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Abstract The power spectrum of magnetic fluctuations in the solar wind at 1 AU displays a break
between two power laws in the range of spacecraft-frame frequencies 0.1 to 1 Hz. These frequencies
correspond to spatial scales in the plasma frame near the proton gyroradius 𝜌i and proton inertial length
di. At 1 AU it is difficult to determine which of these is associated with the break, since di =𝜌i∕

√
𝛽⊥i and the

perpendicular ion plasma beta is typically 𝛽⊥i ∼1. To address this, several exceptional intervals with 𝛽⊥i ≪1
and 𝛽⊥i ≫1 were investigated, during which these scales were well separated. It was found that for 𝛽⊥i ≪1
the break occurs at di and for 𝛽⊥i ≫1 at 𝜌i , i.e., the larger of the two scales. Possible explanations for these
results are discussed, including Alfvén wave dispersion, damping, and current sheets.

1. Introduction

The spectrum of magnetic fluctuations in the solar wind forms a power law over several decades, which is
thought to be the inertial range of a turbulent cascade [Alexandrova et al., 2013; Bruno and Carbone, 2013].
It has long been known that at spacecraft-frame frequencies fsc ∼1 Hz, corresponding to spatial scales
in the plasma frame around ion kinetic scales, the spectrum steepens [e.g., Coleman, 1968; Russell, 1972],
although the reason for this remains under debate. At these scales, the turbulent energy is thought to begin
to be dissipated, so understanding the spectrum here is crucial to understanding turbulence and heating in
collisionless plasmas. In this letter, we present new measurements to investigate the scale associated with
the steepening and therefore its cause.

Several ion kinetic scales, related to different physical processes, have been associated with the spectral
break, most notably the ion gyroradius 𝜌i and ion inertial length di (see Appendix A for definitions). For
example, Schekochihin et al. [2009] proposed that the break occurs at the transition between Alfvénic
turbulence and kinetic Alfvén turbulence, which would happen when the perpendicular scales become
comparable to the ion gyroradius, k⊥𝜌i ∼ 1, under typical solar wind conditions. The framework of incom-
pressible Hall MHD has also been used to explain the break, in which it occurs at k⊥di ∼ 1 [Galtier, 2006], and
di has also been suggested to be relevant as the thickness of current sheets which form in the turbulence
[Leamon et al., 2000; Dmitruk et al., 2004]. Alternative scales have also been suggested: the wave number
at which parallel Alfvén waves are cyclotron damped kc = Ωi∕(vA + vth,i) [Leamon et al., 1998a; Bruno and
Trenchi, 2014], Landau damping of kinetic Alfvén waves at k𝜌i ∼ 1 [Leamon et al., 1999], and when 2𝜋fsc

becomes comparable to the ion cyclotron frequency Ωi [Denskat et al., 1983; Goldstein et al., 1994].

The difficulty in distinguishing these scales with in situ spacecraft observations at 1 AU is that they typically
occur at similar spacecraft-frame frequencies. In particular, because 𝜌i∕di =

√
𝛽⊥i , and typically 𝛽⊥i ∼ 1,

𝜌i and di are usually not measurably different. Despite this, there have been several attempts to distin-
guish between the different scales associated with the break. Leamon et al. [1998a] looked at the correlation
between the measured break and kc, found that it was poor and concluded that cyclotron damping was
not the cause. Leamon et al. [2000] compared three scales—kc, di, and Ωi—and, under the assumption of
oblique propagation, found the best correlation for di . Smith et al. [2001] examined an interval in which
𝛽i dropped significantly and noted that the break in the spectrum moved to lower frequencies, as expected
for kdi ∼ 1, rather than k𝜌i ∼ 1. A large statistical study was carried out by Markovskii et al. [2008], in which
the measured break was compared to various theoretical scales. A slightly better correlation was obtained
for a combination of scale and fluctuation amplitude, although all theoretical scales displayed moderate
correlation, making the results somewhat inconclusive.
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Figure 1. Probability density function (PDF) of log10(𝛽⊥i) in the
solar wind. Intervals used in this letter are from the extreme parts
of the distribution with 𝛽⊥i ≪ 1 and 𝛽⊥i ≫ 1 shaded in blue.

