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Abstract. Getting good speedup—let alone high parallel efficiency—
for parallel-in-time (PinT) integration examples can be frustratingly dif-
ficult. The high complexity and large number of parameters in PinT
methods can easily (and unintentionally) lead to numerical experiments
that overestimate the algorithm’s performance. In the tradition of Bai-
ley’s article “Twelve ways to fool the masses when giving performance re-
sults on parallel computers”, we discuss and demonstrate pitfalls to avoid
when evaluating performance of PinT methods. Despite being written in
a light-hearted tone, this paper is intended to raise awareness that there
are many ways to unintentionally fool yourself and others and that by
avoiding these fallacies more meaningful PinT performance results can
be obtained.

1 Introduction

The trend towards extreme parallelism in high-performance computing requires
novel numerical algorithms to translate the raw computing power of hardware
into application performance [5]. Methods for the approximation of time-depen-
dent partial differential equations, which are used in models in a very wide
range of disciplines from engineering to physics, biology or even sociology, pose a
particular challenge in this respect. Parallelization of algorithms discretizing the
spatial dimension via a form of domain decomposition is quite natural and has
been an active research topic for decades. Exploiting parallelization in the time
direction is less intuitive as time has a clear direction of information transport.
Traditional algorithms for temporal integration employ a step-by-step procedure
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that is difficult to parallelize. In many applications, this sequential treatment of
temporal integration has become a bottleneck in massively parallel simulations.

Parallel-in-time (PinT) methods, i.e., methods that offer at least some de-
gree of concurrency, are advertised as a possible solution to this temporal bottle-
neck. The concept was pioneered by Nievergelt in 1964 [15], but has only really
gained traction in the last two decades [7]. By now, the effectiveness of PinT
has been well established for examples ranging from the linear heat equation
in one-dimension to more complex highly diffusive problems in more than one
dimension. More importantly, there is now ample evidence that different PinT
methods can deliver measureable reduction in solution times on real-life HPC
systems for a wide variety of problems. Ong and Schroder [16] and Gander [7]
provide overviews of the literature, and a good resource for further reading is
also given by the community website https://parallel-in-time.org/.

PinT methods differ from space-parallel algorithms or parallel methods for
operations like the FFT in that they do not simply parallelize a serial algorithm
to reduce its run time.1 Instead, serial time-stepping is usually replaced with a
computationally more costly and typically iterative procedure that is amenable
to parallelization. Such a procedure will run much slower in serial, but can over-
take serial time-stepping in speed if sufficiently many processors are employed.
This makes a fair assessment of performance much harder since there is no clear
baseline to compare against. Together with the large number of parameters and
inherent complexities in PinT methods and PDEs themselves, there are thus
many sometimes subtle ways to fool oneself (and the masses) when assessing
performance. We will demonstrate various ways to produce results that seem to
demonstrate speedup but are essentially meaningless. The paper is written in a
similar spirit as other “ways to fool the masses” papers first introduced in [3] who
inspired a series of similarly helpful papers in related areas [10,11,14,9,18,4,17].
One departure from the canon here is that we provide actual examples to demon-
strate the Ways as we present them. Despite the light-hearted, sometimes even
sarcastic tone of the discussion, the numerical examples are similar to experi-
ments one could do for evaluating the performance of PinT methods.

Some of the ways we present are specific to PinT while others, although
formulated in “PinT language” correspond to broader concepts from parallel
computing. This illustrates another important fact about PinT: while the algo-
rithms often dig deeply into the applied mathematics toolkit, their relevance is
exclusively due to the architectural specifics of modern high-performance com-
puting systems. This inherent cross-disciplinarity is another complicating factor
when trying to do fair performance assessments. Lastly we note that this paper
was first presented in a shorter form as a conference talk at the 9th Parallel in
Time Workshop held (virtually) in June, 2020. Hence some of the Ways are more
relevant to live presentations, although all should be considered in both written
and live scenarios. In the next section we present the 12 Ways with a series

1 One exception are so-called “parallel-across-the-method” PinT methods in the ter-
minology by Gear [8] that can deliver smaller-scale parallelism.

https://parallel-in-time.org/
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of numerical examples before concluding with some more serious comments in
Section 3.

