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Grounding As Learning

Gregory M. Kobele, Jason Riggle, Travis Collier, Yoosook Lee,
Ying Lin, Yuan Yao, Charles Taylor, Edward P. Stabler

University of California, Los Angeles

http://taylor0.biology.ucla.edu/al/

1 Grounding

Communication among agents requires (among many other things) that each agent be able
to identify the semantic values of the generators of the language. This is the ”grounding”
problem: how do agents with different cognitive and perceptual experiences successfully
converge on common (or at least sufficiently similar) meanings for the language? There are
many linguistic studies of how human learners do this, and also studies of how this could
be achieved in robotic contexts (e.g., (Steels, 1996; Kirby, 1999)). These studies provide
insight, but few of them characterize the problem precisely. In what range of environments
can which range of languages be properly grounded by distributed agents? This paper takes
a first step toward bringing the tools of formal language theory to bear on this problem. In
the first place, these tools easily reveal a number of grounding problems which are simply
unsolvable with reasonable assumptions about the evidence available, and some problems
that can be solved. In the second place, these tools provide a framework for exploring more
sophisticated grounding strategies (Stabler et al., 2003). We explore here some preliminary
ideas about how hypotheses about syntactic structure can interact with hypotheses about
grounding in a fruitful way to provide a new perspective on the emergence of recursion
in language. Simpler grounding methods look for some kind of correlation between the
mere occurrence of particular basic generators and semantic elements, but richer hypotheses
about relations among the generators themselves can provide valuable additional constraints
on the problem.

2 Learning Grounding

A first useful perspective on learning can be gained from the “identification in the limit”
paradigm (Gold, 1967), a framework that is useful for identifying learning problems that
are solvable (perfectly) when one makes very generous assumptions about the data poten-
tially available to the learner. In this framework, the learner is successively presented with
positive examples of a language, making a (possibly new) hypothesis after each example.
Each possible order of presentation of every sentence of the language (repetitions allowed)
is called a text (for that language). (Formally, a text is an infinite sequence t ∈ L∞ such
that for every s ∈ L, there is some i such that ti = s.) The learner learns the language
if on each text there is a point after which the learner’s hypothesis never changes, and the
hypothesis is correct.



We capitalize on the insight in (Siskind, 1996) that keeping track of the cooccurrance
of morphemes and meaning atoms (sememes) can allow us to learn the morpheme-sememe
association by a process of elimination. Extending this approach to morpheme to mor-
pheme cooccurrence will allow the learner to extract coherent hypotheses from incomplete
information and will allow us a foothold into bootstrapping syntax.

We take a language to be a set of sentence-meaning pairs. For our purposes, a sentence
is a finite sequence of morphemes (i.e. s ∈ Σ∗), and a meaning is a multi-set of sememes
(m ⊆ MN). We say a meaning map µ∗ : Σ∗ → MN is compositional iff there is a map
µ : Σ→MN such that for w ∈ Σ, µ∗(w) = µ(w), and for s ∈ Σ∗, µ∗(s) =

⊎
1≤i≤|s| µ(si)

(i.e. µ∗ is the homomorphic extension of some µ). If such a map exists it is unique, and
we will identify µ and µ∗ when no confusion will arise. For S ⊆ Σ∗, maps µ∗, ν∗ are S-
equivalent (µ ≈S ν) iff for all s ∈ S, µ∗(s) = ν∗(s). We define LS to be the set of all pairs
〈S, µ〉, where µ is a compositional meaning map. We write µ ∈ LS for 〈S, µ〉 ∈ LS . Note
that there might be many S-equivalent maps in LS . We say that LS is exactly identifiable
in the limit iff there is an algorithm A such that for any µ ∈ LS , A converges to µ on any
text from L = {〈s, µ∗(s)〉|s ∈ S}.

A straightforward adaptation of Siskind’s cross-situational grounding algorithm to our
setting is as follows. To each morpheme w in our lexicon is associated a set P (w) (the
possible meanings of w). Upon hearing a sentence meaning pair 〈s, ms〉, for each mor-
pheme w = si, if w is not already in the lexicon, it is added and its possible meanings are
bounded only by ms. Otherwise, if w is already in the lexicon, then its possible meanings
are reduced to those which occur also in ms.

Algorithm 1 On input 〈s, ms〉

for each w ∈ s

if w ∈ Lex

P (w)← P (w) ∩ms

else

P (w)← ms

The first question we investigate is this: if the criterion of learning is exact identification
of a particular word to meaning mapping, under which circumstances is successful learning
possible?

