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Reelin in the Years: decline in the number of reelin 
immunoreactive neurons in layer II of the entorhinal cortex in 
aged monkeys with memory impairment

Jeffrey M. Long1, Evelyn J. Perez1, Jeffrey A. Roberts2, Mary T Roberts2, Peter R. Rapp1

1Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on 
Aging, National Institutes of Health, Baltimore, MD

2California National Primate Research Center, Davis, CA

Abstract

The glycoprotein reelin has been implicated in both memory-related synaptic plasticity and 

Alzheimer’s disease pathogenesis. Aged rats with memory impairment display decreased reelin 

expression in layer II of the entorhinal cortex (EC) relative to memory-intact subjects, and here we 

tested whether this effect extends to the primate brain. Seven young adult (8–10 years) and 14 

aged (27–38 years) rhesus monkeys (Macaca mulatta) were examined, including 7 old animals 

classified as impaired based on their scores from a delayed nonmatching-to-sample recognition 

memory test. Histological sections spanning the rostrocaudal extent of the intermediate and caudal 

divisions of EC were processed by immunohistochemistry and the total number of reelin-positive 

neurons in layer II was estimated using design-based stereological techniques. The main finding 

was that the number of reelin expressing neurons in EC layer II is decreased selectively in aged 

monkeys with memory deficits relative to young adult and aged subjects with intact memory. The 

results add to evidence implicating EC-hippocampal integrity in neurocognitive aging, and they 

suggest that disrupted reelin signaling may be among the mechanisms that mediate the associated 

vulnerability of this circuitry in Alzheimer’s disease.
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1. Introduction

The entorhinal cortex (EC), together with the hippocampus and anatomically related ‘rhinal’ 

cortical areas, comprise a medial temporal lobe system critical for normal memory 
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(Buckmaster et al., 2004; Insausti et al., 1987; van Strien et al., 2009). The EC is a pivotal 

bidirectional gateway in this system, funneling convergent neocortical input into the 

hippocampus, and relaying the output of hippocampal processing to adjacent rhinal areas 

and many of the same neocortical targets from which it receives input (Witter, 1993). 

Among the distinctive features of the EC, stellate cells in layer II that originate the perforant 

path projection to the hippocampus are robustly immunoreactive for the extracellular matrix 

glycoprotein reelin (Martinez-Cerdeno and Clasca, 2002; Pesold et al., 1998; Ramos-

Moreno et al., 2006). Long known to play an important role in neuronal migration and 

positioning during development, growing evidence indicates that reelin signaling remains 

critical for normal brain function throughout the lifespan (for review see Stranahan et al., 

2013). In young subjects, reelin signaling through apolipoprotein E (APOE) receptors 

modulates long term potentiation (LTP) and other measures of synaptic plasticity (Forster et 

al., 2010; Herz and Chen, 2006; Rogers and Weeber, 2008). Linking these anatomical and 

physiological observations, recent evidence demonstrates that blocking reelin’s interaction 

with its receptors, specifically in the entorhinal cortex, impairs spatial memory mediated by 

the hippocampus (Stranahan, Salas-Vega et al. 2011). These findings are consistent with the 

view that, in multiple regions of the adult brain, reelin expression and signaling regulate 

synaptic structure and function critical for normal learning and memory (Brosda et al., 2011; 

Rogers et al., 2011; Rogers et al., 2013; Stranahan et al., 2011b; Weeber et al., 2002).