2 Fool the masses (and yourself)

2.1 Choose Your Problem Wisely!

If you really want to impress the masses with your PinT results, you will want
to show as big a parallel speedup as possible, hence you will want to use a lot
of processors in the time direction. If you are using, for example, Parareal [13],
a theoretical model for speedup is given by the expression

Stheory =
NP

NPα+K(1 + α)
, (1)

where NP is the number of processors, α is the ratio of the cost of the coarse
propagator G compared to the fine propagator F , and K is the total number of
iterations needed for convergence. Hence to get a large speedup that will impress
the masses, we need to choose NP to be large, α to be small, and hope K is
small as well. A common choice for parareal is to have G be one step of some
method and F be NF steps of the same method so that α = 1/NF is small. But
note that this already means that the total number of time steps corresponding
to the serial method is now NPNF . Hence we want to choose an equation and
problem parameters for which very many time steps can be employed, while still
showing good speedup without raising any suspicions that the problem is too
“easy”. The first example suggests some Ways to pull off this perilous balancing
act.

In this example, we use the following nonlinear advection-diffusion-reaction
equation

ut = vux + γuux + νuxx + βu(a− u)(b− u),

where the constants v, γ, ν, β, a, and b determine the strength of each term. In
order to squeeze in the massive number of time steps we need for good speedup,
we choose a long time interval over which to integrate, t ∈ [0, TF ], with TF = 30.
The initial condition is given on the interval [0, 2π] by

u(x, 0) = 1− d(1− e−(x−π)
4/σ).

If you are presenting this example in front of the an audience, try to get all the
equations with parameters on one slide and then move on before defining them.

Way 1. Choose a seemingly complicated problem with lots of parameters
which you define later (or not at all).

For the first numerical test, we choose NP = 200 processors, and use a fourth-
order IMEX Runge-Kutta method and a pseudo-spectral discretization in space
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using 128 grid points, where the linear advection and diffusion terms are treated
implicitly. We use one time step for G and NF = 64 steps for F . Since the
method is spectrally accurate in space, it gives us cover to use a lot of time steps
(more on that later). We set the stopping criterion for Parareal to be when the
increment in the iteration is below 10−9, and v = −0.5, γ = 0.25, ν = 0.01,
β = −5, a = 1, b = 0, and d = 0.55 (see also Appendix 1). For these values,
Parareal converges on the entire time interval in 3 iterations. The theoretical
speedup given by Eq. 1 is 32.4. Not bad!

If we explore no further, we might have fooled the masses. How did we man-
age? Consider a plot of the initial condition and solution at the final time for
this problem shown in Fig. 1, with the blue and orange lines respectively. The
lesson here is

Way 2. Quietly use an initial condition and/or problem parameters for
which the solution tends to a steady state. But do not show the actual
solution.

Fig. 1: Initial solution and solution at t = 30 for the advection-diffusion-reaction
problem demonstrating the significant effect that parameter selection can have
on the dynamics and subsequent PinT speedup discussed in Ways 1-4.

If we repeat this experiment changing only one parameter, b = 0.5, the
number of Parareal iterations needed for convergence jumps to K = 10 for a less
impressive theoretical speedup of 15.05. In this case the solution quickly evolves
not to constant state, but a steady bump moving at constant speed (the green
line in Fig. 1). This raises another important point to fool the masses:
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Way 3. Do not show the sensitivity of your results to problem parame-
ter changes. Find the best one and let the audience think the behavior is
generic.

Sometimes you might be faced with a situation like the second case above and
not know how to get a better speedup. One suggestion is to add more diffusion.
Using the same parameters except increasing the diffusive coefficient to ν = 0.04
reduces the number of iterations for convergence to K = 5 with a theoretical
speedup of 24.38. The solution of this third example is shown by the red line
Fig. 1. If you can’t add diffusion directly, using a diffusive discretization for
advection like first-order upwind finite differences can sometimes do the trick
while avoiding the need to explicitly admit to the audience that you needed to
increase the amount of “diffusion”.

Way 4. If you are not completely thrilled about the speedup because the
number of iterations K is too high, try adding more diffusion. You might
have to experiment a little to find just the right amount.

