ; 0) (6 . 3. 5)t iYl ^

DUM = 11 (DUMIDt^i a C(i)?^i {<i+l,(t. ,f.) >};0) U {<1,(0,0) >}
iYl ^ ^ (6.3.6)

We need the following proposition to prove monotonicity.

Proposition C - For integers i,j2l

1. DUM(i+l)/L —> pr(C,i)
2. IMDT(j)=i pr(C,i) a C(i)=true a j=tc(C,i)
3. IMOp(j)=i pr(C,i) A C(i)=false a j=fc(C,i)
4. IMD,j(j)=i (vk) (IMD (k)yi)



Proof

1. Same as proof of proposition (B.l)
2. IMDT(j)7^i

(ai) (tj^=j A C(i) =true a DUMd)?^!
(31) (pr(C,i) A C(i) =:true a j=tj^)

Now by induction we prove that t^=tc{C,i)

by equation (6.3.4)

by proposition (C.l).

i=ls = DUM(1)1+ (C(1) =true -»• 1;0) by equation (6.3.2)
= (C(l)=true 1;0)
= tc(C,l)

since DUM(1)=0
by definition of tc

i=k; t)^=tc(C,k) assume
i=k+l: t}c+i = DUM(k+l) i + (C(k-H)=true 1;0)

= t^+ (C (k+l) =true -»• 1;0) by equation (6.3.6)
= tc(C,k) + (C(k+l)=true -*• 1;0) by induction

hypothesis
= tc(C,k+l) by definition of tc.

hence, t^=tc (C,i).

Hence

t3i)(pr(C,i). A C(i)=true a j=tc(C,i) )

Now we show that i such that the predicate (pr(C,i) a C(i)=true a
j=tc(C,i)) is true, must be unique.

Assume ij< i2 and both ij^ and i2 satisfy the above predicate. Then

j=tc(C,i2)=tc(C,i^-l)+l
>tc(C,i2-l)

since C(ip)=true

Due to the definition of tc, (vi)(i<i2 tc(C,i)<tc(C,i2))

Hence j>tc(C,i2-l)5tc(C,ii)=j contradiction.

Therefore ii=i2 ^^id

IMD^(j)=i ==>pr(C,i) A C(i)=true a j-tc{C,i)

3. Same as 2.

4. Obvious I

IMD_ and IMD_ can be eliminated from equation (6.3.1) due to proposi
tion C.

MERGE'[C,U,V]

= I J (pr(C,i) A C(i)=true a U(tc (C, i)) -»• {<i ,U (tc (C,i) ) >} ; (t>) u
m

IJ (pr(C,i) AG(i)=false a v{fc(C,i))5^i{<i, V(fc (C, i)) >}; $)
i^l

= U (pr.(C,i) (C(i)=true a U(tc(C, i) )/j. {<i ,U (tc (C, i) )>} ;
C(i)=false a V(fc(C,i))^i ^ {<i,V(fc(C,i))>};$);$)

(6.3)



Proposition - MERGE'[C,U,V] is monotone.
Proof - Same as the proof for MERGE in section (5.3) provided set II
is defined as the set
{i|pr(Cl,i) A ((C1 (i)=true a U(to (C1, i) ) )

V (C1(i)=false a V{fc(C1,i)))) is true)
I

6.4 D operator

As under QI, the D operator under UI serves to introduce an initial
token; all other tokens pass through.

D'ru:] = U (U(i)^ > {<i+l,U(i)>};$) U {<l,b>} (6.4)
i>l

Proposition'- D'[U^ is monotone.
Proof - Clear.

APPLY'[Q,U] = U (Q(i) ,U(i)j^i H. {<i,apply(Q(i) ,U(i) ) >} ; $) (6.5)
i>l

where apply(q,u) is the same as discussed previously in section(5.5).

Proposition - APPLY Cq,u1] is monotone.
Proof - Clear.

7. COMPARISON OF QI AND UI

Consider a function operator f(u) first under QI and then under UI.
Let history

U = {<l,Uj^>,<3,U2>/<5,Ug>}

Then F[uJ = {<l,f(u^)>}# since pr(U,i) is true only for i=l. No more
output can be produced by F[Uj until <2,U2> arrives in history U.
However, under UI the result is F'CU] = {<1,f(u^)>*<3,f(U3)>,<5,
f(u5)>} since FIFO order is unnecessary. Whenever <2,U2> arrives in
history U, then <2,f(u2)> will be output to F'Cu]. This is an
example of the greater asynchrony evident in UI than in QI, which we
model by saying Ffuj £ F'[U] for all U, and in particular there are
histories V where F[Vj ^F [v]. In actual machine operation this
greater asynchrony under UI could very easily manifest itself in
greater speeds of execution. As a final example, consider gate-if-
true with control input C = {<1,true>,<2,true>,<3,false>,<4,true>
and with data input U = {<1,ui>,<3,U3>,<4,U4>}. The semantics under
QI are GATE-IF-TRUErc,U]= {<1,ui>}. Under UI, we have
GATE-IF-TRUE^lCjUl = {<1, Uj^ >, <3, u^>} and whenever <2,U2> arrives in
history U, it will be output as <2,U2>. Note that the absence of
<2,U2> on input U did not prevent "later" tokens in U from being
output under UI. Again we can write GATE-IF-TRUE[C,UD c
GATE-IF-TRUE'CC,U]. • ~

The following propositions prove that each operator under UI is, in
general, more asynchronous than uider QI; when .speaking of operators
in general we write this relationship as OP ^ OP'.