Disrupted reelin signaling has been implicated in a variety of conditions in which cognition 

is prominently affected, including schizophrenia and Alzheimer’s disease (AD) (Guidotti et 

al., 2000; Herring et al., 2012; Impagnatiello et al., 1998; Kramer et al., 2011; Seripa et al., 

2008). The links to AD are illuminating and raise the possibility that the reelin-positive 

phenotype of layer II EC neurons might contribute to their documented vulnerability early in 

the course of the disorder. Changes in reelin expression localized to EC-hippocampal 

circuitry have also been observed in association with age-related cognitive decline, i.e., a 

frequent prodromal feature of disease. In rats, for example, where the effects of aging can be 

examined in the absence of frank neurodegeneration, aged subjects with impaired 

hippocampal memory display a substantial decline in EC layer II reelin expression relative 

to both young adults and aged rats with intact memory (Stranahan et al., 2011a). Here, 

taking advantage of an established model of neurocognitive aging in old world macaques, 

we asked whether the vulnerability of reelin-positive EC-hippocampal circuity in cognitive 

aging extends to the primate brain.

2. Material and Methods

2.1. Animals

Seven young adult (8–10 years at the time of perfusion, mean = 8.9 years; 5 females, 2 

males) and 14 aged (27–38 years, mean = 31.7 years old; 7 females, 7 males) rhesus 

monkeys (Macaca mulatta) were used in this study. Subjects were maintained and 

behaviorally tested as previously described (Rapp and Amaral, 1991) at the California 

National Primate Research Center, Davis, California. All experiments were carried out in 

accordance with The National Research Council’s Guide for the Care and Use of Laboratory 

Long et al. Page 2

Neurobiol Aging. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Animals and approved by the Animal Care and Use Committee at the University of 

California, Davis.

2.2. Behavioral testing

Delayed nonmatching-to-sample (DNMS) testing was conducted in a Wisconsin General 

Test Apparatus (WGTA) as previously described (Rapp and Amaral, 1991). Briefly, trials 

(20/day) consisted of a sample object presentation followed by a recognition test. In the 

sample phase, an object was presented for a response over the baited center well of the 

WGTA stimulus tray. After a predetermined delay, during which the test tray was hidden 

from view, the sample was presented together with a novel object that covered a food 

reward. During task acquisition, the retention interval between the sample presentation and 

recognition test was 10 sec, and animals were tested (nominally 5 days/wk) until they 

reached a criterion of 90% correct over 100 trials. Training subsequently continued with 

successively longer delays of 15, 30, 60, and 120 seconds (100 trials each, over 5 days). At 

the longest delay of 600 sec, a total of 50 trials were administered (5 trials/day).

2.3. Perfusion and tissue preparation

After completing an extensive neuropsychological test battery, animals were deeply 

anesthetized, transcardially perfused with aldehyde fixatives, and the brains prepared for 

histological processing (see Supplemental Material for details). Serial sections were cut on a 

freezing sliding microtome in the coronal plane at a nominal thickness of 40μm. Sections 

were stored individually in 1-in-10 series (400μm spacing) in cryoprotectant at −80°C until 

processing.

2.4. Immunohistochemistry

An evenly spaced series of histological sections from each brain was processed for the 

immunocytochemical visualization of reelin using a monoclonal antibody with validated 

cross-reactivity in primates, directed against an N-terminus epitope of mouse reelin, (Anti-

Reelin, clone 142, Millipore, Corp., Billerica, MA; catalog # MAB5366). Standard 

immunocytochemical methods using 3, 3′ diaminobenzidine for the chromogenic reaction 

were employed (Supplemental Material).

2.5. Anatomical boundaries

A Nissl stained series from each subject was used to determine the rostrocaudal extent of the 

intermediate and caudal subdivisions of the entorhinal cortex (Amaral et al 1987). The 

rostral border of the intermediate EC was defined as the first section containing cell islands 

in layer II and a clearly defined, relatively cell free layer IV “lamina dessicans”. In the 

coronal plane, the caudal subdivision of entorhinal cortex borders the intermediate 

subdivision rostrally. The posterior border of the caudal division of EC was defined as the 

last section containing layer II neurons. Layer II cells were distinguished from the other 

laminae by their immunostaining intensity and relatively large size. The boundary 

delineating the lateral and medial EC divisions was placed at the medial lip of the rhinal 

sulcus, with the lateral EC comprising the medial bank of the rhinal sulcus (Figure 2A).
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2.6. Stereological Analysis