An alternative approach has been to use the
radial variation of the turbulence to investi-
gate the break. Perri et al. [2010] measured
the frequency of the break to be indepen-
dent of distance from the Sun from 0.3 to
4.9 AU, in apparent contradiction to any of
the theoretical scales. Bourouaine et al. [2012]
also measured no significant change in the
break frequency from 0.3 to 0.9 AU but con-
cluded that this could be consistent with a
break at k⊥di ∼ 1 if the turbulence is highly
anisotropic (k⊥ ≫ k‖). Most recently, Bruno
and Trenchi [2014], using higher-resolution
data within fast streams, instead found the
break frequency to decrease almost linearly
with distance from 0.42 to 5.3 AU, similar to
1∕𝜌i, 1∕di, and kc. The value was found to be
closer to kc, so it was concluded that cyclotron
damping must be active.

In this letter, we present a different approach, using several intervals of both 𝛽⊥i ≪ 1 and 𝛽⊥i ≫ 1 in which at
least two of the relevant scales, 𝜌i and di , are well separated, so that the difference between them is measur-
able and therefore physically meaningful. The results are then compared to various theoretical predictions,
to investigate the cause of the spectral steepening.

2. Measurements

The solar wind typically has 𝛽⊥i ∼ 1 and only rarely contains periods of 𝛽⊥i ≪ 1 and 𝛽⊥i ≫ 1.
To find these exceptional cases, the Wind data set [Acuña et al., 1995] was used, for which 20 years of
data are now available. Figure 1 shows the distribution of 𝛽⊥i measured in the free solar wind during the
years 1994–2010 (2.16 × 106 data points). The proton densities and temperatures from the SWE instru-
ment [Ogilvie et al., 1995], found by the fitting technique of Maruca and Kasper [2013], were used, along
with the magnetic field from the MFI instrument [Lepping et al., 1995] using the calibration of Koval and
Szabo [2013]. Cases of 𝛽⊥i < 0.1 and 𝛽⊥i > 10 occur rarely, making up 5.3% and 0.46% of the data
set, respectively.

The data set was searched for low 𝛽⊥i periods longer than 30 min and high 𝛽⊥i periods longer than 15 min.
Thirty-six low 𝛽⊥i and 19 high 𝛽⊥i intervals were selected, which have mean 𝛽⊥i values within the blue shaded
regions in Figure 1. The low 𝛽⊥i intervals cover the range of solar wind speeds 300–770 km s−1 and are within
interplanetary coronal mass ejections (ICMEs): the majority (31) coincides with events on the ICME list of
Jian et al. [2006], and the others also display some of the characteristic signatures. This is expected, since
ICMEs make up much of the low 𝛽⊥i solar wind. While the large-scale properties of ICMEs are quite different
to the rest of the solar wind, we do not expect the physics at kinetic scales to significantly differ, meaning
that these intervals can be used to study the ion break scale of the magnetic spectrum. The high 𝛽⊥i intervals
cover a range of speeds 290–510 km s−1 and are due mainly to short periods of low magnetic field strength,
which also have a higher than average density. At high 𝛽 , the solar wind can easily become unstable, and
signatures of mirror modes [Winterhalter et al., 1994; Russell et al., 2009; Bale et al., 2009] are present in some
of these intervals.

Figure 2 shows the magnetic power spectra for a low 𝛽⊥i and high 𝛽⊥i interval, calculated from the 92 ms
resolution MFI data (with small data gaps linearly interpolated) using the multitaper method [Percival and
Walden, 1993]. The frequencies corresponding to k𝜌i = 1 and kdi = 1 are marked assuming the Taylor [1938]
hypothesis. The individual SWE Faraday cup spectra in these intervals were examined manually to ensure
that the automated analysis software correctly determined the ion parameters and a comparison with data
from the nearby ACE spacecraft provided additional confirmation. Also shown is the local power law fit 𝛼 in
the range 0.58fsc to 1.73fsc. In both cases, 𝛼 is close to −5∕3 for frequencies fsc < 0.3 Hz, as is well established
in this range [Alexandrova et al., 2013; Bruno and Carbone, 2013], then becomes smaller before becoming

CHEN ET AL. ©2014. The Authors. 8082



Geophysical Research Letters 10.1002/2014GL062009

Figure 2. (a) Magnetic power spectrum and local slope 𝛼 for 𝛽⊥i = 0.010 (19 January 2005 11:00–24:00). (b) Same for 𝛽⊥i = 27 (23 September 2001 22:16–22:41).
Frequencies corresponding to k𝜌i = 1 (red dashed line) and kdi = 1 (green dash-dotted line) are marked. In both cases, the break occurs at the larger of the scales.

larger once more at the highest frequencies. The flattening of the spectrum at high frequencies is not phys-
ical and thought to be due to aliasing of spin tone harmonics [Koval and Szabo, 2013]. The steepening at
fsc ≈ 0.5 Hz, however, is physical, and is the subject of this letter.