2.2 Over-resolve the solution! Then over-resolve some more.

After carefully choosing your test problem, there are ample additional opportu-
nities to boost the parallel performance of your numerical results. The next set
of Ways consider the effect of spatial and temporal resolution. We consider the
1D nonlinear Schrödinger equation

ut = i∆u+ 2i |u|2 u (2)

with periodic boundary conditions in [0, 2π] and the exact solution as given by
Aktosun et al. [1], which we also use for the initial condition at time t0 = 0.

This is a notoriously hard problem for out-of-the-box PinT methods, but we
are optimistic and give Parareal a try. We use a second-order IMEX Runge-Kutta
method by Ascher et al. [2] with NF = 1 024 steps and NG = 32 coarse steps
for each of the 32 processors. In space, we again use a pseudo-spectral method
with the linear part treated implicitly and Nx = 32 degrees-of-freedom. The
estimated speedup can be found in Fig. 2a. Using K = 5 iterations, we obtain
a solution about 6.24 times faster when running with 32 instead of 1 processor.
All runs achieve the same accuracy of 5.8 × 10−5 and it looks like speedup in
time can be easily achieved after all.

Yet, although the accuracy compared to the exact solution is the same for
all runs, the temporal resolution is way too high for this problem, masking
the effect of coarsening in time. The spatial error is dominating and instead of
32× 1 024 = 32 768 overall time steps, only 32× 32 = 1 024 are actually needed
to balance spatial and temporal error. Therefore, the coarse level already solves
the problem quite well: speedup only comes from over-resolving in time.

If we instead choose NF = 32 time steps on the fine level instead with the
same coarsening factor of 32 (NG = 1), we get no speedup at all – see the
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red curve/diamond markers in Fig. 2b. Using a less drastic coarsening factor of
4 leads to a maximum speedup of 1.78 with 32 processors (blue curve/square
markers), which is underwhelming and frustrating and not what we would prefer
to present in public. Lesson learned:

Way 5. Make ∆t so small that the coarse integrator is already accurate.
Never check if a larger ∆t might give you the same solution.

The astute readers may have noticed we also used this trick to a lesser extent in
the advection-diffusion-reaction example above.
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(b) Not so good speedup

Fig. 2: Estimated speedup for Parareal runs of the nonlinear Schrödinger exam-
ple (2) demonstrating the effect of over-resolution in time (Way 5).

A similar effect can be achieved when considering coarsening in space. Since
we have learned that more parameters are always good to fool the masses we
now use PFASST [6] instead of Parareal. We choose 5 Gauss-Lobatto quadrature
nodes per time step, leading to an 8th order IMEX method, which requires only 8
time steps to achieve an accuracy of about 5.8×10−5. We do not coarsen in time,
but – impressing everybody with how resilient PFASST is to spatial coarsening
– go from 512 degrees-of-freedom on the fine to 32 on the coarse level. We are
rewarded with the impressive speedup shown in Fig. 3a: using 8 processors,
we are 5.7 times faster than the sequential SDC run. To really drive home the
point how amazing this is, we point out to the reader that this corresponds to
71% parallel efficiency. Even the space-parallel linear solver crowd would have
to grudgingly accept such an efficiency as respectable.

However, since the spatial method did not change from the example before,
we already know that 32 degrees-of-freedom would have been sufficient to achieve
a PDE error of about 10−5. So using 512 degrees-of-freedom on the fine level
heavily over-resolves the problem in space. Using only the required 32 degrees-of-
freedom on the fine level with a similar coarsening factor of 4 only gives a speedup
of 2.7, see Fig. 2b (red curve/diamond markers). While we could probably sneak
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this into an article, the parallel efficiency of 34% will hardly impress anybody
outside of the PinT community.

It is worth noting that better resolution in space on the coarse level does
not help (blue curve/square markers). This is because the coarse level does not
contribute anything to the convergence of the method anymore. Turning it off
completely would even increase the theoretical speedup to about 3.5. Hence, for
maximum effect:

Way 6. When coarsening in space, make ∆x on the fine level so small
that even after coarsening, the coarse integrator is accurate. Avoid the
temptation to explore a more reasonable resolution.
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Fig. 3: Estimated speedup for PFASST runs of the nonlinear Schrödinger exam-
ple (2) demonstrating the effect of over-resolution in space (Way 6).