In the following propositions let C,U and V etc. be any histories

Proposition - F £ F'
Proof - As before we prove the case for binary functions.

Let I = {ilpr(U,i) a pr(V,i) is true}
and 1'= {i[lj(i)7^i a V(i)^i is true).

{<i/f{U(i),V(i))>} by equation (5.1)

,f(U(i),v(i)) >} since I c I'

= F'CU,V]

Hence F £ F*"

Proposition - GATE-IF-TRUE c GATE-IF-TRUE'
Proof

Let I = {i|pr(C,i) a pr(U,i) is true}
I' = {ilpr{C,i) A u(i)^i is true}.

pr(U,i) ^ U(i)/i I £ I'

GATE-IF-TRUE[C,U]

= I J (C(i)=truc - {<tc(C,i),U(i)>};0) by equation (5.2)
iVi

- U tC(i)=truc {<tc(C,i) ,U(i)>);0) since I c i'
ici'

= GATE-IF-TRUE'rc,Ul

Proposition - MERGE £ MERGE'
Proof

Let I = {i pr(C,i) a. pr(U,tc(C,i)) a pr(V,fc(C,i)) is true}
I' = {i pr(C,i) A ( (C(i)=true a U(tc (C, i) )7^i ) v

(C (i) =false a V(fc (C, i) ) j^j.) ) is true}

i«I »-pr(C,i) A U(tc(C,i))?^i a V(fc (C , i) )
by definition of I and proposition A.l

==>pr(C,i) A ((C(i)=true a U(tc (C. i) ) ) v
(C(i)=false a V ( fc (C , i))

=> iel'

hence I £ I'

MERGE[C,U,V]

~ U (C(i}=true {<i ,U(tc (C, i) )>};iel C(i) =false •* {<i,V(fc (C,i) ) >}) by equation (1

- U tC(i)=true - {<i,U(tc(C,i)}>};iyi'C(i) =false h- {<i,V(fc (C, i) )>}) since I £ I'

= MERGE'CC,U,V3

Proposition - D. c
Proof - Clear. - ^

since I

by equation (5.3)

since I c i'



Proposition - APPLY ^ APPLY"*
Proof - Clear. *

This section has shown that OP ^ OP for all operators in the data
flow language. In fact the vast majority of inputs to any operator
OP results in the relation OP^OP'. Since for the same input, UI
gives results more defined than QI. For example, FCa]c F'Ca3 for
A = {<l,ai>,<3,a3>}; LFI is less constrained during execution and
thus exhibits greater asynchrony.

The following theorem relates the least fixpoint fp and fp of any
two interpreters that satisfy the hypothesis. In particular, QI
and UI are such a pair of interpreters.

Theorem 1 - If t and t' are monotonic functionals and t £ t', then
f C f. '

p - p

Proof - First we show by induction that

O^i) c

i=l: tC4)] c t' [(Jj]

i=k: c

5 T-Ct'̂ Cd.]]

^k+lr- .
= T i<i>l

since T c T

assume the induction hypothesis.

since T c T

by induction step and by mono-
tonicity of t'

hence (Vi)

Since = lubiT^C^Ji]}, for any jeJ^

f (j)=x =4> (3i) (T^C4»](j)=x) by definition of the construction of lub
^ from the sequence (proof of the lub lemma,

pg. 365, [12]).

Let k = minimum i such that C<t)!] (j) =x

T^C<i'3(j)=x =i> T''̂ C(i)n(j)=x since

Hence

f;(j)=x

fp{j)=x f;(j)=x

f c f*
p - p

since fp=lub {T'

Theorem 1 inplies that for some inputs to a dataflow program, UI may
produce answers while QI may not. However, identical results are
computed (fp=fp') if (1) the program terminates and (2) the program
is well-formed*,, although UI will still be less constrained than QI

*From L6J, meaning that dataflow operators may be combined only to •
form one-in one-out structured constructs such as ifrthen-else, etc.



during execution.

Suppose A and B represent two interpreters of a language. We say
interpreter B is more asynchronous than interpreter A if for all
operators OP and all XcH, OP^(X) = OPg(X). This is justified because
in an actual machine X includes the partial histories computed before
the fixpoint solution is reached, and since OP, 0F„ interpreter B

A B

may produce more output (get ahead of) interpreter A during the
computation, while the inverse is not possible.