While the observed break frequency fb can be found in various ways, here we define it to be the frequency at
which 𝛼 takes a value half way between −5∕3 and −8∕3. Figure 2 shows that fb is very close to the frequency
corresponding to kdi = 1 in the low 𝛽⊥i example and to k𝜌i = 1 in the high 𝛽⊥i example. In other words, the
break occurs at the larger of the two scales.

To investigate the generality of this finding, spectra were calculated for all of the intervals discussed above.
While most display a clear break, some have a more complicated shape or do not significantly steepen,
which may be due to instrumental noise and the presence of mirror modes at high 𝛽⊥i . The reason for the
lack of a break in several of the low 𝛽⊥i intervals is not known, but it generally occurs when the relative
amplitude of fluctuations 𝛿B∕B0 is lower than average. The fb was measurable in 12 of the high 𝛽⊥i spec-
tra and 18 of low 𝛽⊥i spectra, and only these were used in the subsequent analysis. The average plasma
parameters for these intervals are given in Table 1 along with their standard deviations; electron tem-
peratures were taken from ground moments of distribution functions measured by the 3DP instrument
[Lin et al., 1995].

Figure 3 shows the 𝛽⊥i dependence of the measured break frequency normalized to the frequencies cor-
responding to the ion gyroscale and ion inertial length, f𝜌i

=vsw∕(2𝜋𝜌i) and fdi
=vsw∕(2𝜋di), where vsw

is the solar wind speed. It is clear that for low 𝛽⊥i the data points cluster around fb∕fdi
≈1 but are sig-

nificantly below fb∕f𝜌i
≈1 and at high 𝛽⊥i the reverse is true. It has been pointed out [e.g., Leamon et al.,

2000; Bourouaine et al., 2012] that if the turbulence is anisotropic in the sense k⊥ ≫ k‖, as it is thought
to be at kinetic scales [Chen et al., 2010a, 2010b], then an additional factor of sin(𝜃Bv), where 𝜃Bv is the

Table 1. Mean Interval Parameters

𝛽⊥i ≪ 1 𝛽⊥i ≫ 1

B (nT) 13.3 ± 4.1 1.14 ± 0.35
ni (cm−3) 3.9 ± 2.9 17.1 ± 7.1
vsw (km s−1) 460 ± 120 389 ± 49
Ti (eV) 1.64 ± 0.86 4.8 ± 2.9
Te (eV) 12.5 ± 4.0 8.6 ± 1.7
fb (Hz) 0.58 ± 0.19 0.223 ± 0.068
(𝛿B∕B0)b 0.0229 ± 0.0077 0.349 ± 0.096
sin(𝜃Bv) 0.82 ± 0.12 0.68 ± 0.23
𝛽i 0.0122 ± 0.0059 23.2 ± 7.4
𝛽e 0.111 ± 0.054 51 ± 28

angle between the mean magnetic
field and the solar wind direction,
should be included in the definition
of f𝜌i

and fdi
. From Table 1 it can be

seen that on average this would
make at most a factor of 1.5 differ-
ence, so the above result would not
be affected. Therefore, it appears
generally true that the break from a
f−5∕3
sc spectrum of magnetic fluctua-

tions occurs at the larger of the ion
gyroradius and ion inertial length.
This is the main result of this letter.

CHEN ET AL. ©2014. The Authors. 8083
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Figure 3. Ratio of measured break frequency fb to the frequency corre-
sponding to (top) k𝜌i = 1 and (bottom) kdi = 1, as a function of 𝛽⊥i for all
intervals in which a break was measurable.