All stereological counting was carried out by one experimenter (JML), blind to the age and 

cognitive status of subjects. The total number of reelin-immunoreactive (IR) layer II neurons 

in the intermediate and caudal divisions of the EC (Amaral et al., 1987) was estimated using 

the optical fractionator technique (West, 1993), implemented on a computer-aided system 

(StereoInvestigator, MBF Bioscience, Williston, VT). Sampling parameters were selected on 

the basis of pilot analyses and were sufficiently stringent to ensure that observed variability 

in the estimated total cell counts reflected biological variability between individuals and not 

insufficient sampling within subjects (see Supplemental Material).

2.7. Statistical Analysis

The number of trials to reach criterion in the DNMS task was analyzed by t-test, and 

performance across delays was tested by repeated measures ANOVA with subsequent group 

contrasts tested by t-tests. The number of reelin positive cells was analyzed by one-way 

ANOVA, t-tests and a repeated measures ANOVA to explore potential differences along the 

rostrocaudal EC axis. All statistical analyses were conducted using Prism 8 (GraphPad 

Software, San Diego, CA).

3. Results

3.1. Cognitive characterization

DNMS results for the young and aged monkeys tested here were similar to earlier reports 

(Moss et al., 1988; Presty et al., 1987; Rapp and Amaral, 1991; Shamy et al., 2006). 

Specifically, aged monkeys required many times the number of trials as young adults to 

acquire the non-matching rule of the task with a short, 10 sec delay (Figure 1A; t(1,19)=5.17, 

p=0.001). With sufficient training, however, all subjects performed at or above the 90% 

correct learning criterion. The memory demands of the task were subsequently increased by 

imposing successively longer retention intervals of 15 sec to 10 min. Recognition accuracy 

declined in both groups across longer delays, as expected, (Figure 1B; repeated measures 

ANOVA, main effect of delay: F(4,76) = 45.4, p=0.001), and the aged group scored more 

poorly than young adults (main effect of age; F(1,19) = 11.2, p=0.003). Although the 

magnitude of age-related impairment increased across retention intervals up to 120 sec, the 

interaction between age and delay was not statistically significant (F(4,76) = 1.04, p=0.390), 

and recognition accuracy in the aged group was reliably worse than for young at all delays 

longer than 15 sec (30s, t(19)=2.2, p=0.042; 60s, t(19)=3.0, p=0.007; 120s, t(19)=3.2, p=0.004; 

600s, t(19)=2.9, p=0.008). Consistent with earlier reports (Calhoun et al., 2004) there was 

considerable individual variability in memory among the aged monkeys, and half scored 

within the range of young subjects (Fig. 1C). There was no indication of a sex difference in 

recognition memory in either the young or aged groups (p-values > 0.05) although sample 

size for subgroup analysis was small.

3.2. Reelin-positive neurons in monkey EC layer II: qualitative observations

The organization and cytoarchitecture of reelin-immunoreactive neurons in layer II of the 

monkey EC is illustrated in Figure 2. The low power photomicrograph in Figure 2A 
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illustrates the medial and lateral divisions of the EC (dotted line), highlighting the reelin 

positive layer II (black arrows), and characteristic layer II cell islands (white arrow). The 

vast majority of layer II EC neurons were intensely immunoreactive, permitting the 

unambiguous identification of laminar and regional boundaries. The magnification used for 

quantification and a counting frame are shown in Figure 2B, where individual labeled cells 

are prominent. Figure 2, C-H illustrate that the overall staining characteristics of the 

histological material was qualitatively similar in young and aged brains. In an effort to 

ensure that the material in panels C-H is representative, the brains chosen for illustration 

were selected because they contained the median total number of reelin positive neurons in 

their respective groups. It is notable in this context that the density of reelin positive cells in 

the AI EC at high power (Fig. 2H) appears subjectively lower than in the Young (Fig. 2D) or 

AU monkey (Figure 2, C–F), in agreement with the quantitative stereological assessment. At 

least a few histological sections from each case included the rostral hippocampus proper, 

and in a non-systematic survey, we failed to detect instances of the reelin-positive plaques 

that reportedly develop during aging in laboratory rodents and marmosets (Knuesel et al., 

2009).