Algorithm 1 works by eliminating a sememe from the possible meaning of a morpheme
whenever a datum is presented that contains the morpheme without the sememe. This
allows for a simple characterization of the language classes it identifies: they are those in
which the meaning of each morpheme is exactly the set of sememes that constantly cooccur
with the morpheme in the text.

Theorem 1 Algorithm 1 exactly identifies a class of languages LS iff for all µ ∈ LS , every
w ∈ Σ is such that µ(w) =

⋂
{µ∗(s)|s ∈ S ∧ w ∈ s}.

Proof: The only if direction follows immediately from the definition of the algorithm
above. For the if direction, assume that for each w, µ(w) =

⋂
{µ∗(s)|s ∈ S ∧ w ∈ s}.

Then as there are at most finitely many elements in any µ∗(s), there is a finite subset



Sw ⊆ {µ
∗(s)|s ∈ S ∧ w ∈ s} such that

⋂
Sw = µ(w), and thus a finite point after

which all elements of Sw have appeared in the text. As there are only finitely many w, there
is a point in the text after which all elements of every Sw have been seen, and thus at this
point Algorithm 1 will have converged on µ. �

Now that we have an exact characterization of the languages learnable by this algorithm,
we can ask what kinds of languages these are. The next theorem provides a necessary
syntactic condition on languages learnable by Algorithm 1; no morpheme may constantly
co-occur with another. That is, there could be no morpheme -ing whose presence in a
sentence entails the presence of another morpheme be.

Theorem 2 If every µ ∈ LS is such that for each w ∈ Σ, µ(w) =
⋂
{µ∗(s)|s ∈ S∧w ∈ s},

then for all w,
⋂

s∈S
{w′ ∈ s|w ∈ s} ⊆ {w}.

Proof: Let µ ∈ LS be as in the statement of the theorem. Toward a contradiction, let w

be such that
⋂

s∈S
{w′ ∈ s|w ∈ s} ⊃ {w}. Then there is some z such that for any s ∈ S,

w ∈ s entails z ∈ s. Then by assumption, µ(w) ⊇ µ(w) ] µ(z), and so µ(z) = ∅.
However, as µ was arbitrary, we have shown that all ν ∈ LS map z to the empty set, which
is a contradiction. �

Example 1 The following set of sentences gives rise to a set LS of languages which are
not exactly learnable using Algorithm 1 (by Theorem 2, as

⋂
s∈S
{w′ ∈ s|w2 ∈ s} =

{w1, w2}):
S = {w1w2, w1w3, w1w4, w3w4}

Note that no two meaning maps in LS are S-equivalent - because each of w1, w3 and w4

occurs with the other, S-equivalent maps will agree on their meanings. But then there is no
choice for the meaning of w2.

Theorem 1 gives a precise characterization of the classes of languages which are exactly
identifiable by Algorithm 1. However, Example 1 exhibited a simple, and not obviously
unreasonable language which was unlearnable by Algorithm 1. Because Algorithm 1 does
not keep track of when certain morphemes cooccur, it cannot use the successful resolution
of the meaning of one morpheme to assist in resolving the meaning of another. We present
below an algorithm which does exactly this. This will allow us to exactly identify any class
LS of languages with the property that no two meaning maps are S-equivalent.

A (partial) hypothesis is a (partial) function h : Σ→MN. Given partial functions h, g,
they are consistent (hRg) iff whenever both are defined, they agree (for all w, if ↓ h(w) and
↓ g(w), then h(w) = g(w)). We define a partial operation ∨ (‘join’) over partial functions
such that h ∨ g is defined just in case hRg and, if defined, is their set theoretic union.

Given a multi-set M , Π(M) is the set of partitions of M .
Algorithm 2 first constructs the set of partial hypotheses (defined only on morphemes

present in the current sentence) which are consistent with the presented datum. Then each
hypothesis already in the lexicon1is successively paired with each hypothesis in the newly
constructed set. If this pairing of hypotheses is consistent, then their join is added to the
lexicon.

1We are using the word ‘lexicon’ here to denote our set of working hypotheses. Once the learner converges
on a language the lexicon will contain all and only S-equivalent hypotheses (Theorem 3). Of course, if no two
maps are S-equivalent, then the learning will be exact.



Algorithm 2 On input 〈s, ms〉

T ← ∅

H ←
⋃

π∈Π(ms)
{h : {s1, . . . , s|s|} → π|ms = h∗(s)}

if Lex = ∅

Lex← H

else

for each h ∈ Lex

for each g ∈ H

if hRg

T ← {h ∨ g} ∪ T

Lex← T

The following examples illustrate the behaviour of Algorithm 2.