3. Possible Explanations
3.1. Alfvén Wave Dispersion
The ion-scale spectral break is often
attributed to the scale at which the
Alfvénic turbulence, thought to exist
above the ion scales [Alexandrova
et al., 2013; Bruno and Carbone, 2013],
becomes dispersive at the transition
to kinetic Alfvén turbulence, thought
to exist at smaller scales [Podesta,
2013; Chen et al., 2013a]. While the
extent to which linear theory applies
to strong turbulence in the solar
wind is an open question, the scale
at which Alfvén waves become dis-
persive can be derived from linear
kinetic theory at both low and high
𝛽i . It is assumed, based on observa-
tions [e.g., Chen et al., 2010a, 2010b],

that the turbulence is anisotropic k⊥ ≫ k‖ at kinetic scales and each species takes an equilibrium isotropic
Maxwellian distribution for simplicity.

For 𝛽i ≫ 1, k𝜌i dispersion corrections dominate kdi corrections, so the latter can be neglected, leading to
Alfvén waves with frequency 𝜔 ≪ Ωi and 𝜔 ≪ k‖vth,i. For k‖𝜌i ≪ 1 and k⊥𝜌i ≪ 1, the dispersion relation,
with the k𝜌i terms retained, becomes

𝜔2 = k2‖v2
A

[
1 +

(
3
4
+

Te

Ti + Te

)
1
2

k2
⊥
𝜌2

i −
3
2

k2‖𝜌2
i

]
. (1)

Since Ti ∼ Te for the 𝛽⊥i ≫ 1 intervals (Table 1) and we are assuming k⊥ ≫ k‖, equation (1) indicates that the
break should occur at k⊥𝜌i ∼ 1. This agrees with the measurements in section 2 which show the break at the
ion gyroscale at high 𝛽⊥i .

Similarly, the predicted break can be found for 𝛽i ≪ 1. Dispersion corrections related to 𝜌i can now be
neglected giving k‖vth,i ≪ 𝜔 ≪ k‖vth,e. This is different to previous studies [e.g., Lysak and Lotko, 1996;
Hollweg, 1999], which have assumed 𝜔 ≪ Ωi and have therefore neglected di corrections. The dispersion
relation can be obtained if it is assumed that k2‖∕k2

⊥
< 𝛽e. Since 𝛽e ≈ 0.11 in the low 𝛽⊥i intervals (Table 1),

this would require wave vector angles 𝜃kB > 71.6◦, which is typically satisfied at these scales [Chen et al.,
2010a, 2010b]. In this case, the dispersion relation can be shown to reduce to the Alfvén wave 𝜔2 = k2‖v2

A for
k⊥di ≪ 1 and the kinetic Alfvén wave 𝜔2 = k2‖v2

Ak2
⊥
𝜌2

s∕(1 + v2
s ∕v2

A) for k⊥di ≫ 1. The break can be estimated
to be where these meet, which occurs at

k⊥

(
1

d2
i

+ 1
𝜌2

s

)− 1
2

∼ 1. (2)

This result holds for Ti ≪ Te and corresponds to k⊥𝜌s ∼ 1 if 𝛽e ≪ 1 and k⊥di ∼ 1 if 𝛽e ≫ 1, in agreement with
the Hall Reduced MHD dispersion relation [Schekochihin et al., 2009]. This scale, however, does not match
the measured break in the 𝛽⊥i ≪ 1 intervals: on average, the frequency corresponding to this scale is 4.8
times larger than fb (it is dominated by 𝜌s rather than di since 𝛽e ≪ 1). For di to be relevant for Alfvén wave
dispersion at 𝛽i ≪ 1 would require either 𝛽e ≫ 1, which is not the case (Table 1), or a large k‖ component
to the turbulence, which is not generally observed, either in the free solar wind [Chen et al., 2010a, 2010b] or
within ICMEs [Leamon et al., 1998b].

3.2. Cyclotron Damping
It has been suggested [e.g., Leamon et al., 1998a, Bruno and Trenchi, 2014] that the break in the spectrum
could be caused by the damping of energy at the ion cyclotron resonance. The condition for this resonance
is 𝜔 − k ⋅ v = ±Ωi, where v is the particle velocity, so assuming parallel Alfvén waves, 𝜔2 = k2‖v2