2.3 Be smart when setting your iteration tolerance!

If the audience catches on about your ∆t/∆x over-resolution issues, there is a
more subtle way to over-resolve and fool the masses. Since methods like Parareal
and PFASST are iterative methods, one must decide when to stop iterating -
use this to your advantage! The standard approach is to check the increment
between two iterations or some sort of residual (if you can, use the latter: it
sounds fancier and people will ask fewer questions). In the runs shown above,
Parareal is stopped when the difference between two iterates is below 10−10 and
PFASST is stopped when the residual of the local collocation problems is below
10−10.

These are good choices, as they give you good speedup: for the PFASST
example, a threshold of 10−5 would have been sufficient to reach the accuracy
of the serial method. While this leads to fewer PFASST iterations (good!), un-
fortunately it also makes the serial SDC baseline much faster (bad!). Therefore,
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with the higher tolerance, speedup looks much less attractive, even in the over-
resolved case, see Fig. 4a.

Similarly, when using more reasonable tolerances, the speedup of the well-
resolved examples decreases as shown in Fig. 4b. This leads to our next Way,
which has a long and proud tradition, and for which we can therefore quote
Pakin [17] directly,

Way 7. “Hence, to demonstrate good [...] performance, always run far
more iterations than are typical, necessary, practical, or even meaningful
for real-world usage, numerics be damned!”
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Fig. 4: Estimated speedup for PFASST runs of the nonlinear Schrödinger exam-
ple (2) with different resolutions in space demonstrating how using a sensible
iteration tolerance of 10−5 can reduce speedup (Way 7).

Yet another smart way to over-resolve is to choose a ridiculously small tol-
erance for an inner iterative solver. Using something cool like GMRES to solve
the linear systems for an implicit integrator far too accurately is an excellent
avenue for making your serial baseline method much slower than it needs to be.
This is further desirable because it reduces the impact of tedious overheads like
communication or waiting times. We all know that an exceptional way to good
parallel performance is using a really slow serial baseline to compare against.

Way 8. Not only use too many outer iterations, but try to maximize the
amount of work done by iterative spatial solvers (if you have one, and you
always should).

Note that for all the examples presented so far, we did not report any actual
speedups measured on parallel computers. Parallel programming is tedious and
difficult, as everybody understands, and what do we have performance models
for, anyway? It is easier to just plug your parameters into a theoretical model.
Realizing this on an actual system can be rightfully considered Somebody Else’s
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Problem (SEP) or a task for your dear future self. But for completeness, the
next example will address this directly.

2.4 Don’t report runtimes!

Because solving PDEs only once can bore an audience, we will now talk about
optimal control of the heat equation, the “hello world” example in optimization
with time-dependent PDEs. This problems has the additional advantage that
even more parameters are available to tune. Our specific problem is as follows.
Given some desired state ud on a space-time domain Ω× (0, T ), Ω ⊂ Rd, we aim
to find a control c to minimize the objective functional

J(u, c) =
1

2

∫ T

0

‖u− ud‖2L2(Ω) dt+
λ

2

∫ T

0

‖c‖2L2(Ω) dt

subject to
ut −∇2u = c+ f(u)

with periodic boundary conditions (allowing us to use FFT to evaluate the Lapla-
cian and perform the implicit linear solves (Way 8 be damned). For the linear
heat equation considered in the following, the source term is f(u) ≡ 0 (see
Way 1). Optimization is performed using steepest descent; for computation of
the required reduced gradient we need to solve a forward-backward system of
equations for state u and adjoint p,

ut −∇2u = c+ f(u) −pt −∇2p− f ′(u)p = u− ud
u(·, 0) = 0 p(·, T ) = 0.

To parallelize in time, we use, for illustration, the most simple approach:
given a control c, the state equation is solved parallel-in-time for u, followed by
solving the adjoint equation parallel-in-time for p with PFASST using NP = 20
processors. For discretization, we use 20 time steps and three levels with 2/3/5
Lobatto IIIA nodes in time as well as 16/32/64 degrees of freedom in space.
As a sequential reference we use MLSDC on the same discretization. We let
PFASST/MLSDC iterate until the residual is below 10−4 instead of iterating to
high precision, so we can openly boast how we avoid Way 7.