3.3. Reelin-positive neuron number in monkey EC layer II: quantitative observations in 
relation to age and memory status

Independent of age, across all monkeys, the estimated total unilateral number of reelin-IR 

neurons in layer II of the intermediate and caudal EC averaged 205,590±8,881. This value is 

comparable to previous stereological estimates from non-selective Nissl stained material 

(Gazzaley et al., 1997), consistent with the conclusion that the vast majority of layer II 

neurons in the rhesus monkey EC express reelin. Although group comparisons based on 

chronological age revealed nearly 11% fewer reelin-IR neurons in the aged EC (mean ± SE; 

young = 221,714±12,608; aged = 197,528±11,417), this numerical difference was not 

statistically significant (F(1,19) = 1.7, p=0.207). Within each age group, reelin-IR cell number 

estimates were also statistically equivalent in males and females (young T(5) = 0.62, p = 

0.56; aged T(12) = 1.16, p = 0.27).

In order to evaluate EC reelin results in relation to individual differences in the cognitive 

outcome of aging, we adopted an approach from earlier work and operationally classified 

aged monkeys as either impaired or unimpaired, depending on whether they scored within 

the range for young subjects when the memory demands of DNMS task were increased (i.e., 

using mean percent correct scores across delays of 15 to 600 sec; Fig. 1C; Calhoun et al., 

2004). As illustrated in Fig. 3A, this analysis revealed that the modest numerical difference 

observed between the young and aged groups was almost entirely attributable to decreased 

reelin-IR cell number in aged monkeys that exhibited impaired memory. Indeed aged-

impaired subjects displayed over 17% fewer reelin-positive EC neurons than animals with 

normal memory (young and aged unimpaired combined; T(19) = 2.24, p = 0.038). This effect 

was predominantly driven by aged females with recognition memory deficits (aged impaired 

females vs. aged impaired males, T(5) = 3.2, p = 0.024), although studies in larger numbers 

of monkeys are needed to confirm potential sex-linked differences in EC reelin-positive cell 

number and cognitive aging.
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Related research in memory-impaired aged rats has reported that decreased reelin expression 

predominantly targets the lateral entorhinal cortex, targeting a zone of the EC homologous to 

that affected early in the course of AD (Stranahan et al., 2011a). Here we found a 

qualitatively similar pattern in the monkey when the cell count data were considered 

separately for the most lateral portion of the EC, comprising the medial bank of the rhinal 

sulcus (Fig. 2A). Reelin-IR cell number in this area averaged 26% less than in memory-

intact young and aged animals, and this effect was statistically significant (T(19) = 2.09, 

p=0.05; Fig 3B). By comparison, parallel analysis of the data for the remaining, medial 

portion of the EC revealed a non-significant, trend-level numerical difference between 

groups of 17% (T(19) = 1.80, p=0.09, Fig. 3C).

The topography of EC projections to the hippocampus differs in rats and monkeys, and the 

prominent medial/lateral organization observed in rodents instead reportedly follows a 

coarsely organized anterior/posterior gradient in the primate brain (Burwell and Agster, 

2008; Witter, 2007). Accordingly, in a final analysis we examined potential regional 

selectivity in the effects of aging along the rostrocaudal axis, evaluating the estimated total 

number of reelin-IR cells at 11 contiguous anterior-posterior (A-P) levels of the EC (Fig. 

3D). This analysis revealed significant main effects of cognitive status (young and aged 

unimpaired vs. aged impaired; F(1,19) = 4.49, p<0.05) and A-P level (F(10,190) = 21.06, 

p=0.001), reflecting the overall decrease in reelin expressing neurons in aged impaired 

monkeys, and the gradually increasing size of the EC at posterior levels, respectively. The 

magnitude of the difference between groups, however, was relatively constant along the 

rostrocaudal axis of the EC (group by A-P level interaction; F(10,190) = 1.07, p=0.39).