A, the

CHEN ET AL. ©2014. The Authors. 8084
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resonance occurs at kc = Ωi∕(vA + vth,i), where the thermal speed has been used for the particle veloc-
ity [Leamon et al., 1998a]. This can also be written as kc = (di + 𝜌i)−1, meaning that the break would occur
at the larger of 𝜌i and di , in agreement with the results of section 2. However, since the turbulence is mea-
sured to be predominantly anisotropic k⊥ ≫ k‖ at these scales [Chen et al., 2010a, 2010b], it is expected to
remain low frequency so that cyclotron damping is not efficient at removing energy from the electromag-
netic fluctuations [Quataert, 1998; Schekochihin et al., 2009]. While such resonances can be broadened in
strong turbulence [Quataert, 1998; Lehe et al., 2009; Lynn et al., 2012], this is only expected to be an order
unity effect. If turbulence within ICMEs is significantly less anisotropic, the cyclotron resonance may become
significant; however, Leamon et al. [1998b] found it to be more anisotropic at kinetic scales within ICMEs.
Therefore, while the cyclotron resonant scale kc matches the observed break fb at both low and high 𝛽⊥i , it is
not consistent with the generally observed anisotropy of the turbulence.

3.3. Electron Landau Damping
While Alfvén wave dispersion cannot account for the low 𝛽⊥i break and the cyclotron resonance is not
thought to be important, could Landau damping explain it? The Landau resonance occurs when the phase
speed of a wave matches the particle velocity, so can lead to damping even if the fluctuations are low fre-
quency. Leamon et al. [1999] suggested that electron Landau damping could lead to the observed break at
𝛽i ∼ 1, and Howes et al. [2008] suggested it to be the cause of the break near di in the 𝛽i ≪ 1 interval of
Smith et al. [2001]. Using the kinetic Alfvén wave electron Landau damping rate derived in Boldyrev et al.
[2013], along with the parameters in Table 1 for the 𝛽⊥i ≪ 1 intervals, gives a normalized damping rate
𝛾∕𝜔0 ≈ −0.066 at k⊥𝜌s = 1. The damping rate at k⊥di = 1 will be smaller than this, so is unlikely to be the
cause of the spectral break in the current data set. Calculating the Landau damping numerically and apply-
ing this to a model spectrum [Howes et al., 2011] also shows that the break occurs closer to k⊥𝜌i = 1 than to
k⊥di = 1 (J. M. TenBarge, private communication, 2014). Therefore, electron Landau damping also appears
unlikely to be the cause of the break at kdi = 1 in the 𝛽⊥i ≪ 1 intervals.

3.4. Current Sheets
The break has also been related to the scale of current sheets, which may develop in a turbulent plasma.
Leamon et al. [2000] reported a good correlation between the break and di , assuming k⊥ ≫ k‖, and con-
cluded that a significant fraction of the dissipation occurs in reconnecting current sheets, thought to have
thickness di . Vasquez et al. [2007] examined the widths of current sheets in the solar wind and found that
while there is significant variability, for 𝛽i < 0.1 the width scales better with di and for 𝛽i > 4 it scales better
with 𝜌i . This would agree with the results of section 2 in which the break was found to occur at the larger of
these scales, although a causal relationship is not necessarily implied. On the other hand, simulations and
laboratory measurements of reconnection with a large guide field [Cassak et al., 2007; Egedal et al., 2007],
appropriate for the small amplitude turbulent fluctuations at low 𝛽i, show a sudden onset of reconnection
when the current sheet thickness becomes 𝜌s, where two-fluid effects become important, rather than di. As
shown in section 3.1, the frequency corresponding to k𝜌s = 1 is not close to the measured break frequency
for 𝛽⊥i ≪ 1.

4. Discussion

We have examined the ion scale break frequency of solar wind turbulence during intervals of 𝛽⊥i ≪ 1 and
𝛽⊥i ≫ 1. While these cases are not typical for the solar wind at 1 AU, they enable the predicted break scales
to be measurably different, so that distinguishing between them is physically meaningful. The results of the
analysis are summarized in Table 2. The average ratio of the measured break frequency fb to the theoretical
break frequency for each scale fx is given, which is closest to unity in the 𝛽⊥i ≪ 1 intervals for di and in the
𝛽⊥i ≫ 1 intervals for 𝜌i . The dispersive scale for low 𝛽i Alfvén waves does not fit the observations and neither
does the ion gyrofrequency Ωi∕(2𝜋). While the cyclotron resonant wave number does fit the observations
at both high and low 𝛽⊥i within errors, it is not consistent with the observed anisotropy of the turbulence, as
discussed in section 3.2. The break is also not at a fixed value of fsc: the mean break frequency is fb = 0.58 Hz
in the low 𝛽⊥i intervals and fb = 0.22 Hz in the high 𝛽⊥i intervals, a factor of 2.6 different. The linear corre-
lation coefficients r between fb and fx , along with their 95% confidence intervals, are also given in Table 2.
The uncertainties are large enough that a meaningful distinction based on the correlation coefficients is not
possible. Inclusion of the sin(𝜃Bv) factor was not found to significantly alter the correlations.