In the numerical experiments we perform one iteration of an iterative, gradi-
ent-based optimization method to evaluate the method (i.e., solve state, adjoint,
evaluate objective, compute gradient). As initial guess for the control we do not
use the usual choice c0 ≡ 0 as this would lead to u ≡ 0 but a nonzero initial
guess—again, we make sure everybody knows that we avoid Way 2 in doing so.
To estimate speedup we count PFASST/MLSDC iterations and compute

S =
total MLSDC iterations state + adjoint

total iterations state on CPU20 + total iterations adjoint on CPU1
.

We get S = 40+60
7+7 = 7.1, for a nice parallel efficiency of 35.5%.
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Before we publish this, we might consider actual timings from a real com-
puter. Unfortunately, using wall clock times instead of iterations gives

S =
serial wall clock time

parallel wall clock time
=

44.3s

18.3s
= 2.4,

and thus only roughly a third of the theoretical speedup. To avoid this embar-
rassment:

Way 9. Only show theoretical/projected speedup numbers (but mention
this only in passing or not at all). If you include the cost of communication
in the theoretical model, assume it is small enough not to affect your
speedup.

Why is the theoretical model poor here? One cause is the overhead for the
optimization—after all, there is the evaluation of the objective functional, and
the construction of gradient. Ignoring parts of your code to report better re-
sults is another proud tradition of parallel computing, see Bailey’s paper [3].
However, most of the tasks listed do trivially parallelize in time. The real prob-
lem is that communication on an actual HPC system is aggravatingly not really
instantaneous.

Fig. 5: Wall clock times of the different algorithmic steps for the linear heat
equation example on Ω = [0, 1]3 and T = 1. Left: total times. Right: times per
level (1 is coarsest level, 3 finest). Note the ”receive” times are not negligible as
discussed in Way 9.
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Looking at detailed timings for PFASST, Fig. 5 shows that the issue truly is
in communication costs, which clearly cannot be neglected. In fact, more time
is spent on blocking coarse grid communication than on fine sweeps. Note also
that, due to the coupled forward-backward solves, each processor requires similar
computation and communication times. The following performance model

S =
NP

NPα
KS

+ KP

KS
(1 + α+ β)

accounts for overheads in the β term. Matching the measured speedups requires
setting β = 3 or three times the cost of one sweep on the fine level! This is
neither small nor negligible by any measure.

2.5 Choose the measure of speedup to your advantage!

Technically, parallel speedup should be defined as the ratio of the run time of
your parallel code to the run time required by the best available serial method.
But who has the time or energy for such a careful comparison? Instead, it is
convenient to choose a baseline to get as much speedup as possible.

In the example above, MLSDC was used as a baseline since it is essentially
the sequential version of PFASST and allows for a straightforward comparison
and the use of a theoretical speedup. However, MLSDC might not be the fastest
serial method to solve state and adjoint equations to some prescribed tolerance.
For illustration, we consider solving an optimal control problem for a nonlinear
heat equation with f(u) = − 1

3u
3 + u on Ω × (0, T ) = [0, 20]× (0, 5). Wall clock

times were measured for IMEX-Euler, a 4th-order additive Runge-Kutta scheme
(ARK-4), and 3-level IMEX-MLSDC with 3/5/9 Lobatto IIIA collocation points,
with each method reaching a similar final accuracy in the computed control (thus,
using different number of time steps, but the same spatial discretization). For the
IMEX methods, the nonlinearity as well as the control were treated explicitly.
IMEX-Euler was fastest with 102.5s, clearly beating MLSDC (169.8s) despite
using significantly more time steps. The ARK-4 method here required 183.0s,
as the non-symmetric stage values slow down the forward-backward solves due
to the required dense output. With PFASST on 32 CPUs requiring 32s, the
speedup reduces from 5.3 for MLSDC as a reference to 3.2 when compared to
IMEX-Euler. By choosing the sequential baseline method wisely, we can increase
the reported speedup in this example by more than 65%!

A very similar slight of hand is hidden in Sect. 2.2, where only theoretical
speedups are reported. In the PFASST examples, the SDC iteration counts are
used as the baseline results, although in most cases MLSDC required up to 50%
fewer iterations to converge. Using MLSDC as a baseline here would reduce
the theoretical speedups significantly in all cases. Whether this still holds when
actual run times are considered, is, as we have just seen, part of a different story.

Way 10. If you report speedup based on actual timings, compare your
code to the method run on one processor and never against a different
and possibly more efficient serial method.
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2.6 Use low order serial methods!