Proposition - Let OP' represent the interpretation of a DDF operator
according to UI, and let OP represent the interpretation 'according
to any other interpreter that operates under the following rules:

R(l). Neither guessing of outputs (either the value or the
position in a history), nor any redundant calculation
is done,

R(2). No further interoretation is attached to the functions
and predicates by the operator.

Then OP(X) £ OP'(X)

Proof - In the proof of this proposition, we say that a history A
is complete proper if pr(A,#A) is true. Thus, if A has n tokens,
and they are in positions l,2,...,n in the history (i.e. there are
no holes in the history) then A is complete proper.

For function, predicates, the D operator, and apply, the result is
clear since R(l) requires that we wait until we know the result must
be produced. R(2) prevents us from "knowing" future inputs based
upon past inputs, so we must wait until all current inputs are
defined. Waiting until all current inputs are defined (i.e. 7^1) is
precisely the condition in the definitions of the above operators.

For the gate-if-true (or gate-if-false) operator, assume there is
interpreter I such that GATE-IF-TRUE'[C,U] ^ GATE-IF-TRUE,U] for
some histories C and U. Let <i,v> e GATE-IF-TRUEj[C,U] but
<i,v> i GATE-IF-TRUE''[C,U]. Then certainly, by R(l) and R(2) as
argued above, we must have a pair of inputs that produced the
token <i,v>, where C(j)=true a U(j)=v. This is the minimal condition
on GATE-IF-TRUE . Since the only further condition present on
GATE-IF-TRUE' is pr(C,j), we assume 7pr(C,j) holds but <i,v> is
produced under interpreter I.

First, note for any complete proper inputs D and V that
GATE-IF-TRUE'LD,K] = GATE-IF-TRUE CD,K3. Thus, if we "complete" C
to D by adding tokens to C to construct D,then <i,v> e
GATE-IF-TRUE^[C,U] =^ <i,v> c GATE-IF-TRUE'Cd,Uj.

(There is no need to extend U to V since U(j)j^i is the only condi
tion on U in both interpreters.) Clearly, by definition of
GATE-IF-TRUE', i=tc(C,j)=tc(D,j). But let <k,true> be one of the
tokens used to complete C to D, where k<j, and thus tc(C,j)<tc(D,j).
Thus <i,v> was an incorrect output by interpreter I, and since k was
an arbitrary position in C, the condition pr(C,i) under UI is a
necessary condition.

The proof of the-proposition for merge is similar to the above. I



since each operator is most defined according to UI, the unravelling
interpreter is indeed the most asynchronous interpreter of all
interpreters that follow rules R{1) and R(2). According to Theorem
1/ if fp represents the least fixpoint according to some interpreter
other than UI and the definitions are expressed as continuous
functionals, then fp ^ fp'.

8. MACHINES FOR QI AND UI DO COMPUTE THE LEAST FIXPOINT

We have defined the meaning of dataflow programs in terms of the
least fixpoint solution to a system of monotone functionals repres
enting various operators. Machines that have been proposed [I,7J
for executing dataflow programs represent components of-histories
by tokens. The process of executing a program is carried out by
generating further tokens at each step based on the tokens present
and the available hardware resources. The machine terminates execu
tion when no more tokens can be generated, that is, when it reaches
a^steady-state. This process of starting the program with empty
lines and successively refining the history of every line step bv
step is very similar to the constructive method of finding the
least fixpoint by the first recursion theorem of Kleene [12 >
However, the process carried out by a machine may not be identical
to the one dictated by Kleone's theorem due to lack of resources
and scheduling decisions. Theorem 2 below gives some physically
reasonable conditions which guarantee that when a machine roaches
the steady—statc, the history of all lines will be in accordance
with the least fixpoint.

First, we give a definition. Given a functional t and an input
function A, a computation seciuence of t and A is anv seniicnrr of

(k)functions (x^'^Othat has the followi ng three properties:

1. = 0
2. Either for some s-:o

= t[x'=' ,a] and

{Vk<s) (X

(Vk>o) (x'̂ ^ ^
3. #(X - X ) is finite.

(k+1)
,A])

,A])

Intuitively, a computation sequence is the sequence of partial results
generated by any reasonable machine: (1) a machine that begins with
all lines empty, (2) never guesses results and does make progress,
and (3J never docs an infinite amount of computation in a single
step. Such a machine halts only when no operators are enabled (i.e.,
all operators are in equilibrium). Now we prove a theorem that
shows that if such a machine halts then inaeed it halts at the least
fixpoint of furthermore, we also prove that no matter what
path the machines takes (i.e., which of the enabled operators
actually fires) they all lead to the same final result. In this
sense dataflow systems have the extended Church-Rosser property.

(k)Theorem 2. If {X } is a computation sequence of monotonic
functional t and monotonic function A, and if there exists some
s>o such that X^^' = t[X^^',A]



Corollary - Given a monotone functional t and a monotone function A,

if (Ykx3)(X^^^ ^ then

lub{X^^^} c lub(T^[$,A3}

Proof - Included in the proof of Theorem 2 part 2.
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