4. Discussion

The EC is anatomically positioned to influence memory capacities known to be vulnerable 

to aging and AD (Buckmaster et al., 2004). Reelin expression is enriched in superficial 

layers of the entorhinal cortex, and previous studies have reported that the number of these 

neurons is decreased in aged mice (Knuesel et al., 2009) and rats (Stranahan et al., 2011a) 

with memory impairments. This effect appears particularly pronounced in lateral portions of 

the EC, a cortical area arguably homologous to the transentorhinal region affected early in 

the course of AD (Braak and Braak, 1991, 1995, 1997). The current experiments extend 

these findings to the nonhuman primate brain, demonstrating a significant decrease in reelin-

IR cell number in layer II of the EC in aged monkeys with recognition memory deficits 

relative to age-matched and younger adults with normal memory. Previous studies using 

non-selective Nissl staining indicate that layer II neuron number is relatively preserved in 

the aged rhesus monkey EC (Gazzaley et al., 1997; Merrill et al., 2000). A lack of EC 

neuron death has also been noted in aged rats (Merrill et al., 2001; Rapp et al., 2002). Thus, 

together the findings suggest that aged monkeys with memory impairment display decreased 

EC reelin expression rather neuronal dropout, and that EC vulnerability is an evolutionarily 

conserved feature of cognitive aging. Whether or not the disproportionate loss we noted in 

aged female monkeys reflects a reliable sex difference in age-related circuit vulnerability 

merits consideration in human studies with much larger sample sizes.
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Considerable debate centers on the idea that the neurobiological effects of aging and 

neurodegenerative disease are neuroanatomically specific and differentially target distinct 

brain regions or circuitry. A specific conceptualization of this sort is that compromised EC 

integrity signals an AD-related neurodegenerative process, whereas aging preferentially 

impacts the dentate gyrus of hippocampus (Small et al., 2011). Studies challenging this view 

have demonstrated by high resolution diffusion tensor imaging that the perforant path 

projection from the EC to the hippocampus is degraded in healthy, dementia-free older 

humans (Yassa et al., 2011) and that this disruption is coupled with deficits in memory 

processes dependent on the hippocampus (Yassa et al., 2011). Functional MRI results 

additionally point to regional specificity, demonstrating hypoactivity in anterolateral 

portions of the EC (alEC) in non-demented older adults relative to young controls, coupled 

with impairment in pattern separation abilities mediated by the hippocampal projection 

targets of the EC (Reagh et al., 2018). A similar association with cognitive status has also 

been reported for alEC volume in older adults (Olsen et al., 2017). Although older 

participants in these studies were cognitively healthy, defining the potential contribution of 

preclinical neuropathological processes to neuroimaging observations is an endemic 

challenge in human research. Wild-type rats fail to spontaneously develop AD, and the 

decreased EC reelin expression seen in aged subjects with memory impairment (Stranahan et 

al., 2011a) therefore counts against the possibility that this effect is a consequence of 

disease. Our findings extend these observations to the primate brain and suggest the 

conclusion that EC vulnerability may be an important element of the neurobiological 

condition that renders aging a major risk for AD.

Other experiments are needed to identify the specific mechanisms that link decreased reelin 

expression to regional EC vulnerability and cognitive outcomes in aging. Nonetheless, there 

is substantial evidence that reelin signaling powerfully modulates synaptic plasticity critical 

for memory mediated by the hippocampus. Reelin modulates NMDA receptor activity via 

phosphorylation of intracellular tyrosine residues of the NR2 subunit of the NMDA receptor 

(Chen et al., 2005), enhancing glutamate-stimulated calcium influx necessary for induction 

and maintenance of LTP (Herz and Chen, 2006; Malenka, 2003). Other findings document 

that LTP is enhanced after reelin administration and impaired in genetically modified mice 

lacking reelin receptors (Weeber et al., 2002). Plasticity-related structural connectivity also 

appears sensitive to reelin. For example, hippocampal and neocortical dendritic spine density 

are decreased in reelin deficient mice (Pappas et al., 2001; Qiu et al., 2006) whereas relative 

spine density is increased after reelin supplementation (Niu et al., 2004; Niu et al., 2008; 

Rogers et al., 2012).