A low-order temporal method is a choice convenient for PinT methods because
they are easier to implement and allow one to take many time steps without
falling prey to Way 5, especially when you want to show how the speedup in-
creases as you take ever more time steps for a problem on a fixed time interval.
After all, it is the parallel scaling that is exhilirating, not necessarily how quickly
one can compute a solution to a given accuracy.

For this example we will again use Parareal applied to the Kuramoto-Siva-
shinsky Equation. The K-S equation is a good choice to impress an audience
because it gives rise to chaotic temporal dynamics (avoiding Way 1). The equa-
tion in one dimension reads

ut = −uux − uxx − uxxxx,

which we solve on the spatial interval x ∈ [0, 32π] and temporal interval t ∈
[0, 40]. Since the fourth-derivative term is linear and stiff, we choose a first order
exponential integrator in a spectral-space discretization where the linear opera-
tors diagonalize and hence the exponential of the operator is trivial to compute.
We use 512 points in space, and in this study will compare a serial first-order
method with Parareal using the same first-order method in terms of cost per
accuracy. Using 32 time processors for all runs, we increase the number of steps
for the fine Parareal propagator F and hence the total number of time steps.
The theoretical speedups (ignoring Way 9) are displayed on the left panel of Fig.
6. One can see that the Parareal method provides speedup at all temporal reso-
lutions up to a maximum of about 5.85 at the finest resolution (where α is the
smallest). So we have achieved meaningful speedup with a respectable efficiency
for a problem with complex dynamics. Best to stop the presentation here.

If we are a little more ambitious, we might replace our first-order integrator
with the 4th-order exponential Runge-Kutta (ERK) method from [12]. Now we
need to be more careful about Way 5 and hence won’t be able to take nearly as
many time steps. In the right panel of Fig. 6 we show the 1st-order and 4th-order
results together. The maximum theoretical speedup attained with the 4th-order
method is only about 3.89 at the finest resolution, which is probably reason
enough not to do the comparison. But there is the additional irritation that at
any accuracy level, the serial 4th-order method is significantly faster than the
Parareal 1st-order method.

Way 11. It is best to show speedup for first-order time integrators since
they are a bit easier to inflate. If you want to show speedup for higher-
order methods as well, make it impossible to compare cost versus accuracy
between first-order and higher-order methods.

3 Parting thoughts

The careful reader may have noticed that in all the examples above, a single
PinT method is used for each Way. This brings us finally to
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Fig. 6: Comparison of serial and Parareal execution time for the K-S example
using a first- and fourth-order ERK integrators. Note that the serial fourth-
order integrator is always faster for a given accuracy than the parallel first-order
method (Way 11)

Way 12. Never compare your own PinT method to a different PinT
method.

The problem, as we have seen, is that assessing performance for a single PinT
method is already not straightforward. Comparing the performance of two or
more different methods makes matters even more difficult. Although it has been
often discussed within the PinT community, efforts to establish a set of bench-
mark test examples have, to date, made little head way. The performance of
methods like PFASST and Parareal considered here are highly sensitive to the
type of equation being solved, the type of spatial discretization being used, the
accuracy desired, and the choice of problem and method parameters. In this
study we purposely choose examples that lead to inflated reported speedups,
and doing this required us to use our understanding of the methods and the
equations chosen. Conversely, in most instances, a simple change in the exper-
iment leads to much worse reported speedups. Different PinT approaches have
strengths and weaknesses for different benchmark scenarios, hence establishing
a set of benchmarks that the community would find fair is a very non-trivial
problem.

Roughly, the ways we present can be grouped into three categories: “choose
your problem” (ways 1–4), “over-resolve” (ways 5–8) and “choose your perfor-
mance measure” (ways 9–11). This classification is not perfect as some of the
Ways overlap. Some of the dubious tricks presented here are intentionally obvious
to detect, while others are more subtle. As in the original “twelve ways” arti-
cle, and those it inspired, the examples are meant to be light-hearted. However,
many of the Ways have been (unintentionally) used when reporting numerical
results, and the authors are not without guilt in this respect. Admitting that, we
hope this article will be read the way we intended: as a demonstration of some
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of the many pitfalls one faces when assessing PinT performance and a reminder
that considerable care is required to obtain truly meaningful results.
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Appendix 1

The value of σ in the first example is 0.02.
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