Example 2 Imagine that the first piece of data a learner saw was 〈w1w1w2, {0, 0, 2, 2}〉.
Then every partial hypothesis which is consistent with this datum (there are exactly four)
is in H =

⋃
π∈Π(ms)

{h : {s1, . . . , s|s|} → π|ms =
⊎

1≤i≤|s| h(si)} = {h1, h2, h3, h4},
where

h1 : w1 → {0, 2}
w2 → ∅

h2 : w1 → {0}
w2 → {2, 2}

h3 : w1 → {2}
w2 → {0, 0}

h4 : w1 → ∅
w2 → {0, 0, 2, 2}

As this is the first datum presented to the learner, Lex = H = {h1, h2, h3, h4}.

Example 3 Continuing from Example 2, imagine that the next datum presented to our
learner was 〈w2w2w3, {0, 0, 0, 0, 1}〉. Computing H , we find the only consistent maps to
be h5 and h6:

h5 : w2 → {0, 0}
w3 → {1}

h6 : w2 → ∅
w3 → {0, 0, 0, 0, 1}

Now, as Lex 6= ∅, we proceed into the for each loop in Algorithm 2.



We begin by evaluating h1 and h5. As ¬(h1Rh5) (because h1(w2) = ∅ 6= {0, 0} =
h5(w2)), we go on to the next map, h6. Since h1Rh6, we set T = {(h1 ∨ h6)}, where

(h1 ∨ h6) : w1 → {0, 2}
w2 → ∅
w3 → {0, 0, 0, 0, 1}

Continuing on, we find that the only other pair of maps to bear R to one other are h3

and h5. We set T = {(h3 ∨ h5), (h1 ∨ h6)}, where

(h3 ∨ h5) : w1 → {2}
w2 → {0, 0}
w3 → {1}

Exiting the for each loops, we set Lex = T = {(h3 ∨ h5), (h1 ∨ h6)}.

Note that the size of Lex decreases monotonically throughout the course of grounding.
Once Lex is initialized (upon seeing the first datum), each successive iteration reduces the
number of distinct hypotheses stored. Thus the main computational cost of Algorithm 2 lies
in computing H .

We are now ready to prove the main result of this paper:

Theorem 3 For any S ⊆ Σ∗, LS is identifiable in the limit.

Proof: Let S ⊆ Σ∗, and µ ∈ LS be arbitrary. Let t be a text for L = {〈s, µ∗(s)〉|s ∈ S}.
We show that at some point in the text tn, every h ∈ Lexn is such that h ≈S µ, and that at
every subsequent point, Lexn = Lexn+i.

Note that for every datum 〈s, µ∗(s)〉 ∈ L, there is some hypothesis h ∈ H such that
µRh. Note also that if µRh and µRg, then hRg. This is due to the fact that the domain of
µ includes the domains of h and of g. From this we conclude that at every step there is a
hypothesis h ∈ Lex such that µRh.

Now, after seeing a datum 〈s, µ∗(s)〉, there will be a hypothesis h ∈ Lex such that
for every 1 ≤ i ≤ |s|, h(si) = µ(si). Thus, after seeing a finite number of sentences
(at most one for each w ∈ Σ)2, µ ∈ Lex. Similar reasoning tells us that at that point
{ν|µ ≈S ν} ⊆ Lex.

Now, let h ∈ Lex be such that h 6≈S µ. Then there is some s ∈ S such that h∗(s) 6=
µ∗(s). h ∨ g will not be defined on any g which is such that g∗(s) = µ∗(s), and so once
〈s, µ∗(s)〉 is seen, Lex will contain only hypotheses consistent with it (as H will, and at the
next iteration Lex contains only those hypotheses which were the join of some hypothesis
in H with some hypothesis already in Lex), and thus at no later point will inconsistent
hypotheses enter into Lex. As there are finitely many meaning maps (each is uniquely
defined by its behaviour on the finite set Σ), there are thus a finite number of sentences that
need to be seen to eliminate them. At that point, Lex = {ν|µ ≈S ν}.

After Lex = {ν|µ ≈S ν}, there will be no sentence which will change Lex, as for any
hypothesis h ∈ H , for any ν ∈ Lex such that hRν, ν ∨ h = ν. �

Returning to the question we began with, namely, when it is possible to exactly identify
a class of languages, Theorem 3 provides us immediately with the following answer:

Corollary 1 For any S ⊆ Σ∗, LS is exactly identifiable in the limit iff for any µ, µ′ ∈ LS ,
µ ≈S µ′ → µ = µ′.