CHEN ET AL. ©2014. The Authors. 8085
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Table 2. Comparison Between Measured Break Frequency and Theoretical Values

fb∕fx r

Scale, x 𝛽⊥i ≪ 1 𝛽⊥i ≫ 1 𝛽⊥i ≪ 1 𝛽⊥i ≫ 1

𝜌i 0.105+0.040
−0.029 0.94+0.41

−0.29 0.61+0.23
−0.41 0.20+0.49

−0.62

di 1.01+0.44
−0.31 0.200+0.089

−0.062 0.53+0.27
−0.44 0.22+0.48

−0.63(
d−2

i + 𝜌−2
s

)−1∕2
0.207+0.077

−0.056 0.195+0.085
−0.059 0.63+0.22

−0.40 0.27+0.46
−0.63

kc 1.12+0.48
−0.34 1.14+0.51

−0.35 0.53+0.27
−0.44 0.19+0.50

−0.62

Ωi∕(2𝜋) 2.81+1.18
−0.83 12.8+4.6

−3.4 0.66+0.20
−0.38 0.62+0.26

−0.55

While the break at 𝜌i in the 𝛽⊥i ≫ 1 intervals is consistent with the Alfvén wave dispersion scale, the break
at di in the 𝛽⊥i ≪ 1 intervals is not consistent with any of the explanations in section 3, assuming that the
fluctuations are anisotropic k⊥ > k‖. This leaves the possibilities that either the turbulence has a significant
k‖ component in the 𝛽⊥i ≪ 1 intervals, or the break is related to a nonlinear process, such as anomalous
resistivity, which may manifest in a plasma with 𝛽i ≪ 𝛽e < 1 (S. Boldyrev et al., manuscript in preparation,
2014). The lack of a break in some of the low 𝛽⊥i intervals with small 𝛿B∕B0 is consistent with a nonlinear
process. Further studies are required to investigate these possibilities.

As well as in the solar wind, identifying the scale associated with the spectral break is important for under-
standing turbulence and dissipation in other plasma environments. For example, turbulence is thought to
heat the interstellar medium (ISM), in which density fluctuations are well measured but magnetic fluctu-
ations are not [e.g., Haverkorn and Spangler, 2013]. The spectral break calculated from radio observations
has been used to determine which phase of the ISM is responsible for the observed turbulence [Spangler
and Gwinn, 1990], so knowing the scale at which the break occurs is important. Spangler and Gwinn [1990]
assumed the break to be at the larger of 𝜌i and di, which is consistent with the results of this letter. Remote
measurements of density fluctuations in the solar corona, a low 𝛽i environment, also show a steepening
in the spectrum around the ion inertial length [Coles and Harmon, 1989; Harmon, 1989; Harmon and Coles,
2005] along with a flattening at slightly larger scales that is consistent with the increased compressibility
of kinetic Alfvén turbulence [Harmon, 1989; Hollweg, 1999; Harmon and Coles, 2005; Chandran et al., 2009;
Chen et al., 2012, 2013b]. The upcoming Solar Probe Plus mission will enable further investigation of these
features with in situ measurements of the turbulent fields in the corona.

Appendix A: Definitions

The ion gyroradius is defined as 𝜌i = vth⊥i∕Ωi, where vth⊥i =
√

2kBT⊥i∕mi is the perpendicular ion thermal
speed, Ωi = qiB∕mi is the ion gyrofrequency, T⊥i is the perpendicular ion temperature, mi is the ion mass,
qi is the ion charge, and B is the magnetic field strength. The ion inertial length is defined as di =c∕𝜔pi, where

𝜔pi =
√

niq
2
i ∕(𝜀0mi) is the ion plasma frequency, and ni is the ion number density. This can also be written

di = vA∕Ωi , where vA = B∕
√
𝜇0𝜌 is the Alfvén speed and 𝜌 is the total mass density. The ratio of ion thermal

pressure to magnetic pressure is 𝛽i = nikBTi∕(B2∕2𝜇0). The sound gyroradius is defined as 𝜌s = vs∕Ωi, where
vs =

√
kBTe∕mi is the ion acoustic speed.
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