As might be predicted on the basis of the available anatomical and physiological data, 

considerable behavioral evidence indicates that reelin potently regulates learning and 

memory (Brosda et al., 2011; Stranahan et al., 2011b; Weeber et al., 2002). In one study, for 

example, interference with reelin receptor binding in the lateral EC profoundly disrupted 

hippocampal memory in rats tested in the water maze (Stranahan et al., 2011b). In addition 

to demonstrating that suppressed reelin signaling can negatively impact memory, these 

findings directly implicate the involvement of lateral entorhinal cortical circuitry known to 

be vulnerable early in the course AD, and that features decreased reelin expression in both 
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cognitively impaired aged rats (Stranahan et al., 2011a) and, as we demonstrate here, aged 

monkeys with memory deficits.

Memory in the reelin-deficient reeler mouse is improved after intracerebroventricular 

injection of recombinant reelin, together with positive effects on dendritic spine density and 

synaptic plasticity (Rogers et al., 2011; Rogers et al., 2013). These findings point to reelin as 

a potential target for therapeutic intervention. In the context of AD-related pathogenesis, 

Pujadas et al. (2014) have demonstrated that reelin directly interacts with amyloid-ß fibrils 

in vitro, whereas reelin overexpression in AD mice slows plaque formation and rescues 

recognition memory. The possibility that increasing reelin might blunt the effects of age-

related precursors of AD vulnerability, including the disrupted excitatory/inhibitory balance 

observed in aged rats and monkeys with memory impairment (Haberman et al., 2017b; 

Thome et al., 2016; Wilson et al., 2006), merits testing. Initial results are encouraging, 

demonstrating that low-dose levetiracetam administration – i.e., a treatment that reduces 

neuronal hyperactivity in the aged hippocampus and improves memory – rescues reelin 

expression in the lateral EC in aged rats (Haberman et al., 2017a). The findings reported 

here support the translational potential of this approach.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Performance of young and aged monkeys on the delayed nonmatching to sample task 

(DNMS). A) Mean number of trials (S.E.M.) to reach a 90% correct learning criterion at a 

10-second delay. B) Average percent correct of the young and aged groups across increasing 

delays. C) Mean percent correct for each subject across delays of 15 to 600 sec. Using this 

measure, aged monkeys were classified as unimpaired (AU) or impaired (AI) based on their 

performance relative to young (YG) monkeys.
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Figure 2. 
Reelin immunoreactive neurons in the monkey entorhinal cortex. A) Black arrows denote 

EC layer II heavily populated with reelin immunopositive neurons. White arrow identifies a 

characteristic EC layer II cell island. Dotted line comprises the border used for the medial 

and lateral EC. B) High power photomicrograph of reelin immunoreactive neurons in EC 

layer II showing an example of an unbiased counting frame that was superimposed on live 

digital images for quantification. C-H) Photomicrographs of sections from Young (C&D), 

AU (E&F) and AI (G&H) brains showing general topographical organization, 

immunoreactivity and morphological characteristics of reelin positive neurons.
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Figure 3. 
Reelin immunoreactive neuron number in the monkey entorhinal cortex. A) Mean estimated 

total number of reelin positive cells in aged cognitively impaired monkeys relative to 

memory-intact monkeys (young + aged unimpaired monkeys). B) and C) Reelin positive 

neuron number in lateral (B) and medial (C) components of EC layer II. D) Reelin number 

along the rostrocaudal extent of EC layer II (bin 1 is the most rostral).
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