2This is assuming that for every w ∈ Σ, there is some s ∈ S such that w ∈ s.



3 Grounding Syntax

The semantic representations used above are almost completely disconnected from the syn-
tax of the language - they are attuned only to which morphemes occur and how many times
they do so. This notion of the syntax-semantics interface does not allow semantic rep-
resentations to provide any information about the syntax of the language beyond simple
numerical relations between elements in sentences. Our definition of compositionality is a
naı̈ve approximation of the more common usage, whereby the mode of combination of the
meainings of the parts of expressions is related to the abstract syntactic structure of those
expressions.

Luckily for language learners, the situation in natural language is (perhaps) less diffi-
cult. If we were to assume (see e.g. (Fulop, 1999) and related work) that the semantics of
expressions very closely mirrors their syntactic structure, then the syntactic learner would
have an easier job of things once the grounding had taken place. Note, however, that this
relies on an aspect of the grounding problem that we have been able to ignore up to this
point due to our overly simple semantics. Namely, that the more structured the meanings,
the more work the grounding algorithm need do. (Kanazawa, 2001) is an investigation of
this problem in a type-logical setting. We will continue to ignore it here.

In minimalist grammars (Stabler, 1997), there are two basic dependencies between mor-
phemes given by the two structure building operations, MERGE and MOVE. In the Chom-
skyian tradition (Chomsky, 1965; Chomsky, 1986), the dependencies given by merger are
those which correspond most closely to predicate argument structures (movement is usually
taken to have scopal effects). Enriching our semantic representations to reflect the predi-
cate argument structures corresponding to merger dependencies3 would result in a much
more robust syntax-semantics interface. This in turn will allow the learner to use the results
of grounding to tightly constrain its initial hypotheses about the syntactic structure of its
language. If in addition we require that movement dependencies are evidenced by string
displacement from merged positions, this would enable the learner to reconstruct the de-
pendency structures from which syntactic learning can be shown to successfully take place
(Kanazawa, 1998; Stabler, 2001; Kobele et al., 2002).

4 Extending Grounding

The previous sections detailed a very idealized perspective on the grounding problem. One
assumption we made was that the learner was able to determine exactly the intended mean-
ing of the utterance. We can relax this assumption by redefining a text for a language. A
referentially uncertain text is one in which each sentence of the language is paired not only
with its meaning, but also with other possible meanings. The algorithms of §2 may be ex-
tended to referentially uncertain texts with varying degrees of success, depending in part
upon how we choose the incorrect meanings. Note that every text in the sense of last sec-
tion can be viewed as a (degenerate) referentially uncertain text. For a trivial case, if every
possible meaning always accompanies each sentence of the language, there is no way to
determine the ‘correct’ (even up to S-equivalence) meaning map for the language. On the
other hand, if the incorrect meanings are chosen in such a manner so as to preserve the fact
that the only sememes that constantly cooccur with a morpheme are exactly the meaning of

3In minimalist grammars this is simply the yield of the derivation tree for a sentence (Hale and Stabler,
2001).



that morpheme, even Algorithm 1 will (exactly) identify this class of languages. Another
assumption was that the level of analysis of the sentence was abstract enough so as to filter
out any ambiguity in the language (i.e. instead of the ambiguous bank, there are bank1 and
bank2). Of course, this does not seem to be the case in (the early stages of) natural language
learning.

5 Grounding and Language Change

In the previous sections we were unconcerned with the efficiency of the learning algorithms.
In particular, Algorithm 2 might require huge amounts of computational resources to com-
pute all partial hypotheses consistent with a particular datum - this cost will only increase
with referential uncertainty. We can bound the computational resources required by Al-
gorithm 2 by, for example, limiting the size of H - data for which there are more than a
certain number of consistent hypotheses might be ignored.4 This restriction, while possibly
comprimising the learnability theoretic properties of the system, introduces a new possibil-
ity for language change. This doesn’t represent a selectional pressure, but does introduce a
perturbation in the linguistic system which other selectional pressures might interact with
to give rise to changes over time.

However, even without modifying the learning algorithms themselves, the bare fact that
the learner is not given arbitrarily much time to identify the text it is faced with introduces
the possibility of imperfect (incomplete) learning. This is exploited in the system for lin-
guistic emergence and transmission described in (Stabler et al., 2003).
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